Renaissance Robotics:
embedding multithreaded real-time feedback
into mobile robots and cyber-physical systems

Thomas R Bewley

2024-05-16

Dedicated to Zachary & Nadia,
and in loving memory of
Morticia, Pareese, Morena, & Checkers, sunpups extradrdinaire.

Contents

Preface ix

I Technology

1 Cybernetics 1-1
1.1 Bits & bytes, gates, integers, floats,and parity 1-2
1.2 Central Processing Unit (CPU) cores 1-13
1.3 Cache-based memory subsystems L 1-14
1.4 Hardware for exploiting parallelism o 1-17
1.5 Microcontrollers (MCUs) and associated coprocessors. 1-22
1.6 Single Board Computers (SBCs) 1-33

2 Embedded programming 2-1
2.1 Multithreading and scheduling L 2-2
2.2 Operating Systems (OSs) e 2-6
2.3 Programming languages 2-7
2.4 Text editing & command-line programming versus IDEs 2-9
2.5 Debuggable, maintainable, and portably fast coding styles 2-10
2.6 Software approximation of special functions 2-11
2.7 Pseudorandom number generators (PRNGs) Lo . 2-13

3 Sensors, actuators, and interfaces 3-1
3.1 Sensors for obtaining situational awareness o o L L. 3-2
3.2 Transferring power and signals to rotating components 3-5
3.3 Sensors for measuring shaft rotation Lo 3-7
3.4 Brushed DC (BDC) and Brushless DC (BLDC) Motors 3-13
3.5 Servos and Electronic Speed Controllers (ESCs) 3-21
3.6 Othertypesofactuators 3-21
3.7 Light Emitting Diodes (LEDs), buttons, and touchscreens 3-22
3.8 Displays and other interfaces 3-26

4 Communication 4-1
4.1 Computer networks oL 4-2
4.2 Short-range wired communication protocols 4-5
4.3 Long-range wired communication protocols oL o oo 4-5
4.4 Wireless communication protocols 4-5

vi

10

4.5

Representative integration: Berets
Overview,

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59

Theoretical Foundations

Kinematics & Dynamics

6.1
6.2
6.3
6.4

Numerical Methods

7.1 Interpolation

Signals & Systems

8.1

8.2 Laplace transform methods
8.3 Z transform methods

8.4

8.5

Circuits

9.1 Introduction

9.2 Active analog circuits & filters
9.3 Operational amplifiers

9.4 Signal transmission
Exercises

Classical Control

10.1

10.2

10.3

10.4

10.5 Describing functions

Connector standards

Power subsystem
Control of brushed DC motors & steppers with the DRV8912-Q1
IMU, magnetometer, and barometer
STM32G474 microcontroller features, pinouts, and GPIOs
Connectivity and i/o
Analog subsystem

Beret Shields

The equations of motion of some simple physical systems
The dynamics of systems of N interacting particles
Solid bodies and their kinematics
Solid body dynamics

Introduction to transforms: Fourier, Laplace, and Z

Bode plots: thinking in the frequency domain
Low-pass, high-pass, band-pass, and band-stop filters

Closing the loop: an introduction to feedback control design
Primary analysis tools used in classical control design
Primary techniques used for classical control design
Classical control design of DT controllers for CT plants

MB headers, MB header breakout SHIMs, and ID EEPROMs
510 Layout

5.11 Bill Of Materials (BOM)
5.12 Schematics

CONTENTS

12

13

CONTENTS

11 Motion Planning
Error-Correcting Codes
12.1 Characterizing the Hamming distance d of linearcodes
12.2 Cyclicform oo
12.3 Binary single parity check codes and their dual forms 00
12.4 Binary Hamming codes and their extended and dual forms
12.5 Binary quadraticresiduecodes.
12.6 Puncturing/extending, augmenting/expurgating, shortening/lengthening
12.7 Binary Cyclic Redundancy Check (CRC)codes
12.8 Binary BCH Codes e
12.9 Soft decisiondecoding

System Design, Development, and Integration

Open vs Proprietary Development Models
13.1 Patent protection
13.2 Open hardware designs L
13.3 Community-supported open software design
134 Repomaintenance L e e

14

15

16

17

Crowd Funding vs Venture Capital

Computer Aided Design & Manufacturing (CAD/CAM)

15.1 Mechanical CAD (MCAD) e e e
15.2 Electrical CAD (ECAD) e e e
15.3 Hybrid CAD programs
15.4 Additive vs subtractive manufacturing Lo Lo

Design Paradigms

16.1 Wheeled designs
16.2 Reaction-wheel and CMG-based designs
16.3 Legged walking, running, and hopping
16.4 Drones e
16.5 Tensegrity structures L L e
16.6 Origamiand kiragami L
16.7 Biomimetic and bioinspired designs L
16.8 Soft robotics L
16.9 Industrial robotics L
16.10 Pick and place machines

Case study: myMiP

Matlab programming

A.1 Fundamentals of both Matlaband Octave
A.2 Matlab programming procedures: stay organized! Lo L.
A3 Plotting L

Vil

12-1
12-3
12-8
12-12
12-13
12-17
12-18
12-19
12-22
12-25

13-1
13-1
13-4
13-4
13-4

14-1

15-1
15-1
15-1
15-1
15-1

16-1
16-1
16-1
16-1
16-1
16-1
16-1
16-1
16-1
16-2
16-2

17-1

Renaissance Robotics (v.2024-05-16) CONTENTS

A.4 Source code repositories: Github and its alternatives

........................ A-9
A5 Navigating your patho A-10
A.6 Advanced prepackaged numerical routines A-10
A.7 Keeping it classy with object-oriented programming L. A-11
B Assorted mathematical foundations B-1
B.1 Complex arithmetic B-1
B.2 Polynomials and theirroots B-5
B.3 Vector calculus: div, grad, curl, and Gauss, Stokes, Helmholtz B-14
B.4 Some useful expansions, sums, identities, and definitions 0000 B-16
Epilog E-1
References R-1

viil

Preface

Leveraging emerging technologies for advanced cellphones and computer graphics, a vast assortment of small
powerful single-board computers (SBCs), operating at very low power, are readily available today for coordinat-
ing small robotic systems, with remarkable new SBCs being announced often. At the same time, an increasing
number of important applications demand creative small-scale robotic solutions, including:

e security & patrol, e minimally invasive surgery, e package delivery,

e remote inspection & repair, e pharmaceutical testing & development, e personal transportation,

e mobility enhancement, e concierge service & shopping assistance, ® HVAC for smart grids,

e food preparation & delivery, e precision agriculture: o floor cleaning & laundry,
e elder care & monitoring, - water/pesticide/fertilizer application, e scientific exploration,

e nursing & feeding assistance, - weed removal, e environmental monitoring,
e biomedical devices & prosthetics, - fruit & vegetable harvesting, e STEM education & toys.

Additionally, real-world deployments of robust Al/ML algorithms, capable of complex contextual decision mak-
ing in highly consequential settings, are becoming increasingly capable for smart cars, autonomous flying taxis,
and other large-scale safety-critical applications, while advanced wifi, cellular, and satellite-based internet
access are becoming faster and more readily available, respectively, within buildings, across both urban and
rural areas, and over the entire planet.

An important missing link for the rapid development and deployment of small-scale robotic systems lever-
aging such existing and emerging components, and across this growing set of needs, is the availability of easy-
to-use and easy-to-extend solutions for motor control and the attendant high-current voltage regulation. In
this text, we thus endeavor to fill this void by introducing a new ecosystem of cross-platform, open-design (open
hardware + open-source software), self-contained, ARM-based carrier boards, dubbed Berets, that readily at-
tach to (a) the 5V power, and 5V TTL logic, 40-pin header on Raspberry Pi (RPi) and compatible motherboards
(MBs), including both a large number of RPi clones as well as GPU compute platforms from NVIDIA, (b) the
12V power, and 1.8V CMOS logic, 40-pin header on MBs in the 96boards CE format, including the Qualcomm
Robotics RB5 platform, or (c) other small MBs via standard SPI connections, or for standalone operation.

Chapter 5 of this text provides a detailed datasheet for this new Beret ecosystem, including an extensible
Arduino-style family of small daughterboards for further expansion options, dubbed Beret Shields. Concomi-
tant with the presentation of this ecosystem, Chapter 4 introduces a uniquely extensible connector standard
dubbed Recon that coordinates the (substantial) portfolio of connectivity options on the Berets. The rest of
Part | puts these new developments in context, with surveys of some of the current and emerging technologies
that enable the development of advanced mobile robots and cyberphysical systems, including discussions of:
e how today’s powerful and remarkably efficient SBCs work (Chapter 1),

e essential modern programming environments and languages for embedded applications (Chapter 2),

e the dominant short-range and long-range (wired and wireless) communication protocols (Chapter 3), and

e the sensors, actuators, and interfaces available that enable new game-changing applications (Chapter 6).
Part | does not include any differential equations or advanced mathematics, and should be accessible to all
“makers” (in high school and beyond) who want to significantly upgrade their technological portfolios.

Renaissance Robotics (v.2024-05-16) Preface

Part Il then provides brief introductions to some of the essential theory used in modern robotics, including:

e Robot Kinematics & Dynamics (Chapter 7),
e Numerical Methods 101 (Chapter 8),

e Signals & Systems (Chapter 9),

e Circuits (Chapter 10),

e Classical Control (Chapter 11), and

e Motion Planning (Chapter 12).

e Linear Error-Correcting Codes (Chapter 13),

A key skill that separates curious “makers” from professional “roboticists” is the analysis that facilitates min-
imalist, power-efficient, cost-effective, safe, and responsive cyber-physical design. The core material in Part Il
(at the level of university undergraduate courses on each of the respective subjects, often taught in the tradi-
tional engineering fields of ME, AE, EE, or CS), though by no means exhaustive, form the essential theoretical
foundations for performing such analysis-based design of robotic systems. A companion volume by the same
author, Numerical Renaissance (NR, occasional forward references to which are made in this text), delves much
deeper (at the level of university graduate courses) into the key theories and algorithms in many related areas,
specifically extending the foundations laid in Chapters 8 and 11.

Finally, Part 1l motivates some ideas related to robotic system design, development, and integration, in-
cluding brief discussions of

e Open vs Proprietary Development Models (Chapter 14),

e Crowd Funding vs Venture Capital (Chapter 15),

e Computer Aided Design & Manufacturing (CAD/CAM) (Chapter 16), and
e various Design Paradigms (Chapter 17).

The text concludes (in Chapter 18) with a detailed case study of a fascinating educational robotics platform,
dubbed myMiP, demonstrating multithreaded multirate feedback, as depicted on the book cover.

The numerical codes related to each chapter, designed to run in both Matlab and Octave, are free and open
source, and are available at
https://github.com/tbewley/RR
Note that all codes in the Renaissance Robotics codebase are Copyright 2024 by Thomas Bewley, and distributed
under the BSD 3-Clause License. Please help us improve this effort by submitting bug fixes, broken links, typos',
etc. via the above site. Note that a few Easter eggs are also interspersed throughout this text (mostly as links
in the pdf version), which are included in an attempt to keep you on your toes?.

'The two dots over the second vowel in common words like in naive, Noél, and reélect is called a diaeresis, which may be placed
over a vowel to indicate that it is sounded in a separate syllable in situations that might otherwise be ambiguous. For example, adding
“co” to “operative” gives a word which might easily be mispronounced if some form of diacritic is not used. One could suggest using
a hyphen, but then adding a second prefix (as is often done in scientific writing) becomes problematic: both nonco-operative and
non-co-operative are downright silly, but noncotperative works fine. This text, like the New Yorker, thus adopts a style that makes
extensive use of diaereses. This approach is hopefully well received by anyone named Anais, Bronté, Chloé, Eloise, Gaélle, Joélle,
Maélle, Zoé, Ismaél, Joél, Laocoon, Loic, Maél, Noél, Raphaél, etc, reading this text; to all others, please forgive this idiosyncrasy.

2Reasoning, Circular: see explanation of Circular Reasoning in footnote on Page R-2.

https://github.com/tbewley/RR
https://github.com/tbewley/RR/blob/main/LICENSE
https://en.wikipedia.org/wiki/Easter_egg_(media)
https://en.wikipedia.org/wiki/Diacritic
https://clickhole.com/going-rogue-the-new-yorker-has-announced-that-they-r-1841068853/

Part |

Technology

Chapter 1

Cybernetics

Cybernetics is the science of communications and automatic control systems in machines and living things.
For the desired degree of responsiveness and reliability in cyber-physical systems, the effective coordination
of such machines generally requires a certain degree of edge computing (decentralized, calculated on the
machines themselves). Cloud computing (centralized on large remote clusters of computers, aka servers),
together with fast wired (§4.2-4.3) or wireless (§4.4) communication protocols, often complements edge com-
puting for complex coordination tasks. We thus begin this study with a survey of the essential ideas and modern
technologies that underlie the remarkable performance of both small computers and large servers today.

Contents

1.1 Bits & bytes, gates, integers, floats,and parity00, 1-2
1.1.1 CMOS vs TTL logic levels; binary & hexadecimal number systems 1-2
1.1.2 Binarylogicgates e 1-3
1.1.3 Integer & fixed-point representations, and their (fast) arithmetic in ALUs 1-9
1.1.4 Floating-point representations, and their (fast) arithmeticin FPUs 1-11
1.1.5 Parity checks, error detection, and error correction 1-12

1.2 Central Processing Unit (CPU)coresttt nnnenn. 1-13

1.3 Cache-based memory subsystems 0. 1-14

1.4 Hardware for exploiting parallelism 1-17
1.4.1 Instruction pipelining and branch prediction. 1-18
1.4.2 Vectorization (SIMD) 1-18
1.4.3 Shared-memory multiprocessing Lo 1-18
1.44 Distributed-memory multiprocessing Lo L 1-20
1.4.5 Summary: enabling the efficient parallel execution of codes 1-21

1.5 Microcontrollers (MCUs) and associated coprocessors 1-22
1.5.1 Busses, memory management, and direct memory access (DMA) 1-24
1.5.2 Programmable interrupt controllers (PICs) 1-25
1.5.3 Application specific integrated circuits (ASICs) 1-25
1.54 Coprocessors: DSPs, GPUs, NPUs, FPGAs, CPLDs, PRUs 1-32
1.55 Timer/counterunits 1-32
1.5.6 Dedicated communication hardware L. 1-32
1.5.7 Pinmultiplexing L 1-33

1.6 Single Board Computers (SBCs) ittt 1-33
1.6.1 Subsystem integration: SiPs, PoPs, SoCs, SoMs,and CoMs 1-33
1.6.2 Power management e 1-33
1.6.3 Casestudy: Raspberry Pi. 1-33

1-1

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

1.1 Bits & bytes, gates, integers, floats, and parity

We focus initially on a brief review of binary states, binary logic, and math with binary forms.

1.1.1 CMOS vs TTL logic levels; binary & hexadecimal number systems

The starting point for the binary (two-state) digital logic used in modern computers is the binary digit (bit),
a signal voltage that is either logical low (near GND), logical high (near the supply voltage, Vcc), or quickly
transitioning from one of these binary states to the other. In CPU cores, such transitions are synchronized
with clock pulses that coordinate the corresponding computations. Different microcontrollers (MCUs) and
peripherals, and indeed different regions within a single MCU, use different operating voltages.

Within CPU cores, low-voltage complementary metal oxide semiconductor (CMOS) logic levels are
used, operating at a reduced voltage (usually called Vpp, typically less than Vcc), often taken as one of the fol-
lowing: {3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 1.0V, 0.9V, . . . }, with signals in the range (0, Vpp/3) interpreted as logical low,
and in the range (2 Vpp/3, Vbp) interpreted as logical high. To improve performance in light of ever-decreasing
transistor sizes, the value of Vpp used within CPU cores has been gradually decreasing over the years. Note
also that most modern MCUs incorporate one or more low-dropout (LDO) regulators to provide stable power
at the precise (reduced) voltage, Vpp, necessary for the MCU to function properly.

Between the MCU and other components (elsewhere on the motherboard, on daughterboards, or on the
electromechanical system itself), transistor-transistor logic (TTL) levels are often' used, with the range
(0,0.8V) interpreted as logical low, and (2V, Vcc) interpreted as logical high, where Vcc is either 3.3V or 5 V.
MCUs with 3.3V TTL inputs & outputs (i/0) can thus communicate seamlessly with 5V TTL peripherals;
however (warning!) this only works if those pins set as inputs on the 3.3V TTL device are rated as 5V tolerant,
which must be checked. If they are not, a level shifter must be used between the two connected devices.

A collection of 4 bits is called a nibble, which represents a number between 0y (a.k.a. 00005 or 044) and
1510 (a.k.a. 11115 or Fig), where in this text the subscript indicates the base of the number system used, with 2
denoting binary, 10 denoting decimal, and 16 denoting hexadecimal notations. Similarly, a collection of 8 bits
is called a byte, which represents a number between 014 (a.k.a. 0000 00005 or 0016) and 2553 (a.k.a. 11111111,
or ['Fig). Many alternative notations are used to indicate the representation of numbers with different bases,
including, for example, the representation of 184 in decimal (which is commonly indicated with no ornamenta-
tion) as 0b10111000 or 1011 1000b in binary, and as 0xB8 or #B8 in hexadecimal.

A collection of 3 bits may be used to represent a number between Og (a.k.a. 0002) and 75 (a.k.a. 1115),
referred to as an octal (base-8) number. Three octal digits (that is, 9 bits, denoted rwxrwxrwx) are used by the
linux chmod command to set {read, write, execute} permissions on a file for the {owner, group, world}.

Tri-state (aka, ternary, three-value logic, or 3VL) is also sometimes used in creative ways in embedded
systems, particularly with general purpose input/outputs (GP1Os) driving arrays of buttons and LEDs. That
is, a single binary (logical 0 or 1) output signal on some pin can also be set as an input on that device, which
effectively puts it into a third state Z, known as high impedance. Setting such a pin as a logical 0 output can,
for example, drive an LED connected (through a resistor) to V¢, and setting it as a logical 1 output can drive a
different LED connected (through a resistor) to GND, whereas setting such a pin to the high impedance state
Z (that is, setting it as an input) turns both connected LEDs off. Ternary logic circuits, operating at 3 distinct
voltage levels, can also be developed; in such a setting, a ternary digit is sometimes referred to as a trit?.

Using multi-level cell (MLC) flash memory technology, four-value logic (4VL; i.e., [two-bit]) is commonly
used for each individual storage symbol, and both eight-value logic [three-bit, a.k.a. triple-level cell (TLC)] and
sixteen-value logic [four-bit, a.k.a. quadruple-level cell (QLC)] have been developed and implemented.

'A notable exception is that daughterboards for the 96boards family of motherboards operate i/o at CMOS signal levels of 1.8V.
Some high-voltage CMOS logic gates (e.g., those in the 74Cxx series) can operate at up to 15V; always check the data sheets!
2Ternary computers, based on ternary logic, were developed from 1958-1965 in the Soviet Union, but are not in use today.

1-2

https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/Binary_number
https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Octal
https://en.wikipedia.org/wiki/Multi-level_cell
https://en.wikipedia.org/wiki/Ternary_computer
https://en.wikipedia.org/wiki/Setun

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

SI prefix: milli- | micro- | nano- | pico- | femto- | atto- | zepto- | yocto-
SI symbol: m i n p f a z y
decimal power: 1073 | 1076 1079 | 1072 | 107 | 10718 | 1072t | 107
SI prefix: kilo- | mega- | giga- | tera- | peta- | exa- | zetta- | yotta-
SI symbol: k M G T P E yA Y
decimal power 103 106 10° 10'2 10%° 108 10% 10
binary prefix kibi- | mebi- | gibi- | tebi- | pebi- | exbi- | zebi- | yobi-
binary symbol Ki Mi Gi Ti Pi Ei Zi Yi
binary power 210 220 230 240 250 260 270 280
binary/decimal ratio || 1.024 | 1.0486 | 1.0737 | 1.0995 | 1.1259 | 1.1529 | 1.1806 | 1.2089

Table 1.1: Decimal powers, as used in Sl, and binary powers, as used in characterizing computer systems.

A large number of bits (abbreviated with a lowercase b) or bytes (abbreviated with an uppercase B) is indi-
cated using a prefix corresponding to a binary power that is close to, but not quite the same as, the correspond-
ing decimal power used in the International System of Units (SI; see §9.1.1-9.1.2), as indicated in Table 1.1. Thus,
unambiguously, a Kib is 1024 bits, a KiB is 1024 bytes, a MiB is 1,048,576 bytes, a GiB is 1,073,741,824 bytes,
etc. Quite unfortunately, as of 2024, Sl prefixes (representing decimal powers) are still used quite often for the
nearby binary powers in the computer literature, commonly denoting 1024 bits as a kb (or Kb), 1024 bytes as
a KB, 1,048,576 bytes as a MB, 1,073,741,824 bytes as a GB, etc. We eschew this (sloppy) dominant paradigm
in this text, simply by inserting an “i” as the second character of each prefix when denoting storage capacities,
communication speeds, etc, as the percentage uncertainty that is introduced by doing otherwise increases as
you move to the right in Table 1.1 (which is certainly the trend when quantifying storage capacities and com-
munication speeds as time goes forward!), and encourage hardware manufacturers, retailers, tech reporters,
book/wikipedia authors, researchers, instructors, bloggers, gamers, and others to do the same.

1.1.2 Binary logic gates

The notion of voltages along wires considered as bits, in states denoted logical low (near 0 V) and logical high
(near Vcc or Vpp), were defined for TTL and CMOS logic levels in digital electronics in §1.1.1. We next show
how three digital gates (NOT, NAND, and NOR?) can be implemented in a CMOS setting, using complementary
pairs of p-type and n-type enhancement-mode MOSFETs, as discussed further §9.2.3. From there,

e more complex boolean algebra may be implemented using combinational logic, with responses defined
by truth tables relating current inputs and outputs, as illustrated in Tables 1.2 through 1.8, and

e more advanced computations may be implemented using synchronous logic, with responses defined by
state transition tables relating current inputs and states to subsequent states, as illustrated in Table 1.9.

Note also the following (Fact 1.1 is actually just two special cases of Fact 1.2):

Fact 1.1 (De Morgan’s Theorem) An OR logic gate is equivalent to a NAND logic gate with inverted inputs, and
an AND logic gate is equivalent to a NOR logic gate with inverted inputs.

Fact 1.2 (Functional completeness of NAND and NOR) (Sheffer 1913) Any Boolean expression can be
achieved by a connection of NAND logic gates, or a connection of NOR logic gates.

The following fairly low-level discussion of the logic gates implemented in modern digital electronics is included
here, early in this text, to remove some of the mystery related to how computers and MCUs actually work.

3That is to say, NAND, NOT, and NOR, will get you pretty far!

1-3

https://en.wikipedia.org/wiki/Binary_prefix
https://en.wikipedia.org/wiki/Digital_electronics
https://en.wikipedia.org/wiki/CMOS
https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Truth_table
https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/State-transition_table
https://en.wikipedia.org/wiki/De_Morgan%27s_laws
https://en.wikipedia.org/wiki/Functional_completeness
https://en.wikipedia.org/wiki/NAND_logic
https://en.wikipedia.org/wiki/NOR_logic
https://www.youtube.com/watch?v=4AyjKgz9tKg

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

NOT Vob NAND Voo NOR Vo
Vi Vs

Vout

Vi Vout Ve

V1 — V2

Figure 1.1: Three essential logic gates, NOT, NAND, and NOR, similarly constructed using enhancement-mode
complementary MOSFETs (CMOS), which result in break before make to avoid shoot through.

The CMOS NOT gate in Figure 1.1 operates as follows. When V; is low (close to GND):
e the channel of the lower (NMOS) transistor is high resistance, effectively disconnecting V,,; from GND,
e the channel of the upper (PMOS) transistor is low resistance, effectively connecting V¢ to Vpp.
Conversely, when V is high (close to Vpp):
e the channel of the upper (PMOS) transistor is high resistance, effectively disconnecting V,, from Vpp,
e the channel of the lower (NMOS) transistor is low resistance, effectively connecting V,,: to GND.

The CMOS NAND gate uses 2 upper (PMOS) transistors in parallel, and 2 lower (NMOS) transistors in series.
Thus, when either or both of V; and V, is/are low:

e at least one of the lower (NMOS) transistors is high resistance, effectively disconnecting V,,; from GND,
e at least one of the upper (PMOS) transistors is low resistance, effectively connecting V,, to Vpp.
Conversely, when both V; and V; are high:

e both of the upper (PMOS) transistors are high resistance, effectively disconnecting V,,; from Vpp,

e both of the lower (NMOS) transistors are low resistance, effectively connecting V,,: to GND.

The COMOS NOR gate uses 2 upper (PMOS) transistors in series, and 2 lower (NMOS) transistors in parallel.
Thus, when both V; and V, are low:

e both of the lower (NMOS) transistors are high resistance, effectively disconnecting V,,; from GND,

e both of the upper (PMOS) transistors are low resistance, effectively connecting V,u: to Vpp.

Conversely, when either or both of V; and V, is/are high:

e at least one of the upper (PMOS) transistors is high resistance, effectively disconnecting V,,; from Vpp,

e at least one of the lower (NMOS) transistors is low resistance, effectively connecting V,,: to GND.

The resulting truth tables for these three gates are given in Tables 1.2-1.3. Note that enhancement-mode
MOSFETs (explained further §9.2.3) are used in Figure 1.1; this choice is significant, as such MOSFETs are
generally nonconducting between the Source and the Drain until a sufficiently large voltage is applied between
the Gate and the Body (which as depicted in Figure 9.7 is usually connected directly to the Drain), thereby
largely preventing the shoot through of current that would otherwise be associated with a path opening up,
momentarily, directly between Vpp and GND when one of the inputs changes state. This approach is called
break before make; the transistors breaks the connection in one direction before making one in the other.

Older literature on digital logic discusses PMOS and NMOS implementations of logic gates at length:
e NMOS implementations replace the upper (PMOS) transistors in Figure 1.1 with “pull-up resistors”,
which are effectively overpowered at the output by the lower transistor(s) when they are open.
e PMOS implementations replace the lower (NMOS) transistors in Figure 1.1 with “pull-down resistors”,
which are effectively overpowered at the output by the upper transistor(s) when they are open.
With advances in transistor technology, both types of logic circuits have largely been superseded by CMOS
implementations (without resistors, as seen in in Figure 1.1), which are significantly more power efficient.

1-4

https://en.wikipedia.org/wiki/PMOS_logic
https://en.wikipedia.org/wiki/NMOS_logic

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

A— H 0 ‘ 1 H symbol H best construction H ICs
NOT [1[o] >~ (Figure 1.1a) || 4049, 7404
BUFFER | 0| 1| > - . 4050, 7434

Table 1.2: Truth tables and symbols of the two 1-input logic gates, and part numbers of some (of many) conve-
nient families of ICs implementing such gates. Note that, though less efficient, a NOT gate may be constructed
from a NAND or a NOR gate (see Table 1.3) with its inputs tied together (see Fact 1.2).

AB — H 0,0 ‘ 0,1 ‘ 1,0 ‘ 1,1 H symbol H NAND construction ‘ NOR construction H ICs

=== g‘;[} (Fact 1.1) || 4081, 7408
(Figure 1.1b) E;D@ 4011, 7400

%Dw (Fact 1.1) T 4071, 7432
% (Figure 1.1c) 4001, 7402

#DE{%E} E‘;D»:{} 4070, 7486
E%D—EE} @:}j} 4077, 74266

Table 1.3: Truth tables and symbols of the main 2-input logic gates, their construction with just NAND gates
or NOR gates (see Fact 1.2), and part numbers of some convenient families of ICs implementing 4x such gates.

AND 0] 0] 01

NAND | 1 1 1 0

OR 0 1 1 1

NOR 1 00| O

XOR 0 | 1 1 0

VAARAVA e

XNOR | 1 0| 0|1

AB,C— [0,,0]0,0,1]0,1,0]0,1,1]100 | 1,0,1] 1,10 1,1,1 || symbol | construction | ICs

Dy 4073, 7411
Dy 4023, 7410

AND 0 0 0 0 0 0 0 1
NAND 1 1 1 1 1 1 1 0

OR 0 | 1 1 1 1 1 1 1 D 4075, 744075
NOR 11 0o 0] 0o 0] 0| 0] o0 4025, 7427
XOR 0 | 1 1 o | 110 | 0| 1 Doy 74386

XNOR 1 0 0 1 0 1 1 0

MUX 0 0 1 1 0 1 0 1

A AAALe
;

sz:%j:)} 4540, 74153
(2x 4:1)

Adder:s| o | 1 | 1 [0o | 1] 0o | o | 1| B | s | 4008, 7483
Co o | 0o | o 1 0 1 1 1 || 878kCo o |l (4Dbit)

Table 1.4: Truth tables and symbols of several 3-input logic gates, and examples of their construction.
All can be constructed using the gates in Tables 1.2 and 1.3 (and, thus, from just NAND or just NOR gates).
The last column indicates part numbers of some convenient families of ICs implementing such gates.
The multiplexer MUX(S,X,Y) assumes S=A is select, and X=B and Y=C are the input data, and sends the se-
lected input to the output; note that an open circle on an input is a shorthand denoting a NOT operation on that
input, just as an open circle on an output (e.g., on the NAND and NOR symbols) denotes a NOT operation on
that output. The outputs of a single-bit full adder, denoted here S and Co, assume A and B are corresponding
bits of two binary numbers to be added, and C is the carry over from the sum of the lesser bits; S is then the
corresponding bit of the sum, and Co is the carry over into the sum of the next greater bits.

[ADER

1-5

https://www.ti.com/product/SN74LVC1G386

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

Once the notions of logical levels (0/1) and gates (NOT/BUFFER and AND/NAND/OR/NOR/XOR/XNOR*)
are developed (see Figure 1.1 and Tables 1.2-1.3), we can put them together to accomplish a variety of important
higher-level tasks (see Tables 1.4-1.9), such as AND/NAND/OR/NOR/XOR/XNOR gates with 3 or more inputs,
multiplexers / demultiplexers, simple and priority encoders / decoders, adders, SR latches, and JK flip flops.

Modern ICs that implement such higher-level tasks are generally formed directly, via efficient combinations
of CMOS transistors that are arranged as necessary to satisfy the truth tables of the desired logic gates. This
process results in logic gates that are much simpler and faster than logic gates formed via pedagogical combina-
tions of 2-input NAND and NOR gates, as illustrated in these tables. As just one example, a 3-input NAND gate
can be formed simply by modification of a 2-input NAND gate (see Figure 1.1), with 3 upper (PMOS) transis-
tors in parallel and 3 lower (NMOS) transistors in series. As indicated, convenient families of integrated circuits
(ICs) with efficient implementations of many such higher-level logic gates, such as the 4000 and 7400 series, are
readily available. Such ICs come in many different families, with vastly different nominal operating voltages
and current-driving capabilities. The details of their internal constructions are certainly important to those
designing such ICs; however, only their timing and power specifications, as described in their corresponding
datasheets, are really all that is important to those using them.

The logical behavior of the several gates summarized in Tables 1.2 through 1.9 should (with some effort) be
largely self explanatory from their construction, as should the reasoning for their names. The patterns evident
in the simple example constructions provided should also give substantial evidence upon which larger versions
of such gates may also be constructed, if a specific gate needed is not readily available as a single IC.

Note in particular that a multiplexer (MUX) directs the selected input channel (amongst 2" possible inputs,
where n is the number of select lines) to the (one) output channel, and a demultiplexer (DEMUX) directs the
one input channel to the selected output channel, sending 0 to all the others [see examples in Tables 1.4-1.6].
The symbols for multiplexers and demultiplexers thus often, schematically, indicate multiple-position mechan-
ical switches within, with 2" positions on one side connecting to one on the other, even though their interior
“wiring” is actually accomplished with logic gates. Digital multiplexers allow several different digital channels
to share, at different times, a single expensive peripheral, such as a communication channel.

The outputs of a single-bit full adder [see Table 1.4, last row] assume A and B are corresponding bits of two
binary numbers to be added, and C is the carry over from the sum of the lesser bits; S is then the corresponding
bit of the sum, and Co is the carry over into the sum of the next greater bits. Multiple-bit full adders [see, for
example, Table 1.6] take n bits of two binary numbers A and B, and the possible carry over C from the sum of
lesser bits, and efficiently generate the corresponding n bits of the sum S, as well as the possible carry over Co
for inserting into the sum of the next greater bits (or, signaling an overflow). Adders are useful to, well, add.

Now imagine an alarm system in which 2" sensors normally read 0; if a sensor is triggered (changes’ to 1),
it is desirable to alert the owner as to which sensor was triggered. This can be accomplished using a small MCU
leveraging a 2"-input, (n + 1)-output simple encoder, which represents the (one) channel that was triggered
as an n-bit binary number, plus a flag to indicate when one has triggered. Conversely, a small MCU can trigger
2" distinct actions (open/close a window, turn on/off a fan, ...), one at a time, using an (n + 1)-input, 2"-output
decoder. [See n = 2 examples of each in Table 1.7a.] Taking n = 6, with the appropriate encoder or decoder,
allows one to monitor 64 different sensors, or to activate (at different times) 64 distinct actions, using only 7
GPIO channels on the MCU coordinating the system, providing a clear path to extend its reach.

*XNOR is really "NOT XOR", so logically should be called NXOR; however, by convention, it usually goes by "XNOR". Go figure.

SWe describe here a setting in which the “active state” is 1, termed active high. Most alarms are active low, with power provided
to/through all the sensors (so they normally read 1); if any circuit is interrupted (at the sensor, or in the wires leading to it), the
channel returns 0, and a fault is triggered. This way, even if an accident or bad actor cuts one or both of the wires (red or blue, it
doesn’t matter) leading to a normally-closed sensor, the alarm is still triggered. [However, if an informed (or, clever) adversary knows
that a certain sensor is active low, and can get access to the wires leading to it, he can simply splice the two wires together, thus
defeating the sensor.] With a minor effort (by Fact 1.1, replacing OR gates with NAND gates and AND gates with NOR gates), logic
circuit designs like these may be converted from active high to active low (see, e.g., the equivalent constructions in Table 1.8).

1-6

https://en.wikipedia.org/wiki/Multiplexer
https://en.wikipedia.org/wiki/Encoder_(digital)
https://en.wikipedia.org/wiki/Priority_encoder
https://en.wikipedia.org/wiki/Adder_(electronics)
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#SR_NOR_latch
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#JK_flip-flop
https://en.wikipedia.org/wiki/List_of_4000-series_integrated_circuits
https://en.wikipedia.org/wiki/List_of_7400-series_integrated_circuits
https://en.wikipedia.org/wiki/Logic_level
https://www.socure.com/glossary/bad-actor
https://www.youtube.com/watch?v=-wINinKkMdg
https://octopart.com/search?q=wire+tap+splice+connector

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

S,.D— H 0,0 ‘ 0,1 ‘ 1,0 ‘ 1,1 H symbol H construction H ICs
A 0 1 0 0 4§]: 4052, 74139
B 010 1|0 |1 S . (2x 1:4)

Table 1.5: Truth table and symbol of a 2-output demultiplexer (DEMUX), which sends the input to the selected
output (and 0 to the other), an example of its construction, and part numbers of ICs implementing such gates.

C

& S1
o A1

@%&ﬂ%}? ﬁﬁ EE
S2 IS s1l s2 A2—

B2 —| Co
4-input AND 4-input MUX 4-output DEMUX 2-bit full adder

Table 1.6: Symbols and constructions of a few larger logic gates. Larger AND/NAND/OR/NOR/XOR/XNOR
gates may all be constructed following the patterns evident at right in Table 1.4. A MUX, given n select lines S1
to Sn, directs the value of the selected input (amongst 2" possible inputs) to the (one) output; a DEMUX directs
the value of the (one) input to the selected output (amongst 2" possible outputs), sending 0 to the others. An
n-bit full adder takes as inputs the bits A1to An, B1to Bn, and the possible carry over C from the sum of lesser
bits, and generates the bits of the sum S1 to Sn, and the carry over Co into the sum of the next greater bits.

ADDER

D3D2D1DOA1AOV Vv ; D3D2D1DOA1AOV
000 0[x x0 a4 >—)0 DO@V 000O0[000 D v
0 0 1/0 01 A.Dc | D, D, ._D_AO 000 1{001 D D_Ao
00100 1T ' | 001 x|0 1T

= 0. =y D >
0100/[10T N Dy 01 x x|[101 Ds
1000[1 11 " 1T x x x|1 11

Table 1.7: (a) Truth table (from inputs {A;, Ag,V'} to outputs {Ds, Dy, D1, Do}) of a 2:4 decoder, and
(from inputs { D3, Dy, D1, Dy} to outputs { Ay, Ay, V'}) of a 4:2 simple encoder, and example constructions of
each; note the n + 1 outputs of a simple encoder are ill defined for other values of the 2" inputs. (b) Truth table
(from inputs { D3, Dy, D1, Dy} to outputs {A;, Ag, V'}) of a 4:2 priority encoder, and an example construc-
tion; note the n + 1 outputs of a priority encoder are all well defined for all possible values of the 2" inputs. An
input listed as x means “don’t care”; the output for that case is as listed for any value of this input.

~—

SR— 0,0 0,1 1,0 1,1
S,R— 1,1 1,0 0,1 0,0

Q (latch) | 0 (reset) | 1 (set) | . JsaF | R Q R o)
a (latch)] 0 disallowed! Jral S%jﬁ = < 0 4043 (4x)

Table 1.8: Truth table, symbol, and construction of a Set/Reset (SR) latch. Taking {S,R} = {1,0} sets Q = 1,
taking {S,R} = {0, 1} resets Q = 0, and taking {S,R} = {0, 0} latches (holds) Q at its most recently-specified
(set or reset) state; overline denotes the opposite state. The condition {S,R} = {1, 1} is not allowed.

symbol || equivalent constructions IC

JK =] 00 | o1 | 10 | 1,1 | symbol | construction | IC
Qe | Q (latch) | 0 (reset) | 16set) | Q (lip) | T | e DTDT0 | 40
Quext || Q (latch) 1 0 | Q (flip) | KQF . = [RTRO

Table 1.9: State transition table, symbol, and construction of a JK flip flop, a sequential device which updates Q
only at each rising edge of a clock (see Figure 1.2). Taking {J,K} = {1,0} sets Q ..« = 1, taking {J,K} = {0,1}
resets Q... = 0, taking {J,K} = {0,0} latches Q.. = Q, and taking {J,K} = {1,1} flips Qe = Q.

1-7

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

ko] e ck{]>0) e

Figure 1.2: Edge detect circuits that limit the JK flip flop to flip states only once during each clock pulse, during
(left) the rising edge of each pulse, or (right) the falling edge of each pulse.

The simplistic logic in a simple encoder generally results in a misleading output when multiple sensors are
triggered. To handle this situation fully, 2" inputs to the MCU processing the information would be required.
However, if we can prioritize which sensors are “most important” in a given system, we can implement a priority
encoder, as illustrated in Table 1.7b. Consider for example, a system with (high-priority) fire alarms, (low-
priority) leak detectors, and (medium-priority) magnetic sensors detecting whether or not the windows are
closed. If multiple sensors are triggered, a well-designed priority encoder lets the user know the number of the
channel in which the highest priority sensor detects a fault.

Many devices (LEDs, fans, ...) can be driven in an “activate and forget” mode, in which one signal can be
sent to turn the device “on”, and a second signal can later be sent to turn the device “off”; at other times, the
device does not need to be actively connected to the controlling MCU. This functionality is easily implemented
with a set/reset (SR) latch, as illustrated in Table 1.8, with pull-down resistors attached to its inputs, so the
inputs are taken as low when the device is disconnected from the controlling MCU; the logic high construction
of an SR latch is built from 2 NOR gates, and the logic low construction is built from 2 NAND gates; either may
be built using a total of 8 transistors (see Figure 1.1). As evident by its construction, briefly sending an SR latch
the “set” command {S, R} = {1,0} (say, using the output of a decoder) is sufficient to put (and, to hold, even
when S returns to 0) the output of the latch (that is, the input to the device) in the “on” state {Q, Q} = {1, 0},
until the SR latch is sent the “reset” signal {S, R} = {0, 1}, which is sufficient to put (and, to hold, even when
R returns to 0) the output of the latch in the “off” state {Q, Q} = {0,1}.

The JK flip flop generalizes the SR latch upon which it is built (see Table 1.9) by making effective use of
the fourth possible state of the inputs, {J, K}, to flip the current state of the latch. It coordinates this flip
using a system clock, which is simply a binary signal that regularly switches back and forth (usually, quite
quickly) from 0 to 1. There are two possible output conditions: the “on” condition {Q, Q} = {1, 0} and the “off”
condition {Q, Q} = {0,1}, and there are four possible states of the inputs {J,K}. Normally, {J,K} = {0,0}
and {S,R} = {1, 1}, which holds the (logic low) latch in the second stage of the JK flip flop at its current state.
The internal states {S, R} can switch to other values, but only under 4 specific conditions.

e If {J,K} = {1,0} and Q = 1, then S — 0 when e next goes high, setting the latch to {Q, Q}next = {1,0}.

e If {J,K} ={0,1} and Q = 1, then R — 0 when e next goes high, resetting the latch to {Q, Q}next = {0, 1}.
After the output changes state in both cases, the internal states return to the latched condition {S,R} = {1,1}.
o If {J,K} = {1,1} and Q = 1, then S — 0 when e next goes high, flipping the latch to {Q, Q}next = {1,0}.

e If {J,K} = {1,1} and Q = 1, then R — 0 when e next goes high, flipping the latch to {Q, Q}nex = {0, 1}.
As long as {J, K} = {1, 1}, the JK flip flop will continue switching output states, very quickly, until e goes low;
this condition is called race. To avoid this undesirable condition, the edge detect circuit indicated needs to
hold the signal e high only for a few nanoseconds, at the rising or falling edge of each clock pulse. Two edge
detect circuits that limit the JK flip flop to flip states only once during each clock pulse are given in Figure 1.2.
The value of e output by these simple circuits is zero except in a very narrow slice of time in which the clk signal
has switched but the output of the inverter has not yet switched. If the delay associated with this inverter is
too short for the flip flop to function reliably, the single inverter can be replaced by three inverters.

The JK flip flop is useful for constructing counters in timers and clocks. Note also that:

e Setting] = K = T creates a T flip flop; when T = 1, the T flip flop toggles the state of Q at each clock pulse,
thus performing frequency division, creating (in Q) a clock that oscillates at half the frequency of clk.

e Setting] = K £ D creates a simple D flip flop useful for storing data; when D = 1, it is set (Q e = 1), and
when D = 0 it is reset (Q e, = 0). The D flip flop is not susceptible to race (edge detection is unnecessary).

1-8

https://www.merriam-webster.com/dictionary/simplistic
https://www.semanticscholar.org/paper/A-power-optimized-64-bit-priority-encoder-utilizing-Kun-Quan/3ef8c156227d0d833267a6d9f7f3046b6b4c6d67

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

int8 | uint8 | int16 | uintl6 | int32 | uint32 | inte4 | uint64
-128:127 | 0:255 | —32,768:32,767 | 0:65,535 | —231:2%1 -1 0:2%2 -1 | -269:205 1 | 0:2% -1

Table 1.10: Ranges covered by N = §, 16, 32, and 64 bit binary representations of signed and unsigned integers,
with 231 =2,147,483,648, 232 = 4,294,967,296, 263 =9,223.372,036,854,775,808, 264 = 18,446,744,073,709,551,616.

271 non-negative integers . 21 negative integers

8 7 6 5 4 3 2 1

0 1 2 3 1 5 6 IR
11000 [1001 [1010 10111200 []1101 []1110[] 1111)
1

C 0000 | [0001 {0010 []oo11[]o100][o101 []o110[{0111

Figure 1.3: Periodic number line useful in visualizing the two’s complement convention.

1.1.3 Integer & fixed-point representations, and their (fast) arithmetic in ALUs

Integer arithmetic on MCUs is usually formed using binary representations of integers that are N = 8§, 16,
32, or 64 bits long, and either unsigned or signed, covering the (decimal) integer ranges indicated in Table 1.10.
When storing or transmitting a multiple-byte word (containing one or more integers, fixed-point real num-
bers, or floating-point real numbers; see §1.2) in a computer, the individual bytes stored (or, transmitted over a
communication channel) that make up such a word can be ordered using one of two different conventions:

e with the big endian convention, the “big end” (that is, the most significant byte, aka MSB, in the sequence)
is stored first (at the lowest storage address), or transmitted first, whereas
e with little endian convention, the “little end” (the least significant byte, or LSB) is stored or transmitted first.

For example, the two bytes (16 bits) required for representing the integer A2F3;4 is stored as A2;5 at memory
address a and F315 at memory address a + 1 using the big-endian convention, and the same integer is stored as
F316 at memory address a and A2;4 at memory address a + 1 using the little-endian convention. Within a byte,
the order of the bits is usually stored the same (most significant bit to least significant bit) in all computers,
regardless of how the bytes are arranged; however, the terms big endian vs little endian may also be used to
characterize the order in which individual bits are transmitted over a communication channel.

Signed representations of negative integers are formed using the two’s complement convention, illustrated
for the N = 4 case in Figure 1.3, with negation given simply by inverting (with NOT gates) the bits of the
corresponding integer (in binary form) and adding one. This effectively scoots the set of all 2V~! negative
integers included in the representation to the right of the 2Y~! non-negative integers on a number line ordered
by the raw (unsigned) binary number. Adding 1 (that is, 0...015) to any number on this periodic number
line shifts it to the right by one, modulo 2V (i.e., moving off the right end of the line wraps back around on
the left end®. Similarly, adding —1 (that is, 1...11) to any number on this line corresponds to shifting it to
the left by one, modulo 2V (that is, moving off the left end of the line wraps back around on the right end).
Leveraging this two’s complement convention, as summarized by this number line, a regular (unsigned) N-bit
full adder’, as introduced in Table 1.6, corresponds to the addition of any positive and negative integers. Of
course, subtraction is achieved simply by negation of one of the numbers, followed by addition.

Recall that multiplication and long division of binary numbers follow precisely the same process as the mul-

To perform a addition or multiplication of integers, one should be careful to monitor for integer overflow, which corresponds
to exceeding the range indicated in Table 1.10 (in the case of unsigned integers, this corresponds to falling off the left end or the right
end of the unsigned number line; in the case of signed integers, this corresponding crossing the halfway point on the number line,
indicated by the vertical dashed line in Figure 1.3 in the N = 4 case), and flag an error if it happens. On the other hand, a mod 2V
operation on unsigned integers can be performed quite quickly, simply by ignoring such integer overflow conditions.)

7 Again, this adder should be implemented ignoring binary overflow condition, corresponding to the “wrapping around” of the
operation around the ends of the number line.

1-9

https://en.wikipedia.org/wiki/Endianness
https://en.wikipedia.org/wiki/Modulo_operation
https://www.cuemath.com/numbers/binary-multiplication/
https://www.cuemath.com/numbers/binary-division/

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

1%89% 1011
X 11001JT00010100
1%6891 11001
00000 50000
_11001 100110
100010011 11001
11010
11001

1

Figure 1.4: (left) Binary multiplication [showing that 110015 x 10115 = 1000100115, or 2519 X 1119 = 2751¢],
and (right) binary division [showing 1000101005/110015 = 10115, or 27619/2519 = 1110, with remainder 1].

tiplication and long division of decimal numbers as you learned in grammar school (see Figure 1.4). That is, the
binary negation, addition, and subtraction operations outlined above, sequenced appropriately, are sufficient
to perform binary multiplication and division.

All modern CPU cores include (fast) hardware implementations (by an arithmetic logic unit, or ALU)
of the {negation, addition, subtraction, multiplication, division} operations discussed above, on both
unsigned integers, and signed integers represented in two’s complement binary form. Remarkably, these oper-
ations all execute in a single clock cycle, as the N-bit full adder upon which they are all based, as introduced
in Table 1.6, implements combinational logic as discussed previously, with responses defined by truth tables
that relate current inputs and outputs (that is, they do not need a clock to coordinate them).

Binary representations of unsigned or signed integers, and the fast (ALU) implementations of {+, —, X, =}
acting thereon, can also be applied directly to real (rational) numbers with a fixed (specified in advance) number
of binary digits after the (implied) decimal point. This representation of fixed point real numbers, using N
bits, is referred to as Q format, and is commonly denoted UQm.n [a.k.a. UQn] for unsigned real numbers,
and Qm.n [a.k.a. Qn] for signed real numbers (in two’s complement format), where n indicates the number
of binary digits after the decimal point, and (optionally) m indicates the number of binary digits before the
decimal point, with m +n = N. Addition and subtraction of two fixed-point real numbers [once aligned to the
same Q format, so they have the same number of binary digits after the (implied) decimal point] is the same
as integer addition and subtraction using binary representations; again, integer overflow must be checked for
and flagged if it occurs. Multiplication and division of two fixed-point real numbers is, conceptually, the same
as integer multiplication and division using binary representations. In addition, note that:

e the product of a Qm;.n, fixed point real number and a Qmg.n4 fixed point real number generally results in
a Qm.n fixed point real number with m = m; + ms and n = ny + ny, and

e the division of a Qmy.n; fixed point real number by a Qms.n, fixed point real number generally results in
a Qm.n fixed point real number with m = m; — my, but n may be infinite.

These results must be both rounded (reducing the number of significant digits kept after the decimal point)
and checked for overflow in order to fit it into another NV bit Q format representation. As much as possible,
scaling all fixed-point real variables in a problem (both before and after all the sums, differences, products, and
divisions) to be O(1) over the entire operational envelop of the electromechanical system under consideration is
particularly convenient, using, e.g., the UQ1.7 (in the range [0, 1.99219;4]), Q1.7 (in the range [—1,0.99219;¢]),
UQ1.15 (in the range [0, 1.99996951¢)), and Q1.15 (in the range [—1,0.9999695,,]) formats®. Note that:

e To convert a real number 7 into Qm.n format, multiply r by 2", round to the nearest integer, and convert this
integer to two’s complement binary form.

e To convert a number b in Qm.n format back to a real number, consider b as a regular binary number (with no
decimal point), convert this binary number (in two’s complement form) to an integer, and divide by 2".

8n general, the range of a UQm.n number is [0, 2™ — 1/2"], and the range of a UQm.n number is [—(2™m~1), 2m~1 — 1/27].

1-10

https://en.wikipedia.org/wiki/Q_(number_format)

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

1.1.4 Floating-point representations, and their (fast) arithmetic in FPUs

It is, of course, significantly easier to program, especially at the prototyping stage, using floating-point arith-
metic [that is, using real numbers represented with a sign bit, an exponent, and a significand (a.k.a. man-
tissa)], so that the scaling of the real numbers can be managed by the CPU core on the fly, and a very wide
range of scalings can be encountered without loss of precision. Floating point real numbers, as defined by the
ubiquitous |EEE 754 standard, are represented with:

e N = 16 bits (“half precision”), with 1 sign bit, 5 bits defining the exponent, and k = 10 bits defining the sig-
nificand, representing numbers from £6.10 x 1075 to £65504 with log,,2"™! = 3.3 decimal digits of precision,
e N = 32 bits (“single precision”), with 1 sign bit, 8 bits defining the exponent, and 23 bits defining the signifi-
cand, representing numbers from £+1.18 x 1072 to +3.4 x 10®® with 7.2 decimal digits of precision, or

e N = 64 bits (“double precision”), with 1 sign bit, 11 bits defining the exponent, and 52 bits defining the
significand, representing numbers from £2.23 x 1073% to +1.80 x 103%® with 16 decimal digits of precision.

For the feedback control of electromechanical systems, single precision is more than enough, and in most cases

half precision is sufficient (if the FPU implements it; as of 2024 most do not, though Armv8.1-M introduces

hardware support for half-precision floats to the ARM Cortex M family, starting with the Cortex M55 & M85).
In addition to nonzero normal numbers (that is, floating-point numbers that can be represented in half,

single, or double precision as defined above, without leading zeros in their significand), various special values

are represented and handled correctly by FPUs implementing the IEEE 754 standard, specifically:

e signed zeros {40, —0} [with (+0) = (—0) for the purpose of comparisons],

e signed infinities {+00, —oo} [e.g., 1/(+0) = (+00), 1/(=00) = (=0), (+00) * (=2) = (=00), ...],

e subnormal numbers [that is, smaller floating-point numbers that can be represented in half, single, or double

precision at reduced precision, with leading zeros in their significand],

e Not a Numbers (NaNs), handling indeterminant forms [e.g., (00) X (£0), (£0)/(£0), (+00) + (—0), ...],

real operations with complex results [e.g., v/—1], and operations involving one or more NaNs as arguments.

For example, taking s as the sign bit, e as the exponent, and f as the fractional part of an N = 32 bit binary
representation of a floating-point number in single precision format as follows,

s e (8 bits) f (23 bits)

b1 b3 bag bag bar bag bas bag oz baz bay bag brg bis bi7 big b1 bia D13 b1 bix Do by bs by bg bs by b ba b1 by

and defining ey, = F'Fig = 25519 and e,g = TFg = 12770, the IEEE 754 standard interprets cases with:

e an exponent e of 0154 to (eyma — 1) as denoting a nonzero normal number given by (—1)% x 2¢7%f x 1. f
e an exponent e of 0056, with f # 0, as denoting a subnormal number given by (—1)* x 27 (=1 x (. f,

e an exponent e of 00,4, with f = 0, as denoting a signed zero, with sign given by (—1)°,

e an exponent e of en.y, with f = 0, as denoting a signed infinity, with sign given by (—1)°, and

e an exponent e of ep,,, with f # 0, as denoting an NaN.

The half precision (/N = 16 bit) format is analogous, with ey.x = 1Fi6 = 3119 and eos = Fig = 1510; the double
precision (N = 64 bit) format is also analogous, with e, = 7TF Fig = 20479 and ey = 3F' Fig = 10234p.

Interrogation of the individual bits of a floating-point representation might occasionally be useful to the
embedded programmer, and in this setting the above explanation should suffice. The actual encoding of the
fundamental operations {4, —, X, =} on real numbers represented in floating-point notation is rather complex,
and is taken care of remarkably quickly (again, in many cases, executing in a single clock cycle!) by the floating
point units (FPUs) within modern CPU cores, and the MCUs which embed them.

Integer arithmetic (§1.1.3) is significantly simpler for a processor to execute than floating-point arithmetic.
Thus, many auxiliary processing units (see §1.5.3-1.5.4), like FMACs and DSPs, and indeed many low-cost MCUs
(like the ARM Cortex M0 and some implementations of the M3 and M4), do not include hardware FPUs, and
thus any floating-point arithmetic performed must instead be emulated in software on these processors, which

1-11

https://en.wikipedia.org/wiki/Significand
https://en.wikipedia.org/wiki/IEEE_754#2019
https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://armkeil.blob.core.windows.net/developer/Files/pdf/white-paper/introduction-to-armv8-1-m-architecture.pdf
https://en.wikipedia.org/wiki/Normal_number_(computing)
https://en.wikipedia.org/wiki/Signed_zero
https://en.wikipedia.org/wiki/Denormal_number
https://en.wikipedia.org/wiki/NaN

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

s
faear

Figure 1.5: Venn diagram illustrations of (left) the [7,4] Hamming code and (right) the [15,11] Hamming code.

is relatively slow. In such settings, it is strongly preferred to use fixed point arithmetic instead, carefully scaling
all real numbers in the problem to make full use of the fixed point binary representations used while never
encountering overflow over the entire operational envelop of the electromechanical system under consideration
(note that this usually takes considerable testing of the system to verify).

1.1.5 Parity checks, error detection, and error correction

When pushing certain subsystems (memory and communication in particular) to their physical limits (high
speed, low power, small footprint, etc.), occasional bit errors may occur. There are a variety of simple and
effective ways to identify such infrequent errors, and in certain cases even to correct for them.

The simplest approach is to append a single parity bit to each set of k data bits that is stored in memory
or sent over a communication channel; this parity bit is selected such that the sum (modulo 2) of all the data
bits in the set, plus this parity bit, is 0 (if even parity is used) or 1 (if odd parity is used). When the entire set
of n = k+ 1 bits (data plus parity) is recalled from memory or received on the other end of the communication
channel, this sum is again performed, and an error is flagged if it is of the wrong value. This approach is capable
of single error detection (SED), with two or more errors in any set of n bits causing misinterpretation; note,
however, that if single bit errors are random and infrequent, double bit errors will be extremely infrequent.

The idea of using parity bits to check for errors may be extended to facilitate stronger error detection, and
even error correction. As shown in Figure 1.5, this is illustrated by the [n, k] linear binary codes (LBCs) with:

e 1 = 3 parity bits {by, b2, b3}, k = 4 data bits {ay, as, a3, as}, and n = r + k = 7 total bits in a [7,4] LBC, or
e r = 4 parity bits {b1, by, b3, by}, k = 11 data bits {a,...,a11},and n = r+k = 15 total bits in a [15, 11] LBC.

In each of these example LBCs, an r set Venn diagram may be drawn with exactly one of the k data bits in
each of the intersections. The r parity bits {b1,...,b,} are then selected such that parity (say, even parity) is
achieved by summing the 2"~ bits in each of the r sets in this Venn diagram. If a recalled/received set of n bits
is assumed to be corrupted by at most one error, then during the subsequent parity checks of all r sets,

e if parity fails on just a single set, the corresponding parity bit b; is itself identified as corrupted, whereas
o if parity fails on multiple sets, the data bit a; corresponding uniquely to that set intersection is corrupted.

In either case, flipping the corrupted bit corrects the error, thus performing single error correction (SEC).
This approach extends immediately to [2" — 1,2" — 1 — 7] LBCs for r > 2, known as binary Hamming codes.
Adding an overall parity bit to the cases shown in Figure 1.5 allows one to detect (if the overall parity check
fails) and correct (as before, leveraging the other parity checks) single bit errors, but also to detect but not correct
double bit errors (if the overall parity check passes, but two or more of the other parity checks fail), leading
to the single error correction, double error detection (SECDED) [2"~!, 2" — | LBCs for r > 2, known as
extended binary Hamming codes. The idea of storing or sending multiple redundant bits is extended in
§1.5.3.3 and §12, to develop and implement LBCs capable of fast multiple bit error detection and correction.

1-12

https://en.wikipedia.org/wiki/Venn_diagram

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

1.2 Central Processing Unit (CPU) cores

Central processing unit (CPU) cores are the main processing units in modern computers. An essential defining
characteristic of modern CPUs is the word size, which defines

(a) the number of bits in the data bus (the parallel wires carrying data within the CPU),
(b) the number of bits in the memory addresses, and
(c) the number of bits in the instruction codes enumerating the low-level executable commands in the CPU,

all of which are generally integer multiples of the word size, which on modern CPUs is 8, 16, 32, or 64 bits.

Doubling the width of the data bus doubles the amount of information that can be delivered from point A
to point B within the CPU in a single clock cycle, but substantially increases the complexity of the circuitry;
different tradeoffs are thus reached for the width of the data bus for different CPU designs.

Common memory configurations in modern MCUs include 16 address bits, facilitating the direct addressing
of 64 KiB of memory, and 32 address bits, facilitating the direct addressing of 4 GiB of memory. Note that, in
many CPUs, the number of physical address pins implemented can actually be less than or even (with a bit of
additional logic) greater than the number of address bits. In particular, the 64 address bits of some modern 64-bit
CPUs (that is, CPUs with a word size of 64 bits) facilitate the addressing of an absurdly large amount of memory
(16 EiB); 64-bit CPUs thus typically implement only between 40 and 52 physical address pins, facilitating the
direct addressing of 1TiB to 4 PiB of memory (reminder: see §1.1.1 for definitions of binary powers).

There are two primary types of computer architectures (i.e., the set of rules that describe the organization
of computer systems), the Harvard architecture, which strictly separates memory storage and signal busses for
program instructions from those for data, and the von Neumann architecture, in which instructions and data
share the same memory and busses. Modern implementations of the Harvard architecture usually relax the
strict separation between instructions and data, allowing the instruction memory to actually be accessed as
data, and are thus more accurately referred to as Modified Harvard architectures.

There are also two primary types of instruction set architectures (ISAs), RISC (reduced instruction set
computer) and CISC (complex instruction set computer), in addition to a growing number of hybrid ap-
proaches that are increasingly blurring the lines between the two. RISC ISAs (pioneered by MIPS, perfected
by ARM, and redesigned in an open-standard setting by RISC-V) have a small set of simplified (fixed-length)
instructions operating on a large number of registers, and a streamlined instruction pipeline allowing a re-
duced number of clock cycles per instruction. In contrast, CISC ISAs (notably implemented and perpetuated
by x86 CPUs) have a larger set of more complex (variable-length) instructions operating on a smaller number
of registers, with each instruction executing a variable number of low-level operations (e.g., load something
from memory, perform some arithmetic, store result back in memory). Note that RISC ISAs generally access
memory through dedicated simple instructions, whereas CISC ISAs access memory as an integral part of their
more complicated (multi-step) instructions.

Modern families of CPUs and MCUs appropriate for embedded applications include
e ARM Cortex A (32- and 64-bit), as implemented by Amlogic, Broadcomm, Rockchip, Samsung, TI Sitara, ...,
e ARM Cortex R (32- and 64-bit), as implemented by T1, ...

e ARM Cortex M (32-bit), as implemented by Cypress, Infineon, Microchip, Nuvoton, NXP LPC, STM32, ...,
e Numerous (32-bit and 64-bit) RISC-V CPUs & MCUs, as implemented by Codasip, Microchip, Espressif, ...,
e Intel 8051 (8-bit), as implemented by Cypress, Maxim, Silicon Labs, ...,

e Tensilica Xtensa (64-bit), as implemented by Espressif, ...

e NVIDIA Carmel (64-bit),

e Qualcomm Kryo (64-bit),

e Microchip AVR (including ATtiny and ATmega) and PIC (8-, 16-, and 32-bit),

o TI MSP430, MSP432, and C2000 (16- and 32-bit),

and many many others; most in this list (except the Intel 8051) are designed around RISC CPU cores.

1-13

https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/RAM_limit
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Harvard_architecture
https://en.wikipedia.org/wiki/Von_Neumann_architecture
https://en.wikipedia.org/wiki/Modified_Harvard_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://courses.cs.washington.edu/courses/csep548/05sp/lectures/slides/csep548P_Research_Overview.pdf
https://en.wikipedia.org/wiki/MIPS_architecture
https://developer.arm.com/ip-products/processors
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/RISC-V
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/List_of_common_microcontrollers
https://en.wikipedia.org/wiki/ARM_Cortex-A
https://en.wikipedia.org/wiki/Amlogic
https://www.broadcom.cn/products/embedded-and-networking-processors/communications/bcm58712
https://en.wikipedia.org/wiki/Rockchip
https://www.samsung.com/semiconductor/minisite/exynos/products/all-processors/
https://www.ti.com/processors/sitara-arm/overview.html
https://en.wikipedia.org/wiki/ARM_Cortex-R
https://www.ti.com/microcontrollers-mcus-processors/arm-based-microcontrollers/arm-cortex-r-mcus/products.html
https://en.wikipedia.org/wiki/ARM_Cortex-M
https://en.wikipedia.org/wiki/Cypress_PSoC
https://en.wikipedia.org/wiki/Infineon_XMC
https://en.wikipedia.org/wiki/Atmel_ARM-based_processors
https://www.nuvoton.com/products/microcontrollers/arm-cortex-m4-mcus
https://en.wikipedia.org/wiki/NXP_LPC
https://en.wikipedia.org/wiki/STM32
https://codasip.com/
https://www.microchip.com/en-us/products/fpgas-and-plds/system-on-chip-fpgas/polarfire-soc-fpgas
https://www.espressif.com/en/products/socs/esp32-c3
https://en.wikipedia.org/wiki/Intel_MCS-51
https://www.cypress.com/products/psoc-3
https://www.maximintegrated.com/content/dam/files/design/technical-documents/white-papers/adding-intelligence-to-the-next-generation-of-smart-devices.pdf
https://en.wikipedia.org/wiki/C8051
https://ip.cadence.com/ipportfolio/tensilica-ip/xtensa-customizable
https://www.espressif.com/en/products/modules/esp-wroom-02/surf.aspx
https://en.wikipedia.org/wiki/Project_Denver
https://en.wikipedia.org/wiki/Kryo
https://en.wikipedia.org/wiki/AVR_microcontrollers
https://en.wikipedia.org/wiki/ATtiny_microcontroller_comparison_chart
https://www.electricaltechnology.org/2018/01/atmega-atmel-avr-microcontrollers.html
https://en.wikipedia.org/wiki/PIC_microcontrollers
https://www.microchip.com/design-centers/8-bit/
https://www.microchip.com/design-centers/16-bit/
https://www.microchip.com/design-centers/16-bit/
https://www.ti.com/microcontrollers/msp430-ultra-low-power-mcus/overview.html
https://en.wikipedia.org/wiki/TI_MSP432
https://www.ti.com/microcontrollers/c2000-real-time-control-mcus/overview.html

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

1.3 Cache-based memory subsystems

The ALU and FPU of a CPU can approach their full speeds doing useful computations only if they can:
(a) quickly access both the instructions to be performed next, as well as the data necessary to perform these
instructions, and (b) quickly shift the results of these computations to somewhere secure for later use.

As a general rule, the smaller the data storage subsystem, the faster it can be made, but at a significant cost.
Ordered from fastest/most expensive/largest footprint per byte on down, the primary storage technologies are:

e Static Random Access Memory (SRAM): 1-5 ns access time, volatile (data lost when powered down). Expensive!
e Dynamic Random Access Memory (DRAM): 5-25 ns access time, volatile, frequent refreshes (~ 1 Hz) required.
e Flash Memory / SD Cards / EEPROM?: 50-500 ns access time, non-volatile, limited write endurance.

e Solid State Drives (§SD'): 10-100 us access time, non-volatile, hot swappable, limited write endurance.

e Hard Disk Drives (HDD): 5-20 ms access time, non-volatile, hot swappable, excellent write endurance. Cheap!

Significantly, as the size of a data storage subsystem grows, it generally becomes easier to download/upload
increasingly large blocks of data, all at essentially the same time, at relatively little added cost (time and energy).
To reduce the mean access time & energy, and overall expense & physical size, required of the memory
system (all of which are important in embedded applications), the communication between the CPU and the
main memory (DRAM or Flash) [and, to even slower “disk” storage''] is often assisted by a hierarchy of small-
er/faster cache memory (SRAM & DRAM), together with a memory management unit (MMU) or memory
protection unit (MPU) coordinating its use. Cache memory is often divided into multiple levels, including:

e L1i, for queueing up the instructions to be performed next, and

e L1d, L2, L3, and L4 (or a subset thereof'?, with the smaller numbers enumerating the faster/smaller “lower”
levels of the cache hierarchy), both for bringing data to the handful of registers holding the data actually used
by the ALU and FPU, and for storing the results of the computations performed back in the main memory.

When using a cache-based memory system, small fixed-size cache blocks (aka cache lines) of contiguous
memory are downloaded/uploaded whenever updating the lower levels of the cache hierarchy', and larger
cache blocks are downloaded/uploaded whenever updating the higher levels of the cache hierarchy, or commu-
nicating between the highest level of cache (aka the last level cache) and the main memory itself.

The CPU also usually includes a translation lookaside buffer (TLB), which translates the virtual addresses
used by each program to their corresponding physical addresses in the main memory, for both the instructions
to be executed as well as the corresponding data storage'.

The majority of the silicon area on most modern CPUs is in fact taken up by the MMU, the TLB, and the
L1i, L1d, and (sometimes) L2 and L3 memory caches, thus indicating the importance of the cache-based memory
system to the overall CPU performance (higher levels of cache, if used, are often incorporated on separate ICs).
The several components of a modern cache-based memory system usually interact quite efficiently with little if
any intervention by you, the embedded programmer. However, a high-level understanding of how such systems
behave can assist you in implementing certain programming directives that can make such systems run even
better, and to streamline the data flow when the CPU stalls due to cache conflicts.

9Flash comes in two types, NAND and NOR. Flash is a type of EEPROM designed for high speed and density, with large erase
blocks (> 512 bytes) and limited write endurance (~ 10* write cycles). The term “EEPROM” is saved for non-volatile memory built
with the same technology, but with small erase blocks (1 to 8 bytes) and better write endurance (~ 10° write cycles).

19SSDs are self-contained subsystems using flash memory together with their own cache memory to both increase effective speed
and improve endurance. Many of the concepts discussed in this section extend directly to the control of cache-based SSD systerms.

“Disk” storage may refer to both filesystems and virtual memory on both SSDs and HDDs.

2How many levels of cache should be implemented for the best overall system performance generally depends on the total amount
of main memory accessible by the system, and the ratio of the CPU speed to the main memory speed, which is often much slower.

13At any given level, a cache entry generally includes both the copied data as well as a tag indicating the corresponding range of
addresses in the main memory.

“The TLB is often split into an Instruction TLB and Data TLB, and may be split into levels (e.g., L1 ITLB/DTLB, L2 ITLB/DTLB, ...).

1-14

https://en.wikipedia.org/wiki/Static_random-access_memory
https://en.wikipedia.org/wiki/Volatile_memory
https://en.wikipedia.org/wiki/Dynamic_random-access_memory
https://en.wikipedia.org/wiki/Memory_refresh
https://en.wikipedia.org/wiki/Flash_memory
https://en.wikipedia.org/wiki/SD_card
https://en.wikipedia.org/wiki/EEPROM
https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/Flash_memory#Write_endurance
https://www.enterprisestorageforum.com/storage-hardware/flash-vs-ssd-storage-whats-the-difference.html
https://www.onlogic.com/company/io-hub/hot-swap-storage-one-important-thing-you-need-to-know/
https://www.enterprisestorageforum.com/hardware/ssd-vs-hdd/
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Memory_management_unit
https://developer.arm.com/documentation/ddi0439/b/Memory-Protection-Unit/About-the-MPU?lang=en
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Virtual_memory

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

Cache Main Memory Cache Main Memory
Block 0 Block 0 Block Oa Block 0
Block 1 \ Block 1 Block 0Ob Block 1
Block 2 \\ Block 2 Block 1a Block 2
Block 3 \\\ Block 3 Block 1b Block 3
Block 4 \\\ Block 4 Block 2a Block 4
Block 5 \\\ Block 5 Block 2b Block 5
Block 6 \\\ Block 6 Block 3a Block 6
Block 7 Block 7 Block 3b Block 7
Block 8 Block 8
Block 9 Block 9
Block 10 Block 10

Figure 1.6: Illustrations of (left) a direct mapped cache, and (right) a two-way set associative cache.

When initiating a read or write to/from a particular memory location, the CPU first checks to see if a copy
of that memory location is already represented in its L1 cache. If it is (constituting a cache hit), the CPU
interfaces directly, and quite quickly, with this highest-speed cache. If it is not (a cache miss), the MMU must
look in successively higher levels of (lower-speed) cache, all the way out to the main memory if necessary, to
reach the relevant memory location. The MMU may also create a new cache block, at one or more levels of the
cache, containing this memory location together with nearby entries of the main memory; to do this, it must
generally evict one of the existing cache blocks at each affected level.

Where, exactly, such a new cache block may be placed within a cache is governed by the placement policy
associated with that cache level, which may allow the new cache block to placed:

(a) at just a single location, based on the least significant bits of the corresponding memory address block,
called a direct mapped cache (see Figure 1.6a);

(b) at any of N locations (typically, N = 2, 4, or 8), based on the least significant bits of the memory address
and the replacement policy used (discussed below), called an N-way set associative cache (see Figure 1.6b);
(c) at either of 2 locations, following either the direct-mapped policy mentioned above or a hash function point-
ing somewhere else, called an two-way skew associative cache; or

(d) anywhere it wants, called a fully associative cache.

If the placement policy allows a choice to be made in the placement of the new cache block [see (b), (c), and (d)
above], this decision is made by the replacement policy of the MMU. Amongst many possible such policies, one
common choice is to evict the least-recently used cache block. The larger the number of choices in the place-
ment policy, the more places that need to be searched in cache for the requested memory location, but the less
likely a very recently loaded cache block (possibly containing useful information for impending calculations)
will need to be evicted to make room for a new cache block.

When compiling code for cache-based memory systems, the general goal is to maximize the percentage of
cache hits (aka the hit rate) in the lowest levels of cache. This goal is achieved with algorithms that are compiled
with high degrees of locality of reference, including both temporal locality, in which certain variables are
reused repeatedly, and spatial locality, in which the data needed for subsequent computations is generally
stored physically close to each other in the main memory (and is thus likely already present in existing cache
blocks, which are loaded when preparing for the preceding computations).

The MMU must implement a rather involved set of rules in order to achieve cache coherence; that is, to
make the entire multi-level cache-based memory system appear, for the purpose of programming simplicity, as
a single, unified, very fast memory system. The MMU achieves this by carefully coordinating both the reading
of the main memory and the higher levels of cache by the lower levels of cache, as well as the writing of the

1-15

https://en.wikipedia.org/wiki/Cache_placement_policies
https://en.wikipedia.org/wiki/Cache_replacement_policies
https://en.wikipedia.org/wiki/Locality_of_reference
https://en.wikipedia.org/wiki/Cache_coherence

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

data generated by the CPU back to the various levels of cache and, ultimately, back to the main memory.

When reading saved data from the main memory into the various levels of cache, there are two types of
approaches that the MMU may implement. With inclusive cache designs, which are the most common, smaller
and smaller sub-blocks of the data stored in the higher levels of cache and the main memory are duplicated into
each successively lower level of cache. This approach simplifies the connection between the various levels of
cache (keeping the ankle bone connected to the leg bone, etc), thereby simplifying the problem of maintaining
cache coherence, but increases the communication between the various cache levels. With exclusive cache
designs, on the other hand, two caches never share the same data. This approach avoids repetition, shuns redun-
dancy, eshews reiteration, and resists recapitulation, but leaves the placement policy of the MMU (and/or the
embedded programmer, via compiler directives) with the question which data to put into which levels of cache.

When writing the new data generated by the CPU back out to the various levels of cache and, ultimately,
all the way to the main memory, there are two types of write policies that may be implemented. When
using a write through policy at a particular cache level, newly updated data at that cache level is copied back
immediately to the corresponding section of the next higher level of cache or the main memory. This approach
allows the cache block to be overwritten immediately with a different section of memory when necessary, but
increases the amount of communication between cache levels. When using a write back policy at a particular
cache level, on the other hand, the updating of the next higher level of cache or the main memory with the
updated data at that cache level is deferred until the corresponding cache block soon needs to be evicted to
make room for the caching of a different section of memory. This approach reduces the communication between
the different cache levels as well as the number of data writes, which is more efficient, but introduces a possible
delay between when the “eviction notice” is received by a particular cache block, and when that block is actually
ready to cache a different section of memory. Note that it is particularly important to use a write back policy
to the main memory and to SSD when either is implemented on flash, which has limited write endurance.

Whenever a cache contains updated data that has not yet been copied up to the next higher level of cache
and the main memory, that section of cache is said to be dirty. Note also that, in multicore and multi-CPU
systems, a typical cache implementation might be configured as follows:

e each core has a dedicated L1 cache,
e each CPU has a dedicated L2 cache, shared amongst its multiple cores, and
e the entire system has a single L3 cache, shared amongst its multiple CPUs.

Higher levels of cache and the main memory may thus be updated by other CPU cores, as well as by certain
peripherals with direct memory access (DMA). Whenever a cache contains old data that has not yet been
copied down from the next higher level of cache and the main memory, that section of cache is said to be stale.
Substantial care must be taken by the MMU to keep track of both the dirty and the stale sections of cache at
all levels, and to update them when appropriate, in order to keep the cache coherent.

Steps an embedded programmer can take to use cache-based memory systems more efficiency include:

1) structuring and ordering computations in the compiled code to maximize both temporal and spatial locality,
2) keeping certain memory locations, for variables that are reused repeatedly [e.g., indices {i,j, k, ...}, con-
stants ¢;, and temporary variables ¢;], locked in cache,

3) implementing write through policies for the lower-level cache blocks used primarily for data input to the
CPU, which need to quickly replaceable,

4) implementing write back policies for cache blocks used primarily for data storage to the main memory, to
minimize unnecessary communication between cache levels,

5) bypassing the use of cache altogether for certain data that is only accessed occasionally, and

6) manually flushing (copying back to higher levels) cache blocks that will not be needed again soon.

Good programming languages, through compiler directives, give the programmer a degree of control over such
low-level memory management operations, which can make a big difference in the execution speed of a code.

1-16

https://www.youtube.com/watch?v=mVoPG9HtYF8
https://www.youtube.com/watch?t=289&v=KIz-NvdUPNw&feature=youtu.be
https://www.youtube.com/watch?t=289&v=KIz-NvdUPNw&feature=youtu.be
https://en.wikipedia.org/wiki/Cache_(computing)#Writing_policies
https://www.pcgamer.com/apple-m1-macs-appear-to-be-chewing-through-their-ssds/
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Directive_(programming)

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

1.4 Hardware for exploiting parallelism

Most numerical algorithms can be arranged such that the majority of the calculations performed do not actually
depend upon the results of the immediately preceding calculations. Such situations allow for parallel comput-
ing, in which some calculations may be done simultaneously (or, nearly so) with others, allowing the entire algo-
rithm to complete much more quickly. Parallelism within numerical algorithms is quantified by its granularity:
problems with fine-grained parallelism have a relatively small number of calculations that may be performed
independently before their results must be shared in order to continue, whereas problems with coarse-grained
parallelism have a relatively large number of computations that may be performed independently before their
results must be shared in order to continue. Problems with coarse-grained parallelism naturally evident at the
outset of the problem formulation are sometimes said to be embarrassingly parallel.

The identification of techniques to expose and exploit parallelism is essential for two key reasons. First,
of course, identifying parallelism allows the computer’s operating system (see §2) to assign multiple compute
resources to the problem at hand simultaneously [i.e., the various ALUs and FPUs within the different CPU
cores in the system (see §1.4.3), together with certain other compute resources that may also be available, as
surveyed in §1.5.3-1.5.4]. This enables significantly more computational work to be completed per clock cycle.

Equally important, at a lower level, identifying parallelism allows a self-optimizing compiler to make
much more effective use of all available levels of high-speed cache memory (see §1.3) for each individual CPU
core being used, by performing a delicate regrouping and reordering of the various computations to be per-
formed, thus maximizing both the temporal and spatial locality of the data needed for each and every calcula-
tion to be performed along the way. This is best achieved by adhering to the following high-level guidelines:

(a) Write clean codes that clearly/simply reveal the problem structure at hand (e.g., if your computer language
allows it, somehow writing A+ B for matrix/matrix multiplication, or A\b for Gaussian elimination, instead of
looping over all of the individual indices involved in such basic but time-consuming computations yourself).

(b) Use a modern self-optimizing compiler that calls the BLAS (basic linear algebra subprograms) and LAPACK
(linear algebra package) software libraries extensively (or, if the programming language or compiler you are
using doesn’t do this for you, call these routines yourself from within your code, and consider changing to a
different programming language or compiler!). These libraries are meticulously hand tuned by each CPU ven-
dor to maximize hit rates in each level of cache for the fundamental linear algebra problems that your code will
spend the bulk of its time solving at any given problem size. You are unlikely to do better on your own.

(c) If at all possible, define the problem size at compile time, via constants defined in the code header, rather
than at run time, via data files that are read in (post compilation). This important (but, often-overlooked) third
guideline helps the compiler to decide, at compile time, specifically how to reorder the various loops involved
in order to achieve maximum performance from the cache. Indeed, for many (large) problems, the advantage
here is so significant that recompiling the code in question immediately before any large run, once the size of
the problems to be solved are identified and defined in the code header, can be quite beneficial.

Most numerical algorithms can actually be arranged (or, rearranged) to reveal a hierarchy of parallelism
within, with some fine-grained parallelism embedded within its innermost loops, and successively coarser-
grained parallelism evident in the loops that surround them. Modern CPUs and compilers can effectively ex-
ploit many of these different levels of parallelism simultaneously, in order to achieve remarkable degrees of
computational efficiency with relatively little specific intervention by the embedded programmer.

It is important to understand the several ways that modern computers exploit parallelism to see other
specific things the embedded programmer can do [besides points (a) through (c) above] to help facilitate the
parallelization process. Note that the subsections that follow are ordered from techniques best suited to exploit
the finest-grained parallelism available (in the innermost loops), to those that are better suited for exploiting
successively coarser and coarser grained parallelism.

1-17

https://en.wikipedia.org/wiki/Embarrassingly_parallel
https://en.wikipedia.org/wiki/Optimizing_compiler
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

1.4.1 Instruction pipelining and branch prediction

Even relatively simple (i.e., RISC) instructions may themselves generally be divided up into a number of smaller
steps; for example, (a) fetch the instruction, (b) fetch the operands, (c) do the instruction, (d) write the results.
Instruction pipelining is a technique for implementing parallelism on a CPU over each of these smaller steps,
thus effectively keeping each corresponding part of the ALU or FPU busy doing useful work at each timestep.
For example, at a clock cycle when instruction k is just starting with step (a) above, instruction £k — 1 can
(simultaneously) be executing step (b), instruction k — 2 can be executing step (c), and instruction k£ — 3 can
be finishing up with step (d). For this to work correctly, the calculations must be ordered in such a manner
that a fine degree of parallelism is available, such that later commands don’t try to fetch the results of earlier
commands until they are actually available, which can take a few timesteps.

Branch prediction is a technique used to keep such instruction pipelines full even during the execution
of conditional (if-then-else) statements. This is achieved by guessing (based on previous executions of each
conditional) which branch the code is most likely to take, and proceeding assuming that the conditional will
actually take that direction this time. If it does, the instruction pipeline remains full right through the condi-
tional statement. If it does not, however, the tentative results of each calculation after the conditional must
be discarded, before they are written back to memory, and the pipeline re-initialized with the instructions on
the other branch of the conditional. Branch prediction is especially valuable in CISC systems, with complex
instructions and thus relatively long pipelines, and in codes that frequently encounter conditionals. [Note that
the code for handling branch predictions is generally inserted by the compiler, if the appropriate flags are set,
and thus need not be written by the embedded programmer.] The overall time penalties associated with in-
correct branch predictions may be kept small by (a) minimizing the number of conditional statements that are
encountered by the numerical algorithm (eliminating such conditionals altogether from all but the outermost
loops of the numerical algorithms used), and (b) using RISC processors, which have relatively short instruction
pipelines.

1.4.2 Vectorization (SIMD)

As discussed in §1.1.3 and 1.1.4, the fixed-point and floating-point representations of real numbers that are use-
ful in embedded applications are typically only 16 or 32 bits long, whereas the word length of high-performance
CPU cores is 32 or 64 bits, and data bus and register sizes of modern CPUs and DSPs (see §1.5.4) can be even
larger (e.g., 128 bits or more). Such an organization facilitates, where useful, the grouping of real numbers
together as a vector, and performing quickly the same arithmetic operations on all elements of the vector si-
multaneously (or, nearly simultaneously), leveraging the extensive fine-grained parallelism often present in the
innermost loops of substantial numerical algorithms. This basic idea goes by several names; in the early days
of computing on Cray supercomputers (including the Cray-1, Cray X-MP, Cray-2, & Cray Y-MP), this process
was called vectorization, and operated on very large vectors (with, e.g., 64 double-precision floats). The idea
of vectorization went dormant in the mid 90’s, but was revived for desktop and embedded processors, using
much shorter vectors, under the general name of SIMD (single-instruction, multiple data), with different im-
plementations appearing under various trademark names including MMX/SSE (Intel), 3DNow! (AMD), Altivec
(Freescale), VMX (IBM), Velocity Engine (Apple), and, more recently, Neon and Helium (ARM).

1.4.3 Shared-memory multiprocessing

At the next coarser level of granularity of parallelism in numerical algorithms, multiple substantial tasks can
often be identified that can be run completely independently from each other for a while [say, computing O(10?)
or more floating-point operations (FLOPS) before having to share results with those of other tasks in order to

1-18

https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Branch_predictor
http://www.armtechforum.com.cn/download/B-7_EricYang.pdf
https://www.hpcwire.com/2016/09/26/vectors-old-became-new-supercomputing/
https://en.wikipedia.org/wiki/Cray-1
https://en.wikipedia.org/wiki/Cray_X-MP
https://en.wikipedia.org/wiki/Cray-2
https://en.wikipedia.org/wiki/Cray_Y-MP
https://en.wikipedia.org/wiki/Vector_processor
https://en.wikipedia.org/wiki/SIMD
https://en.wikipedia.org/wiki/MMX_(instruction_set)
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/3DNow!
https://en.wikipedia.org/wiki/AltiVec
https://developer.arm.com/architectures/instruction-sets/simd-isas/neon
https://community.arm.com/developer/research/b/articles/posts/making-helium-why-not-just-add-neon

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

continue]. Such independent tasks are often found in the outermost loops of a code, and do not actually need
to contain the same set of commands in order for the compiler to be able to parse them out and organize how
to compute them in parallel; this setting is thus occasionally referred to as MIMD, to distinguish it from the
SIMD setting required to parallelize innermost loops via vectorization, as discussed in §1.4.2.

The most straightforward way to leverage such coarse-grained parallelism is multithreading; that is, the
spawning and running of multiple independent “threads” by a single numerical algorithm, each of which may
run for a while on a different CPU core (as coordinated by the scheduler, as discussed further in §2.1) before
pausing from time to time to synchronize its results with the other threads, but all of which ultimately access the
same main memory. This setting is referred to as shared-memory multiprocessing, and may be coordinated
directly by an embedded programmer from within a numerical code using OpenMP compiler directives, or in
many cases can be efficiently coordinated by a good self-optimizing compiler.

As discussed in detail in §1.3, the use of high-speed cache memory (often, at multiple levels) has become
essential for modern CPUs to reach their full potential, as CPUs are now typically much faster than the main
memory that they access, but wide data paths allow large blocks of data to be retrieved from main memory
in relatively little additional time (as compared with the time required to retrieve a single byte). In multi-core
systems, L1 cache is typically dedicated to each core, L2 cache is dedicated to each CPU (shared amongst
all cores on that CPU), and (often) L3 cache is shared amongst all CPUs, providing the gateway to the main
memory. The challenge of maintaining cache coherence in multicore settings complicates the execution of
complex numerical algorithms using shared-memory multiprocessing, in which data must be shared frequently
between the different running threads, though in most applications the problem of maintaining cache coherence
is taken care of by the MMU, with relatively little intervention required by the embedded programmer.

Most modern computers with a handful of CPU cores for shared-memory multiprocessing implement some
sort of symmetric multiprocessing (SMP™), in which all compute cores have equal access to all memory
and peripherals (usually via some arrangement of a data bus, address bus, and control bus), and may thus be
treated essentially equally by the scheduler (see §2.1) for all tasks (i.e., no specific tasks are restricted to certain
processors). Following this approach, two specific design paradigms simplify the organization:

(a) homogeneous computing, in which only one kind of CPU core is used, and
(b) uniform memory access (UMA), in which all cores have equal access to all sections of main memory.

Demands on peak computational performance in embedded systems continue to increase steadily, following
the celebrated “Moore’s Law” (that is, the observed doubling of the IC density in leading CPUs, and thus
their performance, about once every 2 years). At the same time, the maximum clock speeds that CPUs can
support is increasing only gradually in recent years, with higher clock speeds requiring higher voltages as well
as increased power consumption to operate the CPU. Thus, embedded computers are now tending to include
more and more CPU cores. Further, demands on computational performance in most applications are found
to vary substantially over time, and power efficiency during the quiescent times is often just as important as
peak computational performance during the active times. One approach to achieving an improved balance
between maximizing peak computational performance and minimizing time-averaged power consumption is thus
to implement dynamic voltage and frequency scaling, automatically reducing both the effective CPU clock
speed as well as the voltage driving the CPU, in real time, when the recent average computational load is found
to be relatively light'.

When designing computers to meet even stricter requirements, however, both of the simplifying paradigms
(a) and (b) above eventually become limiting factors, and must be relaxed in order to build systems with even
greater peak computational performance, and with even lower average power consumption. Thus:

5The abbreviation SMP usually denotes symmetric multiprocessing, but is occasionally used more generally for shared-memory
multiprocessing, which may or may not be symmetric. We recommend the former, more restrictive use, which is more common.
'8]n this setting, a relevant performance metric is FLOPS per MHz, in addition to peak FLOPS.

1-19

https://en.wikipedia.org/wiki/MIMD
https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
https://www.sciencedirect.com/topics/computer-science/shared-memory-multiprocessor
https://en.wikipedia.org/wiki/OpenMP
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://bournetocode.com/projects/AQA_AS_Theory_pregit/pages/3-7.html
https://en.wikipedia.org/wiki/Moore%27s_law
https://en.wikipedia.org/wiki/Dynamic_frequency_scaling

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

e The heterogeneous computing paradigm is now quite common, in which the embedded computer includes
more than one type of CPU core (one with higher peak performance, and one with lower average power con-
sumption), which may be selectively turned on and off. There are many different ways in which this general
idea may be implemented; examples include ARM’s big.LITTLE and Dynaml|Q technologies.

e An emerging design paradigm for embedded computers is nonuniform memory access (NUMA), in which
each CPU (or, CPU cluster) is closely associated with only a subset of the main memory, and it takes substan-
tially more time to read from or write to memory that is more closely associated with the other CPUs in the
system [though all of the main memory shares a single large address space]. This approach was perfected in
the field of high performance computing by Silicon Graphics (SGI) under the brand name NUMAlink, and (as
of 2024) is only beginning to emerge in computers designed for embedded applications.

Note finally that, akin to branch prediction (see §1.4.1), speculative execution of independent threads of a
multithreaded code following a conditional statement, or for which there is potentially stale data input, may be
performed in the setting of shared-memory multiprocessing if sufficient computational resources are available,
with speculative locks used to delay the write-back (or, the deletion) of the results of the speculative section of
code until the conditional itself is evaluated, or the potentially stale data input has been verified as correct.

1.4.4 Distributed-memory multiprocessing

To solve even bigger problems, leveraging the coarsest-grained parallelism that can be identified in a numerical
algorithm, many independent computers, each with their own dedicated memory, may work together over a
fast network operating as a computer cluster. When large centralized computer clusters, and the codes running
on them, are particularly well tuned for the coordinated distributed computation of very large individual jobs'’,
this setting is often referred to as high performance computing (HPC).

Cluster-based “cloud” computing in the HPC setting is a very natural complement to “edge” computing for
many large-scale real-time problems addressed by embedded sensors. Examples of interest include:

e the forecasting of the evolution of the track and intensity of hurricanes or forest fires and, simultaneously,
the uncertainty quantification (UQ) related to such forecasts,

o the development of a single detailed map of a region, based on the information gathered from several inde-
pendent mobile robots, each moving through and exploring different overlapping subregions, and each inde-
pendently executing their own simultaneous localization and mapping (SLAM) algorithms, etc.

In such problems, a large computation needs to be performed on the cluster, fusing the Big Data being
gathered, in real time, from numerous (often, heterogenous) sources (e.g., mobile robots), often using com-
plex physics-based models. At the same time, based on the UQ performed on the cluster, the mobile robots
often need to be redispatched intelligently to different subregions, a setting referred to as adaptive observation.

In the HPC setting, distributed computing leverages a fast and reliable communication network (see §4.1),
such as'™ Ethernet or InfiniBand, between the independent computers making up the cluster. As opposed
to shared-memory multiprocessing (§1.4.3), in which the MMU and a good self-optimizing compiler can often
handle most if not all of the low-level details related to cache coherence and the coordination of distinct threads
related to a certain job, in distributed-memory multiprocessing the necessary passing of data (aka messages)
between the independent computers in the cluster must often be coordinated manually by the programmer from

7As opposed, for example, to the maintenance of transactional databases used for stock trades, ticket sales, large-scale search,
social media, etc., with the cluster interacting simultaneously, and essentially independently, with a very large number of users.

BHPC is a very small market indeed, as compared to consumer electronics (largely supporting web surfing, video games, office
productivity applications, etc). HPC today advances mostly by repurposing cutting-edge commercial off-the-shelf (COTS) electronics
technologies developed for consumer electronics. In this setting, the possible deployment of Thunderbolt as a potential new technol-
ogy for networking in HPC clusters is quite interesting.

1-20

https://en.wikipedia.org/wiki/Heterogeneous_computing
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://www.arm.com/why-arm/technologies/dynamiq
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://www.youtube.com/watch?v=KmtzQCSh6xk
https://en.wikipedia.org/wiki/NUMAlink
https://en.wikipedia.org/wiki/Speculative_multithreading
https://iacoma.cs.uiuc.edu/iacoma-papers/wmpi_locks.pdf
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Uncertainty_quantification
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://en.wikipedia.org/wiki/Big_data
https://www.researchgate.net/publication/235183730_Observation_Adjoint_Sensitivity_and_the_Adaptive_Observation-Targeting_Problem
https://en.wikipedia.org/wiki/InfiniBand
https://packetpushers.net/thunderbolt-as-a-data-network-technology/

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

within the numerical code, which is a rather tedious process. Some variant of the Message Passing Interface
(MPI1)" is generally used for this process in the distributed-memory setting, effectively solving (by hand) similar
problems as those solved by the MMU (automatically) for maintaining cache coherence in the shared-memory
setting, passing messages and blocking new computations only when necessary. Primitive operations used to
coordinate message passing and computations in MPI-1 include

e point-to-point message passing (from one specific node to another),

e one-to-all message passing (aka broadcast),

e all-to-one message passing, together with an operation like summing (aka reduce),
e all-to-all message passing, for rearranging the data over the cluster, etc.

