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Preface

Leveraging emerging technologies for advanced cellphones and computer graphics, a vast assortment of small
powerful single-board computers (SBCs), operating at very low power, are readily available today for coordinat-
ing small robotic systems, with remarkable new SBCs being announced often. At the same time, an increasing
number of important applications demand creative small-scale robotic solutions, including:

• security & patrol,
• remote inspection & repair,
• mobility enhancement,
• food preparation & delivery,
• elder care & monitoring,
• nursing & feeding assistance,
• biomedical devices & prosthetics,

• minimally invasive surgery,
• pharmaceutical testing & development,
• concierge service & shopping assistance,
• precision agriculture:
- water/pesticide/fertilizer application,
- weed removal,
- fruit & vegetable harvesting,

• package delivery,
• personal transportation,
• HVAC for smart grids,
• floor cleaning & laundry,
• scientific exploration,
• environmental monitoring,
• STEM education & toys.

Additionally, real-world deployments of robust AI/ML algorithms, capable of complex contextual decision mak-
ing in highly consequential settings, are becoming increasingly capable for smart cars, autonomous flying taxis,
and other large-scale safety-critical applications, while advanced wifi, cellular, and satellite-based internet
access are becoming faster and more readily available, respectively, within buildings, across both urban and
rural areas, and over the entire planet.

An important missing link for the rapid development and deployment of small-scale robotic systems lever-
aging such existing and emerging components, and across this growing set of needs, is the availability of easy-
to-use and easy-to-extend solutions formotor control and the attendant high-current voltage regulation. In
this text, we thus endeavor to fill this void by introducing a new ecosystem of cross-platform, open-design (open
hardware + open-source software), self-contained, ARM-based carrier boards, dubbed Berets, that readily at-
tach to (a) the 5V power, and 5V TTL logic, 40-pin header on Raspberry Pi (RPi) and compatible motherboards
(MBs), including both a large number of RPi clones as well as GPU compute platforms from NVIDIA, (b) the
12V power, and 1.8V CMOS logic, 40-pin header on MBs in the 96boards CE format, including the Qualcomm
Robotics RB5 platform, or (c) other small MBs via standard SPI connections, or for standalone operation.

Chapter 5 of this text provides a detailed datasheet for this new Beret ecosystem, including an extensible
Arduino-style family of small daughterboards for further expansion options, dubbed Beret Shields. Concomi-
tant with the presentation of this ecosystem, Chapter 4 introduces a uniquely extensible connector standard
dubbed Recon that coordinates the (substantial) portfolio of connectivity options on the Berets. The rest of
Part I puts these new developments in context, with surveys of some of the current and emerging technologies
that enable the development of advanced mobile robots and cyberphysical systems, including discussions of:
• how today’s powerful and remarkably efficient SBCs work (Chapter 1),
• essential modern programming environments and languages for embedded applications (Chapter 2),
• the dominant short-range and long-range (wired and wireless) communication protocols (Chapter 3), and
• the sensors, actuators, and interfaces available that enable new game-changing applications (Chapter 6).
Part I does not include any differential equations or advanced mathematics, and should be accessible to all
“makers” (in high school and beyond) who want to significantly upgrade their technological portfolios.
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Part II then provides brief introductions to some of the essential theory used in modern robotics, including:

• Robot Kinematics & Dynamics (Chapter 7),
• Numerical Methods 101 (Chapter 8),
• Signals & Systems (Chapter 9),
• Circuits (Chapter 10),
• Classical Control (Chapter 11), and
•Motion Planning (Chapter 12).

• Linear Error-Correcting Codes (Chapter 13),
A key skill that separates curious “makers” from professional “roboticists” is the analysis that facilitates min-
imalist, power-efficient, cost-effective, safe, and responsive cyber-physical design. The core material in Part II
(at the level of university undergraduate courses on each of the respective subjects, often taught in the tradi-
tional engineering fields of ME, AE, EE, or CS), though by no means exhaustive, form the essential theoretical
foundations for performing such analysis-based design of robotic systems. A companion volume by the same
author, Numerical Renaissance (NR, occasional forward references to which are made in this text), delves much
deeper (at the level of university graduate courses) into the key theories and algorithms in many related areas,
specifically extending the foundations laid in Chapters 8 and 11.

Finally, Part III motivates some ideas related to robotic system design, development, and integration, in-
cluding brief discussions of

• Open vs Proprietary Development Models (Chapter 14),
• Crowd Funding vs Venture Capital (Chapter 15),
• Computer Aided Design & Manufacturing (CAD/CAM) (Chapter 16), and
• various Design Paradigms (Chapter 17).

The text concludes (in Chapter 18) with a detailed case study of a fascinating educational robotics platform,
dubbed myMiP, demonstrating multithreaded multirate feedback, as depicted on the book cover.

The numerical codes related to each chapter, designed to run in both Matlab and Octave, are free and open
source, and are available at

https://github.com/tbewley/RR
Note that all codes in the Renaissance Robotics codebase are Copyright 2024 by Thomas Bewley, and distributed
under the BSD 3-Clause License. Please help us improve this effort by submitting bug fixes, broken links, typos1,
etc. via the above site. Note that a few Easter eggs are also interspersed throughout this text (mostly as links
in the pdf version), which are included in an attempt to keep you on your toes2.

1The two dots over the second vowel in common words like in naïve, Noël, and reëlect is called a diaeresis, which may be placed
over a vowel to indicate that it is sounded in a separate syllable in situations that might otherwise be ambiguous. For example, adding
“co” to “operative” gives a word which might easily be mispronounced if some form of diacritic is not used. One could suggest using
a hyphen, but then adding a second prefix (as is often done in scientific writing) becomes problematic: both nonco-operative and
non-co-operative are downright silly, but noncoöperative works fine. This text, like the New Yorker, thus adopts a style that makes
extensive use of diaereses. This approach is hopefully well received by anyone named Anaïs, Brontë, Chloë, Eloïse, Gaëlle, Joëlle,
Maëlle, Zoë, Ismaël, Joël, Laocoön, Loïc, Maël, Noël, Raphaël, etc, reading this text; to all others, please forgive this idiösyncrasy.

2Reasoning, Circular: see explanation of Circular Reasoning in footnote on Page R-2.
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Chapter 1

Cybernetics

Cybernetics is the science of communications and automatic control systems in machines and living things.
For the desired degree of responsiveness and reliability in cyber-physical systems, the effective coordination
of such machines generally requires a certain degree of edge computing (decentralized, calculated on the
machines themselves). Cloud computing (centralized on large remote clusters of computers, aka servers),
together with fast wired (§4.2-4.3) or wireless (§4.4) communication protocols, often complements edge com-
puting for complex coordination tasks. We thus begin this study with a survey of the essential ideas andmodern
technologies that underlie the remarkable performance of both small computers and large servers today.

Contents
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1.1 Bits & bytes, gates, integers, floats, and parity
We focus initially on a brief review of binary states, binary logic, and math with binary forms.

1.1.1 CMOS vs TTL logic levels; binary & hexadecimal number systems
The starting point for the binary (two-state) digital logic used in modern computers is the binary digit (bit),
a signal voltage that is either logical low (near GND), logical high (near the supply voltage, VCC), or quickly
transitioning from one of these binary states to the other. In CPU cores, such transitions are synchronized
with clock pulses that coordinate the corresponding computations. Different microcontrollers (MCUs) and
peripherals, and indeed different regions within a single MCU, use different operating voltages.

Within CPU cores, low-voltage complementary metal oxide semiconductor (CMOS) logic levels are
used, operating at a reduced voltage (usually called VDD, typically less than VCC), often taken as one of the fol-
lowing: {3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 1.0V, 0.9V, . . .}, with signals in the range (0,VDD/3) interpreted as logical low,
and in the range (2VDD/3,VDD) interpreted as logical high. To improve performance in light of ever-decreasing
transistor sizes, the value of VDD used within CPU cores has been gradually decreasing over the years. Note
also that most modern MCUs incorporate one or more low-dropout (LDO) regulators to provide stable power
at the precise (reduced) voltage, VDD, necessary for the MCU to function properly.

Between the MCU and other components (elsewhere on the motherboard, on daughterboards, or on the
electromechanical system itself), transistor-transistor logic (TTL) levels are often1 used, with the range
(0, 0.8 V) interpreted as logical low, and (2 V, VCC) interpreted as logical high, where VCC is either 3.3 V or 5 V.
MCUs with 3.3 V TTL inputs & outputs (i/o) can thus communicate seamlessly with 5V TTL peripherals;
however (warning!) this only works if those pins set as inputs on the 3.3V TTL device are rated as 5V tolerant,
which must be checked. If they are not, a level shifter must be used between the two connected devices.

A collection of 4 bits is called a nibble, which represents a number between 010 (a.k.a. 00002 or 016) and
1510 (a.k.a. 11112 or F16), where in this text the subscript indicates the base of the number system used, with 2
denoting binary, 10 denoting decimal, and 16 denoting hexadecimal notations. Similarly, a collection of 8 bits
is called a byte, which represents a number between 010 (a.k.a. 0000 00002 or 0016) and 25510 (a.k.a. 1111 11112
or FF16). Many alternative notations are used to indicate the representation of numbers with different bases,
including, for example, the representation of 184 in decimal (which is commonly indicated with no ornamenta-
tion) as 0b10111000 or 1011 1000b in binary, and as 0xB8 or #B8 in hexadecimal.

A collection of 3 bits may be used to represent a number between 08 (a.k.a. 0002) and 78 (a.k.a. 1112),
referred to as an octal (base-8) number. Three octal digits (that is, 9 bits, denoted rwxrwxrwx) are used by the
linux chmod command to set {read, write, execute} permissions on a file for the {owner, group, world}.

Tri-state (aka, ternary, three-value logic, or 3VL) is also sometimes used in creative ways in embedded
systems, particularly with general purpose input/outputs (GPIOs) driving arrays of buttons and LEDs. That
is, a single binary (logical 0 or 1) output signal on some pin can also be set as an input on that device, which
effectively puts it into a third state Z, known as high impedance. Setting such a pin as a logical 0 output can,
for example, drive an LED connected (through a resistor) to VCC, and setting it as a logical 1 output can drive a
different LED connected (through a resistor) to GND, whereas setting such a pin to the high impedance state
Z (that is, setting it as an input) turns both connected LEDs off. Ternary logic circuits, operating at 3 distinct
voltage levels, can also be developed; in such a setting, a ternary digit is sometimes referred to as a trit2.

Using multi-level cell (MLC) flash memory technology, four-value logic (4VL; i.e., [two-bit]) is commonly
used for each individual storage symbol, and both eight-value logic [three-bit, a.k.a. triple-level cell (TLC)] and
sixteen-value logic [four-bit, a.k.a. quadruple-level cell (QLC)] have been developed and implemented.

1A notable exception is that daughterboards for the 96boards family of motherboards operate i/o at CMOS signal levels of 1.8V.
Some high-voltage CMOS logic gates (e.g., those in the 74Cxx series) can operate at up to 15V; always check the data sheets!

2Ternary computers, based on ternary logic, were developed from 1958-1965 in the Soviet Union, but are not in use today.
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SI prefix: milli- micro- nano- pico- femto- atto- zepto- yocto-
SI symbol: m µ n p f a z y

decimal power: 10−3 10−6 10−9 10−12 10−15 10−18 10−21 10−24

SI prefix: kilo- mega- giga- tera- peta- exa- zetta- yotta-
SI symbol: k M G T P E Z Y

decimal power 103 106 109 1012 1015 1018 1021 1024

binary prefix kibi- mebi- gibi- tebi- pebi- exbi- zebi- yobi-
binary symbol Ki Mi Gi Ti Pi Ei Zi Yi
binary power 210 220 230 240 250 260 270 280

binary/decimal ratio 1.024 1.0486 1.0737 1.0995 1.1259 1.1529 1.1806 1.2089

Table 1.1: Decimal powers, as used in SI, and binary powers, as used in characterizing computer systems.

A large number of bits (abbreviated with a lowercase b) or bytes (abbreviated with an uppercase B) is indi-
cated using a prefix corresponding to a binary power that is close to, but not quite the same as, the correspond-
ing decimal power used in the International System of Units (SI; see §9.1.1-9.1.2), as indicated in Table 1.1. Thus,
unambiguously, a Kib is 1024 bits, a KiB is 1024 bytes, a MiB is 1,048,576 bytes, a GiB is 1,073,741,824 bytes,
etc. Quite unfortunately, as of 2024, SI prefixes (representing decimal powers) are still used quite often for the
nearby binary powers in the computer literature, commonly denoting 1024 bits as a kb (or Kb), 1024 bytes as
a KB, 1,048,576 bytes as a MB, 1,073,741,824 bytes as a GB, etc. We eschew this (sloppy) dominant paradigm
in this text, simply by inserting an “i” as the second character of each prefix when denoting storage capacities,
communication speeds, etc, as the percentage uncertainty that is introduced by doing otherwise increases as
you move to the right in Table 1.1 (which is certainly the trend when quantifying storage capacities and com-
munication speeds as time goes forward!), and encourage hardware manufacturers, retailers, tech reporters,
book/wikipedia authors, researchers, instructors, bloggers, gamers, and others to do the same.

1.1.2 Binary logic gates
The notion of voltages along wires considered as bits, in states denoted logical low (near 0 V) and logical high
(near VCC or VDD), were defined for TTL and CMOS logic levels in digital electronics in §1.1.1. We next show
how three digital gates (NOT, NAND, and NOR3) can be implemented in a CMOS setting, using complementary
pairs of p-type and n-type enhancement-mode MOSFETs, as discussed further §9.2.3. From there,

• more complex boolean algebra may be implemented using combinational logic, with responses defined
by truth tables relating current inputs and outputs, as illustrated in Tables 1.2 through 1.8, and
• more advanced computations may be implemented using synchronous logic, with responses defined by
state transition tables relating current inputs and states to subsequent states, as illustrated in Table 1.9.

Note also the following (Fact 1.1 is actually just two special cases of Fact 1.2):

Fact 1.1 (De Morgan’s Theorem) An OR logic gate is equivalent to a NAND logic gate with inverted inputs, and
an AND logic gate is equivalent to a NOR logic gate with inverted inputs.

Fact 1.2 (Functional completeness of NAND and NOR) (Sheffer 1913) Any Boolean expression can be
achieved by a connection of NAND logic gates, or a connection of NOR logic gates.

The following fairly low-level discussion of the logic gates implemented inmodern digital electronics is included
here, early in this text, to remove some of the mystery related to how computers and MCUs actually work.

3That is to say, NAND, NOT, and NOR, will get you pretty far!
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NOT NAND NORVDD VDDVDD

V1

V1

V1

V2

V2

Vout

Vout
Vout

Figure 1.1: Three essential logic gates, NOT, NAND, and NOR, similarly constructed using enhancement-mode
complementary MOSFETs (CMOS), which result in break before make to avoid shoot through.

The CMOS NOT gate in Figure 1.1 operates as follows. When V1 is low (close to GND):
• the channel of the lower (NMOS) transistor is high resistance, effectively disconnecting Vout from GND,
• the channel of the upper (PMOS) transistor is low resistance, effectively connecting Vout to VDD.
Conversely, when V1 is high (close to VDD):
• the channel of the upper (PMOS) transistor is high resistance, effectively disconnecting Vout from VDD,
• the channel of the lower (NMOS) transistor is low resistance, effectively connecting Vout to GND.

The CMOS NAND gate uses 2 upper (PMOS) transistors in parallel, and 2 lower (NMOS) transistors in series.
Thus, when either or both of V1 and V2 is/are low:
• at least one of the lower (NMOS) transistors is high resistance, effectively disconnecting Vout from GND,
• at least one of the upper (PMOS) transistors is low resistance, effectively connecting Vout to VDD.
Conversely, when both V1 and V2 are high:
• both of the upper (PMOS) transistors are high resistance, effectively disconnecting Vout from VDD,
• both of the lower (NMOS) transistors are low resistance, effectively connecting Vout to GND.

The COMOS NOR gate uses 2 upper (PMOS) transistors in series, and 2 lower (NMOS) transistors in parallel.
Thus, when both V1 and V2 are low:
• both of the lower (NMOS) transistors are high resistance, effectively disconnecting Vout from GND,
• both of the upper (PMOS) transistors are low resistance, effectively connecting Vout to VDD.
Conversely, when either or both of V1 and V2 is/are high:
• at least one of the upper (PMOS) transistors is high resistance, effectively disconnecting Vout from VDD,
• at least one of the lower (NMOS) transistors is low resistance, effectively connecting Vout to GND.

The resulting truth tables for these three gates are given in Tables 1.2-1.3. Note that enhancement-mode
MOSFETs (explained further §9.2.3) are used in Figure 1.1; this choice is significant, as such MOSFETs are
generally nonconducting between the Source and the Drain until a sufficiently large voltage is applied between
the Gate and the Body (which as depicted in Figure 9.7 is usually connected directly to the Drain), thereby
largely preventing the shoot through of current that would otherwise be associated with a path opening up,
momentarily, directly between VDD and GND when one of the inputs changes state. This approach is called
break before make; the transistors breaks the connection in one direction before making one in the other.

Older literature on digital logic discusses PMOS and NMOS implementations of logic gates at length:
• NMOS implementations replace the upper (PMOS) transistors in Figure 1.1 with “pull-up resistors”,
which are effectively overpowered at the output by the lower transistor(s) when they are open.
• PMOS implementations replace the lower (NMOS) transistors in Figure 1.1 with “pull-down resistors”,
which are effectively overpowered at the output by the upper transistor(s) when they are open.
With advances in transistor technology, both types of logic circuits have largely been superseded by CMOS
implementations (without resistors, as seen in in Figure 1.1), which are significantly more power efficient.
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A→ 0 1 symbol best construction ICs
NOT 1 0 (Figure 1.1a) 4049, 7404

BUFFER 0 1 4050, 7434

Table 1.2: Truth tables and symbols of the two 1-input logic gates, and part numbers of some (of many) conve-
nient families of ICs implementing such gates. Note that, though less efficient, a NOT gate may be constructed
from a NAND or a NOR gate (see Table 1.3) with its inputs tied together (see Fact 1.2).

A,B→ 0,0 0,1 1,0 1,1 symbol NAND construction NOR construction ICs

AND 0 0 0 1 (Fact 1.1) 4081, 7408

NAND 1 1 1 0 (Figure 1.1b) 4011, 7400

OR 0 1 1 1 (Fact 1.1) 4071, 7432

NOR 1 0 0 0 (Figure 1.1c) 4001, 7402

XOR 0 1 1 0 4070, 7486

XNOR 1 0 0 1 4077, 74266

Table 1.3: Truth tables and symbols of the main 2-input logic gates, their construction with just NAND gates
or NOR gates (see Fact 1.2), and part numbers of some convenient families of ICs implementing 4x such gates.

A,B,C→ 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1 symbol construction ICs

AND 0 0 0 0 0 0 0 1 4073, 7411

NAND 1 1 1 1 1 1 1 0 4023, 7410

OR 0 1 1 1 1 1 1 1 4075, 744075

NOR 1 0 0 0 0 0 0 0 4025, 7427

XOR 0 1 1 0 1 0 0 1 74386

XNOR 1 0 0 1 0 1 1 0

MUX 0 0 1 1 0 1 0 1
S

S 4540, 74153
(2x 4:1)

Adder: S 0 1 1 0 1 0 0 1
S

CoA
D
D
E
R

A

B

C
S

Co

4008, 7483
(4 bit)Co 0 0 0 1 0 1 1 1

Table 1.4: Truth tables and symbols of several 3-input logic gates, and examples of their construction.
All can be constructed using the gates in Tables 1.2 and 1.3 (and, thus, from just NAND or just NOR gates).
The last column indicates part numbers of some convenient families of ICs implementing such gates.
The multiplexer MUX(S,X,Y) assumes S=A is select, and X=B and Y=C are the input data, and sends the se-
lected input to the output; note that an open circle on an input is a shorthand denoting a NOT operation on that
input, just as an open circle on an output (e.g., on the NAND and NOR symbols) denotes a NOT operation on
that output. The outputs of a single-bit full adder, denoted here S and Co, assume A and B are corresponding
bits of two binary numbers to be added, and C is the carry over from the sum of the lesser bits; S is then the
corresponding bit of the sum, and Co is the carry over into the sum of the next greater bits.
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Once the notions of logical levels (0/1) and gates (NOT/BUFFER and AND/NAND/OR/NOR/XOR/XNOR4)
are developed (see Figure 1.1 and Tables 1.2-1.3), we can put them together to accomplish a variety of important
higher-level tasks (see Tables 1.4-1.9), such as AND/NAND/OR/NOR/XOR/XNOR gates with 3 or more inputs,
multiplexers / demultiplexers, simple and priority encoders / decoders, adders, SR latches, and JK flip flops.

Modern ICs that implement such higher-level tasks are generally formed directly, via efficient combinations
of CMOS transistors that are arranged as necessary to satisfy the truth tables of the desired logic gates. This
process results in logic gates that are much simpler and faster than logic gates formed via pedagogical combina-
tions of 2-input NAND and NOR gates, as illustrated in these tables. As just one example, a 3-input NAND gate
can be formed simply by modification of a 2-input NAND gate (see Figure 1.1), with 3 upper (PMOS) transis-
tors in parallel and 3 lower (NMOS) transistors in series. As indicated, convenient families of integrated circuits
(ICs) with efficient implementations of many such higher-level logic gates, such as the 4000 and 7400 series, are
readily available. Such ICs come in many different families, with vastly different nominal operating voltages
and current-driving capabilities. The details of their internal constructions are certainly important to those
designing such ICs; however, only their timing and power specifications, as described in their corresponding
datasheets, are really all that is important to those using them.

The logical behavior of the several gates summarized in Tables 1.2 through 1.9 should (with some effort) be
largely self explanatory from their construction, as should the reasoning for their names. The patterns evident
in the simple example constructions provided should also give substantial evidence upon which larger versions
of such gates may also be constructed, if a specific gate needed is not readily available as a single IC.

Note in particular that amultiplexer (MUX) directs the selected input channel (amongst 2n possible inputs,
where n is the number of select lines) to the (one) output channel, and a demultiplexer (DEMUX) directs the
one input channel to the selected output channel, sending 0 to all the others [see examples in Tables 1.4-1.6].
The symbols for multiplexers and demultiplexers thus often, schematically, indicate multiple-position mechan-
ical switches within, with 2n positions on one side connecting to one on the other, even though their interior
“wiring” is actually accomplished with logic gates. Digital multiplexers allow several different digital channels
to share, at different times, a single expensive peripheral, such as a communication channel.

The outputs of a single-bit full adder [see Table 1.4, last row] assume A and B are corresponding bits of two
binary numbers to be added, and C is the carry over from the sum of the lesser bits; S is then the corresponding
bit of the sum, and Co is the carry over into the sum of the next greater bits. Multiple-bit full adders [see, for
example, Table 1.6] take n bits of two binary numbers A and B, and the possible carry over C from the sum of
lesser bits, and efficiently generate the corresponding n bits of the sum S, as well as the possible carry over Co
for inserting into the sum of the next greater bits (or, signaling an overflow). Adders are useful to, well, add.

Now imagine an alarm system in which 2n sensors normally read 0; if a sensor is triggered (changes5 to 1),
it is desirable to alert the owner as to which sensor was triggered. This can be accomplished using a small MCU
leveraging a 2n-input, (n+ 1)-output simple encoder, which represents the (one) channel that was triggered
as an n-bit binary number, plus a flag to indicate when one has triggered. Conversely, a small MCU can trigger
2n distinct actions (open/close a window, turn on/off a fan, . . . ), one at a time, using an (n+1)-input, 2n-output
decoder. [See n = 2 examples of each in Table 1.7a.] Taking n = 6, with the appropriate encoder or decoder,
allows one to monitor 64 different sensors, or to activate (at different times) 64 distinct actions, using only 7
GPIO channels on the MCU coordinating the system, providing a clear path to extend its reach.

4XNOR is really "NOT XOR", so logically should be called NXOR; however, by convention, it usually goes by "XNOR". Go figure.
5We describe here a setting in which the “active state” is 1, termed active high. Most alarms are active low, with power provided

to/through all the sensors (so they normally read 1); if any circuit is interrupted (at the sensor, or in the wires leading to it), the
channel returns 0, and a fault is triggered. This way, even if an accident or bad actor cuts one or both of the wires (red or blue, it
doesn’t matter) leading to a normally-closed sensor, the alarm is still triggered. [However, if an informed (or, clever) adversary knows
that a certain sensor is active low, and can get access to the wires leading to it, he can simply splice the two wires together, thus
defeating the sensor.] With a minor effort (by Fact 1.1, replacing OR gates with NAND gates and AND gates with NOR gates), logic
circuit designs like these may be converted from active high to active low (see, e.g., the equivalent constructions in Table 1.8).
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S,D→ 0,0 0,1 1,0 1,1 symbol construction ICs

A 0 1 0 0
S

S

4052, 74139
(2x 1:4)B 0 0 0 1

Table 1.5: Truth table and symbol of a 2-output demultiplexer (DEMUX), which sends the input to the selected
output (and 0 to the other), an example of its construction, and part numbers of ICs implementing such gates.

S2 S1 S1 S2

S1

S2

Co

A1

B1

A2

B2

C

A
D
D
E
R

A
D
D
E
R

A
D
D
E
R

4-input AND 4-input MUX 4-output DEMUX 2-bit full adder
Table 1.6: Symbols and constructions of a few larger logic gates. Larger AND/NAND/OR/NOR/XOR/XNOR
gates may all be constructed following the patterns evident at right in Table 1.4. A MUX, given n select lines S1
to Sn, directs the value of the selected input (amongst 2n possible inputs) to the (one) output; a DEMUX directs
the value of the (one) input to the selected output (amongst 2n possible outputs), sending 0 to the others. An
n-bit full adder takes as inputs the bits A1 to An, B1 to Bn, and the possible carry over C from the sum of lesser
bits, and generates the bits of the sum S1 to Sn, and the carry over Co into the sum of the next greater bits.

D3 D2 D1 D0 A1 A0 V

0 0 0 0 x x 0
0 0 0 1 0 0 1
0 0 1 0 0 1 1
0 1 0 0 1 0 1
1 0 0 0 1 1 1

A0

A1

V

D0

D1

D2

D3

A0

A1

VD0

D1

D2

D3

D3 D2 D1 D0 A1 A0 V

0 0 0 0 0 0 0
0 0 0 1 0 0 1
0 0 1 x 0 1 1
0 1 x x 1 0 1
1 x x x 1 1 1

A0

A1

VD0

D1

D2

D3

Table 1.7: (a) Truth table (from inputs {A1, A0, V } to outputs {D3, D2, D1, D0}) of a 2:4 decoder, and
(from inputs {D3, D2, D1, D0} to outputs {A1, A0, V }) of a 4:2 simple encoder, and example constructions of
each; note the n+1 outputs of a simple encoder are ill defined for other values of the 2n inputs. (b) Truth table
(from inputs {D3, D2, D1, D0} to outputs {A1, A0, V }) of a 4:2 priority encoder, and an example construc-
tion; note the n+1 outputs of a priority encoder are all well defined for all possible values of the 2n inputs. An
input listed as x means “don’t care”; the output for that case is as listed for any value of this input.

S,R→ 0,0 0,1 1,0 1,1
symbol equivalent constructions ICS,R→ 1,1 1,0 0,1 0,0

Q (latch) 0 (reset) 1 (set)
disallowed! S

R

Q

Q

R

S

Q

Q
⇔ R

S

Q

Q
4043 (4x)

Q (latch) 1 0

Table 1.8: Truth table, symbol, and construction of a Set/Reset (SR) latch. Taking {S,R} = {1, 0} sets Q = 1,
taking {S,R} = {0, 1} resets Q = 0, and taking {S,R} = {0, 0} latches (holds) Q at its most recently-specified
(set or reset) state; overline denotes the opposite state. The condition {S,R} = {1, 1} is not allowed.

J,K → 0,0 0,1 1,0 1,1 symbol construction IC

Q next Q (latch) 0 (reset) 1 (set) Q (flip) J

K

Q

Q

Q

Q

J

K

clk
S

R

edge
detect

e 4027 (2x)
Q next Q (latch) 1 0 Q (flip)

Table 1.9: State transition table, symbol, and construction of a JK flip flop, a sequential device which updates Q
only at each rising edge of a clock (see Figure 1.2). Taking {J,K} = {1, 0} sets Q next = 1, taking {J,K} = {0, 1}
resets Q next = 0, taking {J,K} = {0, 0} latches Q next = Q , and taking {J,K} = {1, 1} flips Q next = Q .
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clk e clk e

Figure 1.2: Edge detect circuits that limit the JK flip flop to flip states only once during each clock pulse, during
(left) the rising edge of each pulse, or (right) the falling edge of each pulse.