Such commands can be either blocking (halting a thread’s execution until the command is completed) or non-
blocking, or follow a ready-send protocol in which a send request can only be made after the corresponding
receive request has been delivered. MPI-2 introduces certain additional operations, including

e one-sided put (write to remote memory), get (read from remote memory), and accululate (reduce) operations,
e the ability of an existing MPI process to spawn a new MPI process,
e the ability of one MPI process to communicate with an MPI process spawned by a different MPI process, etc.

Note that FT-MPI is a remarkable extension (plug-in) that adds significant fault tolerance capabilities to MPI;
Open MPI also includes significant fault tolerance capabilities.

In the field of robotics, the problem of distributed computation is often referred to as distributed control.
Distributed control systems generally implement several nested control loops on the individual mobile robots
or machines (e.g., on an assembly line) involved. Decentralized control systems denote controllers that are
primarily distributed on each robot or machine, with no central supervisory authority. Centralized control
systems, in contrast, denote controllers that primarily operate on a central supervisory computer. Most prac-
tical control systems for multi-robot teams or multi-machine assembly line operations are some “hierarchical”
hybrid between the two, with decentralized low-level/high-speed control feedback on the inner loops (e.g., co-
ordinating the motion of an individual robot arm), coupled with centralized high-level coordination and fault
management on the outer loops (adjusting the speed of the assembly line, etc). Mobile robots add the significant
complication of very unreliable communication links, a challenge that requires significant care to address.

1.4.5 Summary: enabling the efficient parallel execution of codes

The reordering of the individual calculations within a numerical code, maximizing the temporal and spatial
locality of the data needed for each calculation to be performed, and thus maximizing the effectiveness of all
available levels of cache memory, is best achieved by using a modern self-optimizing compiler, with a high level
of optimization selected, together with steps (a), (b), and (c) described in the introduction of §1.4.

Pipelining (with or without branch prediction) and SIMD vectorization, as discussed in §1.4.1-1.4.2, are
both facilitated by the remarkable hardware of the modern CPU itself, together with the low-level opcodes
used by good self-optimizing compilers to leverage this hardware. The use of both techniques can be activated
by you, the embedded programmer, rather easily, simply by compiling your code with the appropriate compiler
flags set to enable these features. With today’s CPUs and compilers, it is generally not necessary for you to
write code in assembler and deal with such low-level opcodes yourself, thus leaving you to attend to higher-
level, more consequential issues. The efficient use of shared-memory multiprocessing (§1.4.3) sometimes takes
a bit more work, leveraging OpenMP compiler directives to tune the default behavior generated by the compiler
when necessary. The use of distributed-memory multiprocessing (§1.4.4) is, as of this writing, much harder, and
must usually be coordinated manually by the user (often leveraging MPI), as introduced briefly above.

¥Some HPC languages, like Coarray Fortran (which is implemented by G95), are beginning to implement coding constructs that
that make higher-level parallel programming in the distributed memory setting significantly easier.

1-21

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://en.wikipedia.org/wiki/Message_Passing_Interface#Concepts
https://en.wikipedia.org/wiki/Blocking_(computing)
https://icl.utk.edu/ftmpi/overview/index.html
https://www.open-mpi.org/faq/?category=ft
https://en.wikipedia.org/wiki/Distributed_control_system
https://en.wikipedia.org/wiki/Robotic_arm
https://en.wikipedia.org/wiki/Opcode
https://en.wikipedia.org/wiki/Coarray_Fortran
https://en.wikipedia.org/wiki/G95

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

1.5 Microcontrollers (MCUs) and associated coprocessors

We now shift topics from the foundational ideas in modern computing, to the technologies that implement
these ideas in embedded applications. At the heart of such implementations is a microcontroller (MCU*:2"),
which is an integrated circuit (IC) that fuses one or more CPU cores together with an interconnecting bus fabric,
a (SRAM-, DRAM-, and/or Flash-based) memory subsystem, and a number of useful coprocessors, such as:

- arithmetic logic units (ALUs) for fast integer and fixed-point computations [§1.1.3],

- floating-point units (FP Us) for fast floating-point computations at specific precisions [§1.1.4],

- programmable interrupt controllers (PICs) to handle signals that trigger specific new actions [§1.5.2],
- general purpose timer/counter units [§1.5.5], and

- communication interfaces [§4] for connecting the MCU to a range of input/output (i/o) devices [§3],

as well as other application-specific integrated circuits (ASICs) useful for commonly-needed functions, such as:

a. dedicated hardware for transcendental function approximation [§1.5.3.1],

b. ring buffers for computing finite impulse response & infinite impulse response (FIR/IIR) filters [§1.5.3.2],
c. cyclic redundancy check (CRC) units, for performing fast detection of bit errors [§1.5.3.3],

d. random-number generators (RNGs) [§2.7], etc.

Some leading MCU families, and the CPUs that they embed, were surveyed briefly in §1.2. As indicated there,
popular MCUs range from simple 8-bit devices, with just a few simple coprocessors, to remarkably efficient
integrations of high-performance, low-power 32-bit or 64-bit CPUs with high-performance coprocessors
(DSPs, GPUs, NPUs, FPGAs, CPLDs, PRUs, etc), together dozens of timers and other independent hardware
communication subsystems (each function independently, in real time, without loading the main CPU core of
the MCU, and often operate with direct memory access). Such useful coprocessors include, specifically,

e. quadrature encoder counters, for quantifying the (clockwise or anticlockwise) rotations of shafts,

f. pulse-width modulation (PWM) generators, for driving servos and ESCs,

g. UART, SPI, and I12C channels, for hooking up other ICs and (nearby) off-board peripherals,

h. CAN and RS485 controllers, for longer-distance communication over differential pairs of wires,

i. USB controllers, for communicating with desktop/laptop/tablet computers and associated peripherals,

j. digital-to-analog and analog-to-digital converters (DACs and ADCs), for interfacing with analog devices,

k. inter-IC sound (I12S) channels and/or serial audio interfaces (SAls), for audio channels,

[. on-board or off-board oscillators, coin cell power backup, and real-time clocks (RTCs), for scheduled wakeup,
m. integrated op amps, for building analog filter circuits (low-pass, band-pass, notch, PID, lead/lag, ...)

n. memory controllers (e.g., FSMC and quad SPI channels), for hooking up additional memory, etc.

Loading the CPU, other serial comm protocols can be bit-banged using reconfigurable general-purpose input/
outputs (GP1Os). An example modern MCU is the STM32C474, a block diagram of which is given in Figure 1.7.
This MCU, built around an ARM Cortex M4F (a RISC CPU with 3-stage instruction pipeline, a modified Harvard
architecture, and an FPU for single-precision floats), is implemented in the Beret family of boards introduced
in §5, and integrates several coprocessors (indeed, in all 14 categories, a through n, mentioned above).

n contrast (but, similar in many respects), a microprocessor (MPU) is an IC designed to form the heart of a desktop, laptop, or
high-performance tablet computer, with hardware subsystems focused more on computational performance, graphics, and efficiently
accessing a much larger memory and data storage footprint than a typical MCU.

ZIA third relevant category today is what is often called a mobile processor (MP), which is an IC that implements many of
the same components as an MCU or MPU, but is tuned specifically for low-power operation, standby, and sleep. Modern MPs,
which achieve remarkable flops/MHz, flops/mW, and (due to very large scale manufacturing, for use in smartphones) peak flops/$
ratios on real-world problems, are particularly well positioned for advanced high-level applications in embedded systems (performing
vision-based feature recognition and SLAM, machine learning, etc.), as a complement to MCUs for handling the real-time low-level
feedback required in motor control applications. Note that the dividing lines between MPs, MPUs, and MCUs continues to blur, and
emphasizing the distinction between them is not necessarily productive moving forward.

1-22

https://www.st.com/resource/en/datasheet/stm32g474ve.pdf#page=46
https://www.st.com/resource/en/datasheet/stm32g474ve.pdf#page=47
https://en.wikipedia.org/wiki/Bit_banging
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32g4-series/stm32g4x4/stm32g474ve.html

Renaissance Robotics (v.2024-05-16)

Chapter 1: Cybernetics

JTAG&SW | MPU ~
ETM NVIC <
—
-) A_owosr (> QsPiftash
ARM® D-BUSK——{ & — —
CORTEX-M4 O K=>Jw
170MHz IBUSK—=>1 S || G| FLASH 2 x 256 KB
15} o<
S-BUS K———> x IO @VDDA
4
CH1
cromaz | oran k== & = e DAC1, DAC2
@
GP-DMA1 | 8Chan [\ (2 @ ©|
% <—> T
e
— ; e]
@VDDA RNG K=>[DAC4 cH
SARADCT || | RNB1 - L
ADC1, ADCZ, <:_J‘> IF Kt 1y analog
SARADC2
Vmon1, Vmon2 — o CORDIC POWER MNGT
SARADC3 VDD124 <= 3.3V, GND
SARADCS || | 2 @vbD
% @vDD SUPPLY
GPIOPORTA K—— SUPERVISION
— oo
(<+ | cpioporT PLL Resl
numerous “ RSl] Intll pvp PWM
GPIOPORTC |[F———H <« PVD, =
GPIOs used, & pom— e K> 3.3V, GND, reset
made available y Y
“ <F—————
on connectors) GPIOPORTE P
{>| cPioPORTF |[F— | 4-48MHz >
“ GPIO PORT G F— | RESET&
CoL_sn k= cLookeTRL | 71 VBAT Vcoin
peripheral clocks XTAL 32KHz “ OSC32_|N 0SC32
$1, 52, 4, 85, 89, 810 < tirrimer 100 P and sysem s] o
BKPREG _ power
<= CRC RTC_TAMPx reset
reset > EXTITwkuP &= K= RTC Interface -
160 PWM
E5 <) TVMER <= K=>| AHBIAPB2 | AHB/APB1 | <

766 PWM
D Tivers. 1P K=

86,87 {p{mers P

83 | TIMER16 16b Ly
IR_OUT { s

R

E2

APB2

PWRCTRL

!!

WinWATCHDOG

<=

<>

K—>

12C1&12C2 &
12C3 & 12C4

(> 12Ca & 12Cb & 12Cc & 12Cd

E7 <) TiMER20 160 PWM o) ‘_,
UARTt N usarmt . ke TMERG 165 tigg | JRART2 8 smerd > SPlimu & USARTD
“ TIMER7 16b trigg "’“ RS485, UARTa
SPIdrv ‘_’ CRS = ‘-’“ SPla, 12S & SPImb
CAN1&2&3 < —> CAN
e ke o aass |
v v v @VDDA % UcPD K= o s
] e | D] aat [E[p use
Ipf1, Ipf2 Y

Figure 1.7: Block diagram of the STM32G474 MCU, with the hardware leveraged by the Berets (see §5) high-
lighted in color (see text). Image adapted from the STM32G474 datasheet, courtesy of STMicroelectronics.

1-23

https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32g4-series/stm32g4x4/stm32g474ve.html

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

Cortex®-M4

with FPU DMA1 DMA2

bus
D-bus
S-bus

T
T

ICode

FLASH
512 KB

SRAM1

CCM
SRAM

DCode

1300V

SRAM2

i

AHB1
peripherals

AHB2
peripherals

FSMC

T | QUADSPI

T

—0

Figure 1.8: Bus matrix connections to/from the ARM Cortex M4 in the STM32G474; circles at intersections in
the grid indicate an allowed connection from the corresponding master (at top) to the slave (at right). Image
adapted from the STM32G474 datasheet, courtesy of STMicroelectronics; see also ST Application Note AN4031.

1.5.1 Busses, memory management, and direct memory access (DMA)

At the heart of a modern MCU is one or more CPU core(s). The complex fabric interconnecting these CPU
core(s) within the MCU to the various coprocessors, to the cache-based memory and data storage system, and
to the connected peripherals, is organized into a number of distinct busses, each with specific privileges, as
illustrated for the STM32G474%* in Figure 1.8. Most modern processors follow ARM’s open standard Advanced
Microcontroller Bus Architecture (AMBA) protocol, which includes the Advanced High-performance Bus (AHB),
which is responsible for both the sending of an address to memory as well as the subsequent writing or reading
of data or instructions to/from that memory address (via busses ranging from 64 bits to 1024 bits in width),
and the lower-complexity Advanced Peripheral Bus (APB), which coordinates lower-bandwidth register and
memory access by system peripherals (via a 32-bit bus).

Another essential aspect of modern CPUs is direct memory access (DMA), a feature that allows coprocessors
and peripherals to read or update memory locations directly, without tying up the CPU as a choke point. In
some implementations, DMA can also be used, without bogging down the CPU, to copy or move data from
multiple memory locations into a single communication data stream, or to take data from a single data stream
and distribute it to the appropriate memory locations, common processes referred to as scatter/gather /0.

2|n the ARM Cortex M4 CPU implemented in the STM32G474 MCU, there are three main busses, the ICode (instruction) interface,
the DCode (data) interface, and the System interface, denoted I-BUS, D-BUS, and S-BUS in Figures 1.7 and 1.8.

1-24

https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32g4-series/stm32g4x4/stm32g474ve.html
https://www.st.com/resource/en/application_note/dm00046011-using-the-stm32f2-stm32f4-and-stm32f7-series-dma-controller-stmicroelectronics.pdf
https://developer.arm.com/architectures/system-architectures/amba
https://developer.arm.com/documentation/ihi0033/latest
https://developer.arm.com/documentation/ihi0024/c
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Vectored_I/O
https://developer.arm.com/documentation/ddi0439/b/Functional-Description/About-the-functions

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

1.5.2 Programmable interrupt controllers (PICs)

The CPU of an MCU often needs to wait for a trigger (for example, a clock pulse, or a signal from an external
peripheral) before beginning a specific new action or computation. The CPU also needs to be able to handle
various exceptions that occur when something unexpected happens (divide by zero, etc.). Such an event is
generically known as an interrupt request (IRQ). There are many possible sources of IRQs, and at times they
can arrive at the MCU in rapid succession, and thus need to be carefully prioritized and dealt with by the CPU
accordingly. IRQs are handled by a dedicated unit on the CPU called®® a programmable interrupt controller
(PIC). The PIC assigns a priority and a block of code, called an interrupt service routine (ISR), for the CPU to
deal with any given IRQ, if/when one is detected.

IRQs are denoted as maskable or non-maskable, which essentially distinguishes whether or not they may
be ignored (at least, for the time being) by the ISR that is associated with that IRQ. Interrupts that deal with
non-recoverable hardware errors, system reset/shutdown, etc., are often flagged as non-maskable interrupts
(NMIls). Common interrupts generated and handled by user code, however, should generally NOT be flagged
as NMIs, since NMIs hinder other normal operations (stack management, debugging, ...). Common interrupts
that are time critical should instead be flagged as high priority maskable interrupts, and if such IRQs are missed
by the system during testing, the behavior of the scheduler (see §2.1) should be adjusted to make certain that
such high priority maskable interrupts are set up to be dealt with in a timely fashion.

1.5.3 Application specific integrated circuits (ASICs)

Application specific integrated circuits (ASICs) are dedicated coprocessors that are hard-wired for narrowly-
defined purposes. As introduced previously, representative examples include transcendental function genera-
tors, ring buffers, cyclic redundancy check calculation units, random-number generators, etc. To illustrate, this
section discusses various characteristics of these common types of ASICs. Note that the hardware implement-
ing the timer / counter units discussed in §1.5.5, and the communication subsystems discussed in §1.5.6, may
also be considered as ASICs.

1.5.3.1 CORDIC approximation of transcendental functions'

The efficient software approximation (to a selectable precision) of various transcendental functions is discussed
in detail in §2.6. Specialized hardware suitable for approximating such functions even faster (again, to selectable
precision), while offloading the CPU for other tasks, may also be implemented. The clever algorithm underlying
such hardware is known as CORDIC (coordinate rotation digital computer), and is well suited for compact
implementation on both ASICs and more general-purpose coprocessors (DSPs, FPGAs, etc).

We will discuss the CORDIC algorithm itself first, including its software and hardware implementations;
interpretation of the convergence of the CORDIC algorithm is deferred to the end of this section [Figure 1.9].

The operations on {x, y, z} that underlie all six forms of CORDIC are given, at each iteration, by

X — K 1 —poifi x
(y)i—i-l =k <Uz‘fi 1) (y)i’ (1.1a)

Zi+1 = 2 — 0;0Q4. (11b)

That is, at eﬁach iteration, a “scaled rotation” is performed on (x, y), and z is incremented by +«;. The param-
eters {«;, K;} may be precalculated according to the various formula given in Table 1.11, the first few values

BThe PIC on the ARM Cortex M4, as depicted in Figure 1.7, is called a nested vectored interrupt controller (NVIC).
TTThis section, like later sections of this text marked with one or more daggers (), is a bit harder than those around it, in proportion
to the number of daggers used, and may be skipped upon first read without disrupting the continuity of the presentation.

1-25

https://www.geeksforgeeks.org/difference-between-maskable-and-non-maskable-interrupt/
https://en.wikipedia.org/wiki/CORDIC
https://developer.arm.com/documentation/100166/0001/Nested-Vectored-Interrupt-Controller

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

circular p=1 o =atan(1/2"), fi=tan(q;)=1/2", K;=1/\/1+1/22%

linear =0, a; = 1/2 fi =1/2, K, =1
hyperbolic ;= —1, «; =atanh(1/2%), f; =tanh(q;)=1/2), K;=1/y/1—1/2%
Table 1.11: Formulas for u, o, f;, and K;, for (top) circular, (middle) linear, and (bottom) hyperbolic CORDIC

rotations. Defining K; = K, Ky - -+ K;, the first few values of {ai, fi, K;} are reported in Table 1.12.

circular o; = 0.78540, 0.46365, 0.24498, 0.12435, 0.06242, 0.03124, 0.01562,
9 1u2 fi = 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,
C oS LKy = 070711, 0.63246, 0.61357, 0.60883, 0.60765, 0.60735, 0.60728,
linear a= 1 172, 1/4, 1/8, /16, 1/32, 1/64,
i—0.1.2 fi= 1 1/2, 1/4, 1/8, 116, 1/32, /64,
gy Ly K; = 1, 1, 1, 1, 1, 1, 1,
hvoerbolic | @ = 054931, 025541, 0.12566, 0.06258, 0.06258, 0.03126, 0.01563,
p _yq 9 3 =12 1/4, 1/8, 1/16, 1/16, 1/32, 1/64,
S0 LKy = 115470, 1.19257, 1.20200, 1.20435, 1.20671, 1.20730, 1.20745,

Table 1.12: Angles «, rotation factors f;, and cumulative scale factors K; of the CORDIC algorithm for (top)
circular, (middle) linear, and (bottom) hyperbolic rotations. Note the two rotations in the hyperbolic case with
fi = fs =1/16 and oy = a5 = atanh(1/16) = 0.06258 (see text). The full table of coefficients needed to apply
CORDIC to achieve single-precision floating-point accuracy in all cases is computed in RR_cordic_init.m.

of which are listed in Table 1.12. The variable p is just a sign bit, and is set as 1 for circular rotations, 0 for
linear rotations, and —1 for hyperbolic rotations. The variable o; is also a sign bit, and is selected so that each
iteration drives either z (for “rotation” mode) or y (for “vectoring” mode) towards zero as the iterations proceed.
The factor f; (and, in the case of linear rotations, the corresponding angle ;) is halved at each iteration. In the
case of circular and hyperbolic rotations, the first several angles o; may be stored in small look up tables on
the (hardware) CORDIC unit; once «; becomes sufficiently small (at around iteration i = 25), the subsequent
«; are, again, simply halved at each iteration. Finally (important!), defining a cumulative scaling factor after
n iterations such that K,, = K; K, -- - K,,, which may also be precalculated, multiplication by the individual
scaling factors K; in (1.1a) may be deferred, and the cumulative scaling factor K, instead applied to (z,y) by
the CORDIC preprocessing unit, either at the end, or at the beginning, of the n iterations performed.

A full floating-point implementation of the above algorithm is available at RR_cordic_core.m, with exten-
sive preprocessors at RR_cordic.m and RR_cordic_derived.m; the heart of this code is listed in Algorithm 1.1.
Note that such a software implementation of CORDIC is actually not very efficient as compared with the soft-
ware approximation of transcendental functions using Chebyshev expansions, as discussed in §2.6. Where
CORDIC becomes particularly useful, however, is its realization in specialized hardware, including both ASICs
and high-performance coprocessors like DSPs and FPGAs (see §1.5.4), using fixed-point binary representations
(see §1.1.3) of the real numbers involved. In this setting, the halving operations in Algorithm 1.1 may be accom-
plished quickly, with single bit shifts (to the right) of the corresponding fixed-point numbers. Further, one can
implement the logic of the sign bits (that is, o and p) essentially for free. In such hardware, the computational
cost of most of the iterations of Algorithm 1.1 in the case of circular or hyperbolic rotations is thus:

e three integer additions, during the generalized rotation of v (1,2) and the increment of v(3),
e one bit shift, during the update of f, and
e one table lookup [or, a second bit shift], to determine the next value of ang (that is, of o).

1-26

https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap01/RR_cordic_init.m
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap01/RR_cordic_init.m
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap01/RR_cordic_core.m
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap01/RR_cordic.m
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap01/RR_cordic_derived.m

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

Algorithm 1.1: Main iteration of the CORDIC algorithm; full code available at RR_cordic_core.m.

for j=1:n % perform n iterations
% Compute sign of next rotation (mode=1 for "rotation", mode=2 for "vectoring")
if mode==1, sigma=sign(v(3)); else, sigma=-sign(v(2)); end

%%%% BELOW 1S THE HEART OF THE CORDIC ALGORITHM %%%%
v(1:2)=[1 -mussigma=f; sigma=<f 1]xv(1:2); % generalized rotation of v(1:2) by f
v(3) =v(3)-sigmaxang; % increment v(3)

% update f (divide by 2) [factors {1/2"4, 1/2"13, 1/2"40} repeated in hyperbolic case]
if mus=-1 || ((j~=4) && (j~=14) && (j~=42)), f=f/2; end
% update ang from tables, or divide by 2
if j+l<=cordic_tables .N && rot <3, ang=cordic_tables.ang(rot,j+1); else, ang=ang/2; end
end
% NOTE: the scaling of v by K, if necessary, is done in RR_cordic.m, not in this code.

An efficient hardware implementation of CORDIC is discussed in ST AN5325, which establishes that hardware
implementations of CORDIC can have a very small silicon footprint, and in many cases of interest (for various
transcendental functions, at specified levels of precision) can be substantially faster than computing these same
functions using precompiled software libraries (see §2.6). Note in particular (in Table 1.12) that the angles re-
duce by about a factor of two at each iteration; convergence (i.e., the additional accuracy achieved per iteration)
of this algorithm is thus said to be linear. Other iterative algorithms we will encounter later have substantially
faster convergence; the key to the success of CORDIC is its remarkably simplicity, as itemized above.

In the remainder of this section, we turn to the interpretation of what the CORDIC iterations defined above
accomplish (Figure 1.9). As mentioned previously, there are 3 - 2 = 6 forms of the CORDIC algorithm, with:

e three different types of rotations: circular (u = 1), linear (u = 0), or hyperbolic (u = —1) [see Table 1.11], and
e two different modes for determining o;:

rotation mode, which takes o; = sign(z;), eventually driving z,, — 0 upon convergence, or (1.2a)
vectoring mode, which takes o; = —sign(y;), eventually driving y,, — 0 upon convergence. (1.2b)

» oo

Figure 1.9: Geometric interpretation of the (successively smaller and smaller) rotations of the iterative CORDIC
algorithm developed in §1.5.3.1, for (a, b) circular, (c, d) linear, and (e, f) hyperbolic rotations, illustrating both
(a,c,e) “rotation” mode, which performs a generalized rotation of the vector (zg,yo) [illustrated here for
(x0,Y0) = (1,0)] by the angle 2y, and (b, d, f) “vectoring” mode, which rotates the vector (¢, yo) to the positive
x axis, while incrementing zy by the angle Az required for such a rotation. Code at RR_cordic_viz.m.

1-27

https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap01/RR_cordic_core.m
https://www.st.com/resource/en/application_note/dm00614795-getting-started-with-the-cordic-accelerator-,using-stm32cubeg4-mcu-package-stmicroelectronics.pdf
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap01/RR_cordic_viz.m

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

Interpretation in the case of circular rotations.
For circular rotations (1 = 1), noting that cos?z +sin?z = 1 and tan z = sin x/ cosx, and thus

cosa; = 1/v/1+tan’cq; = 1/V1+272 = K; and sinq; =tana;/\/1+tan?o; = K; f;,

the rotation in (1.1a) may be written [note: the scaling by K is deferred in the code]

x B x = (1 —ofi\ _ (cos(oioy) —sin(o;0y)Y
(y)i—H - <y>2 where G = R (Uifi 1) - <Sin(aiai> cos(o;a;)) 7 13

this is called a Givens rotation, and corresponds to an anticlockwise rotation of (z,y); by the angle (o;;)
at each iteration. Of course, successive Givens rotations accumulate; denoting ¢3 = ¢o + ¢1, ¢; = cos(¢;),
s; = sin(¢;), and applying the identities coc; — 951 = ¢3 and sacy + ca51 = s3, this may be verified as follows:

Co —S82 C1 =81\ _ [C2C1 — 8281 —C281 — 8261\ [C3 —S3 (1.4)

So Co S1 C1 o 89C1 + €281 —8281 + CaCq - S3 C3 ' '
Thus, successive applications of (1.3) result in a total Givens rotation of the original (xg, o) vector by
a = Y o ,0;0;. Note that the «; are scaled by a factor of 0.5, or slightly larger, at each iteration; as a re-

sult, for large n and by appropriate selection of the o, total rotations anywhere in the range —am.y < @ < aypax
are possible, where cuna = Y1 |0y = D1 a; = 1.743287 (that is, a bit over 7/2). Thus:

e Using rotation mode (1.2a), selecting o; = sign(z;) at each iteration so that z,, — 0 for large n, a total Givens
rotation of —aumay < 20 < Qumax radians [and a cumulative scaling of K, '] is applied to the (z¢, yo) vector [see
Table 1.13]. As a special case, defining (xq, yo) = (K,, 0), we have (x,, y,) — (cos 2¢, sin zg) in this mode.

e Using vectoring mode (1.2b), selecting o; = —sign(y;) at each iteration, the original (x¢, yo) vector is rotated
[if K, is applied] along a curve of constant 2?2 + 3? (that is, along a curve of constant radius from the origin)
such that y,, — 0, while the increments of z; in (1.1b) again keep track of the total rotation performed in the
process of rotating the vector (g, o) to (x,, 0), so that (z,, z,) — (K, /23 + y2, 20 + atan (yo/z0)).

Interpretation in the case of hyperbolic rotations.
For hyperbolic rotations (¢ = —1), noting that cosh® z — sinh® z = 1 and tanh = sinh 2/ cosh z and thus

cosha; = 1/4/1 — tanh? o; = 1/v/1-2"2%=FK; and sinha; =tanho;/\/1— tanh® o; = K; fi.

the transformation in (1.1a) may be written [note: the scaling by K; is deferred in the code]
x _g, (" where H, = K. L oifi) _ cgsh(aiai) sinh(o; ;) . (1.5)
Ty v/, oifi 1 sinh(c;a;) cosh(o;ay)

This transformation is called a “hyperbolic rotation”. Successive transformations by H; also accumulate;

denoting ¢35 = ¢ + ¢1, C; = cosh(¢;), S; = sinh(¢;), and applying the identities CoCy + 5257 = C5 and
SoCh + CS1 = Ss, this may be verified as follows [cf. (1.4)]:

Co So) (C1 S1) _ (CoOi+ 528 CoSi+ 801\ _ (Cs S5 (16
Sy Co) \S1 1) T\ S0+ Sy 5,81+ o0y Sy Cs) '

Thus, successive applications of (1.5) result again in a total rotation of the (zo, yo) vector by o = > "7 0. In
contrast with the circular case, the «; in the hyperbolic case are scaled by a factor of 0.5, or slightly smaller, as

1-28

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

rotation mode (z, — 0) vectoring mode (y,, — 0)
circular Tn _ K;l CF)S zg —sinzg To Tn _ Kn_ly/xg + 2
(n=1) Un sinzg oS 2 Yo Zn 2o + atan (yo/xo)
linear T\ _, X Tn\ _, 0
(1 =0) Yn Yo + 20 To Zn, 20 + Yo/ o

hyperbolic T, _1 {cosh zy sinh 2 o Tn K x2 — y?

(un=-1) Yn " \sinhzy coshzy/ \ 9o Zn 2o + atanh(yo/z0)
Table 1.13: Convergence of the CORDIC algorithm for large n. Leveraging various identities, several derived
functions may also be determined, as implemented in RR_cordic.m and RR_cordic_derived.m.

1 is increased. Thus, in order to assure that all angles over a continuous range can be reached by a set of suc-
cessive rotations, the typical approach used is to do two rotations associated with the angles o = atanh(1/2%),
atanh(1/2'%), and atanh(1/2%°) [see, e.g., Table 1.12]. With three such double-rotations built into the algorithm,
it may be shown that, for large n and by appropriate selection of the o;, total rotations anywhere in the range
—Omax < @ < Qupay are possible, where now v, = Z?:o a; = 1.118173. Thus:

e Using rotation mode (1.2a), selecting o; = sign(z;) at each iteration so that z, — 0 for large n, a total gen-
eralized rotation of —apma < 29 < Qmay radians [and a cumulative scaling of K '] is applied to the (g, vo)
vector [see Table 1.13]. As a special case, defining (zo, y0) = (K, 0), we have (z,, y,,) — (cosh 2, sinh zp).

e Using vectoring mode (1.2b), selecting o; = —sign(y;) at each iteration, the original (¢, yo) vector is rotated
[if K, is applied] along a curve of constant 22 — 2 such that 1, — 0, while the increments of z; in (1.1b)
again keep track of the total rotation performed in the process of rotating the vector (zo, yo) to (z,, 0), so that
(xm zn) - (Kgl l‘% - y(%’ 20 + atanh(y0/$0))'

Interpretation in the case of linear rotations.
Finally, for linear rotations (i = 0), the transformation in (1.1a) may be written

(Zj)m =7 @ where /= (01 f; 2) : (1.7)

Again, successive transformations by .J accumulate, which may be verified as follows:

10 1 0 1 0
<f2 1) (fl 1) B <f2+f1 1> (1.8)

Thus, successive applications of (1.7) result in a translation of yo by > ., 0;fizo (note that the z; remain
constant, due to the first row of J). The f; in the linear case are exactly halved at each iteration, assuring
convergence, for large n and by appropriate selection of the o;, of total translations anywhere in the range
—AYmax < AY < AYmay, Where Ay = Y0 |0ifizo| = ¢|zo|, where we have initialized oy = fy = 1 (see
Table 1.12), so that ¢ = 2 (but other choices are certainly possible). Thus:

e Using rotation mode (1.2a), selecting o; = sign(z;) at each iteration so that z, — 0 for large n, a total trans-
lation of Ay = zy x(is applied to yy [see Table 1.13]. As a special case, defining yo = 0, we have y,, — 2o 2.

e Using vectoring mode (1.2b), selecting o; = —sign(y;) at each iteration, the original (x¢, yo) vector is rotated
along a line of constant x, such that y,, — 0. Noting that Ay = zyx, in rotation mode, it is seen that vectoring
mode is again its complement, with Az = yo/x([see Table 1.13].

In practice, linear mode is useful for approximating multiply/accumulate and divide/accumulate operations on
very simple hardware that is only capable of integer addition and bit shifts.

1-29

https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap01/RR_cordic.m
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap01/RR_cordic_derived.m

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

—1 () o
(&r) (&)
/ \ €k-3 €r-2 €k-1 €k €k-7 €k-6 €k-5 €4
@) @) C(éa (&) (&) [@) [) [@) [@[] ())
\ /
(é()) \ (ef—)T / (é:})

Figure 1.10: A ring buffer of the DT signal e, and its 7 most recent tap delays at timestep &k = 11: (left) as laid
out conceptually, as a ring, and (right) as laid out in memory. At timestep & = 12, the next value, €12, replaces
the value in memory location €4, the counter k is incremented by 1, and the other existing values of € stay put.

1.5.3.2 Ring buffers

Many of the essential operations that an embedded controller needs to implement are linear discrete-time (DT)
difference equations (see §8.3.3) that may be written as finite impulse response (FIR) filters of the form

up, =boep +brep_1+ ...+ byep_p, (1.9a)
or infinite impulse response (lIR) filters of the form
Up = —A1L Uk—1 — + . — Qpy Uh—yn + bo €1 + b1 €11 + ... + by, Clep. (1.9b)

To perform such computations quickly, in addition to fast access (see §1.3) to the (fixed) a; and b; coefficients,
fast access to current and recent values (aka tap delays) of the DT signals e; and (in the case of IIR filters)
uy, are needed. Instead of shifting all of these most recent values in memory at every timestep, a much faster
approach is to use a ring buffer (aka circular buffer), such as that illustrated in Figure 1.10 (with » = 8 elements).
With this approach, at each timestep £, the most recent value of e, is stored in memory location €yeq(,r) [that
is, within a ring buffer with » > n memory locations allocated] using modular arithmetic, and wy is given by:

amod(k,r) - bO é‘mod(k,r) + by émod(k:—l,r) +...+0by é’mod(k—nn") or (110&)

amod(k,r) = — amod(kfl,r) .. Gy ’&mod(kfm,r) + bO émod(k,r) + bl émod(kfl,r) +.oo+ bn émod(kfn,r)- (]10b)

With this approach, it is unnecessary to shift each of the saved values of e and u in memory by one location at
each timestep, instead just advancing the index k used to reference these values in their (fixed, until replaced)
locations in the ring buffers, and using this index (and reduced values of it, like £ — j) in a modulo fashion.

FIR filters (1.10a) and IIR filters (1.10b) are needed so often in embedded computing that many modern CPU
cores targeting applications in robotics and cyberphysical systems include specialized hardware or software
implementations of both the ring buffers themselves (with the required mod command on the indices handled
automatically) together with the additional low-level multiply/add circuitry or code required to implement such
filters remarkably quickly, without significantly burdening the available CPU core(s).

In many DT filters, dubbed strictly causal (see §8.3.3.2), by = 0. In such problems, (1.10a) or (1.10b) can
simply be calculated between timestep k£ — 1 and timestep k.

In the case of semi-causal filters, however, by # 0. In such problems, the strictly causal part of the RHS of
(1.10a) or (1.10b) [which may involve a substantial number computations if n or m is large] can still be calculated
between timestep £ — 1 and timestep k. As soon as the new value of e, becomes available, the RHS can then be

1-30

https://en.wikipedia.org/wiki/Circular_buffer
https://en.wikipedia.org/wiki/Modular_arithmetic
https://community.arm.com/cfs-file/__key/communityserver-blogs-components-weblogfiles/00-00-00-21-42/7563.ARM-white-paper-_2D00_-DSP-capabilities-of-Cortex_2D00_M4-and-Cortex_2D00_M7.pdf
https://community.arm.com/developer/research/b/articles/posts/making-helium-going-around-in-circles

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

updated by adding by - ex, and then the result may be applied directly on the output as uy, thus applying the
output uy very very soon after the input ey is received, though not quite instantaneously.

Ring buffers, as described above, can be implemented in dedicated hardware, such as ST’'s FMAC units (see
ST AN5305), or in software, such as when using ARM Helium. Performing such computations in ASIC hardware
on the MCU has the obvious advantage of offloading the CPU core; however, the size (and, the associated
capabilities) of such ASICs needs to be decided upon when the (general purpose) MCU is designed, when the
demands of the ultimate application are largely unknown. Performing such computations with streamlined
software constructs on the CPU core of the MCU leads to a much more scalable solution (from small filters
to large) to better fit the demands of the end application. Thus, ring buffers for MCUs targeting a narrow
range of applications are most efficiently implemented on appropriately-sized ASICs; for general-purpose MCUs
targeting a more broad range of applications, software-based solutions might be preferred.

1.5.3.3 Cyclic redundancy check calculation units

The use of parity bits to detect and/or correct occasional bit errors in memory and communication systems was
introduced in §1.1.5. For this purpose, linear binary codes (LBCs) are designed for vectors in 4, with one
bit in each of n elements, each considered as a finite field F; = {0, 1}, with the fundamental operations of
addition (4, aka XOR) and multiplication (-, aka AND) closed (i.e., with no carry), as defined by:
+llofr o1
Fo: 0 o1 oflo]o
1 110 11011

An LBC is defined by two matrices, an rxn parity-check matrix H and an nx k basis matrix V', each with elements
in Fy, such that H V' = 0. The use of an LBC to communicate data over a noisy channel is straightforward:

group the data into vectors (blocks) of length k, with a single bit in each element;

code each resulting data vector a € F} into a longer codeword w € F%, withn =k + r, viaw = Va;
transmit the corresponding codeword w over the noisy channel;

receive the (possibly slightly corrupted) message w € F% on the other end, and

decode the message w leveraging [, noting that /7w = 0 corresponds to no bit errors, and find the most
likely codeword w corresponding to the received message w, and the data a that generated it.

In such LBCs, r is the number of redundant bits, and each valid codeword differs in at least d > 1 bits, which fa-
cilitates error detection and/or correction. The identification of matrices {V}, x.4,, Hpn k.4, } that define efficient
LBCs (that is, with maximum d for minimum 7) is nontrivial, and is discussed at length in §12.

A cyclic LBC may be transformed to a form in which the r x n parity-check matrix H[ka,dh and then x k
basis matrix V[fz,k,d}z’ wheren =r + k and H[ka,d]z‘/[?c"hhd]z = 0 (on F5), have the special form

Vo 0
V1 Vo
hg hi—1 ... ko 0 Do
(- he he1 ... ho . o
H[;rt,k,d]2 =, ..) ‘/[n,k,d]z =1V : Vo |, “11)
0 hip hip—1 ... hg U v1
0 Uy

where (for an LBC) hy, = hy = vy = v, = 1. The nontrivial elements of these matrices are often summa-
rized with a basis polynomial v(z) = v,.2" + ... + v12 4+ vy and a corresponding parity check polynomial
h(z) = hgz® + ... + hiz + hg, defined mutually such that h(z) v(z) = 2" — 1 = 0, for a given number of
redundant bits r and data bits k& in each codeword of length n = r + k.

1-31

https://www.st.com/resource/en/application_note/dm00605584-digital-filter-implementation-with-the-fmac-using-stm32cubeg4-mcu-package-stmicroelectronics.pdf
https://community.arm.com/developer/research/b/articles/posts/making-helium-going-around-in-circles

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

A single error detecting (SED) LBC takes r = 1 regardless of k; this redundant bit is called a parity bit,
and is selected such that the n = k + 1 bits of each codeword add (on F5) to zero if even parity is used, or to
one if odd parity is used; any 2 valid codewords in this LBC differ in at least d = 2 bits. Parity is checked again
when decoding, and a single bit error can be detected but not corrected if the parity has changed. Of course,
during both coding and decoding, parity is easily checked in hardware using a multiple-input XOR logic gate.

In an error correcting code (ECC), we need r > 1 and d > 2. The most broadly used ECCs in embedded
computing, as they may be coded and decoded quickly in hardware, are the single-error-correcting (SEC)
binary Hamming codes [n, k,d| = [2" — 1,2" — 1 —r, 3], as introduced in §1.1.5 and Figure 1.5. These include
(for r = 4 through 8) [15, 11, 3], [31, 26, 3], [63, 57, 3], [127, 120, 3], [255, 247, 3], and shortened versions thereof
(with some data bits eliminated, thus giving codes in which & is a power of 2), including [12,8, 3], [21, 16, 3],
38,32, 3], [71,64, 3], [136, 128, 3]; these codes take, respectively, v4(z) = 2% + z + 1, v5(2) = 2° + 2% + 1,
ve(2) = 25+ 24+ Lwg(2) = 27 + 23 + 1, vg(2) = 28 + 2% + 2% + 2% + 1 (see Tables 12.4 and 12.6).

Binary Hamming codes

Many other codes with even greater error detection and correction capability may be transformed into cyclic
form (see §12.7-12.8) and used similarly.

Adding a single overall parity check to binary Hamming codes generate the single-error-correcting,
double-error detecting (SECDED) extended binary Hamming codes [n, k,d] = [2"71,2"7! — r 4] , which
include (for r = 5 through 9) [16, 11, 4], [32, 26, 4], [64, 57, 4], [128, 120, 4], 256, 247, 4], and shortened versions
thereof, including [13, 8, 4], [22, 16, 4], [39, 32, 4], [72, 64, 4], [137,128, 4]. This

1.5.3.4 True random number generators

Random number generation are usually implemented in software (see §2.7)...

1.5.4 Coprocessors: DSPs, GPUs, NPUs, FPGAs, CPLDs, PRUs

More general-purpose coprocessors than ASICs, but with more specialized structure than CPUs, are sometimes
called application-specific standard parts (ASSPs) or application-specific instruction-set processors (ASIPs).
Many are perhaps best considered as some kind of System-On-Chip (SoC). Regardless of ambiguity in the lit-
erature on precisely what to call this general category of coprocessor, there are a handful of well-defined classes
of coprocessors in this general category that are of principal importance in many modern MCUs, including;:

DSP

GPU A GPU consists of multiple SIMD units with a large amount of associated memory.

NPU

FPGA

CPLD

PRU

1.5.5 Timer / counter units

PWM
Encoders

1.5.6 Dedicated communication hardware

The major wired and wireless communication protocols available today for embedded systems include PWM,
UART, I2C, SPI, CAN, RS485, USB, Ethernet, Wifi, and Bluetooth, among others, as discussed further in §4.

1-32

Renaissance Robotics (v.2024-05-16) Chapter 1: Cybernetics

Most MCUs implement dedicated hardware to support a number of these communication modes.
Typically, this hardware is capable of direct memory access (DMA).

1.5.7 Pin multiplexing
1.6 Single Board Computers (SBCs)

1.6.1 Subsystem integration: SiPs, PoPs, SoCs, SoMs, and CoMs

Integration of ICs:

e System-In-Package (SiP),

e Package-On-Package (PoP),
e System-On-Chip (SoC),

e System On Module (SoM),

e Computer On Module (CoM)

acronyms

1.6.2 Power management

i. ultra-low standby and sleep modes for battery-based operation, with various cues available for wakeup, etc.,

1.6.2.1 Sleep/wake modes, real-time clocks
loT and low-power modes

Clock speed regulation
1.6.2.2 Switching regulators

efficiency vs. ripple rejection & voltage stability/accuracy

1.6.2.3 Switching regulators
1.6.2.4 Low-dropout (LDO) regulators

LDO
Power
Internet of Things

1.6.3 Case study: Raspberry Pi

Daughterboards
A detailed case study of a powerful class of daughterboards, dubbed Berets, is provided in §5.

1-33

https://www.electronics-lab.com/hardware-acronyms-sip-soc-som-com-sbc/
https://en.wikipedia.org/wiki/Low-dropout_regulator

Chapter 1: Cybernetics

Renaissance Robotics (v.2024-05-16)

(381D ueyy Jamojs x| “a'1) 1UIdYID |-asegool saljdwi NV ‘ISl] 9A0qe 3yl ul ‘yNX A10¥YdO Y1 03
1219¢g pay 1o A11aqdsey e 309uu0 03 paiinbal st pjoiys 1911Ys , "1R19g pay Y3 YyHm 3|qiyedwod osje si Jauag Auaqdsey ay3 yum s|qiyedwod
0gs Auy ‘suSisap aaljeALiap Suijel|ioey) ‘susisap arempaey uadQ ale expey pue ‘p9auld ‘Id a8uelQ ‘1Jouep ‘a1qI] ‘pieoga|Seaq ‘Id euRUERY
woly sOGS. ‘"NOW Hg- ue sajousp () s2ads [edidpuid J1oyy pue (sDgs) sieindwo) preog-s|3ulg paseq-xnui| Jejndod awog :G[°| 9|qel

0£X 59 LLWHY ZHD L X1 2eSE8TWOY AR I dsey A\ 0197 14y

96 x 69 €SV ZHO V'L X¥ 50 09.E8TW DY Tr19 ‘SA dsey | +ve Id Auaqdsey

96X 68 7LV ZHOS'L Xp o LLLTWOE 381D ‘519 ‘sm | dsey dv Id Asaqdsey Id A1iaqdsey

8¢ X 8¢ CEV ZHOE'L Xp 79 80€EY NV1‘v1d ‘YA pay S Id 20y

pSXG8 NdD €SV ZHDY'L Xb ‘TLV ZHDS'L XT 5o 66EEY 381D ‘619 ‘sm | dsey i 1d %00y Lexpey

08X €€L NdD €SV ZHDV'L X¥ 7LV ZHDS'L XT 59 66EENY ojnpow I81H | dsey 19014320y Lroauld

9y X 8 NdO LV ZHD 96T'L X zeCH JRUUIM[IVY NVT ‘vM pay S17 0497 1dO

95X 16 NdD €SV ZHDY'L Xb ‘TLV ZHDS'L XT 5o 66SEY 381D ‘c1g ‘sp | dsey gv 1d °8ueiQ «1d 98ueIQ

06X €01 J0SUS| X8F + N dD BIOA Xp8E ‘|aLie) X9 @c\coumsuv 381D ‘519 ‘S dsey XN 121X uosiof

08 X001 NdD [|lemxeN X8ZL LSV ZHD £V'L X %A:_owmsuv 381D dsey | 1) A9Q ouepN uosidf VIAIAN

0V X 0F €SV ZHOG'L Xp po GH 1oUUIM||Y 3810 pay ZO3AN JdoueN

95X 68 NdD €SV ZHD TLS'L X¥ 59 X506S d130|wy NV dsey 03104 97 L2417

86X78 | NdN ‘NdD €SV ZHD 'L XT €LV ZHD TT XY | 5oL LEY 2150[wy d|npow dsey EWIA sepey|

86X €8 NdD LV ZHO¥'L Xp ‘SLV ZHD L'T X 2eCTHS SOUAXT 381D ydsey yNX AI0YAO [ouidpiey

€6X98 EW XL ‘NYd 8V ZHD L XL zed!S 85€€ASO L'v19 ‘YA dqoelg | sse|RdlA PE|d dd

€G%98 EW XL ‘NYd 8V ZHD L XL zed!S 85€€ASO L'v19 ‘YA an|g auogs|deag

€6X98 | FW Xy ‘Nud ‘NdD ‘dSAXT ‘GLYV ZHD §'L XT 2e6CLSWY 381D ‘Tr1g ‘SA | eI |V duogo|deag .preogos|deag

09X26 NdD €SV Xy 79 56£A 1Y 381D ‘Tv1d ‘S | dsey YW Id eueueq

09XZ6 NdD €SV ZHD T'L X¥ o POV JRuUIMy | 381D ‘p1g ‘S | dsey YW 1d eueueg .ld eueueq

¥S X 98 NdD LIV ZHD 8'L X¥ 2e38TENY 3810 ‘v ‘vm | dsey preoquadul| SNSY

pS X 68 NdD ‘YW ZHW 60T XL ‘2 ZHW 008 XT el SLAWTEWLS 111 udaIn | 96498unlS YdajeIIys

pS X 68 dSA ‘SSY Xy ZHD 8L + 5LV ZHD 8T Xp po D0S S¥8VAS | FBID ‘G1E ‘SM | USRI | £y wwodeny spieog9e
azis soads NOW A}IA1309UU0D SEIETe sjopow Jtejndod

"NOW Hg-A ue sajoudp () sNDOW diyooudiy 119y} jo soads [ediduiid ay3 pue ‘spaeoq ouinpiy sejndod swog || 9|qe]

GTX89 | FOW ZHW BV XL | £ LCAWVS YO 00€L NVA\ IMIW

€6XZ0L | YAV ZHWOL XL | g0957ESat]y €A1 0967 eSaW

€9X69 | YAV ZHW 0C X1 wmwmmmwwcﬁd\ €A31 ONN
a0d soads NOW A}IA1309UU0D [opow

1-34

https://store.arduino.cc/usa/arduino-uno-rev3
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
https://store..cc/usa/mega-2560-r3
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega640-1280-1281-2560-2561-Datasheet-DS40002211A.pdf
https://store.arduino.cc/usa/mkr-wan-1300
http://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_DA1_Family_DataSheet_DS40001882F.pdf
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0-plus
https://store.arduino.cc/usa/arduino/boards-modules
https://www.96boards.org/products/
https://www.96boards.org/product/rb3-platform/
https://www.qualcomm.com/products/sda845
https://www.xda-developers.com/qualcomm-snapdragon-835-kryo-385-cpu-cores/
https://www.xda-developers.com/qualcomm-snapdragon-835-kryo-385-cpu-cores/
https://www.xda-developers.com/qualcomm-snapdragon-845-hexagon-685-dsp/
https://www.96boards.org/product/stinger96/
https://www.quectel.com/product/bg96.htm
https://www.st.com/en/microcontrollers-microprocessors/stm32mp157.html
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a7
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://www.asus.com/us/Single-Board-Computer/
https://www.asus.com/us/Single-Board-Computer/Tinker-Board/
http://opensource.rock-chips.com/wiki_RK3288
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a17
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-t760-gpu
http://www.banana-pi.org/bpi-products.html
http://www.banana-pi.org/m64.html
http://www.allwinnertech.com/uploads/pdf/20190404103336e2.pdf
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://linux-sunxi.org/Mali400
http://www.banana-pi.org/m4.html
https://developer.arm.com/ip-products/processors/cortex-a/cortex-m
https://www.realtek.com/en/products/communications-network-ics/item/rtd1395
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-470-gpu
http://beagleboard.org/boards
https://beagleboard.org/ai
https://www.ti.com/product/AM5729
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a15
https://www.fudzilla.com/news/pc-hardware/20785-texas-instruments-gets-excited-about-its-new-dsp-core
https://www.ti.com/processors/sitara-arm/applications/industrial-communications.html
https://developer.arm.com/ip-products/processors/cortex-a/cortex-m
https://beagleboard.org/blue
http://octavosystems.com/octavo_products/osd335x/
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a8
https://www.ti.com/processors/sitara-arm/applications/industrial-communications.html
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
https://beagleboard.org/black-wireless
http://octavosystems.com/octavo_products/osd335x/
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a8
https://www.ti.com/processors/sitara-arm/applications/industrial-communications.html
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
https://www.hardkernel.com/
https://ameridroid.com/products/odroid-xu4
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a15
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a7
https://www.khadas.com/
https://www.khadas.com/vim3
https://www.khadas.com/product-page/m2x-extension-board
https://androidtvbox.eu/amlogic-a311d-s922x-b-vs-rk3399-s912-comparison/
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a73
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-g52-gpu
https://docs.khadas.com/vim3/HowToUseNpu.html
https://libre.computer/
https://libre.computer/products/boards/aml-s905x-cc/
https://www.cnx-software.com/2016/01/12/amlogic-s905x-processor-specifications/
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-450-gpu
http://nanopi.io/
http://nanopi.io/nanopi-neo2.html
https://linux-sunxi.org/H5
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://www.nvidia.com/en-us/autonomous-machines/jetson-store/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a57
https://en.wikipedia.org/wiki/Maxwell_(microarchitecture)
https://developer.nvidia.com/embedded/jetson-xavier-nx-devkit/
https://www.anandtech.com/show/13584/nvidia-xavier-agx-hands-on-carmel-and-more/3
https://en.wikipedia.org/wiki/Volta_(microarchitecture)
https://en.wikipedia.org/wiki/Deep_learning_super_sampling#Architecture
http://www.orangepi.org/
http://www.orangepi.org/Orange%20Pi%204B
http://opensource.rock-chips.com/wiki_RK3399
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a72
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-t860-and-mali-t880-gpus
http://www.orangepi.org/orangepizerolts/
https://linux-sunxi.org/H3
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a7
https://linux-sunxi.org/Mali400
https://store.pine64.org/
https://www.pine64.org/rockpro64/
https://store.pine64.org/product/rockpro64-1x1-dual-band-wifi-802-11acbluetooth-5-0-module/
http://opensource.rock-chips.com/wiki_RK3399
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a72
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-t860-and-mali-t880-gpus
https://wiki.radxa.com/Home
https://wiki.radxa.com/Rockpi4
http://opensource.rock-chips.com/wiki_RK3399
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a72
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/graphics-and-multimedia/mali-gpus/mali-t860-and-mali-t880-gpus
https://wiki.radxa.com/RockpiS
https://rockchip.fr/RK3308%20datasheet%20V1.1.pdf
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a35
https://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0.pdf
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a72
https://www.raspberrypi.org/products/raspberry-pi-3-model-a-plus/
https://cs140e.sergio.bz/docs/BCM2837-ARM-Peripherals.pdf
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://www.raspberrypi.org/products/raspberry-pi-zero-w/
https://www.raspberrypi.org/app/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://en.wikipedia.org/wiki/ARM11
https://ameridroid.com/products/xu4-shifter-shield

Chapter 2

Embedded programming

Contents
2.1 Multithreading and scheduling oo 2-2
2.1.1 First-In, First-Out (FIFO) scheduling 2-3
2.1.2 Round Robin (RR) scheduling 2-3
2.1.3 Shortest Remaining Time First (SRTF) scheduling 2-3
2.1.4 Priority scheduling, dynamic priority adjustment, and multilevel schedulers 2-3
2.1.5 Multicore: load balancing, processor affinity, & power management 2-5
2.1.6 Characterizing “real time” application requirements 2-6
2.2 Operating Systems (OSs) o o i i i i e e e e e e e e 2-6
2.2.1 Bare-metal programming 2-6
2.2.2 Real-Time Operating Systems (RTOSs) 2-6
223 LINUX e 2-7
2.24 Realizing hard real time with Linux: dual-kernel approachesvs. RTL 2-7
225 Android 2-7
2.2.6 Robot Operating System (ROS) 2-7
2.3 Programminglanguages. L. Ll e e e e 2-7
231 CoCH+ o e 2-7
232 Python e 2-7
2.3.3 Graphical programming environmentso 2-7
2.4 Text editing & command-line programming versusIDEs 2-9
2.4.1 Command-line programming L 2-9
2.4.2 Programming in an Integrated Development Environment IDE) 2-9
2.5 Debuggable, maintainable, and portably fast coding styles 2-10
2.5.1 Platform-optimized libraries: BLAS, LAPack, FFTW 2-10
2.5.2 POSIX compliance e 2-10
2.6 Software approximation of special functions 000, 2-11
2.7 Pseudorandom number generators (PRNGs) 2-13

2-1

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

2.1 Multithreading and scheduling

A central element in the efficient use of limited computational resources for the coordination of complex elec-
tromechanical systems is multithreading; that is, the simultaneous running of many threads (a.k.a. processes or
tasks), each at different rates and priorities, on a microcontroller with only a handful of CPU cores.

The coordination of multiple threads on a microcontroller is handled by the part of the OS called the sched-
uler. At any moment, a thread can be in one of three states: executing (a.k.a. running), ready (to run again, or to
run some more...), or waiting (to be shifted back to the ready state). The component of the scheduler that shifts
threads from the ready list to actually executing on the CPU is called the dispatcher.

Time-critical threads in an embedded setting generally require short periods of computation, called CPU
bursts, followed by idle wait periods [during which file or bus i/o might be performed]. A request to the sched-
uler for a thread to begin a new CPU burst is initiated by some sort of trigger (a.k.a. interrupt) signal, such as

(a) a timer, which triggers requests for new CPU bursts on a thread at precisely predefined intervals At,

(b) a delay, which triggers such requests a set time after completion of previous CPU bursts on the same thread,
(c) a notification of the completion of a file or bus i/o (read or write) previously requested by the thread,

(d) a notification generated by the physical system, such as when a target temperature is reached, or

(e) a notification of new user input.

Other threads (e.g., video encoding) in an embedded setting are CPU-bound (requiring much longer compu-
tation time on the CPU), and may be worked on from time to time in the background, when the CPU bursts
associated with all of the currently-triggered time-critical (higher priority) threads are complete. Note that:

(i) a running thread may shift back to the waiting list because its current CPU burst is complete, and the thread
needs to wait for its next trigger (see above - in particular, a request for file or bus i/o is usually blocking, mean-
ing that the corresponding thread is shifted back to the waiting list until the i/o is complete),

(i) a running thread may terminate, simply because it finishes its task completely, or

(iii) a running thread may be preempted once the length of time (a.k.a. quantum) alotted to it is expired, or a
higher-priority (time-critical) thread is triggered and needs to run, with the scheduler moving the preempted
thread back to the ready list before the current set of computations in that thread complete, thus giving other
threads a chance to run.

The scheduling algorithm (a.k.a. scheduling policy) is the set of rules used to determine the sequence that the
threads in the ready list will be run, and the quantum that each thread is allowed to run before it is preempted
to give CPU time to other threads. A scheduling algorithm must balance several competing objectives based
on a limited amount of information regarding what might happen next, including;:

(1) respecting assigned priorities: the user should be able to assign which threads are most important to complete
in a timely fashion, and this preference should be enforced (thus giving “real-time” behavior — see §2.1.6),

(2) responsiveness: interactive threads should react quickly,

(3) efficiency: the CPU should be kept doing productive work all the time, minimizing the overhead involved in
switching threads (see point iii above), and making maximum use of microcontroller I/O subunits (which are
generally slow compared to the CPU), so that waiting on these I/O subunits does not hold up other threads,
(4) fairness: each thread of the same priority should receive about equal access to CPU time,

(5) throughput: the number of threads that accomplish something significant per second should be maximized,
(6) avoiding starvation: even low-priority threads should get a chance to run from time to time, and

(7) graceful degradation: as the CPU demands approach 100% or more, performance on all threads (particularly
the lower-priority threads) should degrade gradually, and none of the threads should freeze.

Different compromises between these competing objectives are reached by different scheduling policies and
different choices of the time quantums used, as illustrated by the following examples.

2-2

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

2.1.1 First-In, First-Out (FIFO) scheduling

To understand what a scheduler does, it is enlightening to consider first the simplest, non-preemptive First-In,
First-Out (FIFO) scheduler. This scheduler simply waits for the CPU burst in the currently running thread to
complete, and for the thread to enter the waiting list on its own (because, to continue, it needs to wait for a new
trigger — like a timer interrupt, a notification of the completion of a blocking i/o request, etc). The dispatcher
then shifts the oldest thread on the ready list over to begin executing on the CPU. Once any waiting thread
receives the trigger it is waiting for, that thread is moved from the waiting list back the end of the ready list.

Though extremely simple, and effective at minimizing the overhead involved in switching threads, the FIFO
approach reaches a relatively poor compromise between the seven competing objectives described in the pre-
vious section: it does not respect assigned priorities for time-critical tasks, interactive threads can be unre-
sponsive when long CPU-bound tasks come up to run, etc. FIFO scheduling on its own is thus generally not
recommended in practice (except in limited, controlled circumstances).

2.1.2 Round Robin (RR) scheduling

Round Robin (RR) scheduling amounts simply to a preemptive variant of FIFO scheduling, which improves
upon the properties of the FIFO approach by limiting the quantum of time that any thread can tie up the CPU
before the next thread gets a chance to run.

Using a large quantum, RR scheduling is effectively the same as FIFO scheduling, whereas using a smaller
quantum results in more frequent switching between ready threads, which makes the overall system more
responsive. However, reducing the quantum also increases percentage of time involved in switching threads
(which typically takes a few ms), which reduces efficiency. For example, assuming a 3 ms switch time, a policy
with 10 ms quantums spends 3/(10 + 3) = 23% of the time switching, whereas a policy with 50 ms quantums
spends 3/(50 + 3) = 5.7% of the time switching. A compromise must thus be reached with an intermediate
quantum (typically 10 to 50 ms) that provides both sufficient responsiveness and also reasonable efficiency.

2.1.3 Shortest Remaining Time First (SRTF) scheduling

Shortest Remaining Time First (SRTF) scheduling is a variant of RR scheduling that, based on historical averag-
ing, estimates the upcoming CPU burst time associated with each thread on the ready list and, whenever the
CPU becomes available, shifts the thread on the ready list with the shortest estimated CPU burst time over to
begin executing on the CPU. A quantum is again used, so any thread with an actual CPU burst longer than the
quantum is again preempted, and moved back to the ready list when its time is up.

A challenge with this approach is estimating future CPU burst times for any thread in the ready list, based
only on previous CPU bursts in the same thread. One way to obtain such an estimate, £, of the n’th CPU
burst time, B, is via an exponential average (a sort of IIR filter) given by E, ., = aB, + (1 — a)E,, forn > 2
with 0.1 < a < 1, where we initialize F; = 0 and FEy = By, with n = 1 corresponding to the first CPU burst.

An advantage of SRTF scheduling is that it tends to move interactive tasks (with, typically, short CPU bursts)
to the head of the ready list (thus improving responsiveness) and, by running the shortest tasks first, it reduces
the mean response time of the system (that is, the average time a thread spends between entering the ready list
to the completion of its corresponding CPU burst), thus maximizing throughput.

2.1.4 Priority scheduling, dynamic priority adjustment, and multilevel schedulers

To allow the user to indicate a preference regarding which threads are most important to complete in a timely
fashion (objective number 1 discussed above for schedulers for embedded systems), some sort of priority schedul-

2-3

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

ing is required. In the simplest, static form of such a policy, priorities are assigned (either externally, by the user,
or internally, by the OS) for the life of each thread, and the threads on the ready list with the highest priority
run first, with higher-priority threads preempting lower priority threads that may already be running as soon
as they are moved to the ready list. In the event that multiple threads in the ready list are assigned the same
priority, one of the simple policies described above (FIFO, RR, or SRTF) is used to break the tie; preempting may
still be used, of course, to prevent individual threads from consuming the CPU for too long.

A clear advantage of priority-based approaches is that their behavior is easily predicted, and high-priority
threads (e.g., those responsible for time-critical machine control loops, and interactive response) may be set
to always run in a timely fashion, as needed. A challenge with such approaches is that some lower-priority
threads may ultimately be completely starved of CPU time when the total requested CPU load exceeds 100%.
To address this challenge, dynamic forms of this policy are sometimes used. Dynamic approaches occasionally
boost the priority of some low-priority threads that haven’t run in a while, thus making sure that they at
least get a limited opportunity to run (this is sometimes referred to as process aging). Once such a boosted
lower-priority thread runs for a full quantum, its priority is reduced back towards its original value. Often,
longer quantums are implemented by the scheduler at lower priority levels, so with such dynamic approaches
a thread can effectively settle into a priority level with a quantum that matches its typical CPU burst time,
which is efficient. Note that such dynamic priority adjustments may be implemented in such a way as to never
exceed the priorities assigned to the highest-priority (“real-time”) threads.

It is common for a priority-based scheduler to group threads (distributed over about a hundred different
priority levels) into a handful of priority classes [a.k.a. priority queues, for “real-time” (e.g., machine control)
processes, system (a.k.a. kernel) processes, interactive processes, background processes, etc], each with a (pos-
sibly) different scheduling policy (like RR), and each with its own range of quantums implemented. Each of
these priority classes themselves span well over a dozen priority levels, so priority-based scheduling algorithms
(with or without dynamic priority adjustment) may still be used within each class. A multilevel scheduler may
then choose to devote the CPU, when fully loaded, a certain maximum percentage of time to each class of
processes, and to use a simpler priority-based scheduling policy within each class. The Completely Fair Share
(CFS) scheduler implemented in modern Linux kernels is a general purpose multilevel scheduler implement-
ing dynamic priority adjustment within a handful of priority classes, including a RR scheduler at the highest
priority levels for “real-time” tasks.

2-4

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

2.1.5 Multicore: load balancing, processor affinity, & power management

SMP and HMP
Most modern embedded processors can actually run multiple threads at the same time, including:

e systems with multithreaded cores, which present themselves as two virtual cores to the scheduler, allowing
multiple instructions [e.g., integer operations (IOPs) and floating-point operations (FLOPS)] to execute simul-
taneously on a single core, as long as they don’t compete for the same resources;

e systems with multiple cores on one CPU, or with multiple CPUs, with or without shared memory caches but
all with Uniform Memory Access (UMA) to all of the main memory, either:

- in a symmetric multiprocessing (SMP) arrangement, in which all cores are equivalent, or

- in a heterogeneous multiprocessing (HMP) arrangement, as in ARM’s big.LITTLE and DynamlQ implemen-
tations, which combine high-performance cores (for computationally-intensive, time-critical tasks), and high-
efficiency cores (for simpler, lower-priority tasks);

e systems with multiple CPUs in a Nonuniform Memory Access (NUMA) arrangement, in which each compute
core has a certain portion of the main memory closely affiliated with it, and thus can reach some parts of the
it faster than others (such systems may also be SMP or HMP) - embedded processors with large GPU-based
computational subsystems, and those with dedicated “Neural Processing Units”, are typical examples.

The same general considerations and scheduling policies discussed previously still apply in these settings, but
now with the complex additional consideration of needing to manage the delicate question of which core should
be used to run a particular thread next, and which cores can be run at reduced clock speeds, or powered down
entirely, during relatively idle periods of time in order to save power.

These delicate questions need to be handled carefully by modern schedulers in order to balance compu-
tational throughput and power efficiency in the system, and very different solutions are needed for servers,
laptops, cellphones, and microcontrollers for “real-time” control of embedded systems. Notably, balancing com-
putational performance with power efficiency is becoming increasingly important in all types of computational
platforms, and solutions originally developed for small battery-powered systems (cellphones) are working their
way up to laptops and large server farms, which are increasingly limited by power considerations.

In multicore settings, the issues of processor affinity and load balancing must be addressed. That is, it is
usually much more efficient to run a new CPU burst on the same core (or at least on the same CPU) that a thread
ran on previously, because the memory cache corresponding to that core (or CPU) is probably already set up
with much of the data that that thread needs to run again. However, sometimes threads still need to be shifted
from one core to another in order to balance the load across multiple cores in the system, as the scheduler seeks
to maintain its target balance between computational throughput and power efficiency. Hierarchical scheduling
domains are often introduced in order to handle these questions, with lower-level schedulers handling each
individual core, and higher-level schedulers occasionally moving threads from one core to another as necessary
(i.e., whenever a given core becomes relatively overloaded, or underloaded, with tasks to complete). To improve
the predictable performance of the most time-critical threads, including those that might share certain cached
data, it is often beneficial to implement hard processor affinity for such threads, binding them permanently to
specific “reserved” cores, while allowing the OS to manage the other threads that might come and go on the
system (but possibly restricting the other major threads on the system from running on the reserved cores,
thereby preventing them from interfering with the most time-critical processes).

Thankfully, the complex coupled problems of scheduling, load balancing, and power management for SMP
and HMP multicore systems are generally taken care of by the OS, not by the embedded programmer, and the
sophistication with which modern schedulers for multicore systems address these problems, to appropriately
balance computational performance with power efficiency, is evolving rapidly. However, understanding gener-
ally how such schedulers work is essential for the embedded programmer, in order to select and use a scheduler

2-5

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://www.arm.com/why-arm/technologies/dynamiq

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

appropriately, and to tweak its behavior effectively (in particular, to set priorities correctly, and to use hard pro-
cessor affinity where appropriate), in order to strike the desired balance between the seven objectives outlined
previously: namely, to get sufficiently reliable “real-time” performance for high-priority time-critical tasks (see
§2.1.6), sufficient responsiveness from interactive tasks, and efficient performance on all other threads that the
computational system needs to manage, even as the computational system becomes fully loaded.

2.1.6 Characterizing “real time” application requirements

In §2.1, the #1 objective listed for a scheduler on a microcontroller is that the user should be able to assign
which threads are most important to complete in a timely fashion, and that these preferences should some-
how be enforced. In embedded systems, we need to define the importance of such preferences with precision.
Consideration must first be given to the application itself. Embedded programmers often categorize controllers
based on the consequences of not completing a task within a specified time constraint (a.k.a. deadline):

e hard real-time controllers are designed for systems in which a missed deadline may result in total system
failure [an assembly line shuts down and needs to be physically repaired, a rocket blows up, ...];

e firm real-time controllers are designed for systems in which, after a missed deadline, the utility of a result is
zero [a single part will be rejected (automatically) off an assembly line, a toy falls over, ...]; and

e soft real-time controllers are designed for systems in which, after a missed deadline, the utility of a result is re-
duced somewhat [an RC car is momentarily unresponsive to user input, a hamburger bun is slightly singed, ...].

In addition to specifying the relevant deadlines themselves, the above characterizations of the consequences
of missed deadlines are valuable when deciding how to allocate limited computational resources to potentially
complex electromechanical systems.

Hard real time requirements are actually somewhat rare in well-designed mechanical systems; examples
might include the control of an unstable chain reaction, or a pacemaker for a human heart. In hard real-time
systems, particularly those that are safety-critical, mathematical guarantees of no missed deadlines are often
required. Guaranteeing such hard real-time behavior is generally only possible by applying a controller in
a relatively isolated setting with simple (and, thus, highly predictable) bare-metal programming (see §2.2.1),
without several other threads running simultaneously that might occasionally throw the timing off.

More often than not, however, threads running on embedded systems call for firm real-time and/or soft
real-time behavior. In such systems, the priority-based preemptive scheduling strategies described above, as
implemented by a well-designed OS (e.g., the PREEMPT_RT patch of the Linux kernel) and used properly by a
careful programmer, are most often entirely sufficient.

2.2 Operating Systems (OSs)

2.2.1 Bare-metal programming

In this section and the two that follow, we outline the three fundamental programming paradigms for embedded
systems, in order of simplicity.

Arduino

ladder logic

programmable logic controllers (PLCs) used in industrial control applications

2.2.2 Real-Time Operating Systems (RTOSs)

nuttx (posix compliant)

2-6

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

keil RTX
Real Time Executive for Multiprocessor Systems (RTEMS)
real time linux

more realtime linux
Case study: FreeRTOS

2.2.3 Linux
2.2.3.1 Embedded Linux distros

distros (distributions)
Debian (derivatives: Ubunto, Raspberry Pi OS).
Yocto. OpenWrt.
Commercial: Wind River Linux. Red Hat Embedded
Look for lightweight loT version (but, man pages are useful...)
shells

2.2.3.2 Chmod
2.2.3.3 Makefiles

real time computing

2.2.4 Realizing hard real time with Linux: dual-kernel approaches vs. RTL

PREMPT-RT
NTP service
2.2.5 Android
2.2.6 Robot Operating System (ROS)

2.3 Programming languages

Many programming languages are growing in importance in different aspects of robotics, including CUDA for
GPU programming, TinyML for machine learning,

23.1 C,C++
2.3.2 Python

2.3.3 Graphical programming environments

Scratch
Simulink
Labview

2-7

https://www.linux.com/news/inside-real-time-linux/
https://wiki.linuxfoundation.org/realtime/start
https://en.wikipedia.org/wiki/Real-time_computing

Renaissance Robotics (v.2024-05-16)

Chapter 2: Programming Environments and Languages

ping 192.168.8.1
ssh 192.168.8.1
echo $0

uname -a

zsh orbash;exit
chsh -s /bin/zsh
pwd

ls -1lah

mkdir foo

cd foo;cd

touch bar

echo ’hello’ > bar
echo ’world’ >> bar
man echo; (space); q
cat bar

less bar;(space); q
head bar;tail bar
(up arrow) ; (down arrow)
history

hist (tab)

rm bar

rmdir foo

rm -rf foo

cp foo/bar* fool/.
cp -r foo fool

mv bar foo/baril
chmod 644 bar
chown fool:foo bar
sudo rm bar

su;exit

df -h

du -sh foo

grep psfrag *.tex
top

ps -ef

ps -ef |grep kernel
file bar

find bar

tar cvfz fb.tgz fb
scp fb.tgz bar:.
tar xvf fb.tgz
alias 1=’1s -1lah’
env

vim;nano

~/ .bashrc

make foo

measure speed of connection to machine with IP number 192.168.8.1
securely open a shellon 192.168.8.1

show what kind of shell you are currently in

show info about processor architecture, system hostname, and kernel version
spawn & enter a new zsh or bash shell (inside current shell); exit this shell
change your default shell to zsh (recommended, if it isn’t already)

print the name of the current working directory

list all files in current directory, including ownership, privileges, and size
make a new directory named foo

change directory to f00; change back to parent directory

create a new file named bar (or, just update its timestamp)

create (or, erase and create) the file bar, and write “hel10” to this file
append “wor1d” to the file bar (or, create and write to this file)

display detailed manual page (alternative to Google) for the command echo
show contents of the file bar (all at once)

show contents of the file bar (pausing after each screenfull)

show the 10 lines at the head (or, the tail) of the file bar

scroll up to recently executed commands; scroll down

show a list of recently executed commands

complete (as far as possible) name of command(s) starting with “hist”
remove (warning: permanently!) the file named bar

remove directory £00, but only if it is empty

remove recursively the directory foo and all files contained in it (danger!!!)
copy all files starting with the letters bar in £oo0 into the directory foo1l
copy recursively everything in £oo0 to the directory foo1l

move and rename the file bar as bar1 inside the directory foo

change mode (§2.2.3.2) of bar to read/write for owner, read for group & world
change ownership of file bar to user foo1 and group foo

do the command rm bar as superuser (danger!)

enter superuser mode for subsequent commands (danger!!!); exit su mode
report disk free space on the available filesystems

report significant disk use within directory foo

search files ending in . tex (in current directory) for the string “psfrag’
periodically report a list of all running threads, sorted by top CPU usage
report all running processes (once)

pipe output of ps to grep, to extract the lines with “kernel” in them
test bar to determine what type of file it is

scan current directory and all its children for filenames containing bar
compress all contents of £b into a (compact) gzipped tarball fb.tgz
securely copy £b. t gz to machine with name bar on local network
extract contents of £b. tgz, retaining its original directory structure
use “1” as a shorthand alias for the command “1s -1ah” in this shell
list all aliases and other environmental variables defined in this shell
command-line text editors (see §2.4.1.2) available in all linux distros
initial run commands executed when a bash or zsh shell is spawned
run commands in Makefile (see §2.2.3.3) to make an executable boo

i

Table 2.1: Some essential unix/linux/mac commands (in zsh and bash). Explore! You’ll find your way quickly...

2-8

https://en.wikipedia.org/wiki/Foobar

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

2.4 Text editing & command-line programming versus IDEs

2.4.1 Command-line programming
2.4.1.1 Workflow: edit locally, sync files with SBC, compile, link, run, rinse, repeat

The mind-numbing repetitiveness of this process is sometimes humorously referred to as the shampoo algo-
rithm; a possibly more efficient alternative, once you have everything set up correctly, is to use an IDE (see
§2.4.2).

2.4.1.2 Text editors

text editors built in to modern linux implementations include vim and nano ...

GUI text editors built in to other modern operating systems include, notably, TextEdit (Mac) and Notepad++
(Windows) ...

Code editors that you can run on your Windows or Mac laptop or desktop include Visual Studio Code,
Sublime Text, and Atom.

2.4.1.3 Command-line scp/sftp/rcp vs FTP Clients

SFTP
FileZilla

2.4.2 Programming in an Integrated Development Environment (IDE)
XCode
Eclipse,

STM32CubelDE (for STM32 devices, based closely on Eclipse)
ARM Keil MDK (for ARM devices)
Visual Studio Code (Microsoft),

NetBeans
Code::Blocks

Codelite

Qt Creator,

PyCharm (for Python),

MPLAB X (PIC, AVR)

2.4.2.1 Workflow: debug directly within the IDE

Case study: Eclipse
Version of Eclipse for STM32CubelDE

2-9

https://en.wikipedia.org/wiki/Lather,_rinse,_repeat
https://en.wikipedia.org/wiki/Lather,_rinse,_repeat
https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/GNU_nano
https://en.wikipedia.org/wiki/TextEdit
https://en.wikipedia.org/wiki/Notepad%2B%2B
https://code.visualstudio.com/
https://www.sublimetext.com/
https://atom.io/
https://www.webfx.com/blog/web-design/best-free-ftp-clients/
https://developer.apple.com/xcode/
https://www.eclipse.org/
https://www.st.com/en/development-tools/stm32cubeide.html
http://www2.keil.com/mdk5/
https://code.visualstudio.com/
https://netbeans.org/
http://www.codeblocks.org/
https://codelite.org/

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

2.5 Debuggable, maintainable, and portably fast coding styles

self-optimizing compilers

2.5.1 Platform-optimized libraries: BLAS, LAPack, FFTW
2.5.2 POSIX compliance

2-10

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

2.6 Software approximation of special functions

Most modern microprocessors have fast hardware and/or software libraries built in to compute many important
functions; on some small microcontrollers (see §1.5), however, you must often be prepared to approximate such
special functions efficiently yourself. With this section, we’ve got your back.

As mentioned previously, in embedded applications, we are primarily interested in half precision and single
precision implementations, which form our focus here.

Significant attention has been put into developing efficient and accurate numerical approximations of impor-
tant transcendental functions (sin, cos, tan, asin, acos, atan , exp, In, log,, log,, . ..). A comprehensive treat-
ment of this subject, which presents many of the commonly needed (complicated-to-derive, yet simply-to-use)
formula, some of which are summarized below, is Hart (1978), Computer Approximations.

The following formula (which may be computed using single precision arithmetic) approximates cos(z) over
the range 0 < z < 7/2 to about 3.2 decimal digits (appropriate for use in half precision applications):

c1 = 0.99940307, ¢y = —0.49558072, ¢z = 0.03679168 = cos(z) ~c; + 2%(cy +¢c32%), (2.1a)

and the following formulae (which may be computed using double precision arithmetic) approximates cos(z)
over the range 0 < z < /2 to about 7.3 decimal digits (appropriate for use in single precision applications):

c1 = 0.999999953464, co = —0.4999999053455, c3 = 0.0416635846769, c4 = —0.0013853704264,

2.1b
cs = 0.00002315393167 = cos(z) ~ c1 + 2%(co + 2%(c3 + 2%(ca + 5 2%))). (2.15)

Note the tradeoff: the first approximation is simpler (smaller table of numbers and faster to compute, but less
accurate), while the second is more complex (larger table of numbers and slower to compute, but more accurate).
This tradeoff is evident in all such approximations. To extend the range to —oco < x < 00, note that

cos(y) if g =0, ¢ = |o/(27)]
— cos(m — ifg=1 ’

cos(x) = cos(m =) I =" where y =x — 2mc, (andthus 0 <y < 27), (2.1¢c)
—cos(y—m) ifqg=2, B

cos(2m —y) ifqg=3,

where |y| = floor(y) denotes the rounding of y down to the nearest integer, and cos(z) may be approximated
(in any of the four cases) using (2.1a) or (2.1b). Applying (2.1c) in order to extend the approximation (2.1a) or
(2.1b) to the larger range —oo < x < ¢ is called range reduction. With the above formulae, cos(z) and

sin(x) = cos(z — 7/2) (2.2)

may be computed efficiently for half and single precision applications for any real z.
Similarly, the following formula (which may be computed using single precision arithmetic) approximates
tan(z) over the range 0 < z < /4 to about 3.2 decimal digits (appropriate for half precision applications):

c1 = —3.6112171, ¢y = —4.6133253 = 29 =4z/7, tan(z) =~ c;2/(ca+ 23), (2.3a)

and the following formula (which may be computed using double precision arithmetic) approximates tan(z)
over the range 0 < z < 7/4 to about 8.2 decimal digits (appropriate for single precision applications):

cp = 211.849369664121, co = —12.5288887278448, c3 = 269.7350131214121,

2.3b
cy = —71.4145309347748 = zy = 4z/7, tan(z) =~ 2 (c1 + co25)/(c3 + 25(ca + 23)). (2.30)

2-11

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

To extend the range of either approximation to —oo < x < o0, note that

(tany if o =0,
1/tan(mw/2 — y) ifo=1,
—1/tan(y — 7/2) ifo=2,
—tan(m — y) if o =3,

¢ = [x/(2m)],
where y =1z — 2mc, (and thus 0 <y < 27), (2.3¢)
o=ly/(m/4)] €{0,1,2,3,4,5,6,7}.

tanx =
tan(y —) if o =4,

1/tan(37/2 —y) ifo=25,
—1/tan(y — 37/2) ifo =6,
(— tan(27 — y) ifo=7,

The following formula (which may be computed using double precision arithmetic) approximates atan z
over the range 0 < z < atan (7/12) to 6.6 decimal digits (appropriate for single precision applications):

c; = 1.6867629106, cy = 0.4378497304, c3 = 1.6867633134 = atanz ~ z (c; + 2°) /(c3 + 2°). (2.4a)
To extend the range to —oco < z < oo, define ¢ = tan(w/6), and apply any or all of the following identities

atan x = —atan (—x) if z <0,
atanx = m/2 — atan (1/2) if 1 <, (2.4b)
atanz = 7/6 + atan [(z — ¢)/(1 + cx)] if tan(n/12) <z < 1.

Representation of the acos and asin functions is thus straightforward, as
acosz = 2atan [V1—a?/(1 +)|, asinz =2atan[z/V1+2?]. (2.5)

Defining R = (In 2)/2, the n = 3 Padé approximation [see (8.8)] may be used to approximate exp r over
the range —R < r < R, to about 9 decimal digits or better; this approximation may be written

120 + 607 4 1272 +7°
120 — 607 + 1272 — 3’

expr & (2.6a)
To extend the range over which we can accurately apply this formula, we define x = a + r for a convenient
choice of a that keeps the residual 7 in the range —R < r < R, noting that exp(a +) = exp(a) exp(r).
In particular, we take a = k In 2 for the appropriate integer k that keeps r in this range by taking

k=105+2/In2|], r=2—kIln2 = expr=ecxpla+r)=cxp(kIn2) expr =2 expr. (2.6b)

If expr is stored as a floating point representation (—1)% x 2¢~%f x 1.f (see §1.1.4), where, e.g., e is an 8 bit
representation of the exponent in single precision, then calculating 2* times exp(r) involves simply adding & to
e, in binary, while leaving the sign bit s and fractional part f unchanged. This can be done (when programmed
appropriately) quickly and without any loss of precision.

For 1 < r < 2, define y as follows, noting that In » may be expressed conveniently [see (B.84)] as

r—1 1+y 1+
< r=—= = Inr=1In
r+1 1—vy 1-—

‘Z =23 (2 + 1), (2.7a)
=0

2-12

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

Assume now that some x > 0 is stored as a floating point representation x = r 2", where n = e — ex, 7 = 1. f
(and thus 1 < r < 2),and z > 0 (and thus the sign bit used is s = 0; see §1.1.4). Note again that, e.g., for single
precision arithmetic, e is an 8 bit representation of the exponent. It follows from z = 2" r and (2.7a) that

T—l.

P
— ~ 2it1 /(o) _
lnx—n1n2—|—lnr~nln2+22y /(2i4+1) for Y=

1=0

(2.7b)

with p = 6 terms retained in this sum, accuracy to 8 decimal digits is obtained (note that constants like In 2
above, and In 10 below, may be precomputed and stored). Again, like the approximation of exp(x) in (2.6),
the efficient approximation of In(x) in (2.7) directly leverages the floating point representation that modern
computers use to express real numbers. Approximation of log functions with other bases is straightforward via

log, x = (log,z)/(log.a), = logyz = (Inxz)/(In10), logyz = (Inz)/(In2), ... (2.8)

Simple Matlab codes are available in §2 of the RR repository that demonstrate the use of the several approx-
imations above for calculating the most common special functions of interest, specifically (2.1) for cos, (2.2) for
sin, (2.3) for tan, (2.4) for atan and' atan2, (2.5) for acos and asin, (2.6) for exp, (2.7) for In, and (2.8) for log;,
log,, etc. Any practical (fast) embedded application must rewrite such algorithms efficiently in C. Accurate and
compact approximations of many other special functions are also available.

2.7 Pseudorandom number generators (PRNGs)

To provide cryptographic security, one can build a true random number generator (TRNG) that generates
random numbers from a physical (e.g., thermodynamic) process with entropy (see §1.5.3.4). However, MPUs
and MCUs are useful in part because their behavior is entirely predictable, so it is not obvious at first how to
use an MPU or MCU appropriately to produce an adequately “random” sequence for a given application?.

The development of a deterministic pseudo random number generator (PRNG) capable of producing
sequences that are “effectively random” in application thus requires significant care. PRNGs generally operate
as iterative algorithms that generate very long sequences of unsigned integers (usually, 32-bit for MCUs and 64-
bit for MPUs) that eventually repeat. PRNGs can be initialized randomly, for example, by using the number of
microseconds since some epoch on the system clock when the code is started, and can easily be postprocessed
to generate the following three useful types of “effectively random” sequences:

A) real numbers with uniform distribution between two limits L and U (see, e.g., RR_rand)

B) real numbers with gaussian distribution, with mean x and variance o (see, e.g., RR_randn), and

C) integers with equal likelihood between two limits L and U (see, e.g., RR_rand_int and RR_rand_uint).
Modern PRNGs are thoroughly reviewed and extended (to make them efficiently reversible) in our companion
paper Reversible Random Number Generation, to which the reader is referred. A short review of that compre-
hensive manuscript will be included in this section of the RR text in due course.

'Noting that atanz € [0,7/2) if z > 0, the following definition is often useful to remove ambiguity:

atan |b/al - sgn b ifb#0, a>0,
w/2-sgn b ifb£0, a=0, -1 ifb<O0,
atan2(b,a) = < (1 —atan |b/al) -sgn b ifb#0, a <0, where sgnb=<0 ifb=0, (2.9)
0 ifb=0, a >0, 1 if b > 0;
T ifb=0, a <0,

note that atan2(b, a) € (—m, 7]. The definition of atan2(b, a) computes atan (b/a), where b is vertical distance from the origin and
a is horizontal distance, while placing the angle in the correct quadrant based on the signs of a and b.
2Indeed, it is often said that The definition of insanity is doing the same thing over and over again and expecting different results...

2-13

https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/chap02/special_functions
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/chap02/PRNGs/RR_rand.m
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/chap02/PRNGs/RR_randn.m
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/chap02/PRNGs/RR_rand_int.m
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/chap02/PRNGs/RR_rand_uint.m
http://robotics.ucsd.edu/ReversibleRNG.pdf

Renaissance Robotics (v.2024-05-16) Chapter 2: Programming Environments and Languages

2-14

Chapter 3

Sensors, actuators, and interfaces

Contents
3.1 Sensors for obtaining situational awareness 00000, 3-2
3.1.1 Inertial Measurement Units (IMUs): accelsand gyros 3-2
3.1.2 Inclinometers, magnetometers, barometers, and GNSS/GPS systems 3-3
3.1.3 Optical flow and Simultaneous Localization and Mapping (SLAM) 3-4
3.1.4 Ground truth via Motion Capture (MoCap) using triangulation & trilateration 3-4
3.1.5 Other sensors o e 3-4
3.2 Transferring power and signals to rotating components 3-5
3.2.1 Brushes and commutators L 3-5
3.2.2 Rotary transformers 3-5
3.3 Sensors for measuring shaftrotation 00, 3-7
3.3.1 Resolversandsynchros 3-8
3.3.2 Incremental encoders: unidirectional, quadrature,and ABZ 3-9
3.3.3 Absolute encoders: binary, Gray, and commutation 3-10
3.4 Brushed DC (BDC) and Brushless DC (BLDC) Motors« eeeenn. 3-13
3.4.1 Dynamic modeling of BDC and BLDC motors 3-15
3.4.2 BLDCmotordesign. e 3-17
343 Commutation in BLDC motors 3-21
3.5 Servos and Electronic Speed Controllers (ESCs) 3-21
3.6 Othertypesofactuators ittt e e 3-21
3.6.1 Axial BLDC “pancake” motors 3-21
362 ACIOLOIS o o i e e 3-21
3.6.3 Linear actuatorsand solonoids L 3-21
3.6.4 Hydraulic and pneumatic actuators 3-21
3.6.5 Artificial muscle and electroactive polymerso oL 3-21
3.7 Light Emitting Diodes (LEDs), buttons, and touchscreens 3-22
3.7.1 Tri-state (H/L/Z)logic o 3-23
3.7.2 Arrays of LEDs or buttons using x/y multiplexing or crossplexing 3-23
3.8 Displays and otherinterfaces oo oo, 3-26

This chapter surveys some of the most common components that attach to SBCs to form useful cyber-
physical (aka electro-mechanical) systems. These components generally come in three broad categories:
sensors, actuators, and user interfaces. Though not at all exhaustive, we discuss many representative ex-
amples of components in each of these categories in turn in this chapter; a brief discussion of how some such
components may be put together to make larger systems is deferred to §16.

3-1

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

_—__——1

e 1

Figure 3.1: A prototype 3-axis MEMS accelerometer by ST: (a) photograph, (b) schematic of the y-axis compo-
nent, and (c) principle of operation. The schematic highlights (grey) the “fixed” outer body, including the “fixed”
outer plates, (black) the “moveable” proof mass, including the attached “moveable” inner plates, and (blue) the
flexible beams attaching the “moveable” proof mass to the “fixed” outer body. Note that the notions of “fixed”
and “moveable” here are w.r.t. the vehicle to which the device is rigidly attached, which itself moves. Note also,
at right, that each moveable inner plate forms two capacitors, one with the fixed outer plate directly above,
and one with the fixed outer plate directly below. As the proof mass moves w.r.t. the outer body, the distance
between the plates in these two capacitors changes (one increases, the other decreases). Sensitive electronics
packaged with the MEMS accelerometer measures this difference in capacitance (averaged appropriately over
all the plates), thereby inferring the component of the acceleration of the vehicle in each coordinate direction.

3.1 Sensors for obtaining situational awareness

3.1.1 Inertial Measurement Units (IMUs): accels and gyros

A mobile robot needs a certain degree of “situational awareness” to detect its own motion, and to respond
appropriately to changes in its environment. A starting point to achieve such situational awareness of a vehicle’s
movement is to estimate its linear and angular acceleration in an inertial frame using a modern MEMS' 3-axis
accelerometer, as illustrated in Figure 3.1, and 3-axis gyroscope, built similarly.

Typical accuracy of a modern MEMS accel is better than 1073 g (that is, 1/1000 of the acceleration due to
gravity), and typical accuracy of a modern MEMS gyro is better than 0.1 deg/s/s. Such convenient sensors may
thus be seen as very good (certainly as compared to a decade ago), but still quite insufficient to integrate over a
long period of time to determine linear and angular velocity as compared to some initial state, a process referred
to as dead reckoning. Other sensors providing absolute position, orientation, linear velocity, and/or angular
velocity (see §3.1.2) are thus also needed to supplement the data provided by the MEMS accels and gyros.

Some MEMS sensors have inherent dynamics that may be significant at the frequencies of interest in a given
system. Note in Figure 3.1 that a MEMS accelerometer is, effectively, a small floating proof mass supported
by a spring, and therefore has a response magnitude that is inherently a function of the forcing frequency. An
expanded dynamic range of such devices may generally be obtained by active electrostatic force rebalancing;
that is, by closing a feedback control loop around the sensor itself, applying an electrostatic force (using some
of the plates indicated in Figure 3.1) that is just sufficient to keep the proof mass from moving w.r.t. the outer

A Micro-Electro-Mechanical-System is a very small physical system made using the same mask/expose/etch technology used
to manufacture silicon chips. Today, this COTS (commercial off-the-shelf) technology is very mature, and several types of MEMS
sensors are mass produced on a very large scale. For example, MEMS accelerometers are used in airbag deployment systems in
automobiles, video game controllers & smartphones, and hard disk drives. MEMS gyros are also mass produced, albeit on a somewhat
smaller scale, for use in video game controllers & smartphones.

3-2

https://www.google.com/search?q=mems+accelerometer+photograph&tbm=isch
https://www.st.com/content/dam/dc21/conference-sessions/iiot_8_gogonea.pdf

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

body, then measuring the electrostatic force required to “rebalance” the floating mass within the device in
order to determine the acceleration applied to the entire system. This essentially supplants the mechanical
time constant of the device, \/m/k, with the electrical time constant of the sensor control circuit, RC, which
may generally be made much faster. The most accurate MEMS accels and gyros available today all incorporate
such electrostatic rebalancing feedback.

3.1.2 Inclinometers, magnetometers, barometers, and GNSS/GPS systems

Supplemental sensors may be used by a vehicle to provide data, albeit approximate, regarding absolute position,
orientation, linear velocity, and angular velocity.

If a vehicle is near the Earth’s surface and is relatively motionless in the lab frame, then a MEMS accelerom-
eter may be used as an inclinometer to estimate the vehicle’s angle (pitch and roll) w.r.t. the gravity vector
(directed towards the center of the Earth), which is often useful. An inclinometer can also be used, more simply,
to determine if a box-shaped object like a cellphone (that is, a rectangular cuboid) is oriented, approximately,
(1) face up, (2) face down, (3) right side down, (4) left side down, (5) lower side down, or (6) upper side down;
this problem is commonly referred to as 6D orientation determination.

There is substantial natural variability in the Earth’s magnetic field; this variability can be especially pro-
nounced in human-built environments. However, obtaining even a rough approximation (£10%) of magnetic
north in the local environment is often a useful starting point when attempting to maintain orientation. MEMS
magnetometers provide precisely this functionality. Remarkably, the Earth’s magnetic field may even be mea-
sured underground or underwater, where it is otherwise quite difficult to get useful orientation information.

Atmospheric pressure decreases at a rate of 11.3 Pa per meter increase in altitude at sea level; this variation
is remarkably consistent, even in fairly windy conditions. Thus, a change of about 1Pa, which a modern MEMS
barometer can easily resolve, corresponds to a change of about 8.8 cm in altitude. When attempting to hold a
particular altitude with a drone, feedback based on barometer measurements is quite helpful.