The simplistic logic in a simple encoder generally results in a misleading output when multiple sensors are
triggered. To handle this situation fully, 2n inputs to the MCU processing the information would be required.
However, if we can prioritizewhich sensors are “most important” in a given system, we can implement apriority
encoder, as illustrated in Table 1.7b. Consider for example, a system with (high-priority) fire alarms, (low-
priority) leak detectors, and (medium-priority) magnetic sensors detecting whether or not the windows are
closed. If multiple sensors are triggered, a well-designed priority encoder lets the user know the number of the
channel in which the highest priority sensor detects a fault.

Many devices (LEDs, fans, . . . ) can be driven in an “activate and forget” mode, in which one signal can be
sent to turn the device “on”, and a second signal can later be sent to turn the device “off”; at other times, the
device does not need to be actively connected to the controlling MCU. This functionality is easily implemented
with a set/reset (SR) latch, as illustrated in Table 1.8, with pull-down resistors attached to its inputs, so the
inputs are taken as low when the device is disconnected from the controlling MCU; the logic high construction
of an SR latch is built from 2 NOR gates, and the logic low construction is built from 2 NAND gates; either may
be built using a total of 8 transistors (see Figure 1.1). As evident by its construction, briefly sending an SR latch
the “set” command {S,R} = {1, 0} (say, using the output of a decoder) is sufficient to put (and, to hold, even
when S returns to 0) the output of the latch (that is, the input to the device) in the “on” state {Q,Q} = {1, 0},
until the SR latch is sent the “reset” signal {S,R} = {0, 1}, which is sufficient to put (and, to hold, even when
R returns to 0) the output of the latch in the “off” state {Q,Q} = {0,1}.

The JK flip flop generalizes the SR latch upon which it is built (see Table 1.9) by making effective use of
the fourth possible state of the inputs, {J,K}, to flip the current state of the latch. It coordinates this flip
using a system clock, which is simply a binary signal that regularly switches back and forth (usually, quite
quickly) from 0 to 1. There are two possible output conditions: the “on” condition {Q,Q} = {1, 0} and the “off”
condition {Q,Q} = {0, 1}, and there are four possible states of the inputs {J,K}. Normally, {J,K} = {0, 0}
and {S,R} = {1, 1}, which holds the (logic low) latch in the second stage of the JK flip flop at its current state.
The internal states {S,R} can switch to other values, but only under 4 specific conditions.
• If {J,K} = {1, 0} and Q = 1, then S→ 0 when e next goes high, setting the latch to {Q,Q}next = {1, 0}.
• If {J,K} = {0, 1} and Q = 1, then R→ 0 when e next goes high, resetting the latch to {Q,Q}next = {0, 1}.
After the output changes state in both cases, the internal states return to the latched condition {S,R} = {1, 1}.
• If {J,K} = {1, 1} and Q = 1, then S→ 0 when e next goes high, flipping the latch to {Q,Q}next = {1, 0}.
• If {J,K} = {1, 1} and Q = 1, then R→ 0 when e next goes high, flipping the latch to {Q,Q}next = {0, 1}.
As long as {J,K} = {1, 1}, the JK flip flop will continue switching output states, very quickly, until e goes low;
this condition is called race. To avoid this undesirable condition, the edge detect circuit indicated needs to
hold the signal e high only for a few nanoseconds, at the rising or falling edge of each clock pulse. Two edge
detect circuits that limit the JK flip flop to flip states only once during each clock pulse are given in Figure 1.2.
The value of e output by these simple circuits is zero except in a very narrow slice of time in which the clk signal
has switched but the output of the inverter has not yet switched. If the delay associated with this inverter is
too short for the flip flop to function reliably, the single inverter can be replaced by three inverters.

The JK flip flop is useful for constructing counters in timers and clocks. Note also that:
• Setting J = K ≜ T creates a T flip flop; when T = 1, the T flip flop toggles the state of Q at each clock pulse,
thus performing frequency division, creating (in Q) a clock that oscillates at half the frequency of clk.
• Setting J = K ≜ D creates a simple D flip flop useful for storing data; when D = 1, it is set (Q next = 1), and
when D = 0 it is reset (Q next = 0). The D flip flop is not susceptible to race (edge detection is unnecessary).
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int8 uint8 int16 uint16 int32 uint32 int64 uint64
– 128 : 127 0 : 255 – 32,768 : 32,767 0 : 65,535 – 231 : 231 – 1 0 : 232 – 1 – 263 : 263 – 1 0 : 264 – 1

Table 1.10: Ranges covered byN = 8, 16, 32, and 64 bit binary representations of signed and unsigned integers,
with 231 = 2,147,483,648, 232 = 4,294,967,296, 263 = 9,223,372,036,854,775,808, 264 = 18,446,744,073,709,551,616.

–8
1000

–4
1100

–6
1010

–2
1110

–5
1011

–7
1001

–3
1101

–1
1111

0
0000

4
0100

2
0010

6
0110

3
0011

1
0001

5
0101

7
0111

2N–1 non-negative integers 2N–1 negative integers

Figure 1.3: Periodic number line useful in visualizing the two’s complement convention.

1.1.3 Integer & fixed-point representations, and their (fast) arithmetic in ALUs
Integer arithmetic on MCUs is usually formed using binary representations of integers that are N = 8, 16,
32, or 64 bits long, and either unsigned or signed, covering the (decimal) integer ranges indicated in Table 1.10.

When storing or transmitting a multiple-byteword (containing one or more integers, fixed-point real num-
bers, or floating-point real numbers; see §1.2) in a computer, the individual bytes stored (or, transmitted over a
communication channel) that make up such a word can be ordered using one of two different conventions:

• with the big endian convention, the “big end” (that is, the most significant byte, akaMSB, in the sequence)
is stored first (at the lowest storage address), or transmitted first, whereas
•with little endian convention, the “little end” (the least significant byte, or LSB) is stored or transmitted first.

For example, the two bytes (16 bits) required for representing the integer A2F316 is stored as A216 at memory
address a and F316 at memory address a+1 using the big-endian convention, and the same integer is stored as
F316 at memory address a and A216 at memory address a+1 using the little-endian convention. Within a byte,
the order of the bits is usually stored the same (most significant bit to least significant bit) in all computers,
regardless of how the bytes are arranged; however, the terms big endian vs little endian may also be used to
characterize the order in which individual bits are transmitted over a communication channel.

Signed representations of negative integers are formed using the two’s complement convention, illustrated
for the N = 4 case in Figure 1.3, with negation given simply by inverting (with NOT gates) the bits of the
corresponding integer (in binary form) and adding one. This effectively scoots the set of all 2N−1 negative
integers included in the representation to the right of the 2N−1 non-negative integers on a number line ordered
by the raw (unsigned) binary number. Adding 1 (that is, 0 . . . 012) to any number on this periodic number
line shifts it to the right by one, modulo 2N (i.e., moving off the right end of the line wraps back around on
the left end6. Similarly, adding −1 (that is, 1. . .11) to any number on this line corresponds to shifting it to
the left by one, modulo 2N (that is, moving off the left end of the line wraps back around on the right end).
Leveraging this two’s complement convention, as summarized by this number line, a regular (unsigned) N -bit
full adder7, as introduced in Table 1.6, corresponds to the addition of any positive and negative integers. Of
course, subtraction is achieved simply by negation of one of the numbers, followed by addition.

Recall that multiplication and long division of binary numbers follow precisely the same process as the mul-

6To perform a addition or multiplication of integers, one should be careful to monitor for integer overflow, which corresponds
to exceeding the range indicated in Table 1.10 (in the case of unsigned integers, this corresponds to falling off the left end or the right
end of the unsigned number line; in the case of signed integers, this corresponding crossing the halfway point on the number line,
indicated by the vertical dashed line in Figure 1.3 in the N = 4 case), and flag an error if it happens. On the other hand, a mod 2N

operation on unsigned integers can be performed quite quickly, simply by ignoring such integer overflow conditions.)
7Again, this adder should be implemented ignoring binary overflow condition, corresponding to the “wrapping around” of the

operation around the ends of the number line.
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100010011
11001
00000
11001
11001
×101111001

11001))100010100
1011

1
11001
11010
11001
100110
00000
10011
11001

Figure 1.4: (left) Binary multiplication [showing that 110012 × 10112 = 1000100112, or 2510 × 1110 = 27510],
and (right) binary division [showing 1000101002/110012 = 10112, or 27610/2510 = 1110, with remainder 1].

tiplication and long division of decimal numbers as you learned in grammar school (see Figure 1.4). That is, the
binary negation, addition, and subtraction operations outlined above, sequenced appropriately, are sufficient
to perform binarymultiplication and division.

All modern CPU cores include (fast) hardware implementations (by an arithmetic logic unit, or ALU)
of the {negation, addition, subtraction, multiplication, division} operations discussed above, on both
unsigned integers, and signed integers represented in two’s complement binary form. Remarkably, these oper-
ations all execute in a single clock cycle, as the N -bit full adder upon which they are all based, as introduced
in Table 1.6, implements combinational logic as discussed previously, with responses defined by truth tables
that relate current inputs and outputs (that is, they do not need a clock to coordinate them).

Binary representations of unsigned or signed integers, and the fast (ALU) implementations of {+,−,×,÷}
acting thereon, can also be applied directly to real (rational) numbers with a fixed (specified in advance) number
of binary digits after the (implied) decimal point. This representation of fixed point real numbers, using N
bits, is referred to as Q format, and is commonly denoted UQm.n [a.k.a. UQn] for unsigned real numbers,
and Qm.n [a.k.a. Qn] for signed real numbers (in two’s complement format), where n indicates the number
of binary digits after the decimal point, and (optionally) m indicates the number of binary digits before the
decimal point, withm+n = N . Addition and subtraction of two fixed-point real numbers [once aligned to the
same Q format, so they have the same number of binary digits after the (implied) decimal point] is the same
as integer addition and subtraction using binary representations; again, integer overflow must be checked for
and flagged if it occurs. Multiplication and division of two fixed-point real numbers is, conceptually, the same
as integer multiplication and division using binary representations. In addition, note that:
• the product of a Qm1.n1 fixed point real number and a Qm2.n2 fixed point real number generally results in
a Qm.n fixed point real number withm = m1 +m2 and n = n1 + n2, and
• the division of a Qm1.n1 fixed point real number by a Qm2.n2 fixed point real number generally results in
a Qm.n fixed point real number withm = m1 −m2, but n may be infinite.
These results must be both rounded (reducing the number of significant digits kept after the decimal point)
and checked for overflow in order to fit it into another N bit Q format representation. As much as possible,
scaling all fixed-point real variables in a problem (both before and after all the sums, differences, products, and
divisions) to beO(1) over the entire operational envelop of the electromechanical system under consideration is
particularly convenient, using, e.g., the UQ1.7 (in the range [0, 1.9921910]), Q1.7 (in the range [−1, 0.9921910]),
UQ1.15 (in the range [0, 1.999969510]), and Q1.15 (in the range [−1, 0.999969510]) formats8. Note that:

• To convert a real number r into Qm.n format, multiply r by 2n, round to the nearest integer, and convert this
integer to two’s complement binary form.
• To convert a number b in Qm.n format back to a real number, consider b as a regular binary number (with no
decimal point), convert this binary number (in two’s complement form) to an integer, and divide by 2n.

8In general, the range of a UQm.n number is [0, 2m − 1/2n], and the range of a UQm.n number is [−(2m−1), 2m−1 − 1/2n].
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1.1.4 Floating-point representations, and their (fast) arithmetic in FPUs

It is, of course, significantly easier to program, especially at the prototyping stage, using floating-point arith-
metic [that is, using real numbers represented with a sign bit, an exponent, and a significand (a.k.a. man-
tissa)], so that the scaling of the real numbers can be managed by the CPU core on the fly, and a very wide
range of scalings can be encountered without loss of precision. Floating point real numbers, as defined by the
ubiquitous IEEE 754 standard, are represented with:
• N = 16 bits (“half precision”), with 1 sign bit, 5 bits defining the exponent, and k=10 bits defining the sig-
nificand, representing numbers from±6.10× 10−5 to±65504 with log102k+1 = 3.3 decimal digits of precision,
• N = 32 bits (“single precision”), with 1 sign bit, 8 bits defining the exponent, and 23 bits defining the signifi-
cand, representing numbers from ±1.18× 10−38 to ±3.4× 1038 with 7.2 decimal digits of precision, or
• N = 64 bits (“double precision”), with 1 sign bit, 11 bits defining the exponent, and 52 bits defining the
significand, representing numbers from ±2.23× 10−308 to ±1.80× 10308 with 16 decimal digits of precision.

For the feedback control of electromechanical systems, single precision is more than enough, and in most cases
half precision is sufficient (if the FPU implements it; as of 2024 most do not, though Armv8.1-M introduces
hardware support for half-precision floats to the ARM Cortex M family, starting with the Cortex M55 & M85).

In addition to nonzero normal numbers (that is, floating-point numbers that can be represented in half,
single, or double precision as defined above, without leading zeros in their significand), various special values
are represented and handled correctly by FPUs implementing the IEEE 754 standard, specifically:
• signed zeros {+0,−0} [with (+0) = (−0) for the purpose of comparisons],
• signed infinities {+∞,−∞} [e.g., 1/(+0) = (+∞), 1/(−∞) = (−0), (+∞) ∗ (−2) = (−∞), . . . ],
• subnormal numbers [that is, smaller floating-point numbers that can be represented in half, single, or double
precision at reduced precision, with leading zeros in their significand],
• Not a Numbers (NaNs), handling indeterminant forms [e.g., (±∞)× (±0), (±0)/(±0), (+∞) + (−∞), . . . ],
real operations with complex results [e.g.,

√
−1], and operations involving one or more NaNs as arguments.

For example, taking s as the sign bit, e as the exponent, and f as the fractional part of an N = 32 bit binary
representation of a floating-point number in single precision format as follows,

s e (8 bits) f (23 bits)
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

and defining emax = FF16 = 25510 and eoff = 7F16 = 12710, the IEEE 754 standard interprets cases with:

• an exponent e of 0116 to (emax − 1) as denoting a nonzero normal number given by (−1)s × 2e−eoff × 1.f
• an exponent e of 0016, with f ̸= 0, as denoting a subnormal number given by (−1)s × 2−(eoff−1) × 0.f ,
• an exponent e of 0016, with f = 0, as denoting a signed zero, with sign given by (−1)s,
• an exponent e of emax, with f = 0, as denoting a signed infinity, with sign given by (−1)s, and
• an exponent e of emax, with f ̸= 0, as denoting an NaN.

The half precision (N = 16 bit) format is analogous, with emax = 1F16 = 3110 and eoff = F16 = 1510; the double
precision (N = 64 bit) format is also analogous, with emax = 7FF16 = 204710 and eoff = 3FF16 = 102310.

Interrogation of the individual bits of a floating-point representation might occasionally be useful to the
embedded programmer, and in this setting the above explanation should suffice. The actual encoding of the
fundamental operations {+,−,×,÷} on real numbers represented in floating-point notation is rather complex,
and is taken care of remarkably quickly (again, in many cases, executing in a single clock cycle!) by the floating
point units (FPUs) within modern CPU cores, and the MCUs which embed them.

Integer arithmetic (§1.1.3) is significantly simpler for a processor to execute than floating-point arithmetic.
Thus, many auxiliary processing units (see §1.5.3-1.5.4), like FMACs andDSPs, and indeedmany low-costMCUs
(like the ARM Cortex M0 and some implementations of the M3 and M4), do not include hardware FPUs, and
thus any floating-point arithmetic performed must instead be emulated in software on these processors, which
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Figure 1.5: Venn diagram illustrations of (left) the [7,4] Hamming code and (right) the [15,11] Hamming code.

is relatively slow. In such settings, it is strongly preferred to use fixed point arithmetic instead, carefully scaling
all real numbers in the problem to make full use of the fixed point binary representations used while never
encountering overflow over the entire operational envelop of the electromechanical system under consideration
(note that this usually takes considerable testing of the system to verify).

1.1.5 Parity checks, error detection, and error correction
When pushing certain subsystems (memory and communication in particular) to their physical limits (high
speed, low power, small footprint, etc.), occasional bit errors may occur. There are a variety of simple and
effective ways to identify such infrequent errors, and in certain cases even to correct for them.

The simplest approach is to append a single parity bit to each set of k data bits that is stored in memory
or sent over a communication channel; this parity bit is selected such that the sum (modulo 2) of all the data
bits in the set, plus this parity bit, is 0 (if even parity is used) or 1 (if odd parity is used). When the entire set
of n = k+1 bits (data plus parity) is recalled from memory or received on the other end of the communication
channel, this sum is again performed, and an error is flagged if it is of the wrong value. This approach is capable
of single error detection (SED), with two or more errors in any set of n bits causing misinterpretation; note,
however, that if single bit errors are random and infrequent, double bit errors will be extremely infrequent.

The idea of using parity bits to check for errors may be extended to facilitate stronger error detection, and
even error correction. As shown in Figure 1.5, this is illustrated by the [n, k] linear binary codes (LBCs) with:
• r = 3 parity bits {b1, b2, b3}, k = 4 data bits {a1, a2, a3, a4}, and n = r + k = 7 total bits in a [7, 4] LBC, or
• r = 4 parity bits {b1, b2, b3, b4}, k = 11 data bits {a1, . . . , a11}, and n = r+k = 15 total bits in a [15, 11] LBC.

In each of these example LBCs, an r set Venn diagram may be drawn with exactly one of the k data bits in
each of the intersections. The r parity bits {b1, . . . , br} are then selected such that parity (say, even parity) is
achieved by summing the 2r−1 bits in each of the r sets in this Venn diagram. If a recalled/received set of n bits
is assumed to be corrupted by at most one error, then during the subsequent parity checks of all r sets,

• if parity fails on just a single set, the corresponding parity bit bi is itself identified as corrupted, whereas
• if parity fails on multiple sets, the data bit ai corresponding uniquely to that set intersection is corrupted.

In either case, flipping the corrupted bit corrects the error, thus performing single error correction (SEC).
This approach extends immediately to [2r − 1, 2r − 1− r] LBCs for r ≥ 2, known as binary Hamming codes.

Adding an overall parity bit to the cases shown in Figure 1.5 allows one to detect (if the overall parity check
fails) and correct (as before, leveraging the other parity checks) single bit errors, but also to detect but not correct
double bit errors (if the overall parity check passes, but two or more of the other parity checks fail), leading
to the single error correction, double error detection (SECDED) [2r−1, 2r − r] LBCs for r > 2, known as
extended binary Hamming codes. The idea of storing or sending multiple redundant bits is extended in
§1.5.3.3 and §12, to develop and implement LBCs capable of fast multiple bit error detection and correction.
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1.2 Central Processing Unit (CPU) cores
Central processing unit (CPU) cores are the main processing units in modern computers. An essential defining
characteristic of modern CPUs is the word size, which defines

(a) the number of bits in the data bus (the parallel wires carrying data within the CPU),
(b) the number of bits in thememory addresses, and
(c) the number of bits in the instruction codes enumerating the low-level executable commands in the CPU,

all of which are generally integer multiples of the word size, which on modern CPUs is 8, 16, 32, or 64 bits.
Doubling the width of the data bus doubles the amount of information that can be delivered from point A

to point B within the CPU in a single clock cycle, but substantially increases the complexity of the circuitry;
different tradeoffs are thus reached for the width of the data bus for different CPU designs.

Commonmemory configurations in modernMCUs include 16 address bits, facilitating the direct addressing
of 64 KiB of memory, and 32 address bits, facilitating the direct addressing of 4GiB of memory. Note that, in
many CPUs, the number of physical address pins implemented can actually be less than or even (with a bit of
additional logic) greater than the number of address bits. In particular, the 64 address bits of somemodern 64-bit
CPUs (that is, CPUs with a word size of 64 bits) facilitate the addressing of an absurdly large amount of memory
(16 EiB); 64-bit CPUs thus typically implement only between 40 and 52 physical address pins, facilitating the
direct addressing of 1 TiB to 4 PiB of memory (reminder: see §1.1.1 for definitions of binary powers).

There are two primary types of computer architectures (i.e., the set of rules that describe the organization
of computer systems), the Harvard architecture, which strictly separates memory storage and signal busses for
program instructions from those for data, and the von Neumann architecture, in which instructions and data
share the same memory and busses. Modern implementations of the Harvard architecture usually relax the
strict separation between instructions and data, allowing the instruction memory to actually be accessed as
data, and are thus more accurately referred to as Modified Harvard architectures.

There are also two primary types of instruction set architectures (ISAs), RISC (reduced instruction set
computer) and CISC (complex instruction set computer), in addition to a growing number of hybrid ap-
proaches that are increasingly blurring the lines between the two. RISC ISAs (pioneered by MIPS, perfected
by ARM, and redesigned in an open-standard setting by RISC-V) have a small set of simplified (fixed-length)
instructions operating on a large number of registers, and a streamlined instruction pipeline allowing a re-
duced number of clock cycles per instruction. In contrast, CISC ISAs (notably implemented and perpetuated
by x86 CPUs) have a larger set of more complex (variable-length) instructions operating on a smaller number
of registers, with each instruction executing a variable number of low-level operations (e.g., load something
from memory, perform some arithmetic, store result back in memory). Note that RISC ISAs generally access
memory through dedicated simple instructions, whereas CISC ISAs access memory as an integral part of their
more complicated (multi-step) instructions.

Modern families of CPUs and MCUs appropriate for embedded applications include
• ARM Cortex A (32- and 64-bit), as implemented by Amlogic, Broadcomm, Rockchip, Samsung, TI Sitara, . . . ,
• ARM Cortex R (32- and 64-bit), as implemented by TI, . . .
• ARM Cortex M (32-bit), as implemented by Cypress, Infineon, Microchip, Nuvoton, NXP LPC, STM32, . . . ,
• Numerous (32-bit and 64-bit) RISC-V CPUs & MCUs, as implemented by Codasip, Microchip, Espressif, . . . ,
• Intel 8051 (8-bit), as implemented by Cypress, Maxim, Silicon Labs, . . . ,
• Tensilica Xtensa (64-bit), as implemented by Espressif, . . .
• NVIDIA Carmel (64-bit),
•Qualcomm Kryo (64-bit),
•Microchip AVR (including ATtiny and ATmega) and PIC (8-, 16-, and 32-bit),
• TI MSP430, MSP432, and C2000 (16- and 32-bit),
and many many others; most in this list (except the Intel 8051) are designed around RISC CPU cores.
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1.3 Cache-based memory subsystems
The ALU and FPU of a CPU can approach their full speeds doing useful computations only if they can:
(a) quickly access both the instructions to be performed next, as well as the data necessary to perform these
instructions, and (b) quickly shift the results of these computations to somewhere secure for later use.

As a general rule, the smaller the data storage subsystem, the faster it can be made, but at a significant cost.
Ordered from fastest/most expensive/largest footprint per byte on down, the primary storage technologies are:

• Static RandomAccessMemory (SRAM): 1-5 ns access time, volatile (data lost when powered down). Expensive!
•Dynamic RandomAccessMemory (DRAM): 5-25 ns access time, volatile, frequent refreshes (∼ 1Hz) required.
• Flash Memory / SD Cards / EEPROM9: 50-500 ns access time, non-volatile, limited write endurance.
• Solid State Drives (SSD10): 10-100 µs access time, non-volatile, hot swappable, limited write endurance.
•Hard Disk Drives (HDD): 5-20 ms access time, non-volatile, hot swappable, excellent write endurance. Cheap!

Significantly, as the size of a data storage subsystem grows, it generally becomes easier to download/upload
increasingly large blocks of data, all at essentially the same time, at relatively little added cost (time and energy).

To reduce the mean access time & energy, and overall expense & physical size, required of the memory
system (all of which are important in embedded applications), the communication between the CPU and the
main memory (DRAM or Flash) [and, to even slower “disk” storage11] is often assisted by a hierarchy of small-
er/faster cache memory (SRAM & DRAM), together with a memory management unit (MMU) or memory
protection unit (MPU) coordinating its use. Cache memory is often divided into multiple levels, including:

• L1i, for queueing up the instructions to be performed next, and
• L1d, L2, L3, and L4 (or a subset thereof12, with the smaller numbers enumerating the faster/smaller “lower”
levels of the cache hierarchy), both for bringing data to the handful of registers holding the data actually used
by the ALU and FPU, and for storing the results of the computations performed back in the main memory.

When using a cache-based memory system, small fixed-size cache blocks (aka cache lines) of contiguous
memory are downloaded/uploaded whenever updating the lower levels of the cache hierarchy13, and larger
cache blocks are downloaded/uploaded whenever updating the higher levels of the cache hierarchy, or commu-
nicating between the highest level of cache (aka the last level cache) and the main memory itself.

The CPU also usually includes a translation lookaside buffer (TLB), which translates the virtual addresses
used by each program to their corresponding physical addresses in the main memory, for both the instructions
to be executed as well as the corresponding data storage14.

The majority of the silicon area on most modern CPUs is in fact taken up by the MMU, the TLB, and the
L1i, L1d, and (sometimes) L2 and L3memory caches, thus indicating the importance of the cache-basedmemory
system to the overall CPU performance (higher levels of cache, if used, are often incorporated on separate ICs).
The several components of a modern cache-based memory system usually interact quite efficiently with little if
any intervention by you, the embedded programmer. However, a high-level understanding of how such systems
behave can assist you in implementing certain programming directives that can make such systems run even
better, and to streamline the data flow when the CPU stalls due to cache conflicts.

9Flash comes in two types, NAND and NOR. Flash is a type of EEPROM designed for high speed and density, with large erase
blocks (≳ 512 bytes) and limited write endurance (∼ 104 write cycles). The term “EEPROM” is saved for non-volatile memory built
with the same technology, but with small erase blocks (1 to 8 bytes) and better write endurance (∼ 106 write cycles).

10SSDs are self-contained subsystems using flash memory together with their own cache memory to both increase effective speed
and improve endurance. Many of the concepts discussed in this section extend directly to the control of cache-based SSD systerms.

11“Disk” storage may refer to both filesystems and virtual memory on both SSDs and HDDs.
12Howmany levels of cache should be implemented for the best overall system performance generally depends on the total amount

of main memory accessible by the system, and the ratio of the CPU speed to the main memory speed, which is often much slower.
13At any given level, a cache entry generally includes both the copied data as well as a tag indicating the corresponding range of

addresses in the main memory.
14The TLB is often split into an Instruction TLB and Data TLB, and may be split into levels (e.g., L1 ITLB/DTLB, L2 ITLB/DTLB, . . . ).
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Figure 1.6: Illustrations of (left) a direct mapped cache, and (right) a two-way set associative cache.

When initiating a read or write to/from a particular memory location, the CPU first checks to see if a copy
of that memory location is already represented in its L1 cache. If it is (constituting a cache hit), the CPU
interfaces directly, and quite quickly, with this highest-speed cache. If it is not (a cache miss), the MMU must
look in successively higher levels of (lower-speed) cache, all the way out to the main memory if necessary, to
reach the relevant memory location. The MMU may also create a new cache block, at one or more levels of the
cache, containing this memory location together with nearby entries of the main memory; to do this, it must
generally evict one of the existing cache blocks at each affected level.

Where, exactly, such a new cache block may be placed within a cache is governed by the placement policy
associated with that cache level, which may allow the new cache block to placed:

(a) at just a single location, based on the least significant bits of the corresponding memory address block,
called a direct mapped cache (see Figure 1.6a);
(b) at any of N locations (typically, N = 2, 4, or 8), based on the least significant bits of the memory address
and the replacement policy used (discussed below), called an N -way set associative cache (see Figure 1.6b);
(c) at either of 2 locations, following either the direct-mapped policy mentioned above or a hash function point-
ing somewhere else, called an two-way skew associative cache; or
(d) anywhere it wants, called a fully associative cache.

If the placement policy allows a choice to be made in the placement of the new cache block [see (b), (c), and (d)
above], this decision is made by the replacement policy of the MMU. Amongst many possible such policies, one
common choice is to evict the least-recently used cache block. The larger the number of choices in the place-
ment policy, the more places that need to be searched in cache for the requested memory location, but the less
likely a very recently loaded cache block (possibly containing useful information for impending calculations)
will need to be evicted to make room for a new cache block.

When compiling code for cache-based memory systems, the general goal is to maximize the percentage of
cache hits (aka thehit rate) in the lowest levels of cache. This goal is achievedwith algorithms that are compiled
with high degrees of locality of reference, including both temporal locality, in which certain variables are
reused repeatedly, and spatial locality, in which the data needed for subsequent computations is generally
stored physically close to each other in the main memory (and is thus likely already present in existing cache
blocks, which are loaded when preparing for the preceding computations).