On Earth, the gold standard of absolute position and time information today is obtained with a global
navigation satellite system (aka GNSS), which include the US Space Force’s GPS system as well as several
others, including EU’s Galileo system, China’s BeiDou system, Russia’s GLONASS system, India’s NavIC
system, and Japan’s QZSS system. Amongst these, GPS (with 31 satellites) is the most extensive and advanced,;
indeed, the abbreviation GPS is commonly used synonymously with the more general term GNSS, even when
using GNSS systems that monitor signals from mutiple satellite constellations. GPS systems typically achieve
5 meter accuracy; those using the new L5 band, which is scheduled to be fully operational in 2027, achieve
an accuracy of about 30 centimeters. Small units incorporating Differential GPS (aka DGPS, which compare
the GPS signals received locally with those at a known reference station) are now readily available and, quite
remarkably, can achieve relative position accuracies of 1to 3 centimeters.

Given all of the available techniques discussed above to estimate position and orientation, and the rate
of change thereof, the question of which technique(s) to use in a given application is subtle, and varies from
problem to problem. The best answer is usually to perform some sort of sensor fusion, using several of these
techniques at the same time, blending them together to get the best estimate possible. This problem is delicate,
as each of these different sensor technologies, as well as those discussed in §3.1.3, measure different quantities,
have different types of uncertainties, and provide information at different rates. Essential algorithms that are
used when performing sensor fusion include simply blending the low-frequency information from some sen-
sors with high-frequency information from other sensors, known as complementary filtering and discussed
further in §8.5.3, and leveraging directly the equations modeling the dynamics of the physical system itself,
tother with Bayes’ rule at each measurement update to minimize the estimate uncertainty, known as Kalman
filtering and discussed further in NR.

3-3

https://en.m.wikipedia.org/wiki/Rectangular_cuboid
https://www.st.com/resource/en/design_tip/dt0097-setting-up-6d-orientation-detection-with-sts-mems-accelerometers-stmicroelectronics.pdf
https://en.wikipedia.org/wiki/Barometric_formula
https://en.wikipedia.org/wiki/Satellite_navigation
https://www.gps.gov/
https://www.gps.gov/systems/gnss/
https://en.wikipedia.org/wiki/Differential_GPS
https://github.com/tbewley/NR

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

3.1.3 Optical flow and Simultaneous Localization and Mapping (SLAM)

Depth imaging
RGB-D
2D and 3D Lidar
Example: Big box store
Camera-based systems

3.1.4 Ground truth via Motion Capture (MoCap) using triangulation & trilateration

Passive and active markers.
visual & RF beacons and microphone arrays
Broadband high-frequency RF MoCap
3-10 GHz, IndoTraq

3.1.5 Other sensors

Strain gauges. Piezoelectric effect
Liquid level sensors and flow meters
Thermocouples and Ph meters

3-4

https://indotraq.com/

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

3.2 Transferring power and signals to rotating components

It is often necessary to transfer power and/or signals on or off of rotating shafts that coordinate the motion of
wheels, linkages, and other moving parts. Applications in which this need arises, among many, include:

e low-cost BDC motors (see §3.4),

e analog devices, called resolvers, used to measure shaft rotation (see §3.3.1),

e robot arms capable of large ranges of motion (see Figure 3.4c and §16.9.3),

e rotating sets of LEDs leveraging persistance of vision (PoV) effect to make images (see §3.8), etc.

There are four main methods of accomplishing such transfers of power and/or signals to rotating frames:

(a) brushes and commutators (Figure 3.2, discussed in §3.2.1),

(b) rotary transformers (Figure 3.3, discussed in §3.2.2),

(c) local COTS wireless communication protocols (§4.4) like bluetooth? (§4.4.2), and

(d) flexible wires with careful cable routing?, in applications for which the total rotation is limited (Figure 3.4).

3.2.1 Brushes and commutators

The cheapest method to transfer power and/or signals to a rotating frame is to use stationary spring-loaded
carbon graphite (sometimes with copper added) brushes, mounted to rub against (and, to make reliable elec-
trical contact with) rotating conductive copper rings called commutators (see Figure 3.2). This approach can
efficiently pass both low-bandwidth logical signals, as well as both alternating current (AC) and direct cur-
rent (DC) power, from the stationary frame to the rotating frame, but often introduces significant electrical
noise, motivating the use of some low-pass filtering (see §8 and §9) to remove. Commutators can either be the
continuous-ring type, which provide continuous electrical contact as the shaft turns, or the split-ring type
which, periodically, mechanically break the electrical connection when the shaft turns past a certain angle, and
later reéstablish the electrical connection, with the opposite polarity, as the shaft turns further. Note that the
clever use of split-ring commutators forms an essential component of the operation of brushed DC (BDC) mo-
tors, discussed in §3.4. Either way (using continuous-ring or split-ring commutation), due to mechanical wear,
the brushes will eventually wear out. Most small BDC motors are designed be disposed of when the brushes
wear out; in some older/larger BDC motors, the brushes may be replaceable by the user. Most newer large
motors are brushless, which are more efficient and require less maintenance.

3.2.2 Rotary transformers

A more durable method for transferring AC power or AC signal to or from rotating frames is to use rotary
transformers. With this approach, magnetically-coupled electromagnets are placed near to each other, one
on the rotating shaft, and the other on its stationary housing. One of these electromagnets is driven by an
AC input (typically oscillating at a frequency w, that is fast w.r.t. the shaft rotation); by magnetic induction,
a concomitant AC current is picked up by the other electromagnet. Typical configurations are illustrated in
Figure 3.3. This approach is more durable than using brushes and commutators, but can only handle AC signals
and, depending on the strength of the magnetic coupling in the design, typically suffers 30% or higher power
loss. This power loss is turned directly into waste heat, which means that rotary transformers are generally not
well suited for power transfer in high-current applications.

2COTS bluetooth solutions are low latency, low power, and inexpensive, and are often preferred in high-bandwidth applications.
3Note that such wires must be routed very carefully, in order to not tug or foul during operation, or to fatigue too quickly.

3-5

https://en.wikipedia.org/wiki/Brush_(electric)
https://en.wikipedia.org/wiki/Commutator_(electric)

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

mim=

Figure 3.2: Brush & commutator systems for transferring both DC and AC power and signals between rotating
(green) and non-rotating parts. (a) Side (cut-away) view of a continuous-ring brush/commutator system;
a spring is used to keep the (relatively soft) carbon graphite brush (gray), which is stationary, in constant
contact with the copper commutator (orange) mounted to the rotating component (green) attached to the
shaft (blue). (b) Top view of split-ring brush/commutator system for coordinated excitation of the rotating
electromagnets of a BDC motor, with brushes {D,E} and commutators {F,G,H} labelled as in Figure 3.9. Images
are schematic representations only; for notational clarity, the housings and bearings that keep the parts aligned
and spinning freely are not shown.

Figure 3.3: Four different configurations of rotary transformers for magnetically transferring AC (only) signals
between rotating (green) and non-rotating parts. (a) & (b) are flat-face (aka pot core), (c) & (d) are axial;
the stationary (black) and rotating (green) windings in (a) & (d) are adjacent, those in (b) & (c) are coaxial.
A small air gap (yellow) separates the rotating and non-rotating components; minimizing the size of this gap
leads to better magnetic coupling and thus higher efficiency. Magnetic flux lines are illustrated in red. Images
are schematic representations only; for notational clarity, the housings and bearings that keep the parts aligned
and spinning freely are not shown. A circle with a dot indicates the windings comes out of the page, and a circle
with a cross indicates the windings go into the page; note that the individual windings are much smaller gauge
wires than suggested by the circles shown here.

Figure 3.4: Example cable routings facilitating limited ranges of movement. (a) Linear drag chain (each link
of the chain pivots in only one direction, and a finite amount, thus ensuring a prespecified minimum radius
of curvature of the cables lying in the channel running through its center), (b) rotary drag chain (that is, a
linear drag chain lying in a channel between two concentric walls which rotate wrt each other), and (c), (d) less-
structured solutions that allow multiple degrees of freedom of movement. Cables manufactured using highly
flexible silicone rubber insulation are particularly well suited for such applications.

3-6

https://www.warwickts.com/4739/Guide-on-PVC-vs-Silicone-Test-Lead-Cables

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

Figure 3.5: Common encoder disk slit patterns: (a
producing such patterns is available at RR_encoder

0~

3.3 Sensors for measuring shaft rotation

Resolvers and synchros are analog devices that may be used to measure the rotation of a shaft, as discussed
briefly in §3.3.1.

More commonly used today, however, are rotary encoders, which are digital devices used to measure the
rotation of shafts. Rotary encoders (often, just called encoders) thus form the focus of our attention in this
chapter; common constructions are optical, mechanical, and magnetic.

An optical encoder consists of one or more LEDs illuminating one side of a circular encoder disk (mounted
to the rotor shaft) with one or more rings (that is, annular rows) of slits (see Figure 3.5a-c), and one or more
photodiodes per ring of slits on the opposite side. As a slit passes in front of each photodiode, light from an
LED passes through this slit, and the wire attached to that photodiode transmits a logical pulse (transitioning
from 0 to 1, and shortly later back to 0). Reflective optical encoders also exist, in which the LED(s) and the
phototdiode(s) are mounted on the same side of the encoder disk.

A mechanical encoder energizes metal patches on a rotating disk, arranged in the same patterns as shown
in Figures 3.5b or ¢ (power is transferred to the disk using brushes and commutators; seen §3.2). Stationary
brushes slide on and off these metal patches (also acting as commutators), again sending signals down the
wires attached to these brushes. Due to friction and wear issues, mechanical encoders are only appropriate for
shafts that are turned infrequently, and at low speed, such as the rotary selector input on a voltmeter or the
volume knob on a stereo. In other applications, optical or magnetic encoders are preferred.

A magnetic encoder replaces the slits in a disk with magnets, and the photodiodes with magnetic (Hall
effect) sensors, but otherwise again operate according to similar principles. Magnetic encoders are particularly
convenient for use in brushless motors (see §3.4.2), which already have a series of permanent magnets mounted,
with alternating directions of polarity, to the rotor shaft.

There are two principal types of rotary encoders:

e incremental (see §3.3.2), which only count changes to the rotation angle of a shaft from its prior state, and
e absolute (see §3.3.3), which directly indicate the absolute phase angle of a shaft, regardless of its prior state.

Optical and magnetic encoders may be of either type; mechanical encoders are generally of the absolute type.
Note that hybrid ABZ encoders (also discussed in §3.3.2) may be considered as a third category, hybrid encoders
are incremental over much of their range, with occasional resets at a known angle.

3-7

https://github.com/tbewley/RR/blob/main/chap03/RR_encoders.m
https://en.wikipedia.org/wiki/Photodiode
https://www.electronics-tutorials.ws/electromagnetism/hall-effect.html
https://www.electronics-tutorials.ws/electromagnetism/hall-effect.html

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

Figure 3.6: Analog devices for determining the angle of a rotating shaft: (a) a resolver, and (b) a synchro. Both
have a (rotating) reference winding; a resolver has two stationary identical windings nearby, mounted 90°
apart, and a resolver has three stationary identical windings nearby, mounted 120° apart. In control trans-
mitter mode, the (rotating) reference winding is electrically excited sinusoidally, and the induced voltages in
the other windings are measured. In control transformer mode, the other windings are excited sinusoidally
(90° or 120° out phase from each other), and the induced voltage in the (rotating) reference winding is mea-
sured. In either case, an AC signal V,., carried over two wires, must be transmitted either to or from the rotating
shaft (this is the driving signal in control transmitter mode, and the measured signal in control transformer
mode). This may be done using brushes and commutators, or using a rotary transformer, as discussed in §3.2.

3.3.1 Resolvers and synchros

Resolvers and synchros (see Figure 3.6) are analog devices capable of determining the angle of a rotating shaft.
In control transmitter mode, the rotating reference winding is driven by V, = V cos ¢ where ¢(t) = w, t.
e In a resolver, this generates voltages in the two stationary windings of V; = nV,. sinf and V. = nV,. cos@
for some efficiency metric 7. Regardless of the value of 7, the shaft angle § is then given simply from the
instantaneous output voltages as 0(t) = atan2(Vj, V), where atan2 is defined in (B.1).
e In a synchro, this generates voltages in the three stationary windings of Vy = a V, sin0°+ 8V, cos0° +~V,,
Viso = aV, sin120° + BV, cos 120° + v V,, and Vayy = a'V,. sin240° + BV, cos240° + v V,.. Solving these
equations to determine {«, 3,7} from {Vj, Va0, Vaso }, it works out that v = 0 if the stationary coils are nearly
identical and 120° apart, and we can rewrite the result as V; = ¢ V. sin @ for the shaft angle 6(t) = atan2(, «).
In control transformer mode, again defining ¢(t) = w.t, the stationary windings are driven:
e in a resolver, such that V, = V sin¢ and V, = V cos ¢, and
e in a synchro, such that Vj = V sin ¢, Viog = V sin(¢ + 120°), and Voyg = V sin(¢ + 240°).
In either case, this generates a voltage V,, = n V' sin(¢—#) in the (rotating) reference winding for some efficiency
metric 7, where 0(t) denotes the angle of the shaft from some appropriately-defined reference angle 6y, and
w(t) = dB(t)/dt denotes the rate of rotation of the shaft. Noting that V, = 1V [w, cos(¢ — 0) — w, cos(¢ —)]
and assuming that the w, > w; [i.e., that the frequency w, of the electrical excitation is much higher than the
rate of rotation of the shaft w,], it follows, regardless of the value of 7, that 0 ~ ¢ — atan2(w.V,(t), V,(t)).
Resolvers and synchros are often set up in torque chains, in which the (2 or 3) outputs from a “primary”
(resolver or synchro), set up in control transmitter mode, are used to drive the (2 or 3) inputs to a “secondary”
(resolver or synchro), set up in control transformer mode. If the rotation of the primary device is driven by some
process, and the secondary device can rotate freely, as with an analog instrument, and if the reference winding
of the secondary device is excited by the same voltage used to excite the reference winding of the primary
device, then a torque is generated by this electrical connection to the secondary device that tends to drive the
angle of the shaft of the secondary device to match the angle of the shaft of the primary device.

3-8

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

a b ¢ d —
Figure 3.7: Encoder signals from a quadrature encoder, indicating the (dashed) A and (solid) B signals. These
signals are generated by a pair of photodiodes placed about 90(1 + 47)/n degrees apart (for integer i) near an
encoder disk with a single ring of n slits. The {a,b,c,d} transitions (from left to right in the image) indicate
one direction of shaft rotation, and the {e,f, g, h} transitions (from right to left in the image) indicate the other
direction of shaft rotation. For a given n, ¢ may be selected to make the encoder easy to manufacture (e.g.,
physically placing the two photodiodes around 45° to 90° apart around the shaft).

3.3.2 Incremental encoders: unidirectional, quadrature, and ABZ

The simplest incremental encoder, called a unidirectional encoder, consists of just a single ring of slits (see
Figure 3.5a, without the single slit in the second row) and a single LED/photodiode pair. Every time a slit passes
in front of the photodiode, a pulse is generated on the wire attached to the photodiode. A counter unit (see
§1.5.5) on the MCU increments its counter in response to the rising edge, the falling edge, or both, of these
pulses. This approach is only useful for shafts designed to spin in one direction, but such applications are
common (in conveyer belts, assembly lines, etc.). The number of slits per revolution in the encoder disk defines
the resolution of the encoder, and should be selected based on the maximum speed of rotation of the shaft and
the maximum reliable rate of the counter unit. Note that motors (which often operate most efficiently at speeds
much higher than needed in a particular application) often have speed-reducing (and, thus, torque-increasing)
gearboxes attached. Attaching the encoder disk before (or, after) such a gearbox increases (or, decreases) the
effective resolution of the encoder for a given number of slits in the encoder disk. Also, the number of slits per
revolution of the encoder disk is limited by practical issues; if this number is made too high, the slits become
too narrow to manufacture precisely, the state transitions of the signals from the photodiodes become noisy,
and counting them becomes difficult. Thus, depending on the application specifics, mounting the encoder disk
before or after the gearbox (if one is present) may be preferred.

We next consider a quadrature encoder, built with a single ring of n slits, and two photodiodes, denoted A
and B. If the two photodiodes are placed 360 i/n degrees apart from each other around the shaft (for integer i),
the signals that they generate will be exactly in phase with each other, and the second photodiode will provide
no useful new information. If the two photodiodes are placed 180(1 + 2i)/n degrees apart from each other
around the shaft, the signals that they generate will be of opposite phase, and again the second photodiode
will provide no useful new information. However, if the two photodiodes are placed about 90(1+44) /n degrees
apart from each other around the shaft, the signals that they generate will be about 90° out of phase (see Figure
3.7a), which as described below is quite useful. Note that, for a given n, ¢ may be selected to make the encoder
easy to manufacture (e.g., physically placing the two photodiodes around 45° to 90° apart around the shaft).

With two signals A and B that are about 90° out of phase, we can actually infer the direction of rotation by
looking at state transitions (low-to-high, high-to-low, or both) of one or both logical states, while monitoring
the other state, leading to a bidirectional incremental encoder. Transitions {a, b, c,d} happen only when time
flows from left to right in Figure 3.7 (indicating, say, “clockwise” shaft rotation), and transitions {e,f, g, h}
happen only when time flows from right to left (indicating “anticlockwise” rotation):

a) A transitions from low to high when B is high,) A transitions from low to high when B is low,

b) B transitions from high to low when A is high, f) B transitions from low to high when A is high,

c) A transitions from high to low when B is low, g) A transitions from high to low when B is high,

d) B transitions from low to high when A is low, h) B transitions from high to low when A is low.

3-9

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

Such a bidirectional encoder can be set up to watch for 1, 2, or all 4 of the transitions in each of the above
two groups (and, to increment or decrement its counter as appropriate when these transitions are detected),
referred to as 1x, 2x, and 4x modes. The capability of using 4x mode (that is, of updating the counter 4n times
per full wheel revolution) lends this sensor its common name as a quadrature encoder.

An ABZ encoder combines a (bidirectional) quadrature encoder as described above with a third photodiode
mounted to detect the passage of a single narrow slit on a second ring in the encoder disk, as shown in Figure
3.5a. This third signal gives an absolute reference point on the shaft angle during each full rotation, and can be
useful to initialize an absolute reference angle when restarting the system, and to correct for possible missed
encoder counts during normal operation. The ABZ encoder is thus actually a hybrid between incremental and
absolute encoder designs.

3.3.3 Absolute encoders: binary, Gray, and commutation

In order determine with high resolution the absolute rotation angle of a shaft, consider again the use of an
optical encoder, but now with an encoder disk with multiple rings, and a radially-aligned row of photodiodes
to read the binary values (slits) in each ring. With 7 rows of slits, it is straightforward to see that 27 = 128
distinct positions can be read off directly; conveniently, the sensed signal will immediately be in simple binary
order if a binary encoder pattern, such as that illustrated in Figure 3.5b, is used.

However, there is a significant problem with the above approach. Due to manufacturing inaccuracies (specif-
ically, minor misalignments in the row of photodiodes), during the transition from a single binary number to
another (say, between the state 1111111 and the state 0000000) as the encoder the encoder disk turns, some bits
will inevitably change slightly before the others, making the rotation of the shaft appear, for a moment or two,
to be in a vastly different state than it actually is. These errors can be quite problematical. Note further that the
misalignment of the photodiodes can become significantly more severe in a system as it ages, and inevitably
receives a few substantial bumps and knocks. As a result, binary encoders should never actually be used.

The solution to the above problem is to use a Gray encoder. Consider the following reversible transforma-
tion: start from an n-bit binary number b(1) b(2) ... b(n), where b(1) denotes the most significant bit (msb) and
b(n) denotes the least significant bit (Isb), and define another n-bit binary sequence ¢g(1) g(2) ... g(n), dubbed
a Gray code, as follows:

g(1)=0b(1), for i=1:n—1, g(i+1)=>b(:i) xorb(i +1), end (3.1a)
where xor denotes exclusive or’ (see Table 1.3). The inverse of this operation, it is easy to prove’, is given by
b(1) =g(1), for i=1:n—1, b(i+1)=0b(i)xorg(i+1), end (3.1b)

The transformation of the first 2° = 32 binary numbers (starting from 0) to Gray code and back, by the above
reversible transformations, is listed in Table 3.1. Reading an n-bit Gray code sequence with an optical encoder,
rather than reading an n-bit binary sequence, completely eliminates the problem mentioned in the previous

“The operation a xor b is equal to 1 (true) if its arguments differ, and is equal to 0 (false) if they are the same.
5That is, the reconstructed b(i) in (3.1) equals the original b(7) for all i. This may be established with a proof by induction:
assume, for some 4, that b(7) = b(i). To show that it follows, for this 7, that b(i + 1) = b(i + 1), consider the four possible cases:
(@) If b(i) = 0and b(i + 1) = 0, then g(i + 1) = b(i) xor b(i + 1) = 0, and b(i + 1) = b(i) xor g(i + 1) = 0.
(b) If b(i) = 0and b(i + 1) = 1, then g(i + 1) = b(3) xor b(i + 1) = 1, and b(i + 1) = b(i) xor g(i + 1) = 1.
(©) Ifb(i) = 1and b(i + 1) = 0, then g(i + 1) = b(i) xor b(i + 1) = 1, and b(i + 1) = b(i) xor g(i + 1) = 0.
(d)Ifb(i) = 1and b(i + 1) = 1, then g(i + 1) = b(i) xor b(i + 1) = 0, and b(i + 1) = b(i) xor g(i + 1) = 1.
In all four cases, b(i + 1) = b(i + 1); i.e., (3.1b) inverts the transformation done by (3.1a). This applies identically for the “base case”
i=1[b(1) =g(1) = b(1)], and thus, successively, for the case with i = 2, and then for i = 3, etc., ultimately for all integer i > 1.

3-10

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

>\C> - O O mr OO T O QO "~ OO MmO O MmO QO Mmoo rm—mrm—Oo
< SO O m —m m r O O O O mrm— r—rm— O O OO mmmrm—rmme O QOO OO rmMer/m e— rm— O O
L © 0O QO T T — O O O O OO0 0 O T oo OO O O
O O O O O O O OO —mFr— — ™ ™ ™ ™ ™ ™ ™™™ " " — — O O O O O O O O

O O O O O O O O OO OO0 o000 MM rM™mrMr—rMm—rer e reres e e e e s e e
E‘O — O O T O QO T O O OO O O T OO OO T O
< O O m r— O O m rm OO mmM OO mmM OO0 rmrmm™—mO 0 mmrmrm OO0 mm—mMO o r— ™
c S O O QO — r— — — O O OO —r—r— O OO O0QO QO — — r—— OO0 O r— — — —
mO O O O O O O QO r—r— r— r— — r— — — O O O O OO OO r—r—r—r—rr—rir—r—rr—
OO0 ©O O O O O O O OO OO OO OO r—r—r—r—r—rm—r—r—~-?&r—~-/&™? &- r—r - r—r'— —

Table 3.1: The numbers 0 to 2> — 1 = 31, in binary and Gray code. [Codes: RR_bin2gray.m, RR_gray2bin.m]

paragraph, of some bits changing slightly before other bits when the photodiodes are slightly out of whack.
This is a result of the remarkable fact that only one bit changes at a time when counting through the numbers 0
to 2" — 1, and looping back to 0, when the numbers are represented using an n-bit Gray code, as illustrated for the
n = 5 case in Table 3.1. Further, the conversion from Gray code to a corresponding binary representation can
be done remarkably quickly using the above algorithm.

Finally, one added benefit of a Gray code encoder is that, even though n bits are still needed to represent
all numbers from 0 to 2" — 1, the changes in the Isb happens at half the rate as the changes in the Isb of the
corresponding binary sequence (again, see Table 3.1). As mentioned previously, if the slits become too narrow
to manufacture precisely, the transitions of the signals from the photodiodes become noisy, and, practically,
sensing them becomes difficult. The severity of this problem is reduced in a Gray code encoder, as, at a given
resolution n, the smallest slits are twice as wide as for the corresponding binary encoder, as readily apparent
in the 7-bit Gray code encoder disk illustrated in Figure 3.5c.

Finally, consider a commutation encoder, built with n pairs of N-S poles mounted (with alternating polar-
ity) to a rotating shaft, and three stationary magnetic (Hall effect) sensors, denoted {U, V, W}, mounted nearby.
As illustrated in Figure 3.8, there are two distinct variants on this idea:

e if the sensors are placed about 60(1 + 6¢) /n degrees apart from each other around the shaft, for integer i, the
signals they generate will be about 60° out of phase, and
e if the sensors are placed about 120(1 + 3i)/n degrees apart from each other around the shaft, for integer i,
the signals they generate will be about 120° out of phase.

Either way, six valid phases of rotation can be uniquely detected®, denoted {a,b,c,d,e,f}. The inputs to the
three sets of electromagnets of a three=phase BLDC motor (see §3.4.2) may then be synchronized to these six
phases by the commutation logic (see §3.4.3) driving these sets of electromagnets in order to coordinate the
motor’s efficient application of torque on the shaft in the clockwise and anticlockwise directions. As a result
of its utility in the commutation of BLDC motors, such an encoder is commonly referred to as a commutation
encoder. Note that, since a commutation encoder indicates which of six phases of rotation that a motor shaft
is in, without reference to where the shaft was previously, it is classified as an absolute encoder.

%The states 101 and 010 are not valid in the 60° variant, and the states 111 and 000 are not valid in the 120° variant.

3-11

https://github.com/tbewley/RR/blob/main/chap03/RR_bin2gray.m
https://github.com/tbewley/RR/blob/main/chap03/RR_gray2bin.m
https://en.wikipedia.org/wiki/Hall_effect_sensor

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

o

Figure 3.8: Encoder signals from (left) the 60° variant, and (right) the 120° variant, of a commutation encoder,
indicating the (dashed) U, (solid) V, and (dot-dashed) W channels. These signals are picked up by a triplet of
magnetic (Hall effect) sensors placed 60(1 + 6¢)/n degrees apart (in the 60° variant), or 120(1 + 3i)/n degrees
apart (in the 120° variant), near the 2n permanent magnets, of alternating polarity, mounted to the rotating
shaft of a BLDC motor. The {a, b, c, d, e, f} phases (note: not transitions) may be used by six-state logic driving
the motor (see §3.4.3) to coordinate the application of torque on the shaft in the clockwise or anticlockwise
directions. Again, for a given n, ¢ may be selected to make the encoder easy to manufacture (e.g., physically
placing the two photodiodes around 30° to 60° apart around the shaft).

3-12

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

+ - + - + -

Figure 3.9: Principle of operation of a brushed DC (BDC) motor, in which the electromagnets {A,B,C} rotate
and the permanent magnets {1,2} are stationary (cf. Figure 3.10); the pattern illustrated in this case repeats
after 120° of rotation. The appropriate coordination of the energizing of the coils driving the electromagnets
with the rotation angle of the shaft is achieved via carbon brushes {D,E} dragging against split-ring commutators
{F,G,H}; see Figure 3.2. The outer ends of the electromagnets that are red (north) are repelled from the inner
surfaces of the permanent magnets that are red (north) and are attracted to the inner surfaces of the permanent
magnets that are blue (south); vice-versa for the outer ends of the electromagnets that are blue. At any instant,
all of the energized electromagnets tend to torque the shaft in the clockwise direction.

3.4 Brushed DC (BDC) and Brushless DC (BLDC) Motors

Though there are many different types of electric motors (see also §3.6), the two main paradigms that drive
small robotic systems today are radial-flux brushed DC (BDC) and brushless DC (BLDC) motors. Their essential
principles of operation are illustrated in Figure 3.9 and Figures 3.10-3.11, respectively; both use electromagnets
to generate alternating magnetic fields in the presence of permanent magnets’, thereby generating torques
which tend to rotate a shaft. Note that, in electromagnets (aka inductors), when energizing (running a current)
through a coil wrapped around a soft iron core, a magnetic field is generated in the core in the direction indicated
by the right-hand rule (when current is flowing from + to — in coils wrapped around the core in the direction
of your fingers, the north pole of the resulting magnetic field is generated in the direction of your thumb). The
key to the proper operation of both BDC and BLDC motors is the appropriate coordination of the energizing
of the coils that generate such magnetic fields with the rotation angle of the shaft, known as commutation,
combined with compatible orientation of nearby permanent magnets to effectively produce torque on the shaft.

"Collectively, these two paradigms are thus sometimes referred to as permanent-magnet DC (PMDC) motors.

3-13

https://en.wikipedia.org/wiki/Electromagnet

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

Figure 3.10: Principle of operation of a brushless DC (BLDC) motor, in which the permanent magnets
{1,2,3,4} rotate and the electromagnets {A,B,C} are stationary (cf. Figure 3.9). The pattern illustrated in
this case repeats after 180° of rotation. Implementing the appropriate feedback, commutation is achieved
electronically.

Figure 3.11: lllustration of the Y (Wye) and A (Delta) winding connections of BLDC motors. For a given overall
configuration, windings, and power supply, the Y winding connection provides more low-speed torque, and
the A winding connection provides a higher speed. [In theory, the Y and A winding connections of BLDC
motors provide essentially the same performance; A has lower effective resistance, lower Ky, and higher Kr.]
At the instants shown, in the Y case, electromagnet A is repelling magnet 2, electromagnet C is attracting
magnet 4, and electromagnet B is off, whereas in the A case, electromagnet A is attracting magnet 1 and
repelling magnet 2, electromagnet B is repelling magnet 3, and electromagnet C is attracting magnet 4, all of
which tend to torque the shaft in the clockwise direction. Commutation using the appropriate feedback, using
either the u/v/w hall sensors or the /v /w hall sensors, is discussed in §3.4.3.

3-14

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

The first BDC motors were developed by Thomas Davenport (and, others) around 1834, and rapidly became
the dominant mechanism to convert electric energy into mechanical motion (and, when run backwards as a
generator, to convert mechanical motion into electrical energy). With this paradigm, the electromagnets
rotate and the permanent magnets are stationary. As illustrated in Figure 3.9, commutation in BDC motors
is achieved mechanically, simply by dragging carbon brushes against split-ring commutators. In the figures
shown, note that the brushes are wide enough that, at certain times, they overlap two commutators at a time;
if there are more commutators than brushes in a given ring, this does not result in a short circuit. Unfortunately,
the carbon brushes upon which the BDC paradigm is based wear out over time.

With the advent of low-cost, fast microcontrollers in the early 21st century, BLDC motors are quickly re-
placing BDC motors in almost all small-scale robotics applications except low-cost toys. With this paradigm, the
permanent magnets rotate and the electromagnets are stationary. As illustrated in Figure 3.10, commu-
tation in BDC motors is achieved electronically, based on feedback (see §3.4.3) indicating the relative rotational
position of the electromagnet array with respect to the permanent magnet array. In addition to superior wear
characteristics, BLDC motors are much easier to make weatherproof or waterproof; as the electromagnets are
stationary in the BLDC paradigm, they can easily be sealed in plastic, while the rotating components can be
exposed to the elements, or even submerged in water.

3.4.1 Dynamic modeling of BDC and BLDC motors

To model (in S| units; see §9.1.1-9.1.2) the dynamics of both BDC and BLDC motors, we first consider the
following functions of time, averaged over each shaft rotation:

V (t) is the voltage applied to the motor [measured in volts],

I(t) is the current through the motor [measured in amps],

7(t) is the torque applied by the motor to the mechanical load [measured in N-m],
w(t) is the rate of rotation of the motor shaft [measured in rad/s],

An approximate model of the voltage and torque balances, respectively, of such motors is then given by

electrical behavior: V=RI+Ldl/dt +w/Ky, (3.2a)
mechanical behavior: 7= K[= Jdw/dt +bw+ Csgn(w), (3.2b)

where the three RHS terms in (3.2b) model the rotational inertia, viscous friction, and dry friction (see Example
6.3) of the full system (that is, the motor together with its attached load), and where (again, in Sl units)

R is the motor resistance [measured in ohms],

L is the motor inductance [measured in henries],

Ky is the speed constant of the motor [measured in (rad/s)/V, with 1 rpm/V = 27 /60 (rad/s)/V],
K7 is the torque constant of the motor [measured in N-m/A],

J is the rotational inertia of the full system [measured in kg-m?, with 1g-cm? = 107" kg-m?],

b is the viscous friction coefficient of the full system [measured in N-m-s], and

C'is the dry friction coefficient of the full system [measured in N-m; see (6.6c)].

The term w/ Ky in (3.2a) is called the motor’s back emf (electromotive force). Key relations to start with are:

A. at steady conditions (d/dt term zero) with negligible R, w ~ K V' (speed is proportional to voltage),
B. 7 = K1 I (torque is proportional to current), and
C. when written in Sl units, the essential link between (3.2a) and (3.2b) is that Ky = 1/ K.

In general, the dynamic relationship between the applied voltage V' (¢) and the resulting motor current I(¢),
torque 7(t), and rotation rate w(t) of the shaft is a result of the coupled equations (3.2a)-(3.2b), and should be
modeled as such when doing model-based control of systems driven by BDC and BLDC motors.

3-15

https://edisontechcenter.org/DavenportThomas.html
https://en.wikipedia.org/wiki/Electromotive_force

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

Values at nominal voltage

1 Nominal voltage V 6

2 No load speed rom 9630 Characteristics

3 No load current mA 295 10 Terminal resistance Q 176

4 Nominal speed rpm 7390 11 Terminal inductance mH 0106

5 Nominal torque (max. continuous torque) mNm 4.81 12 Torque constant mNm/A 5.9
ma*°“ 6 Nominal current (max. continuous current) A 084 13 Speed constant rom/V 1620

7 Stall torque mNm 201 14 Speed/torque gradient rom/mNm 482

8 Stall current A 342 15 Mechanical time constant ms 205

9 Max. efficiency % 83 16 Rotor inertia gem? 407

Figure 3.12: Specifications of the Maxon 110117 BDC motor.

For any BDC or BLDC motor, the unknown parameters in the model (3.2a)-(3.2b), as discussed above,
may be determined using a home-built dynamometer; that is, by repeatedly accelerating and decelerating a
flywheel of known rotational inertia (carefully attached to the motor shaft with low-friction load bearings)
while monitoring the rate of rotation of the shaft with encoders, then performing a least squares fit.

More simply, the parameters in (3.2a)-(3.2b) may be estimated from some values that may be either be mea-
sured or (for motors made by high-end motor manufacturers) referenced in the corresponding device datasheet.
As a typical example, consider the representative motor specifications in Figure 3.12, which indicate the follow-
ing three conditions when operating the motor at V,, = 6 V:

e a “stall” condition of wg, = 0 in which I, = 3.42 A and 7o = 0.0201 N-m;
e a “nominal” speed of wnem = 7390 - (27/60) = 774 rad/s when 1,0, = 0.84 A and 7o, = 0.00481 N-m;
e a “no-load” speed of Wyo-j0ag = 9630+ (271/60) = 1008 rad/s when I,5102¢ = 0.0295 A and Thoj0ad = bw+C.

This datasheet also lists an efficiency of 83% at the “nominal” conditions, a terminal resistance of R = 1.76 ohms,

a terminal inductance of L = 1.06 - 107" henries, and a rotor inertia (assuming no applied load) of
J = 4.07 - 107" kg- m?. From these values, we can compute the following characteristics:
Tstall 1 170.15
Koy gtan = = 5.88 mN-m/A and Ky g1 = = = 1625 V at wsta = 0;
o K sl T mN-m/A and Ky g KT,itaII 217;41684 rpm/V at wst,)
® K7nom = ;::: = 3.73mN-m/A and Ky nom = Ko = 27r/60 = 1668 rpm/V at wyom = 7390 rpm;
no-loa 169.47
® Kynoiload = Wno-load = = 1618 rpm/V at Wpo-load = 9630 rpm.

V; - R : Ino—load B 277—/60
Note that these computations are largely consistent with characteristics 12 and 13 reported in Figure 3.12, and
indicate that K and Ky are remarkably constant over the entire range 0 < w < Wyo-load-

The C' parameter, which can not be determined accurately from the information provided in Figure 3.12,
is essentially insignificant for large w. Note that dry friction can lead to a troublesome stick-slip behavior at
low speeds (see, e.g., Example 6.3), which may be effectively overcome in DC motors by driving them with an
input voltage incorporationg pulse-width modulation (PWM; see Example ??). Note also that the information
provided, at wpom = 774 rad/s = 7390 rpm, is consistent with b = T,0m/Wnom =~ 6.2 - 1075 N-m-s.

The speed/torque gradient is simply w/7 at equilibrium conditions, which for small w is approximately
equal to (V/I)- Ky /Kr = R - Ky /Ky. For the motor specified in Figure 3.12, this equals 1.76 - 1620/5.9 ~
483 rpm/(mN-m), as reported as characteristic 14. The speed/torque gradient reflects, in a way, the overall
“motor strength”; that is, it quantifies how sensitive (or, for small speed/torque gradient, how insensitive) the
equilibrium motor speed w is to variations in the equilibrium load torque 7.

The electrical time constant related to (3.2a) is t. = L/ R, and reflects how quickly the current in the motor
increases in response to a step change in the input voltage, neglecting any changes in w. For the motor in Figure
3.12,t. = (1.06 - 107*)/1.76 ~ 0.06 ms, and is essentially negligible.

The mechanical time constant is the time it takes for the motor to accelerate from w = 0 tow = 0.63Wne-10ad
after a step increase in the input voltage from V = 0 to V = V. It may be approximated as t,, = J - R/ K?.
For the motor in Figure 3.12, ,,, = (4.07-1077)(1.76) /(5.9 - 1073)? & 20.6 ms, as reported as characteristic 15.

3-16

https://www.maxongroup.com/maxon/view/product/110117
https://www.maxongroup.com/medias/sys_master/8815460712478.pdf

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

!
il

A

Figure 3.13: Some efficient outrunner BLDC (brushless) motor configurations (6s8p, 12s14p, 18s20p, 24s26p),
shown with Y winding connections. In BLDC motors, the electromagnets are stationary, and the permanent
magnets rotate with the shaft. Commutation (that is, coordination of the electrical signals causing the motor
to turn) is thus achieved electronically rather than mechanically. The windings of these particular three-phase
motors are given by (ABC)?, AabBCcaABbcC, (AaABbBCcC)?, and AaAabBbBCcCcaAaABbBbcCcC (see text).
Images generated via the convenient online tool available at http://www.bavaria-direct.co.za/.

3.4.2 BLDC motor design

A BLDC motor consists of n stationary® electromagnets, and n,, permanent magnets’ (of alternating polarity)
attached to a rotating shaft (see Figure 3.10). Both sets of magnets are placed in a circular arrangement around
the shaft, with a small air gap between them. The (rotating) permanent magnets may be placed to the inside
[called an inrunner configuration] or to the outside [called an outrunner configuration] of the (stationary)
electromagnets. BLDC motor designs are commonly denoted n; s n, p; a few examples are given in Figure 3.13.

As the electromagnets are stationary in brushless (BLDC) motors, they are commutated electronically; this
is in contrast with brushed (BDC) motors, in which the electromagnets rotate and the permanent magnets are
stationary, and for which mechanical commutation (with brushes and split-ring commutators) is used instead
(see Figure 3.9). Three-phase commutation of the electromagnets, in which the ng stationary electromagnets
are electrically arranged into 3 equal-sized groups that are powered 120° out of phase from each other, are
by far the most common, and form the focus of our study'’. The algorithms used to coordinate the electronic
commutation of three-phase BLDC motors with the rotation of the shaft is discussed in §3.4.3.

Recall from Figure 3.11 that the ends of the three sets of electromagnets may be tied together in a Y (aka
wye) configuration, as also done in Figure 3.13, or arranged in a A (aka delta) configuration. For a given set of
windings, the Y configuration has /3 times more torque per amp, and the A configuration has a higher top
speed; if a motor with a Y configuration is rewound (with more turns of thinner wire), the performance of the
A configuration can be made to be roughly equivalent.

The number of “slots” n, (a multiple of 3), and the number of “poles” n,, (a multiple of 2) are important in
BLDC motor design'’. We focus next on selecting n, and n, appropriately, and optimizing the corresponding
winding pattern of the three phases, both of which require closer consideration.

8The maximum number of electromagnets may be determined by counting the slots through which the wires are threaded when
winding the electromagnets; ns is thus often said to indicate the number of slots through which these wires are thread.

9Rare Earth magnets made from Neodymium (Nd) or Samarium Cobalt (SmCo) are most commonly used in BLDC motors.

"Note that five-phase (and, even, seven-phase and nine-phase) BLDC motor designs are also possible, with improved efficiency
and fault tolerance, but with substantially more complex coordination circuitry.

""We focus the present discussion on the case in which every adjacent pair of “slots” is used to wrap a coil, thus making an
electromagnet out of the (iron-core) post in between each pair of slots (see Figure 3.13). This is sometimes said to be a “two-layer”
configuration in which, looking down in any individual slot, two coils are visible: those going around the post on one side, and those
going around the post on the other. This is in contrast to the “one-layer” configurations sometimes encountered, in which, looking
down in any individual slot, only one coil is visible, with alternating posts not coiled to form electromagnets.

3-17

http://www.bavaria-direct.co.za/
https://things-in-motion.blogspot.com/2019/01/selecting-best-pole-and-slot.html
https://en.wikipedia.org/wiki/Rare-earth_magnet
https://en.wikipedia.org/wiki/Neodymium_magnet
https://en.wikipedia.org/wiki/Samarium-cobalt_magnet

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

To make maximum use of the volume that the motor occupies for torque production, n, and n, should
be close to the same, but not equal. If ny = n,, then at certain rotation angles all the electromagnets and
permanent magnets are aligned, and the motor can not self start; this configuration should thus be avoided.

For a given n, and n,, for a three-phase motor, the following characteristics are commonly defined:

slot/pole ratio: q =ns/(3n,), (3.3a)
pole units: u = ged(ng, ny), (3.3b)
coils per phase per pole unit: z =ny/(3u) < 3uz=ns, (3.3¢)
cogging steps: ¢ =lem(ng, ny), (3.3d)

where gcd denotes the greatest common divisor, and lem denotes the least common multiple.

To keep n, close to but not equal to n, for efficient use of the motor volume, as suggested previously, a
slot/pole ratio in the range 0.25 < ¢ < 0.5 is generally advised.

The number of pole units v is the maximum number of electromagnets that align with a permanent magnet
at any moment. The loading on the motor is said to be symmetric when v > 1; configurations that are
not symmetric should be avoided, as the torque produced by the electromagnets would cause the motor to
wobble. The quantity z measures the number of coils per phase per pole unit. The windings are balanced
when z is an integer; configurations which are not balanced should also be avoided. The values of u and z
for several recommended {ns, n,} combinations is given in Table 3.2, directly eliminating from consideration:
(a) those with ny = n,, (b) those regions outside the recommended slot/pole ratio range of 0.25 < ¢ < 0.5,
(c) those without symmetry, and (d) those that are out of balance. Also listed in Table 3.2 is the electrical
excitation frequency f. = fsn,/2 associated with shaft rotation at f; = 100 Hz = 6000 rpm.

To illustrate, the four designs in Figure 3.13 each have u = 2 pole units (and are thus symmetric), and the
values of z for these four designs are 1, 2, 3, and 4 respectively (and each are, thus, balanced).

The quantity ¢ counts the number of times that permanent magnets align directly with electromagnets
during an entire revolution of the shaft (as mentioned previously, u permanent magnets simultaneously align
with electromagnets each time this happens). This quantity also indicates the number of times that the torque
of the BLDC reaches a minimum (and, a maximum) during one complete revolution of the shaft, dubbed the
cogging steps of the motor. The larger c is, the smaller the amplitude of this torque ripple. The worst torque
ripple is given for an equal number of slots and poles, for which ¢ = ny = n,, again suggesting that this
condition should be avoided. Values of ¢ for several recommended {ng, n,} combinations is given in Table 3.3.

We next consider how the individual electromagnets of a brushless motor should be wound. Denote the
three electrical phases driving the BLDC motor as {A,B,C}, and let {A, a,B,b, C, c} denote windings of these
phases, where uppercase denotes clockwise (CW) windings, and lowercase denotes anticlockwise (ACW) wind-
ings. A BLDC motor configuration with 6 clockwise windings (with « = 2 and z = 1) may thus be denoted
ABCABC, or more compactly as (ABC)?. Defining the (dLRK) winding as AabBCcaABbcC, and also defining

(i) as ABbcaABCcabBCAabcC, (v) as (AaABbBCcC)?,

(i) as (AaABbBCcC)?, (vi) as ABCcabcaABCABbcabcCABCAabcabBC,
(iii) as (AabBCcaABbcC)? = (dLRK)?, (vii) as AaABbcCcaABbBCcaAabBCcCAabBbcC,
(iv) as AaAabBbBCcCcaAaABbBbcCcC, (viii) as (AaAaABbBbBCcCcC)?,

recommended winding patterns that maximize the torque output for several recommended {n;, n,} combina-
tions are given in Table 3.4. Note in particular that, for those {n;, n,} combination with z = 1, the symmetric
answer must simply be (ABC)*, by inspection. Further, (ACB)* is just (ABC)" operating in reverse.

The remaining winding patterns listed above may be motivated fairly simply via symmetry arguments on
a case-by-case basis, and are not nearly as mysterious as they might at first look. For example, consider first
the 24s26p design, rotated just a couple of degrees from the configuration shown at right in Figure 3.13, such

3-18

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

np —
Ns =

6
9
12
15
18
21
24
27
30
33
36

¢>0.5 10,1

12,1 2,6 4,3 6,2 4,3 2,6

Je

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Table 3.2: Pole units and coils per phase per pole unit, {u, z}, of 3-phase motors with recommended combina-
tions of [left] the number of slots n and [top] the number of poles n,. Non-recommended regions include:
P those with ng = ny, which are not self starting, and have relatively poor cogging numbers,

those with a slot/pole ratio ¢ = n,/(3n,) outside the range 0.25 < ¢ < 0.5, which are inefficient,
[| those without symmetry (that is, those with u = 1), which wobble, and

those that are electrically out of balance, with more windings on some phases than others.
Also listed is the electrical excitation frequency f. associated with shaft rotation at f; = 100 Hz = 6000 rpm.
Code to generate and extend Tables 3.2, 3.3, 3.5: RR_BLDC_design.m.

np—>
Ns = |

6
9
12
15
18
21
24
27
30
33
36

72 468 252 180 288 612

Table 3.3: Cogging steps ¢ (larger is smoother) of 3-phase motors for reccommended {n;, n,} combinations.

Np —>
Ns =
6
9
12
15
18
21
24
27
30

6 8 10 12 14 16 18 20 22 24 26 28

(ABC)* (ABC)*

(dLRK)
(ABC)?

(dLRK)

(ABC)®
(ABC)® (i) . i (i)
(ABC)

(i) (ABC)

(ABC)”
(iii)

(viii)

(iv)
(vii)

(ABO)10 (vi)

Table 3.4: Recommended winding configurations of 3-phase motors for recommended {n,, n,} combinations.
(ABC)? denotes ABCABC, etc., where {A,B,C,a,b,c} denote (uppercase) CW and (lowercase) ACW winds of
phases A, B, and C. Winding (dLRK) denotes AabBCcaABbcC; windings (i) through (viii) defined in the text.

3-19

https://github.com/tbewley/RR/blob/main/chap03/RR_BLDC_design.m

Ns =

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

Ny —
6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

4
6 | 0.866 [0.866

9 0.866 0.866

12 0.866 0.933 [N 0.933 0.866

15 0.866 0.866

18 0.866 0902 0.945 [N 0.945 0.902 0.866

21 0.866 0.866

24 0.866 0933 0.949 FN 0.949 0933 0.866

27 0.866 0.945 0.945

30 0.866 0.874 0936 0.951 [0.951 0.936
33 0.866

36 0.866 0.867 0902 0933 0945 0.953

Table 3.5: Fundamental winding factor k,,; (larger is more powerful) for recommended n, and n,, combinations.

that there is (pink) permanent magnet exactly halfway between the (CW-wound) electromagnet 7, and the
(ACW-wound) electromagnet 6. If the B phase is sinusoidal, and is phased such that the magnetic field at
electromagnets 6 and 7 (which are of opposite polarity) peak at this moment, then a maximum force will be
exerted on the (pink) permanent magnet halfway in between (ditto on the blue permanent magnet on the
opposite side). Looking around the circumference at the other permanent magnets that, at this instant, are
closest to being halfway between two electromagnets suggests that the electromagnet pairs {5,6} and {7,8}
should also peak at roughly the same time (and, again, be of opposite handedness); again, ditto on the opposite
side. By symmetry, this suggests that, for the 24s26p design, the z = 4 electromagnets of each phase, in each
of the u = 2 pole units, should be placed next to each other, and with opposite handedness. The handedness at
the intersections between the different sets of phases in each pole unit (that is, ab, BC, ca, AB, bc, CA) is then
selected in the sense that continues to apply torque in the same direction, finally arriving at winding (iv). The
other winding patterns listed above (and, those for larger {n, n,} configurations) may be reasoned similarly.

A more detailed discussion of the electromagnetic forces within a BLDC motor is beyond the scope of the
present discussion. A definitive text on this subject is Hendershot & Miller (2010); we will simply state here the
primary definitions that arise in this analysis, leaving derivation and detailed discussion to this text:

slot-pitch angle: vs = mny/ns = m/(3q), (3.4a)
coil-span angle: € =T —"s, (3.4b)
pitch factor, aka coil-span factor: k,, = cos(ne/2), (3.4c)
distribution factor: kan = sin(no/2)/[zsin(no/(2z))] where o =7/3, (3.4d)
winding factor: Ewn = Kankpn.- (3.4e)

As discussed in the above-mentioned text, the fundamental winding factor k,, (that is, k,,,, withn = 1), as
defined by (3.3)-(3.4), is proportional to the total torque that a BLDC motor can generate. Generally, the higher
k.1 is the better; note that 0.866 < k,,; < 1 for the recommended BLDC motor designs listed in Table 3.5.

In summary, all of the configurations listed in Tables 3.2-3.5 are viable three-phase BLDC designs, and may
be reached by the motor designer for different applications, depending on the relative importance placed on:

e simplicity of construction, for which small n, and small n,, are preferred,
e efficiency, for which a large fundamental winding factor k£, is preferred, and
e smoothness of operation, for which a large number of cogging steps c is preferred.

As highlighted in Tables 3.2-3.5, some particularly good tradeoffs between simplicity of construction, efficiency,
and smoothness of operation include the 6s8p, 12s14p, 18s20p, 24s26p, and 30s32p designs, with windings
of (ABC)?, (dLRK), (ii), (iv), and (viii), respectively, as defined above (see Figure 3.13).

3-20

Renaissance Robotics (v.2024-05-16)

Chapter 3: Sensors, actuators, and interfaces

mechanical center 0° 30° 60° 90° 120° 150°
rotation angle range | —15° —15° | 15° —45° | 45° —75° | 75° —105° | 105° — 135° | 135° — 165°
electrical center 0° 60° 120° 180° 240° 300°
rotation angle range | —30° —30° | 30° —90° | 90° — 150° | 150° — 210° | 210° — 270° | 270° — 330°
signals from u/v/w 1/1/1 1/1/0 1/0/0 0/0/0 0/0/1 0/1/1
Hall sensors a0/ 0/1/0 0/1/1 0/0/1 1/0/1 1/0/0 1/1/0
A/B/C or a/b/c L/Z/H L/H/Z Z/H/L H/Z/L H/L/Z Z/L/H
Field at edge Y N/-/S N/S/- -/S/IN S/-IN S/N/- -/N/S
of electromagnets A N/s/s n/S/n s/s/N S/n/n s/N/s n/n/S

Table 3.6: Caption goes here...

3.4.3 Commutation in BLDC motors

Hall sensors... (see Table 3.6).
Trapezoidal (“six-state”) commutation... simple...
Sinusoidal commutation. minimizes torque ripple
Third harmonic injection, higher torque.
Field oriented control (FOC).

3.5 Servos and Electronic Speed Controllers (ESCs)

3.6 Other types of actuators

many, many

3.6.1 Axial BLDC “pancake” motors

3.6.2 AC motors

Induction motors

3.6.3 Linear actuators and solonoids
3.6.4 Hydraulic and pneumatic actuators

3.6.5 Artificial muscle and electroactive polymers

3-21

https://en.wikipedia.org/wiki/Electric_motor
https://en.wikipedia.org/wiki/Brushed_DC_electric_motor

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

100.0

o & A
80.0 :

O\ R 3.0 Red ‘ V
60.0 T ///

- X 2.0 #
40.0 / Green—| / |) Blue
200) TFamber /| Blue 10 ’ ~Green

/ 4 Load Line |"~~-]__ /

0.0 | R=3.4/0.04=850hm “1- 0.0

16 22 28 34 40 46 5.0 00 15 30 45 60 75

Amber

Figure 3.14: (a) Current (in mA) vs applied voltage, and (b) luminous intensity (normalized by value at 20 mA)
vs current, of typical small signaling LEDs (see inset) of different colors in the Cree C566D-RFF series.

100 T 100
|

| =
80 - (\ 80 |

[

}\ (iii)
60 60

/ (i)
40 / | 40 Q
20 \ 20

0

0

400 450 500 550 600 650 700 750 400 450 500 550 600 650 700 750

Figure 3.15: Luminous intensity (normalized by peak value) versus wavelength of (a, from left to right) royal
blue, blue, green, amber, red orange, and red LEDs, and (b) “white” LEDs [at color temperatures of (i) 5000°K,
(if) 3700°K, and (iii) 2600°K] of typical high-intensity LEDs (see inset) in the Cree XLamp XP-E series.

3.7 Light Emitting Diodes (LEDs), buttons, and touchscreens

The current-voltage relationship of diodes is nonlinear, as shown (and discussed in detail) for general diodes
in Figure 9.14, and as highlighted for typical small Light Emitting Diodes (LEDs) in Figure 3.14a. In both cases,
the current through the diode is nearly zero until a certain “cut-in” voltage across the device is reached (in the
case of LEDs, usually somewhere between 1.5 and 3.5 volts, depending on the chemistry of its construction).
To operate properly without burning out'?, an LED is generally driven by an operating voltage higher than
its cut-in voltage, and is placed in series with a current-limiting resistor. This series resistor is responsible for
regulating the current through the LED, which is approximately proportional its brightness as illustrated in
Figure 3.14b. Typical safe operating currents for many small signaling LEDs are in the range of 5 to 40 mA.

To determine the appropriate value for the resistor in order to set the desired current passing through the
LED + current-limiting resistor pair, a convenient load line may be drawn on the current-voltage plot of the
LED. This loadline starts at zero for an applied voltage of V.. on the horizontal axis, and (since V' = I R) slopes
upward to the left at a slope of I/V = 1/R. For the loadline shown in Figure 3.14a, (0.040 A)/(3.4V)=1/(85 ()
and thus, for V., = 5V and R = 85(), the current through a blue or green LED would be about 20 mA,
whereas the current through a red or amber LED would be about 32 mA, where the loadline shown intersects
the corresponding curves. The LED current for other resistor values is determined similarly.

12Beware: if you attach an LED between power and ground without inserting a current-limiting resistor in series, you will burn it
out almost immediately; double check the datasheet of the LED you actually select to ascertain its range of safe operating current.

3-22

https://www.mouser.com/datasheet/2/723/HB_C566D-3012002.pdf
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Color_temperature
https://www.mouser.com/datasheet/2/723/HB_C566D-3012002.pdf
https://www.lumex.com/led-color-guide.html
https://en.wikipedia.org/wiki/Load_line_(electronics)

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

Vee GPIO

R\ N\

Figure 3.16: Use of tri-state (H/L/Z) logic plus PWM to independently drive two LEDs with a single GPIO.

3.7.1 Tri-state (H/L/Z) logic

As depicted in Figure 3.16, consider now attaching a GPIO pin (see §4.2.1) through both a green LED through
R, to power, and (in parallel) a red LED through Rs to ground, taking 71 = 150 ohm and Ry = 85 0ohm to run
both LEDs (from the Cree C566D-RFF series) at about 20 mA (see Figure 3.14a).

e If the GPIO is set (as an output) to H (that is, to power), then the red LED will illuminate.

e If the GPIO is set (as an output) to L (that is, to ground), then the green LED will illuminate.

If, on the other hand, the GPIO is set as a high-impedance input (which need not be monitored by the MCU),
then its value floats (i.e., it is determined by the rest of the circuit hooked to this GP1O). In this setting, we
refer to this third GPIO state as Z; the circuit then connects, in series between power and ground, the green and
red LEDs and two resistors (totaling 85+150=235 ohm); since the cut-in voltage of the red LED is around 1.7V,
and that of the green LED is around 2.9V, the current through the circuit will be about (5-1.7-2.9 V)/(235 ohm) ~
1.7 mA; the LEDs will glow so dimly at this low current that they will essentially appear to be off, thus providing
a means to effectively control two LEDs independently with a single GPIO.

Such clever use of Z as a third GPIO state is referred to as tri-state (aka three-state) logic. Pulse width
modulation (PWM) can extend even further what is possible using such logic. In the setting described above,
we can send a square wave at a frequency greater than 30 Hz that sets the GP1O as H 50% of the time, and as
L 50% of the time. The result is that both LEDs blink on and off so quickly that, to our eyes (which effectively
average over a timescale of about 1/30 of a second), both LEDs appear to be on 100% of the time, at about 50%
of the intensity than they would otherwise appear with the particular current-limiting resistors selected.

3.7.2 Arrays of LEDs or buttons using x/y multiplexing or crossplexing

When building arrays of LEDs or buttons (keys on a keyboard, resistive or capacitive touchscreens, etc.) it is
desirable to make the maximum use of a limited number of GPIOs, leveraging the speed of the computer or
microcontroller in comparison to the speed of the human with whom it is interacting.

A simple way to build such an array from n GPIO channels, referred to as x/y multiplexing, is to use
ny = |n/2] GPIOs on the left edge and ny = [n/2] GPIOs on the lower edge of a (nearly) square array (e.g.,
if n = 15, taking n; = 7 and ny = 8), leading to n; - ny = [n?/4] wire intersections at which LEDs or buttons
may be placed, as shown in Figure 3.17a. We may then successively (one at a time) energize (as either H or L)
each of the n; GPIOs controlling the rows, as inputs to the array, and simultaneously either:

- control the state at the other ny GPIOs (treated as MCU outputs) to turn on the desired LEDs on that row, or
- read the state at the other ny GPIOs (treated as MCU inputs) to determine which buttons are pressed.

An alternative way to build an array from n GP1O channels, referred to as crossplexing (aka Charlieplex-
ing), is effectively to rotate the “chessboard” of a large x/y multiplexing array by 45°, attaching the wires along
the rows and columns of this rotated chessboard to the n GPIOs along the left edge of the array, and connecting
the nearby wires of rows and columns of the chessboard along the top and bottom edges of the array, as shown
in Figure 3.17b. We may then cycle quickly through all n of the GP1Os, energizing (as either H or L) one of them
at a time as an input to the array, and controlling (for LEDs) or monitoring (for buttons) all n — 1 other GPIOs,
similar to before. This approach connects each of the n GPIOs to each of the ny = n — 1 other GPIOs at exactly
1 wire intersection, leading to n(n — 1)/2 intersections at which an LED or button may be placed.

3-23

https://en.wikipedia.org/wiki/Three-state_logic
https://en.wikipedia.org/wiki/Touchscreen#Resistive
https://en.wikipedia.org/wiki/Touchscreen#Capacitive_touchscreen
https://en.wikipedia.org/wiki/Charlieplexing
https://en.wikipedia.org/wiki/Charlieplexing

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

A

A B
C

B O+ :
C E
) F

D U/ G
H

E I
F J
K

1 2 3 4 5 6 L

Figure 3.17: Interconnection of n = 12 GPIOs as (a) an x/y multiplexing array, generating (n/2)?> = 36
intersection points (shown as pink and gray circles), and (b) a crossplexing array, generating n(n — 1)/2 =
66 intersection points. The coordinates of the intersection points are more directly enumerated using an x/y
multiplexing array, but crossplexing generates almost twice as many intersection points for large n.

Given an x/y multiplexing or crossplexing array of n GPIOs, as discussed above and illustrated in Figures
3.17a-b, there are several useful things that can be done with each intersection:

a. Put a single LED, together with a current-limiting resistor, between the two wires at each intersection.

- If using an x/y multiplexing array, to activate any number of LEDs, cycle quickly and repeatedly
through the input GPIOs {A,B,C....} to the array, setting one at a time to H while keeping the rest Z
or L; at the same time, coordinate the output GPIOs {1,2,3,...} to be L for those LEDs corresponding
to the rows with the intersections that you want to turn on, and leave as Z or H those GPIOs on
the rows corresponding to the intersections that you want to stay off".

- If using a crossplexing array, to activate any number of LEDs, cycle quickly through the GPIOs
{A,B,C....}, setting one channel at a time to H, while keeping the rest Z; at the same time, coordinate
the remaining GP1Os to be L for the LEDs at the intersections that you want to turn on.

b. Put two LEDs (one facing each direction, each with its own current-limiting resistor), between the two
wires at each intersection (using either an x/y multiplexing or crossplexing array). The first of the pair at
each intersection is illuminated exactly as described above; the second is illuminated by energizing the
channels using precisely the opposite logic (swap H and L).

c. Put a single button, in series with a diode, between the two wires at each intersection, again setting one
channel at a time to H, and monitoring the ns other channels to determine which button has been pressed.

The reason that the diode is needed in case c above is to prevent a phenomenon known as ghosting, which
arises when multiple buttons are pressed at the same time. For example, in Figures 3.17a-b, consider what
happens if the 2 green and 1 yellow buttons are pressed at the same time:

e In the case of the x/y multiplexing array in Figure 3.17a, when energizing (as H) channel D, both channels
5 and 3 are pulled high; the former because the yellow button is pressed, as expected, but the latter because
current flows from the yellow button along channel 5, through button B5 to channel B, and through button B3
to channel 3, thus making it appear as if button D3 is pressed, even if it isn’t.

e In the case of the crossplexing array in Figure 3.17b, when energizing (as H) channel L, channels D, G, and |
are all pulled high; the former because the yellow button is pressed, as expected, but the latter because current
flows from the yellow button along channel D, through button DG to channel G, and through button Gl to
channel I, thus making it appear as if buttons LG and LI are pressed, even if they aren’t.

3Note that, in this case, the use of tri-state logic is in fact unnecessary. Also, in this case, the current-limiting resistors can all be
moved adjacent to the output GPIOs {1,2,3,...} from the array.

3-24

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

Simply inserting a diode in series with each of the buttons at each of the intersections prevents all of these
spurious effects from arising.

3-25

Renaissance Robotics (v.2024-05-16) Chapter 3: Sensors, actuators, and interfaces

3.8 Displays and other interfaces

TFT, LCD, OLED
resistive or capacitive touch screens
elnk
Persistance of Vision (POV)

3-26

Chapter 4

Communication

Contents
4.1 Computernetworks e 4-2
41.1 Network protocol stacks L 4-2
4.1.2 Wired network topologies 4-3
413 Adhocwirelessnetworks L Lo 4-5
4.2 Short-range wired communication protocols 00000 4-5
4.2.1 Signaling (“bitbanging”) with GPIOs, and pullup/pulldown resistors 4-5
422 Encoders (ENC) 4-5
4.2.3 Pulse Width Modulation (PWM) 4-5
424 T2C/I3C . . o o e 4-5
425 SPI/QSPL . o o oot 4-5
42.6 UART/USART e e e 4-5
427 USB . . e 4-5
4.3 Long-range wired communication protocolso 0oL, 4-5
431 RS485 . . e 4-5
43.2 CAN . . e 4-5
433 Ethernet e 4-5
4.4 Wireless communication protocols oL 0o oL, 4-5
44.1 RFID/NFC 4-6
44.2 Bluetooth/BLE 4-6
443 WIi-Fi. . .o e 4-7
444 3G/4G/5Gcellular.o 4-7
445 Satellite L 4-7
4.4.6 Zigbee /ZWave 4-7
447 LoRa/SigFox 4-7
448 LPWAN/NBIOT /LTE-M e e e e 4-7
4.5 Connectorstandards e 4-8
451 Existing 12C, SP], and UART connector standards 4-8
4.5.2 Recon: an extensible JST-ZH powered connector standard 4-9
453 Yukon: unpowered connectors 4-15
454 CAN and RS485 differential interfaces for remote connections 4-17
455 SUMMATY o vt e e e e e 4-19

4-1

Renaissance Robotics (v.2024-05-16)

4.1 Computer networks

4.1.1 Network protocol stacks

A protocol stack is an implementation of a protocol suite, which defines the precise set of rules by which
computers communicate over a network. Network protocols are modeled as a stack of layers, each designed
for a specific purpose. There are two primary models of network protocols in common use. The internet (aka

TCP/IP) model consists of four layers:

4.
3.
2.
1.

The OSI (Open Source Interconnection) model consists of seven layers:

[CS R N e

Application layer
Transport layer
Internet layer
Link layer

. Application layer
. Presentation layer
. Session layer

. Transport layer

. Network layer

a) Subnetwork Access
b) Subnetwork Dependent Convergence
c) Subnetwork Independent Convergence

. Data link layer

- Logical link control (LLC) sublayer
- Medium access control (MAC) sublayer

. Physical layer

physical signaling sublayer
- Physical coding

Chapter 4: Communication protocols

https://en.wikipedia.org/wiki/Protocol_stack
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Internet_layer
https://en.wikipedia.org/wiki/Link_layer
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Presentation_layer
https://en.wikipedia.org/wiki/Session_layer
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Network_layer
https://en.wikipedia.org/wiki/Data_link_layer
https://en.wikipedia.org/wiki/Physical_layer

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

4.1.2 Wired network topologies

The topology of a “wired” computer network (interconnected by electrical cables or optical fibers) is a design
criterion that may be tailored to best suit the specific applications for which the system is intended, such as:

e internet connectivity of general-purpose computers,

e centralized fault-tolerant coordination of machines,

e distributed computation of multidimensional PDEs (via spectral, finite difference, or finite element methods),
e weather and climate forecasting [using ensemble methods for forecast uncertainty quantification (UQ)],

e navigation and manipulation of transactional databases (airline ticket sales, large-scale search, ...),

e deep learning for medical diagnostics,

e DNA sequencing, etc.

Links between computers (aka nodes) in any such network can be half-duplex (able to maintain communication
in one direction at a time only) or full-duplex (able to maintain communication in both directions simultane-
ously), with the connecting cables attaching to the nodes via a network interface controller (NIC). If links are
physically too long to reliably deliver a signal, one or more repeaters can be used. Possible logical network
topologies' include the following;:

A) The prototypical example of a physically-dedicated point-to-point link is a tin-can telephone. Circuit-
switching technology, as used in conventional telephony, allows temporary dedicated point-to-point elec-
trical connections to be set up when needed in settings incorporating many nodes.

B) Each pair of nodes in a daisy chain is connected via a cable with a NIC at each end; if a received message
is not intended for that node, it is simply retransmitted down the chain. A linear (with two ends) or ring
configuration can be used for such a chain; a ring provides, at modest additional cost, an alternate direction
to pass any given message, which is useful if the other direction is substantially longer, broken, or busy.

C) Each node may be connected (via a NIC) to a single central bus (aka backbone or trunk), and all data carried
on the bus can simultaneously be received (or, ignored) by any connected node. A linear bus has two
endpoints; a distributed bus has branches, and thus multiple endpoints. All endpoints of a bus must be
terminated (see §?7) to prevent reflections.

D) The sending of signals out to all nodes in a star configuration is coordinated by a central hub [in which an
input signal on one port is repeated as an output signal on all other ports] or switch [in which an input
signal (say, on port A) is routed only towards its specific destination (say, on port B), allowing simultaneous
communication traffic between the various other ports as needed (say, from port C to D, etc.)].

E) At least some nodes in a mesh network have more than two NICs, and thus can themselves act simulta-
neously as both nodes and switches (note that certain nodes at high-traffic junctions may be replaced by
dedicated switches). This topological class is very versatile. A small network with n nodes can be:

E.1) fully connected, with a point-to-point link between every pair of nodes [that is, with n — 1 NICs
per node, and (n — 1)! total links...which quickly becomes unmanageable for fairly small n], or

E.2) a single d-dimensional (aka dD) hypercube, with n = 2¢ nodes, d NICs per node, and d 2?7 total
links; with this paradigm, all nodes are within d “hops” from any starting node in the network.

For larger n, a mesh forms some sort of (partially connected) d-dimensional interconnect grid, such as:

E.3) A d-dimensional cartesian grid, usually with periodic connections in each coordinate direction (thus
dubbed a dD torus), with n = nins - - - ng nodes, and 2¢ NICs per node. At the cost of more NICs per
node, an dD grid has two important performance advantages over a 1D ring. First, for unstructured data
flow, a key performance metric is how many additional nodes are reached per “hop” from any starting

'0f course, physically, such networks are usually laid out quite differently (leveraging standardized server racks, etc.).

4-3

https://en.wikipedia.org/wiki/Network_topology
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Duplex_(telecommunications)#HALF-DUPLEX
https://en.wikipedia.org/wiki/Duplex_(telecommunications)#Full_duplex
https://en.wikipedia.org/wiki/Network_interface_controller
https://en.wikipedia.org/wiki/Repeater
https://en.wikipedia.org/wiki/Tin_can_telephone
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Circuit_switching
https://en.wikipedia.org/wiki/Ethernet_hub
https://en.wikipedia.org/wiki/Network_switch
https://en.wikipedia.org/wiki/19-inch_rack

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

node in the network; after 7 > 1 hops, the number of new nodes reached with one more hop is roughly
proportional to 77! (that is, a dD grid spreads data faster with increased d). Second, with its more nu-
merous, well-structured pathways, an dD grid can more quickly “transpose” a large multidimensional
grid that is distributed over the cluster®. Note also that circuit switching (see topology A) can be used at
times to temporarily partition a single periodically-connected grid into a number of smaller periodically-
connected grids to better run smaller jobs.

E.4) An d-dimensional noncartesian grid, also with periodic connections, formed by a rare sphere pack-
ing (see RP), with fewer NICs per node for a given dimension d than a cartesian grid®. Examples include
the 2D uniform hexagonal tiling, with 3 NICs per node, the 3D diamond packing D3, with 4 NICs per
node, and the D} hyperdiamond packing (a d-dimensional generalization), with d + 1 NICs per node.

E.5) An unstructured 2D grid interconnecting many computers that are sparsely separated over a large
physical area, such as a factory floor.

Networks may also be arranged logically as a hybrid combination of the above basic topologies, such as:
E.6) An extended star, given by a star (topology D) connecting to additional stars.
E.7) A tree, given by a high-speed bus (aka trunk; topology C) connected to stars (aka branches).

E.8) A spoked ring, given by a ring (topology B) with a central switch connected (as in a star) to a sparse
subset of nodes distributed around the ring. The ring facilitates fast simultaneous nearest-neighbor
communications (in 1D), and the spokes facilitate fast communication farther over the network.

E.9) A spoked grid, generalizing the spoked ring to a d-dimensional grid (topology E.3, E.4, or E.5), with
a central switch connected to a sparse subset of nodes distributed over the grid, to facilitate both fast
simultaneous nearest-neighbor communications (in dD), and fast communication over longer distances.

[llustrations of several such logical network topologies are given in Figure 4.1. Note that topologies E.6 through
E.9 are especially well suited for algorithms that have a coordinating “central” node that needs especially fast
access to all other “compute” or “machine coordination” nodes.

A well-designed structured grid network (topology E.3 or E.4 above) with 2h NICs per node and n >> 1 nodes
sometimes has embedded within it 7 nonoverlapping Hamiltonian circuits; that is, i entirely nonoverlap-
ping pathways that reach every other node in the network; a couple of examples are illustrated in Figure 4.1,
which can be useful for certain data sharing tasks within a network. Consider, for example, a difficult all-to-all
data transfer problem, in which each node has a certain (large) amount of data that needs to be transferred to
all other nodes. Splitting the data to be transferred on each node into i equal-sized pieces and directing each
piece along one of the Hamiltonian circuits (from each node simultaneously) gets all of the data where it needs
to go in exactly n hops, utilizing each communication link in the network with maximum efficiency.

Once one of the several above network topologies is selected, and set up correctly, the medium access control
(MAC) sublayer of the network protocol stack (see §4.1.1) handles all of the low-level rules for determining which
links to use to actually route packets across the network in any given situation. This significantly streamlines
the coding task for the embedded programmer, requiring simply the calling of the appropriate one-to-one, one-

2Consider, for example, a high-resolution z-y-z discretization of a 3D field defined over a cube using a 2D cartesian network
topology. Each node in the network can contain the discretized values of the field at all z gridpoints (for a certain range of and y
gridpoints), which substantially accelerates numerical algorithms involving implicit solves or FFTs in the z coordinate (only). Trans-
ferring data in one set of directions over the 2D network allows one to quickly perform a sort of matrix transpose, putting onto each
node the discretized values of the field at all y gridpoints (for a certain range of and z gridpoints), thus facilitating fast implicit
solves or FFTs in the y coordinate; transferring data in the other set of directions puts onto each node the discretized values of the
field at all z gridpoints (for a certain range of y and z gridpoints), thus facilitating fast implicit solves or FFTs in the x coordinate.

3The cost of mesh network is proportional to the number of NICs per node. Note that 4 NICs per node form a 2D cartesian or 3D
diamond grid, and 6 NICs per node form a 3D cartesian or 5D hyperdiamond grid, clearly favoring noncartesian grid topologies for
certain applications (particularly, those with unstructured message passing and a very large number of nodes).

4-4

https://en.formulasearchengine.com/wiki/Circle_packing#Uniform_packings
https://en.wikipedia.org/wiki/Diamond_cubic

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

Figure 4.1: Illustration of several logical network topologies.

to-all, or all-to-all data transfers in the numerical code, and leaving it to the protocol stack to sort out which
links to use to actually complete the requested data transfer.

4.1.3 Ad hoc wireless networks
4.2 Short-range wired communication protocols

4.2.1 Signaling (“bitbanging”) with GPIOs, and pullup/pulldown resistors

General-purpose input/outputs (GP1Os)

4.2.2 Encoders (ENC)
4.2.3 Pulse Width Modulation (PWM)

PWM (Pulse Width Modulation) can be used for both driving H-Bridges directly, and signaling to Servomotors
(Servos) and Electronic Speed Controllers (ESCs).
A good way to generate a PWM signal of specified frequency and duty cycle is discussed in Example 9.32.

4.2.4 12C/13C

4.2.5 SPI1/ QSPI
4.2.6 UART / USART
4.2.7 USB

4.3 Long-range wired communication protocols
4.3.1 RS485

4.3.2 CAN

4.3.3 Ethernet

(medium range)

4.4 Wireless communication protocols

review

4-5

https://www.iotforall.com/iot-connectivity-comparison-lora-sigfox-rpma-lpwan-technologies/

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

4.4.1 RFID / NFC
4.4.2 Bluetooth / BLE

4-6

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

generation | standard | adoption frequency band(s) MIMO | max datarate
Wi-Fi 1 802.11b 1999 2.4GHz 11 Mbps
Wi-Fi 2 802.11a 1999 5GHz 54 Mbps
Wi-Fi 3 802.11g 2003 2.4GHz 54 Mbps
Wi-Fi 4 802.11n 2009 2.4 and 5 GHz v 600 Mbps
Wi-Fi 5 802.11ac 2014 5GHz v 6.933 Gbps

Wi-Fi 6/6E | 802.11ax 2019 2.4 and 5GHz and 6 CHz v 9.607 Gbps

Table 4.1: Commonly used variants of the Wi-Fi standard.

4.4.3 Wi-Fi

Commonly used variants of the Wi-Fi standard are listed in Table 4.1; note that the maximum practical through-
put that an application can expect to achieve is about 53% of the max data rate using TCP, and about 64% of
the max data rate using UDP.

Wall-powered Wi-Fi routers operating at 2.4 GHz are typically effective up to about 46 m indoors and 92 m
outdoors, whereas routers operating at 5 GHz are typically effective over only about a third of these distances,
though they can be pushed to significantly higher data rates. Unfortunately, many other household products
operate in the 2.4 GHz band, including Bluetooth (see §4.4.2), microwave ovens, and baby monitors. Due to such
(often, frustrating) interference issues on the 2.4 GHz band, Wi-Fi 4 and later protocols do not rely exclusively
on the 2.4 GHz band. Notably, Wi-Fi 6 and 6E specifically address channel congestion and interference issues,
as well as significantly reducing the power required by client devices.

4.4.4 3G/4G/5G cellular
4.4.5 Satellite
4.4.6 Zigbee / Zwave

4.4.7 LoRa/ SigFox
LoRaWAN, Symphony Link

4.4.8 LPWAN/NBIOT/LTE-M

4-7

https://en.wikipedia.org/wiki/IEEE_802.11b-1999
https://en.wikipedia.org/wiki/IEEE_802.11a-1999
https://en.wikipedia.org/wiki/IEEE_802.11g-2003
https://en.wikipedia.org/wiki/IEEE_802.11n-2009
https://en.wikipedia.org/wiki/IEEE_802.11ac
https://en.wikipedia.org/wiki/IEEE_802.11ax
https://www.pcmag.com/news/what-is-wi-fi-6e
https://www.accton.com/Technology-Brief/high-efficiency-wifi-6-ieee-802-11ax/

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

4.5 Connector standards

“The nice thing about standards is that you have so many to choose from.” - Andrew Tanenbaum

Standard protocols for wired communication between “hosts” (e.g., SBCs) and “clients” (sensor modules, actu-
ators, ...) are surveyed briefly in §4.2 and §4.3. What many of these protocols leave unaddressed, however, is
the standardization of connectors on host and client devices that implement these protocols.

Venerable connector standards like USB (e.g. Types A, C, and micro-B), HDMI (e.g. standard and micro, aka
Types A and D) and Ethernet (RJ45) are both relatively compact and ubiquitous in modern laptop computers
and SBCs; their use thus requires no further discussion here. Also well standardized are 3.5mm TRRS A/V jacks
(aka TRS or “stereo mini” jacks, unfortunately with certain incompatibilities), and MIPI DSI display ports and
CSI camera ports (though the MIPI specs are not themselves publicly released). However, as addressed in this
chapter, other commonly-needed connectors for wiring together host and client devices are currently much less
standardized, sometimes leading to device incompatibilities and often requiring fragile (and, easily misrouted)
custom wire harnesses to address.

4.5.1 Existing 12C, SPI, and UART connector standards

Many attempts have been made to standardize powered wire harnesses for various short-range comm protocols
(see §4.2), prescribing both the connectors and the corresponding pin order to be used, including:

- standard 12C, with data and clock lines {SDA, SCL},

- extended 12C, adding {INT/SMBA, RES/SMBS} lines to standard 12C,

- SPI, with {MOSI, MISO, SCK, SS}, often with multiple SS (slave select) lines to support multiple devices,
- extended SPI, adding {INT, RES} lines to standard SPI,

- simplex or half duplex UART, using Tx or Rx only, or a single combined Tx/Rx line,

- full duplex UART, with separate transmit and receive lines {Tx, Rx},

- UART with Hardware Flow Control (HFC), adding {CTS, RTS} lines to avoid channel contention,

- (synchronous) USART, adding a clock line SCK to UART to synchronize the receiver and transmitter, and
- other analog or digital signals, such as GPIOs, PWMs, encoder signals, clocks, etc.

Several manufacturers have proposed standardized powered® connection protocols to address this need, and
marketed a variety of host and client devices mounted on small PCBs using the proposed protocols, including:

e PMOD, a standard by Digilent for 6- and 12-wire harnesses mated with 0.1” pin headers, including;:
- for 12C channels, a 1x6 connector with pin order®® {INT, RESET, SCL, SDA, GND, Vcc},
- for UART channels, a 1x6 connector with pin order {CTS, Tx, Rx, RTS, GND, Vcc},
- for SPI channels, a 1x6 connector with pin order {SS, MOSI, MISO, SCK, GND, Vcc},
- etc. (a handful of other 1x6 and 2x6 connectors are also defined; see the PMOD spec for details);

e Grove, a standard by Seeed for 4-wire harnesses with 2 mm pitch proprietary connectors (see here) with:
- for 12C connections, a pin order’ of {SCL, SDA, Vcc, GND},
- for UART connections, a pin order of {Rx, Tx, Vcc, GND},
- for other digital and PWM-driven devices, a pin order denoted {D0, D1, Vcc, GND}, and
- for analog devices, a pin order denoted {A0, A1, Vcc, GND};

*Most devices that implement these standards require 3.3V PWR, some use 5V, and some can use either. Check the specs!
>Many PMOD I2C connectors on clients are 2x6, with identical columns, facilitating easy daisy-chain wiring of 12C devices.
®An older PMOD spec excluded the {INT, RESET} lines from 12C wire harnesses, using 1x4 (or, by Footnote 5, 2x4) connectors.
"Note that Seeed sells branch cables to facilitate multiple 12C devices hooked to a single 12C channel.

4-8

https://en.wikipedia.org/wiki/USB_hardware
https://en.wikipedia.org/wiki/HDMI
https://techterms.com/definition/rj45
https://www.raspberrypi-spy.co.uk/2014/07/raspberry-pi-model-b-3-5mm-audiovideo-jack/
https://www.cablechick.com.au/blog/understanding-trrs-and-audio-jacks/
https://www.mipi.org/specifications/dsi
https://www.mipi.org/specifications/csi-2
https://reference.digilentinc.com/reference/pmod/start
https://reference.digilentinc.com/_media/reference/pmod/pmod-interface-specification-1_2_0.pdf
https://wiki.seeedstudio.com/Grove_System/
https://statics3.seeedstudio.com/images/opl/datasheet/3470140P1.pdf
https://www.seeedstudio.com/Grove-Universal-4-pin-connector-90-10-PCs.html
https://www.seeedstudio.com/Grove-Branch-Cable-5PCs-pack.html

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

e STEMMA, a standard® by Adafruit for 3- and 4-wire harnesses with 2 mm pitch |ST-PH connectors, with:
- 4-pin connectors, designed for 12C only, with pin order {SCL, SDA, Vcc, GND}, and
- 3-pin connectors, designed for analog, digital, and PWM-driven devices, with pin order { GND, Vcc, Signal };

e Gravity, a standard by DFRobot for 3- and 4-wire harnesses with 2mm pitch |ST-PH connectors, with:
- for 12C or UART channels, a 4-pin connector with pin order’ {Vce, GND, SCL, SDA} or {Vee, GND, Rx, Tx},
- for analog, digital, and PWM-driven devices, a 3-pin connector with pin order { GND, Vcc, Signal };

e Quwiic, a standard by SparkFun for 4-wire harnesses' with 1 mm pitch |ST-SH connectors, with:
- 4-pin connectors, designed for 12C only, with pin order {GND, Vee, SDA, SCL};

e STEMMA-QT, astandard by Adafruit for 4-wire 12C harnesses with |ST-SH connectors compatible with Qwiic.

Also noteworthy with regard to connector standardization (or, the glaring lack thereof...) in the industry are:

e the several 1 mm pitch |ST-SH connectors used by the Beaglebone Blue, including:
- for 12C channels, a 4-pin connector with pin order {GND, 3.3V, SCL, SDA},
- for UART channels, a 4-pin connector with pin order {GND, 3.3V, Rx, Tx},
- for SPI channels, a 6-pin connector with pin order {GND, 3.3V, MOSI, MISO, SCK, SS},
- etc. (a handful of other JST-SH connectors are also incorporated; see, e.g., here for pin order), and

e the 3-pin 1.5 mm pitch |ST-ZH connector'', with pin order {3.3V, GND, Rx}, used by the DSM radio receivers.
Digilent’s 0.1” pitch PMOD, Seeed’s 2mm pitch Grove, DFRobot’s 2 mm pitch Gravity, Adafruit’s 2mm
pitch STEMMA and 1mm pitch STEMMA-QT, and SparkFun’s 1 mm pitch Qwiic standards all have their pros
and cons. The substantial benefit that they share is the large catalog (from each respective manufacturer)
of ready-to-use devices, preassembled on PCBs incorporating the necessary passives, and sold with suitable
wiring harnesses and connectors. However 0.1” (2.54 mm) pitch pin headers and 2 mm pitch JST-PH (and similar)
connectors are unnecessarily large when considering the current requirements of most devices in these catalogs
(connector size becomes an essential limiting factor when designing space-constrained logic boards), whereas
1 mm pitch JST-SH, 1.25 mm pitch JST-GH, and similar connectors are only available as SMD, which are fragile
(these connectors often rip off a host PCB if used extensively). Further, the general lack of flexibility in existing
standards, in terms of optional additional pins, presents a significant downside for many applications.

4.5.2 Recon: an extensible JST-ZH powered connector standard

The smallest broadly-available, low-cost, 1A-rated connector standard with durable PTH shrouded headers for
mounting on a PCB is the 1.5 mm pitch JST-ZH standard, connectors for which are nonreversible (as with all
JST standards, but not with bare 0.1” pitch pin headers), as the pins are displaced from the centerline of the
connector shroud. Conveniently, JST-ZH wire housings with M pins can also fit into JST-ZH shrouded headers
(on a PCB) with N pins so long as M < N. This leads to the possibility of creating a uniquely extensible standard
using this type of connector that, for each comm protocol, picks up Vcc and GND on the first 2 pins, then all
essential pins for a given comm protocol, followed by a flexible number of optional pins for that comm protocol,
allin a predefined order. Following this approach, hosts may be used to drive clients directly using a given comm
protocol following this new standard (without incorporating custom wire harnesses that reorder the pins) so
long as the shrouded header on the host incorporates at least as many optional pins as the wire harness from
the client. Such hosts may include multiple connectors of a given comm protocol (like UART), some with fewer
optional pins and some with more, to more efficiently support a rich variety of auxiliary devices.

84-pin STEMMA and Grove I12C devices are interoperable, and (if powered by 3.3V) STEMMA-QT and Quwiic are interoperable.
°Despite published claims to the contrary (1, 2), 4-pin Gravity (with Vcc on pin 1) is not pin compatible with Grove or STEMMA.
9SparkFun’s Qwiic modules each incorporate a pair of 4-pin JST-SH connectors to facilitate easy daisy-chain wiring of 12C devices.
"This 3-pin JST-ZH connector is also included on the BeagleBone Blue, as well as several flight control boards meant for UAVs.

4-9

https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.jst-mfg.com/product/detail_e.php?series=199
https://learn.adafruit.com/introducing-adafruit-stemma-qt/technical-specs
https://learn.adafruit.com/introducing-adafruit-stemma-qt/technical-specs
https://www.dfrobot.com/gravity.html
https://www.jst-mfg.com/product/detail_e.php?series=199
https://www.dfrobot.com/product-1573.html
https://www.dfrobot.com/product-1741.html
https://www.dfrobot.com/product-76.html
https://www.sparkfun.com/qwiic
http://www.jst-mfg.com/product/detail_e.php?series=231
https://www.sparkfun.com/qwiic#faqs
https://learn.adafruit.com/introducing-adafruit-stemma-qt
http://www.jst-mfg.com/product/detail_e.php?series=231
https://learn.adafruit.com/introducing-adafruit-stemma-qt/technical-specs
http://www.jst-mfg.com/product/detail_e.php?series=231
https://beagleboard.org/blue
https://www.mathworks.com/help/supportpkg/beagleboneblue/ref/communicating-with-an-eeprom.html
http://www.jst-mfg.com/product/detail_e.php?series=287
https://www.google.com/search?q=DSM2+DSMX+receiver+r720x&tbm=isch
https://reference.digilentinc.com/reference/pmod/start
https://wiki.seeedstudio.com/Grove_System/
https://www.dfrobot.com/gravity.html
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.sparkfun.com/qwiic
http://www.jst-mfg.com/product/detail_e.php?series=287
https://learn.adafruit.com/introducing-adafruit-stemma-qt/seeed-studio-grove
https://learn.adafruit.com/introducing-adafruit-stemma-qt/sparkfun-qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt/stemma-qt-comparison
https://www.digikey.com/en/maker/projects/adafruit-stemma-stemma-qt/489773d34d0344cb8f39574002b66d91
https://www.robotshop.com/en/pixhawk-21-standard-set.html

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

The new extensible JST-ZH based open connector standard proposed here is dubbed Recon, and comes in
four main types (underlined pins are required, non-underlined are optional):

pin# — 1 2 3 4 5 6 7 8 9 ...
Recon Basic [Vee, GND, So, S1, S2, S3, S4, S5, S6, ...]
Recon 12C [Vcc, GND, SDA, SCL, INT/G2, RES/G3, G4, G5, Ge, ...] (a.1)
Recon SPI [Vcc, GND, MOSI, MISO, SCK, SSa, INT/SSb, RES/SSc, SSd, ...] '
Recon UART-T [Vcc, GND, Tx, Rx/G1, SCK/Vbat/G2, CTS/G3, RTS/G4, G5, Ge, ...]
Recon UART-R [Vcc, GND, Rx, Tx/G1, SCK/Vbat/G2, RTS/G3, CTS/G4, G5, Ge, ...]

To accelerate the adoption of the Recon standard, ready-made wire harnesses that convert directly from Recon
hosts (like the Berets discussed in §5) to PMOD, Grove/STEMMA, Gravity, and Qwiic/STEMMA-QT clients are
available, thus enabling such hosts to connect directly (without requiring user-made custom wire harnesses) to
all of the large catalogs of available client devices incorporating these current competing standards.

The most common voltage used by currently-available client devices is 3.3V; many 5V devices, and an
increasing number of 1.8V devices, are also available. The Recon standard thus requires that hosts provide
Vce =3.3V, and use 3.3V TTL logic, by default on all 12C, UART, and SPI connectors. Other voltages (5V and
1.8V in particular) may be selectable on individual connectors on the host, in order to support an even larger
range of client devices. If Vcc =5V is selectable on a given connector, its (3.3V TTL) digital pins must simply be
5V tolerant. If, Vcc = 1.8V is selectable on a given connector, on the other hand, all of its digital signals must be
level shifted (on the host) to the value of Vcc selected (using, e.g., a TI TxB0108 level shifter).

We now discuss some details related to each of the four main types of Recon connectors.

4.5.2.1 Recon Basic and its variants, including PWM and ENC

The simplest Recon connector is a 2-pin power connector, {Vcc, GND}. From this starting point, the Recon
Basic standard shares power and a set of one or more generic numbered signals, denoted {S0,S1,52,S3,...},
which is useful for signals that do not follow one of the three main short-range digital comm protocols {I2C,
UART, SPI} discussed in the following three subsections. For signals that are intended for more specific pur-
poses, different one- or two-character identifiers, plus a sequencing number, may be used; for example, instead
of using the name Basic and the generic signal names {S0, 51,52, S3,... }, one may substitute as follows:

- GPIOs may be denoted {G0,G1,G2,G3,...},

- PWM based signals (usually, as outputs from the host) may be denoted {P0, P1,P2,P3,...},

- Encoder (ENC) signals (usually, as inputs to the host) may be denoted'? {EOa, EOb, E1a, E1b, ...},

- Clock signals for general-purpose applications may be denoted {CK0, CK1,CK2,...},

- Analog signals may be denoted {A0, A1,A2,A3,...}, and

- Digital comm signals not following the I12C, UART, or SPI standards may be denoted {D0,D1,D2,...},

thus defining the Recon GP10, Recon PWM, Recon ENC, Recon Clock, Recon Analog, & Recon Digital
variants of the Recon Basic standard. Other specific signal names and enumerations may also be proposed
and used when necessary, if appropriately documented in the corresponding device datasheet; the Recon Basic

2Most modern encoders are quadrature encoders, the outputs of which are attached to the host a pair at a time in order to discern
both the speed and direction of rotation of the shaft to which they are attached. For clarity, such pins should thus be enumerated a
pair at a time; this modified enumeration of the signals of the Recon Basic standard should not present any confusion.

130ther digital comm approaches are typically bit-banged from the MCU, which requires the host CPU to manage; the advantage
of the 12C, UART, and SPI standards, and their common extensions, is that they may typically be handled by dedicated subunits on
modern MCUs, offloading the computational burden of controlling these channels from the available CPU core(s) on the host.

4-10

https://reference.digilentinc.com/reference/pmod/start
https://wiki.seeedstudio.com/Grove_System/
https://learn.adafruit.com/introducing-adafruit-stemma-qt
https://www.dfrobot.com/gravity.html
https://www.sparkfun.com/qwiic
https://learn.adafruit.com/introducing-adafruit-stemma-qt
http://www.ti.com/product/TxB0108

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

standard itself is meant to be extensible and flexible'.

GP10s may be appended to the Recon Basic variants described above, and to the Recon 12C, SPI, and UART
standards discussed below; e.g., the connector [Vcc, GND, CK0, CK1, CK2, G3] fully conforms to the Recon
Clock spec. A logical numbering for these optional GPIOs, consistent with the Recon Basic spec, is proposed
in (4.1); other short/descriptive names for these GPIOs, appropriately documented, should instead be used on
clients to identify the functions of the GPIOs that they include, noting that the Recon spec calls for all required
and (if included) optional signals listed in (4.1) to remain in the order specified for the corresponding connector.