The MMU must implement a rather involved set of rules in order to achieve cache coherence; that is, to
make the entire multi-level cache-based memory system appear, for the purpose of programming simplicity, as
a single, unified, very fast memory system. The MMU achieves this by carefully coordinating both the reading
of the main memory and the higher levels of cache by the lower levels of cache, as well as the writing of the
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data generated by the CPU back to the various levels of cache and, ultimately, back to the main memory.
When reading saved data from the main memory into the various levels of cache, there are two types of

approaches that theMMUmay implement. With inclusive cache designs, which are themost common, smaller
and smaller sub-blocks of the data stored in the higher levels of cache and the main memory are duplicated into
each successively lower level of cache. This approach simplifies the connection between the various levels of
cache (keeping the ankle bone connected to the leg bone, etc), thereby simplifying the problem of maintaining
cache coherence, but increases the communication between the various cache levels. With exclusive cache
designs, on the other hand, two caches never share the same data. This approach avoids repetition, shuns redun-
dancy, eshews reiteration, and resists recapitulation, but leaves the placement policy of the MMU (and/or the
embedded programmer, via compiler directives) with the question which data to put into which levels of cache.

When writing the new data generated by the CPU back out to the various levels of cache and, ultimately,
all the way to the main memory, there are two types of write policies that may be implemented. When
using awrite through policy at a particular cache level, newly updated data at that cache level is copied back
immediately to the corresponding section of the next higher level of cache or the main memory. This approach
allows the cache block to be overwritten immediately with a different section of memory when necessary, but
increases the amount of communication between cache levels. When using awrite back policy at a particular
cache level, on the other hand, the updating of the next higher level of cache or the main memory with the
updated data at that cache level is deferred until the corresponding cache block soon needs to be evicted to
make room for the caching of a different section ofmemory. This approach reduces the communication between
the different cache levels as well as the number of data writes, which is more efficient, but introduces a possible
delay between when the “eviction notice” is received by a particular cache block, and when that block is actually
ready to cache a different section of memory. Note that it is particularly important to use a write back policy
to the main memory and to SSD when either is implemented on flash, which has limited write endurance.

Whenever a cache contains updated data that has not yet been copied up to the next higher level of cache
and the main memory, that section of cache is said to be dirty. Note also that, in multicore and multi-CPU
systems, a typical cache implementation might be configured as follows:

• each core has a dedicated L1 cache,
• each CPU has a dedicated L2 cache, shared amongst its multiple cores, and
• the entire system has a single L3 cache, shared amongst its multiple CPUs.

Higher levels of cache and the main memory may thus be updated by other CPU cores, as well as by certain
peripherals with direct memory access (DMA). Whenever a cache contains old data that has not yet been
copied down from the next higher level of cache and the main memory, that section of cache is said to be stale.
Substantial care must be taken by the MMU to keep track of both the dirty and the stale sections of cache at
all levels, and to update them when appropriate, in order to keep the cache coherent.

Steps an embedded programmer can take to use cache-based memory systems more efficiency include:

1) structuring and ordering computations in the compiled code to maximize both temporal and spatial locality,
2) keeping certain memory locations, for variables that are reused repeatedly [e.g., indices {i, j, k, . . .}, con-
stants ci, and temporary variables ti], locked in cache,
3) implementing write through policies for the lower-level cache blocks used primarily for data input to the
CPU, which need to quickly replaceable,
4) implementing write back policies for cache blocks used primarily for data storage to the main memory, to
minimize unnecessary communication between cache levels,
5) bypassing the use of cache altogether for certain data that is only accessed occasionally, and
6) manually flushing (copying back to higher levels) cache blocks that will not be needed again soon.

Good programming languages, through compiler directives, give the programmer a degree of control over such
low-level memory management operations, which can make a big difference in the execution speed of a code.

1-16

https://www.youtube.com/watch?v=mVoPG9HtYF8
https://www.youtube.com/watch?t=289&v=KIz-NvdUPNw&feature=youtu.be
https://www.youtube.com/watch?t=289&v=KIz-NvdUPNw&feature=youtu.be
https://en.wikipedia.org/wiki/Cache_(computing)#Writing_policies
https://www.pcgamer.com/apple-m1-macs-appear-to-be-chewing-through-their-ssds/
https://en.wikipedia.org/wiki/Direct_memory_access
https://en.wikipedia.org/wiki/Directive_(programming)


Renaissance Robotics (v.2024-03-19) Chapter 1: Cybernetics

1.4 Hardware for exploiting parallelism
Most numerical algorithms can be arranged such that themajority of the calculations performed do not actually
depend upon the results of the immediately preceding calculations. Such situations allow for parallel comput-
ing, in which some calculationsmay be done simultaneously (or, nearly so) with others, allowing the entire algo-
rithm to completemuchmore quickly. Parallelismwithin numerical algorithms is quantified by its granularity:
problems with fine-grained parallelism have a relatively small number of calculations that may be performed
independently before their results must be shared in order to continue, whereas problems with coarse-grained
parallelism have a relatively large number of computations that may be performed independently before their
results must be shared in order to continue. Problems with coarse-grained parallelism naturally evident at the
outset of the problem formulation are sometimes said to be embarrassingly parallel.

The identification of techniques to expose and exploit parallelism is essential for two key reasons. First,
of course, identifying parallelism allows the computer’s operating system (see §2) to assign multiple compute
resources to the problem at hand simultaneously [i.e., the various ALUs and FPUs within the different CPU
cores in the system (see §1.4.3), together with certain other compute resources that may also be available, as
surveyed in §1.5.3-1.5.4]. This enables significantly more computational work to be completed per clock cycle.

Equally important, at a lower level, identifying parallelism allows a self-optimizing compiler to make
much more effective use of all available levels of high-speed cache memory (see §1.3) for each individual CPU
core being used, by performing a delicate regrouping and reordering of the various computations to be per-
formed, thus maximizing both the temporal and spatial locality of the data needed for each and every calcula-
tion to be performed along the way. This is best achieved by adhering to the following high-level guidelines:

(a) Write clean codes that clearly/simply reveal the problem structure at hand (e.g., if your computer language
allows it, somehow writing A*B for matrix/matrix multiplication, or A\b for Gaussian elimination, instead of
looping over all of the individual indices involved in such basic but time-consuming computations yourself).

(b) Use a modern self-optimizing compiler that calls the BLAS (basic linear algebra subprograms) and LAPACK
(linear algebra package) software libraries extensively (or, if the programming language or compiler you are
using doesn’t do this for you, call these routines yourself from within your code, and consider changing to a
different programming language or compiler!). These libraries are meticulously hand tuned by each CPU ven-
dor to maximize hit rates in each level of cache for the fundamental linear algebra problems that your code will
spend the bulk of its time solving at any given problem size. You are unlikely to do better on your own.

(c) If at all possible, define the problem size at compile time, via constants defined in the code header, rather
than at run time, via data files that are read in (post compilation). This important (but, often-overlooked) third
guideline helps the compiler to decide, at compile time, specifically how to reorder the various loops involved
in order to achieve maximum performance from the cache. Indeed, for many (large) problems, the advantage
here is so significant that recompiling the code in question immediately before any large run, once the size of
the problems to be solved are identified and defined in the code header, can be quite beneficial.

Most numerical algorithms can actually be arranged (or, rearranged) to reveal a hierarchy of parallelism
within, with some fine-grained parallelism embedded within its innermost loops, and successively coarser-
grained parallelism evident in the loops that surround them. Modern CPUs and compilers can effectively ex-
ploit many of these different levels of parallelism simultaneously, in order to achieve remarkable degrees of
computational efficiency with relatively little specific intervention by the embedded programmer.

It is important to understand the several ways that modern computers exploit parallelism to see other
specific things the embedded programmer can do [besides points (a) through (c) above] to help facilitate the
parallelization process. Note that the subsections that follow are ordered from techniques best suited to exploit
the finest-grained parallelism available (in the innermost loops), to those that are better suited for exploiting
successively coarser and coarser grained parallelism.
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1.4.1 Instruction pipelining and branch prediction
Even relatively simple (i.e., RISC) instructions may themselves generally be divided up into a number of smaller
steps; for example, (a) fetch the instruction, (b) fetch the operands, (c) do the instruction, (d) write the results.
Instruction pipelining is a technique for implementing parallelism on a CPU over each of these smaller steps,
thus effectively keeping each corresponding part of the ALU or FPU busy doing useful work at each timestep.
For example, at a clock cycle when instruction k is just starting with step (a) above, instruction k − 1 can
(simultaneously) be executing step (b), instruction k − 2 can be executing step (c), and instruction k − 3 can
be finishing up with step (d). For this to work correctly, the calculations must be ordered in such a manner
that a fine degree of parallelism is available, such that later commands don’t try to fetch the results of earlier
commands until they are actually available, which can take a few timesteps.

Branch prediction is a technique used to keep such instruction pipelines full even during the execution
of conditional (if-then-else) statements. This is achieved by guessing (based on previous executions of each
conditional) which branch the code is most likely to take, and proceeding assuming that the conditional will
actually take that direction this time. If it does, the instruction pipeline remains full right through the condi-
tional statement. If it does not, however, the tentative results of each calculation after the conditional must
be discarded, before they are written back to memory, and the pipeline re-initialized with the instructions on
the other branch of the conditional. Branch prediction is especially valuable in CISC systems, with complex
instructions and thus relatively long pipelines, and in codes that frequently encounter conditionals. [Note that
the code for handling branch predictions is generally inserted by the compiler, if the appropriate flags are set,
and thus need not be written by the embedded programmer.] The overall time penalties associated with in-
correct branch predictions may be kept small by (a) minimizing the number of conditional statements that are
encountered by the numerical algorithm (eliminating such conditionals altogether from all but the outermost
loops of the numerical algorithms used), and (b) using RISC processors, which have relatively short instruction
pipelines.

1.4.2 Vectorization (SIMD)
As discussed in §1.1.3 and 1.1.4, the fixed-point and floating-point representations of real numbers that are use-
ful in embedded applications are typically only 16 or 32 bits long, whereas the word length of high-performance
CPU cores is 32 or 64 bits, and data bus and register sizes of modern CPUs and DSPs (see §1.5.4) can be even
larger (e.g., 128 bits or more). Such an organization facilitates, where useful, the grouping of real numbers
together as a vector, and performing quickly the same arithmetic operations on all elements of the vector si-
multaneously (or, nearly simultaneously), leveraging the extensive fine-grained parallelism often present in the
innermost loops of substantial numerical algorithms. This basic idea goes by several names; in the early days
of computing on Cray supercomputers (including the Cray-1, Cray X-MP, Cray-2, & Cray Y-MP), this process
was called vectorization, and operated on very large vectors (with, e.g., 64 double-precision floats). The idea
of vectorization went dormant in the mid 90’s, but was revived for desktop and embedded processors, using
much shorter vectors, under the general name of SIMD (single-instruction, multiple data), with different im-
plementations appearing under various trademark names including MMX/SSE (Intel), 3DNow! (AMD), Altivec
(Freescale), VMX (IBM), Velocity Engine (Apple), and, more recently, Neon and Helium (ARM).

1.4.3 Shared-memory multiprocessing
At the next coarser level of granularity of parallelism in numerical algorithms, multiple substantial tasks can
often be identified that can be run completely independently from each other for awhile [say, computingO(103)
or more floating-point operations (FLOPS) before having to share results with those of other tasks in order to
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continue]. Such independent tasks are often found in the outermost loops of a code, and do not actually need
to contain the same set of commands in order for the compiler to be able to parse them out and organize how
to compute them in parallel; this setting is thus occasionally referred to as MIMD, to distinguish it from the
SIMD setting required to parallelize innermost loops via vectorization, as discussed in §1.4.2.

The most straightforward way to leverage such coarse-grained parallelism is multithreading; that is, the
spawning and running of multiple independent “threads” by a single numerical algorithm, each of which may
run for a while on a different CPU core (as coordinated by the scheduler, as discussed further in §2.1) before
pausing from time to time to synchronize its results with the other threads, but all of which ultimately access the
same main memory. This setting is referred to as shared-memory multiprocessing, and may be coordinated
directly by an embedded programmer from within a numerical code using OpenMP compiler directives, or in
many cases can be efficiently coordinated by a good self-optimizing compiler.

As discussed in detail in §1.3, the use of high-speed cache memory (often, at multiple levels) has become
essential for modern CPUs to reach their full potential, as CPUs are now typically much faster than the main
memory that they access, but wide data paths allow large blocks of data to be retrieved from main memory
in relatively little additional time (as compared with the time required to retrieve a single byte). In multi-core
systems, L1 cache is typically dedicated to each core, L2 cache is dedicated to each CPU (shared amongst
all cores on that CPU), and (often) L3 cache is shared amongst all CPUs, providing the gateway to the main
memory. The challenge of maintaining cache coherence in multicore settings complicates the execution of
complex numerical algorithms using shared-memory multiprocessing, in which data must be shared frequently
between the different running threads, though inmost applications the problem ofmaintaining cache coherence
is taken care of by the MMU, with relatively little intervention required by the embedded programmer.

Most modern computers with a handful of CPU cores for shared-memory multiprocessing implement some
sort of symmetric multiprocessing (SMP15), in which all compute cores have equal access to all memory
and peripherals (usually via some arrangement of a data bus, address bus, and control bus), and may thus be
treated essentially equally by the scheduler (see §2.1) for all tasks (i.e., no specific tasks are restricted to certain
processors). Following this approach, two specific design paradigms simplify the organization:

(a) homogeneous computing, in which only one kind of CPU core is used, and
(b) uniform memory access (UMA), in which all cores have equal access to all sections of main memory.

Demands on peak computational performance in embedded systems continue to increase steadily, following
the celebrated “Moore’s Law” (that is, the observed doubling of the IC density in leading CPUs, and thus
their performance, about once every 2 years). At the same time, the maximum clock speeds that CPUs can
support is increasing only gradually in recent years, with higher clock speeds requiring higher voltages as well
as increased power consumption to operate the CPU. Thus, embedded computers are now tending to include
more and more CPU cores. Further, demands on computational performance in most applications are found
to vary substantially over time, and power efficiency during the quiescent times is often just as important as
peak computational performance during the active times. One approach to achieving an improved balance
between maximizing peak computational performance and minimizing time-averaged power consumption is thus
to implement dynamic voltage and frequency scaling, automatically reducing both the effective CPU clock
speed as well as the voltage driving the CPU, in real time, when the recent average computational load is found
to be relatively light16.

When designing computers to meet even stricter requirements, however, both of the simplifying paradigms
(a) and (b) above eventually become limiting factors, and must be relaxed in order to build systems with even
greater peak computational performance, and with even lower average power consumption. Thus:

15The abbreviation SMP usually denotes symmetric multiprocessing, but is occasionally used more generally for shared-memory
multiprocessing, which may or may not be symmetric. We recommend the former, more restrictive use, which is more common.

16In this setting, a relevant performance metric is FLOPS per MHz, in addition to peak FLOPS.
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• The heterogeneous computing paradigm is now quite common, in which the embedded computer includes
more than one type of CPU core (one with higher peak performance, and one with lower average power con-
sumption), which may be selectively turned on and off. There are many different ways in which this general
idea may be implemented; examples include ARM’s big.LITTLE and DynamIQ technologies.
• An emerging design paradigm for embedded computers is nonuniform memory access (NUMA), in which
each CPU (or, CPU cluster) is closely associated with only a subset of the main memory, and it takes substan-
tially more time to read from or write to memory that is more closely associated with the other CPUs in the
system [though all of the main memory shares a single large address space]. This approach was perfected in
the field of high performance computing by Silicon Graphics (SGI) under the brand name NUMAlink, and (as
of 2024) is only beginning to emerge in computers designed for embedded applications.

Note finally that, akin to branch prediction (see §1.4.1), speculative execution of independent threads of a
multithreaded code following a conditional statement, or for which there is potentially stale data input, may be
performed in the setting of shared-memory multiprocessing if sufficient computational resources are available,
with speculative locks used to delay the write-back (or, the deletion) of the results of the speculative section of
code until the conditional itself is evaluated, or the potentially stale data input has been verified as correct.

1.4.4 Distributed-memory multiprocessing

To solve even bigger problems, leveraging the coarsest-grained parallelism that can be identified in a numerical
algorithm, many independent computers, each with their own dedicated memory, may work together over a
fast network operating as a computer cluster. When large centralized computer clusters, and the codes running
on them, are particularly well tuned for the coordinated distributed computation of very large individual jobs17,
this setting is often referred to as high performance computing (HPC).

Cluster-based “cloud” computing in the HPC setting is a very natural complement to “edge” computing for
many large-scale real-time problems addressed by embedded sensors. Examples of interest include:

• the forecasting of the evolution of the track and intensity of hurricanes or forest fires and, simultaneously,
the uncertainty quantification (UQ) related to such forecasts,
• the development of a single detailed map of a region, based on the information gathered from several inde-
pendent mobile robots, each moving through and exploring different overlapping subregions, and each inde-
pendently executing their own simultaneous localization and mapping (SLAM) algorithms, etc.

In such problems, a large computation needs to be performed on the cluster, fusing the Big Data being
gathered, in real time, from numerous (often, heterogenous) sources (e.g., mobile robots), often using com-
plex physics-based models. At the same time, based on the UQ performed on the cluster, the mobile robots
often need to be redispatched intelligently to different subregions, a setting referred to as adaptive observation.

In the HPC setting, distributed computing leverages a fast and reliable communication network (see §4.1),
such as18 Ethernet or InfiniBand, between the independent computers making up the cluster. As opposed
to shared-memory multiprocessing (§1.4.3), in which the MMU and a good self-optimizing compiler can often
handle most if not all of the low-level details related to cache coherence and the coordination of distinct threads
related to a certain job, in distributed-memory multiprocessing the necessary passing of data (aka messages)
between the independent computers in the clustermust often be coordinatedmanually by the programmer from

17As opposed, for example, to the maintenance of transactional databases used for stock trades, ticket sales, large-scale search,
social media, etc., with the cluster interacting simultaneously, and essentially independently, with a very large number of users.

18HPC is a very small market indeed, as compared to consumer electronics (largely supporting web surfing, video games, office
productivity applications, etc). HPC today advances mostly by repurposing cutting-edge commercial off-the-shelf (COTS) electronics
technologies developed for consumer electronics. In this setting, the possible deployment of Thunderbolt as a potential new technol-
ogy for networking in HPC clusters is quite interesting.
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within the numerical code, which is a rather tedious process. Some variant of theMessage Passing Interface
(MPI)19 is generally used for this process in the distributed-memory setting, effectively solving (by hand) similar
problems as those solved by the MMU (automatically) for maintaining cache coherence in the shared-memory
setting, passing messages and blocking new computations only when necessary. Primitive operations used to
coordinate message passing and computations in MPI-1 include

• point-to-point message passing (from one specific node to another),
• one-to-all message passing (aka broadcast),
• all-to-one message passing, together with an operation like summing (aka reduce),
• all-to-all message passing, for rearranging the data over the cluster, etc.

Such commands can be either blocking (halting a thread’s execution until the command is completed) or non-
blocking, or follow a ready-send protocol in which a send request can only be made after the corresponding
receive request has been delivered. MPI-2 introduces certain additional operations, including

• one-sided put (write to remotememory), get (read from remotememory), and accululate (reduce) operations,
• the ability of an existing MPI process to spawn a new MPI process,
• the ability of one MPI process to communicate with an MPI process spawned by a different MPI process, etc.

Note that FT-MPI is a remarkable extension (plug-in) that adds significant fault tolerance capabilities to MPI;
Open MPI also includes significant fault tolerance capabilities.

In the field of robotics, the problem of distributed computation is often referred to as distributed control.
Distributed control systems generally implement several nested control loops on the individual mobile robots
or machines (e.g., on an assembly line) involved. Decentralized control systems denote controllers that are
primarily distributed on each robot or machine, with no central supervisory authority. Centralized control
systems, in contrast, denote controllers that primarily operate on a central supervisory computer. Most prac-
tical control systems for multi-robot teams or multi-machine assembly line operations are some “hierarchical”
hybrid between the two, with decentralized low-level/high-speed control feedback on the inner loops (e.g., co-
ordinating the motion of an individual robot arm), coupled with centralized high-level coordination and fault
management on the outer loops (adjusting the speed of the assembly line, etc). Mobile robots add the significant
complication of very unreliable communication links, a challenge that requires significant care to address.

1.4.5 Summary: enabling the efficient parallel execution of codes
The reordering of the individual calculations within a numerical code, maximizing the temporal and spatial
locality of the data needed for each calculation to be performed, and thus maximizing the effectiveness of all
available levels of cache memory, is best achieved by using a modern self-optimizing compiler, with a high level
of optimization selected, together with steps (a), (b), and (c) described in the introduction of §1.4.

Pipelining (with or without branch prediction) and SIMD vectorization, as discussed in §1.4.1 – 1.4.2, are
both facilitated by the remarkable hardware of the modern CPU itself, together with the low-level opcodes
used by good self-optimizing compilers to leverage this hardware. The use of both techniques can be activated
by you, the embedded programmer, rather easily, simply by compiling your code with the appropriate compiler
flags set to enable these features. With today’s CPUs and compilers, it is generally not necessary for you to
write code in assembler and deal with such low-level opcodes yourself, thus leaving you to attend to higher-
level, more consequential issues. The efficient use of shared-memory multiprocessing (§1.4.3) sometimes takes
a bit more work, leveraging OpenMP compiler directives to tune the default behavior generated by the compiler
when necessary. The use of distributed-memory multiprocessing (§1.4.4) is, as of this writing, much harder, and
must usually be coordinated manually by the user (often leveraging MPI), as introduced briefly above.

19Some HPC languages, like Coarray Fortran (which is implemented by G95), are beginning to implement coding constructs that
that make higher-level parallel programming in the distributed memory setting significantly easier.
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1.5 Microcontrollers (MCUs) and associated coprocessors

We now shift topics from the foundational ideas in modern computing, to the technologies that implement
these ideas in embedded applications. At the heart of such implementations is amicrocontroller (MCU20,21),
which is an integrated circuit (IC) that fuses one or more CPU cores together with an interconnecting bus fabric,
a (SRAM-, DRAM-, and/or Flash-based) memory subsystem, and a number of useful coprocessors, such as:

- arithmetic logic units (ALUs) for fast integer and fixed-point computations [§1.1.3],
- floating-point units (FPUs) for fast floating-point computations at specific precisions [§1.1.4],
- programmable interrupt controllers (PICs) to handle signals that trigger specific new actions [§1.5.2],
- general purpose timer/counter units [§1.5.5], and
- communication interfaces [§4] for connecting the MCU to a range of input/output (i/o) devices [§3],

as well as other application-specific integrated circuits (ASICs) useful for commonly-needed functions, such as:

a. dedicated hardware for transcendental function approximation [§1.5.3.1],
b. ring buffers for computing finite impulse response & infinite impulse response (FIR/IIR) filters [§1.5.3.2],
c. cyclic redundancy check (CRC) units, for performing fast detection of bit errors [§1.5.3.3],
d. random-number generators (RNGs) [§2.7], etc.

Some leading MCU families, and the CPUs that they embed, were surveyed briefly in §1.2. As indicated there,
popular MCUs range from simple 8-bit devices, with just a few simple coprocessors, to remarkably efficient
integrations of high-performance, low-power 32-bit or 64-bit CPUs with high-performance coprocessors
(DSPs, GPUs, NPUs, FPGAs, CPLDs, PRUs, etc), together dozens of timers and other independent hardware
communication subsystems (each function independently, in real time, without loading the main CPU core of
the MCU, and often operate with direct memory access). Such useful coprocessors include, specifically,

e. quadrature encoder counters, for quantifying the (clockwise or anticlockwise) rotations of shafts,
f. pulse-width modulation (PWM) generators, for driving servos and ESCs,
g. UART, SPI, and I2C channels, for hooking up other ICs and (nearby) off-board peripherals,
h. CAN and RS485 controllers, for longer-distance communication over differential pairs of wires,
i. USB controllers, for communicating with desktop/laptop/tablet computers and associated peripherals,
j. digital-to-analog and analog-to-digital converters (DACs and ADCs), for interfacing with analog devices,
k. inter-IC sound (I2S) channels and/or serial audio interfaces (SAIs), for audio channels,
l. on-board or off-board oscillators, coin cell power backup, and real-time clocks (RTCs), for scheduled wakeup,
m. integrated op amps, for building analog filter circuits (low-pass, band-pass, notch, PID, lead/lag, . . . )
n. memory controllers (e.g., FSMC and quad SPI channels), for hooking up additional memory, etc.

Loading the CPU, other serial comm protocols can be bit-banged using reconfigurable general-purpose input/
outputs (GPIOs). An example modern MCU is the STM32G474, a block diagram of which is given in Figure 1.7.
ThisMCU, built around an ARMCortexM4F (a RISCCPUwith 3-stage instruction pipeline, a modified Harvard
architecture, and an FPU for single-precision floats), is implemented in the Beret family of boards introduced
in §5, and integrates several coprocessors (indeed, in all 14 categories, a through n, mentioned above).

20In contrast (but, similar in many respects), amicroprocessor (MPU) is an IC designed to form the heart of a desktop, laptop, or
high-performance tablet computer, with hardware subsystems focused more on computational performance, graphics, and efficiently
accessing a much larger memory and data storage footprint than a typical MCU.

21A third relevant category today is what is often called a mobile processor (MP), which is an IC that implements many of
the same components as an MCU or MPU, but is tuned specifically for low-power operation, standby, and sleep. Modern MPs,
which achieve remarkable flops/MHz, flops/mW, and (due to very large scale manufacturing, for use in smartphones) peak flops/$
ratios on real-world problems, are particularly well positioned for advanced high-level applications in embedded systems (performing
vision-based feature recognition and SLAM, machine learning, etc.), as a complement to MCUs for handling the real-time low-level
feedback required in motor control applications. Note that the dividing lines between MPs, MPUs, and MCUs continues to blur, and
emphasizing the distinction between them is not necessarily productive moving forward.
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Figure 1.7: Block diagram of the STM32G474 MCU, with the hardware leveraged by the Berets (see §5) high-
lighted in color (see text). Image adapted from the STM32G474 datasheet, courtesy of STMicroelectronics.
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Figure 1.8: Bus matrix connections to/from the ARM Cortex M4 in the STM32G474; circles at intersections in
the grid indicate an allowed connection from the corresponding master (at top) to the slave (at right). Image
adapted from the STM32G474 datasheet, courtesy of STMicroelectronics; see also ST Application Note AN4031.

1.5.1 Busses, memory management, and direct memory access (DMA)
At the heart of a modern MCU is one or more CPU core(s). The complex fabric interconnecting these CPU
core(s) within the MCU to the various coprocessors, to the cache-based memory and data storage system, and
to the connected peripherals, is organized into a number of distinct busses, each with specific privileges, as
illustrated for the STM32G47422 in Figure 1.8. Most modern processors follow ARM’s open standard Advanced
Microcontroller Bus Architecture (AMBA) protocol, which includes the AdvancedHigh-performance Bus (AHB),
which is responsible for both the sending of an address to memory as well as the subsequent writing or reading
of data or instructions to/from that memory address (via busses ranging from 64 bits to 1024 bits in width),
and the lower-complexity Advanced Peripheral Bus (APB), which coordinates lower-bandwidth register and
memory access by system peripherals (via a 32-bit bus).

Another essential aspect of modern CPUs is direct memory access (DMA), a feature that allows coprocessors
and peripherals to read or update memory locations directly, without tying up the CPU as a choke point. In
some implementations, DMA can also be used, without bogging down the CPU, to copy or move data from
multiple memory locations into a single communication data stream, or to take data from a single data stream
and distribute it to the appropriate memory locations, common processes referred to as scatter/gather I/O.

22In the ARMCortexM4 CPU implemented in the STM32G474MCU, there are three main busses, the ICode (instruction) interface,
the DCode (data) interface, and the System interface, denoted I-BUS, D-BUS, and S-BUS in Figures 1.7 and 1.8.
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1.5.2 Programmable interrupt controllers (PICs)
The CPU of an MCU often needs to wait for a trigger (for example, a clock pulse, or a signal from an external
peripheral) before beginning a specific new action or computation. The CPU also needs to be able to handle
various exceptions that occur when something unexpected happens (divide by zero, etc.). Such an event is
generically known as an interrupt request (IRQ). There are many possible sources of IRQs, and at times they
can arrive at the MCU in rapid succession, and thus need to be carefully prioritized and dealt with by the CPU
accordingly. IRQs are handled by a dedicated unit on the CPU called23 a programmable interrupt controller
(PIC). The PIC assigns a priority and a block of code, called an interrupt service routine (ISR), for the CPU to
deal with any given IRQ, if/when one is detected.