4.5.2.2 ReconlI2C

Perhaps the most widely adopted standard for low-speed short-distance serial communication between a host
(aka “master”) and multiple clients (aka “slaves”) is 12C. The 12C standard facilitates half-duplex'® communica-
tion rates up to 400 kbps, with extensions to 1 Mbps and, via additional logic and clock stretching, to 3.4 Mbps.
Standard 12C requires just two digital signals, data and clock {SDA, SCL} (pins 3 and 4 of the Recon 12C stan-
dard). An 12C master may communicate individually with up to 112 slaves at addresses x08 to x77 using simple
7-bit device addresses (or up to 1024 slaves, at addresses x000 to x3FF, using 10-bit device addresses). Tradi-
tionally, communication via standard 12C requires all transmissions to be initiated by a single master; however,
some newer 12C devices implement a multimaster protocol in which different devices (each of which imple-
ment the multimaster protocol) can take over the master role on a single 12C bus at different times. Common
extensions of the 12C standard add the following (optional pins 5 and 6 of the Recon 12C standard):

- INT, an active low open drain output from the slaves(s) meant to alert the master of new data to report, and

- RES, an active low “reset” or “suspend” output from the master meant both to drive the slaves(s) into a low-
power “sleep” state if available, and to re-initialize certain settings on the slaves(s) once released.

The SMBus and related PMBus standards are based closely on 12C; all three types of devices may generally be
mixed on a single bus. Amongst other refinements, SMBus standardizes the behavior of the optional INT (aka
SMBALERT#) and RES (aka SMBSUS#) pins in a useful way; if these standardized behaviors on the optional
INT and/or RES pins are available on a given host or client, they are (for brevity) to be denoted in the Recon
[2C standard as SMBA and SMBS, respectively, on the corresponding device.

The newer 13C standard might well reshape how hosts communicate with multiple low-power clients in
the coming decade. 13C is also based on the 12C standard, and is compatible with older 12C devices, while
allowing much faster comm with other I3C devices over the same {SDA, SCL} pins. The 13C standard facilitates
communication rates up to 12.5 Mbps, with extensions to 33 Mbps. One of the new features of 13C is in-band
interrupts, which provide an efficient way for slaves to alert the host of new data to report without using
a separate INT/SMBA pin, or swapping out which device plays the role of master (the logic of which can get
complicated). The Recon I12C connector standard is, of course, compatible with I3C; if/when 13C becomes widely
adopted, the name of the Recon 12C standard might well need to be updated to reflect this compatibility.

4.5.2.3 Recon SPI

Another common protocol for short-distance serial communication between one master and multiple slaves is
SPI. The SPI approach, which does not have any formal standard, facilitates fast full-duplex'® synchronous'’

“Note that, e.g., H-bridge outputs for driving brushed DC motors and steppers are generally not considered to be part of the Recon
standard, as they are not “powered” connectors with {Vcc, GND}.

SHalf duplex means that communication in one direction at a time only is allowed.

1Full duplex means that simultaneous communication in both directions is possible.

7Synchronous means that there is a shared serial clock signal from the master, denoted SCK, upon which both the transmit and
receive signals at both ends of the comm channel are coordinated.

4-11

https://www.i2c-bus.org/
https://www.i2c-bus.org/specification/
https://www.i2c-bus.org/fast-mode-plus/
https://www.i2c-bus.org/clock-stretching/
https://www.i2c-bus.org/fast-mode-plus/
https://www.i2c-bus.org/addressing/
https://www.i2c-bus.org/addressing/10-bit-addressing/
https://www.i2c-bus.org/multimaster/
https://en.wikipedia.org/wiki/System_Management_Bus
https://en.wikipedia.org/wiki/Power_Management_Bus
http://www.smbus.org/specs/SMBus_3_1_20180319.pdf
https://en.wikipedia.org/wiki/I3C_(bus)
https://mipi.org/sites/default/files/MIPI_Alliance_I3C_Whitepaper.pdf
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

communication, often at rates exceeding 10 Mbps. Typical SPI implementations (aka “4-wire SPI”) use four
signals: master-out-slave-in, master-in-slave-out, serial clock, and slave select, denoted {MOSI, MISO, SCK, SS}
(all four signals are required on SPI hosts by the Recon SPI standard), where SS is active low. When multiple
slaves are attached to a single SPI master, a different slave select signal {SSa, SSb, SSc, ... } is connected to each
attached device; custom wire harnesses are thus generally required.

A few common simplifications of standard SPI (full-duplex, with {MOSI, MISO, SCK, SS} signals) exist:

- In simplex'® mode, either the MOSI or the MISO wire is simply dropped.

- In half-duplex (aka “3-wire SPI”) mode, a single SDIO signal is used for both input and output at different
times'. On some MCUs, 3-wire SPI mode can simply be selected in software when needed (i.e., to communicate
with a 3-wire SPI slave), making SDIO available directly on the host’s SPI MOSI pin. Selecting this feature in
software on a host allows both 3-wire SPI comm to certain slaves at some times, and 4-wire SPl comm to other
slaves at other times. On other MCUs, to facilitate 3-wire SPI, the MOSI pin on the host must be connected via
a resistor (on the PCB, likely as a DNP?’) to the MISO pin, and the modified MISO line subsequently connected
to the SDIO pin of the slave. Unfortunately, this hard-wired approach to combining MOSI and MISO on a host
would likely interfere with the communication with other 4-wire SPI slaves on the same SPI channel.

Note that, even if there is only one slave device driven by a given SPI channel, the corresponding SS pin on
the slave can usually not simply be tied off to GND and the SS signal eliminated, as state transitions on the SS
pin are often (but not always) used by the slave to detect the beginning and end of each data transmission.

As with 12C, communication via standard SPI requires all transmissions to be initiated by a single master?'.
Thus, common extensions of the SPI protocol add (software-controlled) INT and RES signals (optional pins 7
and 8 of the Recon SPI standard), the functionality of which is defined as for 12C channels (see §4.5.2.2).

4.5.2.4 Recon UART

A UART is a ubiquitous MCU subunit for asynchronous full-duplex short-distance serial communication, nom-
inally point-to-point (between two devices). UART communication speed is configurable (and, measured on
the fly at the opposite end of each wire, rather than being synced via a shared clock), with rates up to 5 Mbps
realistically achievable, and 20 Mbps possible under ideal conditions, though many devices top out at 115.2 kbps
or less. Unlike 12C and SPI, there is no concept of master or slave in UART; either device can initiate a transmis-
sion. Like 12C, standard UART requires just two digital signals, transmit and receive {Tx, Rx} (pins 3 and 4 of
the Recon UART standard). Unlike I2C and SPI, the connection of these two signals need to be crossed between
one end of the wire harness and the other (i.e., Tx connects to Rx, and Rx connects to Tx); this is accomplished
in the Recon UART standard (4.1) by defining a UART-T pin order, usually implemented on hosts, and a UART-R
pin order, usually implemented on clients, thus obviating the need for crossing wires within harnesses that
connect UART-T connectors to UART-R connectors.
Notable extensions to the UART standard include the following.

- SCK (optional pin 5 of the Recon UART standard) is a serial clock signal used, in a modern yet still somewhat
uncommon extension of UART dubbed USART, to synchronize the transmit and receive signals at both ends
of the comm channel and thereby facilitate faster communication rates, as done in SPI (see §4.5.2.3). In fact,

8Simplex means that communication in one direction only is possible.

YWarning: in 3-wire SPI, a resistor is generally needed somewhere along the communication path between the master and the
slave, to prevent a possible (though, temporary) direct connection between a driven pin on the master and a driven pin on the slave
at the opposite logic state, as the master and slave nodes are not generally synchronized.

2DNP means Do Not Populate, or Do Not Place, a given component during the board assembly process, but instead leave an open
solder pad at this location, for a component to be added later by the user if desired.

I Though rarely used, some hosts do implement a multimaster SPI protocol, though multimaster SPI is restricted to operate between
two compatible devices only; unfortunately, this approach does not readily extend to SPI channels with additional slaves on it.

4-12

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Interface
https://www.totalphase.com/support/articles/200350046-Interfacing-with-3-wire-SPI
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface#Operation
https://www.analog.com/media/en/technical-documentation/application-notes/an-877.pdf
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-Serial_Peripheral_interface_%28SPI%29/index.html

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

some flexible USART subunits on MCUs can also support an SPI (master or slave) mode of operation; the Recon
UART pin order is designed specifically to support this.

- Vbat (optional use of pin 5 in the Recon UART spec) is a secondary (low-current) standby voltage source, which
is required by some UART clients (e.g., GPS modules) for efficient operation®. If implemented, it is anticipated
that Vbat would usually be made available on pin 5 of a Recon UART connector via a PCB solder jumper.

- {CTS, RTS} (optional pins 6 and 7 of the Recon UART spec) are used for Hardware Flow Control (HFC), which
is today also somewhat uncommon in clients. The names and functions of these signals are derived from the
(once-ubiquitous, but now mostly legacy) full RS232 standard®; note that {CTS, RTS} are crossed between the
client and the host, like {Tx, Rx}, as again facilitated by the distinct UART-T and UART-R pin orders.

A few simplifications of standard UART (full-duplex, with {Tx, Rx} signals) are also quite common (and thus
permitted on both hosts and clients by the Recon UART-T and UART-R connector standards):

- In simplex mode, either the Tx or the Rx wire from the host is simply dropped. Notable common examples
include seven segment display drivers, which are transmit only from the host, and DSM receivers, which are
receive only at the host (e.g., a mobile robot or drone).

- In half-duplex (aka “single-wire” or “1-Wire”) mode, a single signal is again used for both input and output.
On some MCUs, this mode (on the Tx line) can simply be selected in software when needed. Usually, a pull-up
resistor is needed somewhere along this single wire; to facilitate this mode, it is thus suggested that DNP pads
be left for such a pull-up resistor on the host. If a hardware single-wire mode is not available in the UART
subunit on the host MCU, and the UART transmit module is (or can be configured as) open drain, the Tx and Rx
pins may simply be connected to enable single-wire functionality. Unfortunately, most UART transmit modules
are push/pull, thus requiring extra circuitry to convert them to open drain behavior before connecting the Tx
and Rx lines to enable single-wire functionality, as discussed further here.

Creative switching strategies and nonstandard ring connections are occasionally proposed to interconnect
multiple UART devices. This gets complicated and inefficient (requiring substantial intervention by the CPU) in
a hurry; if multiple devices need to be interconnected, the authors thus recommend instead using standard 12C
(§4.5.2.2) or SPI (§4.5.2.3) for short-range connections, or CAN or RS485 (§4.5.4.3) for longer-range connections.

4.5.2.5 Reasoning for the Recon pin order

The logic for the pin order adopted across the entire Recon standard is as follows:

- Vcc and GND, which by definition are required on all powered connectors, come first. Following the uniquely
extensible Recon standard, JST-ZH wire housings with M pins will often be fit into JST-ZH shrouded headers
with N pins, where M<N. It is thus important that Vcc be located on the very first pin, as this prevents Vcc
from accidentally being sent directly to any other pin on the client if the connector is inserted incorrectly (not
engaging the first pin), thus minimizing the possibility of damaging the client device.

22To provide such standby power from the host to SPI or 12C clients, or to USART clients which make use of the SCK pin, while
maintaining maximum flexibility and extensibility according to the Recon spec, it is recommended to use a separate 2-pin secondary
power connector of the Recon Basic type (see §4.5.2.1).

BThere are 6 control pins on the common DE9 connector used in this once-ubiquitous standard: {CD, CTS, RTS, DSR, DTR, R},
standing for Carrier Detect, Clear To Send, Request To Send, Data Set Ready, Data Terminal Ready, Ring Indicator. Of these, only
{CTS, RTS} are still in significant use today. If the need arises to support all 6 of the control signals on DE9 connectors (primarily,
to support legacy equipment), the Recon UART-T and UART-R standards may be augmented as follows (with typical outputs, inputs
specified, noting that DTE originally stood for Data Terminal Equipment, and DCE stood for Data Circuit-terminating Equipment):

Recon RS232-T [Vcc, GND, Tx, Rx, CD, CTS, RTS, DSR, DTR, RIl, ...] < host (aka DTE)

Recon RS232-R [Vcc, GND, Rx, Tx, CD, RTS, CTS, DTR, DSR, RIl, ...] < client (aka DCE) (42)

4-13

https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-USART_interface_%28USART%29/index.html
https://www.u-blox.com/sites/default/files/products/documents/PAM-7Q_HardwareIntegrationManual_%28UBX-13003143%29.pdf
https://learn.sparkfun.com/tutorials/using-the-serial-7-segment-display/#example-1-serial-uart
https://www.google.com/search?q=DSM2+DSMX+receiver+r720x&tbm=isch
http://ww1.microchip.com/downloads/en/AppNotes/USART-in-One-Wire-Mode-ApplicationNote-DS00002658.pdf
https://www.maximintegrated.com/en/design/technical-documents/tutorials/2/214.html
https://components101.com/connectors/rs232-connector

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

- Data lines come next, with priority given to output from the master in cases that data is carried over 2 wires,
- Clock comes next, followed by slave select(s).

- Optional coordinating signals come last, after all of the required signals, and ordered by frequency of use;
these optional signals notably include INT/RES, CTS/RTS, extra SS lines, and extra GPIOs.

It is hoped that, following the logic presented here, new host and client devices following the space-efficient
(1.5 mm pitch), secure, durable, extensible, and inexpensive JST-ZH based standard outlined in (4.1) will be devel-
oped by various manufacturers. Several conversations advocating for this new standard are already underway;
if interested, please contact the author.

4.5.2.6 Recon compatibility, and incompatibility, with pin muxing on current devices

The Recon pin order is compatible with some essential pin muxing design decisions already made for a number
of currently-available market-leading host and client devices, including the following;:

1. Pin multiplexing {SDA,SCL} on 12C lines with, respectively, {Tx, Rx} on UART lines, as suggested by the
UART-T standard, is consistent with the approach taken on several host MCUs, including the Broadcomm
BCM2711 in the RPi4 (Table 5.9), and the Tl C2000 and MSP432. Recon I12C connectors on such hosts can be
converted directly into Recon UART-T connectors (at least, on these primary 2 signals) via a switch in software.

2. Alternate pin functions of STM32 USART modules between UART and SPI modes are consistent with the
Recon standard; that is, USART modules on STM32-based hosts can be converted from Recon UART-T connec-
tors (including {SCK, CTS, RTS}) to Recon SPI connectors (including {SCK, SSa, SSb}) via a switch in software.
Further, on certain (host) STM32 ICs, {MOSI,MISO} of at least some dedicated SPI modules align with {Tx,Rx}
of other dedicated UART modules, consistent with the Recon UART-T standard (at least, on these 2 signals).

3. DSM2/DSMX receivers, which happen to be available already with JST-ZH connectors, are compatible with
the Recon UART-R standard. Further, STM32 USART, UART, and LPUART modules, when operating in half-
duplex mode and not transmitting, can perform Rx functions on the Tx pin. Thus, the DSM receiver pinout is
also compatible with the Recon UART-T standard when using an STM32 host operating in half-duplex mode.

Unfortunately, many pin multiplexing decisions made for currently-available host and client devices do not
allow for simple software conversion between different comm protocols with consistent pin orders on a given
connector (especially on the optional additional pins); indeed, some of these pin multiplexing decisions seem
to have been made almost at random. For example:

A. On the STM32, the pin multiplexing between {SDA, SCL} and {Tx, Rx} matches the Recon UART-T order on
some channels, but the Recon UART-R order on other channels.

B. On the RPi4, the pin multiplexing between SPl and UART with (optional) HFC, as shown in Table 5.9, does
not follow any easily discernible reasoning [cf. §4.5.2.5].

It is suggested that broadly adopting a logical pin muxing standard, consistent with (4.1), might help both IC
and PCB manufacturers, of both host and client devices, to market more capable and interoperable products
with fewer pins. This may be made possible by deploying reconfigurable comm ports that may easily be switched
between different comm protocols (e.g., via solder jumpers on clients, or via software on hosts), without hav-
ing to change the wiring between the host and client devices, thus reducing both IC package size and board
and wiring complexity, ultimately reducing manufacturing costs. If the idea of standardizing [to (4.1)] both
pin multiplexing and (on connectors) pin order becomes well adopted, such ports could be named as, e.g., a
Recon I12C/UART-R port (on a client), or a Recon 12C/SPI/UART-T port (on a host), thereby indicating both
the various comm protocols available on those ports as well as the standardized Recon pin order used.

4-14

https://www.ti.com/lit/ds/symlink/tms320f28388s.pdf
https://www.ti.com/lit/ds/symlink/msp432e411y.pdf?ts=1594666180136
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-USART_interface_%28USART%29/index.html
https://www.st.com/resource/en/datasheet/stm32g474ve.pdf
https://www.google.com/search?q=DSM2+DSMX+receiver+r720x&tbm=isch
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-USART_interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-LPUART_interface_%28LPUART%29/index.html
https://www.st.com/resource/en/datasheet/stm32g474ve.pdf

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

4.5.2.7 Extended Recon

It is at times useful to provide multiple regulated voltages over a connector. Perhaps the most common need
for this is to provide a (low-current) standby voltage to GPS modules to facilitate warm starts; this need is
addressed with the optional Vbat pin function in the Recon UART standard, as discussed in §4.5.2.4. However,
other situations are anticipated which might also call for multiple regulated voltages to be provided over a single
connector. To facilitate this, if appropriately documented (and, if possible, clearly called out on the silkscreen
on the PCB itself), Extended Recon connector standards may be proposed, implementing one or more extra
(optional) regulated voltages provided on pins placed before (to the left of) the Vcc = 3.3V pin appearing in the
Recon standard given in (4.1). Warning: accidentally plugging into these extra voltage pins with a standard
Recon connector will likely damage or destroy the host and/or client device; to reduce the likelihood of such a
consequential mistake, small dummy plugs should be used to block these pins, thus safely reducing an Extended
Recon connector to a standard Recon connector as defined in (4.1).

4.5.2.8 Stackable Recon

The Recon standard is designed to compactly, securely, and extensibly connect PCB hosts to nearby client
devices elsewhere on the same mobile robot or electromechanical machine. As motivated in the first two para-
graphs of §4.5.2, the Recon standard calls for JST-ZH connectors to be used.

At times when building a mobile robot or electromechanical machine, however, the SBC controlling the
machine (and/or its COTS motor control board, such as those described in §5) does not quite have all of the
necessary control or filter electronics implemented, and some addition custom circuits are required. In such
situations, it is necessary for the user to design and use a custom daughterboard, to connect this custom daugh-
terboard to one or more of the analog or digital comm (12C, SPI, UART) channels on the SBC or the COTS motor
control board, and to securely mount this custom electronics somewhere nearby.

For this task, the use of multiple single-row 0.1” pitch female headers laid out on a 0.1” grid, as popularized
by Arduino, is quite convenient. Such an arrangement provides both electrical connectivity to the necessary
channels as well as secure physical mounting of the custom daughterboard itself. Also, with such an arrange-
ment and the use of stackable headers, two or more custom daughterboards may be stacked.

Stackable Recon and Stackable Extended Recon standards are thus defined that follow the same pin
order as the Recon and Extended Recon standards defined above, but using single-row 0.1” pitch female headers
(with 0.025” square pins) instead of JST-ZH connectors. The SPI and 12C Headers defined in Table 5.2 are
examples of Stackable Extended Recon SPI and Stackable Extended Recon 12C connectors.

Note that small servos and ESCs ubiquitously come with 1x3 female jacks which mate with 0.1” pitch male
header pins on the host. The (non-Recon) order of pins in modern servo connectors is {PWM signal, Vcc, GND},
respectively, with Vcc in the range of +4.8V to +12V. The reasoning for this order for servo connectors is that
the 1x3 female jack may easily be plugged into the male header pins backwards; with this ordering (only), this
is safe: it will result in the corresponding servo not functioning correctly until the plug is reversed, but it will
not damage either the host or the servo. This ordering is well motivated and should not be changed.

4.5.3 Yukon: unpowered connectors

By removing the shared Vcc connection, to interconnect devices that are otherwise already powered, Recon
connectors of the five types defined in (4.1) reduce to what we dub Yukon?* connectors (again, leveraging the

2n contrast to the Recon (“Renaissance Connector”) standard for short-distance powered connections to sensors, the name of the
Yukon standard, which itself evokes extreme physical distancing, is derived as a homophone of Ucon (“Unpowered Connector”).

4-15

https://store.arduino.cc/usa/arduino-uno-rev3

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

fact that durable [PTH] JST-ZH shrouded headers with N pins can accept JST-ZH wire housings with M pins
when M <N, thus creating a signal-extensible connector standard) as follows:

Yukon Basic [GND, So, ST, S2, S3, S4, S5, Se,
Yukon 12C [GND, SDA, SCL, INT/G2, RES/G3, G4, G5, Geé,
Yukon SPI [GND, MOSI, MISO, SCK, SSa, INT/SSb, RES/SSc, SSd, ... (4.3)

Yukon UART-T [GND, Tx, Rx/G1, SCK/Vbat/G2, CTS/G3, RTS/G4, G5, Geo,
Yukon UART-R [GND, Rx, Tx/G1, SCK/Vbat/G2, RTS/G3, CTS/G4, G5, Ge,

WS [y VY oy G By WYy W |

As with the Recon Basic standard discussed in §4.5.2.1, the Yukon Basic standard may be implemented in
Yukon GPIO, Yukon PWM, Yukon Enccoder, Yukon Clock, Yukon Analog, and Yukon Digital variants.

Provided that significant care is exercised when plugging in the connector (in this case, NOT engaging the
first pin), Recon connectors can actually be used as Yukon connectors. Warning: if this is done incorrectly,
power on one side will be connected directly to GND on the other, likely damaging or destroying one or both
devices; to reduce the likelihood of such a consequential mistake, while also making the connection of the
wire housing even a bit more secure, a small dummy plug should be used to block the first pin of any Recon
connector, thus safely reducing it into a corresponding Yukon connector.

As in §4.5.2.8, Stackable Yukon connectors are also defined, which follow exactly the same pin order as
the Yukon standards defined above, but use single-row 0.1” pitch female headers instead of JST-ZH connectors.
The Analog Header defined in Table 5.2 is an example of a Stackable Yukon Analog connector.

4-16

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

4.5.4 CAN and RS485 differential interfaces for remote connections

Though a variety of different effective distances are reported around the web under various conditions (spacing
and characteristic impedance of the traces and wires used, electromagnetic interference, possible impedance
mismatches at IC/trace and trace/wire junctions, etc), without a repeater and when operating at low comm
speeds, 12C links are practically limited to somewhere around 5m, SPI links are limited to around 10 m, and
UART links are limited to around 15 m; at higher comm speeds these effective distance limits are all substantially
reduced. To connect over longer distances, differential interfaces communicating over one or more twisted pairs
of wires are needed. The two dominant standards today for such differential interfaces are” CAN and RS485%.
A few useful comparisons of these two standards are available here, here, and here. There are a number of
subtle issues, including interconnect topology, termination, biasing, grounding, etc., involved in making such
systems work well; a succinct review is available here. Industrial RS485 data cables are typically 24 AWG with
a characteristic impedence of 100 €) to 120 €); automotive CAN data cables are typically 18 to 20 AWG with
characteristic impedence of 110) to 130 €2. CAT5e or CAT6 cables are often-used inexpensive COTS substitutes
for low-cost RS485 networks. Shielding is helpful for maintaining signal integrity, if it is available.

4.5.4.1 To ground, or not to ground?

The question of whether or not a GND connection should be shared between different devices when using a dif-
ferential interface is particularly delicate. Notwithstanding advice to the contrary in the RS485 (aka TIA485-A)
standard itself, which recommends simply using resistors between the ground wire on the interconnecting
RS485 cable and the local GND on individual devices, as well as a lot of other misleading advice elsewhere
on the web, careful modern guidance is somewhat more nuanced. In short, non-isolated GND should not be
shared in situations for which the ground potential difference (GPD) of all devices to be connected will remain
well within £7V, and thus non-isolated CAN transceivers and RS485 transceivers may be used, whereas iso-
lated GND should be shared in situations for which the GPD might exceed this range, and thus slightly more
expensive/complex isolated CAN transceivers and RS485 transceivers should be used instead.

4.5.4.2 Field-serviceable, secure, and durable wiring solutions

As discussed in the definition of the Recon standard §4.5.2, for the wiring of single-board computers to nearby
sensors and other devices in mobile robots and within individual space-constrained electromechanical ma-
chines, standardized connectors are called for that are:

(a) small (1.5mm pitch appears to be the sweet spot),

(b) secure (not disconnecting due to system vibrations),

(c) durable (able to withstand hundreds of connector insertion/removal cycles — generally this means PTH),

(d) extensible (able to incorporate additional signals if available/necessary), and

(e) inexpensive (leveraging COTS connectors wherever possible, especially for mass-market products).
In contrast, for long-distance twisted-pair wiring solutions (e.g., for automotive, industrial, and outdoor appli-
cations), wires and connectors are needed that are:

BThat is, other than Ethernet, which itself may be a good choice for many long-distance local networks.

26RS485 is related to the older but still commonly used RS422 standard. Through a driver enable (DE) feature, RS485 systems can
operate with multiple drivers (transmitters) on a single pair of wires, thus facilitating half-duplex (two-way communication) over a
single twisted pair (RS422 is simplex only over each pair of wires). RS485 transmitters can handle the load of 32 to 256 receivers on
a single twisted pair; some RS422 transmitters can only handle the load of 10 receivers. RS485 can also handle much larger ground
potential differences between devices. For these reasons, RS485 is generally preferred over RS422 for new designs.

4-17

https://www.maximintegrated.com/content/dam/files/design/technical-documents/white-papers/can-wp.pdf
https://www.lammertbies.nl/comm/info/rs-485
https://blog.protoneer.co.nz/wp-content/uploads/2014/03/artikel_20105_can-vs-rs485_e.pdf
https://www.maximintegrated.com/content/dam/files/design/technical-documents/white-papers/can-wp.pdf
https://electronic-products-design.com/geek-area/communications/can-bus/can-vs-rs485
https://www.ti.com/lit/an/snla049b/snla049b.pdf?ts=1594575612711
https://cdn.automationdirect.com/static/specs/inddatacablesctl.pdf
https://cdn.generalcable.com/assets/documents/North%20America%20Documents/Information-Center/Brochures-Sell%20Sheets/Automotive-Transportation/GC-Prestolite-Wire_CAN-Bus-Data-Cable-SS.pdf
https://www.ti.com/lit/an/slla272c/slla272c.pdf
https://www.planetanalog.com/signal-chain-basics-84-why-rs485-does-not-need-ground-wires/
https://www.planetanalog.com/signal-chain-basics-84-why-rs485-does-not-need-ground-wires/
https://www.ti.com/product/TCAN1044V-Q1
https://www.ti.com/product/THVD1452
https://www.ti.com/lit/an/slla272c/slla272c.pdf
https://www.ti.com/lit/an/slla272c/slla272c.pdf
https://www.ti.com/product/ISO1044
https://www.ti.com/product/ISO1452
https://www.ti.com/lit/an/snla023a/snla023a.pdf?ts=1594613245005

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

(A) field serviceable (allowing wires to be replaced with only simple tools, or no tools whatsoever),

(B) even more secure (not disconnecting due to accidental direct tugs on the wire), and

(C) even more durable (surviving heat, direct sunlight, vibration, water, dust, grease, cleaning solvents, etc).
For long-distance connections, the wires themselves are often the weakest links, and must often be replaced
when damaged, or cut to a new lengths when the system is reconfigured. In such a setting, connector size and
cost are often only minor secondary issues, and field serviceability is paramount. A variety of standardized con-
nectors and T-junctions are available, with 2 to 9 poles, that are well suited in such settings, notably including:

e Pico (M8), Micro (M12), and Mini (7/8 in) connectors, many of which are IP67* rated and IDC* type,

e RJ45 connectors (8-pin, straight-through T568B, also available as IDC), as used widely for wired ethernet,

e D-sub 9-pin (DE9, aka DB9) connectors, a 0.108” pitch D-shaped shrouded standard that is broadly adopted,
e Micro-D 9-pin connectors, a 0.05” pitch miniaturized version of the DE9 (also available in powered variants),
e simple terminal blocks, which are easy to service by hand but not environmentally hardened, etc.

In each setting, it is essential to follow the corresponding industry or manufacturer’s spec as much as possible
for where to attach the primary (and if present, secondary) pair of signal wires. For example, if using RJ45 con-
nectors [typically, with inexpensive commercial off-the-shelf (COTS) CAT5e or CAT6 cables], it is recommended
that the standard Power over Ethernet pin order be followed:

- the primary twisted pair should be attached to pins 3 and 6,

- the secondary twisted pair (if any; e.g., in full-duplex RS485 mode) should be attached to pins 1 and 2,

- GND (if connected) should be carried on pins 7 and 8, and

- DC power (if connected, which is sometimes convenient for small remote sensors) should be on pins 4 and 5.

4.5.4.3 Recon/Yukon Differential Pairs

The various types of rugged (field serviceable, extra secure, extra durable) connectors discussed above are often
mounted on a bulkhead (that is, on the boundary of an environmentally-hardened shell protecting the electron-
ics), and are often too big to mount directly on the PCB itself. In this common setting, the rugged connector on
the bulkhead needs to connect to a (small, extensible) connector on the PCB via a short jumper wire (twisted
pair ribbon cables are often a good choice). For the connector on the PCB in this setting, a simple extension of
the Recon/Yukon standard is recommended:

Recon/Yukon Differential Pairs: [Vcc, GND, A+, A-, B+, B-, C+, C-, D+, D-, ...] (4.9)

Only the first differential pair, denoted here {A+, A-}, are required by this spec; additional differential pairs
may be added if available. If both Vcc and GND are included, it is referred to as a Recon Differential Pair
connector, otherwise it is referred to as a Yukon Differential Pair connector. Further, on Yukon Differential Pair
connectors, GND is also optional; recalling the discussion in §4.5.4.1, a GND connection should generally not
be made between two or more connected devices unless isolated CAN or RS$485 transceivers are used”. Useful
definitions of the CAN and RS485 variants of the Recon/Yukon Differential Pairs spec follow™:

21P67 means that the component is dust-proof and capable of withstanding temporary immersion up to 1 m depth.

BFjeld-servicable Insulation Displacement Connection (IDC) type connectors may be installed with only simple tools, or in certain
cases with no tools whatsoever.

BTo prevent making a mistake in this regard, Yukon connectors without ground pins should be used on PCBs with non-isolated
transceivers, and Recon or Yukon connectors with ground pins may be used on PCBs with isolated transceivers; the latter should
always be selected, and the corresponding isolated GND pins connected, if significant GPDs are expected.

301f using simple terminal blocks on the bulkhead, we recommend following the same order.

4-18

https://www.automationdirect.com/adc/overview/catalog/wiring_solutions/pico_(m8)_receptacles
https://www.automationdirect.com/adc/overview/catalog/wiring_solutions/micro_(m12)_receptacles
https://www.automationdirect.com/adc/overview/catalog/wiring_solutions/mini_(7-z-8_in._-_16_un2)_receptacles_-a-_accessories
https://www.showmecables.com/blog/post/rj45-pinout
https://en.wikipedia.org/wiki/D-subminiature
https://www.sgconnector.com/what-is-a-db9-connector.html
https://www.omnetics.com/products/micro-d/standard-micro-d-connectors1
https://www.omnetics.com/products/micro-d/standard-micro-d-connectors1#PowerMicro-D
https://www.google.com/search?q=terminal+block+connector&tbm=isch
https://en.wikipedia.org/wiki/Power_over_Ethernet
https://www.google.com/search?q=twisted+pair+ribbon+cable&tbm=isch
https://www.google.com/search?q=twisted+pair+ribbon+cable&tbm=isch
https://en.wikipedia.org/wiki/IP_Code
https://www.automationdirect.com/adc/overview/catalog/wiring_solutions/field_wireable_connectors_-a-_t-couplers

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

Recon/Yukon CAN:

Recon/Yukon RS485-H:
Recon/Yukon RS485-Y:
Recon/Yukon RS485-A:

Vce, GND, CANH, CANL]

Vce, GND,A,B | for half duplex connections over the A/B channel,
Vce, GND,Y,Z,A,B] full duplex, with the Y/Z (transmit) channel first,
Vce, GND,A,B,Y,Z] full duplex, with the A/B (receive) channel first.

(4.5)

— /e

In the full duplex case, akin to the Recon/Yukon UART-T and UART-R standards, note that:

- master devices transmit on the first pair and receive on the second using Recon/Yukon RS485-Y connectors,
- slave devices receive on the first pair and transmit on the second using Recon/Yukon RS485-A connectors,

thus facilitating full duplex communication between any master and any slave on the network. Warning: in
either the full-duplex or half duplex case, care must be taken in software such that, on any given twisted pair,
only one RS485 node has an active driver (transmitting) at an given time.

By electrically connecting the Y and A pins and the Z and B pins of a full-duplex RS485 transceiver at the
JST-ZH connector [e.g., with (initially-open) solder jumpers on the PCB nearby], and attaching a data cable to
the A and B (or, to the Y and Z) pins only, a (full-duplex) Yukon RS485-A or RS485-Y connector is reduced to (half-
duplex) RS485-H functionality. This is a useful way to configure full-duplex RS485 transceivers+connectors for
general use, if you don’t know whether a full-duplex or half-duplex RS485 network will ultimately be deployed.

In the full duplex case, the receive and transmit functions are decoupled from each other at any given node.
In the half-duplex case, it is common to turn the receiver off whenever transmitting, and vice-versa, simply by
tying the (active high) DE (driver enable) pin to the (active low) RE (receiver enable) pin. This is not the only
valid approach, however:

- by receiving all the time (tying RE low), a transmitting node also receives its own data as it is being sent (this
is called a “loopback” or “echo” function, and can be used to verify the quality of each transmission), or
- by shutting off both the transmitter and the receiver (setting DE low and RE high), a node can save energy.

4.5.5 Summary

Severos and ESCs are often controlled with simple PWM signals. Encoders generate signal transitions that get
counted on hosts. The three short-range comm protocols, 12C, SPI, and UART, and the two long-range comm
protocols, CAN and RS485, are also well established. Each of these standards has their place in the development
of modern robotic systems. As discussed briefly in this short chapter, several useful extensions of these standard
protocols are also readily available, and some exciting new extensions, like USART and 13C, are emerging.

As a developer of modern robotic systems, you will primarily use existing dedicated hardware subsystems
to implement these comm protocols, on both MCU clients (controller boards) and hosts (sensors and actuators);
you will not have to implement them from scratch yourself. However, it is still important to understand them,
and their relative strengths and implementation details, so you can:

(a) select appropriately which standards you will implement to interconnect different subsystems, and

(b) wire together different subsystems implementing these standards with maximum effectiveness.
Curiously, a primary challenge in implementing these comm standards is to converge upon a self-consistent set
of connector standards to attach hosts to clients. Available solutions today, as reviewed in §4.5.1, are rather all
over the map. This chapter suggests a perhaps more deliberate approach to laying out connectors on client and
host PCBs, using durable (PTH), standard (JST-ZH), 1.5 mm pitch, 1A rated connectors wherever possible, with
a deliberate pin order that, uniquely, allows the adoption of a flexible standard, with optional pins available on
hosts that may or may not be needed on clients, and which may be connected with standard (socket-to-socket,
straight, non-reversed) JST-ZH cable assemblies, which are readily available.

4-19

http://www.jst-mfg.com/product/detail_e.php?series=287

Renaissance Robotics (v.2024-05-16) Chapter 4: Communication protocols

4-20

Chapter 5

Bespoke

Emerging
Be rets Robotics
Electronic
Technologies

Id Raspberry ,m, , , and m Berets, from RenaissanceRobotics.com, are

a family of 6 bespoke motor control boards that are remarkably compact, powerful, efficient, and extensible.
Berets are designed to be operated as daughterboards for essentially all of the leading SBCs, as reviewed in
Table 1.15, or for standalone operation. Their modern hardware and modular software, described in detail in this
chapter', are open source, providing a reference platform that can be reduced or extended for a host of practical
applications in mobile robotics, industrial automation, precision agriculture, pharmaceutical development, food
preparation, remote inspection, smart-grid HVAC, elder care, toys, etc. The motivation for developing and
adopting the Beret family of boards is to simplify and accelerate the deployment of bespoke feedback controllers
for complex mechatronic systems, empowering robotics students (in high school, college, and beyond), and
expediting and streamlining the workflow from lab prototype to commercial product.

Berets are cross-platform?, open-design demonstrators of emerging technologies for motor control, power
regulation, and coordinated feedback in robotics applications. Most of the ICs selected for the Berets, by
TI (motor drivers, voltage regulation, power protection, opamps, switches/multiplexers, digital pots, CAN and
RS485 transceivers, level shifters, LED driver), ST (MCU, magnetometer, barometer), NXP (GPIO expander),
and TDK (IMU), were announced shortly before the Berets were designed (as a Covid lockdown project, in
2020-2021). Being open design, the hardware and software used by the Berets facilitate the development of
bespoke derivative boards custom fit to the user’s application. To realize this vision, we present below various
implementation details and salient features of the several subsystems of the Beret family.

'In fact, this chapter serves as the datasheet for the Beret family of boards. As a developer of feedback control solutions for mobile
robots and cyber-physical systems, the reader must become adept at reading datasheets carefully. This chapter serves as a case study
for such datasheets, and should be informative even if different components are ultimately needed in the user’s application.

2That is, Berets facilitate (a) the easy porting of real-time multithreaded control code from one linux SBC family to another (see
Table 1.15) as algorithmic demands (e.g., vision processing) on the SBC increase, or (b) the elimination of the SBC altogether (in favor
of a multithreaded ARM-Cortex M implementation) to substantially reduce system cost for high-volume production (e.g., toys).

5-1

http://RenaissanceRobotics.com

Renaissance Robotics (v.2024-05-16)

We begin with a chapter-level table of contents to help navigate this (rather long) chapter.

Contents
51 OVerview i i e e e e e e e e e e e e e 5-3
5.2 Powersubsystem e e e e e e e e e e e 5-15
5.2.1 Mainpower source (Vin) 5-15
5.2.2 Supplemental power sources. 5-15
5.2.3 Reverse-voltage, over-current/short-circuit, and ESD protections 5-17
5.2.4 Vin->Vsl switching regulator L 5-17
5.2.5 Vin->Vmb switching regulator L 5-18
5.2.6 Vin->3.3V switching regulator L o 5-18
5.2.7 Vmb->3.3V switching regulator L L L oL o 5-18
52.8 VS2ZPOWEI OPAMP . .« . . v v v v it ettt e e e e e e e 5-19
5.2.9 Switching default power on various connectors and sensors 5-19
5.2.10 Charging and voltage monitoringof Veoin Lo L. 5-19
5.3 Control of brushed DC motors & steppers with the DRV8912-Q1. 5-21
53.1 Parallelmode 5-22
5.3.2 Sequentialmode 5-22
5.4 IMU, magnetometer,and barometerl 5-23
5.4.1 Data-ready and sensor-driven interrupts oL 5-24
5.5 STM32G474 microcontroller features, pinouts,and GPIOs 5-28
5.5.1 Real-time clock (RTC), and scheduled/commanded wakeup from VBAT mode 5-29
5.5.2 Customization with Quad-SPIFlash. 5-29
5.6 Connectivityandi/o L e e e e e 5-30
5.6.1 Quadrature encoder counters and connectors 5-30
5.6.2 PWM-based servo and ESC controllers and the Signal Headers 5-30
5.6.3 Encoding for IR communication L Lo L 5-31
5.6.4 CAN FD and RS485 transcievers and connectors 5-31
5.6.5 USART, UART, and LPUART modules and connectors 5-31
5.6.6 I2Cmodules and theI2CHeader 5-32
5.6.7 SPImodules andthe SPIHeader 5-33
5.6.8 LEDs, Buttons,and Displays 5-33
5.6.9 USB Micro-B connector and Device Firmware Upgrades 5-34
57 Analogsubsystem e e 5-35
5.7.1 Generation of Vs2 = 1.2V to 2.1V, and two high-power DAC outputs 5-35
5.7.2 Tunable filtering/gain of two unipolar, bipolar, or differential ADC inputs 5-36
5.7.3 Analog Header and user-developed analog filters 5-37
5.7.4 Voltage monitoring of Vin, Vs1, Vs2, and the individual battery cells 5-38
58 BeretShields e 5-39
5.9 MB headers, MB header breakout SHIMs, andIDEEPROMs 5-41
5.9.1 RPi-compatible motherboards (MBs) 5-41
5.9.2 96B-compatible MBs 5-44
5.9.3 BB-compatible MBs 5-45
510 LAYOUL .« o o v vt e e e e e e e e e e e 5-47
5.10.1 Overall organization and powerflow oL 5-47
5.10.2 Layer stackup, signal routing, and high-density integration (HDI) 5-48
5.10.3 EMI and signal-integrity considerations 5-49
5.11 Bill Of Materials (BOM) i i it e e it e e e e e e e e e et e e 5-51
5.12 Schematics L L e e e e e e e e e e e e e e e e e e 5-53

5-2

Chapter 5: Berets

Renaissance Robotics (v.2024-05-16)

Chapter 5: Berets

Beret MB header PCB dimensions balance analog | peripherals | bolt pattern
Raspberry RPi full size 65 X 56 v v 3.3V, 5V RPi
Red | RPi full size 65 x 56 v X 3.3V, 5V RPi
96B full size 85 x 54 v v 3.3V, 5V 96B
BB full size 34" x 215" | v v 3.3V, 5V BB
Green ,m (none) half size 39 x 61.5 X v 3.3V only (custom)
Beret MB voltage | Drivers: motors | encoders, servos/ESCs | Remote Busses | Optional
5VMB | 24HB 8 7 10 CAN/RS485 | Coin, Flash
m 5V MB 12 HB 4 5 5 (local only) Coin, Flash
Black| 12VMB | 24 HB 8 7 10 CAN/RS485 | Coin, Flash
5VMB | 24 HB 8 7 10 CAN/RS485 | Coin, Flash
(none) 0 HB 0 5 10 CAN/RS485 | Coin, Flash
m (none) 12 HB 4 5 5 (local only) Coin, Flash
Beret PCB edges mounting hole centers IMU center | Analog pin 9
| Ras] Red | (£32.5, 4 28) (£29, 4-24.5) (25,0) (0,2)
Black (£42.5, £ 27) (£38.5, —8.5), (+ 38.5,23) (2,2) (0,2)
(£ 1.77,4£1.075") | (—1.475",4£0.825"), (1.125", £ 0.95") (2?) (0,?)
ey MY | (£19.5,£30.75) (416,27.25), (0, —27.25) (12.5,0) (-12.5,0)

Table 5.1: Essential features of the six initial Beret variants. All distances in mm except on the , for
which distances are given in inches. The center of each board is taken as the reference point when defining
the PCB edges, the mounting hole centers, and the center of the IMU coordinate system. On all Berets, M2.5
hardware may be used; on the + BB, #4-40 hardware fits a bit better in its 0.125" holes.

5.1 Overview

The essential features of the six initial Beret variants are outlined in Table 5.1. In particular:

° the(aka @) Beret may be operated as a daughterboard for recent versions of the RaspberryPi,
e the entry-level (lower-cost) @ Beret is a partially-populated Beret® with reduced specs,

o the Black\ Beret may be operated as a daughterboard for SBCs following the 96Boards CE specification,

o the Beret may be operated as a daughterboard for the BeagleBone Black and Al, and

o the Beret is designed for standalone (or, wired remote) operation with 3.3V peripherals only.

o the m Beret is designed for standalone mobile applications with 3.3V peripherals only.

Note that, in fact, all six Beret variants may be operated standalone when properly programmed.

In this section, we briefly summarize the subsystems used in this family of boards; the balance of §5 explains
these subsystems in greater detail. Note that the modern switching regulators, motor drivers, MCU, MOSFET,
op amps, and other power components discussed below are best-in-class in terms of their efficiency. This, of
course, means that the system can run a bit longer on a single battery charge than it could otherwise. Perhaps
even more important, however, is that a reduced amount of waste heat is generated by these components, thus
significantly improving the capability of Berets to handle high-current operating conditions.

3Because red is a less-fancy way of saying raspberry; Prince wrote a song about the latter, not the former...

5-3

https://www.youtube.com/watch?v=l7vRSu_wsNc

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

POWER

LWl Raspberry B m, and Berets, dubbed 5V MB Berets, target 5V motherboards. They are

powered over an XT30 connector by a Vin = 6.2V - 28V input at up to 15A continuous / 20A peak, thus accom-
modating a 2S - 6S LiPo (3.1-4.2V per cell) or LiHV (3.2-4.35V per cell), 3S - 7S LiFe (2.5-3.65V per cell),
75 -18S NiMH (1- 1.5V per cell), or a 7V - 28V wall adapter, which is down-regulated as follows:

- the Vin->Vs1 switching regulator provides Vs1=4.8V to min(12V, 0.8*Vin) at up to 6A for servos & ESCs,
- the Vin->Vmb switching regulator provides Vmb =5.1V at up to 6A for an RPi or BB compatible MB,

- the Vmb->3.3V switching regulator provides 3.3V at up to 3A for logic circuits and connected sensors, and
- the Vs2 power opamp provides Vs2 = 1.2V to 2.1V at up to =400 mA.

The 12V MB Black‘ Beret targets 12V motherboards. It is powered over an XT30 connector by a Vin = 12V -
28V input at up to 15A continuous / 20A peak, accommodating a 4S — 6S LiPo or LiHV, 55 - 7S LiFe, 12S - 18S
NiMH, or a 12V - 28V wall adapter, which is down-regulated slightly differently:

- the Vin->Vs1 switching regulator provides Vs1=4.8V to min(12V,0.8*Vin) at up to 6A for servos & ESCs,

- the Vin->Vmb switching regulator provides Vmb = min(12V, 0.8"Vin) at up to 6A for a 96B compatible MB,
- the Vmb->3.3V switching regulator provides 3.3V at up to 3A for logic circuits and connected sensors, and

- the Vs2 power opamp provides Vs2 = 1.2V to 2.1V at up to =400 mA;

in addition, per the 96Boards (96B) CE specification, the 96B motherboard, if one is attached, down-regulates
the Vmb line and passes back (via the low-speed header) 5V at up to 1A. The 12V MB Beret thus does not
itself have a 5V regulator (and, thus, the 5V subsystem on this Beret is not functional unless a 96B compatible
motherboard is attached).

The and m Berets are built for compact standalone aplications with 3.3V peripherals only,
bypassing the generation of both Vmb and 5V (saving both board area and cost). They are powered over an
XT30 connector by a Vin =5V - 28V input at up to 15A continuous / 20A peak, accommodating a 2S - 6S LiPo
or LiHV, 2S - 7S LiFe, 5S - 185 NiMH, or a 5V — 28V wall adapter, which is down-regulated as follows:

- the Vin->Vs1 switching regulator provides Vs1=4.8V to min(12V, 0.8*Vin) at up to 6A for servos & ESCs,
- the Vin->3.3V switching regulator provides 3.3V at up to 3A for logic circuits and connected sensors, and
- the Vs2 power opamp provides Vs2 =1.2V to 2.1V at up to =400 mA.

In general, on all Berets:

- Vin powers the motor drivers directly,

- Vs1 powers the signal headers (for servos & ESCs),

- Vmb powers the attached motherboard,

- the 3.3V and 5V lines power the logic circuits on the Beret, the JSTs, and the digital and analog headers, and
- all digital outputs operate at 3.3V TTL, and all digital inputs are 5V tolerant.

Again, note that the Vmb and 5V lines are absent on the and ml Berets.

MICROCONTROLLER (MCU)

For real-time control of brushed (BDC) motors, stepper motors, servo motors, electronic speed controllers
(ESCs), and brushless (BLDC) motors, coordinating motor commands with a wide variety of sensor inputs,
Berets incorporate® a 100-pin 170 MHz (213 DMIPS) STM32G474VE with an ARM Cortex-M4 core, 512 KB flash?,
128 KB SRAM, and integrated DSP, FPU, and CORDIC (transcendental) & FMAC (filter math) accelerators.

Berets run FreeRTOS and leverage the efficient, portable, open-source Robot Control library (written in C)
for driving all hardware. A ROS interface to these subroutines is under development.

*Note that the entry-level m Beret uses a STM32G474VB instead of a STM32G474VE, with 128 KB flash instead of 512 KB,
but is otherwise identical in terms of the specs described here.

5-4

https://www.tme.eu/en/details/xt30pw-m/dc-power-connectors/amass/
http://www.ti.com/product/TPS56637
http://www.ti.com/product/LMR33640
http://www.ti.com/product/TPSM82821
https://www.ti.com/product/ALM2402-Q1
http://www.ti.com/product/TPS56637
https://www.ti.com/product/LM60440-Q1
http://www.ti.com/product/TPS62147
https://www.ti.com/product/ALM2402-Q1
https://www.96boards.org/products/ce/
http://www.ti.com/product/TPS56637
http://www.ti.com/product/TPS56637
https://www.ti.com/product/ALM2402-Q1
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://www.st.com/resource/en/application_note/dm00614795-getting-started-with-the-cordic-accelerator-using-stm32cubeg4-mcu-package-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00605584-digital-filter-implementation-with-the-fmac-using-stm32cubeg4-mcu-package-stmicroelectronics.pdf
https://www.freertos.org/FreeRTOS-Plus/BSP_Solutions/ST/STM32Cube.html
http://strawsondesign.com/docs/librobotcontrol/
https://www.embedded.com/real-men-program-in-c/
https://www.ros.org/about-ros/
https://www.st.com/en/microcontrollers-microprocessors/stm32g4x4.html

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

Significantly, Berets break out many of the STM32G474’s dedicated subsystems, each of which operate
without loading the main ARM core on the STM itself. An additional 24 GPIOs are provided by a dedicated
GPI10O expander. Note that computationally-heavy tasks (e.g., for vision-based situational awareness) should be
deferred to the attached linux-based motherboard.

MOTORS, ENCODERS, SERVOS & ESCs
The RETN IV, , and Berets, dubbed 24 HB Berets, have 24 half bridges, with drivers

for simultaneous independent bidirectional control of 8 brushed DC motors operating at Vin at up to 12A
total; the connectors to these half bridges may be ganged together in various ways to control: 2 motors at 6A,
4 motors at 3A, 4 motors at 2A + 4 motors at 1A, etc., or attached in a unique sequential mode for independent
bidirectional control of up to 24 1A motors at reduced duty cycles. The 24 HB Berets also provide dedicated
hardware support for 7 quadrature encoders and 10 servos or ESCs of a wide variety of sizes and types.

The 12 HB m and m Berets have 12 half bridges, with drivers for control of 4 brushed DC
motors operating at Vin at up to 6A total; the connectors to these half bridges may be ganged together to
control: 1 motor at 6A, 2 motors at 3A, 2 motors at 2A + 2 motors at 1A, etc., or attached in sequential mode for
independent bidirectional control of up to 12 1A motors at reduced duty cycles. The @ and m Berets
also provide dedicated hardware support and pinouts for 5 quadrature encoders and 5 servos or ESCs.

The 0 HB Beret actually has no half bridges itself (which, admittedly, at first seems peculiar for
a motor control board!). This Beret leverages daughterboards, dubbed Beret Shields, for implementing the
specific motor drivers that may be required in any given application. The Beret provides dedicated
hardware support and pinouts for 5 quadrature encoders and 10 servos or ESCs.

BATTERY MONITORING & CHARGING

LW Raspberry ,m, , and Berets, dubbed full size Berets, monitor individual battery cell

voltages when running. The half size and m Berets, on the other hand, forgo individual battery
cell voltage monitoring; when running on a battery, they only monitors the overall battery charge.
Note that, on all Berets, battery charging must be done via a (high-quality) off-board battery charger.

SENSORS & CONNECTORS

All six Berets include a sensitive 6-axis IMU (3 accels + 3 gyros), 3-axis magnetometer, and barometer, in ad-
dition to discrete connectors for driving a host of 12C, SPI, and UART sensors and other devices (such as
GPS/GNSS units and DSM radio receivers), a USB Micro-B input for programming, and numerous chan-
nels configurable as GPIOs. In addition, the , , , and Berets, dubbed
the CAN/RS485 Berets, include high-speed CAN-FD and full duplex RS485 transceivers and connectors.

Servos and ESCs are supported on the Berets by industry-standard (triple row, 0.1” pitch, 3A per pin, PTH)
Signal Headers, arranged in one or two easy-to-use 3x5 cluster(s) of pins. All six Berets also have an Arduino-
style (1x9, 0.1” pitch, 3A per pin, PTH) SPI Header and 12C Header.

ANALOG SUBSYSTEM
LY Raspberry B , , and m Berets also have a 1x9, 0.1” pitch Analog Header,
limited to OV to 3.3V operation in a unipolar or bipolar setting, with reference GND at 0V or Vs2 =~ 1.65V, and:

- two 16-bit ADCs with tunable gain (x1to x4096) & tunable second-order low-pass filtering (f. = 34 to 3400 Hz),
- two 12-bit DACs with +400 mA outputs, and
- a =400 mA opamp pinout (V+, V-, Vo).

The entry-level m Beret forgoes the entire analog subsystem, including the Analog Header.

5-5

https://www.google.com/search?q=GNSS+gps+uart&tbm=isch
https://www.google.com/search?q=DSM2+DSMX+receiver+r720x&tbm=isch

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

CONNECTOR STANDARDS: RECON AND YUKON

Sturdy JST-ZH connectors (1.5 mm pitch, 1A per pin, PTH) are used for motors, encoders, U(S)ART, CAN, and
RS485. The pin order on all JST-ZH connectors and single-row headers follow the standards defined in §?7?:

- E1-2 (12Cd), E3-4 (UART?), E5 (UARTY), E6-7, USART (UARTDb/SPIb) follow the Recon Basic, Recon 12C, Recon
UART-T, Recon UART-R, and Recon SPI pin order standards defined in §4.5.2,

- CAN follows the Yukon CAN standard defined in §4.5.4.3, while RS485 follows the Yukon RS485-Y (host)

standard on the &R aY ,, and Berets, and the RS485-A (client) standard on the

Beret (and, when acting as UARTa, the Recon UART-T standard on all four of these Berets). On the @ Beret,
the corresponding connector is UART-T only.

- the SPI and IC2 Headers follow the Stackable Extended Recon standards defined in §4.5.2.8, and

- the Analog Header follows the Yukon Basic standard defined in §4.5.4.1.

EXPANSION BOARDS: BERET SHIELDS

The (1x9) SPI Header, 12C Header, and (if included) Analog Header, in addition to the (3x5) Signal Header A, are
all aligned on a 0.1” pitch grid, facilitating the easy and secure mounting of stackable COTS and user-designed
Beret Shields with additional analog and digital circuitry.

MOTHERBOARD (MB) HEADERS

Berets communicate with motherboards using SPI. To make this connection easier,
- the and m Berets, dubbed the RPi Berets, have a 2x20, 0.1” pitch stackable RPi header,
- the Beret, dubbed the 96B Beret, has a 2x20, 2 mm pitch stackable 96B header, and
- the Beret, dubbed the BB Beret, has a 2x23, 0.1” pitch stackable BB header.
The and m Beret do not have any board-specific MB headers, though they may be connected
locally to virtually any MB (e.g., over SPI, CAN or RS485, etc), or operated standalone.
On the full size Berets, the MB Header may be broken out with additional compact PCBs (a.k.a. SHIMS),
and standardized EEPROMs are included to identify the Berets appropriately to connected MBs.

OTHER FEATURES

The STM’s dedicated hardware timers (for, e.g., encoder counting and PWM generation) are highly reconfig-
urable, with additional (unidirectional) encoder counters easily configurable on the Signal Headers, or addi-
tional PWM outputs (for more servos and ESCs) easily configurable on the encoder connectors, if necessary.

The battery state of charge is indicated with a three bicolor LED power gauge. Three buttons (reset/shut-
down, pause, mode), three user-programmable stoplight LEDs, and various status LEDs are also included.

An (optional) rechargeable Vcoin = 2.6V to 3.05V coin cell may be installed on Berets to keep the real-time
clock (RTC) current, thus facilitating scheduled system wakeups.

Berets are also easily upgraded with an (optional) low-cost 4 MB to 512 MB flash IC.

Note: @ and m are 36.4cm?, [a]EYd M is 45.9 cm?, is 47.2 cm?, and M are 24 cm?.

FEATURE SET SUMMARY, PINOUTS, LAYOUT, AND FUNCTIONAL DIAGRAMS

The distribution of the above-described features over the six different Beret versions is summarized in Table 5.1.
Layout and functional representations of each is given in Figures 5.1-5.6.

The pinouts of the several connectors on the Berets are listed in Table 5.2. The rest of §5 is devoted to
explaining these subsystems further. In particular, discussion of how the specific channels on the STM32 are
hooked up to these several connectors is summarized in §5.5; see in particular Figure 5.9 and Table 5.4.

5-6

http://www.jst-mfg.com/product/pdf/eng/eZH.pdf

Renaissance Robotics (v.2024-05-16)

Chapter 5: Berets

Connector® Pins Signal
Connector® Pins Signal USART (UARTb/SPIb) 1,2 [3.3V/5V]®, GND
MB Header® all (see §5.9) 3,4 Tx/MOSI/GO, Rx/MISO/G1
X 5,6 SCK/G2/Vcoin, CTS/SSa/G3
USB Micro-B 1 USB_5V 7 RTS/INT/SSb/G4
234 DM,DP, GND 8 RES/SSc/G5
XT30 1 Vin (up to 28V/20A)
(Power In) 5 GND CANC 1,2 CANH, CANL
BalanceEF 1 B1 (cell 1 low) RS485€ (UARTa) 1 Y or A or [3.3V/5V]®
2 B2 (cell 1 high /2 low) 2 ZorBorGND
3 B3 (cell 2 high / 3 low) 3 AorYorlx/GO
4 B4 (cell 3 high/ 4 low) 4 BorZorRx/Gl1
5 BS5(cell 4 high /5 low) Signal Header A" 1 S1/12Ch_SDA/I2S MCK
6 Bo(cell 5high /6 low) (S1-55/12Cb/12Cc) 2 S2/12Ch_SCL/12Cc_SMBA
7 B7(cell 6 high) (top row) 3 S3/I2Cb_INT
M1 1,2 Mila, M1b 4 54/12Cc_SDA
M2-3 1-4 M2a, M2b, M3a, M3b o _ 5__S5/12Cc SCL
(M4-5-6, M7-8-9, M10-11, and M12 are similar) _(middlerow) 15 [Vvs1/Vin]®*
(bottom row) 1-5 GND

E1-2° (12Cd) 1,2 [3.3V/5V/Vs1/off]®, GND

(Signal Header B is similar, with S6- 510 in top row,

3 E1b/SDA/GO and restricted to Vs1 in the middle row)

4 E2a/SCL/G1

5 E2b/SMBA/G2 SPI Header (SPla) 1,2,3 5V, 3.3V, GND

6 Ela/RES/G3 4,5,6 MOSI/SD/G0, MISO/G1

[3.3V/5V]®, GND
34 E3a/Tx/GO0, E3b/G1

4,5,6
7,8,9

SCK/G2, S5a/WS/G3
55b/G4, SSa/IR_OUT/G5

. 56 E4a/G2,E4b/G3 [2C Header (12Ca) 1-5 Vcoin, Vs2, Vs1, 3.3V, GND
E5 (UARTY) 1,2 [3.3V/5V]®, GND 6,7 SDA/GO, SCL/BOOT0/G1
3,4 E7a/Rx/G0, E7b/G1 89 G2,G3
E6-7 1,2 [3.3V/5V/Vs1/off]®, GND Analog Header™ 1,2 DAC1buf, DAC2buf
3,4 E5a/G0, E5b/G1 345 V+, V-, Vo
5,6 E6a/G2, E6b/G3 67,8 Vref, ADC1, ADC2
9 ADC2filt

Table 5.2: Pinouts (primary role: output, input, i/o, power/ground) of the connectors on all six Berets, with some
of the connectors in italics dropped on the 12 HB and 0 HB Berets (for details, see Table 5.1).

USAGE NOTES

A. Connector pins, except on the MB Header, are numbered W (left) to E (right), or N (top) to S (bottom) [see
Figs 5.1-5.6]. All digital signals on the encoder and USART JSTs, and on the Signal, SPI, and 12C Headers, may be
configured as GPIOs in software. All connectors follow the Recon and Yukon standards of §??. Digital outputs
all operate 0 to 3.3V TTL. Digital inputs are all 5V tolerant, however: warning: all pins on the Analog Header
are limited to 0 to 3.3V operation.

B. Warning: the power supplied to this pin (default is bold) may be changed changed by the user, using a
multiplexer, a backside solder jumper, or a shunt connector (see §5.2.9).

5-7

https://learn.sparkfun.com/tutorials/logic-levels/all

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

C. Warning: the differential CAN and RS485 transceivers operate 0 to 3.3V; RS485 may be changed to 0 to
5V via a backside solder jumper. Using a 4PDT switch, if the Beret GPIO RS485_SEL=1 (see §5.5), the RS485

connector functions as a full-duplex RS485-Y (host) connector on JiEXSIITIA, , and Berets,

and as a RS485-A (client) connector on Berets; if RS485 SEL=0, it functions as a UART-T connector. On
the M Beret, the corresponding connector is UART-T only.

D. The wiring of the Beret’s SPI3 channel, its user-defined {MB_G0, MB_G1, MB_G2} GPIOs, and (optionally)
its three sensor interrupt channels to the motherboard (MB) header varies somewhat amongst the different
Beret versions, as described in §5.9. All JSTs and single-row pin headers on the Berets are connected to the
STM and its associated ICs on the Beret, not to the attached MB. Compact breakout-boards (aka SHIMs) are
available separately to conveniently break out the functionality on the corresponding MB Headers.

E. The Balance connector is |ST-XH, and all other JSTs on the Beret are JST-ZH. As opposed to, e.g., the fragile
SMD JST-SHs on the Beaglebone Blue, all JSTs and headers on the Beret are PTH, for durability (still, be gentle!).

F. The custom JST-XH connector on the Beret is modified in such a way as to connect securely to the (3-pin to
7-pin) JST-XH balance connectors on 25-6S batteries. Included with this custom connector is a set of small/snug
“dummy plugs” that may be used to cover the 1to 4 unused pins on this connector when using 5S to 2S batteries,
which helps to provide a more secure fit, and also prevents the balance connector from being plugged into the
wrong pins when swapping such batteries to recharge; always make sure that one end of the JST-XH balance
connector lines up with white triangle printed on the PCB. Warning: these dummy plugs can be pried out
with a small screwdriver when necessary, but do so only when the board is not connected to a power source.

G. As specifically permitted in the flexibility of the Recon Basic standard in §4.5.2.1, note that the order of the
{E1a, E1b, E2a, E2b} signals on the E1-2 connector are permuted in such a way that, if used for 12Cd, this
connector is in standard Recon 12C pin order using the hardware 12C4 channel on the STM.

H. The signal headers, designed to drive up to® 10 servos (motors packaged with simple control logic designed
to turn a shaft to a desired position and hold it there) or ESCs (motors packaged with control logic designed to
accelerate/decelerate a shaft to a desired angular velocity and keep it there), accept all modern 0.1” pitch 3x1
servo connectors®’, including both Fubata | and JR/Universal/Hitec S/Airtronic Z. Low-power servos and ESCs
typically power both their control logic and their motor using the GND and Vs1 pins on the signal header. High-
power servos and ESCs, on the other hand, typically power their control logic using the GND and Vs1 pins on the
signal header, but power their motor directly from the power supply (i.e., not via the Beret!). The Beret provides
Vs1=4.8V to 12V (adjustable in software), at up to 3A on each individual servo connector (6A total), to support
a broad range of small servos, ESCs, or other peripherals. Y Adapters (available separately) may be inserted
between high-capacity LiPos and the Beret to break out power separately for higher-current servos and ESCs.

[. The (buffered) DAC outputs operate between GND and 3.3V at up to 400mA. The ADC inputs may be con-
figured for software-tunable amplification (x1 to x4096) and 2nd-order low-pass filtering (with f. =34 to 3400
Hz) of unipolar or bipolar analog signals, or for differential comparison of two analog signals (see §5.7).

The 12 HB Berets have one bank of 0.1” pitch 3x5 pin headers, for driving up to 5 servos or ESCs. The 24 HB Berets have two such
banks of 0.1” pitch 3x5 pin headers, for driving up to 10 servos or ESCs; the signal headers are broken out into separate 3x5 banks
like this because many servo connectors are, unfortunately, about 0.1 mm wider than the standard 2.54 mm pin spacing near their
tips, and 0.2 mm wider away from their tips, which gradually adds up; putting more than N=5 such connectors next to each other on
standard 0.1” 3xN pin headers ultimately puts undue stress on the header pins.

®Note: modern servo connectors, all of which have power (the red wire) attached to the central pin, may easily be accidentally
plugged into the 3x5 pin headers backwards. This is completely safe; it will result in the corresponding servo not functioning correctly
until the plug is reversed, but it will not damage either the Beret or the servo.

"Warning: do not use old servos with Airtronic T connectors with the Beret; damage to the Beret and/or servo will result. This
obsolete configuration can be recognized easily by the fact that, on it, power is connected to pin 1 or 3, not to the central pin.

5-8

https://www.ti.com/product/SN74CBTLV3257
http://www.jst-mfg.com/product/pdf/eng/eXH.pdf
http://www.jst-mfg.com/product/pdf/eng/eZH.pdf
https://beagleboard.org/blue
https://en.wikipedia.org/wiki/Through-hole_technology
https://www.servocity.com/servos
https://en.wikipedia.org/wiki/Electronic_speed_control
https://www.pololu.com/product/1926
https://www.pololu.com/product/1924
https://www.servocity.com/servo-connector-types

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

3v3 @
@@oeooosl‘a (XXX <]
-GS sVl %

Termjnation
) .o

0 ooeoem 3:3D'J = eceeed

__Bo
SJ_SPImb_SS
5 5to

Age 1o fH
LTI

F

eeeH 6H
° ¢ onouo

oo

USART SPI Header

ESD
RS485 _
transceiver Protection

M7-8-9 s

opamps

EEPROM

)
=)
<
on

J2peaH |

level shifters,

M'I O_‘I '| M‘I 2 current regulators i/il—MéU

CAN-FD
transceiver
GPIO

5v Vsl expander Slgnal Q
Regulation RegulEiTen Header A P

<-snq UIp ->

13534

33V LED driver
Regulation

i Signal

Power
PAUSE Protection Header B MODE

(%)
o
Q
=
=
w
=
m
o
&

o030 LiPo Balance USB

input

Figure 5.1: (top) Layout of the (left) front and (right) back sides, and (bottom) a functional cartoon, of the
(B 90318 Beret (RPi Header, fullsize, 5V MB, 24 HB, CAN/RS485 busses). In the cartoon: blue
denotes JST-ZH connectors of various sizes; gray is used for the MB Header, the 3x5 Signal Headers, and the
USB Micro-B port; green is used for the JST-XH Balance connector. Beret Shields (§5.8) may be placed atop the
Analog Header, the SPI Header, the 12C Header, and (optionally) the first row of the 3x5 Signal Header A (SigA),
with the Beret’s main logic ICs lying on the PCB beneath. The XT30 main power input and all solder jumpers
are situated on the back side of the board; the user may (optionally, also on the back side) install a 6mm x 8mm
Flash IC, a rechargeable VL-1220/FCN coin cell, and/or passives for RS485 or CAN termination.

5-9

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

3v3|

= 0%0e00

=

1

o‘ﬂ- BoERsess sVE %
c B

Termination 7
®> ... o e

So.

oo

5 S| © %8¢ FOOOOCH
) (S
ava v

e L oa
SJ_SPImb_SS
5 550

Soe

CALA L) (XXX X<]

5 (@)@ [o]

o R6%5

o

0) (3) (0) (o) (@)

.
UL

AYd:E 10

o 0
oY » MU

|

e O66H 6H
o

D000

o

‘ MB Header ‘

°
o

E1-2 USART SPI Header

ESD

Protection EEPROM

19pesH 7|

level shifters,
current regulators

M1 M2-3

GPIO g
5V Vs1 expander Slgnal

Regulation Regulation Header A

33V LED driver
Regulation

JELEN] <-snquin->

Input

Power
PAUSE Protection MODE

LiPo Balance USB .

Figure 5.2: (top) Layout of the (left) front and (right) back sides, and (bottom) a functional cartoon, of the m
Beret (RPi Header, fullsize, 5V MB, 12 HB); for legend, see Fig. 5.1. Note that the entry-level m

Beret is simply a partially-populated Raspberry\ Beret, with the lower-cost STM32G4VB implemented (with
128KB flash instead of 512KB).

s@31 sniels

5-10

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

. MB Header

E1-2 USART

RS485

E6-7 transceiver
M4-5-6 M7-8-9

Bulk
Cap GPIO
expander

SPI Header

o
&

& oroto EEPROM
a rotection

DAC
opamps

bew
JspesH Il .

1apesH bojeuy

level shifters,

M 1 M2-3 M 1 0-1 1 M 1 2 current regulators

LED driver

Vs1 .
5V Regulation Slgnal
Regulation Header A

3.3VA CAN-FD
PAUSE Regulation transceiver

Signal
Input Header B MODI

Power

Protection LiPo Balance E3-4 USB

H
&

>

!

[N NN N NN NN
60600006668
2000000 AmmeReeeHl
[
BES (Y YT Y <
-

ocooed eeeeon

Linnad
QSPI
Flash s

0O0O0O0O0OO0CQOODDO
0O0O0O0OO0OO0OO0COODO

@E 666E ®@e6E 6H

0000
C N NN N

00000
X N N N
0000

coooen. D coon D PP0OOOE o
[} [}

Figure 5.3: Layout of the (top) front and (bottom) back sides, and (center) a functional cartoon, of the
HIEYSY Beret (96B Header, fullsize, 12V MB , 24 HB, CAN/RS485 busses); for legend, see Fig. 5.1.

5-11

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

MB Header

el
= SPI Header
Y
(]
w

ESD 3
traﬁ:g:iier > Protection EERROK & —
2 N
o DAC 2 o (@)
M4-5-6 Mm7-8-9 B o g8 .
Bulk Lol OPamps ~ 0]
Cap T S5 Q
O O z Q
2 4 B R
Q o 1]
=

level shifters, ya IMU
current regulators X

aouejeg odr

1 m10-11|m12
CAN-FD

Vsl . transceiver
2 Regulation GO Slgnal a)
Regulation RESET expander >
Header A >

LED driver

PAUSE
| q
Signal
Regulation Protection Header B

@@@@@@@@@@@@@@@@@@@@@@c&
©©©@@@©@@@©©©@@@©@@@@@@r

¥-€3

0] ® QROROORE ©OLROEE
g g 8@ ©OOOOE
® @® ©OELOE COOCOR
g g oee
° o it o
® ® ®
® ® o8 ©00F co0E ©H @
3 4 00000 %
S 00000 °:°
e ® @000

eeeoee . o

00000 828

0eeee @
© 0 06emE [8

e S

Figure 5.4: Layout of the (top) front and (bottom) back sides, and (center) a functional cartoon, of the

Beret (BB Header, fullsize, 5VMB, 24 HB, CAN/RS485 busses); for legend, see Fig. 5.1.
NOTE: this board is still under development.

5-12

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

oee6el

Fus
°Green Poroe
°°c Beret

OCLK\N © .3V3 Ve

p_ DK

AN
00000OQ

8J_im,

®@e el
®e0e6e
® 0.0 @@

B
.

=17

@0 06 m
®@ @066
®@ 0066

o

“} =]| o

d|l|h.“|\

Vs

’ ..,E_. DT \:.EEE.El

sccsce

SPI Header

8 3
bar @ MAg e

Green)
** Beret G

19peaH bojeuy
13pesH Il

Signal
Header A

SE]
ﬂ Header B m
o

XT30
(backside)

Figure 5.5: Layout of the (a) front and (b) back sides, (c) a functional cartoon, and (d) an oblique view, of the
Beret (standalone, halfsize, 0 HB, CAN/RS485 busses); for legend, see Fig. 5.1.

5-13

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

o666l

eeoeeeeR

;ﬁm M
L,
|'o-o~o~m|-

2 11]]
.l'h‘\' L

,.,u,u,u]iﬁﬁi

17/8/9
, | -

008088 [

i
Bw

t
1
i

eeeeeld ;. °, cccco

=

DRRBARARDANN
VLT
> -
= mOAda

- LI B I 3 I
e n
!
M .=
]
]
8 :

SPI Header

19peaH bojeuy
43peaH J¢|
N ES

Signal
Header A

LTSNSO

o S

XT30

(backside) M10-11 M12

Figure 5.6: Layout of the (a) front and (b) back sides, (c) a functional cartoon, and (d) an oblique view, of the
m Beret (standalone, halfsize , 12 HB); for legend, see Fig. 5.1.

5-14

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.2 Power subsystem

5.2.1 Main power source (Vin)

As outlined in §5.1, the power input (Vin=6.2V -28V on the 5V MB Berets, and Vin =12V -28V on the
12V MB Beret, at up to 15A continuous / 20A peak) is brought onto the Berets via a backside XT30 connector.
The XT30 jack provides the sole source of power for the motor drivers and servo headers on the Berets; power
provided over the XT30 jack also drives all other circuits on the Beret and the attached MB, via the voltage
regulators discussed in the sections that follow. Adapters are available separately to convert the connector on
the main power source, if necessary, from XT60, Traxxas, EC3, and Deans (aka “T”) connectors, 5.5 mm x 2.1 mm
barrel jacks®, and 4.75 mm x 1.65 mm barrel jacks’ to the XT30 standard™.

WARNINGS: when using high-power batteries like LiPos, it is essential that the user be aware of several
delicate issues regarding their selection, care, use, charging, storage, and disposal. One of the more thorough
online guides available on this important subject is available here; key takeaways include:

i. invest in a high-quality charger appropriate to the batteries you will be using,

ii. though LiPo cells can operate from 3.0V to 4.2V, a range of 3.1V to 4.1V extends battery life significantly,
iii. always balance while charging, as some cells will discharge faster than others (especially in older batteries),
iv. never use parallel charging boards,

v. store batteries at about half charge (~3.8V per cell for LiPos),

vi. don’t tug on bare wires (AB Clips can help),

vii. watch for swelling (dispose of swollen battery immediately), and

viii. always dispose of batteries properly.

Keeping an inexpensive tester handy for checking the charges of all cells of a given battery is often useful.

DC motors and steppers connected to a Beret operate directly at Vin, after the TVS and reverse-voltage
protections (see §5.2.3); this power is modulated by the H-bridges (§5.3) to control the motor speed and direction.
Y adapters may be inserted between the power source and the Beret to drive high-current servos, ESCs, and
BLDC motors directly off the power source, at Vin. The choice of the voltage Vin of the power source (e.g., a
2S to 6S LiPo) should thus be made according to the voltage required the motors and steppers (and, the high-
current servos, ESCs, and BLDC motors) to be used. Note that the voltage of a LiPo battery reduces significantly
as the battery is discharged; tuned feedback gains used to drive the motors (see §5.3) may be scaled inversely
with the battery voltage to offset this effect over time. In contrast, the behavior of most servos and ESCs,
which incorporate their own feedback, is relatively insensitive to the voltage supplied, as long as it remains
within the recommended operating range; selecting Vs1 (for low-current servos/ESCs) or Vin (for high-current
servos/ESCs) near the upper end of this operating range generally provides increased maximum torque.

5.2.2 Supplemental power sources

As discussed in §5.2.1, if main power is provided to the Beret over the XT30 connector (which is, in fact, the
only way that the Beret will actually power the motor drivers and signal headers), then this power also drives
the STM and all other circuits on the Beret, as well as the attached MB, as detailed in the sections that follow.
There are a few other places that supplemental power might be brought onto a Beret (or, to a Beret+MB system),
however, that the user also needs to be well familiar with.

8Wall adapters with 5.5 mm barrel jacks, with positive 2.1 mm pins and negative sleeves, is an emerging standard in robotics
applications that the user should stick with. Warning: this standard for 5.5 mm barrel jacks is not universal; some 5.5 mm barrel
jacks have either negative pins with postive sleeves, and/or 2.5 mm pins. If you are using a wall adapter with such a barrel jack, which
is not recommended, a custom adapter to the XT30 standard will be required; make absolutely certain you get the polarity right!
"Wall adapters with 4.75 mm barrel jacks, with positive 1.65 mm pins operating at 12V, is the power supply standard for 96Boards.
1A substantial power source, capable of delivering 4A or more, is recommended for driving motors, servos, etc. with a Beret.

5-15

https://www.tme.eu/en/details/xt30pw-m/dc-power-connectors/amass/
https://rogershobbycenter.com/lipoguide
https://www.google.com/search?q=lipo+parallel+charging+boards&tbm=isch
https://www.google.com/search?q=Buckle-Battery-Balance-Connector-Protector&tbm=isch
https://www.google.com/search?q=lithium+battery+Low+Voltage+indicator+buzzer&tbm=isch
https://learn.sparkfun.com/tutorials/connector-basics/power-connectors
https://forum.digikey.com/t/measuring-power-supply-barrel-plug-id-2-1mm-vs-2-5mm/401
https://www.96boards.org/product/power/

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

In normal operation, power is provided to a Beret via ONE of the following three sources:

1. the main XT30 power input on the Beret (connected to a high-power battery or a wall wart), OR
2. via the MB Header, up from a MB that is powered directly, OR
3. via the USB Micro-B connector on the Beret itself (connected, e.g., to a laptop or desktop computer).

Modes 2 and 3, which are discussed further in the following few paragraphs, may be useful at times for pro-
gramming the STM on the Beret, for reading the Beret’s onboard sensors, and for testing various other devices
connected to the Beret’s JSTs. WARNING: Mode 1 and mode 2 must NOT be used at the same time, to elimi-
nate the possibility of these two power sources interfering with each other. Note that mode 3 is protected with
a diode, and may thus be wired in conjuction with mode 1 or mode 2 (or, used stand alone) without concern.

Power from the MB, up through the MB Header, to the Beret
As mentioned above, RPi, 96B, and BB (and compatible) motherboards can all be powered by a Beret over the
corresponding MB Header. Power may INSTEAD be provided to such motherboards directly, e.g.:
- via USB C on an RPi-4B or BeagleBone Al,
- via a USB Micro B input attached to a substantial (2A to 3A) 5V wall wart on RPi-2 and RPi-3 models,
- via the DC input jack on the BeagleBone Black and 96B CE boards,
etc. If power is provided to such motherboards directly, in most cases this power is transmitted back up to the
Beret via the same MB Header pins that are otherwise used to transmit power down to the MB from the Beret.
When this happens, the Vmb circuit on the Beret is energized with sufficient power (again, in most cases) to
drive the Vmb->3.3V switching regulator (see §5.2.7), thus booting the STM on the Beret, and powering up the
Beret’s onboard sensors (see §5.4) as well as any small devices connected to the Beret’s JSTs.

WARNING: As mentioned above, one should NOT provide power directly to both the Beret (via the XT30)
and an attached MB''. Doing this can fry the Beret, the MB, and/or one or both of the power sources used.

5V power from the USB Micro-B port on the Beret

An unpowered, isolated (not connected to any MB) Beret may also, conveniently, be powered via the 5V line
on the USB Micro B connector on the Beret, which may also be used for programming the (3.3V) STM on the
Beret, for reading the Beret’s onboard sensors, and for testing various other small devices connected to the
Beret’s JSTs. This programming mode is quite convenient, as it only requires a single standard USB cable (Type
A Male to Micro B Male), in addition to the Beret and your laptop/desktop computer.

Unfortunately, the current capability of USB ports on most laptop/desktop computers is not sufficient to
drive both the Beret and a connected MB, and attempting to do so is thus not advised.

Note that the USB specification prohibits a USB client from back-driving a USB host with 5V power on the
USB voltage bus. Doing such can, in fact, cause major damage to a (potentially, expensive) USB host (i.e., your
laptop/desktop computer). To protect against this possibility, a schottky diode (rated to 10V/3A on the 5V MB
Berets, and rated to 40V/3A on the , , and m Berets), with a 0.35 to 0.55V voltage drop, is
implemented between the 5V power bus of the USB Micro B connector on the Beret and the Vmb line on the
Beret (or, the Vin line on the and M Berets). Thus, when powered by the USB Micro-B port alone,
the Vmb (or, Vin) line will be held to about 4.5V, which is sufficient to generate 3.3V and fire up the STM.

When the Beret is otherwise powered (either via the XT30, or by the MB via the MB Header), the diode
mentioned above will be under reverse bias, and no current will flow (either in to, or out of) the 5V power bus
on the USB Micro B connector on the Beret; this configuration is thus considered to be safe.

"In certain special cases, this situation is known to be ok. Specifically, on the 5V MB Berets, the Vin->Vmb switching regulator
(see §5.2.5) is operated in a mode that can handle ~5V being driven at its output, whether or not power is provided (from the XT30)
at its input [thus, no protection diode (aka ZPD) is required to isolate the Vin->Vmb regulator on the Beret]; note also that the last
few paragraphs of the RPi HAT design guide specifically state conditions in which ~5V may safely be provided over the MB Header
to an already-powered RPi. Regardless, there truly appears to be no practical reason to push your luck by trying this. So, don’t.

5-16

https://www.digikey.com/en/products/filter/cable-assemblies/455?FV=-8%7C455%2C207%7C305730&s=N4IgjCBcoEwAwHYqgMZQGYEMA2BnApgDQgD2UA2iAMxwCsCNIAusQA4AuUIAyuwE4BLAHYBzEAF9JQA
https://www.digikey.com/en/products/filter/cable-assemblies/455?FV=-8%7C455%2C207%7C305730&s=N4IgjCBcoEwAwHYqgMZQGYEMA2BnApgDQgD2UA2iAMxwCsCNIAusQA4AuUIAyuwE4BLAHYBzEAF9JQA
https://www.digikey.com/product-detail/en/stmicroelectronics/BAT60JFILM/497-3707-2-ND/686386
https://www.digikey.com/en/products/detail/avx-corporation/SD1206T040S3R0/13557240
https://github.com/raspberrypi/hats/blob/master/designguide.md

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

RTC backup battery (VL-1220/FCN rechargeable 3V coin cell)

All Berets come configured with backside solder pads for a VL-1220/FCN (only!) rechargeable 3V coin cell.
Warning: special care is required careful when soldering the VL-1220/FCN battery bracket onto the Beret.
Panasonic’s Lithium Handbook, which describes the VL-1220/FCN on pages 56-59, gives the following advice
(on page 80): Do not allow the soldering iron to make direct contact with the body of the battery. Proceed with the
soldering quickly (within 5 seconds) while maintaining the iron tip temperature at about 350°C, and do not allow
the temperature of the battery body to exceed 85°C.

The VL-1220 keeps the real-time clock (RTC) of the STM powered up during replacements of the main
battery (for recharging), and facilitates the scheduled wake-up of the Beret and the arrached MB from a low-
power sleep (aka VBAT mode), during which main power is turned off to both the Beret and the MB (see §5.5.1).
The VL-1220 battery is automatically recharged, when necessary, by the 3.3V line on the Beret when the STM
is in run mode.

5.2.3 Reverse-voltage, over-current/short-circuit, and ESD protections

All Berets implement a TVS diode across the XT30 input, and T TPD6E004 TVS diode arrays on USB and S1-
$10, for protection from Electrostatic Static Discharge (ESD, i.e.. voltage spikes). On the 5V MB Berets, the
{Vs1, 5V, 3.3V} lines are protected from voltage spikes by {13V, 5.6V, 3.6V} 1.5W zener diodes; on the 12V MB
Beret, the {Vs1, 12V, 5V, 3.3V} lines are protected using {13V, 13V, 5.6V, 3.6V} 1.5W zener diodes. 100 €2 resistor
arrays are used on S1-S10 for over-current (short-circuit) protection. The modern voltage regulators (§5.2.4-
5.2.7), motor drivers (§5.3), and CAN & RS485 transceivers (§5.6.4) on the Beret provide further over-current
and ESD protections. A TI CSD 18510058 MOSFET [with Rpson) = 0.96 m{2 and t4) = 44 ns] is implemented at
the XT30 to provide reverse voltage protection, and to turn off the board when necessary; the gate voltage of
this MOSFET is optimally adjusted by a TI LM74700-Q1 ideal diode controller, wired as suggested in figure 21
of its datasheet. The battery gauge LEDs (see §5.6.8) are illuminated whenever this main MOSFET is enabled
[and, thus, the Vmb (5V or 12V) and 3.3V switching regulators (see §5.2.5-5.2.7) are powered up].

WARNINGS: Notwithstanding the modern power protections implemented, as outlined above, it is still
quite possible to “release the magic smoke” > from a Beret; the user is thus strongly urged to carefully:
e ensure proper polarity at the XT30 (red/positive wire to the right when viewed from above; see Figures 5.1-5.6),
e keep the power input at the XT30 at or below 28V, preventing any voltage spikes beyond this value, and
e avoid any short circuits between any two pins (see Table 5.2), or draw current on any subsystem beyond the
maximum current values highlighted in §5.2.4 - §5.2.8, and §5.3, of this datasheet.

In §5.2.4 through §5.2.8, the voltage regulation circuits on the Berets are described in detail.

5.2.4 Vin->Vs1 switching regulator

The Vin->Vs1 switching regulator implemented on all five of the Berets, for generating a software-adjustable
Vs1=4.8V to min(12V,0.8*Vin) at up to 6A (for SigA, SigB), is the TI TPS56637, coupled with a 5.6 ;/H inductor
and three 22 ;iF output capacitors. The TPS56637 converter is wired as suggested in figure 17 its datasheet,
with EN and PG wired to Vs1_EN and Vreg_FAULT on the GPIO expander (see Table 5.6), taking' R7=6.49 k{2
and replacing R6 by a 28.7 k2 resistor in series with half of POT3, a TI TPL0102-100 dual digital pot, in Rheostat

2|t is sometimes said that “magic smoke” makes an IC work, as whenever this smoke escapes, the IC ceases to function; some
vendors even sell replacement magic smoke. Warning: more seriously, the Beret can deliver very high currents indeed; severe injury
or death may result from its misuse, so extreme caution and adherance to the warnings in this datasheet is absolutely required.
3These resistor values were selected by noting eq. 5 in the TPS56637 datasheet, applying a 3% margin to the desired limits, solving
the following simultaneous systems of equations in Matlab, and rounding to the nearest common resistor values:
syms X y; S=solve(3.3/1.03==0.6"(1+y/x), 12*1.03==0.6*(1+(y+100)/x)); x=eval(S.x), y=eval(S.y)

5-17

https://www.digikey.com/product-detail/en/panasonic-bsg/VL-1220-FCN/P665-ND/2404070
https://eu.industrial.panasonic.com/sites/default/pidseu/files/downloads/files/id_lithium_1003_e.pdf
https://www.littelfuse.com/products/tvs-diodes/surface-mount/smbj/smbj33ca.aspx
https://www.ti.com/product/TPD6E004
https://www.littelfuse.com/products/tvs-diodes/surface-mount/smbj/smbj33ca.aspx
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5928BT3G/1SMA5928BT3GOSTR-ND/918099
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5919BT3G/1SMA5919BT3GOSTR-ND/918093
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5914BT3G/1SMA5914BT3GOSTR-ND/918090
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5928BT3G/1SMA5928BT3GOSTR-ND/918099
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5928BT3G/1SMA5928BT3GOSTR-ND/918099
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5919BT3G/1SMA5919BT3GOSTR-ND/918093
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5914BT3G/1SMA5914BT3GOSTR-ND/918090
http://www.ti.com/product/CSD18510Q5B
http://www.ti.com/product/LM74700-Q1
http://www.ti.com/product/TPS56637
https://www.mouser.com/ProductDetail/Bourns/SRP5050FA-5R6M?qs=%2Fha2pyFaduj2MhxwsBebqw6IOdS6gJTVkWTmj7VEwwTUCOQ2IsSCWA%3D%3D
https://www.digikey.com/product-detail/en/samsung-electro-mechanics/CL21A226MAYNNNE/1276-CL21A226MAYNNNETR-ND/10479857
https://www.sparkfun.com/products/retired/10622
http://www.ti.com/lit/ds/symlink/tps56637.pdf

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

mode, that is adjustable electronically™ from 0 to 100 k2 in 256 increments, providing a maximum peak-to-peak
ripple current accoring to eq. 7 of the datasheet of up to 2.4 mA (at Vs1=12V). A blue status LED in this quadrant
illuminates whenever the Vs1 voltage regulator is enabled, and an amber status LED illuminates whenever any
of the voltage regulators signal a fault condition (see §5.6.8).

5.2.5 Vin->Vmb switching regulator

The Vin->Vmb switching regulator implemented, for generating both Vmb =5.1V at up to 6A on the 5V MB
Berets and Vmb =min(12V, 0.8"Vin) at up to 6A on the 12V MB Berets, is another T| TPS56637 again coupled
with a 5.6 /H inductor, and a 68 j(F output capacitor on the 5V MB Berets, or a 47 ;F output capacitor on the
12V MB Berets. In both cases, the TPS56637 converter is again wired as suggested in figure 17 of its datasheet,
with EN tied to Vin and PG to Vreg_FAULT, using values from its table 4 for 5V or 12V output as appropriate.

The Vin->Vs1 and Vin->Vmb switching regulators, as well as the motor drivers (see §5.3), are placed close
to each other, allowing them to share the same 100 yF bulk capacitor near their respective inputs.

As mentioned previously, on the 12V MB Beret, the 96B motherboard, if one is attached, down-regulates
from the Vmb=12V line (and, passes back via the low-speed header) 5V at up to 1A; the 12V MB Beret makes
use of this 5V line directly, and thus does not itself have a 5V regulator.

5.2.6 Vin->3.3V switching regulator

The Vin->3.3V switching regulator implemented on the and m Berets, for generating 3.3V at up
to 3A, is another T TPS56637 with a 2.2 ;/H inductor, and a 33 jtF output capacitor. The TPS56637 converter is
again wired as suggested in figure 17 of its datasheet, with EN tied to Vin and PG to Vreg_FAULT. The Vin->Vs1
and Vin->3.3V switching regulators are placed close to each other, allowing them to share the same 18 uF bulk
capacitor near their respective inputs.

5.2.7 Vmb->3.3V switching regulator

The Vmb->3.3V switching regulator implemented on the 5V MB Berets, for reducing Vmb =5.1V to 3.3V at
up to 3A, is the fixed voltage Tl TPS6208833, coupled with a 220 nH inductor and a 22 ;F output capacitor.
This converter is wired as suggested in figure 6 of its datasheet, with EN tied to Vmb and PG to Vreg_FAULT.

On the other hand, the Vmb->3.3V switching regulator implemented on the 12V MB Beret, for reducing
Vmb =12V to 3.3V at up to 3A, is the TI TPS62913, coupled with a 4.7 ;iH inductor and a 47 ;.F output capacitor.
This converter is wired as suggested in figure 8.1 of its datasheet (with Rfbt=15.4 k{2, Rfb=4.87 k2, Cff open,
and Lf removed), with EN tied to 5V and PG to Vreg_fault.

The Vin->Vmb and Vmb->3.3V switching regulators are placed close to each other (on both the 5V MB and
12V MB Berets), allowing the output capacitor of the former to serve as the input capacitor of the latter.

"Specific care is taken in the software driving this digital potentiometer in order to cycle the power to the switching regulator off
completely before adjusting the value of the resistance of the digital potentiometer (leveraging a look-up table, which is calibrated
on the fly, and a false-position search based on this look-up table) in order to, whenever the value of the digital potentiometer is
changed, both (a) reset the (internal) compensation coefficient of the switching regulator IC, and (b) prevent Over Voltage Protection
(OVP) from kicking in and triggering a soft restart of the switching regulator IC.

5-18

http://www.ti.com/product/TPS56637
https://www.mouser.com/ProductDetail/Bourns/SRP5050FA-5R6M?qs=%2Fha2pyFaduj2MhxwsBebqw6IOdS6gJTVkWTmj7VEwwTUCOQ2IsSCWA%3D%3D
https://www.digikey.com/product-detail/en/tdk-corporation/C3216X5R0J686M160AB/445-14671-2-ND/3951907
https://www.mouser.com/ProductDetail/Taiyo-Yuden/EMK316BBJ476ML-T?qs=Zy5V7Kj3rCVVMQaoWTlMmg%3D%3D
https://www.digikey.com/product-detail/en/united-chemi-con/EMZR350ARA101MF61G/565-5147-1-ND/8637142
http://www.ti.com/product/TPS56637
https://www.mouser.com/ProductDetail/Laird-Performance-Materials/TYA40202R2M-10?qs=sPbYRqrBIVnigKWKN5ijmQ%3D%3D
https://www.mouser.com/ProductDetail/TDK/C3216X7S0G336M160AB?qs=xLDY6iXSiQZ10rnF5yIs9w%3D%3D
https://www.digikey.com/en/products/detail/panasonic-electronic-components/EEE-FN1V180UR/11657053
https://www.digikey.com/en/products/detail/panasonic-electronic-components/EEE-FN1V180UR/11657053
http://www.ti.com/product/TPS62088
https://www.digikey.com/product-detail/en/vishay-dale/IHHP0806ABERR22M01/541-2559-2-ND/5419026
https://www.digikey.com/product-detail/en/samsung-electro-mechanics/CL10A226MQ8NRNE/1276-2868-2-ND/3888526
https://www.ti.com/product/TPS62913
https://www.coilcraft.com/en-us/products/power/shielded-inductors/molded-inductor/xgl/xgl4030/xgl4030-472/
https://www.digikey.com/product-detail/en/murata-electronics/GRM188R60J476ME15D/490-13247-2-ND/5877410

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.2.8 Vs2 power opamp

The Vs2 power opamp implemented, for generating a second adjustable voltage Vs2=1.2V to 2.1V at up to
=+ 400 mA, is provided by a TI ALM2402-Q1 high-power opamp, wired as described in Figure 5.10a-b (and sur-
rounding discussion). As opposed to the other regulated voltages mentioned in the above four subsections, Vs2
can source or sink up to 400 mA.