IRQs are denoted as maskable or non-maskable, which essentially distinguishes whether or not they may
be ignored (at least, for the time being) by the ISR that is associated with that IRQ. Interrupts that deal with
non-recoverable hardware errors, system reset/shutdown, etc., are often flagged as non-maskable interrupts
(NMIs). Common interrupts generated and handled by user code, however, should generally NOT be flagged
as NMIs, since NMIs hinder other normal operations (stack management, debugging, . . . ). Common interrupts
that are time critical should instead be flagged as high priority maskable interrupts, and if such IRQs are missed
by the system during testing, the behavior of the scheduler (see §2.1) should be adjusted to make certain that
such high priority maskable interrupts are set up to be dealt with in a timely fashion.

1.5.3 Application specific integrated circuits (ASICs)
Application specific integrated circuits (ASICs) are dedicated coprocessors that are hard-wired for narrowly-
defined purposes. As introduced previously, representative examples include transcendental function genera-
tors, ring buffers, cyclic redundancy check calculation units, random-number generators, etc. To illustrate, this
section discusses various characteristics of these common types of ASICs. Note that the hardware implement-
ing the timer / counter units discussed in §1.5.5, and the communication subsystems discussed in §1.5.6, may
also be considered as ASICs.

1.5.3.1 CORDIC approximation of transcendental functions††

The efficient software approximation (to a selectable precision) of various transcendental functions is discussed
in detail in §2.6. Specialized hardware suitable for approximating such functions even faster (again, to selectable
precision), while offloading the CPU for other tasks, may also be implemented. The clever algorithm underlying
such hardware is known as CORDIC (coordinate rotation digital computer), and is well suited for compact
implementation on both ASICs and more general-purpose coprocessors (DSPs, FPGAs, etc).

We will discuss the CORDIC algorithm itself first, including its software and hardware implementations;
interpretation of the convergence of the CORDIC algorithm is deferred to the end of this section [Figure 1.9].

The operations on {x, y, z} that underlie all six forms of CORDIC are given, at each iteration, by
(
x
y

)

i+1

= K̄i

(
1 −µσifi
σifi 1

)(
x
y

)

i

, (1.1a)

zi+1 = zi − σiαi. (1.1b)

That is, at each iteration, a “scaled rotation” is performed on (x, y), and z is incremented by ±αi. The param-
eters {αi, K̄i} may be precalculated according to the various formula given in Table 1.11, the first few values

23The PIC on the ARM Cortex M4, as depicted in Figure 1.7, is called a nested vectored interrupt controller (NVIC).
††This section, like later sections of this text marked with one or more daggers (†), is a bit harder than those around it, in proportion

to the number of daggers used, and may be skipped upon first read without disrupting the continuity of the presentation.
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circular µ = 1, αi = atan (1/2i), fi = tan(αi) = 1/2i, K̄i = 1/
√

1 + 1/22i

linear µ = 0, αi = 1/2i, fi = 1/2i, K̄i = 1

hyperbolic µ = −1, αi = atanh(1/2i), fi = tanh(αi) = 1/2i, K̄i = 1/
√

1− 1/22i

Table 1.11: Formulas for µ, αi, fi, and K̄i, for (top) circular, (middle) linear, and (bottom) hyperbolic CORDIC
rotations. DefiningKi = K̄1 K̄2 · · · K̄i, the first few values of {αi, fi, Ki} are reported in Table 1.12.

circular
i = 0, 1, 2, . . .

αi = 0.78540, 0.46365, 0.24498, 0.12435, 0.06242, 0.03124, 0.01562, . . .
fi = 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, . . .
Ki = 0.70711, 0.63246, 0.61357, 0.60883, 0.60765, 0.60735, 0.60728, . . .

linear
i = 0, 1, 2, . . .

αi = 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, . . .
fi = 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, . . .
Ki = 1, 1, 1, 1, 1, 1, 1, . . .

hyperbolic
i′ = 1, 2, 3 . . .

αi′ = 0.54931, 0.25541, 0.12566, 0.06258, 0.06258, 0.03126, 0.01563, . . .
fi′ = 1/2, 1/4, 1/8, 1/16, 1/16, 1/32, 1/64, . . .
Ki′ = 1.15470, 1.19257, 1.20200, 1.20435, 1.20671, 1.20730, 1.20745, . . .

Table 1.12: Angles αi, rotation factors fi, and cumulative scale factors Ki of the CORDIC algorithm for (top)
circular, (middle) linear, and (bottom) hyperbolic rotations. Note the two rotations in the hyperbolic case with
f4 = f5 = 1/16 and α4 = α5 = atanh(1/16) = 0.06258 (see text). The full table of coefficients needed to apply
CORDIC to achieve single-precision floating-point accuracy in all cases is computed in RR_cordic_init.m.

of which are listed in Table 1.12. The variable µ is just a sign bit, and is set as 1 for circular rotations, 0 for
linear rotations, and −1 for hyperbolic rotations. The variable σi is also a sign bit, and is selected so that each
iteration drives either z (for “rotation” mode) or y (for “vectoring” mode) towards zero as the iterations proceed.
The factor fi (and, in the case of linear rotations, the corresponding angle αi) is halved at each iteration. In the
case of circular and hyperbolic rotations, the first several angles αi may be stored in small look up tables on
the (hardware) CORDIC unit; once αi becomes sufficiently small (at around iteration i = 25), the subsequent
αi are, again, simply halved at each iteration. Finally (important!), defining a cumulative scaling factor after
n iterations such that Kn = K̄1 K̄2 · · · K̄n, which may also be precalculated, multiplication by the individual
scaling factors K̄i in (1.1a) may be deferred, and the cumulative scaling factor Kn instead applied to (x, y) by
the CORDIC preprocessing unit, either at the end, or at the beginning, of the n iterations performed.

A full floating-point implementation of the above algorithm is available at RR_cordic_core.m, with exten-
sive preprocessors at RR_cordic.m and RR_cordic_derived.m; the heart of this code is listed in Algorithm 1.1.
Note that such a software implementation of CORDIC is actually not very efficient as compared with the soft-
ware approximation of transcendental functions using Chebyshev expansions, as discussed in §2.6. Where
CORDIC becomes particularly useful, however, is its realization in specialized hardware, including both ASICs
and high-performance coprocessors like DSPs and FPGAs (see §1.5.4), using fixed-point binary representations
(see §1.1.3) of the real numbers involved. In this setting, the halving operations in Algorithm 1.1 may be accom-
plished quickly, with single bit shifts (to the right) of the corresponding fixed-point numbers. Further, one can
implement the logic of the sign bits (that is, σ and µ) essentially for free. In such hardware, the computational
cost of most of the iterations of Algorithm 1.1 in the case of circular or hyperbolic rotations is thus:

• three integer additions, during the generalized rotation of v (1,2) and the increment of v (3) ,
• one bit shift, during the update of f, and
• one table lookup [or, a second bit shift], to determine the next value of ang (that is, of αi).
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Algorithm 1.1: Main iteration of the CORDIC algorithm; full code available at RR_cordic_core.m.
for j = 1 : n % per form n i t e r a t i o n s

% Compute s i gn o f nex t r o t a t i o n (mode=1 f o r " r o t a t i o n " , mode=2 f o r " v e c t o r i n g " )
i f mode==1 , sigma= sign ( v ( 3 ) ) ; else , s igma=− sign ( v ( 2 ) ) ; end

%%%% BELOW IS THE HEART OF THE CORDIC ALGORITHM %%%%
v ( 1 : 2 ) = [ 1 −mu∗ sigma ∗ f ; s igma ∗ f 1 ] ∗ v ( 1 : 2 ) ; % g e n e r a l i z e d r o t a t i o n o f v ( 1 : 2 ) by f
v ( 3 ) =v ( 3 ) − sigma ∗ ang ; % inc rement v ( 3 )

% update f ( d i v i d e by 2 ) [ f a c t o r s { 1 / 2 ^ 4 , 1 / 2 ^ 1 3 , 1 / 2 ^ 4 0 } r epea t ed in h yp e r b o l i c ca se ]
i f mu>−1 | | ( ( j ~=4 ) && ( j ~=14 ) && ( j ~ = 4 2 ) ) , f = f / 2 ; end
% update ang from t ab l e s , o r d i v i d e by 2
i f j +1<= c o r d i c _ t a b l e s .N && rot <3 , ang= c o r d i c _ t a b l e s . ang ( ro t , j + 1 ) ; else , ang=ang / 2 ; end

end
% NOTE : the s c a l i n g o f v by K , i f nece s sa ry , i s done in RR_cord i c .m, not i n t h i s code .

An efficient hardware implementation of CORDIC is discussed in ST AN5325, which establishes that hardware
implementations of CORDIC can have a very small silicon footprint, and in many cases of interest (for various
transcendental functions, at specified levels of precision) can be substantially faster than computing these same
functions using precompiled software libraries (see §2.6). Note in particular (in Table 1.12) that the angles re-
duce by about a factor of two at each iteration; convergence (i.e., the additional accuracy achieved per iteration)
of this algorithm is thus said to be linear. Other iterative algorithms we will encounter later have substantially
faster convergence; the key to the success of CORDIC is its remarkably simplicity, as itemized above.

In the remainder of this section, we turn to the interpretation of what the CORDIC iterations defined above
accomplish (Figure 1.9). As mentioned previously, there are 3 · 2 = 6 forms of the CORDIC algorithm, with:

• three different types of rotations: circular (µ = 1), linear (µ = 0), or hyperbolic (µ = −1) [see Table 1.11], and
• two different modes for determining σi:

rotation mode, which takes σi = sign(zi), eventually driving zn → 0 upon convergence, or (1.2a)
vectoring mode, which takes σi = −sign(yi), eventually driving yn → 0 upon convergence. (1.2b)
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Figure 1.9: Geometric interpretation of the (successively smaller and smaller) rotations of the iterative CORDIC
algorithm developed in §1.5.3.1, for (a, b) circular, (c, d) linear, and (e, f) hyperbolic rotations, illustrating both
(a, c, e) “rotation” mode, which performs a generalized rotation of the vector (x0, y0) [illustrated here for
(x0, y0) = (1, 0)] by the angle z0, and (b, d, f) “vectoring” mode, which rotates the vector (x0, y0) to the positive
x axis, while incrementing z0 by the angle ∆z required for such a rotation. Code at RR_cordic_viz.m.
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Interpretation in the case of circular rotations.
For circular rotations (µ = 1), noting that cos2 x+ sin2 x = 1 and tanx = sinx/ cosx, and thus

cosαi = 1/
√
1 + tan2 αi = 1/

√
1 + 2−2i = K̄i and sinαi = tanαi/

√
1 + tan2 αi = K̄i fi,

the rotation in (1.1a) may be written [note: the scaling by K̄i is deferred in the code]
(
x
y

)

i+1

= Gi

(
x
y

)

i

where Gi = K̄i

(
1 −σifi
σifi 1

)
=

(
cos(σiαi) − sin(σiαi)
sin(σiαi) cos(σiαi)

)
; (1.3)

this is called a Givens rotation, and corresponds to an anticlockwise rotation of (x, y)i by the angle (σiαi)
at each iteration. Of course, successive Givens rotations accumulate; denoting ϕ3 = ϕ2 + ϕ1, ci = cos(ϕi),
si = sin(ϕi), and applying the identities c2c1 − s2s1 = c3 and s2c1 + c2s1 = s3, this may be verified as follows:

(
c2 −s2
s2 c2

)(
c1 −s1
s1 c1

)
=

(
c2c1 − s2s1 −c2s1 − s2c1
s2c1 + c2s1 −s2s1 + c2c1

)
=

(
c3 −s3
s3 c3

)
. (1.4)

Thus, successive applications of (1.3) result in a total Givens rotation of the original (x0, y0) vector by
α =

∑n
i=0 σiαi. Note that the αi are scaled by a factor of 0.5, or slightly larger, at each iteration; as a re-

sult, for large n and by appropriate selection of the σi, total rotations anywhere in the range−αmax ≤ α ≤ αmax
are possible, where αmax =

∑n
i=0 |σiαi| =

∑n
i=0 αi = 1.743287 (that is, a bit over π/2). Thus:

• Using rotation mode (1.2a), selecting σi = sign(zi) at each iteration so that zn → 0 for large n, a total Givens
rotation of −αmax ≤ z0 ≤ αmax radians [and a cumulative scaling of K−1n ] is applied to the (x0, y0) vector [see
Table 1.13]. As a special case, defining (x0, y0) = (Kn, 0), we have (xn, yn)→ (cos z0, sin z0) in this mode.

• Using vectoring mode (1.2b), selecting σi = −sign(yi) at each iteration, the original (x0, y0) vector is rotated
[if Kn is applied] along a curve of constant x2 + y2 (that is, along a curve of constant radius from the origin)
such that yn → 0, while the increments of zi in (1.1b) again keep track of the total rotation performed in the
process of rotating the vector (x0, y0) to (xn, 0), so that (xn, zn)→ (K−1n

√
x20 + y20, z0 + atan (y0/x0)).