Note that, in addition to the Vs1, 12V, 5V, 3.3V, and Vs2 lines discussed above, DAC1 and DAC2 (see §5.7.1)
can also each source (or, sink) 400 mA, and can be set as constant (or, time varying) voltage sources, if needed,
in the OV to 3.3V range.

Note that Vs2, DAC1, and DAC2 are not available on the m Beret and, again, that Vmb and 5V are not

available on the and m Berets.

5.2.9 Switching default power on various connectors and sensors

The power provided to {E1-2, E6-7} may be switched between {3.3V, 5V, Vs1, off} by a T| TS5A3359 multiplexer,
via the Venc_3.3V and Venc_5V Beret GPIOs (see §5.5).

The nominal 3.3V power provided to {E3-4, E5, USART, USART} may be switched to 5V via backside solder
jumpers, as illustrated in Figures 5.1-5.6.

The nominal 3.3V power supplied to the IMU, magnetometer, and barometer may be switched to the coin
cell (i.e., Vcoin) via a backside solder jumper, as discussed further in §5.4.1.

The nominal Vs1 power supplied to Signal Header A may be changed to Vin by reorienting the 12A shunt
connector.

5.2.10 Charging and voltage monitoring of Vcoin

When in run mode, the STM monitors the voltage, Vcoin, of the VL-1220/FCN coin cell (if installed) using the
STM’s internal ADC1_IN17 channel, and (if necessary) recharges this cell, which generally operates in the 2.6V
to 3.05V range, using the 3.3V power bus. If it is ever found that 2.6V < Vcoin < 2.8V, software on the STM selects
VBRS=1 in the PWR_CR4 register on the STM (see the STM datasheet), thereby charging the coin cell (until
Vcoin = 3.0V, after which charging is turned off) through a 1.5 k2 resistor internal to the STM, while limiting
the charging current applied to

(3.3V—-2.6V)/1.5k) =~ 0.47TmA

or less, as per the VL-1220 specification on page 57 of Panasonic’s Lithium Handbook, which requires this charge
current to be 0.5 mA or less. If it is ever found that 2.0V < Vcoin < 2.6V, software on the STM selects VBRS=0 in
the PWR_CRA4 register on the STM, thereby charging the coin cell (until Vcoin = 2.6V, after which VBRS is set
to 1) through a 5 kS2 resistor internal to the STM, while limiting the charging current applied to

(3.3V —2.0V)/5 k2 ~ 0.26 mA.

or less. If ever the charge of the VL-1220 coin cell is found to be less than 2.0V, the battery is flagged as either
dead or not installed, and no charging is attempted.

5-19

http://www.ti.com/product/ALM2402-Q1
https://www.ti.com/product/TS5A3359
https://eu.industrial.panasonic.com/sites/default/pidseu/files/downloads/files/id_lithium_1003_e.pdf

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

DRVa DRVb (24 HB Berets only)
Outputs on DRVs 6,4 911|310 | 571|712 | 82 | 3,10 | 11,9 | 46 | 82 | 12,7 | 15
JST connector on Beret | M1 | M2 | M3 | M4 | M5 6| M7 | M8 | M9 | M10 | M11 | M12

<

Table 5.3: Connections between DRVs and the motor JSTs M1 through M12.

Independent BDC Parallel BDC Sequential BDC
Motor Connections Motor Connections Motor Connections

M1la |: M1la |: M1la [

M1b [M1b [M1b [

DRVa

M2a |: M2a |: M2a

mM2b [M2b [m2b [

M3a |:

M3b [M3b [M3b

M4a [

Mab [Mab [mab [

M5a [M5a [M5a

msb | msb [msb [

Méa | Méa | Méa [

 E—
T
M3a []7@} M3a [
j —
 E—
j —
j —
F@
T—
T—

L &
L &
L &
L&
| &

Méb | Méb | Méb

Figure 5.7: lllustration of the independent, parallel, and sequential modes of operation of the 12 outputs of
DRVa. For convenience when operating in independent mode, these outputs (reordered and renamed as de-
scribed in Table 5.3) are arranged on the Beret as six pairs of outputs on each DRV8912-Q1 (M1-M6 on DRVa
and, if present, M7-M12 on DRVD).

5-20

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

Figure 5.8: Closeup of the connections to the two DRV8912-Q1 motor drivers on a Raspberry\ Beret.

5.3 Control of brushed DC motors & steppers with the DRV8912-Q1

A central feature of the Berets is the TI DRV8912-Q 1 brushed motor driver(s) (hereafter, DRVa and/or DRVb)
about which they are built" (see Figure 5.8). This powerful subsystem draws a maximum of 6A per DRV, or
1A max per channel. Each of these remarkably versatile motor drivers incorporates 12 half bridges, which
may be configured in any of a myriad of ways, and 4 synchronized internal PWM generators (operating
at about 80 Hz, 100 Hz, 200 Hz, or 2000 Hz, selectable in software) to drive them. The outputs of the DRVs
are broken out on the Beret one pair at a time, labelled M1 through M6 on DRVa (and, if present, M7 through
M12 on DRVbD). To simplify layout, the Beret reorders the outputs of the DRVs, as shown in Table 5.3, with a
single combined drv_SLEEP channel and a single combined drv_FAULT channel tied to the GPIO expander (see
Table 5.6). A blue status LED near the DRVs illuminate whenever they are enabled, and an amber status LED
illuminates when the DRV signals a fault (see §5.6.8). Note that the outputs of the DRVs may also be used to
drive high-power PWM-driven circuits like LEDs (again, max 6A total per DRV, or max 1A per output).

Note that the Beret’s SPldrv channel (that is, the STM’s SPI4 channel), operating with a single SS line in
daisy-chain mode, gives the STM a dedicated high-speed connection to DRVa and DRVb.

The user might at first just plug into the M1 - M12 discrete JSTs directly, and use the half-bridge outputs one
pair at a time, in independent mode, for bidirectional control on each DRV of up to 4 “independent” motors
running at up to 1A each, and up to 2 “slave” motors operating in brake, coast, full forward, or full reverse,
or duplicating the PWM frequency and duty cycle of one of the “independent” motors. If 6 motors are wired
to one DRV at the same time, which 4 are chosen to be the “independent” motors, and which 2 as the “slave”
motors, may be redefined on the DRV whenever necessary.

Notably, by ganging the DRV outputs together in parallel mode, and/or stringing the DRV outputs along
in sequential mode (see Figure 5.7), a wide array of different motor configurations also becomes possible, as
discussed further in the following two subsections. Note, of course, that the independent, parallel, and/or
sequential modes can actually be combined on each of the DRV(s), for a wide variety of possible configurations
for developing complex yet practical systems.

5The DRV8912-Q1 drivers described here provide a compact general-purpose solution for the control of a wide range of small (up
to 28V and 6A) brushed-DC (BDC) motors (in forward, reverse, coasting, and braking operational modes, and alternating between
two such modes with PWM) and stepper motors. The other main type of motors used in mechatronic systems, brushless-DC (BLDC)
motors, require more carefully tuned electronic coordination, with BLDC motor drivers fairly closely matched to the BLDC motors
to be used. BLDC motor drivers are therefore located on Beret Shields (see §5.8) when using the Beret ecosystem.

5-21

http://www.ti.com/product/DRV8912-Q1
https://makezine.com/2020/01/08/how-two-california-kids-overcame-doubters-to-automate-the-freshest-burger-ever-served/
https://www.digikey.com/en/articles/an-introduction-to-brushless-dc-motor-control
https://www.digikey.com/en/articles/an-introduction-to-brushless-dc-motor-control
https://www.ti.com/motor-drivers/brushless-dc-bldc-drivers/products.html#sort=p2716max;asc

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.3.1 Parallel mode

Parallel mode gangs the outputs of 2 to 6 pairs of half bridges on each DRV together, using external wire
harnesses, to create full H-bridges for powering higher-current motors, thus driving (on each DRV):

- 1 motor at 1A, 1 motor at 2A, and 1 motor at 3A (as shown in Figure 5.7),

- 1 motor at 6A,

- 2 motors at 3A, etc.

Warnings: on the 24 HB Berets, DRVa & DRVb operate independently, and thus asynchronously. Thus:

a. any individual motor may be wired to DRVa or DRVb, but never to both;

b. parallel connections must join together the same number of DRV outputs on the left and right sides of any
motor using a custom wire harness, using a sufficient wire gauge to handle the resulting current; and

c. parallel connections must synchronize, via appropriate programming, the wires that are ganged together
(e.g., in the configuration shown in Figure 5.7, {M2a, M2b} and {M3a, M3b} must be synchronized to form the
left and right sides of the 2A motor, and {M4a, M4b, M5a} and {M5b, M6a, M6b} must be synchronized to form
the left and right sides of the 3A motor, see, e.g., §8.3.1.1.3 and §8.3.1.1.4 of the DRV8912-Q 1 datasheet).

5.3.2 Sequential mode

Sequential mode, on the other hand, strings the output of one motor together with the input of the next, in
a serial fashion, for bidirection control of a remarkable total of up to 12 motors at up to 1A on each DRV,
albeit at reduced duty cycles (i.e., not all at once). Note that interleaving half-bridges must to be turned off at
any instant for sequential mode to work correctly, and the voltage used must be slightly above the stall torque
of a single motor, so that two motors can not be driven by the supply voltage when applied in series. Thus, for
example, if 12 motors are hooked up to a single DRV as shown in Figure 5.7, then:

A. the 1st, 4th, 7th, & 10th motors are driven for a while (with M2a, M3b, M5a, & Méb off), then

B. the 2nd, 5th, 8th, & 11th motors are driven for a while (with M1a, M2b, M4a, & M5b off), then

C. the 3nd, 6th, 9th, & 12th motors are driven for a while (with M1b, M3a, M4b, & Mé6a off);
these three steps then repeat from the beginning. PWM with independently controllable duty cycles may be
used on each channel (e.g., at 2000 Hz) to run these motors (4 at a time on each DRV) at partial power and
in either direction, while the cycling between these three steps happens much more slowly (e.g., at 10 to 100
Hz). If, periodically, 4 to 8 of the motors hooked to each DRV are not used (e.g., in sequential assembly-line
operations), then these motors may be grouped together as appropriate, and the corresponding step(s) in the
above-described cycle can be skipped, improving the smoothness in the driving of the remaining motors (by
reducing the time that they spend in a step that turns them off).

5-22

https://www.engineeringtoolbox.com/wire-gauges-d_419.html
https://www.ti.com/product/DRV8912-Q1

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.4 IMU, magnetometer, and barometer

All six Berets includes three built-in environmental sensors:

e a TDK ICM-42688-P 6-axis IMU (3-axis accel + 3-axis gyro + thermometer), connected via SPI,

e an ST LISBMDLTR 3-axis magnetometer, connected via 12C, and

e an ST LPS22HB barometer + thermometer, connected via 12C.

The dedicated SPlimu connection between the STM and the IMU facilitates, if needed, remarkably fast update
rates (up to 32 kHz) for IMU data, suitable for problems in which high-frequency mechanical vibrations need
to be characterized. Data from the magnetometer and barometer is usually low-pass filtered (on the sensors
themselves) to reduce noise. The magnetometer is generally operated at 80 Hz or less, and the barometer at
75 Hz or less; for such signals, communication over the shared 12Ca bus is thus sufficient.

Note that the extensive bus connectivity (UART, 12C, SPI, USB, CAN) provided by the Beret allows, of course,
many additional sensors to be attached easily, as necessary for the user’s particular application.

If the center of the top surface of each Beret is taken as the origin, then the centers of the mounting holes and
the IMU coordinate system are situated as defined in Table 5.1. Note also that, on each Beret, the magnetometer
is located in a corner of the logic quadrant that is as distant as possible from the board’s power electronics,
thus minimizing the contamination of its readings by stray EM fields.

As depicted by the axes printed next to the STM, the native (z,y, z) coordinates of both the IMU and the
magnetometer on the Beret are (in the reference orientation depicted in Figs 5.1-5.6, where “up” is towards the
viewer when looking at the top side of the board) aligned with the (East, North, Up) [a.k.a. ENU] directions,
respectively. Positive rotations are given by right-hand rotations about each of these axes. For example, as in
the 1SO 8855 automotive standard, if the body-fixed (z,y, z) axes are taken as vectors out the (front, left, top)
of a vehicle, respectively, then positive [a.k.a. 3-2-1 Tait-Bryan] rotations about the (z, 3, x) coordinates may be
referred to as (yaw, pitch, roll), and denoted («, 3, 7), respectively, where each of these rotations being positive
is given by, respectively, (nose to the left, nose down, right side down).

Other coordinate conventions are easily derived from the native (x,y, z) coordinates used by the Beret.
For example, taking (Z, 7, 2) as (North, East, Down) [a.k.a. NED] on the board (again, in the reference orienta-
tion depicterd in Figs 5.1-5.6), with positive (right-hand) rotations about each denoted (&, B,), it follows that
(z,9,2) = (y,z,—z) and (&,B,&) = (B, a, —7); linear and angular velocities and accelerations in these two
different coordinate conventions are related similarly. For example, as implemented broadly in the aerospace
industry, as well as by the SAE J670 and J1594 automotive standards, if the body-fixed (Z, 7, 2) axes are taken
as vectors out the (front, right, bottom) of a vehicle, respectively, then positive rotations (&, 5’,’7) about the
(2,9,) coordinates may again be referred to as (yaw, pitch, roll), where each of these rotations being positive
is now given by, respectively, (nose to the right, nose up, right side down).

To estimate the time evolution the 6DOF configuration [position plus orientation] of the system to which
the Beret is attached, in addition to the 6DOF rate of change of this configuration [together referred to as the
12DOF state of the system], one must integrate the raw linear acceleration and angular velocity data from the
IMU, and (optionally, on a slower time scale) fuse this information with the absolute position and orientation
measurements that may be obtained from the magnetometer, barometer, and/or attached GPS/GNSS unit, as
well as the linear and angular velocity measurements that may be obtained from laser rangefinders, optical
flow processing, etc. This complex task, discussion of which is beyond the scope of the present document, must
be solved on the STM (not on the IMU itself).

However, the IMU does features a flexible set of built-in programmable digital filters, and includes a pro-
prietary on-chip motion processing engine designed for gesture recognition and activity classification, and can
also function effectively as a pedometer (see also §5.4.1).

5-23

https://www.digikey.com/product-detail/en/tdk-invensense/ICM-42688-P/1428-ICM-42688-PTR-ND/10824934
https://www.digikey.com/product-detail/en/stmicroelectronics/LIS3MDLTR/497-13892-2-ND/4309733
https://www.st.com/en/mems-and-sensors/lps22hb.html

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

Note that not all IMUs, magnetometers, and barometers are created equal. Far from it, in fact (buyer
beware!). The specs on the sensors selected for the Beret are, as of 2021, best in class:

- the accelerometer noise is about 70 z1g/v/Hz, and the gyro noise about 2.8 mdps/v/Hz,

- the sensitivity of the magnetometer is about £0.4 mT, and

- the relative accuracy of the barometer is about +1Pa (i.e., 8.8 cm change in altitude at sea level'®).
See the corresponding datasheets for further such characterizations, and compare such specs carefully when
selecting IMUs, magnetometers, and barometers for your own board designs. Note in particular that many
popular “9-axis” IMUs, which (conveniently) incorporate a 3-axis magnetometer as well as a motion processing
engine to automatically estimate the system state (albeit, without incorporating inputs from auxiliary sensors
such as barometers, GPS/GNSS units, laser rangefinders, etc), compromise on sensor sensitivity in order to fit
more functionality onto a single IC; we have thus avoided using such a 9-axis IMU in the Berets.

Note also that the STM and IMU are slaved to the same external 32.7680 kHz MEMS oscillator (see §5.5.1)
on the Berets, which keeps their clocks accurately in sync.

5.4.1 Data-ready and sensor-driven interrupts

The IMU, magnetometer, and barometer used on all six Berets are each capable of taking measurements at a
pre-specified rate'’, and alerting the STM (via the imu_INT2_DRDY, mag_DRDY, and bar_INT_DRDY channels,
as shown in Tables 5.5-5.6) as soon as there is fresh data ready (DRDY) to be read from the corresponding sensor,
so that this sensed data may subsequently be used, with minimum latency, in feedback algorithms.

The IMU, magnetometer, and barometer are also capable of running in the background (without constant
monitoring by the STM), and issuing interrupts when a variety of environmental conditions are detected. The
IMU can be programmed to issue an interrupt to the STM, over the imu_INT1_DRDY and/or imu_INT2 chan-
nels, when any of the following events are detected:

e a step or tap,

e a tilt beyond 35° for more than a certain (programmable) period of time,

e a raise-to-wake or lower-to-sleep gesture, or

e when net accelerations exceed a certain (programmable) magnitude.

Similarly, the magnetometer can be programmed to issue an interrupt, over the mag_INT channel, when

e the magnetic field exceeds a (programmable) magnitude in the x, y, or z direction (selectable),
and the barometer can be programmed to issue an interrupt, over the bar_INT_DRDY channel, when

e the atmospheric pressure attains a (programmable) maximum or minimum threshold.

The {imu_INT1_DRDY, mag_INT, bar_INT_DRDY} channels may also be made connected (via backside solder
jumpers on the Beret that are initially open) to the MB (see §5.5 for details).

As also noted in §5.2.9, the nominal power supplied to the IMU, magnetometer, and barometer is 3.3V, but
this may be switched via a backside solder jumper to the coin cell (i.e., Vcoin). Combining this feature with
the programmable interrupts discussed above, any of the above noted events can programmed to generate an
interrupt that wakes both the Beret and the motherboard from a low power sleep mode, which operates solely
on the coin cell.

1®Note that atmospheric pressure decreases at a rate of about 11.3 Pa per meter increase in altitude at sea level.

7The IMU operates at datarates of 12.5 Hz to 32 kHz, the barometer operates at datarates of 1Hz to 75 Hz, and the magnetometer
nominally operates at datarates from 0.625 Hz to 80 Hz, though in fast mode the magnetometer can be operated from 155 Hz to 1 kHz.
The IMU and barometer both incorporate convenient digital low-pass filters that may be enabled.

5-24

https://www.digikey.com/product-detail/en/tdk-invensense/ICM-42688-P/1428-ICM-42688-PTR-ND/10824934
https://www.digikey.com/product-detail/en/stmicroelectronics/LIS3MDLTR/497-13892-2-ND/4309733
https://www.st.com/en/mems-and-sensors/lps22hb.html
https://en.wikipedia.org/wiki/Barometric_formula

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

USB Micro B MB Header SPI Header Analog Header 12C Header

Magnetometer

Beret opamps,

32 kHz MEMS .
low pass filters

CAN JST Oscillator

CAN-FD
transciever

3x Dual
Digital Pots

RS485
transciever

GPIO
Expander LED

Driver
Subsystem
enable pins

RS485 /

UART JST STM32G474

USART JST
S
Ly 1A e Multiplexer
X trol pi
Multiplexers conto pns
M1 - M12 SigA, SigB Flash? Balance JST

Figure 5.9: Connectivity of the primary STM busses on Berets, with rectangles denoting ICs, brown rectangles
denoting environmental sensors, octagons denoting connectors, capsules denoting channels, ellipses denoting
buttons & LEDs, and ()* denoting optional backside components. See Table 5.4 for the correspondence between

Beret channel names and the STM32 hardware channel names.

Beret location Beret channel names STM32 hardware channel names §
USART JST USARTb; UARTDb; SPIb USART3 5.6.5
RS485 JST RS485; UARTa UARTS5 (+ RS485 transceiver) 5.6.4

CAN JST CAN FDCANT1 (+ CAN transceiver) 5.6.4
E1-2 JST E1-2; 12Cd TIM3_CH1/2, TIM8 CH1/2; 12C4 5.6.1
E3-4 JST E3-4; UARTt TIM4_CH1/2, TIM2_CH1/2; USART1_TX 5.6.1

E5 JST E5; UARTr TIM1_CH1/2; LPUART1_RX 5.6.1
E6-7 JST E6-7 TIM5_CH1/2, TIM20_CH1/2 5.6.1
Signal Header A S$1-S5; 12Cb, 12Cc HRTIM_CHA1/A2/E2/E1, TIM16_CHT1; 12C2, 12C3 | 5.6.2
Signal Header B S6-S10 TIM15_CH1/2, TIM17_CH1, HRTIMCHD1/C2 5.6.2
SPI Header SPla; 12S, IR SPI2,12S2, IR_OUT 5.6.7
12C Header 12Ca 12C1 5.6.6

Analog Header DAC1, DAC2 DAC1_OUT1, DAC1_OUT2 5.7.3
MB Header SPImb SPI3 5.9

comm to DRVs SPldrv SPl4 5.3

comm to IMU SPlimu USART?2 5.4

comm to flash QSPlIflash QSPI1_BK2 5.5.2

Table 5.4: High-level correspondence between various Beeret channel names and the corrgesponding STM32
hardware channel names. See Table 5.2 for the assignments to each individual pin on the Beret connectors, and
Table 5.5 for the assignments to each individual pin on the STM32. Note that, by default, UARTt is transmit-only
or half duplex, and UARTT is receive only. See also Figure 1.7.

5-25

Renaissance Robotics (v.2024-05-16)

Chapter 5: Berets

pin STM name(s) Beret name(s)
B5 PB5 SPI3_MOSI (GPIO) SPImb_MOSI (12C_G3)
C7 PC11 SPI3_MISO (GPIO) SPImb_MISO (Vs1_EN)
A5 PB3 SPI13_SCK (GPIO) SPImb_SCK (Vreg_FAULT)
H6 PE9 ADC3_IN2 Vmon1
K7 PE13 ADC3_IN3 Vmon?2
| C5 PB4 TIM3 CH1 Etla
TIM3_CH2 E1b
F10- PC7 {I2C4_SDA {IZCd_SDA
TIM8_CH1 E2a
Fo. PC6 {I2C4_SCL {I2Cd_SCL
TIM8_CH?2 E2b
B10 PA14 {I2C4_SMBA {IZCd_SN\BA
TIM4_CH1 E3a
A4 PBO {USART1_TX {UARTt_TX
G9 PD13 TIM4_CH2 E3b
B9 PA15 TIM2_CH1 Eda
A8 PD4 TIM2_CH2 E4b
TIM1_CH1 E5a
F2. PCo {LPUART1_RX {UARTr_RX
J6 PE11 TIM1_CH2 E5b
J4* PB2f TIM5_CH1(GPIO) E6a_s (Vmon_A0)
G2 PA1T TIM5_CH2(GPIO) E6b_s (Vmon_EN)
C3 PE2 TIM20_CH1 (GPIO) E7a (CAN_SHDN)
B2 PE3 TIM20_CH2 (GPIO) E7b (CAN_STB)
| C9 PA12 USB.DP use.bp
C10 PA11 USB_DM USB_DM
B8 PDO FDCANT_RX CAN_RX
A9 PDIT FDCAN1_TX CAN_TX
B7 PD2 UART5_RX UARTa_RX
A10 PC12 UART5_TX UARTa_TX
H7 PE15 USART3_RX USARTb_RX
C8 PC10 USART3_TX USARTb_TX
G7 PD10 USART3_CK USARTb_CK
D8 PA13 USART3_CTS USARTb_CTS
J10* PD12f USART3_RTS_DE USARTb_RTS s
*********** HRTIM1_CHA1 (51]
E10 PAS {IZCZ_SDA {IZCb_SDA
1252_MCK 12S_MCK
HRTIM1_CHA2 S2
D10 PA9 {IZCZ_SCL {IZCb_SCL
12C3_SMBA 12Cc_SMBA
C4 PEO TIM16_CH1 S3
HRTIM1_CHE2 S4
B9 PCO {I2C3_SDA {IZCC_SDA
HRTIM1_CHE1 S5
E8 PC8 {I2C3_SCL {IZCC_SCL
E3 PF9 TIM15_CH1 S6
E4 PF10 TIM15_CH2 S7
B3 PET TIM17_CH1 S8
H9* PB14" HRTIM1_CHD1 S9 s
Jo* PB13" HRTIM1_CHC2 $10_s

Table 5.5: Pinouts of the STM32G474 (VE or VB) on all six Berets. ()* denotes an STM pin that is not natively
tolerant to 5V inputs; those marked ()* are also available at a JST or header on the Beret. The 8 digital i/o
channels marked ()" are passed through an 8-channel TI TXB0108 level shifter to assure 5V tolerance. The 12

channels marked (GPIO) have different functions on the and m Berets, as indicated. (Note: table

continues on next page.)

5-26

http://www.ti.com/product/TXB0108

Renaissance Robotics (v.2024-05-16)

Chapter 5: Berets

pin STM name(s) Beret name(s)
K1* PA7 OPAMP1_VINP ADC1
H3* PA3 OPAMP1_VINM Vref
H1 PA2 OPAMP1_VOUT Ipfla
F8* PD14 OPAMP2_VINP Ipfic
J3* PC5 OPAMP2_VINM Vref
H4* PBO OPAMP3_VINP ADC2
J8* PB10 OPAMP3_VINM Vref
K3* PB1 OPAMP3_VOUT Ipf2a
H10* PD11 OPAMP4_VINP Ipf2c
K10* PD8 OPAMP4_VINM Vref
H2* PA4 DAC1_OUT1 DAC1
J1* PA5 DAC1_OUT2 DAC2
| B4 PB7 12C1.SDA 12Ca_SDA |
A3 PB8 {|2C1_SCL {l2Ca_SCL
BOOTO BOOTO
A2 PB9 IR_OUT IR_OUT
. SP12_MOSI SPla_MOSI_s
K9 PB15! {IZSZ_SD {IZS_SD_S
D9 PA10 SPI2_MISO SPla_MISO
SPI12_SCK SPla_SCK
B2 PRI {IZSZ_CK {I2S_SCK
SPI2_NSS SPla_SS
El PFO {IZSZ_NVS {IZS_NVS
| A7 PD5 USART2.TX SPlimu_MOSI |
A6 PD6 USART2_RX SPlimu_MISO
B6 PD7 USART2_CK SPlimu_SCK
G4* PAO USART2_CTS SPlimu_SS
)7 PE14 SPI4_MOSI (GPIO) SPIdrv_MOSI (pause)
B1 PE5 SPI4_MISO (GPIO) SPIdrv_MISO (mode)
G6 PE12 SPI4 SCK(GPIO) SPIdrv_SCK (RS485_RE)
AT PE4 SPI4_NSS(GPIO) SPIdrv_SS (RS485 DE)
| C2 PE6 RTC_TAMP3 reset |
F3 PG10 NRST reset
D4 PC13 RTC_OUT1 power
D3 VBAT VBAT Vcoin
C1 PC14 OSC32_IN 0SC32
| F4* PC1 QSPI1_BK2_100 QSPIflash_100 |
F1 PC2 QSPI1_BK2_101 QSPIflash_101
G1* PC3 QSPI1_BK2_102 QSPIflash_102
K2 PC4 QSPI1_BK2_103 QSPlIflash_103
K6 PE10 QSPI1_CLK QSPIflash_SCK
Co PD3 QSPI1_BK2_NCS QSPIflash_SS
[J2* PB11 GPIO gpioINT]
H8* PA6 GPIO mag_INT
K8* PB12 GPIO (GPIO) imu_INT2 (amp_OTF_SLEEP)
| G5 PE7T GPIO 1 bar_INT_DRDY |
G8* PDot GPIO imu_INT1_DRDY
| D1 PC15 GPIO(GPIO) ~ SPImb_SS (RS485_SEL) |
G3 PF2 GPIO USART_G5
G10 PD15 GPIO 12C_G2
H5 PE8 GPIO SPI_G4

Table 5.5: Continued from previous page.

5-27

Renaissance

Robotics (v.2024-05-16)

Chapter 5: Berets

Connections on the GPIO Expander

GPIO connections on the STM pin i/o channel name notes §
pin | i/o channel name notes § P0_4 (.) Vs1_EN PP, AH, B/G 5.24
P0_5 i Vreg_FAULT OD, AL, PU,A/3 | 5.24

G5 | i bar_INT_DRDY | OD,AL,PU | 54 P1.3| o drva_SLEEP PP, AL, B/G 5.3
G8' | i | imu_INTI_DRDY | OD,AL PU | 54 P14 | o drvb_SLEEP PP, AL, B/G 5.3
K8* | i imu_INT2 OD, AL, PU | 54 P15 i drv_FAULT OD, AL,PU,A/3 | 5.3
H8" | i mag_INT PP, AL 5.4 P12 | i mag_DRDY PP, AL 5.4
J2r gpio_INT OD, AL,PU | 55 P16| o Venc_3.3V PP, AH 5.6.1
G3 | i/o USART_G5 configurable | 5.6.5 P17 o Venc_5V PP, AH 5.6.1
G10 | i/o 12C_G2 configurable | 5.6.6 P20 o CAN_SHDN PP, AH 5.6.4
H5 | i/o SPI_G4 configurable | 5.6.7 P21 o CAN_STB PP, AH, B/3 5.6.4
D1 [SPImb_SS PP, AL 5.9 P22 | o RS485 SEL PP, AH 5.6.4
P23 | o RS485_ RE PP, AL, B/3 5.6.4
Connections on the LED Driver P24 | o RS485_DE PP, AH, A/G 5.6.4
- P0_3 | i/o 12C_G3 OD, AL, PU 5.6.6
pin | LED name § P25 | i pause OD,AL,PU | 5638
PO | gauge_G1 56.8 P26 | i mode OD, AL, PU 5.6.8

P1 gauge_G2 5.6.8 P2_7 | i/o | amp_OTF_SLEEP OD, AL, A/G 5.7
P2 gauge_G3 5.6.8 P06 | o Vmon_EN PP, AH 5.7.4
P3 gauge_R 5.6.8 PO_7 | o Vmon_A0 PP 5.7.4
P4 LED R 5.6.8 P1.0| o Vmon_A1 PP 5.7.4
P5 LED Y 5.6.8 P1_1 o Vmon_A2 PP 5.7.4

P6 LED G 5.6.8 PO 0 | i/o SPImb_G0 configurable 5.9

- P0o_1 | i/o SPImb_G1 configurable 5.9

PO 2 | i/o SPImb_G2 configurable 5.9

Table 5.6: GPIOs on the , Black BN Berets located on (top/left) the STM and (right) the
GPIO expander; note that the and m Berets, with fewer GPIOs, do not use a GP1O expander at all
(they have all GPIOs moved to the STM, as indicated in Table 5.5). (bottom/left) The LED Driver connections
on all six Berets. Inputs with a Pull Up resistor are labelled PU; internal pull up resistors on the STM are 40 kf2,
those on the GPIO expander are 55 k(2. Outputs: OD = Open Drain, PP = Push/Pull. Logic: AL = Active Low,
AH = Active High. {B/G, B/3, A/G, A/3} indicate the channel is associated with a Blue or Amber status LED,
connected to Ground or 3.3V; all 9 LEDs tied to the LED driver connect to 3.3V.

5.5 STM32G474 microcontroller features, pinouts, and GPIOs

All six Berets are controlled by a 100-pin STM32G474VE (or, VB) microcontroller'®, which includes a 170 MHz
ARM Cortex-M4 core with 512 KB flash and 128 KB SRAM, and several useful features for efficient implemen-
tation of difference equations for feedback control of electromechanical systems, such as STM’s Adaptive real-
time (ART) memory accelerator and a Filter Math Accelerator (FMAC), which implements low-level circular
buffers for offloading the computation of FIR and IIR filters from the main ARM core (see §2?).

The STM32G474 includes an extensive set of dedicated hardware subsystems for driving busses and periph-
erals without putting a computational load on the ARM core itself. As shown in Figure 5.9, the Beret makes
considerable use of these hardware subsystems on the STM. In fact, after connecting up these many subsystems
and connectors on the , , and Berets, only 9 pins on the STM were left over to use
as dedicated STM GPI1Os; 24 additional GPIOs are thus obtained on these Berets using a NXP PCAL6524HEHP
GPIO expander®. As stated in Note A of Table 5.2, any STM i/o channel available on a Beret JST that is not

8Key references for the STM32G474, which users of the Beret will need frequently, are its datasheet and reference manual. Also
available from ST is a comprehensive set of training courses (both videos and PDFs) specifically designed for the STM32G4 series.
YA change of state of an input to the GPIO expander is indicated by the gpio_INT channel on the STM (see Tables 5.5-5.6).

5-28

https://www.ti.com/product/TCA6507
https://www.digikey.com/product-detail/en/nxp-usa-inc/PCAL6524HEHP/568-15416-2-ND/5981031
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32g4-series/stm32g4x4/stm32g474ve.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-System-ARM_Cortex_M4_%28Core%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Memory-Flash_%28FLASH%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Memory-Flash_%28FLASH%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Memory-Flash_%28FLASH%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-Filter_Math_Accelerator_%28FMAC%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-System-General_purpose_IO%20_interface_%28GPIO%29/index.html
https://www.digikey.com/product-detail/en/nxp-usa-inc/PCAL6524HEHP/568-15416-2-ND/5981031
https://www.st.com/resource/en/datasheet/stm32g474ve.pdf
https://www.st.com/resource/en/reference_manual/dm00355726-stm32g4-series-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/content/st_com/en/support/learning/stm32-education/stm32-online-training/stm32g4-online-training.html

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

otherwise being used for its primary purpose can be reconfigured as an auxiliary STM GPIO.

The pinouts and GP1O channels® of the STM32G474VE/B (TFBGA100 variants of the STM32G474), the LED
Driver, and the GPIO Expander are specified in Tables 5.5-5.6. The {VSS, VSSA} pins {D2, D6, E5, E6, E7, F6, K4}
are wired to GND, and the {VDD, VDDA, VREF+} pins {D5, D7, F5, F7, J5, K5} are wired to 3.3V.

5.5.1 Real-time clock (RTC), and scheduled/commanded wakeup from VBAT mode

All six Berets include a modern MEMS oscillator (specifically, an SiTime SIT1532AC-)5-DCC-32.768E, operating
at 32.7680 kHz), rather than a quartz crystal resonator with load caps, to generate OSC32 to drive both the STM
real-time clock (RTC) as well as the ICM-42688-P IMU (see §5.4).

When in run mode, pressing the reset button on the Beret drives the STM NRST channel on the PG10 pin
low, resetting the STM. When in VBAT mode (low-power sleep, powering the STM solely by the VL-1220 coin
cell, with the main power to the Beret turned off at the power MOSFET), pressing the reset button drives the
RTC_TAMP3 channel on the PE6 pin®' low. The STM RTC module is used to wake the board from VBAT mode
(either if RTC_TAMP3 is driven low, or if scheduled, or if a wake-up signal is received over the LPUART channel),
leveraging the STM RTC_OUTT1 channel on the PC13 pin, which is wired to the enable pin on the Beret’s ideal
diode controller, which in turn is wired to the main power MOSFET (see §5.2.3); the 5V and 3.3V Vregs, as well
as the STM, quickly power back up automatically when this power MOSFET is turned back on.

5.5.2 Customization with Quad-SPI Flash

The full size Berets are also preconfigured with a pinout of the STM QuadSPI module QSPI1_BK2 for easy
addition of a standard-size (6 mm x 8 mm, 8-WSON) fast, low-cost, high-capacity 4 MB to 512 MB flash IC for
extending the (NAND or NOR) flash memory capacity of the system, for those applications that need it.

A GPIO may be either active high or active low, and either push-pull or open drain. Active high means the channel is “active”
or “on” in the Logical 1 state (3.3V on the Beret), and “inactive” or “off” in the Logical 0 state (GND); active low means the opposite.
Push-Pull means the connected device either drives the channel low (through an NPN BJT or n-channel MOSFET to GND), or drives
the channel high (through a PNP BJT or p-channel MOSFET to 3.3V). Open Drain (a.k.a. Open Collector), in contrast, means the
connected device drives or “asserts” the channel to the low state (through an NPN BJT or n-channel MOSFET to GND), but the
channel is left floating by the connected device instead of driving it to the high state, thus requiring a pull-up resistor (connecting
the channel to 3.3V via a resistor, often internal to the MCU) to achieve a definitive boolean state. [A pull-down resistor (connecting
to GND) is occasionally needed in certain analogous situations, in which a device (like a button) might assert a channel to the high
state, but otherwise leaves it floating.] An advantage of the Open Drain setting is that several devices can be tied to a single GPIO
channel on the MCU; this channel then functions as a wired OR device for active low logic (or, as a wired AND device for active
high logic).

2The PEG6 pin and the PG10 pin, operated as inputs, are wired together; when in run mode, PEG6 is ignored, and when in VBAT
mode, PG10 is ignored.

5-29

https://www.ti.com/product/TCA6507
https://www.ti.com/product/TCA6507
https://www.ti.com/product/TCA8418E
https://www.digikey.com/en/ptm/s/sitime/8-reasons-to-replace-crystals-with-mems-oscillators/tutorial
https://www.digikey.com/product-detail/en/sitime/SIT1532AC-J5-DCC-32-768E/1473-1313-2-ND/5232180
https://st-onlinetraining.s3.amazonaws.com/STM32G4-System-Reset_and_clock_control_%28RCC%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-System-Reset_and_clock_control_%28RCC%29/index.html
https://www.digikey.com/product-detail/en/tdk-invensense/ICM-42688-P/1428-ICM-42688-PTR-ND/10824934
https://st-onlinetraining.s3.amazonaws.com/STM32G4-System-Reset_and_clock_control_%28RCC%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Memory-QuadSPI_interface_%28QUADSPI%29/index.html
https://www.digikey.com/products/en/integrated-circuits-ics/memory/774?k=flash+quad+spi&k=&pkeyword=flash+quad+spi&sv=0&pv800=u104MHz&pv800=u108MHz&pv800=u120MHz&pv800=u133MHz&pv800=u166MHz&sf=0&FV=276%7C128773%2C276%7C133057%2C276%7C134904%2C1291%7C295485%2C1291%7C295486%2C1989%7C0%2C-8%7C774&quantity=1&ColumnSort=1000011&page=1&pageSize=25
https://www.embedded.com/flash-101-nand-flash-vs-nor-flash/

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.6 Connectivity and i/o

5.6.1 Quadrature encoder counters and connectors

As indicated in Figure 5.9 and Tables 5.4-5.5, the encoder channels E5, E2, and E7 on the Berets connect to pairs
of outputs on the STM advanced control timers TIM1, TIM8, and TIM20, and the encoder channels E4, E1, E3,
and E6 on the Beret connect to pairs of outputs on the STM general purpose timers TIM2, TIM3, TIM4, and
TIM5. All 7 of these hardware timers are nominally operated in the quadrature encoder counting mode, with
up/down counting, without loading the main ARM core. The encoder connectors on the Beret also include
connections to power. As discussed in §5.2.9, the (3.3V or 5V) power provided to the E3-4 and E5 connectors
may be changed via backside solder jumpers, and the (3.3V, 5V, Vs1, or off) power provided to the E1-2 and E6-7
connectors is selected via a multiplexer using the Venc_3.3V and Venc_5V Beret GPIOs.

Further, the E1-2, E3-4, E5, and E6-7 connectors are wired, primarily, for standard two-channel (AB) quadra-
ture encoders. However, if needed, the STM32 ETR pins for 5 of these 7 encoder channels are readily available
on other various other available pins the Berets, specifically:

e PE7 is connected to 12C_G2 on the 12C Header, and can act as ETR for TIM1 (E5).

e PB12 is connected to SPI_G4 on the SPI Header, and can act as ETR for TIM5 (E6).

e PA8 is connected to S1 on Signal Header A, and can act as ETR for TIM4 (E3).

e PEO is connected to 12C_G2 on the 12C header, and can act as ETR for TIM20 (E7).

e PD2 is connected to UARTa_RX on the RS485/UART JST, and can act as ETR for TIM3 (E1).

This facilitates the use of up to five three-channel (ABZ) encoders without requiring a Beret Shield.

As discussed in section 3.24 of the STM32G474 datasheet, these timers are quite powerful, and thus the
convenient E1-2, E3-4, E5, and E6-7 connectors may be used for a host of alternative functions, such as the
generation of PWMs for driving up to 14 additional servos and ESCs (again, without loading the ARM core
itself), which may be useful if the 10 discrete servo/ESC connectors discussed in §5.6.2 provide insufficient
connectivity for a given application. Other functionality also available on the encoder connectors includes:

- 12C4 (including SMBA), available on E1-2 (see §5.6.6),

- a half-duplex UART channel (USART1_TX), available on E3-4 (see §5.6.5), and

- the LPUART1_RX channel (in receive only mode, as used by DSM receivers), available on E5 (see §5.6.5).
Warning: no specific Electrostatic Discharge (ESD) protection is provided on the encoder connectors.

5.6.2 PWM-based servo and ESC controllers and the Signal Headers

As indicated in Figure 5.9 and Table 5.5, signals {S1,S2, S4, S5, 59,510} connect to the STM high-resolution timer
HRTIM1, and signals {S6,S7,S3,S8} connect to the STM general purpose timers TIM15, TIM16, and TIM17.
Signal Headers A and B expose signals S1 through S10, along with power and GND, in an industry-standard
manner (see Note H of Table 5.2). Vs1 is provided on Signal Header B, and the user may select between Vs1
and Vin on Signal Header A (see §5.2.9). A blue status LED near the Vs1 voltage regulator illuminates whenever
power (Vs1) to the signal headers is enabled (see §5.6.8).

Again, these timers are quite powerful, and thus signals S1 through S10 on Signal Headers A and B may be
used for a variety of alternative functions, such as adding a few unidirectional encoder counters (using TIM15,
TIM16, and TIM17, with up-counting only — and, again, without loading the ARM core itself), which may be
useful if the 7 quadrature encoder counters (with up/down counting) discussed in §5.6.1 are insufficient for a
given application. The following alternative functionality is also available on the signal headers:

- 12C2 is available on {S1,52} (see §5.6.6), and
- 12C3 is available on {S4,S5}, with SMBA available on S2 (see §5.6.6).

5-30

https://st-onlinetraining.s3.amazonaws.com/STM32G4-WDG_TIMERS-General_Purpose_Timer_%28GPTIM%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-WDG_TIMERS-General_Purpose_Timer_%28GPTIM%29/index.html
https://www.ti.com/product/TS5A3359
https://www.st.com/resource/en/datasheet/stm32g474ve.pdf
https://st-onlinetraining.s3.amazonaws.com/STM32G4-WDG_TIMERS-High_Resolution_Timer_%28HRTIM%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-WDG_TIMERS-General_Purpose_Timer_%28GPTIM%29/index.html

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

Note also that signals S1 through S5, and thus the high-resolution timer to which they connect, are readily
available for creative use on Extended Beret Shields, as discussed in §5.8.
ESD protection is provided on the S1-S10 signal lines by two TI TPD6E004s.

5.6.3 Encoding for IR communication

The output of the STM IR communication module may be routed (as IR_OUT) to pin 9 of the SPI Header. When
the IR communication module is enabled, S3 and S8 on Signal Headers A and B are converted into GPIOs.

5.6.4 CAN FD and RS485 transcievers and connectors

Onthe CAN/RS485 Berets, the STM FD-CAN controller of the STM32G4 is paired with a (3.3V) TI TCAN334G
CAN-FD transceiver, to generate the differential pair of signals, { CANH, CANL}, required for CAN commu-
nication, supporting the CAN FD (CAN with flexible data-rate) protocol at up to 5 Mbps. These two signals are
made available on the CAN JST connector (see Table 5.2). Note that the STB and SHDN pins of the TCAN334G
are wired to the Beret CAN_STB and CAN_SHDN GPIO channels (see §5.5), to put the transceiver in low-power
standby and shutdown states when not in use (see the device datasheet for details).

On the CAN/RS485 Berets, the STM’s UART5 channel may be used to drive a (3.3V or 5V selectable) Tl
THVD1452 RS485 transceiver, with built-in idle bus failsafe, to generate the two differential pairs of signals,
{Y,Z,A,B}, required for full-duplex RS485 communication, supporting the RS485 protocol at up to 50 Mbps.
This is accomplished by setting the Beret’s RS485_SEL GPIO to 1, and using the GPIO channels RS485_RE and
RS485_DE to enable its receiver and driver (i.e., transmitter) as necessary. Note that this transceiver presents a
1/8 Unit Load, allowing up to 256 receivers on a single bus.

On the backside of these Berets, the user may install (in the footprints provided) two 0804 resistors and
(optionally) a 0804 capacitor for termination of the CAN bus, and a single resistor (on each differential pair) for
termination of the (full-duplex) RS485 bus, as discussed in the TI AN-1057 report.

Note that the CAN and RS485 transceivers provide certain levels of ESD protection, as specified in the
corresponding device datasheets. For both, if necessary, additional TVS diodes may be placed on the bulkhead
of the environmental housing (see §4.5.4.3), where the rugged field-serviceable connectors (see §4.5.4.2) attach
to the short jumper cables that brings the differential CAN and/or RS485 signal pairs onto the Beret. This
physical separation helps to prevent voltage transients, ESD, and noise from propagating onto the Beret itself.

5.6.5 USART, UART, and LPUART modules and connectors

Four independent STM USART and UART modules, and the STM LPUART module, are used on the Beret:

e the STM USART3 module (RX, TX, CK, CTS/NSS, & RTS/DE) is fully broken out on the USART JST,

e the STM UART5 module (RX & TX) is broken out on the RS485 (UARTa) JST if RS485_SEL=0 (see also 5.6.4),
e the STM USART1 module (TX only?, for use in half duplex mode) is available (as E3a) on the E3-4 JST,

e the STM LPUART1 module (RX only?, for use in receive mode only) is available (as E5a) on the E5 JST, and
e the STM USART2 module (in SPI mode) gives the Beret a dedicated high-speed connection to the IMU.

22Via a backside solder jumper, the 4th pin on the E3-4 JST can be switched over to STM pin B3, which can be set in software to
function as the USART1_RX input. If this is done, E3-4 can then function as a full duplex Recon UART-T connector with two GPIOs.
Note that doing this makes the S8 channel on Signal Header B unusable for other purposes.

BVia a backside solder jumper, the 4th pin on the E5 JST can be switched over to STM pin H8, which can be set in software to
function as the LPUART1_TX output. If this is done, E5 can then function as a full duplex Recon UART-R connector. Note that doing
this makes the mag_INT channel (to the STM and the MB Header) unusable as a magnetometer interrupt. Note also that, though
H8 is not 5V tolerant, it is set as an output when E5 is converted to a UART-R connector in this manner, so this connector can still be
connected to 5V TTL UART devices.

5-31

https://www.ti.com/product/TPD6E004
https://st-onlinetraining.s3.amazonaws.com/STM32G4-WDG_TIMERS-Infra_Red_Inteface_%28IRTIM%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-Flexible%20Datarate_Controller_Area_Network_%28FDCAN%29/index.html
https://www.ti.com/product/TCAN334G
https://en.wikipedia.org/wiki/CAN_bus
https://www.ti.com/product/THVD1452
https://www.ti.com/product/THVD1452
https://www.ti.com/lit/an/snla049b/snla049b.pdf?ts=1602894694833
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-USART_interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-LPUART_interface_%28LPUART%29/index.html

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

The four JSTs mentioned above are useful for connecting (primarily point-to-point, with one device per
channel*) a variety of additional sensors and other devices to the Beret, such as GPS/GNSS units. Extra GPIOs,
if needed by a particular device, can be picked up from unused pins on other JSTs, or from the [12C and SPI
headers (see Note A of Table 5.2). The first three pins (power, GND, signal) of E5 is suitable for direct connection
to 2.4Ghz DSMX/DSM2 radio receivers, such as the Spektrum SPM4648 and OrangeRx R110x.

Supported modalities on the STM32’s flexible USART channel (available on the Beret’s USART JST) include:
- full duplex (RX-to-TX and TX-to-RX) and single-wire half duplex (TX-to-TX) UART modes,
- UART (asynchronous, without CK) and USART (synchronous, with CK) modes,
- multiprocessor communication [e.g., direct from the STM on one Beret to the STM(s) on other Beret(s)],
- SPI master (TX-to-MOSI, RX-to-MISO) and SPI slave (TX-to-MISO, RX-to-MOSI, slave select on NSS) modes,
- Smartcard ISO7816 communication,
- IrDA serial infrared communication, and
- RS232 and RS485 hardware flow control.

Warning: no specific ESD protection is provided on the USART or UART JSTs, or other pins where UART
functionality is available, as specified above.

5.6.6 12C modules and the 12C Header

Four independent STM 12C modules, at comm speeds up to 1 MHz, are broken out and used on the Beret:
e the STM 12C1 module (SDA & SCL) is broken out on the 12C Header,
e the STM 12C2 module (SDA & SCL) is available (as ST & S2) on Signal Header A,
e the STM 12C3 module (SDA, SCL, & SMBA) is available (as S4, S5, & S2) on Signal Header A, and
e the STM 12C4 module (SDA, SCL, & SMBA) is available on the E1-2 JST.
Note that the 12C1 channel (on which the STM operates as master) also connects on the Beret to:
e three TI TPL0102-100 dual digital pots®:
- POT1, at 12C address 1010101b (0x55h), POT2, at 12C address 1010110b (0x56h) [see §5.7.2], and
- POT3, at 12C address 1010111b (0x57h) [see §5.2.4 and §5.7.1],
e the GP1O expander, at 12C address®® 010 0010b (0x44h for write, 0x45h for read) [see §5.5],
e the LED driver, at 12C address 100 0101b (0x8Ah for write, 0x8Bh for read) [see §5.6.8],
e the barometer, at 12C address®’ 101 1100b (0xB8h for write, 0xB9h for read) [see §5.4], and
e the magnetometer, at 12C address® 001 1100b (0x38h for write, 0x39h for read) [see §5.4].
Warning: when connecting other common [12C devices on the [12C Header, care must be taken to not conflict
with the eleven underlined 12C hex addresses listed above, which are already used. Due to this exisiting traffic
on the 12C1 channel, when attaching additional 12C devices, it is recommended that the user instead consider
the use of the 12C2, 12C3, and 12C4 modules, if the various pins for them are available, as discussed above.

Warning: no specific ESD protection is provided on the [12C Header, or other pins where 12C functionality
is available, as specified above.

2QOperating the USART3 module (wired to the USART JST) in SPI mode allows it to connect to multiple devices, with one Beret
GPIO operating as a dedicated CS for each connected device.

BPOT1 is wired with {A2,A1,A0}={1,0,1}, POT2 is wired with {A2,A1,A0}={1,1,0}, POT3 is wired with {A2,A1,A0}={1,1,1}.

2The GPIO expander is wired with {A2,A1,A0}={0,0,1}.

Z’The barometer is wired with SA0=0.

The magnetometer is wired with SA1=0.

5-32

https://www.spektrumrc.com/Products/Default.aspx?ProdID=SPM4648
https://www.altitudehobbies.com/collections/orangerx-receivers/products/orangerx-r110x-dsmx-dsm2-compatible-satellite-receiver
https://en.wikipedia.org/wiki/RS-232
https://www.st.com/resource/en/application_note/cd00249778-managing-the-driver-enable-signal-for-rs485-and-iolink-communications-with-the-stm32s-usart-stmicroelectronics.pdf
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-Inter-Integrated_Circuit_%28I2C%29/index.html
https://www.ti.com/product/TPL0102-100
https://www.digikey.com/product-detail/en/nxp-usa-inc/PCAL6524HEHP/568-15416-2-ND/5981031
https://www.ti.com/product/TCA6507
https://www.st.com/en/mems-and-sensors/lps22hb.html
https://www.digikey.com/product-detail/en/stmicroelectronics/LIS3MDLTR/497-13892-2-ND/4309733
https://www.i2c-bus.org/i2c-primer/

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.6.7 SPI modules and the SPI Header

Three® independent STM SPI modules are broken out and used on the Berets:

- the STM SPI12/1252 module (MOSI, MISO, SCK, NSS in SPI mode, or SD, WS/LRCLK, SCK/BCLK in 125 mode?)
is broken out on the SPI Header, providing unencumbered SPI (or 12S) functionality to the user,

- the STM SPI3 module gives the Beret a dedicated high-speed connection to the SPI channel on the MB (except,
of course, on the and m Berets), using (on the STM) GPIOs connected to MB’s SS channels (see
Table 5.6) for software slave select, and

- the STM SP14 module, operating with a single SS line in daisy-chain mode, gives the Beret a dedicated high-
speed connection to DRVa and DRVb (see §5.3).

The USART JST (i.e., USART3, see §5.6.5), operating in SPI mode, provides further unencumbered SPI func-
tionality to the user if needed.

NSS on the SPI header (i.e., SP12) provides a hardware slave select line when the Beret is used as an SPI
slave on this channel. When the Beret is used as the SPI master on this channel, on the other hand, multiple
SPI slaves can be attached using STM GPIOs as separate slave select pins, recalling again that extra GPIOs,
where needed, can be picked up from any unused pins on the SPI and 12C headers, or over on the JSTs.

Warning: no specific ESD protection is provided on the SPl or MB Headers.

5.6.8 LEDs, Buttons, and Displays

LEDs. A Tl TCA6507 LED driver is used to control the main LED circuits on the Beret, including three user
LEDs (LED_R, LED_Y, LED_G, forming a “stoplight” of sorts) and three bicolor LEDs (controlled via the chan-
nels gauge_G1, gauge_G2, gauge_G3, gauge_R*'), forming a “power gauge” next to the XT30 input, which are
programmed to be illuminated (if a battery is detected at the Balance connector) based on the charge of the
individual cell operating with the lowest charge as follows:

e o o Three solid green 85% to 100% charge

e o 0 Two solid + one flashing green 70% to 85% charge

ee Two solid green 55% to 70% charge

e o One solid + one flashing green 40% to 55% charge

) One solid green 25% to 40% charge

o One flashing green 10% to 25% charge

® e o Three solid red 1% to 10% charge, user should shutdown immediately
o o o Three (quickly) flashing red Vmin reached, automatic board shutdown imminent.

The voltage levels for these indicator transitions come pre-programmed for LiPo batteries, with Vmin = 3.2V
and Vmax =4.1V, but may be adjusted further by the user. If no battery connection is detected on the Bal-
ance connector®, the center green LED is illuminated simply to indicate that the board is powered up and
running normally (most likely from a wall adapter). Note that alternate red/green patterns slowly flashing in
the power gauge, using a simple binary representation in the greens, may be used to indicate eight distinct
user-programmable error codes.

In addition, there are blue and amber status LEDs on the Berets, each located in the respective quadrant of
Figs 5.1-5.6, and attached directly to the corresponding GP1O channel (see Table 5.6):

®In addition (see §5.6.5), recall that the STM USART2 module, operating in SPI mode, gives the Beret a dedicated high-speed
connection to the IMU.

%1f the 12S MCK channel is needed, it is available on pin S1 of Signal Header A when using Extended Beret Shields (see §5.8).

31The three green gauge LEDs are controlled independently, whereas the three red gauge LEDs are controlled by a single channel.

32Warning: this system is designed to be used with a balance connector whenever a battery is being used, and will not actively
monitor the state of charge of the battery unless the balance connector is plugged in.

5-33

https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-Serial_Peripheral_interface_%28SPI%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral_Serial_Audio_Interface_%28SAI%29/index.html
https://www.ti.com/lit/ds/symlink/drv8912-q1.pdf?ts=1590532947202
https://www.ti.com/product/TCA6507
https://www.digikey.com/product-detail/en/everlight-electronics-co-ltd/EAST1608RA6/EAST1608RA6-ND/5142407
https://www.digikey.com/product-detail/en/everlight-electronics-co-ltd/EAST1608YA2/EAST1608YA2-ND/5142416
https://www.digikey.com/product-detail/en/everlight-electronics-co-ltd/EAST16086GA9-AM/EAST16086GA9-AM-ND/5142372
https://www.digikey.com/product-detail/en/everlight-electronics-co-ltd/EAST1608RGA3/EAST1608RGA3-ND/5142411
https://www.digikey.com/product-detail/en/inolux/IN-S63AT5B/1830-1061-2-ND/7604929
https://www.digikey.com/product-detail/en/inolux/IN-S42BT5A/1830-IN-S42BT5ATR-ND/10384757
https://en.wikipedia.org/wiki/I%C2%B2S

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

the blue Vs1 LED illuminates whenever the Vs1 Vreg circuit is enabled,

the blue DRVa LED illuminates whenever the DRVa motor driver is enabled,

the blue DRVb LED illuminates whenever the DRVb motor driver is enabled,

the blue CAN LED illuminates when the CAN transceiver is in run mode,

the blue RS485_RE LED illuminates when the RS485 receiver is enabled,

the amber RS485_DE LED illuminates whenever the RS485 driver (transmitter) is enabled,

the amber Vreg_fault LED illuminates whenever any of the Vreg ICs signals a fault,

the amber drv_FAULT LED illuminates whenever either of the DRVs signals a fault, and

the amber opamps LED illuminates when the Beret opamps are enabled and no fault is triggered™.

The red, yellow, amber, and bicolor LEDs on the Berets, including those in the bicolor LEDs, operate at about
2V and 6 mA, and the blue and green LEDs on the Berets operate at about 2.9V and 5 mA. As the LED circuits
are all powered with 3.3V, (3.3V-2V)/6 mA~ 220 () resistor arrays are used to regulate the current to the red,
amber, yellow, and bicolor LEDs, and (3.3V-2.9V)/5 mA~ 82 () resistor arrays are used to regulate the current to
the blue and green LEDs.

The several red and amber LEDs on the Beret are manufactured using AlinGaP (Aluminium, Indium, Gallium
and Phosphorous) technology, and the several green and blue LEDs on the Beret are manufactured using InGaN
(Indium, Gallium and Nitrogen) technology. These modern choices provide maximum brightness while drawing
the minimum amount of current.

Buttons. Two small user-programmable buttons (with white actuators) are included as inputs, with pull-up
resistors on the GPIO expander; pressing these buttons connects these resistors to GND. The buttons can be
used for any function in software, but are preassigned the names “pause” and “mode”, which is appropriate for
typical use cases. A third button (with a black actuator), named “reset”, is used to reset the STM when in run
mode, or to wake the entire board from low-power sleep mode when the board is powered down (see §5.5.1).

Displays. A Beret Shield (see §5.8) implementing COTS 12C 0.96” OLED Display module is planned.

5.6.9 USB Micro-B connector and Device Firmware Upgrades

The STM USB module, available on pins USB_DP and USB_DM, is wired directly to a standard USB Micro
B connector on all six Berets. This USB connector may be used for ordinary programming, in addition to
performing Device Firmware Upgrades (DFUs) using the STM DeFuse software, as discussed further here, in
conjunction with the BOOTO pin available on pin 7 of the 12C header (see Table 5.2).
The USB connector can power a Beret for the purpose of STM programming only (see §5.2.2); the USB
connector does not provide enough current to power motors or a connected MB, which should not be attempted.
ESD protection is provided on the USB data lines by a TI TPD6E004.

3The amp_OTF_SLEEP i/o channel, when set as an output and driven low by the GPIO expander, puts the ALM2402-Q1 opamps
(§5.7.1) and TLV9002S opamps (§5.7.2) into a low-power sleep mode. When set as an input on the GPIO expander, it is left floating
by the opamps during normal operation, and is pulled up to logic high by an external 2.5k resistor to 5V while simultaneously
illuminating a corresponding 2V amber opamps LED tied to ground, unless/until a fault is triggered, then it is driven low.

5-34

https://www.digikey.com/en/products/detail/panasonic-electronic-components/EXB-28V224JX/256315
https://www.digikey.com/en/products/detail/panasonic-electronic-components/EXB-28V820JX/256274
https://www.mouser.com/ProductDetail/CK/PTS815-SJM-250-SMTR-LFS?qs=ahcBuItHZ3xKWmfV%2F2E6bA%3D%3D
https://www.mouser.com/ProductDetail/CK/PTS815-SJG-250-SMTR-LFS?qs=ahcBuItHZ3yjoEmU1Oppnw%3D%3D
https://www.google.com/search?q=0.96+i2c+oled&tbm=isch
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-USB_Full_Speed_Device_interface_%28USB%29/index.html
https://www.st.com/resource/en/application_note/cd00264379-usb-dfu-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf
https://www.st.com/en/development-tools/stsw-stm32080.html
https://www.youtube.com/watch?v=Kx7yWVi8kbU&list=PLnMKNibPkDnF97QnUOFGirl1q0G_4VdDc&index=28
https://www.ti.com/product/TPD6E004

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.7 Analog subsystem
LW Raspberry | , , , and m Berets include a 0V - 3.3V analog subsystem with:

e two high-power (400 mA) DAC channels,
e (V+, V-, Vo) pinouts for a spare opamp that may be configured (on a Beret Shield) by the user, and
e two ADC channels with:
— adjustable gain, x1 to x4096, and
— adjustable second-order filtering, with tunable cutoff frequency w. = 27 f. and damping (= 1/(2Q).
A amber status LED (see §5.6.8) next to the Analog Header illuminates whenever the analog subsystem, and
the opamps that drive it, are enabled by the STM.

5.7.1 Generation of Vs2 = 1.2V to 2.1V, and two high-power DAC outputs

Figure 5.10a illustrates how the reference voltage V2=1.2V to 2.1V is generated, with R, = R, = 133 k() and
R, given by half of POT3, a TI TPL0102-100 dual digital pot (100 k(2) operating in voltage divider mode.

Two TI ALM2402-Q 1 dual high-power opamps are included on the full size Berets, each with a pair of IGBTs
arranged as class AB amplifiers with zero crossover distortion, negligible voltage offset, and robust current
limiting. The [open-drain, active low] amp_OTF_sleep i/o channel, with an external 2.5 k{2 pull-up resistor to
5V () as well as a 2V amber diode to GND, is connected to the GPIO expander via a 220)
resistor (see Table 5.6). When this channel is set on the GPIO expander as an input, it is used to monitor for
an Over Temperature Flag on these opamps; when set as an output and driven low, this channel puts both
ALM2402-Q1s into a low-power sleep mode.

Figure 5.10b shows how three of these high-power opamps are used to buffer V' € {V2, DAC1, DAC2},
thereby generating the buffered outputs V' € {Vs2, DAC1buf, DAC2buf} made available on the Analog Header,
each of which is capable of sourcing or sinking 400mA. [Note that the 3 terminals of the fourth high-power
opamp are provided directly on the Analog Header, as discussed further in §5.7.3.] When set near 1.65V, Vs2 is
useful as a bipolar offset for the analog subsystem.

5-35

http://www.ti.com/product/ALM2402-Q1
https://www.electronics-tutorials.ws/power/insulated-gate-bipolar-transistor.html
https://www.electronics-tutorials.ws/amplifier/class-ab-amplifier.html
https://www.electronics-tutorials.ws/amplifier/amp_7.html

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

‘/out

= Req Reo

Figure 5.10: Circuits for (a) generation of V2=1.2V to 2.1V adjustable, (b) buffering of V' € {V2, DAC1, DAC2}
(each buffered output, V € {Vs2, DAC1buf, DAC2buf}, is capable of sourcing or sinking 400mA), and (c) ampli-
fication and filtering of the V;,, € {ADC1, ADC2} inputs, each of which are compared to the reference voltage
Vref € {GND, Vs2, ADC3}, with outputs V,,,; routed to ADC2_IN3 and ADC4_IN3 channels internally on the
STM. Note that magenta components/traces are within the STM, and black traces/components/signals are on
the Beret. See Table 5.2 for how these various input, output, and power pins appear on the Analog Header.

5.7.2 Tunable filtering/gain of two unipolar, bipolar, or differential ADC inputs

Figure 5.10c illustrates the circuit used (leveraging 4 of the internal opamps on the STM, together with a
TITLV9002S dual low-cost opamp) to amplify and filter the V;,, € {ADC1, ADC2} inputs on the Analog Header,
before their corresponding amplified/filtered outputs V,,; are routed to internal ADC units on the STM.

There are three natural choices for selecting the bias voltage Vref about which these ADC inputs are com-
pared and amplified (this choice is made, by the user, by the wiring on the Beret Shield where the analog circuit
is developed; for further discussion, see §5.8):

- for unipolar analog signals, the user should wire Vref to GND (again, on the Beret Shield);

- for bipolar analog signals, wire Vref to Vs2 (as a Bipolar Offset, tunable in the vicinity of 1.65V);

- for differential comparison of analog signals, wire Vref to a third (user-provided) analog signal ADC3.
Note that the ADC1 and ADC2 inputs on the Analog Header lead directly (without any intervening resistors
or capacitors) to opamp input terminals in Figure 5.10c, so these filters perform predictably even for “weak”
analog sources with low output impedance. Note further that:

- For V;,, =ADC1, A is OPAMP1, B is half of the TLV9002S, C is OPAMP2, and V,,,; = ADC2_IN3;

- For V;,, = ADC2, A is OPAMP3, B is half of the TLV9002S, C is OPAMP4, and V,,,; = ADC4_IN3.

In the (non-inverting) “PGA mode” shown for both opamps A and C, the internal resistors { R 41, R.2, Ry Reo}
can be selected (in software) to achieve amplification ratios of x2 to x64; note that { 245, R} can also be by-
passed, and the corresponding connections to Vref (through { R 41, Rc1}) cut (in software, by selecting “follower
mode”, as shown here for opamp B) in order to achieve amplification ratios of x1 on all three opamps. Thus,
the overall low-frequency amplification of this circuit can be varied, in software, from x1 to x4096.

The pairs of resistors {1, Ry} and capacitors {C},C5} in Figure 5.10c, looping around opamp B, form a
Sallen-Key second-order low-pass filter (LPF), leading (see, e.g., here or here) to the transfer function

V:)ut(s) A (JJ?
4 052+2§wcs+w§

Vin(s) — Vref

where Ay = 1+ Raa/Ra1, Ac = 1+ Reo/Ren, and the cutoff frequency w. = 27 f. and damping (= 1/(20Q)
of the second-order low-pass filter are w. = 1/y/R; C; Re Cyrad/s and (= Cy (Ry + Ra) w./2.

A target value of damping to use in such a filter is { = 0.7. Common capacitor values of C; = 68 nF and
C5 = 33 nF have been selected for the Beret, together with POT1 and POT2, two TI TPL0102-100 dual digital
potentiometers that are adjustable electronically (over 12C) from 0 to 100 kS2 in 256 increments, for Ry and Rs.
Setting Ry = R, and adjusting both (together) over a range from 100 k{2 down to 1kS2 results in { ~ 0.7, and

5-36

https://st-onlinetraining.s3.amazonaws.com/STM32G4-Analog-OPAMP_%28OPAMP%29/index.html
https://www.ti.com/product/TLV9002
http://www.ti.com/lit/an/sloa024b/sloa024b.pdf
https://www.academia.edu/31143555/op_amps_for_everyone_third_edition_2009_Texas_Instrument_.pdf

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

fe ranging from 34 Hz to 3400 Hz, as appropriate for many small electromechanical systems; adjusting R, and
R, separately also allows the damping ratio ¢ to be tuned®.

Warning: attempting the following is quite difficult, voids any sort of manufacturer’s warranty expressed
or implied, and should only be attempted by advanced users willing to possibly fry their board. Using a very
fine-tipped soldering iron, advanced users might choose to attempt to replace C'; and Cj in these circuits with
capacitors 1 or 2 orders of magnitude larger or smaller than those selected here in order to achieve different
frequency ranges for the low-pass filter on the ADC channels. Alternatively, and more simply, removing C’
altogether (i.e., taking Cy, — 0 in the transfer function listed above and simplifying) reduces the circuit to a
first-order filter with transfer function

Vour(s) P
Vin(s) — Vref ATC ST Wy

with cutoff frequency wy = 1/[C1(R; + R»)|; setting R; = R» and adjusting both over the range from 100 k{2
to 1k results in f; = w;/(27) ranging from 12 Hz to 1200 Hz. Subsequently replacing C with a capacitor
1 or 2 orders of magnitude larger or smaller can again be done to achieve different frequency ranges. Finally,
removing both C; and C} altogether (and setting R, = Rs = 1k(2) removes the low-pass filter entirely, allowing
the user to take responsibility for any necessary analog low-pass filtering (on a Beret Shield) of an ADC input
before it is sampled by the STM’s ADC unit. Warning: please re-read the warning at the beginning of this
paragraph. Ok, you’ve been warned, good luck. (Actually, if you have a specific/substantial need for low-pass
filtering over a different frequency range, it’s probably better to contact us and have us make a variant of the
board with different capacitors installed...)

5.7.3 Analog Header and user-developed analog filters

As shown in Table 5.2, the Analog Header provides the following nine analog (0V - 3.3V) signals:

- two buffered (up to +/- 400 mA) outputs DACbuf1, DACbuf2,

- the positive and negative inputs, and (0V - 3.3V, £400 mA) output, of a power opamp, {V+,V-,Vo},

- the voltage Vref (input to the Beret) about which the ADCs are compared and amplified (see §5.7.2),

- two inputs ADC1, ADC2, and

- the low-pass-filtered ADC2filt [i.e., the analog output of OPAMP B (see Figure 5.10c) in the ADC2 filter].
Again, low-pass filtering with tunable gain (x1 to x4096), tunable cutoff frequency (f. ranging from 34 Hz to
3400 Hz) and tunable damping (nominally, =~ 0.7) is applied to the ADC inputs before sampling by the STM.

Note also that GND, 3.3V, and Vs2 are readily available on the nearby SPI and 12C Headers.

The functionality describe above facilitates the connection of a number of analog sensors and actuators,
the experimental determination of MIMO Bode Plots of continuous-time electro-mechanical systems, as well
as the easy implementation of other user-developed analog filters on Beret Shields (see, e.g., TI’s Op Amps For
Everyone for several filter ideas).

Warning: no specific ESD protection is provided on the pins of the Analog Header.

4By sinusoidally exciting a DAC channel over a range of frequencies, and routing the output directly to an ADC channel, the Bode
plot of the corresponding Sallen-Key second-order low-pass filter may be measured directly, and the values of R; and Ry subsequently
tuned in software to achieve the desired filter response.

5-37

https://www.academia.edu/31143555/op_amps_for_everyone_third_edition_2009_Texas_Instrument_.pdf
https://www.academia.edu/31143555/op_amps_for_everyone_third_edition_2009_Texas_Instrument_.pdf

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

Vs1
B7

R1
_W
L a—Vin
- r—B3
- —B2
R8

———B4

—+—B5
T

o+ — B6

EN —
A2 |

A0

>
|
o

VmonT
: RO i
STM L

Figure 5.11: Vmon1 circuit with a TI MUX508 8:1 multiplexer, used to monitor {Vs1,Vin, B7, B6, B5, B4, B3, B2}
on the fullsize Berets, with {R1,R2,R3, R4, R5,R6,R7,R8}={27.4,76.8,73.2,59.0,45.3,31.6,17.4,3.74} k2 and
RO =10k(2 [standard 1% resistor values in the E96 series; see Table 9.5]. Note that B1=GND. When EN=0,
Vmon1=GND, and the current through all voltage dividers is zero. Note that Vmon2 is connected directly to
Vs2, with no voltage divider. A TI TMUX6219 SPDT switch is used to monitor {Vs1, Vin} only on the half size
Beret, using effectively same circuit and dropping {A2, A1}, with the same values of {R1, R2} and R0O. The nominal
scale factors relating the measured values at Vmon1 to the quantities of interest is laid out in Table 5.7.

control inputs 000 001 010 011 100 101 110 111
input voltage Vs1 Vin B7 B6 B5 B4 B3 B2
nominal scale factor | 3.74x | 8.68x | 8.32x | 6.90x | 5.53X | 416X | 2.74x | 1.374%

Table 5.7: Quantities measured by the circuit in Figure 5.11 for different inputs {A2, A1,A0} on the full size
Berets, and their nominal associated scale factors. Only the first two columns apply on the half size Berets.

5.7.4 Voltage monitoring of Vin, Vs1, Vs2, and the individual battery cells

Berets periodically monitor Vin, Vs1, and Vs2 when running. Noting warnings ii and iii of §5.2.1, full size
Berets also periodically monitor (using the custom JST-XH balance connector described in Note F of Table
5.2) the differential voltage over the individual battery cells of 2S - 6S batteries via their stock JST-XH balance
connectors, to ensure that no individual cell drops below the minimum allowed voltage, Vmin, while the Beret
is operating. Vmin is adjustable in software; a value in the range of 3.1V to 3.2V is appropriate for LiPos.

Voltage monitoring of Vin, Vs1, and the battery cells is done using the multiplexed voltage divider circuit
in Figure 5.11, with EN and {A2,A1,A0} tied to the GPIO expander (see Table 5.6) to enable the system and
select the active input. The STM’s ADC3_IN3 channel, denoted Vmon1 on the Berets, periodically monitors the
output of the 8:1 multiplexer in this circuit on the full size Berets, or of the SPDT switch on the half size
Beret, while the STM’s ADC3_IN3 channel, denoted Vmon2, periodically monitors Vs2 directly. As suggested
by the analysis of Tl Report SLVA450A, a target current of about 0.3 mA was chosen for the voltage dividers.
For a target maximum value for Vmon1 of about 3.2V, this gives R0=10 k(2. Given the relationship between the
voltages at the top, middle, and bottom of a voltage divider (see Example 9.1), the resistor values Ri, for i=1 to
8, were then selected (see code) so that Vmon1 was about 3.2V for the maximum values of each input Vi.

1% tolerance resistors (E96 series, 0.01 W rating is sufficient) are implemented in the Vmon1 circuit on the
Berets. This gives some inaccuracy in the calculated voltages, as quantified by equation (13) of SLVA450A. The
nominal scale factors (to determine each input voltage Vi from the measured value of Vmon1) listed in Table
5.7 should thus be calibrated using otherwise-measured voltages {Vs1, Vin, B7, B6, B5, B4, B3, B2} in order to
eliminate these inaccuracies, as the relationships between the Vi and Vmon1 are accurately linear. Note that
higher-precision resistors (with the same nominal values, in the E192 series) could be used in this circuit, but
doing such is expensive and unnecessary if the scale factors are to be calibrated after manufacturing.

5-38

https://www.ti.com/product/MUX508
https://www.ti.com/product/TMUX6219
http://www.ti.com/lit/an/slva450a/slva450a.pdf
https://github.com/tbewley/RR/blob/main/chap11/RR_Common_Resistor_Value.m
http://www.ti.com/lit/an/slva450a/slva450a.pdf

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.8 Beret Shields

On all six Berets, convenient and stackable Small (1.3”x0.9”) and Extended (1.3”x 1.17, 1.3” x 1.3”, or larger)
Beret Shields (that is, small daughterboards) may be attached, in a manner similar to Arduino Shields, atop

(i) the (1x9) SP1/12S Header,
(ii) the (1x9) 12C Header,
(iii) the (1x9) Analog Header (if present), and
(iv) (on 1.3”x 1.1” or larger Beret Shields) the first row (signals S1-S5) of Signal Header A, or
(on 1.3”x1.3” or larger Beret Shields) all three rows (S1-S5, Vs1/Vin, and GND) of Signal Header A,

thus enabling the user to build up quickly, and attach securely, any extra analog or digital circuitry that might
be needed in a given application. The pins on these headers are aligned on a 0.1” grid, facilitating the use of:

Prototyping Beret Shields, with an array of predrilled holes on a 0.1” grid, which may be
- plated, for rapid development and testing of simple circuit designs, or
- unplated, providing a sturdy mechanical backing for COTS PCBs.
Prefabricated Beret Shields implementing commonly needed additional components, such as:
- 2x custom 128-pin solderless breadboards + 2x more 1x9 Headers (USART and GPIO) + LEDs/buttons,
-a0.96” OLED display + 2x buttons,
- 2x more BDC motor drivers (24 half bridges), wired as described in §5.3,
- 6x sensorless BLDC motor drivers with integrated 28V/3A MOSFETs and JST-PA connectors,
- 2x continuous-time (CT, i.e., analog) notch filters (to eliminate the tonal “buzz” in 2 input signals),
- 2x CT lead/lag/PID feedback control circuits with digitally-adjustable poles, zeros, and gain,
- a u-blox zed-f9p dGPS/GNSS unit,
- a wifi/bluetooth module,
- an array of additional buttons, LEDs, and Recon UART and 12C connectors,
- arrays of connectors supporting other standards (PMOD, Grove, STEMMA, Quwiic, etc).
Custom Beret Shields compactly implementing your choice of components, layout, and connectivity.

Examples are shown in Figure 5.12. All three types of Beret Shields are low cost and easy to use. In particular:

e Prefabricated Beret Shields provide a fast and flexible way to extend the capability of the Beret ecosystem
with a variety of commonly-needed additional components via open hardware designs.

e Custom Beret Shields facilitate the dense and secure arrangements of electronic components of the user’s
choosing for long-term use, and may easily be designed using free software, leveraging directly the open
hardware circuit designs of the Prefabricated Beret Shields, and may be fabricated at remarkably low cost.

The (1.3”x0.9”) Small Beret Shields connect to the Beret using three 1x9 male headers. The (1.3”x 1.1” or larger)
Extended Beret Shields may also include a 1x5 female header connecting to the first row of Signal Header A,
whereas the (1.3”x 1.3” or larger) Extended Beret Shields may include a 3x5 female header connecting to all
three rows of Signal Header A, including high-current Vs1 or Vin, and GND, on the second and third rows.

Use of a (1.3”x0.9”) Small Beret Shield leaves unobstructed all JSTs, buttons, and LEDs on the Berets, in
addition to all 5 columns of Signal Header A and all 5 columns of Signal Header B, for easy attachment of
10 servo and/or ESC connectors. A (1.3”x 1.1” or 1.3”x 1.1”) Extended Beret Shield connects directly to Signal
Header A, but leaves unobstructed all 5 columns of Signal Header B.

Small and Extended Beret Shields are directly portable across the entire line of Berets. Note that the entry-
level m Beret does not have an Analog substem, and the corresponding Analog Header is absent; Beret
Shields that do not use the analog subsystem are still fully compatible with this board.

We are also designing a stand-alone high-current brushless motor driver board, in the footprint of a Rasp-
berry Pi, with an STM32CG474VE (controllable over a Recon SPI connector), 6x gate drivers, 18x 40V/50A dual
MOSFETs, and high-current XT60 (LiPo) and 6x MR30 (BLDC motors) AMASS connectors.

5-39

https://learn.sparkfun.com/tutorials/arduino-shields
https://www.ti.com/product/DRV8912-Q1
https://www.ti.com/product/DRV10983
https://www.digikey.com/en/products/detail/jst-sales-america-inc/B03B-PASK-1-LF-SN/926739
https://www.u-blox.com/en/product/zed-f9p-module
https://docs.oshpark.com/
https://docs.oshpark.com/services/two-layer/
https://www.digikey.com/product-detail/en/preci-dip/890-70-009-10-001101/890-70-009-10-001101-ND/4139016
https://www.digikey.com/product-detail/en/preci-dip/801-83-005-10-005101/801-83-005-10-005101-ND/4124816
https://www.digikey.com/en/products/detail/preci-dip/805-83-015-10-005101/4130441
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32g4-series/stm32g4x4/stm32g474ve.html
https://www.ti.com/store/ti/en/p/product/?p=DRV8323SRTAR
https://www.ti.com/store/ti/en/p/product/?p=CSD88584Q5DC
https://www.ti.com/store/ti/en/p/product/?p=CSD88584Q5DC
https://www.tme.com/us/en-us/details/xt60pw-m/dc-power-connectors/amass/
https://www.tme.com/us/en-us/details/mr30pw-m/dc-power-connectors/amass/

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

MB Header (DNP) ‘

USART Header SPI Header
+ABC—DEF+ABC—DEF
SEIEELI LI > T
.lllllll-lllllll
.lllllllllllllll
TEIEERI LIRS s R A <
RN . By -
fd a|s e n|a|s e @l g|aen|n]|nnn
M s mm|n|lmmE plnmm|n|nmm

gjeem|e|ann ™S glaan|n|nn=
.lllllll- aEE|n|sm= g
S g|smn|n]|nn= plnmm|n|n e §
||| alnmm|n|nnn
MR AEA R MR A
sjE|EEE || Ol N
. IIIIIIIIIIIIIII
MO - mrrrn T
MRS > e

MB Header

E1-2 USART/SPla

RS485
transceiver

Regulation

33V
Regulation

Input

A Header B
XT30 H

‘ B30, LiPo Balance USB ‘
input

Figure 5.12: Layout of the (top) Prototyping (unplated and plated) and Breadboard, (middle) OLED, and (bottom)
BLDC Beret Shields, including various views illustrating how they mount (and, stack) on a Raspberry‘ Beret.

$@37 sniess

5-40

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.9 MB headers, MB header breakout SHIMs, and ID EEPROMs

5.9.1 RPi-compatible motherboards (MBs)

As shown in Table 5.8, the 2x20 header on the RPi Berets has 2 pins over which 5V/2A power may be provided
to the RPi, 2 pins over which 3.3V power (regulated by the RPi) may be picked up by connected daughterboards,
8 GND pins, and 28 “BCM” pins, arranged in a peculiar order, connected to the RPi’s Broadcom MCU. BCMO0
and BCMT1 are used for an 12C connection to an EEPROM to identify attached daughterboards (a.k.a. HATSs).
BCM2 through BCM27 may be used as GPIOs, denoted GPIO2 through GP1027; each of these channels may
instead be switched over in software to provide various alternative functions. The “primary” such alternative
functions, available on all RPis with 40-pin headers (and most RPi clones, as outlined in Table 1.15), are listed
in Table 5.8.

A more comprehensive list of the useful alternative functions of GPIO2 through GPIO27 is given by Table
5.9, which also highlights many of the new alternative functions available with the RPi4. In this table:
- CTS and RTS are (optional) UART hardware flow control (HFC) channels,
- PCM (pulse-code modulation) is an advanced digital audio standard (used, e.g., by hifiberry),
- SDO is a proprietary Broadcom controller channel used to boot and communicate with the RPi eMMC,

Beret name alt. function | PWR/BCM | pin || pin | PWR/BCM | alt. function Beret name
- 3.3V 2 5V - Vmb
12C1_SDA GPIO2 3 4 5V - Vmb
12C1_SCL GPIO3 5 6 GND - GND
mb_GO0 GPCLKO GPI10O4 7 8 GPIO14
GND - GND 9 10 GPIO15
SPI1_CE1 GPI1O17 11 12 GPIO18 SPI1_CEO
SD0_DAT3 GP1027 13 | 14 GND - GND
SD0_CLK GPI1O22 15 16 GP1023 SD0_CMD
- 3.3V 17 18 GPI1024 SDO0_DATO0
SPImb_MOSI SP10_MOSI GPIO10 19 || 20 GND - GND
SPImb_MISO SP10_MISO GPIO9 21 22 GPI1025 SDO0_DAT1
SPImb_SCK SPI0_SCLK GPIO11 23 || 247 GPIOS8 SP10_CEO SPImb_SS'
GND - GND 25 | 267 GPIO7* SPI0_CE1 | mag_INT*/SPImb_SS'
ID_SDA 12C0_SDA | 0 (reserved) | 27 || 28 | 1 (reserved) | 12C0_SCL ID_SCL
mb_G1 GPCLK1 GPIO5 29 || 30 GND - GND
mb_G2 GPCLK2 GPIO6 31 || 327 GPIO12* PWMO bar_INT_DRDY*
imu_INT1_DRDY* PWM1 GPIO13* 33" || 34 GND - GND
SPI1_MISO GPIO19 35 || 36 GPIO16 SPI1_CE2
SDO0_DAT2 GPIO26 37 || 38 GP1020 SPI11_MOSI
GND - GND 39 || 40 GPI10O21 SPI1_SCLK

Table 5.8: PWR function or BCM (Broadcom pin number, each associated with a GP1O) corresponding to each
pin on the 2x20 header on the RPi Berets, along with the “primary” alternative function and corresponding
Beret name (if any) of each, indicating PWR, GPI0, , 12C, SPI1, and SDIO channels, as well as PWM and
GPCLK functions. Table 5.9 lists the additional functions available on each. Boldface indicates channels that
are connected by default to the Beret. ()* denotes 3 optional interrupt GPIOs, connected via backside solder
jumpers; ()" denotes 2 possible SP10 SS connections, 1 of which must be selected via a backside solder jumper
(default is SPI0_CEO0).

5-41

https://github.com/raspberrypi/hats/
https://st-onlinetraining.s3.amazonaws.com/STM32G4-Peripheral-USART_interface_%28USART%29/index.html
https://www.hifiberry.com/

Renaissance Robotics (v.2024-05-16)

Chapter 5: Berets

- SD1is a 50 MHz SD/SDIO standard channel for interfacing with secondary SD cards, eMMC, wifi, etc,

- ARM is a universal 6-pin JTAG debugging channel, with adaptive clocking via a Return TCK channel,

- ALT3 mode on BCM8-BCM11 (on the RPi4) provides slave mode SPI or 12C, denoted here SPIs and 12Cs,

- PWMO0/1 are hardware-generated (on the RPi) PWM channels, and GPCLK0/1/2 are gerneral purpose clocks.
Which function is selected on any given pin is configured by the corresponding {ALTO, ALT3, ALT4, ALT5}

flag. [As explained at elinux.org, other features not shown (on ALT1 and ALT2) relate primarily to a secondary

memory interface and a parallel display interface, neither of which can be used with the Raspberry Beret.]

BCM pin ALTO ALT3 ALT4 ALT5 Beret name SHIM pin
0(res) | 27 | 12C0_SDA | - - - ID_SDA 12C0 3
1 (res) 28 | 12C0_SCL - - - ID_SCL 12Co 4
GPIO2 | 3 | I12C1_SDA - - - 12C1 3
GPIO3 | 5 | I12C1_SCL - - - 12C1 4
GPI04 | 7 | GPCLKoO SPI4_CE0 UART3 TX | 12C3_SDA mb_GoO GPIO 3
GPIO5 | 29 | GPCLK1 SPI4 MISO | UART3 RX | I2C3_SCL mb_G1 GPIO 14
GPIO6 | 31 | GPCLK2 SPI4_ MOSI | UART3 CTS | 12C4_SDA mb_G2 GPIO 5
GP1O7* | 26* | SPI0_CET SPI4 SCLK | UART3 RTS | I12C4_SCL mag_INT*/SPImb_SST | GPIO 6*
GPIO12* | 32* | PWMO SPI5 _CE0 UART5 TX | 12C5_SDA bar INT_DRDY* GPIO 7*
GPIO13* | 33" | PWMT SPI5 MISO | UART5 RX | I2C5_SCL imu_INT1_DRDY* GPIO 8"
GPIO10 | 19 | SPI0_MOSI | SPIs MOSI | UART4 CTS | 12C5_SDA SPImb_MOSI SPI0O 3
GPIO9 | 21 | SPI0_MISO | SPIs MISO | UART4 RX | I12C4_SCL SPImb_MISO SPI0 4
GPIO11 | 23 | SPI0_SCLK | SPIs SCLK | UART4 RTS | I12C5_SCL SPImb_SCK SPIO 5
GP108 | 24" | SPI0_CEO SPIs CE UART4 TX | 12C4_SDA SPImb_SS' SPI0 6f
GPIO14 | 8 | UARTO TX SPI5 MOSI | UART5 CTS | UART1 TX UARTO 3
GPIO15 | 10 | UARTO RX | SPI5 SCLK | UART5 RTS | UART1_RX UARTO 4
GP1020 | 38 | PCM_DIN SPl6_MOSI | SPIT_MOSI | GPCLKO SPI1 3
GPIO19 | 35 | PCM_FS SPI6_MISO | SPIT_MISO | PWMT1 SPI1 4
GP1O21 | 40 | PCM_DOUT | SPI6 SCLK | SPI1 SCLK | GPCLK1 SPI1 5
GPIO18 | 12 | PCM_CLK | SPI6_CE0 SPI1_CE0 PWMO SPI1 6
GPIO16 | 36 | - UARTO_CTS | SPI1_CE1 UART1_CTS SPI1 7
GPIO17 | 11 | - UARTO_RTS | SP11_CE2 UART1_RTS SPI1 8
GP1024 | 18 | SD0_DATO SD1_DATO | ARM_TDO | - SDIO 3
GP1025 | 22 | SDO_DAT1 SD1_DAT1 | ARM_TCK | SPl4 CE1 SDIO 4
GP1026 | 37 | SDO_DAT2 SD1_DAT2 | ARM_TDI SPI5_CE1 SDIO 5
GPI027 | 13 | SDO_DAT3 SD1 DAT3 | ARM_TMS | SPl6 CE1 SDIO 6
GPI022 | 15 | SDO_CLK SD1_CLK ARM TRST | 12C6_SDA SDIO 7
GPI023 | 16 | SD0O_CMD SD1_ CMD | ARM_RTCK | 12C6 _SCL SDIO 8

Table 5.9: Alternative functions of each of the 28 digital i/o pins on the RPi header, and the corresponding Beret
names (if any). [talics indicate functions that are available on the RPi4 only. As in Table 5.8, indicated are GP10,
UART, 12C, SPI, SDIO channels, as well as PWM and GPCLK functions with, as before, boldface indicating
default connections, and ()* and ()" indicating optional connections, between the Beret and the RPi. BCM pins
0 through 8 have default pull up resistors, and BCM pins 9 through 27 have default pull down resistors. Data
from the RPi v4 datasheet, elinux.org, and the RPi forums. Note that {SPIs_MOSI, SPIs_SCLK} on the RPi4 (pins
19 and 23 in ALT3 mode) can also function as {/2Cs_SDA, I12Cs_SCL}.

5-42

https://hackaday.io/project/8678-rpi-wifi/details
https://en.wikipedia.org/wiki/JTAG
http://www.bluecomtech.com/Web%20Sites/Raspberry%20Pi%20Pinout/pinout.xyz/pinout/gpclk.html
https://www.raspberrypi.org/documentation/configuration/config-txt/gpio.md
https://elinux.org/RPi_BCM2711_GPIOs
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0_preliminary.pdf
https://elinux.org/RPi_BCM2711_GPIOs
https://www.raspberrypi.org/forums/viewtopic.php?t=265832

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

As indicated by Table 5.9, the RPi4 (when NOT connected to the Beret) can simultaneously operate, e.g.:

e 4 UART channels: UARTO0/3/4 (w/ HFC) and UART5 (w/o HFC), or

e 4 SPI channels (w/ 8 total SS lines): SP10 (w/ CEO0), SPI1 (w/ CE0/1/2), and SPI14/5 (each w/ CE0/1), or

¢ 6 12C channels: 12C1/3/4/5/6, plus (in slave mode) 12Cs [in addition to 12C0, reserved for the EEPROM], or
e mix A: UART1 (w/ HFC), UART4/5 (w/o HFC), SP14/6 (each w/ CE0/1), and 12C1/5/6, or

e mix B: UARTO0 (w/o HFC), SPIs (in slave mode), SP14 (w/ CE0), SPI1 (w/ CE0/1/2), 12C1, PWMO/1, SD1.

When an RPi2, RPi3, RPi4, or RPi Zero is fully connected via the RPi Header to a Beret, including the MB SPI
channel, the MB ID I12C channel, the interrupt connections {imu_INT1_DRDY, bar_INT_DRDY, mag_INT}, and
the GP10s {mb_G0, mb_G1,mb_G2}, the RPi still has 16 unused BCM channels available on the RPi Header.
These channels can be used as GPIOs or, alternatively, can simultaneously operate, e.g.:

e [2C1, UARTO (w/o HFC), SPI1 (w/ 3 available SS lines), and either SD1 or JTAG.

If using an RPi4, and/or not using one or more of the (optional) sensor interrupt (INT) connections mentioned
above, various alternative channels and functions also become available if needed, as shown in Table 5.9.

In summary, even though the RPi Berets connect to up to 10 of the BCM2 to BCM27 channels on the RPi
Header, in addition to the ID pins on BCMO0/1, substantial connectivity options remain for connecting the RPi to
other boards or devices. Further, using different SS pins on the SP10 channel for each board, and programming
the {mb_G0, mb_G1,mb_G2} channels appropriately, two RPi Berets can be directly attached to a single RPi
using COTS RPi HAT stacking solutions (see, e.g., here).

As discussed further in the paragraph below, convenient MB header breakout SHIMs, which may be used
even when one or more Beret(s) are attached to the MB, are available separately, and may be used to break out
the additional functionality on the MB header discussed above onto standard Recon connectors.

MB Header Breakout SHIM. A small SHIM is under development to conveniently break out all 28 BCM pins
of the RPi Header, one functional group at a time, in Recon order, in addition to incorporating an SD card
holder and a multichannel LED display driver.

Warning: Though the MB Header breakout JSTs on this SHIM can provide 3.3V or 5V power, as
selected via backside power jumpers, they operate at 5V TTL, not 3.3V TTL, so any devices connected to the
JSTs on this SHIM must be 5V tolerant.

ID EEPROM. On the RPi Berets, the UDFN8 version of the (32 Kb) CAT24C32 EEPROM is used for board
identification, programmed as described in the RPi HAT ID EEPROM spec. The 7-bit address used for this
EEPROM is 1010000b (0x50h) by default, as required by this spec; however, the last bit of this device’s 12C
address may be changed, via a backside solder jumper, to 3.3V or GND, thus enabling the use of either 0x50h
or 0x51h as the ID EEPROM address on these Berets, and making the connection of two Berets to a single RPi
straightforward (using an RPi header extension cable) while keeping both of the ID EEPROMs of the connected
Berets individually readable. Note that the write protect (WP) pin on the EEPROM is by default connected to
3.3V (read only), but this may also be switched to GND (to enable write mode) via a backside solder jumper.

5-43

https://www.raspberrypi.org/documentation/configuration/uart.md
https://www.abelectronics.co.uk/kb/article/1/i2c-part-2---enabling-i-c-on-the-raspberry-pi
https://www.waveshare.com/stack-hat.htm
https://shop.pimoroni.com/collections/raspberry-pi/shim?filter=SHIMs
https://www.onsemi.com/pub/Collateral/CAT24C32-D.PDF
https://github.com/raspberrypi/hats/blob/master/eeprom-format.md

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.9.2 96B-compatible MBs

As shown in Table 5.10, the 2x20 header on 96B motherboards has 2 pins over which Vmb = 8V to 18V power may
be provided to the 96B motherboard by connected daughterboards (aka mezzanines, e.g. the Beret),
1 pin over which 5V power (regulated by the 96B motherboard) may be picked up by connected mezzanines,
1 pin over which 1.8V power (regulated by the 96B motherboard) may be picked up by connected mezzanines,
4 GND pins, and 32 other pins, arranged in a rather well-structured order by their primry functions as defined
by the MCU on the 96B motherboard. The pins on this header that are connected to the ‘ Black‘ Beret are also
indicated in Table 5.10. Warning: All digital pins on the 96B header operate at 1.8V TTL, and thus must usually
be level shifted on attached mezzanines (e.g. to be used by 3.3V MCUs, as implemented on Berets).

MB Header Breakout SHIM. The pins on the 96B Header (Table 5.10) are logically ordered by their associated
functions. A SHIM designed to level shift these functions to (5V tolerant) 3.3V TTL, and present these functions
on JSTs in Recon order (with associated power/GND pins) will be developed if sufficient interest is expressed.

ID EEPROM. On the 96B Beret, the UDFN8 version of the (1 Mb) CAT24M01WI-GT3 EEPROM is used for board
identification, programmed (for the moment) as described in §5.9.1 (as for the RPi Berets); the programming of
this (larger-capacity) EEPROM is subject to change during the next rev of the 96B Mezzanine Design Guidelines.

Beret name function pin || pin function Beret name
GND GND 1 2 GND GND
3 4 | PWR_BTN_N
5 6 RST_BTN_N
7 8 SPI0_SCLK | SPImb_SCK
9 10 SPI0_DIN SPImb_MISO
11 | 12 SPI10_CS SPImb_CS0
13 || 14 | SPIo_DOUT | SPImb_MOSI
ID_SCL 12C0_SCL | 15 | 16 PCM_FS
ID_SDA 12C0_SDA | 17 | 18 PCM_CLK
12C1_SCL 19 || 20 PCM_DO
12C1_SDA | 21 | 22 PCM_DI
mb_Go0 GPIO-A 23 || 24 GPIO-B
mb_G1 GPIO-C 25 || 26 GPIO-D
mb_G2 GPIO-E 27 || 28 GPIO-F
mag_INT* GPIO-G 29" || 30 GPIO-H
bar_INT_DRDY* GPIO-I 317 || 32 GPI1O-)
imu_INT1_DRDY* GPIO-K 33" | 34 GPIO-L
1V8 35 || 36 | SYS_DCIN Vmb
5V 5V 37 || 38 | SYS_DCIN Vmb
GND GND 39 | 40 GND GND

Table 5.10: Primary functions corresponding to each pin on the 2x20 header of the 96B format, along with the
corresponding net name (if any) on the Beret, indicating PWR, GPIO, , 12C, and SPI. Boldface
indicates channels that are connected by default to the Beret. ()* denotes 3 optional interrupt GPIOs, attached
to the header via backside solder jumpers.

5-44

https://www.digikey.co.uk/product-detail/en/on-semiconductor/CAT24M01WI-GT3/CAT24M01WI-GT3OSCT-ND/2698362
https://github.com/96boards/documentation/blob/master/mezzanine/files/mezzanine-design-guidelines.pdf

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

5.9.3 BB-compatible MBs

As shown in Tables 5.11 and 5.12, the 2x23 header on BB motherboards has 2 pins over which a Vmb ~ 5V power
supply may be provided to the BB motherboard by connected daughterboards (aka capes, e.g. the
Beret), 2 pins over which 5V power (regulated by the 96B motherboard) may be picked up by connected capes,
2 pins over which 5V power (regulated by the BB motherboard) may be picked up by connected capes, 6 GND
pins, and 34 other pins with various digital and analog functions. The pins on this header that are connected
to the Beret are also indicated in Tables 5.11 and 5.12.

MB Header Breakout SHIM. The pins on the BB Header (Tables 5.11 and 5.12) are generally clustered by
their associated functions. A SHIM designed to present these pins on JSTs in Recon order (with associated
power/ground pins) will be developed if sufficient interest is expressed.

ID EEPROM. On the BB Berets, the UDFNS8 version of the (32 Kb) CAT24C32 EEPROM (as also ued on the RPi
Berets) is used for board ID, programmed as described, e.g., in this BB ID EEPROM programming tutorial.

Beret name | alt. function | PWR/GPIO | pin | pin | PWR/GPIO | alt. function Beret name
GND - DGND 2 DGND - GND
- 3.3V 3 4 3.3V -
Vmb - VDD_5V 5 6 | VDD_5V - Vmb
- SYS_5V 7 8 SYS_5V -
PWR_BTN - 9 10 - SYS_RESET
GPIO_30 11 12* | GPIO_60" - mag_INT*
GPIO 31 | 13 | 14* | GPIO 40* | PWMIA | bar INT DRDY*
- GPIO 48 | 15 | 16* | GPIO 51" | PWMI1B | imu_ INT1 _DRDY*
SPImb_SS SP10_CSo0 GPIO_4 17 || 18 GPIO_5 SPI10_D1 SPImb_MISO
ID_SCL 12C2_SCL - 19 | 20 - 12C2_SDA ID_SCL
SPImb_MOSI | SPI0_Do GPIO 3 | 21| 22| GPIO 2 |SPI0O_SCLK| SPImb_SCK
mb_Go0 - GPIO 49 | 23 || 24 | GPIO 15
mb_G1 - GPIO 117 | 25 || 26 | GPIO_14
mb_G2 - GPIO_125 | 27 28 | GPIO_123 SP11_CS0
SP11_D0 GPIO_111 | 29 | 30 | GPIO_112 SP11_D1
SPIT_SCLK | GPIO_110 | 31 || 32 | VDD_ADC -
ADC_IN4 - 33 | 34 | GND_ADC -
ADC_ING6 - 35 || 36 - ADC_IN5
ADC_IN2 - 37 || 38 - ADC_IN3
ADC_INO - 39 || 40 - ADC_INT
- GPIO_20 | 41 | 42 GPI10_7 SPI1_CS1
GND - DGND 43 | 44 DGND - GND
GND - DGND 45 || 46 DGND - GND

Table 5.11: PWR function or GPIO number, and the “primary” alternative function, corresponding to each
pin on the 2x23 header on the BB Black, along with the corresponding net name (if any) on the
Beret, indicating PWR, GPIO, , 12C, and SPI, as well as PWM and ADC functions (cf. Table 5.12 for the
corresponding numbering of the GP1O, UART, SPI, I12C, and PWM channels on the BB Al). Boldface indicates
channels that are connected by default to the Beret. ()* denotes 3 optional interrupt GPIOs, attached to the
header via backside solder jumpers.

5-45

https://www.onsemi.com/pub/Collateral/CAT24C32-D.PDF
https://github.com/jbdatko/eeprom_tutorial/blob/master/eeprom.md

Renaissance Robotics (v.2024-05-16)

Chapter 5: Berets

Beret name | alt. function | PWR/GPIO | pin | pin | PWR/GPIO | alt. function Beret name
GND - DGND 2 DGND - GND
- 3.3V 3 4 3.3V -
Vmb - VDD 5V | 5 | 6 | VDD 5V - Vmb
- SYS_5V 7 8 SYS_5V -
PWR_BTN - 9 10 - SYS_RESET
UART5 RX | GPIO 241 | 11 || 12* | GPIO_128* - mag_INT*
UARTS5_TX GPIO_172 | 13 | 14" | GPIO_121* PWM3A bar_INT_DRDY*
- GPIO_76 15 || 16" | GPIO_122* PWM3B imu_INT1_DRDY*
SPImb_SS | SPI2.CSO | GPIO 209 | 17 | 18 | GPIO 208 | SPI2_DO SPImb_MISO
ID_SCL 12C4_SCL - 19 || 20 - 12C4_SDA ID_SCL
SPImb_MOSI SPI2_D1 GPIO_67 21 22 | GPIO_179 | SPI2_SCLK SPImb_SCK
mb_GO SPI2_CS1 GPIO_203 | 23 24 | GPIO_175 UART10_TX
mb_G1 - GPIO 177 | 25 | 26 | GPIO_174 | UART10 RX
mb_G2 - GPIO 111 | 27 | 28 | GPIO 113 | SPI3_CSO
SPI3. D1 | GPIO 139 | 29 | 30 | GPIO_140 | SPI3_Do
SPI3_SCLK | GPIO_138 | 31 | 32 | VDD_ADC -
ADC_IN4 - 33 | 34 | GND_ADC -
ADC_ING6 - 35 | 36 - ADC_IN5
ADC_IN2 - 37 || 38 - ADC_IN3
ADC_INO - 39 || 40 - ADC_IN1
- GPIO_180 | 41 42 | GPIO_114 SPI3_CS1
GND - DGND 43 || 44 DGND - GND
GND - DGND 45 | 46 DGND - GND

Table 5.12: PWR function or GPIO number, and the “primary” alternative function, corresponding to each pin on
the 2x23 header on the BB Al, along with the corresponding net name (if any) on the Beret, indicating
PWR, GPIO, UART, 12C, and SPI, as well as PWM and ADC functions (cf. Table 5.11 for the corresponding
numbering of the GPIO, UART, SPI, I12C, and PWM channels on the BB Black). Boldface indicates channels
that are connected by default to the MB Header on the Beret. ()* denotes 3 optional interrupt GP1Os, connected
to the MB Header via backside solder jumpers on the Beret. Note in particular that, between the BB Black
pinout depicted in Table 5.11, and the BB Al pinout depicted here, the DO & D1 nets are swapped on pins 18 &
21, and on pins 29 & 30; these swaps are easily accounted for in software.

5-46

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

ebb‘bbbbbb X

Logi€, Sensor,
and Expansion
Quadrant

Figure 5.13: General layout of the Berets, as organized into quadrants.

Figure 5.14: (left) Stitching of Vin traces on layers 1 and 8. (right) Stitching of Vs1 traces on layers 1 and 4.

5.10 Layout

5.10.1 Overall organization and power flow

As indicated previously, it is convenient to refer to directions on the Berets in terms of directions on a compass.
As illustrated in Figure 5.13, the layout of the Berets is generally organized into four main quadrants:

e the Logic, Sensor, and Expansion Quadrant, in the NE,
e the Connector Quadrant, split between the NW and SE,
e the Power Quadrant, in the SW, and

e the Motor Quadrant, located just N of Power Quadrant.

The bottom layer of the Power and Motor Quadrants is mostly large Power and GND pours, with many “thermal
vias” connected to the (hot) undersides of the high-power components, for enhanced thermal radiation. Also,
short and wide traces are used for all high-current pathways. Stitching of overlying vias is performed across
multiple current-carrying layers for the highest-current pathways, including those taking Vin from the Power
Quadrant to the Motor Quadrant, as shown in Figure 5.14a, and those taking Vs1 from the Power Quadrant to
the SE Connector Quadrant, as shown in Figure 5.14b.

5-47

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

Logic & Connector Quadrants | Power & Motor Quadrants
Layer Color Function Trace Directions Function copper oz/ft?
Top | Signal/ICs N-S, E-W Power/Signal/ICs 1.5
2 [| GND (fills) Power 2
3 | Signal E-W Power/Signal 1
5 | GND/5V/Vs1 E-W GND/5V/Vs1 1
6 | Signal N-S Signal 1
7 | 3.3V (fills) 3.3V 2
Bottom N Power/Signal N-S GND 1.5

Table 5.13: Eight-layer stackup used on the Berets, indicating the colors used in Figures 5.14, 5.16, and 5.17.

Vel ol o X % u'.’j';’ 7'—'—'

buried

Figure 5.15: (left) Closeup of the SE corner of a Beret, illustrating the extensive use of via-in-pad techniques.
(center) Comparison of blind, buried, and through-hole vias. (right) Copper traces on one of the layers under
the BGA on a Beret, illustrating the removal of unnecessary annular rings, which gives substantially increased
clearance for breaking out the 8mm pitch BGA using 6 mil traces, 7 mil spaces, and through-hole vias only.

5.10.2 Layer stackup, signal routing, and high-density integration (HDI)

With some careful design effort (see in particular the stackup plan in Table 5.13), Berets achieve a remarkabe
high-density integration (HDI) of components and functionality in a very small footprint for an 8-layer board.
This is achieved, in part, by making extensive use of via-in-pad technology, which allows the placement of
solder pads for various components directly over vias, as illustrated in Figure 5.15a. The (per board, not per
instance) cost of implementing this modern (but by now fairly common) technology for HDI, which necessitates
plugging the vias and plating them over, is much less than the cost of traditional blind vias (exposed on only
one side of the PCB) and buried vias (not exposed on either side of the PCB), as illustrated in Figure 5.15b.
Indeed, all vias on the Berets are in fact the (much lower-cost) through-hole vias.

Careful tradeoffs were involved in the stackup design (Table 5.13). Layer thicknesses had to be made:
e sufficiently thin to use 6 mil traces, 7 mil spaces, 6 mil diameter vias, and 18 mil diameter annular rings to

break out the 8 mm (31.5 mil) pitch BGA (ball grid array) on the STM, and
e sufficiently thick to handle high current (up to 12A in places) where necessary.

A useful technique implemented to break out the BGA at this resolution was the removal of the (unnecessary)
annular rings on the (through-hole) vias under the BGA on layers in which these vias did not actually connect
to traces, as illustrated in Figure 5.15c. This resulted in increased clearance to route traces out from under the
BGA between the closely-spaced vias with, on any given layer, most of these annular rings removed.

5-48

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

Layout of all 8 layers of the Raspberry Beret is illustrated in full in Figures 5.16-5.17. As indicated in Table
5.13, note that different thicknesses of copper are used on these different layers, based on their differing primary
functions, which is helpful to better handle the high-current traces/pours. Though this is a tad unusual, most
PCB fab facilities can accomodate this when fabricating PCBs at high volume.

To address the routing of the many crossed traces in the design, the following approach was followed:

e primarily N-S traces were isolated on layers 6 and 8 (see, e.g., the purple traces of Layer 6 in Figure 5.17), while
e primarily E-W traces were isolated on layers 3 and 5 (see, e.g., the green traces of Layer 5 in Figure 5.17).

Carefully selecting where such traces are joined (using vias) facilitated the “untangling” of the hundreds of nets
involved in the design.

5.10.3 EMI and signal-integrity considerations

Four primary techniques were used to maintain signal integrity on high-speed communication channels (SPI,
USART, 12C) and (simultaneously) to reduce the electromagnetic interference (EMI) generated by the board:

1. GND and/or Power planes were situated immediately next to each high-speed signal trace®.

2. Curved traces with no sharp corners were used everywhere.

3. Matched-length traces were used, on each layer, for the parallel traces associated with clocked high-speed
communication channels (e.g., MOSI, MISO, SCK), as illustrated, e.g., by the extra wiggles of the purple traces
in the NE corner of Layer 5 in Figure 5.17.

4. Power GND, which inevitably fluctuates some due to the strongly time-varying loads placed on it (associated
with the PWM generation used by the high-power components), was carefully isolated from Signal GND.

The use of modern ECAD software (Altium) was essential in order to implement techniques 2 and 3 above.

‘ 1 000000000000) '\ 10 0°0000 0
; H00000000000) - H000000
| mooooo me00000O ° @ ‘
1 8 o/ @

o

‘meooooooo0o.n Il Doocooo m0000000 °
| meeeee\l: s = §

2 m e o e o0 e e .
W\ B i B me0000:il i ot e :
| m00000) ' /mooocoo . mooocoo _~ ~ mooooo

°
oo

o]
9
oa
‘@
S
°
5
Q-
°;

©00.000.0°00

0000 [° 1)
‘00000 e ' Catd: opm 00000
00000 - - o ol s eeeee
eeo0o00 . °HN 7 S N S 10.0.0.0.0.
e0e0o0o0 - - T lii\t e eeeee;:
e0000 ;- NN - 5 985 o R . 00000 -
00000 .- .JEEFEEIN see L eeeee

0000000 - Q
o 0900

Figure 5.16: Layout of layers 1 and 2 of the JiEX) YT Beret (continued on next page).

00 O
() 0 ()

,©-00000m -0 0 0 0°0°0 O:O o]

% A high-speed signal is actually mostly carried in the space between the trace and the corresponding reference layer, not along the
trace itself, so the close proximity of such reference layers is essential in order to not turn your PCB into a radio unintentionally!

5-49

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

4 1 00'0000000000000000Q000 N 7 - 0000000000000
H0000000000000000000 00000000000 000

)

H00000 H0006000° meooo o o0 0 000000 00000000 °

°

‘0 0.0 0'0°0 0’0 W

o

‘o'm

moeooo ;' B00000': '3,

°

mo0000 mooooe

%

%o

O O O OCPO O

o

Jooooon

 ‘oocooom

O 000 O0OO
O 000 00O
© 000 000
OO OO0
000 00O

@\ ocoo0o0o0o0o00 ') 0000000000000 00000 00 \
mH0000000 H00000000000000.00000

000000 H0000000 moeoo000 DOOOOOOO ‘olmc m@ (] O 0 O o oo
° o

meoeee: 131 /o) o Lo
oo s RO 0

° o é0

mopqoo || | /mepooo) el

o0 B

00000 ;' ‘.

meoeooo

0.0/0/0

23

o
°
°
°

s
)
°

-0

®
o
o
o
o
°
°

000 0000000

°

000000000000000000 ‘ H00000O0O0OO

m00000 uooooooo e | 00000 Mm0000000
. ; : 5 :
meeeeo i L . .ot 9 i | mooooo -t soc 1| ol A & B

o

;@'oobooooooooooooooo ,’ 00000000

°é

°

°om
‘e @

o®

‘@ © 0 0°0°0 ©

o
o

geoocoo .. mooooo

‘00 0°0°0 O

ooooonm

o
3

~oo0o0o00m

seoo 0000000

Figure 5.17: Layout of layers 3 through 8 of the JREXJ) JJIT2A Beret (continued from previous page).

5-50

Renaissance Robotics (v.2024-05-16)

Chapter 5: Berets

manufacturer part description $ R r K W G B §
TI DRV8912-Q1 motor drivers 242 2 1 2 2 0 1 5.3
Tl CSD18510Q5B power MOSFET 0.75 1 1 1 1 1 1 5.2.3
TI LM74700-Q1 ideal diode controller 0.62 1 1 1 1 1T 1 5.2.3
5.24
TI TPS56637 Vin->Vs1, Vin->Vmb Vregs 1.32 2 2 2 2 2 2 5.2.5
5.2.6
Tl TI TPS6208833 Vmb->3.3V switching Vreg 1170 1 1 0 1 0 O 5.2.7
Tl TI TPS62913 Vmb->3.3V switching Vreg .10 0 0 1 0 0 O 5.2.7
TI TS5A3359 Venc mux (3:1+off) 0.34 1 1 1 1 1 1 5.2.9
TI TXB0108DQSR 8 channel 5V - 3.3V level shifter 039 1 0 1 1 0 0 5.5
TI TCA6507 LED driver 0.40 1 1 1 1 1 1 5.5
TI THVD1452 RS485 transceiver 1.003 1 0 1 1 1 0 5.6.4
TI TCAN334GDCNR CAN-FD transceiver 1114 1 0 1 1 1 0 5.6.4
TI SN74CBTLV3257 RS485-UART mux 0.200 1 0 1 1 1 0 5.6.4
5.7.1
Tl ALM2402-Q1 power opamps (DAC1, DAC2, Vs2, user) 113 2 0 2 2 2 2 {5.7.1
5.7.3
Tl TLV9002 dual mini opamp (low-pass filters) 021 1 0 1 1 1 1 5.7.2
5.2.4
TI TPL0102-100 digital pots (Vs1, Vs2, Weia b Weza/b) 060 3 1 3 3 3 3 {5.7.1
5.7.2
TI TMUX1208 Vmon mux (8:1+off) 032 2 2 2 2 0 0 5.7.4
TI TS5A23166 Vmon SPDT switch 0.24 1 1 1 1 0 0 5.7.4
TI TMUX1204DQAR Vmon 4:1 switch 009 0 0 0 O 1T 1 5.7.4
ST STM32G474VEH6 microprocessor with 512KB Flash 448 1 0 1 1 1 1 5.5
ST STM32G474VBH6 microprocessor with 128KB Flash 3521 0 1 0 0 0 O 5.5
ST LISBMDLTR 3-axis magnetometer 0714 1 1 1 1 1 1 5.4
ST LPS22HB barometer 1.28 1T 1 1 1 1 1 5.4
TDK ICM-42688-P 6-axis IMU 2997 1 1 1 1 1 1 5.4
NXP PCAL6524HEHP GPIO expander 0825 1 1 1 1 0 0 5.5
SITIME SITI532AC 32.7680 kHz oscillator STMRTC & IMU) 060 1 1 1 1 1 1 {Z'T
ON CAT24C32HU41-GT3 32Kb 12C EEPROM 0.276 1 1 0 1 0 0 5.9.1
ON CAT24MOTWI-GT3 1Mb [2C EEPROM 0523 0 0 1 0 0 0 5.9.2

Table 5.14: BOM Part A: primary components of the m, @, , , , m Berets

(R, r, K, W, G, B). Identifying components by the underlined abbreviated names is convenient.

5.11 Bill Of Materials (BOM)

The Bill Of Materials of the Raspberry Beret is listed in Tables 5.14-5.15. A complete BOM, including all minor
components (including, e.g., all of the small 0402 discrete resistors and capacitors) are listed in the Altium
viewer for the project, available online at http://dynamics.ucsd.edu/berets. Some commonly-needed add-on
components are listed in Table 5.16.

1. The custom 7-pin XH-compatible has a slot cut out of one side of a JST-XH, so 3-pin to 6-pin connectors can
be plugged in as well. We need to find someone to manufacture that for us. See the Revolectrix SPA Single Port
Safe Parallel Adapter and the ISDT PC-4860 15-6S Lipo Battery Charger for examples.

2. Do we need common-mode chokes for Electro Magnetic Interference (EMI) filtering on USB, RS485, or CAN?
This post says it degrades USB signal quality, but might be necessary to pass FCC Title 47 CFR Part 15. This
post discusses it for CAN. For RS485 and CAN, maybe we can leave places for it off of the Beret, out on the
enclosure bulkhead (next to the spot for the optional TVS diodes; see §5.6.4).

5-51

https://www.ti.com/product/DRV8912-Q1
https://www.ti.com/product/CSD18510Q5B
https://www.ti.com/product/LM74700-Q1
https://www.ti.com/product/TPS56637
https://www.ti.com/product/TPS62088
https://www.ti.com/product/TPS62913
https://www.ti.com/product/TS5A3359
http://www.ti.com/product/TXB0108
https://www.ti.com/product/TCA6507
https://www.ti.com/product/THVD1452
https://www.ti.com/store/ti/en/p/product/?p=TCAN334GDCNR
https://www.ti.com/product/SN74CBTLV3257
https://www.ti.com/product/ALM2402-Q1
https://www.ti.com/product/TLV9002
http://www.ti.com/product/TPL0102-100
https://www.ti.com/product/TMUX1208
https://www.ti.com/product/TS5A23166
https://www.ti.com/product/TMUX1204
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32g4-series/stm32g4x4/stm32g474ve.html
https://www.st.com/content/st_com/en/products/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus/stm32-mainstream-mcus/stm32g4-series/stm32g4x4/stm32g474vb.html
https://www.digikey.com/product-detail/en/stmicroelectronics/LIS3MDLTR/497-13892-2-ND/4309733
https://www.digikey.com/product-detail/en/stmicroelectronics/LPS22HBTR/497-16265-2-ND/5799910
https://www.digikey.com/product-detail/en/tdk-invensense/ICM-42688-P/1428-ICM-42688-PTR-ND/10824934
https://www.digikey.com/product-detail/en/nxp-usa-inc/PCAL6524HEHP/568-15416-2-ND/5981031
https://www.digikey.com/en/products/filter/oscillators/172?s=N4IgTCBcDaIMoEkAqBGArAZjAQQMIgF0BfIA
https://www.digikey.com/en/products/detail/on-semiconductor/CAT24C32HU4I-GT3/2626505?s=N4IgjCBcpgTAnBaIDGUBmBDANgZwKYA0IA9lANogICsADPABwgC6xADgC5QgDKHATgEsAdgHMQAX2JhG8KKDSQseIqQohaLdl0i8BI8RKlV1AYQCCAFVgAWUwGZYWkNXkg2UMOw%2BRYdI0A
https://www.digikey.co.uk/product-detail/en/on-semiconductor/CAT24M01WI-GT3/CAT24M01WI-GT3OSCT-ND/2698362
http://dynamics.ucsd.edu/berets
http://www.usastore.revolectrix.com/Products_2/Cellpro-PowerLab-Adapters_2/SPA-XH_259
http://www.usastore.revolectrix.com/Products_2/Cellpro-PowerLab-Adapters_2/SPA-XH_259
https://www.amazon.com/ISDT-PC-4860-Parallel-Charging-Batteries/dp/B06XNJM4YV
https://www.digikey.com/en/product-highlight/w/wurth-electronics/usb-solutions
https://electronics.stackexchange.com/questions/2425/are-common-mode-choke-coils-needed-on-usb
https://en.wikipedia.org/wiki/Title_47_CFR_Part_15
http://www.ti.com/lit/an/slla271/slla271.pdf

Renaissance Robotics (v.2024-05-16)

Chapter 5: Berets

manufacturer part description $ R r K W G B §
Littelfuse SMBJ33CA main TVS diode for Vin spikes 0140 1 1 1 1 1 1 5.2.3
ON 1SMA5928BT3G 13V zener diode for 12V spikes 00924 1 1 2 1 1 1 5.2.3
ON 1SMA5919BT3G 5.6V zener diode for 5V spikes 00924 1 1 1 1 0 0 5.2.3
ON 1SMA5914BT3G 3.6V zener diode for 3.3V spikes 00924 1 1 1 1 1 1 5.2.3
ST BAT60JFILM 10V Schottky for USB 5V protection 0.0363 1 1 1 1 1 1 5.2.3
TI TPD6E004 ESD diode arrays for USB, S1-S10 0.16 2 2 2 2 2 2 523
Bourns SRP5050FA-5R6M 5.6 uH (7.2A) inductors on Vs1,Vmb 0533 2 2 2 2 2 2 {2;:
Vishay Dale IHHP0806ABERR22M01 220 nH (5.3A) inductor on 3.3V 0148 1 1 0 1 1 1 5.2.7
Coincraft XGL4030-472 4.7 uH (3.2A) inductor on 3.3V 0.49 0 0 1 0 0 O 5.2.7
Chemi-Con EMZR350ARAT0TMF61G 100 pF bulk cap on Vin 0220 1 1 1 1 1 1 5.2.4
Samsung CL21A226MAYNNNE 22 iuF output caps on Vs1 007176 3 3 3 3 3 3 5.24
TDK C3216X5R0J686M160AB 68 uF output cap on Vmb 02871 1 1 0 1 0 O 5.2.5
Taiyo-Yuden EMK316BBJ476 ML-T 47 uF output cap on Vmb 02210 0 0 1 0 0 O 5.2.5
Samsung CL10A226MQ8NRNE 22 uF output cap on 3.3V 00527 1 1 0 1 1 1 5.2.7
Murata GRM188R60J476 MET5D 47 uF output cap on 3.3V 01493 0 0 1 0 0 O 5.2.7
Panasonic EXB-28V820JX 82 0 4RA for {B,G} LEDs, S1-S10 00084 1 1 1 1 1 1 5.2.3
Panasonic EXB-24V820JX 82 Q2 2RA for {B,G} LEDs, S1-S10 00105 1 1 1 1 1 1 5.2.3
Panasonic EXB-28V221JX 220 O 4RA for {AY,R,R/G} LEDs 00084 1 1 1 1 1T 1 5.2.3
Panasonic EXB-24V221JX 220 © 2RA for {AY,R,R/G} LEDs 00105 1 1 1 1 1 1 5.2.3
Inolux IN-S42BTR red LED (stoplight) 0.0606 1 1 1 1 1 1 5.6.8
Inolux IN-S42BT5Y yellow LED (stoplight) 0.0707 1 1 1 1 1 1 5.6.8
Inolux IN-S42BT5G green LED (stoplight) 00818 1 1 1 1 1 1 5.6.8
Kingbright ~ APHB1608LZCKSURKC bicolor LEDs (power gauge) 02282 3 3 3 3 3 3 5.6.8
Inolux IN-S42BT5B blue LEDs (enable status) 00873 6 5 6 6 2 2 5.6.8
Inolux IN-S42BT5A amber LEDs (fault status) 00707 3 3 3 3 2 2 5.6.8
C&K PTS815-SJM-250-SMTR white buttons (pause, mode) o111t 2 2 2 2 2 2 5.6.8
C&K PTS815-SJG-250-SMTR black button (reset) 0143 1 1 1 1 1 1 5.6.8
Amass XT30PW-M sideways XT30 (main power in) 0500 1 1 1 1 1 1 5.2.1
custom custom custom 7-pin XH (Balance) 11 1 1 0 0 5.7.4
4Ucon 01056 3x5 0.1” male (SIGa, SIGb) 00422 2 1 2 2 2 1 5.6.2
4Ucon 11071 USB Micro-B female 00795 1 1 1 1 1 1 5.6.9

4Ucon 00532 {1"9 0.1" female for 00625 3 2 3 3 3 3 58

Analog, SPI, 12C Headers

JST B8B-ZR-3.4(LF)(SN) 8-pin JST-ZH for USART 0171 1 1 1 1 1 1 565

: 6-pin JST-ZH for M4-5-6, {5.3
JST B6B-ZR-3.4(LF)(SN) {M7—8—9, E1-2, E3-4, E6-7 0.131 5 3 5 5 2 3 561

. 5.3

4-pin JST-ZH for M2-3,

JST B4B-ZR-3.4(LF)(SN) {/VHO—H, E5 RS485/UART 009 4 2 4 4 2 3 223‘
JST B2B-ZR-3.4(LF)(SN) 2-pin JST-ZH for M1, M12, CAN 0072 3 1 3 3 1 1 5.6.5
4Ucon 20565 2x20 0.1” stackable RPi header 04139 1 1 0 0 0 O 5.9.1
4Ucon 00324 2x20 2mm 96B header 04139 0 0 1 0 0 O 5.9.2
4Ucon 20582 2x23 0.1” stackable BB header 04139 0 0 0 1 0 O 5.9.3

Table 5.15: BOM Part B: secondary components for the @, m, , , , m Berets

(R, r, K, W, G, B).

5-52

https://www.littelfuse.com/products/tvs-diodes/surface-mount/smbj/smbj33ca.aspx
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5928BT3G/1SMA5928BT3GOSTR-ND/918099
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5919BT3G/1SMA5919BT3GOSTR-ND/918093
https://www.digikey.com/product-detail/en/on-semiconductor/1SMA5914BT3G/1SMA5914BT3GOSTR-ND/918090
https://www.digikey.com/product-detail/en/stmicroelectronics/BAT60JFILM/497-3707-2-ND/686386
https://www.ti.com/product/TPD6E004
https://www.mouser.com/ProductDetail/Bourns/SRP5050FA-5R6M?qs=%2Fha2pyFaduj2MhxwsBebqw6IOdS6gJTVkWTmj7VEwwTUCOQ2IsSCWA%3D%3D
https://www.digikey.com/en/products/detail/vishay-dale/IHHP0806ABERR22M01/5419026
https://www.coilcraft.com/en-us/products/power/shielded-inductors/molded-inductor/xgl/xgl4030/xgl4030-472/
https://www.digikey.com/product-detail/en/united-chemi-con/EMZR350ARA101MF61G/565-5147-1-ND/8637142
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21A226MAYNNNE/10479857
https://www.digikey.com/en/products/detail/tdk-corporation/C3216X5R0J686M160AB/3951907
https://www.mouser.com/ProductDetail/Taiyo-Yuden/EMK316BBJ476ML-T?qs=Zy5V7Kj3rCVVMQaoWTlMmg%3D%3D
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL10A226MQ8NRNE/3888526
https://www.digikey.com/en/products/detail/murata-electronics/GRM188R60J476ME15D/5877410
https://www.digikey.com/en/products/detail/panasonic-electronic-components/EXB-28V820JX/256274
https://www.digikey.com/en/products/detail/panasonic-electronic-components/EXB-24V820JX/256154
https://www.digikey.com/en/products/detail/panasonic-electronic-components/EXB-28V221JX/256279
https://www.digikey.com/en/products/detail/panasonic-electronic-components/EXB-24V221JX/256158
https://www.digikey.com/en/products/detail/inolux/IN-S42BTR/10384742
https://www.digikey.com/en/products/detail/inolux/IN-S42BT5Y/10384771
https://www.digikey.com/en/products/detail/inolux/IN-S42BT5G/10384784
https://www.digikey.com/en/products/detail/kingbright/APHB1608LZGKSURKC/5803647
https://www.digikey.com/en/products/detail/inolux/IN-S42BT5B/10384754
https://www.digikey.com/product-detail/en/inolux/IN-S42BT5A/1830-IN-S42BT5ATR-ND/10384757
https://www.mouser.com/ProductDetail/CK/PTS815-SJM-250-SMTR-LFS?qs=ahcBuItHZ3xKWmfV%2F2E6bA%3D%3D
https://www.mouser.com/ProductDetail/CK/PTS815-SJG-250-SMTR-LFS?qs=ahcBuItHZ3yjoEmU1Oppnw%3D%3D
https://www.tme.eu/en/details/xt30pw-m/dc-power-connectors/amass/
http://4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=01056
http://4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=11071
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=00532
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B8B-ZR-3-4-LF-SN/B8B-ZR-3-4-LF-SN-ND/7802276
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B6B-ZR-3-4-LF-SN/B6B-ZR-3-4-LF-SN-ND/7802275
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B4B-ZR-3-4-LF-SN/B4B-ZR-3-4-LF-SN-ND/7802273
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B2B-ZR-3-4-LF-SN/B2B-ZR-3-4-LF-SN-ND/7802271
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=20565
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=00324
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=20582

Renaissance Robotics (v.2024-05-16) Chapter 5: Berets

manufacturer part description $ # § usage notes

Panasonic VL1220/FCN rechargeable 3V coin cell 4.03 1 5.2 with SMT bracket (solder on backside)
Winbond W25Q64)JVZEIQ 8 MB 133 MHZ 1.053

{Winbond W25N512GVEIG 64 MB 166 MHz 1.95 } 1 5.5.2 QSPI Flash (solder on backside)
GigaDevice GD5F1GQ4UFYIGR 128 MB 120MHz 3.05

4Ucon 00812 1x9 0.1” male 0.0207 3 5.6.2 mates with Analog, SPI, 12C headers

4Ucon 00526 1x5 0.1” female 0.0370 1 5.8 mates with first row of SigA header

Table 5.16: Commonly-needed add-on components for Berets, including the rechargeable coin cell, flash mem-
ory, and connectors for Beret Shields. Prices quoted are for single unit quantities as of Spring 2021, except
for the 4Ucon connectors, which are quoted for quantities of 1000. The components used for CAN and RS485
termination (also an optional add-ons) are standard 0804 resistors and capacitor (see §5.6.4), solder footprints
for which are provided on the back of the Berets.

5.12 Schematics

A shared schematic arrangement is used to define the six Berets. The JIERT)JIITI Beret, which was designed
first, uses eleven schematic sheets (included as the following eleven pages of this datasheet):

. Master_Raspberry (the main datasheet that connects all others for the Beret; see §5.1),
. Power (defines the wiring of the various voltage regulators on the PCB; see §5.2),

. Motors (defines the wiring of the DRV8912-Q1 motor drivers; see §5.3),

. Sensors (defines the wiring of the IMU, magnetometer, and barometer; see §5.4),

. MCU (defines the pinouts of the STM32, GPI1O expander, Level Shifter, Flash, and OSC32; see §5.5),
. Connectors (defines the wiring of most of the connectors on the PCB; see §5.6),

. Signal_Headers (defines the wiring of the Signal Headers; see §5.6.2),

. Ul (i.e., User Interface, defines the wiring of the buttons and LEDs; see §5.6.8),

. Analog (defines the wiring of the analog subsystem; see §5.7),

10. Vmon (defines the wiring of the voltage monitoring circuit; see §5.7.4), and

11. Header_RPi (defines the wiring to the RPi header; see §5.9.1).

Note that the E Beret is a variant of the Raspberry\ Beret, using the same PCB (and, thus, the same
schematics), but with a lower-cost STM32G4, and several components flagged Do Not Populate (DNP). Eleven

alternative schematic sheets are also defined, with different functionality implemented (generating Vmb = 12V
instead of Vmb =5V, etc), as listed here:

O 00 I O Ul & W N =

la. Master_Black, 2b. Power_No_MB, 10a. Vmon_No_Balance,
1b. Master_White, 5a. MCU_No_GPIO_Expander, 11a. Header_96B,

1c. Master_Green, 6a. Connectors_Black, 11b. Header_BB.

1d. Master_Blue, 6b. Connectors_Green,

2a. Power_12V_MB, 6¢c. Connectors_Blue,

The other Berets are then defined using the following shared schematic sheet arrangement:
e Schematic sheets {1a, 2a, 3,4, 5, 6a, 7, 8,9, 10, 11a} define the Black‘ Beret,

e Schematic sheets {1b, 2, 3,4,5,6,7, 8,9, 10, 11b} define the Beret,

e Schematic sheets {1c, 2b, 4, 5a, 6b, 7, 8,9, 10a} define the &g} Beret.

e Schematic sheets {1d, 2b, 3, 4, 5a, 6¢, 7, 8,9, 10a} define the M Beret.

In this way, as the designs of the Berets are tweaked (changing resistor values in certain circuits, etc), the entire
set of PCBs in the Beret family can more easily inherit all the updates made, and thus be kept in sync.

5-53

https://www.digikey.com/product-detail/en/panasonic-bsg/VL-1220-FCN/P665-ND/2404070
https://www.digikey.com/product-detail/en/winbond-electronics/W25Q64JVZEIQ/W25Q64JVZEIQ-ND/5803997
https://www.digikey.com/product-detail/en/winbond-electronics/W25N512GVEIG/256-W25N512GVEIG-ND/12143334
https://www.digikey.com/product-detail/en/gigadevice-semiconductor-hk-limited/GD5F1GQ4UFYIGR/1970-1081-1-ND/9484830
http://4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=00812
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=00526

i BEENS

30 Ao

120T/ST/v parepdny

Araqdsey 11BN

1819g
Ausqdsey

daq1S 410 due

NA ISA

ITNVA 39IA

OO dga1S 410 dure

da41S 410 dwe

S8PSY <

daq1S NvO <
1Invd a1p <}

dad1S_9ap

daq1s eap

T > IINVd S9IA

T NI ISA

suopnq <

Josa _Uﬁ _ _ _
Lol AU,
n

110V AP
dadIs gap |

dad1s eatp
AIPIAS)

SIOJOIN

eDTl

€0 eI

D BT

JuSA <

Lno ¥ |
D eldS

eldS <

TAS $8ySy |
S8YSY |

dI9AS NVO |
XIINVO |

XA NVO

s1opoouy <

v <)

SO qIIVSN
qraIvsn <

d asn

N dasn

SI0302UU0)

d_gsn <o—
N €sn

[or1]s

SIopBIH[RUSIS

wowp |

- uow A

H uowp

Uow A

I > NA ISA

LINVA S21A

> mod

>
,Hv TA

1OMOJ

oA
> et
« Olleioav

> letrova

o 3dt

JRIA

dad1S 410 duwe

——— omy

KD Ozl
> nwids
> Z£2S0

INI Sew

AQYQ_Sew

AQUd INT Teq

TINI nuwr
AQYA [INI nwr

SIOSUdS

S_AQYA_LNI Teq
S AQ¥A [LNI nwi

7O quids

1D quidS
0D quids

OldD ddd1S 4LO due
N& _ISA
- 1NV 321A |
> TNV AP
daq1S_qa1p 1omod
dAHTS eAIp
]
~ > suopng
vmv j0501
> w
o
[zr1loav [
P— [zr1lova [
Jdp <
JaN
€0 DTl
70 BTl
~ > QURA
LNo dI
I > $D eldS
> ®elds
] 188 s8vsy
_ > S8pSY
ddH1S NV
X1 NVO
I > Xd NVO nwids
7Hv S1pooug 7€0SO
,Hv BRIV
= anvsn N e —
AQIA Sew |
_ ===~ AQIA INI *eq |
m\mm_mw f ZINI
! m AQYA TINI nwt
o
[
[
[
[
[
[
i
| L----S AQMd LNI Teq
. ! — = 7
lor-1ls L S AQYA LN D
_ > UowA NOHLEEm
B 1D quids
— Tuowp 09 quIds
> H uowp S Sy
NOW

> quids

Iy 1epeaH

¢ Jopuedxq QIdD

I
m z
4
z B
80 A H.O.hmm d [P > JOIA SS e Omm\m [
Icogst/y pawpdn | apypn Moelg ‘Adseqdsey OSIN » TR i
NOW [0T°11S o OIS =< son . ORESD=wTs oW
08 -
- 1dS 1dS ano 9HAAYLYOTENLS
T 2890600 SI-OVTESILIS —1
1 SS » | L ITIA
S K
— ao mo Y1 ||N = { T€dSO » Om_mE 1 - OSI » A
T aNo aaa — |_. IEEED =< <On - CHASDSTTS ™ 1SOW - =1 VSsA IWVEA g
7€3SO La A5 bl SSA vaaa
Sd0S T uiod
B . 1dS 1dS 0 Sr 100A
¢ o z - SSA
3) g SSA adA —z
el . mw SSA adA —;
e 108 » aL . SSA ddA
= 195TTASTS 3 [oYdl 5 | 9 cd
= 010AINDV S D=5 vas Mw . 9 ssa adA g
.mc.ﬁm%%%i\ﬂw mw ou ey 0 e +
A GNLS \
@ ““““ o . 08 =5 e0Taso ol mm .
“““ Lt
m COIUSERIdSO | L ZOUd M el T SO USEUIdS m.rw_ e P ST qp » POTENLS
1 NOHH:MacEm 3 1010S qQIVSN AR MW” CERPOYH) a Bp e 9HAAY
| TOIMPUSO T ¢ (oine DA 5 X qc . B
| OOIUSEIdSO 1 ¢ Use) A ﬁ—mﬁw—m MM i LNO_tedSO-S10d a SCLUB
I . . —
, Lavsn NI 2€DS0-¥10d 75350
gk €10d 1%
X4 - | Cd SGry XLENV
¥SOAS0109X.L ano STy — L I 110d oL S
P TS ISON ®ldS —> 89 8V o = a0 s1opoouy 012d ®) XL9RIYSO
= S ISOW IS — o1 SO PIdS o 69d
SSTM AmIvsn L—pet L8 LY [SRranvsn v god &l =
S AQWA TINI fu ¢ mm w« S OXQ{_LINL nwr o Lod oﬂm Tl
6 0 -
Ario S 6S 4 aNno d0 w 10 s ISUN-015d WWM 6d ecd
[SL 1 qoop woop T JOIA
i B T A o S—r 014d 03¢ Lol _sormiaso
S OIS se
TSRO Y —_— 3k 21 Hp o
i {_sD advsa > — L
P Llig v e ——T1 €AT 4 SO AVSIL © 89 1067080-14d 19d < TP a0
EAE S 20 02 DSBIdS 4 NI DSO-0dd 00d A
EATAS SSIdS T
J3)J1 QA S1dd s1dd 5 BIdS
Cik Dl _Xgamven I oo pieid 0L —
ISOINAIPIAS (L] craq €1dd
() UeFX0 10 (M) UpHX0 = 7 UOWA E zidd
ad - qlotloooto SIDSAPIAS 90 w“mmﬂﬂ% 1ad D)
SBYSH =peeed o L aNo SSRIPPY D1 CH o0 a9 oldd N$
Ssrsu T O g e - [woms —AITNR0 o) g 68d 17y
=y Suopy . e 8ad 0L0Od-84d v DS ®)71
Nd - el V1 suonnq INT 309 (ad L8d ST
oV . ZVAHYZS9TVOd [AQUA INI 4 =5 i 9dd VA3 I
) sdd . ISOIN quIds
v« . sad WIdS
{uowA > uowip o g m aaav L OWA s m»M | OSTINATPIS T e vl s ISON ¢! 24
: £ o TIPS 1 a4
o] pli5) S8 < £dd 3 DS quIdS
““““““““““ A (TR Wi zad
““““““““ W @P‘\111\111\1lmwm‘\‘\1‘\111\111\\11\ PLH £ Jad 1dd
I B — \
” e 91d [TS capod ! S 03 oad oav
, T vwuwp g by s0d 0 |
| - 154 9 AS A |
1 T IVWOWA 2 v 7d $0d W S ot §lad SIVd g T
e OvEOWA—Tg] [£0d i ! f viad VIVd <fore]
2 NAUOWA 0 zud T0d i I } £1ad EIVd =i SIOARIVSA
i m opoursuonng 6l l7d 10d ki ! qeH 1ad Ivd @)
= dHITS NVO daH1S NVO _ 8T7) -y 00d i S SIM QIMVSA OILT] [1qq 11Vd (<= Nasn
%) R e L 3 ozydr ot 01ad 01vd
i = Lid T STy 2D 9IAVSQA LS 6ad 6vd
R MASSFSY_ OL | g9 | AQUA LINT MO = TN e owo 8ad 8vd
I SA__ S | — PR ool Lvd
o o NA 1 <1d | LASTY (o - Lad
| g Mwwﬂm = E__W dHATS NPVl]y G NI = INIL OldD V_Um.mﬂmmm w oad 9vd
, JATIS 9Ap € cld | - Vas e Vas®eozl OSIN sad Svd
| OldD_ddd1s 410 dwe 7 d! g 108 TS TOL ISOW IS L yad ¥Vd
i —_— = [| 6C J.V
| ES S ! 2 yozk ____ard €ad £vd
! 0 5 8 w03 _ otk zad ovd
| I g m.. €1 O1dDZ N0z b oz b 1ad W«M
_ s — S -
AR A [l 01dDT 1Y O01dDOZT 0ad e 5} SSIWIdS
01dD
T T VINLS 9HAAPLYOTENLS
EAL

INLS

3]

3 1994S
g0 oY]}aleg
1207/S1/v_parepdn alyYM ‘Ausaqdsey aNo
JoMod = NOJ/OTTI-TA
T 0 _ _ [t
R 1
ndino jou ‘urerp uado 01 (Dq) Lig WA
19 98ueyo 31pa Jusuoduwrod
<
o AND _ LddAEES80C9SdL ano [[°D u10) Woly urod A\
=1 aNO Dd s e——)
ey
1NV 33IA —— AOE dH D €dA
gasn
ora
A_w Tz roy| St NE <77 14w wox AG10
1Y ‘TIA woly
¢ S MS NIA
L T caA A [a7 1 awoouEd A
€AE AS
SAA
AEEC 01 AS
AND ANOV T¥A
ANDV TIA
VAN IN TIA
ANDV TIA ANDV TIA
0s
SR
GREEL B e} aAND AVAULEIISSdL
= ANOV HAOW
a1 CIA 3 01
Aro | 0d ano
anoe 02 446D A 6 N | aNg ol QuAS —
= 194 98 TIAS N — 7
0 == dd
189 1 ar s cun A Thameey | __dvo || ndimo A VBISATTS LR s00189p 06 Jodun(
A9'S s MS _ _ 0g dH € TIA Kq papraoxd A 10p[os oY) Sunejor £q
6d 000 THA 9 INA Td TIAS stdeojndur Vs w PeaISUI UIA 0} PAJOAUU0D
A—w NONUS-VA0S0S NS o RET 55 o) = 2qUE 1N [SA 1IN
s 1 1009 NIA ¢ q P2102UUOD JTL SUL!
% T QIA MS TIA YO THA L 8 m__N 1omod y 1opeay] [eusig
TIA ’
AS 01 UIA UOTJO9[OS IoMO V JOPBAH [BUSIS
ano
WOMA001-Z010TdL = - D
aNOV TIA =
> 1 A AaNO
2 vl soa | LL /\
8 €AE 3 B W 1O¥AEAO00LYLINT
4 a1 | @ AND ANOV T¥A 1o1dA
2 am ,w|.>> <Th > 20 — Q
S Aok 8H — H <gdd L4 TIA g dVOA >
= v A =
T M o7 1 | EERRTN ~ e ~
o 4 > vAS VM aNOV TIA aNOV TIA a JAONV
G, tAE S VH & >
3 _ o [Eul] 5 Q
vz 8 lOd 0 60 TA——= K S >
a _ & — =
ge 16494 T4AS — AVAILEYISSAL ano mMo g g
ano 0 — ANDV HAOW =gy =
< eDTl == IS w
—— AW anod
{ 44 84 TMA 6 ON = 1o deoyng 41001 .
N n
gz . A ¢ dH €D YA Wh»om A_w%«U il
€Ny TYA== aize od ;
A€l oy A= " T Y A 1] T¥T <] * +
3a T soo\m (1 5 MS ity | [4 9 AS-ASTOEXA T
& A TN 3 | 7] 0ELX
S
H INOUS-VA0S0S NS aro WEL |y NG LA 185001581asD 5]
oo —] | Lood NIA LN 1H4SON 6
|m\|, Ty A TA = H] L 3
| Eomm5>:=a>a=2=ouEzu_<uow%3mqﬁ> [SA 0} UIA uorno9jold OW@H—O\/ OSIQAJY % u—an—ﬁ: Iomod

: | m | : | |

v 1994
30 A
120T/ST/v parepdny
SIOI0IA

10489

aluM oelg “dsey

(NS)ADIZ-dzd

C
1

CIN

SLNO
1LNO

(NSADIZ-a+d
4

qaip
qalp

¢ L1NO

QAT

¢lLNO

qAl

C

I <1No

QAT

81NO

1T/0IN

(NS)ADAZ-994

9100

100

6100

11110

qAl

0LLNO

9
S
4
€
4
1
£LNO

6/8/L

gA1p
ga1p

aNo aNo
T Sua] payoIeN T
N [\S] puy o) [}
W Bluof— < AMpPIdS Il|>\—l—4_ﬂ_|vl| —|w W
= ~
o SIES] SESES] =
(NS) D IZ-994
Z1LNO 7110 9
AJ] BAT BAI
QLI Gy o dadISU dH91S 9AIp JAdTS eAIp dg91SU gl L) 5 LANTIY) — S
11100 g 8 11100 SINOIES ¥
TTLNO 9A1p LT [T [TINO eATp TILNO ®A]J =
01100 01100 LINO ®A]J -
0TLNO 9ATp T SOSu SHsu T 01LNO eAIp [LNO BAJ ;
6100 61 SSAIPIAS SSAIPIAS 61 6100 CINO Al
6100 qAIp 6 108 108 6 6100 ®eAIp 9/S/FIN
100 0T SIDSAPIAS SOSMPIAS 0T 8100
8LNO 9AIp (44 [44 3INO eAIp
1as =1 1aS
200 S ISONAPIAS S 4100
LINO qAIp Iz ods ods 2 LINO BAIp (NS)ADAZ-grd
NG L OSINAIPIdS QAIp O} EBAIp L oG e
9LNO 9AIp]I 1 9LNO ®eAIp 0ILNO ®A] ¢
S1N0 $1N0 SIHOE z
SINO AP € € CINO EAIp [LLNO ®A]
LINv4u IINnvdu I
10 4 T o TINVA AIp 4] Y100 6LN0 ©AT
vINO 9AIp 1 [vINO eAIp €T
€LN0 9Ap 7y SO €100 = €LN0 EAIp
AaNo (NS)d1aZ-ged
Zino e gg | GO o = o aino |y TINO AT .
11n0 aaa I l I aaa 1100 LAFYO) LR I
TILNO 9AIp T 9 T — 11 — 11 1 9 T TINO eAIp 9LNO ®AIp
yO AIp €0 AIp
€AE €AE N
< < < <
£ £ £ £
10¥dMdozIesAdd | [10¥9dMdOzIesAdd |
qQAIp = o BAIP > |=
ano aNo
I_Ih dUQLY dUQLY I_I“
I I
ssedAq 7D AIp ssedq 1D AIp
1
WA SI03133UU0)) 29 SISALI(T I0ION

S ug
80 Ao
1207/S1/v__parepdn

SIopeoH [euTIS

18489
an|g ‘alym foeg “dsey

7
QM_U (Sen[eA D) QMO
== 9] ==
- -
&ax_r ,,qox_r
AIS¥P0099dd.L wvao YdS¥r0049dd.L va o
= aND DDA ,iw 7 AND DDA ,Lw
¢ N @SN —— 901 £0I 8% — 901 €Ol 4%
{_ddsn > 5 soI ol wo so1 70l —
ﬂm Ol 101 < 140} 101 T
wva 1va
(gSN % s19pesy [euSIg) uonoajold ASq
I-D-€C-S01-MS.L
 AND
‘auIpNo
angoraguee) | ISA ooy dMd
TI00TLO-AL-TTIDA 01 OIS m WIWW
J00T 6 DIS 14 =
|m_.v ¢ DIS
AR 8 DIS OIS
£ e C 8 DIS F.Vm [OIS
14 Y 1 ¢ DIS 9 OIS T
LV 9DIS
TI00TLOU[-8YTIOA SRS
]"r 4001 eGSO MSIT
]u. AAn : AND
—TFS 6 | .. [8 0L DIS |
]r 01 W 9 DIS RIAd
— YY" 9 101 =
]? [WS L DIS W\NM
]f AW S DIS OIS
]? A ¥ DIS oIS
]s. ST [VT T 7 DIS OIS
6 91 T 6 DIS I OIS I
vy eDIS
SIOpBIH [eusIs
14 @ 1

14
9 PYS
g0 Ao }Jalag
1207/S1/vpaepdn Jan|g ‘@UM Moelg “dsey

SI0SUOS

ano - ano ano
T MLTANESIT Aul
— aNo 1VS/0as <+
paarsy OAS/AAS/VAS -
7 SMT_vaseod
AU001
15 Sew 7 Q48108 = r—55%5a
SO — [Sud] paydre N
01
refiel
OIPPA ———¢ (| Y
(CINI Bew} 751 NI] |
. L vas ”
{AQuQ Few | i 7 ® i
AQAd 751 AQdd PPA — i e L.@Jl_!m DTl vﬁ
o L od |
SYOSNAS A e V4
19)oWIPIPUS RN
ano aND dND .
_ — —— 4u001 [oe 03)xau Y1
|_||_ _1 are A2y oours Ieq %
1D Sewyieq Sew usomioq pareys
ALEHSTSdT i a—
z1 ANO _ddA 57 -
< aNO oI ddA
AdAddsTd SO SAYOSNAES [S
& 0vS/0ds foe— 1
SUOSNHS A
_0ds/1as/vas ST
AQ¥d INI *8q T AQUQ INI OdS/TDS som—5555 UEN €AE
Teq
SYOSNAS A
I9jowioreq
e 889TH-INOI
ano ASTY
o £ g ASTY A.T
NI nuwr (S ASTY
L P ano ano
ASHI A.NlA = 4'
ATTNYEH) =1 NIM1O/ONASH/TINI o1
AQYA [INI nun 7 LNI/LLNI € nui—= e
ss oR 0 o | P "
- av IAdA T
il _ — -
08 — S Lo YIS av/ DS AV s 10 g
OSIN oo T 1dS dv/0IdS dV/vas dv |—|
ISON MSONTmIas T ¢ 0dS dv/0ds dv ada —
1dS A Y4 | _
m@ nu SYOSNAS A
A 3ua] payIRIN
€ 4 1

14 € T
L 11994S
80 A lalag ano
1207/S1/vpepdn Jan|g ‘@YUM Moelg “dsey = z
Fofeuy AONAO0I-2010TdL &
g
aNd dadA 4
Arig T vl S
0 3d1 + g | SSA €At 2
— €1 =
am =2
ST o *w A = 2
) i} v oov BE 4T 2
—_ €0 Jdi — VM VAS <
nToav -
T [ATex]
A éAe
oC 5 lno HINI ———
27 —ro INGHS o aND
< wmﬁ Jap INAHS A.NiA = > —— VAS /\@
o1 1LNO FINT - i 2 p— 10S \
el 3 < JNT 5O AONA001-2010TdL <
6] SIS o
3y MDMAISTO06ATL o [7] WO ddA =5 z ole
duredo uru [~ . SSA 2 vl
1t [l 8 EAL = ola
D duwedo oyjndur (+) / g duredo yoindyno : {oz3dj ‘o1 Jdy} AT lhl 3 a1 5 .W >
g dwredo : { | jouueyo dwedo rutu ‘z [ouueyd dwredo ruru} am DW =
TY pue [y ‘SI10ISIsaId[qeLieA 0m) :{Z10d ‘1.LOd} w gH [\ S MI I
v duredo yondyno : {ez 3dj ‘e 3dj} Ao v <= N
S I —— V1 oV o &
ANJV I3 NIM) ﬂmﬁm&uhm:_—aho ey .E@.—M\m:u 10J393ysejep 33§ 3¢ — [/ VM vdas A..W— =
: v 103di € 6
VH 108
T 0r
eTyd] 110d
€AE
SuLy1 ssed Mo
7 _
f “dx OIdD pue 4T oL AND aNOV dwedo
. di i) —
Ja91S 410 dwe dHESEAORCCE S g
. “IopeIH S0[RUY BIA JOSN —
o mHOlww_w £qa1qrseooe [ouueyodwedo nlu_ LN duredo
BI)X0 1R {OA “A “+A} “
v
e = m_ AaNoy dwedo JnqIdva JazOVa
-] R V
A
9N ES = N
[T1lbav o o
aNnoy duedo NM m = 70 duedo—= D dwedo—— m m aNoy dwedo
LHI-A-6-C€00-NOONY /N tE m =l I~ /\
$ moav ano ‘g 19PN o eAe T tAc g | 00N S—
9 z €AT €l
- Dav i | Q%
2 TA 1 PR DA T8 a6 | P4
5 A AS W) |
¥ oy = PedIEwRyL B _ = aNo —
£ A LR N s i 1 tAe or | 'O 90 M
JNqzova] o €AE |
; TAova S = z2 g z22
IopedH Jojeuy = o A A
1OTIIAOTOYTNTY 1OYIAOTOFTNTY A A
v dwedo 1omod |~ = q dwedo somod TN [B[
Jnqva g Jnazdva
oA
Q
2 i
o 12 1Q
— m [§)
[es}
la~]
' 1ova

durydQ oredg 2 1o5yng ZSA

s1ymg Ovd

G

4 € 4 1
3 3994S
80 Aoy lalag s aNo
120g/ST/y prepdn | apypn ‘Moelg ‘Auseqdsey
SI0329UU0)) AND
ano
LHI-A-6TES00-NODNYy — —— _ 4o ol
- €0 NVO = >
6 TSR (NS)d1aZ-gded |_H o0 NVO3 N
w e 108 w NN, b 7)
10S®OT e BD0 > HNVD ol o
9 asTo— Vas /"0 ¥ v suer) Ny) Mmau 1oy dems »
y €AE o4 | v
€ ISA
: o LS[29 JOAIISURI) NV)D
1 UIoo A
10pedH DTl ano ano
aNo w 1LOTT-NODNY w
= (NS)ADaZ-d8d SO qIavsn oTHS
LHI-A-6TES00-NODNY —— - cans |1 A
6 1IN0 ¥l | A L SDMVEN | gy paus 2
8 9 SIALAVSD o7y anIvsn caHs |2
SSEIdS L S1>q1dVSN QLAVS[3
L el o Eds y _Less S Nosaraven— 0 CaTHS
. eGP L oo Serye=CaS 4 XAADIVSD | X0 _ s [0
I | ISOW'EIdS i 0S 3us| paypIggars |_XL9RIVS/] LavsQ S ar S AL
. sobseds VA DS VSN = AMLLOHOS
z H_mi. @u LEE 1_ o = qasn TIM09.LVE
0 AS Avsn VSN A AS €AE snaa < N_dsn N
yi3ua] payore [VSo~AS T -1 ASY~ 1
1opedy 1dS asn wa AS
SI9peoH D71 % 1dS LSI LIVSN g o gS
AND WASULSTEATLEOVLNS Wy
T o b
N 40 HA % 3y HoYs 0} o sspl- Sq IS = (NS)IDIZ-ard
5] INO s o TS S8vsy uondo aYe :a1emj0S SR "
: @ D= | SB=
(4514 T T T €AE AS £ m
I
(NS)ADuZ-are ze Mﬁ e ” A !
(4314 |
14 Vi ¥ N ZX S3vSa ! &l
£ e Ve Al 7K cspsy o T ! ano
& N ZX X <y Ve — ! = (NS)aDuZ-99d
PSa__ 19y < - !
L dZX X sgpsy o] V) 1gg [oll XMINVA , = S—
Sssu ~ 19z 18 XL ENAD AS AT | AL [f: —=1 f
(R — | (S ey D —=T 1,
— - f —acT 1 m
on | VA A VA A m e A qc 2
[l ! 1
! vEd A
I
YO0 SgPSY CAT ! o bl
I
! = (NS)A1dZ-99d
S i s1poouy 9
\.|/ R T 1
o ASOATSYIAAHL XL vl v $ S
|_||m, aNno 120 dNA £-94 :on1g mW.|w £
~ - T
L= dZAKsssd oL 9 mm v XLV - SUSA L
T 2 € EGSTa S S8vSd > 94
¢ wm_ z TS8P eel it ano
== N ZA S8¥Sd L [XTIV S8KSU = (NS AZ-994
ano
ano == AdZA6SEEVSSL qQCH m
== Nav sspsd ol 3 = [@ivs: - P e o
I sgpsuS o . N X —
== Jav Sstsu 5 DA o A% g “N ouspy C
10 s8vSd WOD (< o o I
‘OOEN@OQE— o—umﬁouum.s:o QCOEAM ::v.—v.t:u Suen ¢8YSY 1A _|_m ION d A A 14
. m.o_@mmwﬁ.mosoﬁ_:oEm?_Em._muhu__H.. EAL EAE v 00N J0A v
”mungoMq . . X0UW JUSA €AS
LSI 2 XN LIV 19AIRISURL CRFSY SLS[1opoduy]

G

4 € 4 I
6 309§
80 A lalag ano
120z/ST/yparpdn | 8)Iypp Moelg ‘Alsaqdsey = veldeysNr oo
1n 1 |
T N ¢ dAT1S 410 dwe !
AN |
VS1ETHS-NI dag1s 410 dwe | |
S I I
L I
TN < ! Ad S8PSY Pl !
Al W W
qa s8ySy ds1dchS-NI | i
I I
L I
T _A z! dATIS 9AIp pal !
4d | ! T8
dS.LATHS NI dag1S AP | !
, i D P €[\ T¢T D Pa] JoAHp
, i
T _A T ! dATIS BAIp P ! JATIS NVO Pl v [CEEIS N
¥y d W | v
dAHTS eAIp dSLATrSNL | ! OIdD adT- SSE[D PN
I I
L I
__A z! N I5A Pal ! OIdD Qa1 - SSeID 1PN
5 |
NI ISA | W o8 Y
- I |
PSLYSE01/AS LATHS-NI/Xnjoul/[1e13p HeLdehS A ! ! T T e YW TS ahip]
/s1onpoid/us/ oo Koy1SIp-mmm//:sdny Z ! 7 ” TRNSSESHAS] ” TSI M- c JHHTS EAID |
18 2010 01 {UI] PINOYS NG €090 A W W g TSApor L YW N TSA]
B e Y D ssrsy HS1ETPS-NI | | T serSd Pl 8 [T TTCSPSY,
! , PV -
T ! T dITIS NVO Pl | B OIdD Qa7 - Sse[D 19N
NS W
VSLETHS-NI dagIS NYD | ” o
N W | = vy 7
T T ! LINVA AP P3| , v ,
R | | e W S R |
IINVd AP VSLETPS-NI | ! g IT0Vd AIp paf 9 [T ¢ |
N | ! AA_S8PSA PAL_L [T AT SSPSY |
1 [BZ4RE 1NV 399A P3l W ddA1S 410 dwe g [T FaE |
e AN ol LA v | COMD TS 10 0w),
LINVA S21A i i
| |
I I
W W X[TTTAST-GXd Pqunu
! ! jred wWyoy (g Uey3 JOYeI W0 07 I0¥ Qquq
NV-6VD809T LSV | m
N W W
4l /m 'D P |
O | | < dd
OlW)o_ i 1 « S87SY SR
| |
i | S
€VOUR091 LSV N<>woo_ﬁ_<m | m
L |
[! T €D ooens pa| ! __/m (A P
D\ AN ! !
APl i i
I I
| |
5 ! R 9VAR09ILSVH m m
L |
ommsw\mQ/N} L v_ G 1a e
G Loax
aNod AE = | I
==y EVDUS09 1LSVH apr ! W
! _ ” oloee
T T ¢D dgens po|) i
SAT-YLINS-0ST-DIS-S 18S.Ld , |
3 z BIN] AP 8 [ol Loaw
) - - T , w2 VT | = ¥EMIL0S9VOL
gy ogens pa| 9 | WVTE i
v sm& € v Cd ooens pa| [€dgens paf ¢ [¥ i g | IO 0N
AW ! vy | o €AE
- | | | I
SAT-YLNS-0STNIS-STSS.Ld " zoBend paf ! L—-— m od oﬂu
) 3 C umdoog uo | pd T
\-l - P EVOUS09 1 LSV , e A
7 T s 1’7y 95en3 pa| § W _ 6 u t
T T ID osens po| TH osens pa| L [T [3
spow apowr \ e DX T8 pay 9 [T [7 A i VS Ses(EA >
asned AE D ogens pa[¢ | V| ¥ D P3| JOALP 9 0d o8 4 o8
SAT-YLINS-0ST-NIS-S 18S.Ld s I Y HBAITD o7
A 3 Gt o |
v [T o w\m X2 S ERARSIEYE V-IOALIP (FT - SSE[D N
asned suopng A [958n3. pof Va-d: IC e
4 € z 7 I

01 10948

80 Ay

1207/S1/v_parepdn

SULIOIUOIA 95 €I [OA

18489
aluM oelg “dsey

5 5
gl 8
o |= ano
M W VASALSTEDTDATYLNS
=] =]
NH = =} _l| O0A dND
0oV - [(el 5 ¢
EAE
Z uowrp IV . = v
wwip v . W
&7 tvioma 9] S "W, &
uow A 1dds M
=
=
ATT AT
aNdS l uourp o uourp
== AaND and
= —_ = —_
dro
7y uowp S aND [= AND S 1o
|_\ ON 1 VTﬁ ON 1D uowp
T ddA adaa I |_|
_r WHW 91 NH UOWwA 91 WHW _V
Sl OV UOWA Sl
AT IV o Ao > 1V €AT
2EBLER o AT o o LLELLLB
IASYBOCTIXNANL YASYS0TIXNNL
qxXnW Uow A ®Z®€®V®§ =S ano exnwt wowrp | Y\ ®Z
w|wl|w|w|w | |_|| w|w|w|w|s|w
[l LV) [VR) N LY [B [N (V] BN (V¥] [S
(NSITDV-HX-9L9)
w L9
< 94
b cd
¢ e
z £d
I d
14 91
asue[eq L w——ua
131 COE\/
0
— M\ fisa
7 UowA

(uow A) SULIOIIUOTA] AFLI[OA

11 119948
80 Aoy lalag
1207/S1/v_parepdn Auaqdsey
I 1opesH

0] 10 1Y 10§ J02YSEIEP YY)
"A[U0-peAI }[NEJOp OB

QZO 1S-0¢
ano rs-0T 3 §
IS TNONAAE €LOTPAHZEDYTLVD IV S WO¥dEd
avdd _Ull_l
_I|A SSA o €AE
t dM 1Y M
ov i
aNo
vasdr < | Mmmm 0A =
108 dl 9 8
JAOXREE! EAE
_ 180T €At
0V [S INOYddd
uSisop Juridjooy
[Kem-¢ 08uEy) ¢SS qQuIdS
v
NLS PuBldd
oy Eoém% SOIdD e ano Q
w@ﬁowﬁmﬂh“u%wwﬂm -1 X0 OPEOH -1 1SS quIdS - 0SS qQuIdS
urerp-uado ore surd — 0oF 6¢ SS QUIdS (S (fo
jdnuou i puv eq e 8 g — 5
v
»$— 9¢ ¢ —xX A
e €€ S S AQYd TINI nwrt A
S AQ¥d [LNJ nuit 7
B e 2 w
AdYd LNI 1¥q S AQdd INI 18q MM MM O quiIdS MN MENM
1D quidS
108 di WM WM vdas di
T i —orTE 53
@ e i Om:Z.mEEm” SRl =S quIdS >
><—— 0T 6l —SONAWIIS | ISON quiids
X»— 81 Ll —X | W oS
— w“ M" —x [,r@sjco:a;uzﬁ 1dS
Y— Tl 11 =
ol 6 7SS quids
<— 8 & 0D quIdsS
9 ¢ ¢ 0D quIds
v £ —x
¢ 11—
4 Joped 1,
A PeeH 1dY

Iopeoy 14 A1raqdsey

Part 1l

Theoretical Foundations

Chapter 6

Kinematics & Dynamics

The complete representation of a system’s configuration, and the derivation of the full equations of motion
governing how such a configuration evolves in time as a result of its initial motion, its internal connectivity,
its contact with the ground and other stationary structures, and the applied forces and torques, is in general
an involved and delicate subject. As a gentle introduction to this subject, in §6.1, we develop the equations of
motion of some very simple dynamic systems that are used as examples in the remainder of this text. However,
the reader is advised to not let the simple academic examples of §6.1 lull one into a false sense of complacency
regarding this important and difficult subject, which is introduced only briefly in the remainder of this chapter.

The general problem of defining a system’s configuration, and identifying the equations of motion governing
how such a configuration evolves in time, is generally divided into two distinct subproblems. Kinematics is the
study of properties of motion, such as the inherent relationships between linear & angular positions, velocities,
and accelerations in different reference frames, and the constraints imposed by various types of contact between
solid bodies. Dynamics is the study of the actual equations governing motion, including the effects of the forces
and torques applied to a system. This chapter briefly considers both subjects. The presentation is inherently
3D, with essentially 2D problems treated as special cases.

We begin with the notion of a particle: that is, a body with mass whose dimensions are sufficiently small
(compared with the rest of the system being considered) that its rotation may be neglected when modeling its
motion. In this case, the problem of kinematics is essentially trivial: in Cartesian codrdinates in 3D, the position
of a particle is denoted by a vector' ¥ € R3, its velocity 7 = d7/dt, and its acceleration® @ = dv/dt = d*7/dt?.
The position of N particles in 3D is thus specified by s = 3N cooérdinates (a.k.a. degrees of freedom). Any
s quantities ¢; for i = 1,..., s (collectively, q) which uniquely specify the configuration of a system (e.g., in
coordinate systems other than Cartesian) are referred to as generalized coordinates, and their derivatives ¢;
generalized velocities.

In §6.2, the dynamics of a system of N interacting particles is derived, starting from two basic axioms:

A. If the (Cartesian or generalized) codrdinates and velocities (collectively, the state) of a mechanical system
is specified, its subsequent motion can be calculated; that is, the accelerations ¢; may be determined
uniquely from the coordinates ¢; and the velocities ¢;, and thus the system may be marched in time with
any of a variety of ODE time marching methods, such as the RK4 method discussed briefly in §7.

B. The motion of a mechanical system is characterized by a principle of least action (a.k.a. Hamilton’s
principle), in which an integral of some function of the co6rdinates and velocities is minimized.

To disambiguate, we denote vectors defined in R? with an arrow over the symbol, and more general vectors (including quaternions,
introduced in §6.3.2.2) with boldface. Also, we sometimes denote differentiation with respect to time with a dot, e.g., ¢ = dq/dt.

2The quantity d37/dt? is called the jerk, and the quantity d*7/dt* is sometimes called the jounce; alternatively, the quantities
d4f'/dt4, d57"'/dt5, and cl677'/clt6 are sometimes humorously referred to as snap, crackle, and pop.

6-1

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

From these axioms, via a formulation known as Lagrangian mechanics, the laws of classical mechanics
are derived; note that classical mechanics neglects the relativistic effects that arise when the characteristic
velocities are a significant fraction of the speed of light®. The consequences of homogeneity and isotropy of the
equations of motion, in both space and time, are also considered, leading to the conservation of momentum,
angular momentum, and energy, and to the reversibility of trajectories in the absence of frictional losses.

In §6.3, we discuss the notion of a solid body, first by approximation as several particles rigidly connected
by massless rods, then by passing to the limit as the number of particles approaches infinity. In both cases,
it is shown that the dynamic properties of a solid body is characterized completely by its total mass and its
inertial tensor, both of which are easy to compute. The configuration of a solid body is specified uniquely by the
position of its center of mass together with its orientation, the latter of which may be described as a rotation
of the body, as specified by three degrees of freedom, from some reference orientation. There are a number
of different ways to describe the orientation of a body and how it changes in time; this subject is somewhat
delicate, and requires some care.

Once the notions of a solid body and its orientation and rotation are at hand, the equations governing the
dynamics of solid bodies are developed in §6.4, building from the dynamics of particles discussed previously.
This development includes the derivation of the equations of motion themselves, using various descriptions of
rotations and accounting for various types of contact, as well as a description the conservation of momentum,
angular momentum, and energy, and the consequences of these conservation properties.

6.1 The equations of motion of some simple physical systems

We now introduce a few simple mechanical, fluid, chemical, automotive, structural, and aerospace systems, and
develop the low-dimensional ODEs governing their dynamics. These canonical systems are considered further,
in the analysis and control settings, in the remainder of this text, and in the companion volume NR.

Example 6.1 A (linear) mass/spring/damper system

T
(51 I_>

—>
Ty | ™

——

Figure 6.1: The single mass/spring/damper system set up in Example 6.1.

Recalling Newton’s second law, f = ma where m is the mass of the body, f is the force applied to the body,
and a is the resulting linear acceleration of the body, the motion of the simple mass/spring/damper* system
illustrated in Figure 6.1 is governed by

d2$1 dlL’l
mlw :Ul—kﬂfl—C%, (61)
where z; is the deflection of the mass from its rest position, u, is the applied force, {m, k, ¢} are constants, and
the spring and damper have been modeled as linear in the deflection and velocity, respectively.
Identifying a SISO model by taking the output of the system as y = z1, the input to the system as u = wu;,
and defining a; = ¢/my, ag = k/my, and by = 1/my, we may rewrite (6.1) in a standard input/output ODE

3Such relativistic effects occur, e.g., in the everyday setting of an electron moving along a wire, giving rise to the magnetic field.
“Ak.a. dashpot or shock absorber. Note that shock absorbers often exhibit significant nonlinear characteristics for large or fast
motions, in which case the linear model used here should be considered as only approximate.

6-2

http://robotics.ucsd.edu/nr

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

form as » p

d—ti/%—ald—zt/—l—aoy:bou. (6.2)

If the spring and damper are removed (k = ¢ = 0), the system reduces to the double integrator d?y/dt* = b, u.
Recalling Newton’s second law of rotation, 7 = [« where [is the moment of inertia of the about the axis

of rotation, 7 is the applied torque, and « is the resulting angular acceleration, analogous rotational systems are

easily identified that are governed by the same ODEs as those identified above. Hard disk read/write head/arm

assemblies are an important engineering example system that fit such a model. A

Example 6.2 A (linear) cascade mass/spring system with viscous friction

|$1
Ix#
Uy U2

— —[
000000 000000 :

Figure 6.2: The cascade mass/spring system with viscous friction set up in Example 6.2.

The equations governing the motion of each mass in the cascade system illustrated in Figure 6.2 also follow
immediately from Newton’s second law:

dzl'l d$1

ma dtQ = Uy —]{?11'1 + k?g(l‘g — 1'1) — H1mag E, (63&)
d? d
mo d:; = U2 — kQ(ZEQ — 171) — HU2MMag %, (63b)

where 7 and u; are the deflection of and applied force on the first mass, x, and us are the deflection of and
applied force on the second mass, {m, ma, k1, ko, 11, pto} are constants, and g = 9.8 m/sec®. Note that the linear
damping in this case is modeled as arising from the viscous friction between the blocks and the horizontal
surface, assuming this interface is lubricated; in this case, the friction force is accurately modeled as proportional
to both the weight of the respective block’ and the velocity of the relative motion at the interface (i.e., roughly
independent of the contact area!), and is of a sign that opposes this motion.

To manipulate a set of ODEs like (6.3) algebraically, it is convenient to first express it in operator form:

d? d
[ml dt? + famg o + k + kz] r1 + [- k2} Ty = Uq, = Lyxy + Lows= ug, (6.42)
d? d
[—]{72] T+ [mgﬁ + ,Uzgng% + k2i| i) = U2, = £3x1 + £4132: Ug. (6.4b)

Identifying a SISO model by taking, for example, the output of the system as y = x5 and the input to the system
as u = u; (and, for the moment, taking u, = 0), we may thus rewrite (6.3) by subtracting L3 times (6.4a) from
L, times (6.4b), noting that, e.g., £1L3x1 = L3L71, thus leading again to the standard ODE form:
dy , &y Py dy
@—i—agﬁ—i-@@—i-al%—l—aoy:bou (6.5)
where a3 = (1 + p2)g, az = ky/my + (k1 + ko) /my + pap2 g%, ar = pugke/me + pag (ky + ka)/ma,
ag = k’lkfg/(mlmg), and b() = kg/(mlmg).

Finally, as in (6.2), note that there are more derivatives on the output y than there are on the input u in the
SISO ODE model given in (6.5); this property is essentially ubiquitous in mechanical systems with inertia, and
is discussed further in §8.2.3.1. A

(£1£4 — ﬁgﬁg)l’g = —£3'U,1 =

>Or, the component of this weight normal to the interface if the interface is at an incline.

6-3

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Example 6.3 A (nonlinear) mass/elastic-conveyer-belt system with dry friction

, w
@ M

b |
sk i
vl |
i i
% 5 10 5 20 25 30 35 10 25
c) os5f ‘ ‘ ‘ ‘ ‘ ‘ ‘ e
041 -
dy o3t]
dt 02t
01
LR
0 5 10 15 20 25 30 35 40 45

t

Figure 6.3: (a) The elastic conveyer belt system, with dry friction, in Example 6.3. To simplify the analysis, we
assume that w < L and r < L. The (b) position and (c) velocity components of the step response of this system
as a function of time are also shown; note the stick/slip behavior that results from the nonlinear friction model.
Note also that the frequency of the resulting jerks increases as the mass approaches the end of the belt.

We now consider the more problematical elastic conveyer belt system illustrated in Figure 6.3a.

In this system, the sections of the pretensioned elastic belt (that is, the “springs”) acting to pull the mass to
the left and right are effectively changing in “length” as the driven pulley, on the right end of the system, drags
the mass across the table to the right. The modeling of the force applied by the belt thus requires some care. We
first assume that the belt does not slip on the driven pulley and that the mass doesn’t slip on the belt, though
the idler pulley on the left end of the system is free to rotate and the belt, though it makes contact with the table
under the mass, and slides (with friction in the region of this contact patch) across the table. We will refer to the
“length” of the portion of the belt tending to pull the mass to the right as the distance from the mass directly to
the driven pulley, /; = L/2 — y, and the “length” of the portion of the belt tending to pull the mass to the left
as the distance from the mass to the driven pulley around the idler, ¢/, = 3L/2 + y. For any given amount of
rotation of the driven pulley ¢(¢), measured in radians, there is a corresponding nominal position of the mass
7(t) at which the force applied by the pretensioned belt to the left and right sides of the mass is equal. The actual
position of the mass, y(t), may thus be written

y=vy+vy where y=10¢, (6.6a)

where ¢/ (t) denotes the (small) perturbation of the mass from the nominal position 7(t). The total force applied

6-4

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

by the belt to the mass, which opposes the perturbation 3/, is then given by

Joerrt = —y' (ko /1 + ko /L) (6.6b)

where k, the spring constant per unit length of the belt, is a constant.

The friction force fgicion caused by the dry contact of the portion of the belt under the mass with the table
is accurately modeled in two parts. If you have ever tried to push a heavy object without wheels across a level
surface®, you probably recall that it takes more force to get the object moving than it takes to keep it moving,
and that once the object is moving, the force required to keep it moving is approximately independent of the
speed at which it is moving (this latter property is know as Coulomb’s law). That is,

e if the velocity of the mass is zero (i.e., the system is stuck), the magnitude of the friction force fgiction
precisely matches the force applied to the mass by the belt, with a sign that opposes the force applied by the
belt, up to a maximum absolute value of j1,mg, where mg is the weight of the mass’-®, whereas

o if the velocity of the mass is nonzero (i.e., the system is unstuck), the magnitude of the friction force
ftriction 18 ptgmg, with a sign that opposes the motion of the belt (and the mass that sits thereon), where i, is the
coefficient of static friction and 1, is the coefficient of kinetic friction; thus,

- i elt|y Ms e fd dt — 0,
for = { in ([foen|, p1s m) sgn (foer) if dy/ (6.60)

—prmgsgn (dy/dt) if dy/dt # 0.

Typically, p15 > pu; representative values’ of these two coefficients for a rubber belt and a metal surface are
s ~ 1.0 and py =~ 0.5.
The motion of the mass is thus governed by

d2
md_t;y = fbelt + ffrictiona (66d)

where fue; and fhicion are given above, with 7 = ¢y’ = ¢ = 0 corresponding to the mass at the center of the
conveyer belt with no net force applied by the belt to the mass.

The motion that the above system exhibits is illustrated in Figure 6.3b-c; for the purpose of this numerical
simulation, we take m = 1 kg, r = 0.1 m, ky = 500 N, and L = 10 m. This system may be simulated accurately
using, e.g., the standard RK4 technique (see §7); however, care must be taken in order to switch accurately
between the “stuck” and “unstuck” conditions. The code used to perform the simulation illustrated in Figure
6.3b-c is available as RR_Example Conveyer Belt.m.

The stick/slip behavior illustrated in Figure 6.3b-c is a nonlinear phenomenon that defies any reasonably
accurate linear approximation. Some physical systems are like this, with systems exhibiting dry friction being
particularly “sticky” to deal with. Fortunately, many'® “highly nonlinear”'" systems are not like this, and can be
treated adequately via linearization about an operating point of interest, as illustrated in the several examples
presented next. A

®Most students attempt this at least once when moving into or out of college and/or graduate school...

"This type of frictional force is often referred to as stiction.

81f the belt is at an angle # from horizontal, the normal force mg cos(6) across the interface should be used instead.

9Tables of such coefficients, for different materials in contact, are broadly available on the web.

YIndeed, it is our experience that most control problems encountered in practice may be treated effectively with linear methods.
""The phrase “highly nonlinear”, like “mostly dead” and “very unique”, should be avoided in scientific writing.

6-5

https://github.com/tbewley/RR/blob/main/chap06/RR_Example_Conveyer_Belt.m

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Example 6.4 A rolling cart system, and its linearization

e R =t A g e

Figure 6.4: A simple second-order system in: (a) an unstable configuration with 5 < 0, (b) a neutrally-stable
configuration with 8 = 0, and (c) an oscillatory configuration with g > 0.

b

We now consider now the dynamics of a simple rolling cart, as shown in Figure 6.4, governed by

d? d d
md—tf—i—cd—fjtmgsin(ﬁ):u, where y = Ba’.
Combining these two equations, applying the identity sin(¢) = ¢ —¢3/3! +. . ., and linearizing (i.e., performing
the necessary Taylor series expansions and, assuming = and u are small, neglecting all terms that are quadratic
or higher in x and/or u) leads to

d*x dz

1
W—i—ala—kaox:bou where al:%’ ap = 20g, bOZE. A

Example 6.5 Inverted and hanging pendulum/cart systems, and their linearization

It is straightforward to derive the full nonlinear equations of motion of the inverted and hanging pendu-
lum/cart systems illustrated in Figure 6.5. Define P, and P, as the forces the pendulum exerts on the cart in
the e' and e? directions (and, thus, the cart exerts the opposite forces on the pendulum), z(#) as the horizontal
position of the cart, §(t) as the angle of the pendulum (measured counterclockwise from upright), and r(t) as
a vector from a (stationary) codrdinate system origin to the center of mass of the pendulum. Writing r(t) as a
function of x(¢) and 0(t) (known as a kinematic relationship), differentiating twice, and rearranging gives

r=[z—/(sinf]e' + [cosh]e? (6.7a)
d’r d*z d*0 , doN27 . d* doN27
T = [W —/ cos@w +/4 sm@(%) } e — [6 s1n9ﬁ + { cosf (%> } e (6.7b)
d*z d*07 | . d*x df\2
= [COS@W—KE}Q — [sm@w—i-f(%) }e”, (6.7¢)
where e* = e' cos) +e? sin is the direction perpendicular to the pendulum, and el = e? cos # — e' sin 6 is the

direction parallel to the pendulum (see Figure 6.5a). We then write Newton’s second law for the acceleration in
the e! direction of the cart, and the pendulum, and Newton’s second law of rotation for the pendulum:

d*x

Me s = P, + u, (6.8a)
d’r d*x d*0 , do\2
mp[@'e] :mP[W—ﬁcosﬁerﬁsmG(%)] =—P, (6.8b)
d*0
I, proi —P,{ sinf — P, { cosb; (6.8¢c)

we are also interested in Newton’s second law for the acceleration of the pendulum in the e direction:

d’r d*x d?0 . .
mp[ﬁ . el] = mp|:COSQ ol fﬁ] = —myg sind — P, sinf — P, cos0. (6.8d)

6-6

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

oo ALG A% AA.-‘AAA.IAAAAA X A aAVAD- =
Y L== L
AV A V‘ALA..,A
XL & JAI W ‘IA\lA\'JL\"A\'A’m‘(S] NI NI wﬁ‘ e i v Fﬂ\’“\’/‘\\
X D Y Y (“4“/3'(\' '4 \JA\JA\ W (] XL L (A o
’ A Af VARV
g LA
: a) (X h'”‘\a‘. t-f% () ‘ e

1A

~

Figure 6.5: Pendulum/cart systems: (a) schematic, (b) lab realization in the inverted configuration 6(t) =~ 0
[see (6.10)], and (c) a large-scale realization in the hanging configuration 6(t) ~ 7 [see (6.11)].

Note that {m,,, m.} are the masses of the pendulum and cart, I, is the moment of inertia of the pendulum about
its center of mass, / is the distance from the center of mass of the pendulum to the point where it is pivotally
attached to the cart, and ¢ is the acceleration due to gravity; all of these parameters are positive.

First combining (6.8a) and (6.8b), then combining (6.8c) and (6.8d), leads to the two nonlinear equations of
motion:

d*z d*0) do\2
(me +my) e —my, £ cos @ ol my, ¢ sin 9<%) = u, (6.9a)
2 o d%0 ,
—my { cos@w—l—(lp—i-mpﬁ)w —my, gl sinf = 0. (6.9b)

Linearization of this system is performed by taking + = T + 2/, § = 0+ 6, and u = T+ v in (6.9), ex-
panding with Taylor series, multiplying out, applying the fact that the nominal condition {7, §,u} is itself also
a solution of (6.9), and keeping only those terms which are linear in the perturbation (primed) quantities, as
terms that are quadratic or higher in the perturbations are negligible if the perturbations are sufficiently small.
Often, a nonlinear system is linearized about a stationary (a.k.a. equilibrium) nominal condition; such an equi-
librium condition might be stable, such as the hanging pendulum configuration with {7 = 0,0 = 7,7 = 0},
or unstable, such as the inverted pendulum configuration with {Z = 0,6 = 0,7 = 0}. More generally,
the nominal condition about which small perturbations of a nonlinear system are modeled in a linearization
may also be an unsteady trajectory of the system considered, which we denote {Z(t), 6(t), 7(t)} for the prob-
lem considered in (6.9); this is called a tangent linear approximation of the equations of motion governing
perturbations {z'(t), (), ' (t)} of the system from the “target” nominal trajectory {Z(t), 8(t), u(t)}.

Taking {T = 0,0 = 0,7 = 0}, the linearized equations of motion of the inverted pendulum are

d*x’ a*o’
(me +my) 7 —my, ¢ i =, (6.10a)
d2 / d29/
—mpﬁd—;—i-([p—i-mpﬁ)ﬁ—mpgﬁelzo. (6.10b)

6-7

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Taking {Z = 0,60 = 7, % = 0}, the linearized equations of motion of the hanging pendulum are

d*a’ d*¢’
(Mme +my) o +my, £ ' =, (6.11a)
d2 ! d29/
mpéd—;+(lp+mp£2)ﬁ+mpgw’:0. (6.11b)

Finally, considering an unsteady nominal trajectory {Z(t), 0(t),u(t)} gives

d*(+ 2') A0+) o d(0+0)N\2 ,
(mc+mp)T—mpﬁcos(e—kﬁ)T—Fmpésm(@—l—@)(—dt)—u+u,
RN G 0+ 6 -
—my, € cos(6 +0") % +(I, + my, €%) % —my gl sin(d +6') =0;

leveraging (B.52) and (B.53), multiplying out, applying the condition that {Z(t), (t),u(t)} itself satisfies (6.9),
and keeping only those terms linear in the perturbation (primed) quantities then gives the tangent linear
approximation of the equations of motion governing perturbations of the pendulum system, {2'(¢), ¢'(¢), v/ (¢)},
in the vicinity of any “target” nominal trajectory {Z(t), 0(t),u(t)}:

d?a’ _d* 20 . . odON2, . df . db .
(me+m,) vl —my, £ cos(0) o + mpﬁ[ﬁ sin(d) 0" + <%> (cos)0 + 2 pr sin(#) ikl
_ d* d*o Y s
—my, £ cos(0) th(lp + my, (%) e mpﬁ[g (cosf) 0 — o sin(6) 9] =0. A

Example 6.6 The Mobile Inverted Pendulum problem, and its linearization

The derivation of the equations of motion of the Mobile Inverted Pendulum (MIP; see Figure 6.6) is related to
that of the classical inverted pendulum (Example 6.5). Define P, and P, as the forces that the MIP body exerts
on the wheels in the e! and e? directions, () as the horizontal position of the center of the wheels, ¢(t) as the
angle of rotation of the wheels as they roll (measured counterclockwise from a reference position), 6(¢) as the
angle of the MIP body (measured counterclockwise from upright, with —7/2 < 0(t) < 7/2), and r(t) as a vector
from a stationary codrdinate system origin to the center of mass of the MIP body. Writing r(¢) as a function of
x(t) and 6(t), differentiating twice, and re"arranging again gives (6.7).

A motor is attached which applies an input torque 7 that tends to rotate the body in one direction and the
wheels in the other. We assume for the moment that the two wheels of the vehicle move together (that is, the
vehicle isn’t turning), and that a stiction force between the wheels and the ground is generated such that the
wheels do not slip, and thus

r¢=ux. (6.12)

We then write Newton’s second law for the acceleration in the e! direction of the wheel centers and the center-
of-mass of the MIP body, and Newton’s second law of rotation for the MIP body and the wheels:

d2
mwd—tf . — f. (6.13a)
d’r d*x d*0) df\2
mb[@-e} :mb[W—fcosﬁﬁ—l—ﬁS.ln@(%) } =—P,, (6.13b)
d*0
Ibﬁ =—7—FP,{sint — P, { cosb, (6.13¢)
d*¢
[wﬁ :T—Tf; (613(3‘)

6-8

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Figure 6.6: MIP, a Mobile Inverted Pendulum; (a) schematic, (b) prototype, (c) toy product commercialized by
WowWee Robotics and the UCSD Coordinated Robotics Lab.

we are also interested in Newton’s second law for the acceleration of the MIP body in the e* direction:

d?r

d? d?6
e x] = —my g sinf — P, sinf — P, cos?. (6.13e)

~eL} :mb[cosﬁ——ﬁ

i [ez ar

Note that {my, m,,, Iy, I, } are the masses and moments of inertia (about their respective centers of mass) of the
body and the sum of both wheels moving together, r is the radius of the wheels, / is the distance from the center
of mass of the MIP body to the axis of rotation of the wheels, g is the acceleration due to gravity; all of these
parameters are positive. First combining (6.12), (6.13a), (6.13b) and (6.13d), then combining (6.13c) and (6.13e),
leads to the nonlinear equations of motion of the MIP:

2 420 62
2 0°P av : avN®
[Ty + (my, + mp)r?] 7 +my 1 cosf e myr ¥l sm@(dt> T, (6.14a)
d? d*0
myr ¥l cos@ﬁ—i—([b—i-mbﬁ)w —my gl sinf = —T. (6.14b)

Linearization of this system is performed by taking ¢ = ¢ + ¢/, 0 = 0+ 6, and u = U + v’ in (6.14), applying
the fact that the nominal condition {9, @, u} is itself also a solution of (6.14), and keeping only those terms
which are linear in the perturbation (primed) quantities.

Taking {¢ = 0,0 = 0,u = 0}, the linearized equations of motion of the MIP about its upright state are

d2 / d29/

[Ly + (M + my)r?] dtf +my 1l e =7, (6.15a)
2 1/ 20/

my 1 g7 +(Ip +my £%) pre mygll = —1'. (6.15b)

Considering an unsteady nominal trajectory {¢(t),0(t),%(t)} and applying the same manipulations as before
gives the tangent linear approximation of the equations governing the perturbations {¢'(t), 0'(t), v (t) } of the
MIP in the vicinity of the nominal trajectory {¢(t), 0(t),u(t)}:

¢’ _d*¢’ _df do’ _ d20 _ 7dON?
2 oz dodyt o d0 doN2 1 _
[Ly + (My + mp)77] e +my 1l cosb e —l—mbrﬁ[Q sin @ e sin dtze + cos <dt> 9] 7,
_d?d 9 d2 / _ —dQQ_ﬁ
my 1 L cos 6 pTE +(1Ly + my £7) 72 —mbgé(cose)Q’—l—mbrésin@ﬁQ’:—T’. A

6-9

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Example 6.7 A (linear) temperature bath system with a transport delay

10° C chilled water source

valve > .
X\) 7] pipe outle
\
50° C hot water source bath *
ol
stirrer

Figure 6.7: The temperature bath system set up in Example 6.7. The valve allows an adjustment of the flow
temperature between Ty,ve min = 10° C and Ty,ive max = 50° C, and maintains a constant flow rate of dV//dt = 6
liters per minute in the inflow pipe; the wastewater flows out from the bath at precisely the same rate. The
volume of fluid in the inflow pipe and the bath at any given time are V. = 1.2 liters and Vi, = 20 liters. We
assume further that (i) the inflow pipe is perfectly insulated, (ii) its walls have negligible thermal capacity, (iii)
there is negligible heat diffusion within the fluid as it flows through the inflow pipe, and (iv) the bath is stirred
quickly enough that it is maintained at essentially uniform temperature.

Performing a control volume analysis of the temperature bath system illustrated in Figure 6.7 to compute
the thermal energy of the bath at time ¢ + At (for small At), at which time the bath has lost AV of the liquid
it had at time ¢ and gained AV of the new liquid from the pipe outlet, it follows that

Vhbath Thatn (T + At) = (Vian — AV) Tham () + AV Tounet(t) = (Voatn — AV) Toam(t) + AV Toawe (t — d),

where d = Vjpe / dV/dt = 12 s represents the convective transport delay (that is, the time it takes the fluid
to flow from the valve to the pipe outlet), and thus

ATpan(t) AV

Tbath(t) + At +...= Tbath(t) + _[Tvalve(t - d) - Tbath(t)];
dt %ath

taking y(t) = Tham(t), u(t) = Trawe(t), and ag = by = dV/dt / Viam = 0.005 s, in the limit of small At we
have

et =)~ Toa0] = gy = bue -) A

AThn(t) dV/dt
dt B ‘/{)ath

Example 6.8 An automobile with a throttle delay, and its linearization

Figure 6.8: Coordinate system for the analysis of an automobile at cruise, as considered in Example 6.8 (to
clarify the drawing, the vertical and lateral forces are not marked).

6-10

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

The equations of motion for the velocity v(¢) an automobile at cruise (see Figure 6.8) may be written

du(t)
dt

u(t —d) = fa(t) = [f-(t) + ()] + w(?)
u(t —d) — Cy A -0.5pv(t)> —mg[Co + Crv(t)*?] +w(t), (6.16)

where
« u(t) denotes the “control” force applied to accelerate the vehicle by the engine,
o fa(t) = C4A - 0.5 pv(t)? models the aerodynamic drag,
o [+(t) + fr(t) = mg[Co + Cyv(t)*°] models the rolling drag (see p. 117 of Gillespie 1992), and
« w(t) denotes the “disturbances” (caused by headwind/tailwind, road inclination, modeling errors, etc.).

Note that this model accounts for a slight delay d between the actuation of the throttle and its effect on the force
applied to accelerate the vehicle. In our model of the vehicle depicted in Figure 6.8, we will take C; = 0.36,
A=206p=12m=1520,g =9.8,Cy = .01,C; = 1.2-107% and d = 0.04, where all variables are in SI
units (length in meters, mass in kilograms, time in seconds, force in Newtons, etc.)

At an equilibrium target car velocity, v(t) = T, the corresponding throttle position u(¢) = 7 is given by

dv/dt = du/dt =0, T= CzA-0.5p0*+m g[Cy+ C7>7]. (6.17)

We now show how to linearize the dynamics of this system, taking v(t) = v+ v'(t) and u(t) = u + v'(t) where
v'(t) and v/ (t) denote perturbations to the equilibrium car velocity and throttle position respectively.

Recall that any smooth function f(z) may be expanded about x = T via a Taylor Series as follows:
AC)) Ef(z)) @) &fx)) (@)’

/ .
z:i dl’ z:f(x) + dl‘2 =T 2' + dl‘3 = 3' Tt ’

thus, the function f(v) = v*® may be expanded about v = ¥ as follows:

f@+ ') = f()

[0+ 0] =0 425000 4+ O[(v)]. (6.18)

Considering small perturbations about the equilibrium condition {7, u}, by substituting v(t) = v + v/(t) and
u(t) = u + u/(t) into (6.16), applying (6.18), then applying (6.17), then finally eliminating all terms which are
quadratic or higher in the perturbation (primed) quantities, leads to a linear equation as follows:

m VO] (= a)) = CuA 05 p o+ (0 — mglCo+ Gl /()27
m (L{@er—:’(t)} =u+u(t—d)—05C; Ap{v* +20[()] + [v'(t)]*}

—mg[Co + Ci{p™* +2.50 /() + O[(v'(1))*1}1,

WO} (=)= 0.5CaAp {20(0) + [/ (D)2} — mglCr{257 /(1) + Ol (1))}

= m

dt
/
m w =u(t—d)—CyApv2/'(t) —mgC 2500/ (t),
thus resulting in the linear ODE
d
(dt+ao> "(t) = bou'(t — d) where ag=CyApv/m+25C; gv° > 0. A

6-11

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Example 6.9 A three-story building during an earthquake, and its linearization

E>
s

Ds d5 d6 Ps
L A
D3 ds Xd, P4
| S | w . y;
—>
w D1 d; Xds P2 000000 m OMO m OMO m

Figure 6.9: (a) The three-story building considered in Example 6.9, and (b) a cascade spring/mass/damper system
which provides an equivalent model for the linearized horizontal dynamics of this structure.

We now analyze the dynamics of the three-story building illustrated in Figure 6.9 during an earthquake.

Each of the three floors is of mass m = 1000 kg, and the diagonals are nominally at 45° angles. The lengths
of the pillars and floors are nominally ¢, = ¢; £ { = 5 m; by the Pythagorean theorem, the lengths of the
diagonals are nominally ¢/; = ¢+/2. All joints are assumed to be pinned, so no members bear bending loads.
The vertical pillars are under compression. The diagonal stabilizers are under tension, and each has a spring
constant £ and damping coeflicient c; note that the structure is pretensioned, so the diagonal members remain
under tension even as the building is deformed. An earthquake is modeled as horizontal motion of the ground,
w(t). We are primarily interested in the horizontal motion of the top floor, y(t), which, we will see, can deflect
a lot even for relatively small ground motion w(t) if the building is forced at a critical resonant frequency of
the structure by the earthquake.

We now model the horizontal motion of the ground floor, x1(t), the second floor, z5(t), and the top floor
x3(t) = y(t), as a function of both the horizontal motion of the ground, w(t), and the force applied to the top
floor, v(t). It will be seen that we can neglect the vertical motions of the floors, which (for small deflections) are
small as compared with the horizontal motions.

Assume first that the horizontal position of the third floor is perturbed a small amount to the right of the
horizontal position of the second floor; that is, 0 < (23 — 73)/¢ < 1. Denote by 65 = sin™'[(x3 — x2)/{] ~
(x3 — x9)/{ the (clockwise) angle that the sixth pillar is deflected from its nominally vertical orientation. Note
that, since cos g = 1+ O([(z3 — x2)/{]?), the perturbations in the vertical forces and vertical deflections of the
floor are quadratic in the horizontal perturbation quantities; that is, they are negligible as compared with the
horizontal forces and deflections if these quantities are small. The (clockwise) angles that the other pillars are
deflected from their nominally vertical orientations may be defined and computed similarly,

95 ~ 06 =~ (Ig — .ZUQ)/E, 03 =~ 6)4 =~ (IQ — xl)/ﬁ, 01 =~ (92 =~ (]}1 — UJ)/g, (619)

and also result in negligible perturbations in the vertical forces and vertical positions of the floors; we thus focus
on the horizontal dynamics in the remainder of this example.

Denote by J5 the changes in length of the fifth diagonal member from its nominal (pretentioned) length /.
Noting that |x3 — z5|/¢ < 1 [and, therefore, |05|/¢ < 1], we again appeal to the Pythagorean theorem:

C A [0+ (25— 22)]> = [la+ 057 = 20(x5—22) + (23 — 22) = 22005 + 62 = 05~ (3 — 22)/V2.

6-12

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Again, when performing linearizations of this sort, terms which are quadratic in the perturbation quantities
are negligible as compared with terms which are linear in the perturbation quantities, which are assumed to be
small. The changes in lengths of the other diagonal members may be computed similarly:

05~ (13— 22)/V2, S5~ (1a—x1)/V2, &~ (x1—w)/V2,
0 ~ —(15 — 22)/V?2, Oy~ —(x0—x1)/V2, 0y~ —(21 —w)/V2.

(6.20)
Finally, denote by ¢5 = tan™'[(¢ + w3 — x9) /] — 7/4 the angle that the fifth diagonal member is rotated
from its nominal 7 /4 radian orientation (again, measured clockwise from vertical). Noting the identities (B.55),

(B.90), and (B.87),

3

t t 1
Nz ¥ tany —l4et+e+..., tan()—e+%+...,

tan(z +y) =

1 —tanx tany’ 1 —¢
when ¢5 < 1 it follows that

1 + tan ¢s
1 —tan ¢5

thus, ¢5 ~ (23 — x3)/(2¢). The (clockwise) angles that the other diagonal members are rotated from their
nominal orientations (£7 /4 radians from vertical) may be computed similarly:

G5 = s = (13 — 12)/(20), Q3= Py~ (z2 —71)/(20), ¢~ P = (11 —w)/(20). (6.21)

We are now in a position to add up all of the horizontal forces on the floors when the structure undergoes
small horizontal movements. The horizontal acceleration of the top floor is acted upon by the external force v,
the horizontal component of the force from the two rotated pillars [see (6.19)], and the horizontal component
of the force from the two extended [see (6.20)] and rotated [see (6.21)] diagonal members; noting the nominal
loading computed in (??) and the identity (B.52) [sin(z + y) = sinz cosy + cos x siny], neglecting terms that
are quadratic or higher in the perturbations, this may be summed up as follows,

tan(m/4 + ¢5) = = [1+ 5+ O(H)][L + ¢5 + O(¢3)] = 1 + 265 + O(3);

d2.’173
m
dt?

)) dds do) T
= v + ps sin f5 + pg sin g — (d5+k55—|—cd—) Sm<4 +95> - (d6+k56—|—cd—t5) sin (_Z+06>

T — T T3 — X 1+$—£L‘ 14
%U+2p53 2—[d5+(k3—l—c—) 3 2 3 2)/

e i
~ [d@»— (]Hc_) :1:3—562} xg—@)/e
7)™

T3 — T2 .I'3—£L’2 d T3 — T2
~ 2 —2d k+c—
v+ 2ps 7 5 \/Eﬁ (+c
— dx dx
~v—ks(xg —x9) —c <d_t3 — d_252> : (6.22a)

note that the horizontal forces of the other two floors may be summed up in a similar fashion,

d’z — _ drs dx drs dx
m dt22 = — kQ(IQ — l’l) + k’g(l’g — {23'2) — C (d_tQ — d_tl) +c (d—; — d—;) s (622b)
d?z — — dry dw dry dxy
= - —a) —e| =L - —2_ =1 22
m— ki(z1 — w) + ko(xe — 1) c(o dt) +c (L i) , (6.22¢)

6-13

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

where, noting the solution of the statics of this building derived in Example ??,

k1 =k —2py /0 +/2d, /0 = k — 5880 kg/sec?, (6.23a)
kg =k — 2p3 /0 +V2ds /0 = k — 3919 kg/sec?, (6.23b)
ks =k — 2ps /0 +V2ds /0 = k — 1960 kg/sec?. (6.23¢)

For the purpose of clear visualization of the essence of this problem, we may thus ignore the vertical separation
of the floors, and model small horizontal motions of this building linearly as a cascade spring/mass/damper
system, as illustrated in Figure 6.9b, with spring constants &, ks, and k5 and damping ¢, = ¢, = ¢3 = c.

The three second-order equations governing 1, x5, and 3 may thus be rewritten as

d? d d — d -
(m@ + 26% + kl + kg)l‘l (Ca + kl) w + (C@ -+ kz) T2 = £1£C1 = £2fw —+ £3SL’2, (6'24a)

d? d d - d -
(m— + 2c— + kQ +]C3> Ty = CE +ko |1+ | c—+ k3 x3 = £4$2 = £5$1 + £6SL’3, (6.24b)

dt? dt dt
d? d d -
(m@ CE + k3 >.T3 = (CE + k3) T2+ v = £7Z‘3 = £8ZE2 + . (624C)

The task of eliminating z; and z5 from these three second-order ODEs, thereby determining a single sixth-
order ODE relating y = x3 to v and w, is algebraically involved; it is thus helpful (as in Example 6.2) to use
the streamlined notation introduced above right for the scalar linear differential operators £;. Premultiplying
(6.24a) by L5 and (6.24b) by £, and combining to eliminate x; (noting, e.g., that £, L5 = L5L,) leads to

£1£4$2 = (£5£2w + £5£3$2) + £1£6Z’3 = (£1£4 - £5£3).CE2 = £5£2w + Elﬁﬁ.l?g; (6.25)

premultiplying (6.25) by Ls and (6.24c) by (£,L£4 — L£5L3) and combining to eliminate x5 then leads to
(£1£4£7 — £5£3£7 — £8£1£6)x3 = (£1£4 — £5£3)U + (£8£5£2)w
which, denoting y = x3, may be rewritten as
6 5 4 3 2 d
(ﬁ T T Mg T s T g g MO) Y=
4 3 9 5) (6.26)
bd+bd+bd+bd+b bd—+bd+bd+l§w
Yat T e T A T tdt Sdty T Pder T tdt

Symbolic manipulation tools may now be used to do the necessary (but tedious) algebraic simplifications (for
Matlab implementation, see RR_Example 06 8 .m) in order to determine the coefficients. As seen by run-
ning this code, for £ = 10000 and ¢ = 10, the coefficients work out to be:

as = .05, as = 32.361, a3 = .76881, a, = 237.95, a; = 1.0706, ay = 201.40, (6.27a)
by = .001, by =.00004, by = .024320, by = .00036480, by = .10706, (6.27b)
by = .000001, by = .0018240, b; = 1.0706, by = 201.40; (6.27¢)

the values of the coefficients for other values of £ and ¢ may be determined similarly. The Bode plot of this
system, the design of a passive vibration damper for this system, and the conversion of this system is to state-
space form, are all problems that are, in due course, considered in the exercises. AN

6-14

https://github.com/tbewley/RR/blob/main/chap06/RR_Example_06_8.m

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Example 6.10 The launch of a rocket, and its linearization

The dynamics of a Saturn V rocket during liftoff (see Figure 6.10) may be considered in the = — z plane and
the y — z plane separately, as the rocket is not spinning. Considering the dynamics in one of these planes, there
are three equations governing the motion of the vehicle, two of the form d?z/dt* = f/m and one of the form

d20/dt? =7/

d*z(t)

m—= = fu cos[f(t) — u(t)] = fa(t) cosla(t) + 6(1)] + w(?) sinfa() +6(5)] = f,, (6.282)
dZCth) = fy sin[0(t) — u(t)] — fa(t) sin[a(t) + 6(t)] — w(t) cos|a(t) + 6(¢)], (6.28b)
J dZth(Qt) = f; D sinfu(t)] — fa(t) L sinfa(t)] —w(t) L cos|a(t)], (6.28¢)

which may be taken together with the kinematic condition

= sin[a(t) + 0(¢)]. (6.29)

Note that the three second-order ODES in (6.28) may easily be rewritten as six first-order equations, and describe
the evolution in time of the six state variables listed in Figure 6.10.

Taking the disturbance force w(t), the horizontal velocity v, (t), and the angles {0(t), «(t), u(t)} to be small,
the equation for the vertical acceleration, (6.28a), reduces upon linearization to

d*z(t)
dt?

dz(t) ‘2

= f; — 10
Ji o

m — 1, (6.30a)

whereas the equations for the horizontal and angular acceleration, (6.28b)-(6.28c), reduce to

o T 000 — (0]~ 1a0) o) + 010)) — (). (6300)
J % = fi Du(t) — fa(t) L a(t) — Luw(t). (6.30c)

Note that (6.30a) can be marched in order to compute dz(t)/dt = v.(t) = |v(t)| at any instant ;. Given this
value of 7 = |v(¢;)|, which varies only slowly in time due to the large mass of the rocket (and the fact that its
thrust only slightly exceeds its weight), the linearized form of the auxiliary equation (6.29) may be written

dx(t)
dt

=7 [a(t) +0(t)]. (6.31)

Considering 7 as essentially constant, defining f, = 1092, and combining (6.30b)-(6.30c) and (6.31) to eliminate
« leads to

o d*z(t) N @ dx(t)

dt? v dt - ft Q(t) = _ft U(t) - w(t), (632&)
f.Ld d*0 _
Jal dtt) 50 5, Lot = £, Du(t) — Luo). (6320

6-15

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

State variables:

z(t) = vertical position

v,(t) = dz(t)/dt = vertical velocity
x(t) = horizontal position

v, (t) = dz(t)/dt = horizontal velocity
0(t) = angle (clockwise from vertical)
w(t) = dA(t)/dt = angular velocity

Auxiliary variables:
fa(t) = 10 |v(¢)|* = aerodynamic drag
a(t) = angle of attack [see (6.29)]

Control input:
u(t) = angle of thruster

Disturbance input:
w(t) = wind + aerodynamic lift

Constants:

¢ =110 = length

m = 3 x 105 = mass

J = m¢*/20 = moment of inertia

L =10+ 5% = distance C,, is ahead of C,
D = 40 = distance from nozzle pivot to (),
fi = 34 x 10° = thrust

fq = m g = weight (g = 9.8)

Figure 6.10: Codrdinate system for a rocket stabilization problem. There are four forces acting on the rocket,
directed as indicated: thrust f;, weight f,, drag f;(¢), and “disturbances” (lift + wind) w(t); the control u(t) is
the angle of the thruster. The rocket is assumed to be not spinning, and all angles indicated are assumed to be
small, which decouples the control problem in the z-z plane (shown) from that in the y-z plane. All variables
in Sl units. [To clarify the diagram, only one of the five thrusters is shown in this sketch of the Saturn V.] A

6-16

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Example 6.11 Linearized dynamic models of aircraft

The state of an aircraft in flight may be defined by twelve variables: three to identify the position { X, Y, Z},
three to identify the velocity {U, V, W}, three to identify the orientation {¢, 6,1}, and three to identify the rate
of change of the orientation, {p, ¢, 7}. To identify the orientation, we first denote:

o the body-fitted coordinates of the aircraft as three orthogonal vectors from the center of mass out the nose,
out the right wingtip, and out the bottom of the aircraft for the x, y, and z axes, respectively, and

e a reference set of inertial coordinates (that is, a non-accelerating and non-rotating reference frame) as north,
east, and down (NED) from the aircraft center of mass for the x;, x5, and x3 axes, respectively.

Starting from the reference configuration of the aircraft, with its body-fitted coérdinates aligned with the inertial
(NED) coordinates, the orientation of the aircraft may then be identified unambiguously by three successive
rotations'? about its body-fitted codrdinates, the most common choice in the aerodynamics literature being the
3-2-1 Tait-Bryan rotation sequence® (a.k.a. 3-2-1 Euler rotation sequence') given by:

3 yaw the aircraft by an angle ¢ about the z (down) axis (positive 1) yaws the nose to the right),
2 pitch the aircraft by an angle 6 about the y (out-the-right-wing) axis (positive # pitches the nose up),
1 roll the aircraft by an angle ¢ about the = (out-the-nose) axis (positive ¢ rolls the right wing down).

In the reference frame of the aircraft, three convenient auxiliary variables used to describe the dynamics are

o the airspeed vy the magnitude of the relative wind past the aircraft,

e the angle of attack (AOA) «, the angle between the x axis and the component of the relative wind in the
x — y plane, and

o the sideslip angle 3, the angle between the x axis and the component of the relative wind in the x — z plane.

The airspeed, angle of attack, and sideslip angle, {vr, v, 5}, may be determined from the absolute velocity of
the aircraft, {U, V, W}, together with the local wind velocity and the aircraft orientation as defined by the roll,
pitch, and yaw variables, {¢, 0,1}, of the 3-2-1 rotation sequence described above (alternatively, {U, V, W}
may be determined from {vr, o, 5} and {¢, 6, ¢} and the local wind velocity). For the purpose of describing the
dynamics of flight, of course, {vr, v, B} are the natural variables to consider.

Next, an ODE model for how the state of the aircraft evolves in time must be developed. The process of
developing accurate linearized dynamic models of an aircraft in flight is quite involved; this process may be
started using simplified aerodynamic models and small-scale wind-tunnel tests, but generally must be subse-
quently refined using high-fidelity computational fluid dynamics simulations, large-scale wind-tunnel tests, and
flight tests. Almost all models of aircraft dynamics today are based on static stability derivatives; that is, the
forces and moments on the aircraft and the effectiveness of the control surfaces for any given state of the aircraft
within its flight envelope'® are determined assuming the aircraft is maintained in equilibrium in this config-
uration; that is, a dynamic model accounting for the unsteadiness of the flow itself is not accounted for with
this approach. Certain dynamic maneuvers, such as the so-called dynamic lift available right before vortex
separation and stall of a rapidly pitching airfoil moving at low speed (e.g., during spot landings with a flapping
wing) are thus not accounted for well with such static models of the flow evolution. Nonetheless, a static model
of the flow is in fact quite adequate for most fixed wing aircraft throughout most of their flight envelope.

2Even though these three rotations are usually not the actual rotations that brought the aircraft into this configuration!

3Note that order matters (that is, such rotations are noncommutative), as the latter steps rotate the aircraft about the body-fitted
coordinates only after the former steps are complete. Various alternative rotation sequences may also be used to unambiguously
identify the orientation of an aircraft, spacecraft, or other solid body; which rotation sequence is most convenient depends on the
application.

“Note that the 3-2-1 rotation sequence used here is often casually referred to as an Euler rotation sequence though, strictly
speaking, an Euler rotation sequence repeats a rotation around one of the axes, a common choice being the 3-1-3 Euler rotation
sequence (in the present setting, yaw, then roll, then yaw again).

SA flight envelope is the set of states of an aircraft deemed safe for flight.

6-17

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Linearized dynamic models governing the time evolution of the 12 variables describing an aircraft in cruise
approximately decouple'® into three essentially independent subsystems:

o the lateral/directional dynamics of the aircraft model, which relates the yaw (a.k.a. heading angle) v, the
roll ¢, the yaw rate r = di/dt, the body-axis roll rate p = d¢/dt, and the sideslip angle 3,

e the longitudinal dynamics of the aircraft model, which relates the pitch 0, the pitch rate ¢ = df/dt, the
angle of attack o, and the airspeed v, and

e the navigation equations dX/dt = U, dY/dt =V, dZ/dt = W; as mentioned previously, {U, V, W} may,
via simple geometry, be determined from the orientation angles {¢, 0, 9} together with knowledge of the local
wind velocity and measurements of the relative wind past the aircraft, {vr, o, 8}.

The navigation equations are straightforward to integrate in time (see §??) to track changes in the vehicle’s
absolute position in order to navigate; we thus focus our attention below on the more complex problems of the
lateral/directional dynamics and the longitudinal dynamics of some representative aircraft.

Defining the deflection of the elevator, aileron, rudder, and throttle from their trimmed flight positions as
des 0q» Or, and dy,, respectively, a representative linearized model of the lateral/directional dynamics of a large
transport aircraft on approach to landing (see Minto, Chow, & Beseler 1989) is

yaw: " 0 0 1 0 0 " 0 0
roll: d [0) 0 0 .199 1 0 [0) 0 0 5
yawratee — | p| =10 —.002 —.194 —.167 .748 p|+].053 —.74 (6“) . (6.33)
roll rate: r 0 —.003 .636 —2.02 —-5.37 r .865 .904 "
sideslip: 15} 0 .136 —.970 .198 —.148 15} 002 .047
A B

A representative linearized model of the longitudinal dynamics of a large transport aircraft on approach to
landing (see Stevens & Lewis 2003, Example 4.6-4) is

airspeed: vr —.038 19.0 —32.1 0 Uy 10 0
AOA: d | « _ | —-00103 —.633 .0056 1 al —.00015 0 <5th) (6.34)
pitch: dt | 0 0 0 0 1 0 0 0 de))
pitch rate: q —.00008 —.76 —.0008 —.52 q .025 —.011
As Ba

A representative linearized model of the longitudinal dynamics of an F-16 in cruise (300 knots at sea level; see
Stevens & Lewis 2003, Example 4.4-1) is

airspeed: vy —.0193 882 —-322 —.575 vr 174
AOA: d | « —.000254 —-1.02 O 905 a —.00215
pitch: @t | 60|~ 0 0 0 1 o | T o [) (639
pitch rate: q 0 822 0 —1.08 q —.176
As Bs

The systems given above are written in the ubiquitous state-space form, dx/dt = Ax+ Bu, the characterization
of which is studied in §??, and the control of which is considered in §??. We will also develop a variety of
convenient ways to convert back and forth between first-order state-space forms and single input, single
output (SISO) higher-order ODE forms; note that state space forms have the significant advantage of easily

That is, if the linearized dynamics of these 12 variables is written in the state-space form dx/dt = Ax+ Bu with the components
of x appropriately ordered, A may written in a 3 x 3 block upper-triangular form.

6-18

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

handling multiple input, multiple output (MIMO) systems. Further, state-space models reveal the inherent
coupling present as the several states of a system (e.g., yaw, roll, yaw rate, roll rate, and sideslip) evolve in time,
which often leads to significant practical insight regarding the physical system (see Exercise ??). A

6-19

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

6.2 The dynamics of systems of NV interacting particles

6.2.1 The principle of least action, and Lagrange’s equations

Our first task is to establish from first principles the equations of motion of a mechanical system, starting from
axioms A and B above. Following Landau & Lifshitz (1976), the principle of least action asserts that the
motion of a system from some initial position q(¢;) to some final position q(t3) minimizes an integral

to
S = / L(q,q,t) dt,
t1
where the function L(q, q, t), called the Lagrangian of the system considered, is, so far, unspecified. Starting
from this ansatz, we now develop a key equation relating various derivatives of L, assuming that q(t) is the
trajectory from a specified q(t1) to a specified q(t2) that minimizes the action integral S. To proceed, consider
an infinitesimal perturbation dq(t) to the trajectory q(t) such that dq(t;) = dq(t2) = 0. The modified value of
S corresponding this perturbed trajectory is

to
S 468 = / L(q + 6q, § + 0, 1) dt.
t1

Assuming the dependence of S on q is smooth, a necessary condition for q(¢) to minimize S is that the first
variation 0.5 = 0; that is, in summation notation,

58 = /j (a_L(qu‘vLa—.Léqi) di — /: (gi B % gi) 50, dt — [8L5qz}t2 o

dq; d¢; 0¢ " ln

where the second expression follows from the first via integration by parts. Noting d¢;(t1) = 0¢;(t2) = 0, and
that the above result holds for any set of infinitesimal perturbations dg;, we obtain Lagrange’s equation

d <8L> oL

ii\aa) = a0 (6.36)

Once the Lagrangian L of a system is identified, (6.36) provides the equation of motion governing the dy-
namics of the system, relating the accelerations to the velocities and the coérdinates.

The Lagrangian L characterizing the dynamics of a system is not unique. Any constant times L is also
a valid Lagrangian for the same system; this happens, e.g., when changing units of measurement. Further,
consider two Lagragians that differ by a total time derivative of a function of the coérdinates and time:

Ly(a,9,t) = Li(q,q,t) + df(q,1)/dL. (6.37a)
The action integral S corresponding to these two Lagrangians are related as follows:
to to to df
Sy = / Lo(q, q,t) dt = / Li(a, g, t)dt+ | —odt =S5+ f(a(t2). t2) = fla(t), t); (6.37b)
t1 t1 t1

that is, S; and Sy differ by an amount which is not affected by variation of the trajectory q(¢) between q(t;)
and q(t3), and thus the Lagrangians L, and Ly characterize the same motion. Note also the Lagrangian of a
system C' composed of two non-interacting subsystems A and B is additive: Lo = Ly + Lp.

An inertial reference frame (a.k.a. a Galilean reference frame) can always be chosen such that the equations
governing motion are'” homogeneous and isotropic in space, and homogeneous in time; that is, the equations of

"Homegeneous in this setting means translation invariant, whereas isotropic means direction invariant.

6-20

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

motion don’t change if the codrdinate system origin is shifted or rotated in space, or if the clock is reset. Note
that, in an arbitrary (that is, noninertial) reference frame (e.g., a reference frame that spins), the equations
governing motion are inhomogeneous and anisotropic, which is much less convenient.

Thus, in an inertial reference frame, the Lagrangian L of a single particle can not explicitly depend on
the position vector™ 7, the direction of the velocity vector U, or the time ¢. Rather, L can only depend on
the magnitude of the velocity, v = ||¥/]|; we may thus write L = L(v?). In Cartesian codrdinates, Lagrange’s
equation (6.36) thus reduces to d/dt(0L/0v) = 0, and thus OL/0v is constant. Since L/Jv depends only on
v, it follows that ¥/ itself is constant for a single free particle, a fact which is known as Newton’s first law.

Indeed, in classical mechanics, the equations of motion in any two inertial reference frames, one of which
may be rotated, translated, and moving uniformly in a straight line with respect to the other, are entirely equal;
this important principle is known as Galileo’s relativity principle; it implies that there is no “one reference
frame to rule them all” (cf. Tolkien 1954). The position of a particle in a frame of reference GG which moves
relative to another frame of reference G’ at a constant velocity V, and the corresponding times in these two
different reference frames, are related by the Galilean transformation:

P =r+Vt, =t (6.38)

Differentiating the above expression with respect to time, we have v’ = ¢/ + V. Assuming V = €is small and
expanding in powers of €, neglecting powers higher than first, we may write, in Cartesian codrdinates,

L(v?) =L@ -0") = L(v? +20- €+ &+ €) ~ L(v*) + 5.3 20 €
v
Since the equations of motion themselves must be the same in the two different frames, by (6.37), L(v"?) and
L(v?) must differ at most by a function that may be written df (7, ¢)/dt. The last term on the RHS above may
be written in this form only if it is linear in . Therefore, 9L /0v? is independent of v, and L is proportional to
v%; we thus write L = mv?/2 (this step, in fact, may be said to be that which defines the mass m, with m > 0).

Indeed, even if V is not small, L(v'2) and L(v?) differ only by a function that may be written df (7,) /dt:

1 - 1 - 1 d -
L(v?) = mw :§mHU+VH2:émﬂ2+mﬁ‘v+§mv2:L(U2)+E<m7?'v+mv2t/2)' (6.39)

By the additive property mentioned previously, the Lagrangian of a system of noninteracting particles is thus
given, in Cartesian coordinates, by

L=Y malal?/2 (6.40)

For a system of N interacting particles, a term is added to the Lagrangian to model their interaction: in
Cartesian coordinates,

L= mlal?/2 - Ul) = T(v) - U(x) (641)

with v = {0}, 0, ...) and r = {i"|, 7, ...), where T'(v) is called the kinetic energy and U(r) the potential
energy. Note that T'(v) is quadratic in v. The form of U(r) is problem specific; as the distance between each
pair of particles gets large, U approaches an arbitrary constant (usually taken as zero), and (6.40) is recovered.
Given the form of L in (6.41), in Cartesian codrdinates, the equations of motion may be derived from (6.36):

—

Ja

d <8L) oL dva _ OU 4 (6.42)

a\ow.) “om. T ™M@ T on

8Reminder: see footnote 1 on page 6-1 regarding the disambiguating notation used for vectors in R3 in this chapter.

6-21

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

The term f,,, which depends only on the coérdinates of the particles, is called the force on the a’th particle,
and (6.42) is known as Newton’s second law.
One example of a system of N interacting particles is given by Newton’s law of universal gravitation:

=23 e and J= gl Y Sl), (6.43

7 — 7o or, 22 Il

where G = 6.67384 x 107'' N m2 / kg?; this force is attractive between bodies. Another example is given by
Coulomb’s law between charged bodies:

k Ga Qb v ou ke Ga Qb<7?b - Fa)
U = and f,=—— = — —— , 6.44
Z{;; 175 — 7| J ory, ; |7 — 7ull? (6.44)
where the charges ¢, and ¢, are measured in coulombs (note that 1 coulomb is the charge of 6.24151 x 10'8
protons), and k. = 8.98755 x 10° N m? / C?; this force is attractive between bodies of opposite charge, and
repulsive between bodies of like charge.

For a system of N interacting particles in generalized coordinates, writing 77, = 7,(q), it follows that

U, = Y, (07,(a)/0q¢;) ;. Substituting this expression into (6.41), it follows that

L=3, (@) did/2 = Ula) = T(a,q) - Ula). (6.45)

Note that T'(q, q) is quadratic in g, though the coefficients a;; are, in general, functions of g.

Consider a closed system C with two interacting subsystems, denoted A and B. By (6.45), we may write
Lo =Ta(da,qa) + Ts(as,qs) — U(qa, qp). If subsystem B (e.g., the Earth) is much bigger than subsystem
A (e.g., a rocket), then q may be considered as a specified function of time, as the motion of subsystem B is
effectively independent of the motion of subsystem A. When deriving the motion of subsystem A, referred to
as an open system, we may thus consider the simplified Lagrangian

La(qa,da,t) = Ta(aa, 9a) — Ulqa, as(t)), (6.46)

where qp(t) is a specified function of time, and thus L4 also depends explicitly on time.

Considering subsystem A in an open system as described above as a single particle a (and, for simplicity,
taking subsystem B as stationary), and performing a path integral of (6.42) from 7! to 72, leads to

e
U - U = [(=R dr 64)

that is, the change in the potential energy of the particle over the path considered is precisely the work (i.e.,
the integral of the force overcome over the distance travelled) required to move the particle from 7! to 772

As an even simpler example, let 77 denote the position of an object of mass m in Cartesian coordinates in the
lab, where 73 measures the height of the object above the floor, and let B = {0,0, —R} denote the position of
the center of the earth (which is independent of the motion of subsystem A), noting that R = 6.371 x 10° m
and that the mass of the Earth is M = 5.972 x 10?* kg. It follows from (6.43), taking each object as acting on
the other like a particle, and noting (B.90), that the force f on the object, and its potential energy U, are

> GmM(—F) 3 GmM GmM/R T3
—-mge’, U=—— = -mgR C— f (6.48)
IR — 2 \E—al TR+msl/R " (R>

where g = G M/R? ~ 9.8 m / sec?, & is a unit vector pointed up, and C is constant and may thus be ignored.
Note that fis essentially constant everywhere in the lab (that is, the gravitational field over this domain is
uniform), and that the vector from the center of the earth to the object is aligned in the &3 direction; thus, the
expression for U in (6.48) is a special case of the more general expression given in (6.47).

6-22

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

6.2.2 Consequences of the homogeneity and isotropy of space and time
6.2.2.1 Conservation of momentum, and the center of mass

Due to the homogeneity of space, the Lagrangian of a closed system is unchanged by a (fixed) infinitesimal
displacement of the entire system in space, 07, = € Va. As € is arbitrary, noting (6.41)-(6.42), we have

L(r,v) = L(r + ér,v) = L(r,v +Z 6Fa:L(r,v)—|—E- STEJ = %:Zﬁzo

[In the special case of two particles, it is thus seen that fl = —f; (that is, the forces are equal in magnitude
and opposite in direction); this is known as Newton’s third law.] It thus follows from (6.36) that

_ — = 6.49
aor, 0 T @Y (649)

d oL dP
2.

where P = >, OL/0U,. Noting (6.45), and defining the momentum of each particle p;, = m, U, it follows
that the total momentum P = Y0 Ma Uy =), Do of aclosed system is conserved.

Define the total mass of the system ;1 = > m, and the center of mass R= > u MaTa/ 1, and note by
(6.38) that the velocity of a particle in a frame of reference G which moves relative to another frame of reference
G' at a constant vel0c1ty ~Vi is related by U 7' = ¥ — V. The momentum in reference frame G is thus given
by P’ = Do MgV — P — V. Selecting V = P/u =), My U,/ [, the total system is said to be at rest in
reference frame G’ in which the total momentum P'=0 (and, thus, the center of mass is stationary), and the
total system is said to be moving at velocity V in reference frame G, in which the total momentum is P = uV

6.2.2.2 Conservation of energy

Due to the homogeneity of time, the Lagrangian of closed systems does depend explicitly on time. Indeed,
as discussed above, even in open systems for which the external field is constant (that is, if the subsystem B is
stationary), the Lagrangian does not depend explicitly on time. In either case, noting (6.36), we may write

=Yg Y gri=Yag () v X i (Tag) = H(Xagp-r)=o

Note from (6.45) that L = T'(q,q) — U(q) where T is quadratic in ¢; it follows that

> P aq Z i 2L aq = ‘il—f —0, (6.50)

%

where £ = T'(q,q) + U(q) in generalized coérdinates, or £ = T'(v) + U(r) in Cartesian codrdinates. That is,
in such conservative systems, the total energy £ (kinetic energy plus potential energy) is conserved.

Also, using the definitions of y, 17, G, and the rest frame G’ given in §6.2.2.1, noting the definition of 7'(v)
in (6.41) and that v, = V+ v!, the total energy E derived above, in the G frame, may be written

0
_ 1 o 22 e 1 —/\2 PN /
E_ig mq (V +17,) +U(r)—§uv —i—V—E m va)+§ga mq (U)) +U(r)—§,uV + E,

a

where 1172 /2 is the energy due to the motion of the center, and E’ is the internal energy of the system in the
frame G/, where the center of mass is at rest.

6-23

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

6.2.2.3 Conservation of angular momentum

Due to the isotropy of space, the Lagrangian L(r, v) of a closed system is unchanged by a (fixed) infinitesimal
rotation of the entire system in space. Denote this rotation by the vector 55, where the magnitude of this vector
is the (infinitesimal) angle of rotation d¢, and the direction of this vector is the axis of rotation, using the right-
hand rule. For the radius vector 7, from the origin to each particle in the system, the increment §7, due to this
rotation is 57’a = 6¢ X T,, and thus 07, = 5(25 X ¥,. Noting from §6.2.2.1 that 0L /0¥, = p,, from (6.42) that
OL/Or, = pa, applying (B.20), and noting that the infinitesimal variation 5¢ is arbitrary, we have

5Lzz(§f Ot g+ 00) = Y (- 66 x 7o+ 7 66 x)

a

. L oon s AL -
:(5¢-Z<Ta><pa—|—va><pa>:5¢-%ZT,1XPQ=O = |— =0, (6.51)

that is, the total angular momentum M = Y Ta X Do of a closed system is conserved.

Also, using the definitions of , ﬁ, ‘7, ﬁ, G, and the rest frame G’ given in §6.2.2.1, assuming the origins
of the reference frames G and G’ coincide at the instant considered, the total angular momentum M derived
above, in reference frame GG, may be written

H:Zmaﬁlxﬁa:z:mafa><\7+Zma7?aXU;:;LEXVJr]\Z/’:ﬁxﬁJrM’,

where R x P is the angular momentum due to the motion of the center, and M’ is the intrinsic angular
momentum of the system in the frame G’, where the center of mass is at rest.

6.2.2.4 Reversibility of trajectories

Due to the isotropy of time, the Lagrangian of a closed system is unchanged by a reversal of the trajectories
of the system in time. That is, in the purest form of Lagrangian mechanics, there are no losses of energy (for
example, to heat or sound), and thus trajectories are reversible. Methods to generalize this setting to account
for frictional losses are discussed in §6.4.4.

6.2.3 Hamiltonian and Routhian formulations'

Define the generalized momenta p; = 0L/0¢; and the Hamiltonian H =). ¢;p; — L. Consider now the
variation of L(g;, ¢;,t) arising from an arbitrary infinitesimal variation of its arguments:

oL 8L oL 0L , oL
oL

- Z < 5qz + 0(pids) — Qiépi) + 86_?& = O0H= Z (B g_i‘;q" + qjépi) B 8_5t

Consider also the variation of H(q;, p;,t) arising from an arbitrary infinitesimal variation of its arguments:

OH . OH OH
SH = Z (aq S+ -0,) + St

6-24

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Setting 0 H equal in the two previous expressions, for arbitrary dg;, dp;, and dt, results in:

OH 9L OH OH 0L

7 AN ik R

Finally, incorporating Lagrange’s equation (6.36) with the definition of p; above, it follows that dL/dq; = p;,
thus leading to Hamilton’s equations

dp 9H dq 9H 9H OL

i oq dat op ot ot (6:52)

For a closed system, 0L /0t = 0, and thus, noting (6.50) and (6.45), H is simply the (conserved) total energy of the
system, H = 2T — L =T+ U = E . Writing a system in this symplectic form leads to numerical advantages
in the long-time integration of such conservative systems, as discussed in §??. To recap, the equations of motion
in the Lagrangian approach, given in (6.36), are fundamentally second order, whereas the equations of motion
in the Hamiltonian approach, given in (6.52), are fundamentally first order and exhibit special structure which
may be exploited when performing long-time integration of conservative systems.

A hybrid approach, called the Routhian formulation, develops the evolution equations for the codrdinates
explicitly appearing in the Lagrangian in the (second-order) Lagrangian manner, and develops the evolution
equations for the coodrdinates not explicitly appearing in the Lagrangian (called cyclic codrdinates) in the
(first-order) Hamiltonian manner. In certain problems with many coérdinates, some of which are cyclic, this
approach can significantly simplify the resulting computations required to march the system in time.

6-25

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

6.3 Solid bodies and their kinematics

We now turn to the defintion of a solid body, and characterize its mass distribution, orientation, and rate of
rotation. Once this subject is well at hand, the dynamics of solid bodies is considered in §6.4. Much of the
machinery of §6.2 carries over directly to this discussion as, for the purpose of derivation, solid bodies may be
considered simply as a cloud of particles constrained to move together.

6.3.1 Description of a solid body and its mass distribution

Consider first a cloud of particles rigidly connected by, in effect, massless rods; the total mass y, center of
mass R, and inertial tensor [;; = > ma(rjz-éik — 1Tk)o (Where the sum is taken over each particle a) of this
cloud of particles are defined (denoting r as x, 75 as y, and r3 as z) by:

Za ma(yg +Zc21) _Za Meg T Ya _Za Mg Lq Za

= Z M, R= Z mara7 I=| =3 . MaYaTa Y ma(®2+22) =, MaYaza |- (6.53a)
a @ a _Za Mg 20 Tq _Za Mg 26 Ya Zma(xg +y2)
Passing to the limit of an infinite number of infinitesimal particles, a solid body is characterized by:
. o7 JopW?+22)dvV — [pxydV — [qpxzdV
,u:/pdV, R=|[—dv, I=| —[,pyxdV [, p(a*+2*)dV —[,pyzdV |. (6.53b)
Q o H — JopzzdV — JopzydV [p(a®+y?)dV

In the sections that follow, it is shown that the equations of motion of any solid body are built on these simple
aggregate functions of its mass distribution. It follows from (6.53) that, if the origin is shifted such that 7" = 7"+,
then I/, = I; + p(s*d;x — sisk). Note also that, by construction, the inertial tensor is symmetric positive
semi-definite, / > (0. Thus, by Fact ??, its eigenvalues are non-negative, its eigenvectors may chosen to be
orthonormal, and we may decompose the inertial tensor as I = SASH. The three eigenvalues of I, denoted
{I, I5, I3} and usually ordered I; > I, > I3 > 0, are known as the principal moments of inertia of the body,
and the corresponding eigenvectors identify, in the initial reference frame considered, the principal axes of
the body. The equations of motion of a body will simplify significantly when considered in these cotrdinates.
Note that [; < I5 + I3. The following names and properties are associated with solid bodies:

(a) the case with I} = I, = I3 is called spherical top (e.g., a European football),
(b) the case with I; = Iy > I3 is called an elongated symmetric top (e.g., an American football),
« further, the limit of case (b) with all particles colinear (a.k.a. a rotator, with r; = ro = 0) has I3 = 0,
(c) the case with I} > I, = I3 is called a flattened symmetric top (e.g., a frisbee), and
(d) the case with I; > I, > I is called an asymmetric top (e.g., a textbook or cellphone),
« further, the limit of case (c) or (d) with all particles coplanar (with ry = 0) has 1 = I, + I5.

To describe a solid body’s orientation, we use two orthogonal frames of reference, an inertial (a.k.a. Galilean)
frame {i, j, k} that is non-accelerating and non-rotating, and a Body frame {x,y, z} fixed to the solid body
(usually with its origin at the center of mass, and often with its axes aligned with the principal axes of the body),
translating and rotating with the solid body itself. Right-handed codrdinate systems are used everywhere. A
solid body has six degrees of freedom: three to describe the location of its center of mass, and three to describe
its orientation as a 3D rotation (see §6.3.2) from some reference orientation.

6-26

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

6.3.2 3D Rotations

The orientation of a solid body may be defined by a real orthogonal 3 x 3 matrix B whose columns specify
the orientation of the principle axes of the body frame within the inertial frame. A finite 3D rotation from
any orientation B; to any other orientation B; may be related by a real, orthogonal rotation matrix R such
that B, = R B (that is, R = By B'); via this rotation, any vector p affixed to a point on the body maps to a
corresponding vector p” such that p” = Rp. It follows that R RT = I (i.e.,, R must also be orthogonal), which
imposes six constraints on the nine components of R, and thus R has three degrees of freedom; taking the
determinant (see §??) of this expression, it is seen that |R| = £1. The case with |R| = 1 is called a proper
rotation; the 3D Givens rotation matrix G (see §??), which performs a rotation in a single codrdinate plane
and is formed as 2 x 2 rotation matrix embedded within a 3 x 3 identity matrix, is a special case. The case with
|R| = —1is called an improper rotation, and can be formed as the product of a proper rotation matrix with a
real Householder reflector matrix H (see §2??) with |H| = —1; as it is generally not possible to "reflect" a solid
body through itself, we restrict our attention to proper rotations with |R| = 1.

As shown in §6.3.2.1, any proper rotation R may be expressed as a single rotation of they body by some
angle 6 about some unit vector @ via Rodrigues’ rotation formula; this may be represented as a single vector
in the direction of « of length € or, as shown in §6.3.2.2, as a single unit vector in R, interpreted as a unit
quaternion. Alternatively, as shown in §6.3.2.3, any rotation of a body may be represented as a sequence of
three distinct rotations of the body around it’s own body-fitted axes, called an Euler or Tait-Bryan rotation
sequence. All of these representations of a rotation have exactly three degrees of freedom.

6.3.2.1 Euler’s rotation theorem and Rodrigues’ rotation formula

Fact 6.1 (Euler’s rotation theorem) Any orientation of a 3D solid body can be expressed as a single rotation of
the body by a certain angle around a certain unit vector from a reference orientation.

Proof: By the properties of the determinant (see §27), it follows for any proper rotation matrix R that

[I=R|=|(I-R)"|=I-R"|=|[-R7'[=|-R'(I-R)| = =|R7'||I-R| = —|I-R| = [I-R|=0.
Thus, [\] — R| = 0 for the eigenvalue A\; = 1,and R 5! = \;5! = 51 for the corresponding eigenvector 5'; 5!
is identified as the rotation axis of R, as any vector in this direction is unchanged via premultiplication by R.

For any eigenvalue/eigenvector pair {\, 5} of the orthogonal matrix R, we have 5§75 = SHRERS =
IA]? 575, and thus |A\| = 1. Since R is orthogonal, |R| = A; - Ay - A3 = 1. Since R is real, {\a, A3} are ei-
ther real, or come as a complex-conjugate pair; if they are real, it follows that A\o = A3 =1, 0r Ay = A\3 = —1.

In either case, we may write A\(R) = {1, ¢ + si,c — si} where ¢ + s> = 1, with c and s real. The most general
way to achieve this is by taking ¢ = cos § and s = sin 6 for some angle 6. Writing the real Schur decomposition
of R (see §??), it follows that

1 0 0]
R=UTUY, T=[0 ¢ s|, UUY'=1I, U=|5 u* @°
0 —s c] | \

It is seen that T’ is just a Givens rotation matrix; that is, in the coordinate system defined by the (orthonormal)
columns of U, any rotation matrix R has a rotation axis 5, and represents a regular 2D rotation by the angle
0 in the plane u2-u3. OJ

Fact 6.2 (Rodrigues’ rotation formula) Given a real 3D vector p, define p’ as the rotation of p’ about a unit
vector i by an angle 0 (counterclockwise positive, according to the right-hand rule); p” is given by

p'=pcost+ (d-p)i(l—cosh)+ (d X p)siné. (6.54)

6-27

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Proof: Decompose p' = p| + p. into components parallel and perpendicular to :
py=(u-p)u, pL=p—pj=p— (i p)u.

The pj| component of p'is unaffected by the rotation. Define w = u x p', = @ % (pj + p1) = U x pj since ¢ is a
unit vector, w represents a 90° clockwise rotation of p’; around . Thus,

P’ =Dpj+pLcost + W sinf
=(d-p)u+ (p— (d-p)u)cosh + U x psinf =pcosb + (- p)u (1 —cosb) +u x psinb. O

Noting the definition of [ﬁ}x in (B.18), Rodrigues’ rotation formula may be written in matrix form as

p'=Rp where R=1cosf+ (1—cosf)dt" +sind|i] .

(6.55)

6.3.2.2 Quaternions

In the early 1700s, Leonhard Euler established the theory of complex numbers, as summarized in §B.1. Starting
with the construct i = y/—1, complex numbers z = a + bi are said to have a real part a and an imaginary part
b. When plotting z = a+b1iin the “complex plane”, the real dimension is taken as horizontal and the imaginary
dimension as vertical; in a sense, in the expression z = a + bi, i is a unit vector in the imaginary dimension,
and the unit vector in the real dimension is only implied. The product of two complex numbers treats i like an
ordinary algebraic variable, noting that i* = —1. For example, if we take ¢ = ¢+ siand z = a + b1, the product
qz = (c+si)(a+bi) = (ca— sb) + (cb+ sa)i; note in particular that complex arithmetic is commutative (that
is, ¢ z = zq). Using this definition of complex arithmetic, Euler identified that

e =cosp+ising =c+si (6.56)

Fact 6.3 (Rotation using complex numbers) Taking ¢ = ¢ = ¢ + s i for some angle ¢, any complex number
z = a + bimay be rotated counterclockwise by ¢ in the complex plane by taking the product

Z=qz=(c+si)a+bi)=(ca—sb)+ (cb+sa)i=d +Vi (6.57)
/ p—
Proof: Follows from the definition of 2D vector rotation z’ = GTz (§??), with a, (¢ %) (%), 0
b s ¢ b

6-28

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

In a flash of inspiration' in 1843, Sir William Hamilton extended Euler’s definitions of complex numbers by
defining three distinct square roots® of —1, and the following noncommutative relations between them:

i’=j=K=ijk=—-1 = ij=-ji=k, jk=-kj=i, ki=—-ik=]j. (6.58)

A quaternion is a 4D generalization of a complex number, with a real part and three imaginary parts. The
Hamilton product of two quaternions p = py + p1i + poj + psk and q = qo + 11 + ¢2j + gsk treats i, j, and
k like noncommutative algebraic variables, noting (6.58). Each of the four components of the resulting vector
r =pq =1+ rii+ roj + rsk has four terms, as summarized by the following equivalent matrix forms:

To bPo —p1 —P2 —P3 qo o —q1 —Qq2 —g3 Po

r=pq= T _ P1 Po —P3 D2 q1 _ 1 Qo q3 —q2 Y4l ‘ (6.59a)
T2 P2 P3 Po —DM q2 42 —43 Qo q1 D2
3 P3s —P2 D1 Do q3 493 42 —q1 Qo D3

Denoting p = po + pand q = qo + ¢ Where p'= p1i + poj + psk and ¢ = ¢1i + ¢2j + g3k, we may also write

pa=(po+0)(q +7) = (pPogo — P Q) + (Poqd+ qop' + D' X), (6.59b)

where p'- ¢'and p' x ¢ denote 3D dot and cross products (see §B.3). In particular, it follows from (6.59b) that
pq=-p-q+pxq ifpo=qo=0. (6.59¢)

The Hamilton product is noncommutative [that is, p q # q p; note, e.g., the cross products in (6.59b) and (6.59¢),
and the fact that p'x ¢ = —¢ x p]. Further, akin to (6.56), it follows that

e19 = elmituaitusk)d — o b 4 (Ui + ugj + usk) sing £ q. (6.60)

The conjugate of a quaternion q = ¢y + ¢11 + ¢2j + ¢sk is defined as q* = g9 — ¢11 — 2 — ¢sk. Thus,

(gqp)* = p*q" (6.61a) (@) =q (6.61b) g% = (q+q")/2 (6.61c) 7=(q—q")/2 (6.61d)

The norm of q is defined as ||q|| = v/aq* = va'q = (¢ + ¢ + ¢ + ¢2)V/2. If ||q|| = 1 (referred to as a unit
quaternion or versor), q may be written in the form of (6.60) for some angle ¢ and some unit vector 4. This
representation is not unique: an angle of —¢ and a unit vector of — results in the same quaternion q.

Fact 6.4 The inverse q~' of the quaternion q, for which qq~' = 1, is given simply by q' = q*/||q||’.
In particular, if q is a unit quaternion, thenq~! = q*.

Proof: Follows directly from (6.59a). U

Fact 6.5 (Rotation using quaternions) If @ = u;i+ usj + usk is a 3D unit vector (that is, u3 + u3 + u3 = 1),
and thus q = qo + q11 + ¢2j + g3k defined by (6.60), with ¢ = 0/2 for some angle 0, is a unit quaternion (that is,
G+ ¢ + g5 + ¢2 = 1), then any 3D vector p' = pii + poj + psk may be rotated by the angle 0 = 2¢ around the
vector U by taking the product

P =apq. (6.62)

YIn fact, upon this inspiration, Hamilton carved the defining relations on the left in (6.58) into the Broom Bridge in Dublin.
21t is common to denote the various square roots of —1 in a quaternion representation with boldface, to emphasize their interpre-
tation as three unit vectors in a four-dimensional space. We thus adopt that convention here.

6-29

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Proof: Noting the formula for the Hamilton product given in (6.59¢c) [interpreting p'and @ as quaternions p and
u with zero real part, i.e., pg = ug = 0, for the purpose of performing multiplication], as well as the identities
(B.21), (B.54), and (B.56), Fact 6.5 may be verified by comparing with Rodrigues’ rotation formula (Fact 6.2) as
follows:

(9+ 6’) (0 : 9> 20+()si 0 0 o0
= cos — + u sin cos— —usin—) =pcos’ =+ (up—up)sin- cos =~ —upusin -
2 2) P p) ~ PR g TP T ARSI, vy T HPHAT 5
= = — COoS = sin” —
P cos” pme 5 Hu(p-d—pxa)sin® g
7 6
:ﬁcos2§+ﬁ><ﬁsin0+[ﬁ(W)+ U - (pxﬁ)—ﬁx(ﬁxﬁ)]sin2§
7 0
=P co 2§+u><psm€—l—[(ﬁ)+0—(ﬁ(ﬁ-ﬁ)—ﬁ(ﬁ-ﬁ))]sin2§
0 7 5 0
—p<COS2§—SID §>+u><psm€+2u(u p) sin? 5—pcos@+(_'-ﬁ)€[(1—cosQ)—I—ﬁxﬁsin@. O

Note that, applying (6.59a) to (6.62), a 3 x 3 matrix formula for the rotated vector p” = qp'q* is given by

2 1 G+aE—6—6 200 — 29093 2q193 + 2qoq2
ph| =Rq[p2] with Rg=| 2¢¢2+200e @—add+d -4 2¢a—200n |. (6.63)
P D3 2q193 — 29092 2¢2q3 + 2q0q1 -G —-6+4

Fact 6.6 The product of two unit quaternions is a unit quaternion.

Proof: Assume p and q are unit quaternions. In the first expression in (6.59a), the matrix derived from p
is orthogonal, and ¢2 + ¢? + ¢ + g5 = 1; in the second expression in (6.59a), the matrix derived from q is
orthogonal, and p? + p? + p3 + p2 = 1. Fact 6.6 thus follows directly from either expression. U

Coupling Facts 6.5 and 6.6, it is seen that, if a rotation characterized by a unit quaternion q is followed by
a rotation characterized by a unit quaternion p, the total effect of the two rotations is equivalent to a single
rotation characterized by the unit quaternionr = pq.

6.3.2.3 Euler and Tait-Bryan rotation sequences

It is easy to see that, starting from a reference orientation, successively rotating a body about one of its body-
fixed axes, then about a different body-fixed axis, then about the first body-fixed axis, called a Euler rotation
sequence, any possible final orientation of the body can be achieved. Once the axes are affixed to the body,
there are 3! = 6 choices for which axes to rotate about following this approach. Starting from a reference
configuration, one commonly-used convention is known as the 3-1-3 Euler rotation sequence:

3 rotate the body by an angle o about the body-fixed z axis, then
1 rotate the body by an angle 3 about the body-fixed z axis, then
3 rotate the body by an angle v about the body-fixed z axis.

Note that rotations are always performed using the right-hand rule (pointing your right thumb along the
axis, the direction that your fingers curl corresponds to positive rotation). Note also that order matters: these
rotations must be applied in succession, in this order, or a different final orientation results.

Similarly, it is easy to see that successively rotating a body about each of its body-fixed axes in turn, called
a Tait-Bryan rotation sequence, any possible final orientation of the body can be achieved. There are again

6-30

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

3! = 6 choices for which axes to rotate about following this approach. Starting from a reference configuration,
one commonly-used convention is known as the 3-2-1 Tait-Bryan rotation sequence?':

3 rotate the body by an angle o about the body-fixed z axis, then
2 rotate the body by an angle 5 about the body-fixed y axis, then
1 rotate the body by an angle v about the body-fixed x axis.

This convention is commonly used in the aerospace industry, where the Body frame axes are taken as vectors
from the nominal center of mass out the nose, the right wingtip, and the bottom of the aircraft for z, y, and
z, respectively, and the Reference frame axes are taken as north, east, and down (NED) for i, j, and k axes,
respectively. In this case, the 3-2-1 Tait-Bryan rotation sequence may be described as follows?*:

3 yaw the aircraft by a about the z (down) axis (positive o yaws the nose to the right), then
2 pitch the aircraft by 5 about the y (out-the-right-wing) axis (positive 3 pitches the nose up), then
1 roll the aircraft by v about the x (out-the-nose) axis (positive 7y rolls the right wing down).

The 3-2-1 Tait-Bryan rotation sequence is also commonly used in the automobile industry, where two different
conventions are used: in the SAE standards J670 (c. 2008, regarding automobile dynamics) and J1594 (c. 2010,
regarding automobile aerodynamics), essentially same conventions as described above are used, whereas in the
ISO standard 8855 (c. 2011) the body-fixed axes are taken as vectors out the front of the automobile, the left
side, and the top for the z, y, and z axes, respectively, and the reference orientation is taken as east, north,
and up (ENU) for the inertial i, j, and k axes, respectively®. It is important to note that, in both the SAE and
ISO automobile standards, the center of the coérdinate system is taken as some reference point at the center
of the automobile chassis, not necessarily the nominal center of mass; these rotation sequences are, of course,
otherwise identical mathematically to the 3-2-1 Tait-Bryan rotation sequence used in the aerospace industry,
but with the ISO convention having a slightly different physical interpretation:

3 yaw the automobile by « about the z (up) axis (positive o yaws the front to the left), then
2 pitch the automobile by 5 about the y (out-the-left-side) axis (positive (3 pitches the front down), then

1 roll the automobile by v about the x (out-the-front) axis (positive v rolls the right side down).

ZThe Euler and Tait-Bryan rotation sequences described here are called intrinsic rotation sequences, as subsequent rotations are
applied around the (new) body axes after the previous rotations are complete. Alternatively, extrinsic rotation sequences may be
applied, with each subsequent rotation applied around the inertial (unrotated) axes. Curiously, any intrinsic rotation sequence is
equivalent to a corresponding extrinsic rotation sequence applied in the reverse order. Thus, for example, the (intrinsic) 3-2-1 Tait-
Bryan rotation sequence described here is equivalent to the following (extrinsic) rotation sequence: [1] rotate the body by an angle v
about the inertial i axis, then [2] rotate the body by an angle 3 about the inertial j axis, then [3] rotate the body by an angle a about
the inertial k axis.

2|n this work, we denote the three successive rotations of any intrinsic rotation sequence as «, 3, and -, in order to emphasize
the order in which the rotations are applied, where o and «y are defined modulo 27 radians (e.g., -7 < a < 7, —7 < v < 7, and
covers 7 radians (e.g., —7/2 < 8 < 7/2). Note that, for the 3-2-1 Tait-Bryan rotation sequence commonly used in the aerodynamics
literature, the notation ¢, 6, and 1) for, respectively, yaw, pitch, and roll (a.k.a. heading, elevation, and bank), is somewhat more
customary.

BNote that ENU is also a natural Reference frame for the 3-1-3 Euler rotation sequence discussed previously. When applied to a
rotating top, the {«a, 3,7} angles of the 3-1-3 Euler rotation sequence correspond precisely to precession, nutation, and intrinsic
rotation (a.k.a., spin), as discussed further in Example 6.15.

6-31

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

There are many other possible choices for which axes to rotate about and which reference to compare with in
Euler and Tait-Bryan rotation sequences; it is advised to stick with one of these common conventions.

To describe the orientation of a body as a rotation from its reference orientation using an Euler or Tait-Bryan
rotation sequence, we may simply apply a product of three Givens rotations (see §??). To simplify, denote
{cos a, sin av, cos B, sin 3, cosy,sin v} as {cl, s1,¢c2,s2,¢3,s3}. Using the 3-1-3 Euler rotation sequence, first
yaw about the z axis by «, then roll about the x axis by (3, then yaw about the z axis by ; that is, we define

RESH = G(1,2,7) G(2,3;8) G(1,2; a):

c3 s3 0 1 0 0 cl s1 O cled —c2s1s3 c3sl+4+clc2s3 s2s3
RESE = —-s3 3 0|0 2 s2|[—sl ¢l 0] =|—cls3—c2c3s1 clc2¢3—s1s3 352
0 0 1)\0 —s2 €2 0 0 1 5152 —cl 82 2

To rotate the body back to the reference orientation, perform the same rotations, using the opposite angles,
and apply in the reverse order; that is,

cle3 —c2s1s3 —cls3 —c2c3sl sls2
RSP = G(1,2;,—a) G(2,3;—B8) G(1,2;—) = [REEE) = | 351+ ¢l 283 clc2¢3 —s1s3 —cls2
5253 c3 52 c2

Similarly, using the 3-2-1 Tait-Bryan rotation sequence, first yaw about the z axis by «, then pitch about
the y axis by 3, then roll about the x axis by 7; that is, we define RE" = G(2,3;7) G(3,1; 8) G(1,2; a):

1 0 0 c2 0 —s2 cl sl 0 clc2 c2 sl —s2
RETE=10 3 s3]0 1 0 —s1 ¢l 0] =|cls2s3—c3sl cle3+ 515253 253
0 —s3 3 s2 0 2 0 0 1 sls3+cle3s2 ¢3s1s2—cls3 c2c3

Again, to rotate the body back to the reference orientation, perform the same rotations, using the opposite
angles, and apply in the reverse order; that is,

cle2 cls2s3 —c3sl sls3+cle3ds2

= , 4y —Q , L= , 0, =) = = \|c2sl cled+sls2s3 c3sls2—cls

REP = G(1,2 G(3,1;,-8)G(2,3 RETHT 251 clc3 4515253 c3s1s2—cls3
—s2 c2s3 c2c3

Thus, for example, the (extrinsic) quaternion representation of the (intrinsic) 3-1-3 Euler rotation sequence,
applying the Hamilton product corresponding to each rotation in the reverse order of the intrinsic rotation as
required by footnote 21 on page 6-31, is

o cosa/2\ [cosf/2\ [cosv/2 cosa/2 cosB/2 cosy/2 —sina/2 cos3/2 siny/2
| 0 sin 3/2 0 | cosa/2 sin5/2 cosy/2+sina/2 sin5/2 siny/2
e 0 0 0 | sina/2 sin /2 cosy/2 — cosa/2 sin3/2 sin~y/2
q3 sin a/2 0 sin~y /2 cosa/2 cos /2 siny/2 + sina/2 cos /2 cosy/2

whereas the (extrinsic) quaternion representation of the (intrinsic) 3-2-1 Tait-Bryan rotation sequence is

o cosa/2\ [cosf/2\ [cosvy/2 cosa/2 cos3/2 cosy/2+sina/2 sinf5/2 sinvy/2
| 0 0 siny/2 | | cosa/2 cosfB/2 siny/2 —sina/2 sin5/2 cosy/2
e | 0 sin /2 0 ~ | cosa/2 sin5/2 cosy/2 4+ sina/2 cos3/2 siny/2
a3 sina/2 0 0 sina/2 cos /2 cosy/2 —cosa/2 sin3/2 sinvy/2

6-32

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Conversely, comparing R15P above to R, in (6.63), it is easy to verify that the following relations convert from

a quaternion rotation sequence to the equivalent 3-1-3 Euler rotation sequence:

a = atan2(rs3,711), a = atan2(ry 3, —ra23),
if r33~0 < [=acos(rgs), else [=acos(rss),
v =0, v = atan2(r3 1, 732),

and, comparing R$P above to R, in (6.63), the following relations convert from a quaternion rotation sequence

to the equivalent 3-2-1 Tait-Bryan rotation sequence:

a = atan2(2q¢1q2 — 2qogs, q?) + CJ% - qg - qg),
B = —asin (2q1¢3 + 2qoq2),
v = atan2(2¢2q3 — 2qoq1, qg — ¢ — ¢+ qg)

These relations, and those for the other 10 rotation sequences, are implemented in RR_rotation_sequence.

Euler and Tait-Bryan rotation sequences are singular, which means that the three angles {«, 5,7} must
make a finite jump, in the vicinity of certain critical orientations, as the orientation goes through an infinitesimal
change. [This singularity is akin to the (simpler, 2D) description of your location on the surface of the Earth, in
terms of longitude and latitude, suddenly jumping (in longitude) by 180° when you take a single step over one of
the poles.] The singularity of rotation sequences, and the nonsingular behavior of the quaternion representation
of rotations, is illustrated well by comparing Examples 6.12 and 6.13 below.

The singularity of rotation sequences is often associated with gimbal lock, which is the loss of a degree of
freedom of a three-gimbal mechanism in a gyroscope (used to measure vehicle orientation) which happens when
the axes of two of the three gimbals become parallel. Note, however, that the singularity of rotation sequences is
inherent to the mathematical description of the orientation itself, and is independent of the mechanical device
actually used to measure the orientation of the vehicle.

Example 6.12 Starting with a body in the NED reference orientation, consider two rotations in succession:
first roll the body (about its x axis) by 7/2, then pitch the body (about its y axis) by 7/2. We now describe
the orientation of the body during each rotation using the (intrinsic) 3-2-1 Tait-Bryan rotation sequence, the
(intrinsic) 3-1-3 Euler rotation sequence, and the (extrinsic) quaternion description of rotation.

In terms of a 3-2-1 Tait-Bryan rotation sequence, during the first rotation, v changes continuously from 0 to
7/2, while « = 0 and 8 = 0 stay constant. During the second rotation, « (note: not !) changes continuously
from 0 to 7/2, while § = 0 and v = 7/2 stay constant. After both rotations, {«, 5,7} = {7/2,0,7/2}.

In terms of a 3-1-3 Euler rotation sequence, during the first rotation, § changes continuously from 0 to 7/2,
while @ = 0 and v = 0 stay constant. During the second rotation, & changes continuously from 0 to 7/2, while
f = m/2 and v = 0 stay constant. After both rotations, {«a, 5,7} = {7/2,7/2,0}.

In terms of quaternions, the first rotation is given by a rotation of §; = /2 degrees about the i axis (i.e.,
iy = i). Thus, noting (6.60) and Fact 6.5, q; = (v/2/2)(1 + i). The second rotation is given by a rotation of
65 = /2 degrees about the k axis (that is, @y = k). Thus, q; = (v/2/2)(1 + k). The total rotation is given by

a=aqaq=(1+k)(1+i)/2=(1+i+]j+k)/2=cos(r/3)+[(i+]j+k)/V3|sin(r/3);
that is, it is given by a rotation of § = 27 /3 radians around the unit vector @ = (i + j + k)/v/3.

Example 6.13 We now repeat Example 6.12 for the following two rotations: first pitch the body (about its y
axis) by 7/2, then yaw the body (about its z axis) by /2. Note that the final orientation after these two rotations
happens to be the same as that after the two rotations considered in Example 6.12.

6-33

https://github.com/tbewley/RR/blob/main/chap06/RR_rotation_sequence.m

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

In terms of a 3-2-1 Tait-Bryan rotation sequence, during the first rotation, 5 changes continuously from 0 to
7/2, while & = 0 and y = 0 stay constant. In contrast with Example 6.12, describing the second rotation in terms
of Tait-Bryan angles is problematical, as the codrdinate description of the configuration after the first rotation
is singular. Before the second rotation begins, the Tait-Bryan angles must jump suddenly, from {«, 3,7} =
{0,7/2,0} to, e.g., {a, 8,7} = {7/2,7/2,7/2}. During the second rotation, § then gradually reduces, from
7/2 to 0. After both rotations are complete, {«, 5,7} = {7/2,0,7/2}.

In terms of a 3-1-3 Euler rotation sequence, before the first rotation begins, the Euler angles must jump sud-
denly, from {«, 5,7} = {0,0,0} to, e.g., {o, 8,7} = {7/2,0, —7/2}, as in this case the codrdinate description
of the initial configuration is singular. During the first rotation, 3 then gradually increases, from 0 to 77/2. Dur-
ing the second rotation, v changes continuously from — /2 to 0, while « = 7/2 and 8 = 7/2 stay constant.
After both rotations are complete, {o, 8,7} = {7/2,7/2,0}.

In terms of quaternions, the first rotation is given by a rotation of §; = /2 degrees about the j axis (that
is, @; = j). Thus, noting (6.60) and Fact 6.5, q; = (v/2/2)(1 + j). The second rotation is given by a rotation of
05 = /2 degrees about the i axis (that is, ii, = i). Thus, g = (v/2/2)(1 + i). The total rotation is given by

i+j+k
V3

that is, it is given by a rotation of § = 27/3 radians around the unit vector @ = (i + j + k)/v/3.

q=q2q; = %(1 +i)(1+j)) = %(1 +i+j+k)=cos(n/3) + sin(7m/3);

As expected, the final configurations in Examples 6.12 and 6.13 are identical in terms of the final angles
of the 3-2-1 Tait-Bryan rotation sequence and the 3-1-3 Euler rotation sequence, as well as the total rotation
quaternion q. These configurations are interrelated by the several equations derived earlier in this subsection.

Note that special treatment was required in Example 6.13 to move through the singularities of both the 3-
2-1 Tait-Bryan rotation sequence as well as the 3-1-3 Euler rotation sequence, neither of which happened to be
encountered in Example 6.12. In sharp contrast, the quaternion description of a rotation is always nonsingular,
never requiring such special treatment. In problems in which general vehicle rotations must be well handled (for
example, in a fighter aircraft), quaternion descriptions are thus preferred; in problems in which the expected
motions of the vehicle is limited in ways that avoid such singularities (for example, in a commercial transport
aircraft), rotation sequences are sometimes more intuitive and convenient.

6.3.3 Vectors in different frames of reference, and the rate of rotation &

We will have occasion in the discussion that follows to describe vectors in different frames of reference, some
of which are moving. Though straightforward, this process is somewhat subtle, and must be treated with care.

We begin with a nonrotating, nonaccelerating reference frame E, with the Cartesian unit vectors {é*, €%, &%}
(see §??) providing an orthogonal set of basis vectors satisfying the right-hand rule. In this reference frame,
we define additional sets of orthogonal unit vectors satisfying the right-hand rule, {7, 72, 7} and {b", b2, b}
(each referred to as a dextral set), which may be assembled as the columns of corresponding matrices, G and
B (each sometimes referred to as a vectrix), satisfying the following properties

Gi Gi=05, HixXG=0 Gaxf=, GBGxHh=0 GG=I |G=1 (6.64a)
l_);' . gj = (5@‘, 51 X 52 = 53, 52 X 53 = 51, 53 X 51 = 52, BTB = I, ’B| =1. (664b)

The unit vectors {b", b, 5*} may be considered as rotations of {7*, i, 7} into new directions by the action
of some rotation matrix RZ<C; it follows that

B =R5YG with RP“¢=BG", and G =RY BB with R % =G BT = [RP“CT. (6.65)

6-34

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Consider now some vector 7 defined in the original £ frame, which is now represented as a linear combina-
tion of the unit vectors in the G frame and in the B frame, that is, 7 = G 7 = B, and thus

B = DPTCC with DPCC = BTG, and “ = DB with D8 =GTB = DB, (6.66)

the vectors 7 and 77 are called the representations of the vector 7 in the G and B frames, respectively. The

(orthogonal) direction cosine matrix D %< relates these two representations. The elements of the direction
cosine matrix D B¢ derived in (6.66) are given by the inner products [see (??)] of the corresponding unit vectors

in the B and G frames, these inner products are referred to as the direction cosines of the corresponding

frames such that dB“G — b § = cos a;;, where a5 is the angle between b and @ . In contrast, the rotation

matrix R5<¢ defmed in (6. 65) is given by the sum of the outer products [see (??)] of the corresponding unit
vectors in the B and G frames. In certain special cases (e.g., if G is the identity matrix, and thus the G frame
coincides with E frame), the direction cosine matrix and rotation matrices relating the G and B frames satisfy
DB<C = RG<B and DB = RB<C; however, these relations are not true in general®.

We now develop a useful identity that will be leveraged in the discussion that follows.

Fact6.7 Ifa = B aB, &= BB, and B is a vectrix with columns satisfying (6.64b), then, noting (B.18),
axé=ld| é=(Ba") x (Bé”)=Bla"]| ¢” = B@” xc”). (6.67)
. ; B __ 7i,B B __ 7j .B
Proof: Write Ba” =, b'a;’ and Bc” =} b'c;. Then

(Ba®)x (BeP) = Za gl(afcf—a302)+b2(a3cl a103)+b3(a102 aycy) = Bla”] .

The other relations in (6.67) follow trivially from the stated definitions. U

Now consider some vector 7 and its time derivative, P = dr’/dt. Since 77 = G 7% = B7E, we have
F=G7% +Gr% =BF" + BrP. (6.68)
Recalling from (6.66) that B = G D %<5 and differentiating, we also may write
B=(GDEB L G DHGB.

We now suppose that the G frame is fixed in time (i.e., G = 0), but the B frame is attached in a convenient
manner to the body, and rotates with it; noting that G = B (D %< 2)T it follows that

B:GDGR—B :B(DGHB)TDGV—B, and thus BTB: (DG<—B>TDG<—B'
Recalling that B is orthogonal, it follows that BTB =1, differentiating, it follows that
B'B+B"B=0 = B'B=-(B"B);

that is, the expression BT B itself is skew symmetric. Thus, noting (B.18), we may write

| | 0 b o | |
BTB = (DCBYTpG<B & [B 0 -wB|= [@’B]X -~ B=— B[(DBL’ PGB _ pGeB [@»B}X.
W0

2This point is somewhat muddled in many available texts and online resources, which sometimes use the terms “direction cosine
matrix” and “rotation matrix” essentially synonymously. The reader is advised to be semantically precise, to avoid mistakes when

G#I

6-35

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

The vector P defined above requires further analysis to be properly interpreted. From the above together with
Fact 6.7, defining & = B&J?P, we have B7P = B[QB]XFB = & x 7 thus, by (6.68) with G = 0,

P=Gi°=BiP+ Ba® x P =BiP + 3 x 7. (6.69)

If the body is not rotating (that is, if B = 0), then & = &% = 0, and 7 = G7% = B7PB; however, if the body
is rotating, then the w x 7" term must be added as shown above to account for this rotation. [Alternatively, if
the vector 77 is fixed to some point a on the (rotating) body, then 7% = 0, and ¥ = G 7% = & x 7] The vector
@ is called the instantaneous rate of rotation of the body; as with 7, it may be represented in three different
reference frames: & = GO% = BJP.

We now provide an alternative derivation of the instantaneous rate of rotation . We again define a vector

fB [in some convenient set of Body codrdinates 5] that is fixed to some point a on the (rotating) body, so that
7B = 0, and consider its corresponding (time-varying) coérdinates in the original frame F at time ¢, which

we denote 7(t). Further, the Body frame B considered is taken as aligned with the original frame F at time
t, so that 7(t) = 7P. Recall from Fact 6.1 that any finite rotation is representable as a single vector in R? in
the direction of the rotation axis and of length given by the angle of rotation. Consider now an infinitesimal
rotation, which occurs over the infinitesimal time 6t, which may thus be expressed as the product of some
unit vector along the instantaneous axis of rotation of the solid body, i, times some infinitesimal angle of
rotation, d¢, around this axis via the right-hand rule. Via Fact 6.2, taking 6 = d¢, we may write

S . L Ft+6t) —r(t) _or _ adp .
Tt +0t) =7(t) + dp(u x 1) = 50 =5 = g XT=WXT

thus identifying the instantaneous rate of rotation at time t as {(t) = @ d¢/dt = dgb/dt

The 3-2-1 Tait-Bryan rotation RSP derived previously, taking G = I and the infinitesimal rotations
5¢ = (0¢1,009,003) = (v, 5, a), provides an equivalent formulation of the scenario described in the previ-
ous paragraph. Noting the definition of [&Ek in (B.18), this rotation reduces to®

I —0¢3 O¢o
Ryz=| 065 1 —d¢1 | =1+[09], (6.70)
—0¢py 0y 1

It is thus seen that the infinitesimal rotations of a solid body about each of its axes are decoupled, and may be
performed in any order. By (6.70), taking &(t) = d¢/dt, we may thus write

= s
F(t+5t):R6$F(t):<[+[5$]X>F(t):F() %& = %:[i]xfz—txfzﬁxﬁ

The vector P (t) describes the instantaneous rate of rotation of a solid body around its own body fitted
axes at time t; the relations & = G&J“ = B@® may be used as necessary transform this vector to the £ or
G frame. More generally, to describe the evolution of the orientation of the body itself after the body rotates
for a finite period of time, the rate of change of the Euler, Tait-Bryan, and quaternion descriptions of the solid
body’s orientation itself must be computed by integrating the effect of the instantaneous rate of rotation ¢(t)
on these descriptions of the orientation over time, as discussed next.

BThe quaternion representation of the 3-2-1 Tait-Bryan rotation sequence reveals an equivalent expression for an infinites-
imal rotation about each of the axes. With (¢1,¢2,63) = (7,8,), this rotation may be represented as {qo,q1, 92,93} =
{1,001/2,0¢2/2,5¢3/2}; applying these relations to (6.63), the same expression for 27 as given in (6.70) results.

6-36

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

6.3.4 The rate of change of a solid body’s orientation as a function of &
The rate of change of the 3-2-1 Tait-Bryan rotation sequence

Recall the 3-2-1 Tait-Bryan rotation sequence and the transformation RE{" = G(2,3;7) G(3,1; 8) G(1,2; a)
from the R frame to the B frame. We now associate with this rotation sequence two intermediate frames, /
and I/, such that

« RLT®=G(1,2;a) (e, the I frame is given by yawing the R frame by «),
« RIFT = G(3,1;B) (ie., the IT frame is given by pitching the I frame by 3), and

« REST = G(2,3;7) (i-e., the B frame is given by rolling the IT frame by 7);
it follows that RETR = RETH RIIET RISE Note further that
« the yaw rate & represents rotation of the body about the z-axis in both the R and I frames,
. the pitch rate /3 represents rotation of the body about the y-axis in both the I and I7 frames, and
« the roll rate 7 represents rotation of the body about the x-axis in both the /1 and B frames.

Thus, to relate the rotations implied by the rate of change of the 3-2-1 Tait-Bryan angles (a, 3, and #) to the

three instantaneous body rotation rates in the B frame (w¥, w?, and w?), we may transform as follows:

B :
Wy 0 0 0
wy | =G(2,3;79)GB,LA)G(L20) | 0] +G(2,3:7)GB3,1:8) | B +G(2,3:7) (0
B .
Wi e 0 0
0 0 0 1 0 —sin(p) ¥
=G2,37)GB,LA) [0] +G23) (B + [0 =(0 cos(y) sin(y)cos(B) | | B
& 0 0 0 —sin(y) cos(v)cos(B) 6"
Thus, taking the inverse (easily confirmed by multiplying the matrix below by the last matrix above),
L (1) (1 sm(y)tan(8) cos(y)tan(B) [w?
pr gl=10 cos(7) — sin(7) wl . (6.71)

0 sin(3)/cos(8) cos(y)/cos(8)) \wF

Note that (6.71) is valid for all angles except the singular points 5 = 4+ /2 identified in Example 6.13.

The rate of change of the 3-1-3 Euler rotation sequence

Recall now the 3-1-3 Euler rotation sequence and transformation R55" = G(1,2;7) G(2,3; 8) G(1,2;). We
now associate with this rotation sequence two intermediate frames, I and /1, such that

« RIS =G(1,2;a) (i.e, the I frame is given by yawing the R frame by «),
« RIS =G(2,3;) (ie., the IT frame is given by rolling the I frame by /3), and
« RESH = G(1,2;7) (i.e, the B frame is given by yawing the I frame by 7);

6-37

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

it follows that RESE = RESH RIT RICE Note further that
+ the yaw rate & represents rotation of the body about the z-axis in both the R and I frames,
. the roll rate 3 represents rotation of the body about the z-axis in both the I and /7 frames, and
+ the yaw rate 7 represents rotation of the body about the z-axis in both the /1 and B frames.

Thus, to relate the rotations implied by the rate of change of the 3-1-3 Euler angles (¢, 3, and #) to the three
instantaneous body rotation rates in the B frame (w?, wf, and w’), we may transform as follows:

wy’ 0 3 0
wl] =G(1,2;7)G(2,3;8)G(1,2;0) | 0| + G(1,2;9)G(2,3;8) [0| +G(1,2;9) [0
wgB & 0 y

0 3 0 cos(y) sin(y)sin(5) 0 3

=G(1,2,7)G(2,3:8) |0 | +G(1,2;7) {0] + | 0] = [—sin(y) cos(y)sin(B) 0] | &

a 0 0 0 cos(f) 1 o

To simplify the resulting expression, the last vector on the RHS above has been reordered. Taking the inverse,

L costr) —sin(y) 0\ fu
glel= sin(y)/sin(B8) cos(y)/sin(8) 0| |wP|. (6.72)
—sin(y) cot(8) —cos(y)cot(8) 1/ \w?

Note that (6.71) is valid for all angles except the singular point 8 = 0 identified in Example 6.13.

The rate of change of the quaternion description of orientation

Let the unit quaternion q represent the rotation of any vector p” in the Body frame to the corresponding vector
7= qp” q* in the original E frame, noting Fact 6.5. We now consider a vector p® fixed in the Body frame (that
is, dp? /dt = 0), and relate dq/dt to the instantaneous rate of rotation of the body &. Applying the product rule
of differentiation,

dp dq g _p dq”

7d_q —’Bq*_i_ |:d_cl(—»B>*q*i|*d_q B« (d_q —»Bq*)*'

a - a? ar b4 at? (673)

Recalling from (6.69) that dp/dt = & x p, the quaternion formulation of this equation [noting (6.61d)] is

dp

o = WP = (@0)]/2. (6.74)

Equating the RHS of (6.73) and (6.74), we have (dq/dt) p” q* = &p/2 = (Jdq/2) p¥ q* for arbitrary p?; thus,
applying & = q @ q*, we have
dq

I Jq/2 =qwx?/2. (6.75)

Unlike the expressions for the evolution of the 3-2-1 Tait-Bryan rotation sequence in (6.71) and the evolution of
the 3-1-3 Euler rotation sequence in (6.72), the expression above for the evolution of q is nonsingular for all q,
as identified in Example 6.13.

6-38

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

6.4 Solid body dynamics

6.4.1 The (conserved) momentum, energy, and angular momentum of a free body

Recall the total mass ;1 =), m,, the position of the center of mass R = > . MaTa/lt, and the inertial
tensor [;;, = >, ma(rjzéik — 1irk)q of a cloud of rigidly connected particles given in (6.53a); these definitions
easily pass to the limit of a solid body (that is, to an infinite number of infinitesimal particles) by converting the
sums to integrals, as given in (6.53b). We now develop the formulae for the momentum, energy, and angular
momentum of a free solid body (i.e., a closed system) by passing the corresponding formula in §6.2 to the
same continuiim limit, recalling that a solid body has six degrees of freedom: three to describe the location of
its center of mass, and three to describe its orientation as a finite 3D rotation from a reference orientation, as
discussed extensively above. To disambiguate the discussion that follows, we will make use of three reference
frames (identified, perhaps pedantically, with superscripts): a stationary (that is, nonrotating, nonaccelerating)
frame E, a moving frame A, aligned with E but centered at the center of mass of the body, and a body frame
B, both centered at the center of mass of the body and rotating with the body itself.

In §6.2.2.1, the velocity of the center of mass of an IV particle system (in the original E' frame) was identified
asV = m,¥,/u = dR/dt, and the total momentum was defined as P = > p, = >, ma ¥, =
,uV. These definitions, and the property of conservation of momentum dP/dt = 0 given in (6.49), extend
immediately to solid bodies by defining

ﬁz/pFEdV/,u, V:/pﬁEdV/u, and P = puV. (6.76)
) Q

Once the solid body’s position, velocity, and instantaneous rate of rotation are identified, we may write the
position and velocity of any point a on the solid body, located a fixed position with respect to the center of
mass in body coérdinates (i.e., 72 /dt = 0), as the sum the two components.

:§+Ff:]§—|—BFf and ¢” =V+at x 7 V~|—BwB><77f. (6.77)

In §6.2.2.2, the kinetic energy of a system of particles was identified in (6.41) as T'(v) = > mq |0/
passing to the continuiim limit, noting (6.77), (B.20), (B.19), and the definition of I;; in §6.3.1, this definition
may be extended to solid bodies by taking

~SE |2 1% 2 V12 . — A 2A |2
0 2 2 2 Q 2
0

V12 . A2 1742 S A 2A)2
:u\|2H +M,VMA+/ I = @Y
Q

V12 B2 ||=B|2 ~B . »B\2 V12 wZBwB(Si TB B_wBT,BwBTB
:u\2H +/pllw [H2 (& r>dV:ull2ll +/p K Oik 32 ETE v
Q Q
VP LawPol

where I, = / p(dik T‘B rf —rBr)dv, (6.78a)
Q

2 2

where 1]|V||2/2 is the kinetic energy due to the motion of the center of mass of the solid body, and I;wBw? /2
is the kinetic energy due to the rotation of the solid body about its center of mass. Note that, if the B frame is
taken in the principal axes (in which the inertial tensor I, is diagonal), then (6.78a) reduces to

p o MIVIE | L)’ + I(wy)” + Is(wy)’
2 2 ‘

(6.78b)

6-39

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

As in (6.41), the Lagrangian of a solid body is again given by L. = T' — U. Considering the total energy
E =T + U, the property of the conservation of energy dF/dt = 0 given in (6.50) follows again as before.

In §6.2.2.3, the total angular momentum of a system of particles was defined as M = Y o Ta X Po Where,
following (6.49), the momentum of each particle is p, = m, Uy,; passing to the continuiim limit, noting (B.21),
the definition of I;;, in (6.78a), and that [pitdV = 0, this definition may be extended to solid bodies by
taking

'
—RxP+M"* where M*=BMP"” and MP = Iiwp, (6.79)

where R x P is the angular momentum due to the motion of the center of mass of the body, M4 is the intrinsic
angular momentum due to the rotation of the body about its center of mass in the nonrotating reference frame
A, and M B is the intrinsic angular momentum in the body frame B. Note that, if the B frame is taken in the
principal axes (in which the inertial tensor I;;, is diagonal), then M B reduces to

MP = nwP, MP=1Lw? M =ILw? (6.80)

The property of the conservation of angular momentum dM/dt = 0 given in (6.51) follows as before; it
follows that the squared magnitude of the angular momentum, || M||?, is also conserved.

6.4.2 Lagrange’s equations of motion for a solid body in an external field

In this section, we develop the equations of motion for the instantaneous translation and rotation of a solid
body in an inertial (nonrotating, nonaccelerating) reference frame E.

Returning to (6.42), noting p, = m, U, summing over each particle, and taking P = Y uba = u‘? =
,ud]%/dt, it follows that the equation of motion for the translation of a solid body in the reference frame £ is
simply

P - -

Note that the forces accounted for in the sum above may be taken as the externally-applied forces on the system
only, as the internally-generated forces cancel when computing the sum. Taking U as the potential energy of the
solid body in an external field (i.e., in an open system) and considering an infinitesimal translation of the entire
body through a distance d &, noting from (6.42) that f, = —OU /OF, and from (6.41) that L = T'(v) — U(r), the

corresponding change in the potential energy may be written

m:(zgg) R:—(Zfa> SR=—F.-6R = ﬁ:—g—ng—g (6.81b)

Noting from and (6.78) that 8L/8‘7 = 6T/8‘7 = ,u\7 = P, it is seen that (6.81a) may be interpreted as a direct
consequence of Lagrange’s equation for the coordinates of the center of mass, d(OL/0V')/dt = OL/OR.

6-40

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

We now consider 7, x (6.42). To simplify the derivation, we will restrict the reference frame E such that
the center of mass is centered at the origin, at zero velocity, at the instant considered. Recall from §6.2.2.3 that
MP¥ =S 7, X fi,. It follows that AME /dt = Yo (dry/dt) X Py + Y To X (dp,/dt); since dif, /dt and P, point
the same direction, the first term in this sum is zero. Recalling from (6.42) that]‘Z = dp,/dt, it follows that the
instantaneous equation of motion for the rotation of a solid body in the inertial frame E'is simply

T E
djc\ft =K = ;Fa x fa. (6.82a)
Note that the moments accounted for in the sum above may be taken as the externally-applied moments on
the system only, as the internally-generated moments cancel when computing the sum. As in §6.2.2.3, consider
again the rotation of a solid body by the vector 5gz_5), where the magnitude of this vector is the (infinitesimal)
angle of rotation d¢, and the direction of this vector is the axis of rotation, using the right-hand rule. As derived
there, we again have 0. = 55- % Y o Ta X Pa; considering L for an open system, however, L # 0 in general.
Taking L = T'(v) — U(r) and noting (6.82a), we instead have

oU 0L

KL:——_,——_,.
¢ 0¢

(6.82b)

Noting from (6.78b) that, in principle coordinates, L /9G¥ = 9T /0¥ = M¥ where ME = LwF, it is seen
that (6.82a) may be interpreted as a direct consequence of Lagrange’s equation for the rotation of the body
about center of mass, d(0L/0&F) /dt = OL/0.

Together, (6.81)-(6.82) are referred to as Lagrange’s equations for the instantaneous translation and rota-
tion of a solid body with applied forces and moments, such as those arising from an external field, in inertial
coordinates. Recalling the restriction on the inertial reference frame E that led to the simple form for the
instantaneous equation of motion for the rotation of the solid body given in (6.82a), this equation can not im-
mediately be integrated in time to develop an evolution equation for the long-time evolution of the orientation
of the body. This shortcoming is addressed in §6.4.3, where we develop the equations of motion for a solid body
in the body frame B

6-41

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

Example 6.14 Momentum, energy, and angular momentum conservation of a free solid body Consider
a solid body moving freely in space. By the conservation of momentum, we have
P

— =0 6.83
=0 (6:832)

that is, the center of mass of the solid body moves at a constant speed in a straight line. Fixing the center of
the F frame at the center of mass of the solid body, we thus have R=V =P =0. Taking the B frame in
the principal axes, the inertial tensor is diagonal (w.l.o.g., we take I > I, > I3 > 0). By the conservation of
energy, noting (6.80), we have

dr (MP)* (M) | (M)

— =0 h 27 = : 6.83b

7 where A + T, + I, ()
that is, the total energy 7' is constant. Finally, by the conservation of angular momentum, we have

dM

T =0 where M=BM? and MP = Iiwp; (6.83c)
that is, the total angular momentum M is constant. It follows that || M || is also constant, and thus

dM? 2 B\2 B\2 B\2

e 0 where M* = (M7)"+ (M) + (My)~. (6.84)

The fact that both (6.83b) and (6.84) must be satisfied simultaneously limits the three components of MB to
move on the intersection of the ellipsoid defined by the energy conservation constraint (6.83b) and the sphere
defined by the squared magnitude of the angular momentum conservation constraint (6.84). This intersection
is illustrated in Figure 6.11 for three different solid bodies. For the asymmetric top (top row) and the elongated
symmetric top (middle row), it is seen that, in the nearly maximal energy configuration possible for a given value
of M? (left), the momentum vector in body coordinates wobbles slightly around the minor principal axis MZ;
further, as the energy of rotation is dissipated (reduced), this wobble is magnified. For the asymmetric top (top
row) and the flattened symmetric top (bottom row), it is seen that, in the nearly minimal energy configuration
possible for a given value of M? (right), the momentum vector in body coordinates wobbles slightly around the
major principal axis MP; further, as the energy of rotation is dissipated, this wobble is diminished. For all
three mass distributions considered, it is evident that small perturbations from spinning about the intermediate
principal axis MJ leads to a large deviation of the M B vector.

The mass distribution of the elongated symmetric top considered in the middle row of subfigures in Figure
6.11 is approximately that of America’s first satellite, Explorer 1, illustrated in Figure 6.11. For the purpose of
computing its principle moments of intertia, we we may idealize this satellite as a uniform cylinder with mass
m = 13.37 kg, length i = 2.05 m, and radius » = 0.0825 m; the principal moments of its inertial tensor are thus
I =L, =m(3r*+h?) /12 = 4.705 and I3 = mr?/2 = 0.0455. This satellite was spin stabilized about its minor
principal axis, M2, in the nearly maximal energy configuration possible for the prescribed value of M?2. As seen
in Figure 6.11, Explorer 1 had four small whip antennae. As the momentum vector wobbled slightly, these
antennae deformed, generating heat and thereby gradually dissipating the energy of rotation. As the energy
of rotation dissipated towards the minimal energy configuration possible for the prescribed value of M~, 2, this
wobble was magnified until eventially Explorer 1 was tumbling, and the M B vector was rotating between the
MP and M2 directions (recall of course that the M vector remains constant). Since such gradual dissipation of
the energy of rotation is essentially inevitable (liquid fuel sloshing in tanks is another common source of energy
dissipation), all subsequent satellites have been constructed as either asymmetric tops or flattened symmetric
tops, and are spin stabilized about their major principal axis M?P.

6-42

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

o5 o5 o5 o5
08 08 05 | 08
i 2 I 2 I 2 I 2
05 . 05 . 05 . 05 .
05
o
§ ? .
© . s
o “ ‘ 10 s . o8 Lo
A » o i o 2 o 05
10 o . o) o 05 o
= . 2 " %
» ® 10 o a ' 1
© 4: 4 4 157 s

1
1
J 05
' 05
' 3
os
3
o5
3 05
o 05
05 g
os 1
1) 17 :
15 1) 15 [N : - S st
! ' ' B =] 05 e 1
o8 os os . o as A "5
o5 o < e - =
e . o 0 3 . "0
o os -~ 05 —
s e 25 ' 087N 05 08
] Rl

Figure 6.11: The intersection (a.k.a. polhode), in the space of { M, MP MZP} (the minor principal axis M7?
is up in each figure), of the ellipsoid defined by (blue) the energy conservation constraint (6.83b) and (red) the
sphere defined by the squared magnitude of the angular momentum conservation constraint (6.84) for three
different solid bodies: (top) an asymmetric top with I} = 4, I, = 3, and I3 = 2, (middle) an elongated symmetric
top (the Explorer 1 satellite illustrated in Figure 6.11) with I, = I, = 4.705 and I3 = 0.0455, and (bottom) a
flattened symmetric top with I} = 4, I, = I3 = 2, in (left) the nearly maximal energy configuration possible
for a given value of M?, (center) intermediate energy configurations, and (right) the nearly minimal energy
configuration possible for a given value of M2

Figure 6.12: The Explorer 1 satellite, an elongated symmetric top with [; = I, = 4.705 and I3 = 0.0455.
Spin stabilization of such a body about its axis of symmetry (i.e., it’s minor principal axis M) is problematic;
as the energy of rotation is dissipated (by heat generation in the whip antennae, etc) while the magnitude of
the angular momentum is conserved, the body will begin to tumble. Constructing satellites as asymmetric or
flattened symmetric tops, and spin stabilizing about the major principal axis MPZ, is thus preferred.

6-43

Renaissance Robotics (v.2024-05-16) Chapter 6: Kinematics & Dynamics

6.4.3 Euler’s equations of motion for a solid body in an external field

(This section still under construction.)
In the frame of a rotating rigid body, Euler’s equations for the motion of body are
A% g}

p QX (V) =F (6.85) I +Qx (19) =K (6.86)
where [is the inertial tensor (computed in some convenient body-fixed coordinates), and 2 and K are, re-
spectively, the rate of rotation and torque applied around these coérdinate directions.

In the special case that the coordinate directions are aligned with the principal coérdinate directions of the
body, Euler’s equations (6.85)-(6.86) reduce to:

dvi dQ
M(d—tl + V3 — Q3V2> = F1, (6.87a)]ld_tl + (I3 — 1) = K, (6.88a)
dVv: dQ
M(d—; + Q311 — Q1V3> = Iy, (6.87b)]2d_752 + (I — I3)Q30Q;, = Ky, (6.88b)
u(d—;’ + Vs — QM) = F3, (6.87¢) Jgd—; + (I —) Q = K5, (6.88¢)

where [, I5, and I3 are the principal moments of inertia of the body.

Transforming the instantaneous rotation rates of the body {21, Qs, Q3}, which is measured directly by the
rate gyros in the Body frame, into the rate of change of the Euler angles or the Tait-Bryan angles is a bit involved.
Evolution equation for the 3-2-1 Tait-Bryan rotation sequence
Evolution equation for the 3-1-3 Euler rotation sequence
Evolution equation for a quaternion representation

Taking the time derivative of (??), applying the product rule of differentiation, and substituting in (??) and (??)
results in a nonlinear equation of the form q = f(q, q, t):

q= a0+ d)/2 =g + ol 1K — O x (I9)]/2
=qq"q+ql (K —4q"q x (I q*4)/2 £ g(q,§,t).

6.4.4 Frictional losses

Example 6.15 A spinning top ??

6-44

Chapter 7

Numerical Methods

7.1 Interpolation

In interpolation problems, we aspire to draw an “appropriately smooth” curve which passes exactly through
a set of available datapoints in one or more dimensions, as illustrated in Figure 7.1. This problem description is
subject to a significant degree of interpretation; only a few such interpretations will be discussed here.

Interpolation is a foundational idea in numerics that is useful when, e.g., developing differentiation and
integration strategies, estimating the value of a function between known values, producing computer-generated
imagery (CGI), etc.

Note specifically that the process of interpolation passes a curve exactly through each datapoint. This is
sometimes what is desired. However, if the data is from an experiment and has any appreciable uncertainty
associated with it, then it is preferred to take many measurements and use a least-squares technique to fit a
low-order curve in the general vicinity of several datapoints, as discussed in the data fitting framework described
in §2 of NR. This technique minimizes a weighted sum of the square distance from each datapoint to this curve
without forcing the curve to pass through each datapoint individually, and generally produces a much smoother
curve (and a more physically-meaningful result) when the available data is noisy.

7.1.1 Linear spline interpolation

Linear spline interpolation amounts to nothing more than the game of Connect the Dots, using straight line
segments between each pair of points. Implementation (see RR_LinearSpline) is straightforward, and provides
a reference solution against which improved interpolation schemes may be compared.

7.1.2 Lagrange interpolation: n’th-order polynomials fitting n + 1 datapoints

Suppose we have a set of n + 1 datapoints {z;,y;}. The process of Lagrange interpolation fits an n’th degree
polynomial (that is, a polynomial with n 4+ 1 degrees of freedom) exactly through this data. There are two
ways of accomplishing this: solve a system of n + 1 simultaneous equations for the n + 1 coefficients of this
polynomial, or construct the polynomial directly in factored form.

Solving n + 1 simultaneous equations for the n + 1 coefficients

Consider the polynomial
P(x)=a,+a1x+agx® +...+a,a"

7-1

http://robotics.ucsd.edu/nr
https://github.com/tbewley/RR/blob/main/chap07/RR_LinearSpline.m

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

25

25 L L L L L L L L L
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 7.1: The interpolation problem: fit a curve of the specified form to intersect n+ 1 points (o); the solutions

illustrated are () the Lagrange interpolant and (----) the cubic spline interpolant with parabolic run-out.
Lagrange interpolation often gives a spurious result when the number of datapoints is large.

At each point z;, the polynomial has the value y;; that is,
yi = P(2;) = ap + a1 25 + ag 27 + ...+ a, a7 for i=0,1,2,...,n.

In matrix form, we may write this system as

2
1 2y xj xy ag Yo
1z a3 Y ay Y1
o =1 |- (7.1)
1 2 .. pn
Ty T T, anp Un
~ ~~ —— =
1% a y

This system is of the form Va =y, where V' is commonly referred to as Vandermonde’s matrix, and may be
solved for the vector a containing the coefficients a; of the desired polynomial. Vandermonde’s matrix is often
poorly conditioned, and thus this technique of finding an interpolating polynomial is unreliable.

Constructing the polynomial directly

Consider the n’th degree polynomial given by the factored expression

L (@mz)r—m) (@ —me) (@ —) (B — @) T T .
R F T [Y EER A Y AT P o R § P

Note that, by construction,

L,‘{(xl) :57%: {; Z.;Iij
7 K.

Scaling this result, the polynomial y, L.(x) (no summation implied) passes through zero at every datapoint
xr = x; except at x = x,, where it has the value y,. Finally, a linear combination of n + 1 of these polynomials

P(z) =) yuLa(x) (7.2b)
k=0

7-2

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

provides an n’th degree polynomial which exactly passes through all of the datapoints, by construction. To
verify, note that P(z,) = > _ y.0. = v, as required. Implementation of this constructive technique to
determine the interpolating polynomial is given in RR_Lagrange).

Unfortunately, if the number of datapoints is large, high-order polynomials sometimes meander signifi-
cantly between the datapoints even if the data appears to be fairly regular, as shown in Figure 7.1. Thus, La-
grange interpolation should be thought of as dangerous for anything more than a few datapoints, and should
be avoided in favor of other techniques, such as the cubic spline interpolation technique discussed below.

7.1.3 Piecewise cubic interpolation

Instead of forcing a high-order polynomial through the entire dataset, we may instead construct a continuous,
smooth, piecewise cubic function through the data. We will first construct this function to be smooth in the
sense of having continuous first and second derivatives at each datapoint. These conditions, together with the
appropriate conditions at each end, uniquely determine a piecewise cubic function through the data which is
usually reasonably smooth; we will call this function the cubic spline interpolant.

Defining the interpolant in this manner is akin to deforming a single spline, or a thin piece of wood or
metal, to pass over all of the datapoints plotted on a large block of wood and marked with thin nails. The
elasticity equation governing the deformation f of such a spline is

=G, (7.3a)

where G is a force localized near each nail which is sufficient to pass the spline through the data. As G is
nonzero only in the immediate vicinity of each nail, such a spline takes an approximately piecewise cubic shape
between the datapoints. Thus, between the datapoints, f(x) is cubic:
1 m 1" / Ci 2 Cy 3 Cy 2
[(x) =0, [f(z)=Ci, [fl(z)=Cia+Cy, [fl(z) = 5 TG z+Cs, flz) = TVt 5T +C3 24+Cy.
(7.3b)

Constructing the cubic spline interpolant

Let f;(x) denote the cubic in the interval z; < = < z;4; and let f(z) denote the collection of all the cubics
for the entire range o < = < z,. As noted above, f/ varies linearly with x between each datapoint. At each
datapoint, we would like to piece these cubics together as smoothly as possible, thereby mimicking the physical
situation in which the force G localized on the spline near each nail is as smooth as possible; in fact, we have
enough flexibilty to impose ('* continuity, that is:

(a) continuity of the function f, i.e., fici(x) = fi(x) = f(z) =y,
(b) continuity of the first derivative f’, ie, fl_,(z;) = fi(z;) = f'(x;), and

()

(c) continuity of the second derivative f”, i.e, f' (z;) = fI'(z;) = f"(x;).

We now describe a procedure to determine an f which satisfies conditions (a) and (c) by construction, in a
manner analogous to the construction of the Lagrange interpolant in §7.1.2, and which satisfies condition (b)
by setting up and solving the appropriate system of equations for the value of f” at each datapoint x;.

To begin the constructive procedure for determining f, note that on each interval z; < x < z;,4 for
i = 0,1,...,n — 1, we may write a linear equation for f/(z) as a function of its value at the endpoints,
f"(x;) and f"(x;11), which are (as yet) undetermined. The following form (which is linear in z) fits the bill by
construction:
r — T;

Fr(x) = f () T 4 P a)

= (7.4)
Ty — Tit1 Tit1 — T4

7-3

https://github.com/tbewley/RR/blob/main/chap07/RR_Lagrange.m
https://en.wikipedia.org/wiki/Smoothness#Parametric_continuity

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

Note that this first degree polynomial is in fact just a Lagrange interpolation of the two datapoints {z;, f"(x;)}
and {z;y1, f"(x;41)} [see (7.2), for n = 1]. By construction, condition (c) is satisfied. Integrating this equation
twice and defining A; = x, 1 — z;, it follows that

M) (@i —2)? | win) (@ - 20)?

fil#) = =5 A, 2 AT
N (@) (i1 —) f(2i1) (@ — 23)?

The undetermined constants of integration are obtained by matching the end conditions

filw:) = yi and fi(®iv1) = Yiy1-

A convenient way of constructing the linear and constant terms in the expression for f;(z) in such a way that
the desired end conditions are met is by writing f;(x) in the form

o) = H (Lo L Al - n) Ll (E SN ")
N e TR 1) S o (7.5)
Yi A, Yit1 A where z; <z < x41.

By construction, condition (a) is satisfied. Finally, an expression for f/(z) may now be found by differentiating
this expression for f;(x), which gives

fla) = % (‘3(%3——,@2 + A,-) + f”(gg“) (3 (@ ;@2 - Ai) + A

The second derivative of f at each node, f”(x;), is still undetermined. A system of equations from which the
f"(x;) may be found is obtained by imposing condition (b), which is achieved by setting
fi(z) = fl(x;) for i=1,2,...,n—1.

(2

Substituting appropriately from the above expression for f/(z), noting that A; = ;1 — x;, leads to

Ai1 Aii +4i Ai Yirl —Yi Yi —Yi-1

— i — i) T i+1) = - 7.6
fort = 1,2,...,n — 1. This is a diagonally-dominant tridiagonal system of n — 1 equations for the n + 1
unknowns f"(zo), f"(x1), ..., f"(x,). We find the two remaining equations by prescribing conditions on the

interpolating function at each end. We will consider three types of end conditions:

e parabolic run-out: f"(z) = f"(x1) and f"(x,) = f"(xp-1);

e free run-out (also known as natural splines): f”(x¢) = 0 and f”(x,) = 0; or

e periodic end conditions: f"(x¢) = f"(zn—1) and f"(x1) = f"(z,).
Equation (7.6) may be taken together with the appropriate choice of end conditions (depending upon the prob-
lem at hand) to give n + 1 equations for the n + 1 unknowns f”(x;). This set of equations is then solved for
the f”(z;), which thereby ensures that condition (b) is satisfied. Once this system is solved for the f”(x;), the
cubic spline interpolant follows immediately from (7.5).

Note that, when (7.6) is taken together with parabolic or free run-out at the ends, a tridiagonal system
results which can be solved efficiently with the Thomas algorithm. When (7.6) is taken together periodic end

7-4

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

conditions, a tridiagonal circulant system Ax = b results with a; ; = 0. A pair of codes which sets up and solves
these systems with any of the above three end conditions is given in RR_CubicSplineSetup and RR_CubicSpline.

Applying periodic end conditions to develop a spline for a system that is not well approximated as periodic
can lead to significant non-physical meanderings of the interpolant near the ends of the domain; thus, periodic
end conditions should be reserved for systems which are actually periodic. On the other hand, parabolic run-
out extends a parabolic curve between zy and 71, and free run-out tapers the curvature of the interpolant down
to zero near the endpoints; both of these choices usually generate reasonably smooth interpolants.

Tension splines

For certain interpolation problems, cubic splines aren’t adequately smooth. In such problems, it is helpful to use
tension splines, which are cubic splines with the mechanical equivalent of a bit of tension added to straighten
out the curvature between the datapoints. As the tension gets large in this approach, the interpolant approaches
a piecewise linear function. Tensioned splines obey the differential equation [cf. (7.3a)]:

" —o*f" =G
where o is the tension of the spline. This leads to the following relationships between the datapoints [cf. (7.3b)]:
[f" = o*f]" =0, [f" = a*f) =Cy, [f" = a*f] = Cra+C.
Solving the ODE on the right leads to an equation of the form [cf. (??)]
f=—0"%Cix + Cy) 4 Cse7" + Cye’”.

Proceeding with a constructive process to satisfy condition (a) analogous to that used previously, we assemble
the linear and constant terms of f” — o2 f such that [cf. (7.4)]
2 2. 1%~ Tit1 2 T~
[fz//(x) -0 fz(x)] = [fz//(xz) -0 yz} — 4 [fi//<xi+1) -0 ?Ji+1} —.
Ti = Tit1 Tip1 — T
Similarly, we assemble the exponential terms in the solution of this ODE for f in a constructive manner such
that condition (c) is satisfied. Rewriting the exponentials as sinh functions, the desired solution may be written

[cf. (7.5)]

_ Tiy1 — T — T sinho(z;y —)

fz(aj) = —0 2{ [f/(%) - 02 1:| T + [f”(]hq—l) - azym] Ai - f”(l’z‘) sinh UAi (7 7)

— "z)sinha(x — $Z)} where x; <x < |

U Sinh o A, P e
Differentiating once and appling condition (b) leads to the tridiagonal system [cf. (7.6)]
I o (@) B 1 ocosh o\;_; n 1 ocosh oA\ f'(x;)

A;,_1 sinhoA;_; 02 JAVER] sinh o A;_¢ A sinh o A; 02 (7.8)

i i _ o [(i) _ Y1 — Y Yi Y .

Ai sinh UAZ' o2 Al Ai,1 .

The tridiagonal system (7.8) can be set up and solved exactly as was done with (7.6), even though the coefficients
have a slightly more complicated form. The tensioned-spline interpolant is then given by (7.7).

7-5

https://github.com/tbewley/RR/blob/main/chap07/RR_CubicSplineSetup.m
https://github.com/tbewley/RR/blob/main/chap07/RR_CubicSpline.m

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

B-splines

We may easily express the cubic spline (or tension spline) interpolant in a form similar to our construction of
the Lagrange interpolant, that is,

F@) = yubu(2),

where the basis functions b, (x) are spline interpolations of Kronecker delta functions such that b, (z;) = J;,
as discussed in §7.1.2 for the functions L, (x). The basis functions so constructed are found to have localized
support (in other words, b, (x) — 0 for large |z — z,|).

By relaxing some of the continuity constraints, we may confine each of the basis functions to have compact
support (i.e., we can set b, (z) = 0 exactly for |z —x,| > R for some R). With such functions, it is easier both to
compute the interpolations themselves and to project the interpolated function onto a different grid of points.

Cubic Hermite interpolation

Cubic spline interpolants f(x) are C? continuous, and pass through the given function values at the datapoints,
f(z;). This is achieved by selecting appropriately the the first and second derivatives of the interpolant at the
datapoints, f'(z;) and f"(z;).

On the other hand, if the values of both the function and its derivative, f(z;) and f’(z;), are specified at
the datapoints, then a C'! continuous Cubic Hermite interpolant f(x) may be fit to this data in a simple
fashion using basis functions with compact support. This approach is in fact a variant of the B-spline approach;
defining & = (z — ;) /(241 —), it produces an interpolant f(z) on each interval © € [x;, z;41] such that

f(@) = hoo(Z) fi + hor(Z) (zig1 — i) f; + Pao(T) firr + hia(Z) (Tiga — 2) fiia, (7.9)

using the following four simple basis functions on each interval © € [z;, z;11]:

hoo(Z) = 273 — 322 + 1, with hgo(0) = 1 and hy,(0) = hoo(1) = hge(1) =0, (7.10a)
hot(7) = & — 28 + 7, with 1), (0) = 1and hoi(0) = hoi (1) = iy (1) = 0, (7.10b)
hio(7) = —22% + 322, with hyo(1) = 1 and hyo(0) = hiy(0) = hiy(1) =0, (7.10c)
hai(7) = 3 — 22, with 1 (1) = Tand h11(0) = 1, (0) = hyy(1) = 0 (7.10d)

7.1.4 Multivariate interpolation of structured data

The interpolation strategies described above are well suited for 1D problems, and can be extended fairly easily
to higher dimensions on structured n-dimensional grids. Below we describe two such extensions.

Multilinear interpolation

The idea of 1D linear spline interpolation (see §7.1.1) extends immediately to the multilinear interpolation
of data defined on an n-dimensional Cartesian grid (that is, function values f; ;, ;. = f(asli1 T ,xnin)
where iy = 1,..., Ny, io =1,..., Ny, etc.) as follows:
e Determine the grid cell that new interpolating point x lies in: that is, find the 7; through i,, such that
T, <z, < Thes) forl <k <n.
e Determine the fraction of the distance that the new point x is across this cell in each direction: that is,
compute 1o = (xk(iwl) — :ck)/(xk(iwl) — xkk) and 1 =1 — o forl <k <n.

7-6

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

e Linearly interpolate in each direction independently by setting the interpolant f(w) such that

1 1 1
F@) =D firtdvintdonintdn M T2ds T

d1=0d2=0 dn=0

Implementation for n = 2 is given in RR_BilinearSpline; see Figure 7.2a for typical results.

Multicubic interpolation

The idea of cubic spline interpolation (see §7.1.3) may be extended in a couple of different ways to data defined
on an n-dimensional Cartesian grid.
An accurate and simple approach is to do cubic spline interpolation in each dimension, one at a time:

e First, interpolate onto the specified value of z; for each value of x5 through z,, on the grid (that is, for
io=1,...,No, i3=1,..., N3, iy =1,..., Ny, etc.).

e Then, working only with those function values interpolated onto the specified value of x;, interpolate
onto the specified value of x, for each value of x5 through x,, on the grid (that is, for i3 = 1,..., N3,
i4 = 1, ceey N4, etc.).

e Continue in an analogous fashion through the remaining dimensions, one at a time.

Recall that, in the one-dimensional case described in §7.1.3, the computationally expensive part of setting up the
cubic spline interpolant could be computed once during the initialization step, then used for interpolating onto
any specified point z. Unfortunately, in the multidimensional approach described above, this is no longer the
case, as the interpolations performed in the z; direction, for j = 2, ..., n, depend on the data that results from
the interpolations performed in the x; to 2;_; directions. This approach is thus too expensive to be practically
useful when interpolating onto a large number of gridpoints.

An inexpensive alternative' for extending cubic spline interpolation to n-dimensional grids follows:

(i) First, during an initialization step, approximate all first and cross derivatives of f at each gridpoint where
the function f is initially specified. Note that these numerical approximations may be computed by
successive cubic spline interpolations along the gridlines, evaluated at the gridpoints.

(ii) Then, as in the multilinear interpolation approach described in §7.1.4, determine (for each new interpola-
tion point) which grid cell that the new interpolation point x lies in, and the fraction of the distance that
the new point x is across this cell in each coordinate direction.

(iii) Finally, construct a function which is cubic in each coordinate variable and matches the first and cross
derivative information computed in step i at each of the corners of the cell identified in step ii.

This idea is best made concrete by example. In the case of n = 2 (bicubic interpolation), we first use cubic
spline interpolation along each of the gridlines to compute {f,, f,, fz,} at each of the gridpoints where the
function values f are initially specified. Then, as in bilinear interpolation, we determine which grid cell that
the new interpolating point x lies in, and the fraction of the distance that the new point x is across this cell in
each direction (denoted here = and y). Finally, the interpolant on the cell is defined by

3
flry) =) > ay'y, (7.11)

3
i=0 j=0

'Recall (from the introduction to §7.1) that the interpolation problem itself is an approximate problem subject to a significant
degree of interpretation; it may thus be argued that approximate solution to a problem of this class is good enough, and one should
not code up an unduly expensive scheme in order to solve an approximate problem of this class “exactly”.

7-7

https://github.com/tbewley/RR/blob/main/chap07/RR_BilinearSpline.m

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

-10

Figure 7.2: (left) Bilinear interpolation and (right) bicubic interpolation of a 10x 20 grid of data from the function
sinc(r) £ sin(r)/r where r = /12 + y2; the bilinear case reveals some noticeable artifacts of the interpolation,
whereas the bicubic interpolant is visually almost indistinguishable from the original function.

where the a;; fori = 0,...,3and j = 0,...,3 are selected to match the values of {f, f., f, fz,} at each of
the 4 corners of the cell (w.l.o.g, taken here to be the unit square, with corners denoted {xqo, Xo1, X10, X11 }) that
contains the new interpolation point; this results in a linear 16 x 16 problem of the form Ax = b where

1 aoo f|X00
1111 a0 Sl
1 1 1 1 ano f|x01
1111111111111 111 aso flxan
1 aop1 falxo0

1 2 3 ail falxo

1 1 1 1 a1 fx‘xol

1 2 3 1 2 3 1 2 3 1 2 3 as1 | falxi

1 apz | fy|X00

1 1 11 a2 fy|X10

1 2 3 a2 Fylxor

1 11122 2 2 3 3 3 3 as2 fy|x11

1 ao3 faylxoo

1 2 3 a3 f:ry|x10

1 2 3 as3 faylxor

1 2 3 2 4 6 3 6 9 ass fxy|x11

Note that A~! is simple, with all integer entries, and is thus entered directly in the implementation of bicubic
interpolation in given in RR_BicubicSplineSetup and RR_BicubicSpline; see Figure 7.2b for typical results.
Similarly, in the case of n = 3 (tricubic interpolation), we use cubic spline interpolation along each
gridline to compute {f., fy, f2, foys fyzs foz, fuy=} at each of the gridpoints where the values of f are initially
prescribed. We then determine which grid cell that new interpolating point x lies in, and the fraction of the
distance that the point x is across this cell in each direction. Finally, the interpolant on the cell is defined by

3 3 3
flay.2) =3 D > aiwa'y =, (7.12)

https://github.com/tbewley/RR/blob/main/chap07/RR_BicubicSplineSetup.m
https://github.com/tbewley/RR/blob/main/chap07/RR_BicubicSpline.m

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

N
|

s

Figure 7.3: Interpolation via inverse distance of 200 points with (a) p = 2, (b) p = 3, (c) p = 4, (d) p = 20.

where the a;;;, are selected to match the values of {f, f., fy, fz: fay, fyz» faz, foy=} at each of the 8 corners of the
cell (w.l.o.g, taken to be a unit cube) that contains the new interpolation point; this results in 64 linear equations
for 64 unknowns which may easily be solved.

7.1.5 Multivariate interpolation of unstructured data

The extension of interpolation strategies to unstructured data (that is, for data not lying on a regular grid)
requires a bit more effort than the case of structured data considered above; we will thus consider three different
approaches to this problem.

7.1.5.1 Interpolation via inverse distance

The simplest approach for approximating the function value f at location x based on /N known function values
fi at various locations c;, fori = 1,..., N, is the inverse distance interpolation formulae given by

N N
1 i
f(x) = - ; fi/d& where C = ; 1/d? and d; = |x—c'|s,

d;<R d;<R

7-9

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

where 1 < p < o0 is some power and the sum includes all known function values within some prespecified
distance R of the point in question, x. Implementation is given in RR_InvDistancelnterp, and typical results
are illustrated in Figure 7.3. Note that the minima and maxima of this interpolating function coincide with
datapoints representing the largest and smallest function values in the dataset. For small p (e.g., p = 2), the
interpolant looks like a tent propped up, and pushed down, at the various datapoints; for increasing values of p
(e.g., p = 3, p = 4), the interpolant gains stronger “shoulders” near each datapoint; for p — oo, the interpolant
takes the known function value at the nearest datapoint, and thus leads to a piecewise constant function
over the Voronoi cell associated with each datapoint. For finite p in the limit that R — oo, the interpolation
function is continuous; for reduced values of 2, the interpolating function, though sometimes approximating
the original function a bit more accurately, is discontinuous.

7.1.5.2 Polyharmonic spline interpolation

In many interpolation problems, such as that illustrated in Figure 7.3, the simple inverse distance formula for
interpolation, discussed in §7.1.5.1, fails to give a sufficiently accurate result for any value of p. An effective
alternative approach is given by the polyharmonic spline, a special case of which (in 2D and with k£ = 2),
known as a thin plate spline, corresponds to the mechanical modeling of a 2D spline that is bent in order to
make it touch the specified unstructured data points. This interpolation formula takes the form?

N
f(x) = Zwiqb(r) + vt Lj where 7 = ||x — /|2, (7.13a)
i=1
rk for k odd
olr) = {rk In(r) for k even, (7.13b)

and where the weights w; and v; are selected such that: (a) f(c;) = f; in the above equation for the IV available
data points {c;, f;}, (b) the sum of the weights, > . w;, is zero, and (c) in each of the n coordinate directions,

j=1,...,n, the weighted sum of the center locations,), w;cj;, is also zero. These three sets of conditions on
the weights may be enforced by solving the (N + 1 +n) x (N + 1 + n) linear system

A VT [w y i 11 ... 1

[V 0 } {Vl = {0} where A;; = ¢(|[c; —c'|l2), V = Ll 2 CN:|) (7.14)

Implementation is given in RR_PolyharmonicSplineSetup and RR_PolyharmonicSpline. Typical results are il-
lustrated in Figure 7.4; note that increasing values of k are usually found to give a smoother interpolant on the
interior of the portion of the domain covered by the data, but higher irregularities near the edges of this portion
of the domain. Also, smaller values of k (e.g., 2 or 3) are often found to be more accurate when a relatively small
number of function evaluations are available, with larger values of £ (e.g., 6 to 8) being more accurate when
more function evaluations are available.

It is worth noting that the polyharmonic spline basis functions ¢(r) given in (7.13b), used in the interpo-
lation formula given in (7.13a) and plotted in Figure 7.5, are special cases of what are commonly referred to as
radial basis functions (RBFs), as they depend on the Euclidian distance r = ||x — c'||o of the new point x
from the centers c; only. RBFs come in two essential types: those which decay with radius, such as the Gaus-
sian RBF ¢(r) = ¢~ (")” as well as the inverse distance RBF ¢(r) = 1/rP used in the interpolation strategy
presented in §7.1.5.1, and those which eventually grow with radius, such as the polyharmonic spline RBF
defined in (7.13b) and used in the interpolation strategy presented in §7.1.5.2; the former are essentially “local”

2In cases with k even, the equivalent formula ¢(r) = r*~1In(r") is better behaved numerically for r < 1. Various other possible
formulae for ¢(r), such as ¢(r) = r2, are found to be ill-behaved in this setting, and are not considered further here.

7-10

https://github.com/tbewley/RR/blob/main/chap07/RR_InvDistanceInterp.m
https://github.com/tbewley/RR/blob/main/chap07/RR_PolyharmonicSplineSetup.m
https://github.com/tbewley/RR/blob/main/chap07/RR_PolyharmonicSpline.m

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

il
|

i
il 11““
e

\1, \
(il
i
i

i
i
“lllllll"]h\‘;r ‘ 1l M
il ' i

i\
i
il

f

Figure 7.4: Polyharmonic spline interpolation of 200 points with (a) & = 1 through (f) & = 6. Over
the domain illustrated, the maximum error is {0.176,0.123,0.119,0.131,0.186,0.259} and the rms error is
{0.0376,0.0220,0.0157,0.0130,0.0142,0.0171}, respectively, in the six cases considered.

2

0.5

Figure 7.5: Polyharmonic spline radial basis functions [see (7.13b)] for (dashed) k = 1, k = 2, k = 3;
(dot-dashed) k = 4, k = 5; (solid) k = 6, k = 7. Though they eventually grow with radius, these non-local
RBFs are found to be effective in the polyharmonic spline interpolation strategy presented in §7.1.5.2.

in nature, whereas the latter are “global” in effect, and thus their weights must be determined via a solve over
the entire set of datapoints [see (7.14)].

7-11

Renaissance Robotics (v.2024-05-16) Chapter 7: Numerical Methods

7-12

Chapter 8

Signals & Systems

Contents

8.1 Introduction to transforms: Fourier, Laplace,and Z7 8-2
8.1.1 The relation of the Laplace and Z transforms to the Fourier transform 8-3
8.1.2 The remarkable utility of such transforms 8-3

8.2 Laplacetransformmethods e 8-4
8.2.1 The Laplace Transform of derivatives and integrals of functions 8-7
8.2.2 Using the Laplace Transform to solve unforced linear differential equations 8-8
8.2.3 Continuous-time (CT) transfer functions 8-9

83 Ztransformmethods e e 8-13
8.3.1 The Z Transform of translated sequences 8-14
8.3.2 Using the Z Transform to solve unforced linear difference equations 8-14
8.3.3 Discrete-time (DT) transfer functions 8-15
8.3.4 Reconciling the Laplace and Z transforms, 8-18

8.4 Bode plots: thinking in the frequency domain. 8-22

8.5 Low-pass, high-pass, band-pass, and band-stop filters 8-27
8.5.1 Maximal flatness filters: Butterworth and Bessel 8-27
8.5.2 Equiripple filters: Chebyshev, inverse Chebyshev, and elliptict 8-29
8.5.3 Complementary filters and audio crossovers 8-34

In §8.1, we briefly introduce the three essential classes of transforms at the heart of signal analysis: Fourier,
Laplace, and Z. The Fourier transform, which comes in four forms appropriate for either continuous-time
(CT) signals or discrete-time (DT) signals {that is, defined only at regularly-spaced intervals over the time
domain of interest}, and for signals defined on either infinite domains {that is', t € (—o00, 00)} or bounded
domains {that is, ¢ € [0,7)}, is built on sinusoidal basis functions, written as €'“! = cos(wt) + isin(wt),
as studied in depth in §5 of NR. The Laplace and Z transforms extend this tetralogy of Fourier transforms to
semi-infinite domains {that is, ¢ € [0, 00)}, for CT and DT signals respectively.

Before considering further the presentation of the Laplace and Z transforms in this chapter, and their
extensive utility in control theory in §10, it is helpful to make this discussion more concrete by considering the
ODEs modeling a handful of simple physical systems (a.k.a. “plants”), as reviewed briefly? in §6.1.

TAs in §5 of NR, the physical codrdinate over which such transforms may be applied may be interpreted as time or space, and is
denoted without loss of generality in the present chapter as t; see also footnote 19 in §5.5 of NR.

ZNote also related discussions of (a) the realization of various ODEs of interest as (CT) electric circuits, as considered in §9, par-
ticularly as low-pass, high-pass, or notch “filters” or as analog “controllers”, and (b) the realization of various difference equations of
interest on microcontrollers, as (DT) finite impulse response (FIR) or infinite impulse response (IIR) filters, as considered in §1.5.3.2.

8-1

http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

The Laplace transform, appropriate for the analysis of continuous-time signals on semi-infinite
domains t € [0, 00), as well as for the analysis of differential equations governing their evolution from given
initial conditions at ¢ = 0, is built on exponential basis functions, e*?, and is considered in depth in §8.2.

The Z transform, appropriate for the analysis of discrete-time signals on semi-infinite domains
ti € {0,h,2h,...}, as well as for the analysis of difference equations governing their evolution from given
initial condltlons around tq = 0, is built on polynomial basis functions, 251, and is considered in depth in §8.3.

The use of Fourier transforms to analyze systems (specifically, using Bode plots) is examined in §8.4.

8.1 Introduction to transforms: Fourier, Laplace, and 7

Recall first the tetralogy of Fourier representations®, which are defined for both continuous and discrete func-
tions, on both bounded and infinite domains:

1. The forward and inverse infinite Fourier series transform [see §5.2 of NR], defined for continuous signals
u(t) on bounded domainst € [0,T) with w,, = 2mn/T forn € {...,—2,—1,0,1,2,...}, are defined by

:_/ ertdt & u(t) = Z e rt, (8.1a)

2. The forward and inverse infinite Fourier integral transform [see §5.3 of NR], defined for continuous signals
u(t) on infinite domainst € (—o00, 00) with w € (—00, 00), are defined” by

1 o0 . o0)
— / ult)eWrdt < u(t) = / i(w)e dw. (8.1b)

21 o]

3. The forward and inverse finite Fourier series transform [see §5.4 of NR], defined for discrete signals
ur, = u(ty) on bounded domains t, = kh for k = {0,...,N — 1} and h = T/N with’> w, = 2mn/T for
n € {—=N/2,...,N/2}, are defined by

u(w) =

N-1 N/2
1 . _
Up = N g upe et ey, = g T e “nt, (8.1¢)
k=0 n=—NJ/2

4. The forward and inverse finite Fourier integral transform [Exercise 5.2 of NR], defined for discrete signals
uy = u(tg) on infinite domains t;, = khfork = {...,—2,-1,0,1,2,...} withw € (—x/h,7/h), are defined by

- . m/h .
=5 Z upe N & :/ / i(w)e' dw. (8.1d)
k=—o00 —m/h

Similarly, the forward and inverse Laplace transform [developed in §8.2], defined for continuous signals
u(t) on semi-infinite domains, t € [0, 00), are defined by

00 1 vy-+ioco
U(s) = / u(t)e Pt & u(t) = —/ Ul(s)e®'ds, (8.2)
0 2mi y—ioco
and the forward and inverse Z transform [developed in §8.3], defined for discrete signals u;, = wu(ty) on

semi-infinite domains, t, = kh for k = {0,1,2,...}, are defined by

- 1
:Zukz_k & up=— ¢ U(2)2" 1 dz (8.3)

27T1 T

3Time permitting, it is instructive at this point to also examine various other aspects of Fourier representations; see §5 of NR.
“Different authors place the factor of 1/(27) in the Fourier integral (8.1b) in different ways (see Footnote 10 in §5.4 of NR).
*Note in particular the discussion in §5.5 of NR of the peculiar component of this signal at the Nyquist frequency wy/» = 7N/T.

8-2

http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

8.1.1 The relation of the Laplace and Z transforms to the Fourier transform

At the outset, note that the Laplace transform at right in (8.2) is simply a representation, or “expansion”, of a
continuous function u(t) on ¢t € [0, 00) as a linear combination of a set of exponential basis functions e** with
the coefficient function U(s) as weights. Similarly, the Z transform at right in (8.3) is simply a representation
of a discrete function u, on k = 0,1,2,... as a linear combination of a set of polynomial basis functions z*~1
with the coefficient function U(z) as weights. The Laplace and Z transforms are thus remarkably similar to
the corresponding Fourier transforms (8.1b) and (8.1d), respectively, which similarly represent continuous and
discrete functions on infinite domains as a linear combination of a set of complex exponential basis functions
with the Fourier coefficients as weights. Indeed, noting the definition of the Laplace transform in (8.2) and the
infinite Fourier integral expansion in (8.1b), it follows (taking s = iw) that

U(s) = /Oou(t)e_”dt '
1 e = dw) = 2—U(iw) if u(t) =0 for ¢t <O. (8.4)
ﬁ(w> / U(t)eiiwtdt s

:ﬁ n

Similarly, noting the definition of the Z transform in (8.3) and the finite Fourier integral expansion in (8.1d), it
follows (taking z = e*" with s = iw) that

U(z) = Z upz "
k=0

h — .
(w) = 7 Z uge

k=—o00

h .
= d(w)= %U(G‘Wh) if wu, =0 for k <O. (8.5)

8.1.2 The remarkable utility of such transforms

The utility of the Fourier transform in the identification and analysis of the various sinusoidal components of
a signal at different temporal “wavenumbers” or spatial “frequencies” should already be well familiar to the
reader. Indeed, any aspiring young audiophile is already familiar with the need to route the “low-frequency
sinusoidal components” of an audio signal to a woofer, to route the “high-frequency sinusoidal components”
of an audio signal to a tweeter, and to dampen the “highest-frequency sinusoidal components” of an audio
signal associated with noise, which can come from a variety of sources; the Fourier transform simply makes
this decomposition of a signal into sinusoidal components at different frequencies mathematically precise.

The Laplace and Z transforms are similarly natural for the analysis of the evolution of continuous-time
(CT) systems and discrete-time (DT) systems from initial conditions, governed by differential equations and
difference equations respectively. As such transform methods are centrally based on an abstraction (the tem-
poral frequency w or spatial wavenumber £ in the case of the Fourier transforms, the exponential scaling s in
the case of the Laplace transform, and the base of the polynomial expansion, z, in the case of the Z transform),
they require a bit of analysis, as provided in §8.2 and §8.3, before their utility is fully apparent.

It should be noted at the outset that all of these transforms are linear: that is, if X and Y are the (Fourier,
Laplace, or Z) transforms of x and y, then W = aX + BY is the corresponding transform of w = ax + By.
Further, all of these transforms are invertible: that is, knowledge of the untransformed variable = over the
appropriate region of the physical domain is sufficient to reconstruct the transformed variable X over the
abstracted domain, and knowledge of the transformed variable X over the appropriate region of the abstracted
domain is sufficient to reconstruct the untransformed variable x over the physical domain. These two points
are essential to the practical utility of analysis, filtering, and control techniques based on such transforms.

8-3

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

45 T T T 80 T T T 60 T T T
40 - 1 70t 1
50 F .
35 F .
60 | 1
30 b 1 40 b 1
50 | .
25 - .
40 F 4 30} .
20 - .
\ 30 F , .
15 1 A . | 20 - I .
I I
I 20 l 1 il
10 | () . \ i
I k |
if | \ 10r it T
5r I 1 107 | i I
— “~ h N
/// \\\ \\\\ (N
// /' \\ \\ \‘ ~ \\ ~N
O =1 72 1 S | 0 1 Il O 1 S Il
0.2 0 0.2 0.2 0 0.2 0.2 0 0.2

Figure 8.1: Three families of curves of unit area that are nonzero only in the immediate vicinity of the origin:
(left) the two-sided function 67 (t) = e‘t2/(2”2)/(a 27) taking (dashed) o = 0.1, (dot-dashed) o = 0.025, and
(solid) o = 0.01, and (center, right) the one-sided function 6*™(t) = A"t~ e=A2/m=D! for t > 0, with m = 2
and m = 3, respectively, taking (dashed) A = 20, (dot-dashed) A = 80, and (solid) A = 200. As ¢ — 0 in the
definition of §9(t), and as A — oo in the definition of §}™(¢) for m > 2, these curves become increasingly
accurate finite approximations of the Dirac Delta, as discussed at length in §5.3.3 and §5.3.4 of NR. Note that,
for m > 2, ™ (t) and all its derivatives up to order m — 2 are continuous at the origin.

8.2 Laplace transform methods

The (one-sided) Laplace transform F'(s) of a continuous-time (CT) signal f(t) is, in general, defined as

F(s) = lim / N f(t)e stdt = N f(t)e*tdt. (8.6)
—€ 0~

e—0

In this text, we restrict all CT unit impulses to be constructed as the large A limit of the one-sided function
of unit area ™ (t), as defined and plotted in Figure 8.1b and c, rather than the small o limit of the two-sided
function of unit area 07 (¢), as defined and plotted in Figure 8.1a. That is, we define the Dirac delta in this work as
the limit of some smooth function of unit area that begins at the time of the impulse and is zero before it, rather
than being centered at the time of the impulse, in the limit that the duration of the impulse is infinitesimally
short. In this restricted® setting, the Laplace transform may be defined (see LePage 1961) more simply as

F(s) = /OOO f(t)e *tdt. (8.7a)

®This “restriction” is said to be technical; that is, it narrows the precise mathematical setting in which the transform definition
may be used, but in application does not limit the practical problems to which the transform may, when used correctly, be applied.

8-4

http://robotics.ucsd.edu/nr

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

Given a function f(t) for t > 0 restricted as stated above, we define F'(s) via (8.7a); the inverse Laplace
transform is then ,
1 y+ioco . td :
t) = — s 8.7
=g | FO)as (5.7
where the real number v is chosen such that the vertical line of the contour in the complex plane s as given in
the above integral is to the right of all of the singularities” of F'(s).
Verification that (8.7b) in fact represents the inverse of the relationship expressed in (8.7a) is straightforward,
by substituting (8.7a) into the RHS of (8.7b), substituting s = v + ik, applying Fubini’s theorem (see Footnote
2 in §5.2.1 of NR), and noting that, for sufficiently large 7, f(¢) is indeed recovered:

’y—i—loo
o / £ —stdt} e*! ds = lim 2—/ / F(1) 1ttt eiklt=t) dt’]idk
i —00 2471

—;Pi%o/o f(t')e%t—f)[/f;% aar dt’_/o F()] 6t —) dt’ = f(8),

where the definition of the Dirac delta given in §5.2.2 of NR has been applied in the second line. The reason
that the ¢7(~*) factor, for sufficiently large positive 7, is required by this formula is to ensure that the term
g(t) = [f(t") e7~1)] decays to zero exponentially as ¢ — oo, which allows us to swap the order of the integrals
using Fubini’s theorem and obtain the result that [~ g(') (¢t — ') dt' = g(t).

As discussed further below, the forward and inverse transforms expressed by (8.7) are immensely useful
when solving differential equations (in CT). By (8.7a), knowing f(t) for t > 0, one can define F(s) for any
s. Conversely, by (8.7b), knowing F'(s) on an appropriate contour, one can determine f(t) for t > 0. Before
demonstrating further why such a transformation is useful, we first mention that, in practice, you do not actually
need to compute the somewhat involved integrals given in (8.7) in order to use the Laplace transform effectively.
Rather, leveraging the linearity of this transform and the process of partial fraction expansion, it is sufficient to
reference a table listing some Laplace transform pairs in a few special cases, as shown in Table 8.1. Note also
the following;:

Fact 8.1 The Laplace transform is linear; that is, superposition holds, and thus if the Laplace transforms of

x(t) andy(t) are X (s) and Y (s), then the Laplace transform of w(t) = ax(t) + By(t) isW(s) = aX(s)+ Y (s).

Fact 8.2 Ifthe Laplace transform off() is F'(s), then the Laplace transform of the exponentially scaled function
g(t) = e‘“tf(is G fo (5+”)tdt = F(s + a), and the Laplace transform of the delay function

g(t) = f(t—d)isG(s fo Ye Stdt = f:’;, f(t)e stHdat = e=ds [(s).

Note in Table 8.1 that the Laplace transform of the delay function, f(t) = 6*™(t —d) for d > 0 and m > 2
in the limit of large), is F'(s) = e~%. This is not a rational function® of s, which is inconvenient. The following
Padé approximation of F'(s) = ¢, valid for small values of |ds|, is thus convenient to use in its place

e~y Fy(s) 2 > a(—ds)* o (m+n—Fk)m! b — (m+n— k) n!
o Shoobe(ds)t T) K =B T (m n) kL (n— k)L

(8.8a)

"That is, the contour of integration in (8.7b) is chosen to the right of all points 5 for which |F(s)] — oo as s — 5 in (8.7a).

8A rational function of s is a polynomial in s divided by another polynomial in s. Both polynomials are often normalized such
that the leading coefficient of the polynomial in the denominator is monic (that is, has a leading coefficient of one). In addition, the
polynomial in the numerator of a rational function is sometimes normalized to be monic, with its leading coefficient factored out
(this coefficient is called the gain, and is often denoted K). Further, the numerator and denominator are often factored; the roots of
the polynomial in the denominator are called poles, and the roots of the polynomial in the numerator are called zeros.

8-5

http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr

Renaissance Robotics (v.2024-05-16)

Chapter 8: Signals & Systems

f(t) (fort >0)

fr (fork=0,1,...)

F(z)

at

,,,k:

krk
kZTk
k3Tk

kPrk (for integer p > 0)

z/(z—=1)
rz/(z—r)?
rz(z+r)/(z—r)?
rz(z2 +4rz+1r?)
(z —r)t
Li_p(r/z)

e /(s —a)
t et 1/(s —a)?
t2 eat 2/(s —a)?
t? e (for integer p > 0) | p!/(s — a)P™!
1 [i.e., f(t) = Ho(t)] 1/s
t 1/s?
t? 2/s3
t? (for integer p > 0) pl/sPtl
SM(t) (form > 2) PR 1
oA (t —d) (for d > 0) = e 4
d[od™ (b)) /dt = &' (t) s
[N (1)) /dt? & 6" () — s

1[e.g., fx = Hol

z/(z=1)

k z/(z—1)2

k? 2(z+1)/(z —1)3
kP (for integer p > 0) Li_,(1/z)

Sok 1
dar (for integer d > 0) 1/24

cos(wgt)

sin(wgt)
e~ 7" cos(wgt)
e 7" sin(wgqt)

cosh(at)
sinh(at)

s/(s* + w?)
wa/(s* + w3)
S+ o

(s+0)* +wj

Wy

(s40)? + w?

s/(s* — a?)

a/(s* — a?)

z[z — r cos(0)]

k
r* cos(0k) 22— 271z cos(0) + r?
L zr sin(0)
r sin(0k) 22— 271z cos(f) +1r?
r* Hyp r/(z—r)
(k — 1) 7k Hyp r?/(z —r)?

(k —2)(k —1)r* Ha,
(k—3)(k—2)(k —1)rk Hy,
(k—=p)---(k— 1)7"k Hpi1

273 /(z —1r)3
67rt/(z —r)?

plrptl) (z —)Pt

Table 8.1: Tables of (left) some Laplace transform pairs, as considered in §8.2, and (right) some Z transform
pairs, as considered in §8.3. The values of the CT fns f(t) for t < 0, and the values of the DT fns f;, for k < 0,
do not affect the above calculations. Note that:

e The CT unit impulse (aka the Dirac delta) in this work is defined via the large A limit of the one-sided
function §*™(t) for some integer m > 2 (see Figures 8.1b and c), and is thus taken to begin at t = 0.

e The CT unit step (aka the CT Heaviside step fn) is defined as H(t) = 0 for t < 0 and Hy(t) = 1 fort > 0.
e The DT unit impulse is defined via the Kronecker delta such that d;, = 1 for k = d and 4 = 0 for k # d.
e The DT unit step (aka the DT Heaviside step fn) is defined as Hy, = 0 for k < d and Hy, = 1 for k > d.
e Also, the polylogarithm Li_,(x) is defined such that Li_,(z) = (v d/dx)?[x/(1 — x)].

Such rational approximations of =% have m RHP zeros and n LHP poles. Examples include

Fya(s) = s —6s/d+12/d*> _ (s+pi)(s+p-)
’ s?+6s/d+12/d* (s —pi)(s—p-)
—45%/d + 6052 /d? — 360s/d* + 840/d* st —20s%/d + 180s% /d® — 840s/d® + 1680/d*
st + 1653 /d + 12052 /d2? + 480s/d3 + 840/d*’ st 4 20s%/d + 180s2 /d? + 840s/d?® + 1680/d*’

RR_pade.m generates other approximations, and plots the poles & zeros, and the step & ramp response, of each.
One often takes m = n, but note that taking m slightly less than n generates a smoother step response.

where py = (=3 % V/3i)/d, (8.8b)

Fs, = 44 =

8-6

https://github.com/tbewley/RR/blob/main/chap08/RR_pade.m

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

8.2.1 The Laplace Transform of derivatives and integrals of functions

Assume f(t) is smooth and bounded and define f()(t) = df (t)/dt = f'(t). Then, by integration by parts [i.e.,
fabudv = (uw)b — fabv du, taking u = e~** and dv = f()(t) dt], the Laplace transform of f(1)(t) is given by

00 b
D(s) = / fO@) e stdt = blim / fO () tdt
0 —oo J

b (8.9a)
= lim [e_Sbf(a) — f(0) + s/ e‘“f(t)dt} = sF(s) — f(0)
b—o0 0
for R(s) > 0. Similarly, if f@(t) = d2f(t)/dt*> = f"(t) and f™(t) = d" f(t)/dt", then
FO(s) = / N fAM e stdt = ... = s*F(s) — sf(0) — f(0), (8.9b)
0
= /OO fMt) e stdt = ... = s"F(s) — s" 1 f(0) — s" 2 fD(0) — ... — f"=D(0). (8.9¢)
0
Thus lff () = df(t)/dt, then FV(s) = sF(s) — f(0). Conversely, by integration, it therefore follows that, if

fo)(#')dt', and thus f(0) = 0, h en F(s) = 2FW(s). We thus arrive at the most useful interpretation
ofthe s varlable

Fact 8.3 Multiplication of the Laplace transform of a CT signal by s corresponds to differentiation of this signal in
the time domain, multiplication times s* corresponds to twice differentiation, etc. Conversely, multiplication by 1/s
corresponds to integration of this signal (from t = 0), multiplication by 1/s* corresponds to double integration, etc.

Note that, with f((t) = df (t)/dt,

ing [P (s)] = tim [[~ 100 at] = [t [0 a = [T 100 = 500 - 500)

Combining this result with that achieved by taking the limit of (8.9a) as s — 0, it follows that
Fact 8.4 (The CT final value theorem) lir% sF(s) = tlim f@).
S—r —00

If we now consider the limit as s — oo instead of s — 0, we have to be a bit more careful. In the case in which
f(t)isascalar c = lim._,q f(€) — f(0) times a (left-continuous) unit step plus other terms which are continuous
near the origin, we define f!)(t) (kept under the integral sign; see Fact 5.6 of NVR) as the scalar c times the Dirac
delta’ plus other terms which are bounded near the origin. From the sifting property of the Dirac delta [see
(5.21c) of NR], it follows by taking the limit of (8.9a) as s — oo that ¢ = lim,_,, sF'(s) — f(0), and thus

Fact 8.5 (The CT initial value theorem) lim sF'(s) = lim f(¢).

5—+00 t—0t

°In this case, the Dirac delta §(¢) may be defined via the effect of a one-sided impulse function of unit area, specifically 6*™(t)
for m > 2 in the limit of large A (see Figure 8.1b-c), when kept under the integral sign and integrated against some test function, as
discussed in detail in §5.3.4 of NR.

8-7

https://en.wikipedia.org/wiki/Continuous_function#Directional_and_semi-continuity
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

8.2.2 Using the Laplace Transform to solve unforced linear differential equations
Consider the unforced linear constant-coefficient second-order differential equation given by
") +ar f'(t) +aof(t) =0 with f(0), f'(0) given. (8.10)

Taking the Laplace transform of this equation and applying the above relations gives

/Ooo{f”(t) +af'(t) +aof(t) =0}e™*'dt = [s°F(s) = sf(0) = f(0)] + ai[sF(s) — f(0)] + ao[F(s)] = 0
1S + ¢

= F(s)= T
() s2+ a5+ ag

where ¢; = f(0), co = f'(0) + arf(0).

Defining the roots of the denominator p. = (—a; + /a2 — 4a0)/2, known as the poles of this second-order
equation, and performing a partial fraction expansion', it follows that

d _ Gpy t+ 0o
d d_ dy +d_=c T —pn_’

F(s) = €8 + =+ 4 = * RGN p+—p
(s=pi)(s—p-) s—pr s—p- —dyp- —d_py = g = ar-tca
p-—Dp+

Thus, by Table 8.1a and the linearity of the Laplace transform (Fact 8.1, from which the superposition principle
follows immediately), we deduce that
f(t) =dye" +d e, (8.11)

thus solving the original differential equation (8.10). It is seen that, if the real parts of the poles p are negative,
the magnitude of the solution decays with time, whereas if the real parts of p. are positive, the magnitude
of the solution grows with time. Also note that, if the coefficients {a, a1} and initial conditions {f(0), f'(0)}
defining the system in (8.10) are real, then the roots p. are either real or a complex conjugate pair, and thus
the solution f(t) given by (8.11) is real even though the roots p+ might be complex.

Higher-order unforced constant-coefficient CT linear differential equations of the form

FOE) + ana fOV@) + . Farf'(t) +aof(t) =0,

may be solved analogously, again leveraging partial fraction expansions (see RR_partial_fraction_expansion) to
split up F'(s) into simple terms whose inverse Laplace transforms may be found in Table 8.1a. In such cases,
as in the second-order case discussed above, the speed of oscillation and the rate of decay or growth of the
various components of the solution are characterized solely by the poles [that is, in this case, the roots of
" + ap_18"" 1+ ...+ ays + ap = 0], whereas how much of each of these components this solution actually
contains, in addition to their relative phase, is a function of the initial conditions on f(¢) and its derivatives.

The pedestrian way of computing the coefficients of a partial fraction expansion is to multiply the RHS factors [in this case,
dy /(s —py)and d_/(s — p_)] by simple rational expressions of s, equivalent to unity, in order to form a common denominator
with the LHS, then setting like powers of s in the numerator on the LHS and RHS as equal and solving the resulting set of linear
equations, as indicated here in curly brackets. A more direct way to compute these coefficients is the Heaviside Cover-up Method
in which, for strictly proper F'(s) (see §8.2.3.1) with no repeated roots in the denominator, you simply multiply F'(s) by one of the
factors in its denominator [in this case, say, (s — p4)], cancel this term everywhere it now appears in both the numerator and the
denominator, and then evaluate what is left as s approaches this root [in this case, as s — p]. In the present case, this gives:

s fe-rfeity -t il - m TRy - 1)

Since the last term on the RHS goes to zero in the s — p, limit, this gives d; = (c1p+ + ¢9)/(p+ — p—), consistent with the
answer found using the method of simultaneous equations; d_ may be computed similarly, and the method extends immediately to
higher-order rational functions with distinct poles. Generalization to rational function with repeated poles is given in §B of NR.

8-8

https://github.com/tbewley/RR/blob/main/chapAA/RR_tf.m#L183-L223
https://en.wikipedia.org/wiki/Heaviside_cover-up_method
http://robotics.ucsd.edu/nr

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

8.2.3 Continuous-time (CT) transfer functions

Now consider the forced, CT, linear time invariant (LTI; that is, constant-coefficient), single input, single
output (SISO) second-order ODE for y(t) (the output) given by

Yy (t) + a1y (t) + aoy(t) = bou(t), (8.12)

where u(t) (the input) is specified, assuming y(t) and y/(t) are zero at ¢ = 0. Taking the Laplace transform
now gives

/Ooo{y”(t) + a1y (t) + apy(t) = bou(t) }e 5'dt = [s* +ais + aolY (s) = boU(s)

A Y(S) . bo . bo
= Gl) = U(s) s24as+ay (s—p)(s—p) ®.13)

where, again, the poles p,. = (—a;++/a? — 4a0)/2. The quantity G(s) given above is known as the transfer
function of the linear system (8.12).
Higher-order forced SISO constant-coefficient CT linear systems of the form

Y () + a1y V() o ary) (8) F agy(t) = bpu™ (E) 4 by ™ T (#) A by (1) + bou(t), (8.14)

with b, # 0 [and, normally, m < n; see §8.2.3.1], may be manipulated in an analogous manner, leading to a
transfer function of the rational form

Y(s) byns" 4 bp1s™ 4. Fbis+by K(S_Zl)(S_ZQ)"‘(S_Zm)

G(s) = :
(s) Ul(s) S+ ap_18" 4+ as+ag (s —p1)(s—p2)- - (s—pn)

(8.15)

The m roots of the numerator, z;, are referred to as the zeros of the system, the n roots of the denomenator,
p;, are referred to as the poles of the system, and the coefficient K is referred to as the gain of the system.

Note that a differential equation governing a CT system with mechanical and/or electrical components,
taken on its own, simply relates, at a single instant in time, linear combinations of two or more variables and
their derivatives. Such a differential equation does not itself indicate one variable as a “cause” and another as an
“effect” in a cause-effect relationship; the indication of that is left to the engineer. The statement of a transfer
function, however, inherently defines a cause-effect or input-output relationship; in the examples discussed
above, by putting U(s) in the denominator and Y (s) in the numerator, u(t) is identified as the “input” (the
prescribed quantity put into the system), and y(t) is identified as the “output” (a resulting quantity generated
by action of the system). This distinction between input and output, imposed by the engineer, is significant.

Further, as a differential equation only relates variables and their derivatives in a particular CT system at
a single instant in time, there is no notion of “causality” associated with a differential equation''. However,
differential equations that are actually implementable as physical systems or electric circuits generally have
higher-order derivatives on the output than they do on the input, as discussed further in §8.2.3.1.

Given a CT linear system’s transfer function G(s), its response to simple inputs is easy to compute. Noting
Table 8.1a:

e if u(t) is a unit impulse [u(t) = 6™ (t) for large X and integer m > 1], then U(s) ~ 1;
o if u(t) is a unit step [u(t) = Hy(t); then U(s) = 1/s;
e if u(t) is a unit ramp [u(t) = ¢ for t > 0], then U(s) = 1/s?, etc.

"This is in contrast to difference equations relating DT signals at different timesteps, as discussed in §8.3.3; see in particular §8.3.3.2.

8-9

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

In such cases, Y (s) = G(s)U(s) is easy to compute, and thus y(t) may be found by partial fraction expansion
(again, see RR_partial_fraction_expansion for automation of this process) and subsequent inverse Laplace trans-
form. As in the unforced case discussed in §8.2.2, the speed of oscillation and the rate of decay or growth of
the various components of the system’s response to a simple input is characterized solely by the poles of the
system, whereas how much of each of these components this response actually contains, in addition to their
relative phase, is a function of its zeros and gain.

It is important to keep clear the distinction between the Laplace transform (a.k.a. transfer function) of a
system, such as G(s) above, and the Laplace transform of a signal, such as Y (s) above. To make clear the
connection between them, note in the special case that the input to the system happens to be a unit impulse
u(t) = §»™(t) for large X and integer m > 2, it follows that U(s) ~ 1 and thus Y (s) ~ G(s). In other words,

Fact 8.6 The transfer function of a CT linear system is the Laplace transform of its impulse response.

It follows from the relation Y(s) = G(s)U(s), expanding Y (s), G(s), and U(s) with the Laplace transform
(8.7a), noting that the impulse response g(t) = 0 for t < 0 (that is, that the system is causal, as discussed
above), that

[bo]etan= [t [Tuear= [Tu) ([g(t)e_”dt> a
- /ooou(t/> (/0009“ - t'>€s(”')dt> e dt = /0 N [/0 (gl —) dt/] et

from which we deduce that, fort > 0,

y(t) = /0 Cu(t)g(t — 1)t (8.16)

note in particular that y(¢) ~ g(t) when u(t) = 6*™(t) for large \. Thus, as similarly noted for the Fourier
transform in Fact 5.4 of NR,

Fact 8.7 The productY (s) = G(s)U(s) in Laplace transform space corresponds to a convolution integral [of the
input u(t) with the impulse response g(t)] in the untransformed space.

Products are generally much easier to work with than convolution integrals, thus highlighting the utility of the
Laplace transform when solving constant-coefficient CT linear systems.

8.2.3.1 Proper, strictly proper, and improper CT systems

We now revisit the differential equation in (8.14) and its corresponding transfer function in (8.15), where the
degree of the polynomial in the numerator is m, and the degree of the polynomial in the denominator is n.
Define the relative degree of such a transfer function as n, = n — m. In CT, such systems are said to
be improper if n, < 0. In §10 we will further distinguish the CT systems of interest as “plants” G(s) and
“controllers” D(s). Most real plants G(s) are strictly proper, with n,, > 0 [or at least proper, with n, >
0], as most plants have some sort of inertia, capacitance, or storage which attenuates [or at least bounds]
their response at high frequencies, as characterized precisely by their Bode plots (see §8.4). Further, to avoid
amplifying high-frequency measurement noise which might be present as the measured signal is fed back to
the actuator via control feedback, it is strongly advised to use a strictly proper [or, at least, proper], controller
D(s). Thus, we will focus our attention in this study almost exclusively on the case with n, > 0. Note also that
a transfer function with n,. = 0, which is proper but not strictly proper, is occasionally said to be semi-proper.

8-10

https://github.com/tbewley/RR/blob/main/chapAA/RR_tf.m#L183-L223
http://robotics.ucsd.edu/nr

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

Example 8.1 The step response of second-order CT linear systems

We now focus further on the forced second-order case (8.12) when forced by a (CT) unit step u(t) = Hy(t):

bo bo bo 1
Gls) = s2days+ag S2+2Cwps+w? (s—py)(s—po) and U(s) = s
note that w,, is called the undamped natural frequency or speed of the system, and (is called the damping
ratio. If the poles pyL = (—al +./a} — 4a0)/2 are complex with negative real part, the solution may be written
in terms of sines and cosines modulated by a decaying exponential, as implied by (8.11). To illustrate this more
clearly, assume first that ap > 0 and 0 < a; < 2,/ay; it follows that

ag = wi and a; = 2¢w,,

noting that w,, > 0 and 0 < (< 1, it is seen (see Figure 8.2) that p» = —0 +iwy; = —Re*'? where

f=asin(, o=Cwp=0a/2 and wy=wp\/1—C=1/ag—ad2/4 = o*+uw;=uw?,

in which case, via partial fraction expansion, we may write

dy = —iby/(2

by 1 d, d dy + ‘ ibo/(de+),_

== + + —, d_=1iby/(Rwgp-) =dy,
(s=pe)(s—p-) s s—pir s—p- s 9
dozbo/wn.

Thus, by Table 8.1a, noting that y(t) = 0 for ¢ < 0, the closed-form solution of y(t) for t > 0 is given by
d,=dy +d_ = —by/u?,

dy =i(dy —d_) =d.C/\/1— (2,

as plotted in Figure 8.3 using the corresponding code in RR.ch08. Since the G(s) in this example is real, the
complex poles {p,,p_} are a conjugate pair; as u(t) in this example is also real, the coefficients {d,,d_} are
also a conjugate pair, and thus {d., d, dy}, and y(t) itself, are real. Note that the speed of oscillation wy and
the rate of decay o are simple functions of the location of the poles of G(s).

As indicated in Figure 8.3, three useful characterizations of the step response are the rise time ¢,, defined
as the time it takes the response to increase from 0.1 to 0.9 of the steady state value of the step response, the
settling time t,, defined as the total time it takes the response to settle to within 45 percent of the steady
state value of the step response, and the overshoot 1/, defined as the maximum percentage by which the
output of the system exceeds its steady-state value when the system responds to a step input. By performing
least-squares fits of the rise time, settling time, and overshoot of several such step responses of second-order
systems as a function of w,, o, and (, the following approximate relations are readily determined:

y(t) = deeP' +d_e’" + dy = e 7" [d, cos(wqt) + d sin(wat)] + do, {

ty = 1.8/wy,, tsx~4.6/0, M,= o—m/N1-¢

If the maximum values of t,, t;, and/or M, are specified, the following approximate design guides for the
admissible pole locations of a second-order system follow:

(205 for M, <15%

8.17
¢20.7 for M, <5%. (8.17)

wp 2 1.8/t,, o2 4.6/t {
Typical approximate design guides of this sort are illustrated graphically in Figure 8.4. The response of many
higher-order systems is dominated by the response due to a pair of dominant second-order poles [i.e, the
slowest (smallest w,,) poles of the system that are not approximately cancelled by nearby zeros]. Thus, these
approximate design guides are often handy even if the system is not second order.

8-11

https://github.com/tbewley/RR/blob/main/chap08/RR_Ex08_01_CT_2nd_order_step.m
https://github.com/tbewley/RR/blob/main/chap08

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

X

Figure 8.2: The poles p. of the system v (t) + 2 w,, ¥/ (t) +w? y(t) = by u(t) in the complex plane s in terms of
Wn, 0 = asin(, 0 = Cwy,, and wy = w,+/1 — (2. The response y(t) to a step input u(t) is plotted in Figure 8.3;
note that wy sets the speed of oscillation and o sets the exponential rate of decay.

1.4

T
[
< —-———————————=—=) >| 2 = N
ts | P :
L | \ / \
1.2 | 181 / \ /
[| ! ' /
/ \ /
‘Vlwp et e 16 / \ /
1 _/_/_,_,_———~ / \ /
e ' \ /
[141 ! \ /
| / \ i
081 ! ! /
= I 12f / /
~— | ! /
> ! y !
0.6 I 1 ! —
[y e
|) = \
| 0.8 / - \ I
04l y - ' /
N } / 7 \ /
06 / 2 \ /
} / 2 \ /
/ \ I
0.2 I 0.4 V4 \ /
| |4 \ /
-‘ t,’, | \ /
-~ — = > 0.2f \ /
oI ! I I I 4 \ /
2 4 6 8 10 12 \
0 I I I I I A
0 1 2 3 4 5 6 7 8 9 10

Figure 8.3: The unit step response of the system " (t) + 2w, ¥/ (t) + w2 y(t) = bou(t), forw, = 1,b =1
and (left) taking ¢ = 0.5, with the rise time, settling time, and overshoot indicated, and (right) taking ¢ = 0
(dashed), = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 (solid), and (= 1 (dot-dashed).

15F ' ' ' 0w Z o5 BB oa
09 7

_
1 77
<

LRNR

©
o
o
&
™

~
et
<IN

WA
\
A\
\
\

=
N

mnm

\
A
o

-151 L L L Z
-35 -3 -25 -2 -15

0 0.5

!
°
o

Figure 8.4: Approximate constraints, or design guides, on the admissible pole locations of a CT second-order
system (or a higher-order system whose response is dominated by a pair of second-order poles) in the complex
plane s in order to not exceed specified constraints on the rise time, settling time, and overshoot of the system’s
step response (see Figure 8.3), as specified in (8.17).

8-12

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

8.3 Z transform methods

The Z transform (a.k.a. the unilateral Z transform), F'(z), of a discrete-time (DT) signal f; for k =
0,1,2,...is defined by

F(z) = Z fez 7" (8.18a)
k=0
Given fi for k =0,1,2,..., we define F(z) via (8.18a). The inverse Z transform is given by
1 k-1
fo==— ¢ F(2)z" " dz, (8.18b)
27 T

where the complex contour I is a circle around the origin in complex plane z that is chosen to be of sufficiently
small radius that it does not contain any singularities' of F'(z) in the complex plane z.

Verification that (8.18b) represents the inverse of the relationship expressed in (8.18a) is straightforward:
substitute (8.18a) into the RHS of (8.18b) and note that f:r e"?df = 0 for integer n # 0; it is seen that, for
a contour I given by z = Re for § = (—n, 7) with sufficiently small R (thus, dz = iRe" df), f; is indeed
recovered:

1
2mi

> ! 1 g > / : / : H
[Z fuz®]Zk—l de — — Z Fo RV e70F RE=1500-1) Rioi® g
'™ rr=0

2mi)
k'=0
> o 1 T o > 1
= > fuR* [%/ O dg) =37 fie B b = fi.
k'=0 - k'=0

The reason that the R¥~* factor, for sufficiently small positive R, is required by this formula is to ensure that
the magnitude of the integrand decays to zero exponentially as £ — 0o, which allows us to swap the order of
the integral and the sum using Fubini’s theorem.

As shown below, the forward and inverse transforms expressed by (8.18) are immensely useful when solving
difference equations (in DT). By (8.18a), knowing fj for & = 0,1,2,..., one can define F'(z) on an appro-
priate contour. Conversely, by (8.18b), knowing F'(z) on an appropriate contour, one can determine f, for
k=0,1,2,... As in §3.2, before demonstrating further why such a transformation is useful, we first mention
that, in practice, you don’t actually need to compute the somewhat involved integrals given in (8.18) in order
to use the Z transform effectively. Rather, it is sufficient to reference a table listing some Z transform pairs in
a few special cases, as shown in Table 8.1b. Note also the following;:

Fact 8.8 The Z transform is linear; that is, superposition holds, and thus if the Z transforms of the sequences
xy and yy are X (z) and Y (z), then the Z transform of the sequence wy, = axy, + By, is W(z) = aX (z) + BY (2).

Fact 8.9 If the Z transform of the sequence f, is F'(z), then the Z transform of the scaled sequence g, = b* f;,
is G(z) = Y12 fx(z/b)™" = F(z/b), and the Z transform of the delayed sequence gy = fix_q is G(z) =
Y ico fraz™F = F(2)/2%.

2That is, the circular contour of integration in the (8.18b) is chosen to be of sufficiently small radius that it does not contain any
points Z for which |F(z)| — oo as z — Z in (8.18a).

8-13

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

8.3.1 The Z Transform of translated sequences

Define f,gl] = fra1 fork=0,1,2,.... Then the Z transform of fk[:l] is given by

U2y =3 (e =23 faz B =23 fa T = 2P (z) - 2o (8.19)
k=0 k=0 k=1

Similarly, if £ = fi12 and fI" = fisn, then

F[2 f: 2] —k _ 2p (Z)—22f0—2f1, F[n ka sk (2)_an0_zn_1f1_‘--_an—l-

k=0

Thus, if f,gl] = fri1, then FIU(2) = 2F(2) — zfy. Conversely, it follows that, if f,., = f,LH fork =0,1,2,...
with fo = 0, then F(z) = 1FI(2). We thus arrive at the most useful interpretation of the z variable:

Fact 8.10 Multiplication of the Z transform of a DT signal by z corresponds to an advance of this signal by one
timestep, multiplication times z* corresponds to an advance by two timesteps, etc. Conversely, multiplication by
1/z corresponds to a delay by one timestep, multiplication by 1/2* corresponds to a delay by two timesteps, etc.

Defining a new sequence g = fri1 — fx for all k and taking the Z transform of gy, applying (8.19), gives

0 a—1
=Y gz = [2F(z) - zfol - F(z) = lim > (s — fr)z "
k=0 k=0

Taking the limit of this expression as z — 1, noting that the limit on the RHS approaches f,, — f if the limit
indicated in the above equation is bounded, thus gives

Fact 8.11 (The DT final value theorem) Ifkhm fx is bounded, then lirr%(z —1)F(z) = lim f;.
—00 z—

k—o0

On the other hand, it follows directly from the z — oo limit of (8.18a) that

Fact 8.12 (The DT initial value theorem) lim F(z) = fo.

Z—00

8.3.2 Using the Z Transform to solve unforced linear difference equations

Now consider the unforced linear constant-coefficient second-order difference equation given by

Jry2 + a1 fopr +aofe =0 with fy, f given. (8.20)

Taking the Z transform of this equation and applying the above relations gives

D e tarfin tafi=0" = [PF(2) =2 fy — 2f] +alzF(2) = 2fo] + ao[F(2)] = 0

co2? + iz

= Flz)=——"—"—"—
(2) 22+ a1z + ao

where c; = fo, c1 = fi +aifo.

8-14

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

Defining p+ = (—a; £+ v/a? — 4ag)/2 and performing a partial fraction expansion, it follows that

£ = 2P+ + 1
L=t T
Flz) = 222 412 _ dyz N d_z N dy +d_ = ¢y N [
(z=p)(z—p-) z—py z—p- —dyp- —d_pr =1 g o ep-ta
P- —DP+
Thus, by Table 8.1b and the linearity of the Z transform (Fact 8.8), we deduce that
fr = doph +d_pt, (8.21)

thus solving the difference equation (8.20) [i.e., fx for any k can be calculated directly, without marching (8.20)].
It is seen that, if the magnitudess of both p, and p_ are less than one, the magnitude of the solution decays
with time, whereas if the magnitudes of either is greater than one, the magnitude of the solution grows with
time. Note also that taking fy = 0 and f; = 1 and ap = a; = —1 in (8.20) generates to Fibonacci’s sequence.

Higher-order linear difference equations may be solved in an identical manner, leveraging partial fraction
expansions to split up F'(z) into simple terms whose Z transforms may be found in Table 8.1b.

8.3.3 Discrete-time (DT) transfer functions

Now consider the forced linear constant-coefficient second-order difference equation, a.k.a. DT SISO LTI sys-
tem, for uy, (the output') given by
Ugy2 + Q1 Ut + ao up = by €y, (8.22)

where e;, (the input) is specified, assuming uy and ey are zero for k < 0. Taking the Z transform now gives

Z{uk+2 + ay ugy1 + ap ur = by ek}z_k = [+ a2+ ag)U(2) = by E(2)

A U(Z) . bo . bo
= D(2)2 OISR Pl ey o § (8.23)

where, again, the poles p. = (— a; + y/a} — 4a¢) /2. The quantity D(z) is known as the transfer function of
the linear system (8.22). Higher-order forced SISO constant-coefficient DT linear systems of the form

Ugan + Cp1 Ugsn—1 + - - - + a1 Ugs1 + Qo Uk = by €t + b1 €ktm—1 + - .. + b1 €x1 + bg ex (8.24a)

with b,, # 0 [and, normally, n > m; see §8.3.3.2], may be manipulated in an analogous manner, leading to a
transfer function of the form

U(z) by 2™ +bp1 2™+ .. +biz+bo _K(Z_Zl)(Z_ZQ)"‘(Z_Zm)

D(z) — —
(2) E(z) 2Vt an 12" N4 a2+ ag (z=p1)(z—=p2)-- (2 —pn)

(8.24b)

By comparison, the parallels with the CT case in §8.2.3 are clear. Note that, in implementation [see §1.5.3.2], it
is often more convenient to write (8.24a) [in the case that n > m] as

Up, = —61 Uk—1 — oo — an_l Uk_(n_l) — an Up—p T+ l_)()ek + Z_)lek—l +...+ [_)n—lek:—(n—l) + l_)nek—na (824C)

13For the sake of later convenience (in §10), we have changed the letters associated with the inputs and outputs in §8.3.3, where
we consider a DT controller D(z) = U(z)/E(z), as compared with §8.2.3, where we considered a CT plant G(s) = Y (s)/U(s).

8-15

https://en.wikipedia.org/wiki/Fibonacci_sequence

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

where, for convenience, we have renumbered the coefficients @, = a,_j and by = b,_x; this form is often
referred to as a finite impulse response (FIR) filter if a;, = 0 for £ > 0, and an infinite impulse response
(IIR) filter if not. Note that the FIR case is distinguished by an impulse response that vanishes after finite
number of steps, whereas [due to the feedback built in to the difference equation (8.24c)] the IR case is not.

Again, a difference equation governing a DT system simply relates linear combinations of two or more vari-
ables describing the system and their tap delays; such an equation does not itself indicate one variable as a
“cause” and another as an “effect”. However, the definition of a transfer function implies an input-output rela-
tionship; in the examples discussed above, e, is the input, and uy is the output. Almost all systems encountered
are causal, meaning the variable identified as the output only responds to the current and past inputs, but not
to future inputs. In the DT setting, this happens when n > m; for further discussion, see §8.3.3.2.

In the n > m (“strictly causal”) case, the MCU has a full timestep h to calculate the RHS of (8.24c) before
changing the output of u;_1 to ug. In the n = m (“semi-causal”) case, the MCU can first calculate all of
the explicit terms (i.e., those corresponding to previous timesteps) on the RHS of (8.24c). Then, when the
measurement e, comes in, the term by e, can be calculated with high priority (see §2.1.4) and added to the result
to generate uy, which can then be updated on the output pin shortly after the measurement ey, is received.

Once a (causal) DT linear system’s transfer function is known, its response to simple inputs is easy to
compute. Noting Table 8.1b, if e, is a unit impulse (that is, e, = ¢ %), then E(z) = 1, and if e is a unit step
[that is, ex = 1 for k > 0], then E(z) = z/(z — 1). In both cases, U(z) is easy to compute from (8.23), and thus
ug may be found by partial fraction expansion and subsequent inverse Z transform.

As in the CT case, it is important to keep clear the distinction between the Z transform (a.k.a. transfer
function) of a system, such as D(z) above, and the Z transform of a signal, such as E(z) above. To make clear
the connection between them, note in the special case that the input to the system happens to be a unit impulse
er, = Op k, it follows that F(z) = 1 and thus U(z) = D(z). In other words,

Fact 8.13 The transfer function of a DT linear system is the Z transform of its impulse response.
It follows from the relation U(z) = D(z) E(z), expanding U(z), D(z), and E(z) with the Z transform formula

(8.18a), noting that the impulse response dj, = 0 for k < 0 (that is, that the DT system is causal), and following
an analogous derivation as that leading to (8.16), that

3 S S W DI EN B
k=0 j=0 k=0 Jj=0 k=—j
) [es) k
= Z ej (Z dk_jZ_(k_j)) Z_j = Z [Z ejdk—j] Z_k,
§=0 k=0 k=0 L j=0
from which we deduce that, for k > 0,
k
up =Y ejdij; (8.25)
=0
note in particular that u;, = d;, when e; = 9, . Thus, as similarly noted in the CT case,

Fact 8.14 The productU(z) = D(z) E(z) in Z transform space corresponds to a convolution sum [of the input ey,
with the impulse response dy.] in the untransformed space.

Products are generally much easier to work with than convolution sums, thus highlighting the utility of the Z
transform when solving constant-coefficient DT linear systems.

8-16

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

8.3.3.1 The transfer function of a DAC - GG(s) - ADC cascade

By Fact 8.13, we may determine the transfer function of a DT system, G(z), simply by computing the response
of the system to an impulse input, u; = o, then taking the Z transform of this response. Applying this
experiment to a cascade of components given by (i) a digital-to-analog converter (DAC) implementing a
zero-order-hold' (ZOH), (ii) a CT system G(s), and (iii) an analog-to-digital converter (ADC) , noting in
this case that u(t) [that is, the input to G(s)] is simply a unit step (with Laplace transform 1/s in CT) followed
by a one-timestep-delayed negative unit step, it follows that

sh

G(z) = z{i G(s)} = (1- Z_I)Z{G(S)} _z! Z{G(S> 3 (8.26)

S S z S

where 27! corresponds to as one-timestep delay, with Laplace transform e~*", and the shorthand Z{G(s)/s}

means the Z transform of the discretization of the CT signal whose Laplace transform is G(s)/s. We will make
use of this convenient (and exact!) conversion, implemented in RR_C2D_zoh, in §10.4.2.

8.3.3.2 Causal, strictly causal, and noncausal DT systems

Define the relative degree of the DT transfer function in (8.24b) as n, = n — m, where n is the degree of
the polynomial in the denominator, and m is the degree of the polynomial in the numerator. DT systems with
n, < 0 are noncausal (i.e., the output depends, in part, on future values of the input). In §10 we will further
distinguish the systems of interest as “plants” and “controllers”s. All real DT plants G(z), or DT analogs of CT
proper (see §8.2.3.1) plants [formed, e.g., via the technique given in (8.26) of §10.4.2], are causal, with n,, > 0.
Further, any controller D(z) must only be based on available measurements, and thus must also be causal, with
ny > 0. A DT transfer function with n, = 0 in (8.24a) [that is, with by # 0 in (8.24¢)] is said to be semi-causal.
If there is significant computation time necessary to compute the control (in digital electronics) before it can be
applied to the system, it is sometimes convenient to restrict the controller to be strictly causal, with n, > 0.

If the output depends only on the current and future inputs, the transfer function is said to be anti-causal,
and if the output depends strictly on future inputs, it is said to be strictly anti-causal. We will focus our
attention exclusively on the causal case, with n,. > 0.

Example 8.2 The step response of second-order DT linear systems
We now focus further on the forced second-order case (8.22), written as Y (z) = G(z) U(z), with by = 14+a;+ay,
when forced by a unit step u; = 1 for k£ > 0; that is,

1+a1+ag 14+ a1+ ag z

G(Z):z2+alz+a0:(z—p+)(z—p_) and U(z) =

z—1

where 1 +a; +ag = (1 — p4)(1 — p_). Assuming the poles are complex, ps = (—a; = \/a — 4ag) /2 = r e*

with

r=\/ag and 0= cos '[—ai/(2r)],
and have magnitude less than one (i.e., a?/4 < ag < 1), the solution of this system may again be written in
terms of sines and cosines modulated by a decaying exponential: writing the partial fraction expansion

;

14+a1+ao
G = e’
1 d d o d p+—p—)(P+—
Y(Z) = G(Z)U(Z) = Rl R = D+ + P + 0 —(14ai+ao) —
Gopdlp) 2ol empemp Taml o= R D=
\do =1.

"That is, holding the value of the analog signal as constant between timesteps

8-17

https://github.com/tbewley/RR/blob/main/chapAA/RR_tf.m#L351-L374

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

0.8

0.6

04

0.2

L
20 25 30 20 30 40 50 60

Figure 8.5: The unit step response of the system uy o + ajuiy1 + aour = boey, where by = 1 + a; + ag, with
r = 0.7 (circles), r = 0.9 (asterisks), and r = 1.0 (squares) for § = 7 /5 (left) and § = /10 (right), where
r = \/ag and § = cos™![—a1/(2r)] (cf. Figure 8.3b). The lines in this figure are drawn to improve readability;
the DT signals are defined only at each step, indicated by the symbols.

and computing the inverse Z transform of Y(z) via Table 8.1b, noting that €% = cos(0 k) + isin(6 k), the
closed-form solution of y; for k > 0 is

do=d, +d ——1,
ds =i(dy —d_) = —(ay +2)/\/4ag — a3,

as plotted in Figure 8.5 using the corresponding code code in RR.ch08. As in the CT case, since the system
G(z) considered in this example is real, the complex poles {p, p_} come as a conjugate pair. In addition, as
consequence of the fact that the input uy to this system is also real, the coefficients {d,,d_} also work out to
be a complex conjugate pair, and thus {d., ds, dy}, and y itself, are real. Again, the speed of oscillation 6 and
the rate of decay 7 of this response are a function of the location of the poles of the transfer function p. = r €%,
Note also that yo = y; = 0; this follows directly from (8.22), noting the k£ + 2 subscript on y on the LHS and
the k subscript on v on the RHS.

As evident in Figure 8.5, rise time t,, settling time ¢,, and overshoot M, characterizations, introduced in the
CT case in Figure 8.3, may also be defined in the DT case. Appropriate design guides for the pole locations in the
z plane in order to ensure specified maximum values of ¢, 5, and M), are presented in the following subsection.

yr = diply +dpt +do = r*[decos(O k) + ds sin(k)] + 1, {

8.3.4 Reconciling the Laplace and Z transforms

We now revisit the Laplace transform as defined in (8.7a) and the Z transform as defined in (8.18a):

F(s) = /00 f(t)e *tdt, F(z) = kaz_k.
0 k=0

Note that, if we take z = e*" where h is the timestep [that is, t;, = hk and f, = f(tx)], and if h is small as com-
pared with the time scales of the variation of f(¢), then F'(z), scaled by h, is a rectangular-rule approximation
of F'(s). Another way of making this connection between the CT analysis and the DT analysis is by comparing
the closed-form solutions of the step responses of second-order CT and DT systems, as given in Examples 8.1
and 8.2. We see that the latter response is simply a discretization of the former if 7* = ¢~ and 0k = wgt; that

8-18

https://github.com/tbewley/RR/blob/main/chap08/RR_Ex08_02_DT_2nd_order_step.m
https://github.com/tbewley/RR/blob/main/chap08

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

is, if the CT second-order pole locations s4 = —o 4=iwy and the DT second-order pole locations 2z, = re®™ are
related such that » = e=?" and 0 = wyh, and thus z = re*? = e(-oFHw)h — gsih
Thus, the pole locations in DT and CT are related by the mapping
272 3713
s°h s°h
z=et=14sh+"— +—+..., (8.27)

2! 3!

as indicated in Figure 8.6. This connection is quite significant. For example, the approximate design guides for
CT systems dominated by a pair of second-order poles, as illustrated in Figure 8.4, may be mapped immedi-
ately using this relation to obtain corresponding approximate design guides for DT second-order systems, as
illustrated in Figure 8.7. It is seen that, for sinusoidal signals (that is, for » = 1), the number of timesteps per
oscillation is 27 /6. It is also seen that the settling time is related to r, with » = 0.9 corresponding to a settling
time of 43 timesteps, » = 0.8 corresponding to a settling time of 21 timesteps, and = 0.6 corresponding to a
settling time of 9 timesteps.

For small h, (8.27) provides a simple connection between s-plane pole locations in the vicinity of s = 0 and
the (scaled) z-plane pole locations in the vicinity of z = 1 via Euler’s approximation

z =~ 1+ sh. (8.28)

That is, for small h, the neighborhood of z = 1 in the z plane may be interpreted in a similar fashion as the
(scaled) neighborhood of s = 0 in the s plane, and the three families of design guides (for t,, t5, and M,) in
these two regions indeed look quite similar.

8.3.4.1 Tustin’s approximation

For larger h, Euler’s approximation is not accurate. Motivated by the accuracy analysis of the CN method given
in §7, the following rational approximation of (8.27), referred to in this setting as Tustin’s approximation (aka
the bilinear approximation, is preferred for most applications:

_l+sh/2 s*h? s°h3 22z—-1

Rl ey R R LSNPS oty
Sy e R i

(8.29)

Conveniently, both the exact mapping (8.27) and Tustin’s approximation (8.29) map the left half plane of s to
the interior of the unit circle in z; in particular, the stability boundary of s (the imaginary axis) maps to the
stability boundary of z (the unit circle). This is why Tustin’s approximation is strongly preferred over Euler’s
approximation (8.28), or other manners of truncating or approximating (8.27).

To see how to use Tustin’s rule to approximate a general CT differential equation [interpreted in §10 as a
controller] whose Laplace transform is D(s) with a DT difference equation whose Z transform is D(z), it is
useful to consider first the transfer function of the following simple differential equation, with u(¢) and e(t)
taken to be zero for ¢t < 0:

s+a du de

U)o) .
E(s) <S)_S+p = (s+pU(s)=(s+a)E(s) = Ejtpu_E_Fae,

Approximating the time derivatives in this ODE with the CN method (see §7), we may write

U — Uk—1 Up + Up—1 € — Ck—1 " o + Cr—1

h P—3 h 2

Taking the Z transform of this difference equation and rearranging leads immediately to

8-19

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

2z—-1
- +a
U(z) hz+1 sta
(=) E(z) 2z-1 ; s—i—pszgz—l (S)S:gz—l (8:30)
hz+1 hz+1 hz+1

Using Tustin’s rule (8.29), higher-order CT transfer functions D(s) may similarly be approximated with a cor-
responding DT transfer functions D(z), simply replacing each occurence of s in D(s) with %%, then reducing
to a rational expression in z, as illustrated in (8.30).

8.3.4.2 Tustin’s approximation with prewarping

The exact mapping (8.27) maps the interval on the imaginary axis between s = 0 and s = in/h to the edge of
the upper half of the unit circle (see Figure 8.6); in contrast, Tustin’s rule (8.29) maps the entire upper half of
the imaginary axis to the same region. Thus, though the stability boundaries of these two mappings coincide,
the mapping due to Tustin’s rule is warped, and is only accurate in the vicinity of s = 0 and z = 1. When
designing controllers for mixed DT/CT systems (see §10.4), there is often a frequency @ of primary concern, such
as a gain crossover frequency (see §10.2) or notch frequency (see §10.3.2). It is easy to adjust Tustin’s rule via a
prewarping strategy that scales the s plane by a factor f > 1 prior to mapping it to the z plane, thus recovering
the exact mapping (8.27) for the point s = iw (for some W < 7/h) and providing a rational and accurate
approximation of this mapping for points in the vicinity of s = iw without disrupting the correspondence of
the two stability boundaries given by the exact mapping. To accomplish this, define

_ 1+ifwh/2
1 —ifwh/2

2[1 — cos(wh)]
wh sin(wh)

iwh

f=

Note that, when @ is in the range 0 < @ < 7/h, the factor f is in the range 1 < f < oc; note specifically that
f — lasw — 0. We may then modify Tustin’s rule (8.29) such that

1+ fsh/2 2 z-1

IR & S — .

1 — fsh/2 fhz+1

(8.31)

This is referred to as Tustin’s rule with prewarping, and is conveniently implemented in code in RR_C2D_tustin;
this rule is used in §10.4.1 to develop DT controllers D(z) which have the desired behavior near a particular
frequency of interest w, mimicking the behavior of effective CT controllers D(s) designed for CT plants™.

SThough Tustin’s rule is the method of choice for converting D(s) into a DT D(z), various simple alternatives to this method are
sometimes enlightening to consider. For example, with the heuristic pole-zero mapping (a.k.a. matched z-transform) approach:
(i) All poles and finite zeros of D(s) are mapped to D(z) via z = e*".

(ii) All infinite zeros of D(s) are mapped z = —1 in D(z) (effectively, to the highest-frequency point on the stability boundary in the
z plane). If a strictly causal D(z) is required (see §8.3.3.2), one of the infinite zeros is instead mapped to z = oo in D(z).
(iii) The gain of D(z) at z = €!®" is chosen to match the gain of D(s) at s = i, either for @ = 0, or (better) for some critical @ of

interest.

8-20

https://github.com/tbewley/RR/blob/main/chapAA/RR_tf.m#L376-L390

Renaissance Robotics (v.2024-05-16) Chapter 8: Signals & Systems

0.8

0.6

0.4

S
NN AN N
AW AW AW AW AW AW AW (N

0.2

<

—4 -0 n n n n n n n n n
-8 -7 -6 -5 -4 -3 -2 -1 0 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 8.6: The mapping of several curves and points between the s plane (left) and the z plane (right) using
(8.27). Taking s = a + bi and z = re?, the shaded strip in the s plane with —oco < a < 0and —7/h <b < 7/h
maps uniquely to the shaded disk