Interpretation in the case of hyperbolic rotations.
For hyperbolic rotations (µ = −1), noting that cosh2 x− sinh2 x = 1 and tanhx = sinhx/ coshx and thus

coshαi = 1/
√

1− tanh2 αi = 1/
√
1− 2−2i = K̄i and sinhαi = tanhαi/

√
1− tanh2 αi = K̄i fi,

the transformation in (1.1a) may be written [note: the scaling by K̄i is deferred in the code]
(
x
y

)

i+1

= Hi

(
x
y

)

i

where Hi = K̄i

(
1 σifi
σifi 1

)
=

(
cosh(σiαi) sinh(σiαi)
sinh(σiαi) cosh(σiαi)

)
. (1.5)

This transformation is called a “hyperbolic rotation”. Successive transformations by Hi also accumulate;
denoting ϕ3 = ϕ2 + ϕ1, Ci = cosh(ϕi), Si = sinh(ϕi), and applying the identities C2C1 + S2S1 = C3 and
S2C1 + C2S1 = S3, this may be verified as follows [cf. (1.4)]:

(
C2 S2

S2 C2

)(
C1 S1

S1 C1

)
=

(
C2C1 + S2S1 C2S1 + S2C1

S2C1 + C2S1 S2S1 + C2C1

)
=

(
C3 S3

S3 C3

)
. (1.6)

Thus, successive applications of (1.5) result again in a total rotation of the (x0, y0) vector by α =
∑n

i=0 σiαi. In
contrast with the circular case, the αi in the hyperbolic case are scaled by a factor of 0.5, or slightly smaller, as
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rotation mode (zn → 0) vectoring mode (yn → 0)

circular
(µ = 1)

(
xn
yn

)
→ K−1n

(
cos z0 − sin z0
sin z0 cos z0

)(
x0
y0

) (
xn
zn

)
→
(

K−1n
√
x20 + y20

z0 + atan (y0/x0)

)

linear
(µ = 0)

(
xn
yn

)
→
(

x0
y0 + z0 x0

) (
xn
zn

)
→
(

x0
z0 + y0/x0

)

hyperbolic
(µ = −1)

(
xn
yn

)
→ K−1n

(
cosh z0 sinh z0
sinh z0 cosh z0

)(
x0
y0

) (
xn
zn

)
→
(

K−1n
√
x20 − y20

z0 + atanh(y0/x0)

)

Table 1.13: Convergence of the CORDIC algorithm for large n. Leveraging various identities, several derived
functions may also be determined, as implemented in RR_cordic.m and RR_cordic_derived.m.

i is increased. Thus, in order to assure that all angles over a continuous range can be reached by a set of suc-
cessive rotations, the typical approach used is to do two rotations associated with the angles α = atanh(1/24),
atanh(1/213), and atanh(1/240) [see, e.g., Table 1.12]. With three such double-rotations built into the algorithm,
it may be shown that, for large n and by appropriate selection of the σi, total rotations anywhere in the range
−αmax ≤ α ≤ αmax are possible, where now αmax =

∑n
i=0 αi = 1.118173. Thus:

• Using rotation mode (1.2a), selecting σi = sign(zi) at each iteration so that zn → 0 for large n, a total gen-
eralized rotation of −αmax ≤ z0 ≤ αmax radians [and a cumulative scaling of K−1n ] is applied to the (x0, y0)
vector [see Table 1.13]. As a special case, defining (x0, y0) = (Kn, 0), we have (xn, yn)→ (cosh z0, sinh z0).

• Using vectoring mode (1.2b), selecting σi = −sign(yi) at each iteration, the original (x0, y0) vector is rotated
[if Kn is applied] along a curve of constant x2 − y2 such that yn → 0, while the increments of zi in (1.1b)
again keep track of the total rotation performed in the process of rotating the vector (x0, y0) to (xn, 0), so that
(xn, zn)→ (K−1n

√
x20 − y20, z0 + atanh(y0/x0)).

Interpretation in the case of linear rotations.
Finally, for linear rotations (µ = 0), the transformation in (1.1a) may be written

(
x
y

)

i+1

= J

(
x
y

)

i

where J =

(
1 0
σifi 1

)
. (1.7)

Again, successive transformations by J accumulate, which may be verified as follows:
(
1 0
f2 1

)(
1 0
f1 1

)
=

(
1 0

f2 + f1 1

)
(1.8)

Thus, successive applications of (1.7) result in a translation of y0 by
∑n

i=0 σifix0 (note that the xi remain
constant, due to the first row of J ). The fi in the linear case are exactly halved at each iteration, assuring
convergence, for large n and by appropriate selection of the σi, of total translations anywhere in the range
−∆ymax ≤ ∆y ≤ ∆ymax, where ∆ymax =

∑n
i=0 |σifix0| = c |x0|, where we have initialized α0 = f0 = 1 (see

Table 1.12), so that c = 2 (but other choices are certainly possible). Thus:

• Using rotation mode (1.2a), selecting σi = sign(zi) at each iteration so that zn → 0 for large n, a total trans-
lation of ∆y = z0 x0 is applied to y0 [see Table 1.13]. As a special case, defining y0 = 0, we have yn → z0 x0.

• Using vectoring mode (1.2b), selecting σi = −sign(yi) at each iteration, the original (x0, y0) vector is rotated
along a line of constant x, such that yn → 0. Noting that∆y = z0x0 in rotation mode, it is seen that vectoring
mode is again its complement, with ∆z = y0/x0 [see Table 1.13].

In practice, linear mode is useful for approximating multiply/accumulate and divide/accumulate operations on
very simple hardware that is only capable of integer addition and bit shifts.
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(ẽ6)
ek 

(ẽ3)
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(ẽ1)
ek -6

(ẽ5)
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Figure 1.10: A ring buffer of the DT signal ek and its 7 most recent tap delays at timestep k = 11: (left) as laid
out conceptually, as a ring, and (right) as laid out in memory. At timestep k = 12, the next value, e12, replaces
the value in memory location ẽ4, the counter k is incremented by 1, and the other existing values of ẽ stay put.

1.5.3.2 Ring buffers

Many of the essential operations that an embedded controller needs to implement are linear discrete-time (DT)
difference equations (see §8.3.3) that may be written as finite impulse response (FIR) filters of the form

uk = b0 ek + b1 ek−1 + . . .+ bn ek−n, (1.9a)

or infinite impulse response (IIR) filters of the form

uk = −a1 uk−1 − . . .− am uk−m + b0 ek + b1 ek−1 + . . .+ bn ek−n. (1.9b)

To perform such computations quickly, in addition to fast access (see §1.3) to the (fixed) ai and bi coefficients,
fast access to current and recent values (aka tap delays) of the DT signals ek and (in the case of IIR filters)
uk are needed. Instead of shifting all of these most recent values in memory at every timestep, a much faster
approach is to use a ring buffer (aka circular buffer), such as that illustrated in Figure 1.10 (with r = 8 elements).
With this approach, at each timestep k, the most recent value of ek is stored in memory location ẽmod(k,r) [that
is, within a ring buffer with r ≥ n memory locations allocated] using modular arithmetic, and uk is given by:

ũmod(k,r) = b0 ẽmod(k,r) + b1 ẽmod(k−1,r) + . . .+ bn ẽmod(k−n,r) or (1.10a)

ũmod(k,r) = −a1 ũmod(k−1,r) − . . .− am ũmod(k−m,r) + b0 ẽmod(k,r) + b1 ẽmod(k−1,r) + . . .+ bn ẽmod(k−n,r). (1.10b)

With this approach, it is unnecessary to shift each of the saved values of e and u in memory by one location at
each timestep, instead just advancing the index k used to reference these values in their (fixed, until replaced)
locations in the ring buffers, and using this index (and reduced values of it, like k − j) in a modulo fashion.

FIR filters (1.10a) and IIR filters (1.10b) are needed so often in embedded computing that many modern CPU
cores targeting applications in robotics and cyberphysical systems include specialized hardware or software
implementations of both the ring buffers themselves (with the required mod command on the indices handled
automatically) together with the additional low-level multiply/add circuitry or code required to implement such
filters remarkably quickly, without significantly burdening the available CPU core(s).

In many DT filters, dubbed strictly causal (see §8.3.3.2), b0 = 0. In such problems, (1.10a) or (1.10b) can
simply be calculated between timestep k − 1 and timestep k.

In the case of semi-causal filters, however, b0 ̸= 0. In such problems, the strictly causal part of the RHS of
(1.10a) or (1.10b) [whichmay involve a substantial number computations if n orm is large] can still be calculated
between timestep k− 1 and timestep k. As soon as the new value of ek becomes available, the RHS can then be
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updated by adding b0 · ek, and then the result may be applied directly on the output as uk, thus applying the
output uk very very soon after the input ek is received, though not quite instantaneously.

Ring buffers, as described above, can be implemented in dedicated hardware, such as ST’s FMAC units (see
ST AN5305), or in software, such as when using ARMHelium. Performing such computations in ASIC hardware
on the MCU has the obvious advantage of offloading the CPU core; however, the size (and, the associated
capabilities) of such ASICs needs to be decided upon when the (general purpose) MCU is designed, when the
demands of the ultimate application are largely unknown. Performing such computations with streamlined
software constructs on the CPU core of the MCU leads to a much more scalable solution (from small filters
to large) to better fit the demands of the end application. Thus, ring buffers for MCUs targeting a narrow
range of applications aremost efficiently implemented on appropriately-sized ASICs; for general-purposeMCUs
targeting a more broad range of applications, software-based solutions might be preferred.

1.5.3.3 Cyclic redundancy check calculation units

The use of parity bits to detect and/or correct occasional bit errors in memory and communication systems was
introduced in §1.1.5. For this purpose, linear binary codes (LBCs) are designed for vectors in Fn

2 , with one
bit in each of n elements, each considered as a finite field F2 = {0, 1}, with the fundamental operations of
addition (+, aka XOR) and multiplication (·, aka AND) closed (i.e., with no carry), as defined by:

F2:
+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

An LBC is defined by twomatrices, an r×n parity-checkmatrixH and ann×k basis matrixV , eachwith elements
in F2, such that H V = 0. The use of an LBC to communicate data over a noisy channel is straightforward:

• group the data into vectors (blocks) of length k, with a single bit in each element;
• code each resulting data vector a ∈ Fk

2 into a longer codeword w ∈ Fn
2 , with n = k + r, via w = V a;

• transmit the corresponding codeword w over the noisy channel;
• receive the (possibly slightly corrupted) message ŵ ∈ Fn

2 on the other end, and
• decode the message ŵ leveraging H , noting that Hŵ = 0 corresponds to no bit errors, and find the most
likely codeword w corresponding to the received message ŵ, and the data a that generated it.

In such LBCs, r is the number of redundant bits, and each valid codeword differs in at least d > 1 bits, which fa-
cilitates error detection and/or correction. The identification of matrices {V[n,k,d]2 , H[n,k,d]2} that define efficient
LBCs (that is, with maximum d for minimum r) is nontrivial, and is discussed at length in §12.

A cyclic LBC may be transformed to a form in which the r × n parity-check matrix Hc
[n,k,d]2

and the n× k
basis matrix V c

[n,k,d]2
, where n = r + k and Hc

[n,k,d]2
V c
[n,k,d]2

= 0 (on F2), have the special form

Hc
[n,k,d]2

=




hk hk−1 . . . h0 0
hk hk−1 . . . h0

. . .
. . .

. . .
. . .

0 hk hk−1 . . . h0


 , V c

[n,k,d]2
=




v0 0
v1 v0
... v1

. . .

vr
...

. . . v0

vr
. . . v1
. . .

...
0 vr




, (1.11)

where (for an LBC) hk = h0 = v0 = vr = 1. The nontrivial elements of these matrices are often summa-
rized with a basis polynomial v(z) = vrz

r + . . . + v1z + v0 and a corresponding parity check polynomial
h(z) = hkz

k + . . . + h1z + h0, defined mutually such that h(z) v(z) = zn − 1 = 0, for a given number of
redundant bits r and data bits k in each codeword of length n = r + k.
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A single error detecting (SED) LBC takes r = 1 regardless of k; this redundant bit is called a parity bit,
and is selected such that the n = k + 1 bits of each codeword add (on F2) to zero if even parity is used, or to
one if odd parity is used; any 2 valid codewords in this LBC differ in at least d = 2 bits. Parity is checked again
when decoding, and a single bit error can be detected but not corrected if the parity has changed. Of course,
during both coding and decoding, parity is easily checked in hardware using a multiple-input XOR logic gate.

In an error correcting code (ECC), we need r > 1 and d > 2. The most broadly used ECCs in embedded
computing, as they may be coded and decoded quickly in hardware, are the single-error-correcting (SEC)
binary Hamming codes [n, k, d] = [2r− 1, 2r− 1− r, 3], as introduced in §1.1.5 and Figure 1.5. These include
(for r = 4 through 8) [15, 11, 3], [31, 26, 3], [63, 57, 3], [127, 120, 3], [255, 247, 3], and shortened versions thereof
(with some data bits eliminated, thus giving codes in which k is a power of 2), including [12, 8, 3], [21, 16, 3],
[38, 32, 3], [71, 64, 3], [136, 128, 3]; these codes take, respectively, v4(z) = z4 + z + 1, v5(z) = z5 + z2 + 1,
v6(z) = z6 + z + 1, v7(z) = z7 + z3 + 1, v8(z) = z8 + z4 + z3 + z2 + 1 (see Tables 12.4 and 12.6).

Binary Hamming codes
Many other codes with even greater error detection and correction capabilitymay be transformed into cyclic

form (see §12.7-12.8) and used similarly.
Adding a single overall parity check to binary Hamming codes generate the single-error-correcting,

double-error detecting (SECDED) extended binary Hamming codes [n, k, d] = [2r−1, 2r−1 − r, 4] , which
include (for r = 5 through 9) [16, 11, 4], [32, 26, 4], [64, 57, 4], [128, 120, 4], [256, 247, 4], and shortened versions
thereof, including [13, 8, 4], [22, 16, 4], [39, 32, 4], [72, 64, 4], [137, 128, 4]. This

1.5.3.4 True random number generators

Random number generation are usually implemented in software (see §2.7)...

1.5.4 Coprocessors: DSPs, GPUs, NPUs, FPGAs, CPLDs, PRUs
More general-purpose coprocessors than ASICs, but with more specialized structure than CPUs, are sometimes
called application-specific standard parts (ASSPs) or application-specific instruction-set processors (ASIPs).
Many are perhaps best considered as some kind of System-On-Chip (SoC). Regardless of ambiguity in the lit-
erature on precisely what to call this general category of coprocessor, there are a handful of well-defined classes
of coprocessors in this general category that are of principal importance in many modern MCUs, including:

DSP
GPU A GPU consists of multiple SIMD units with a large amount of associated memory.
NPU
FPGA
CPLD
PRU

1.5.5 Timer / counter units
PWM

Encoders

1.5.6 Dedicated communication hardware
The major wired and wireless communication protocols available today for embedded systems include PWM,
UART, I2C, SPI, CAN, RS485, USB, Ethernet, Wifi, and Bluetooth, among others, as discussed further in §4.
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Most MCUs implement dedicated hardware to support a number of these communication modes.
Typically, this hardware is capable of direct memory access (DMA).

1.5.7 Pin multiplexing

1.6 Single Board Computers (SBCs)

1.6.1 Subsystem integration: SiPs, PoPs, SoCs, SoMs, and CoMs
Integration of ICs:

• System-In-Package (SiP),
• Package-On-Package (PoP),
• System-On-Chip (SoC),
• System On Module (SoM),
• Computer On Module (CoM)
acronyms

1.6.2 Power management
i. ultra-low standby and sleep modes for battery-based operation, with various cues available for wakeup, etc.,

1.6.2.1 Sleep/wake modes, real-time clocks

IoT and low-power modes
Clock speed regulation

1.6.2.2 Switching regulators

efficiency vs. ripple rejection & voltage stability/accuracy

1.6.2.3 Switching regulators

1.6.2.4 Low-dropout (LDO) regulators

LDO
Power
Internet of Things

1.6.3 Case study: Raspberry Pi
Daughterboards

A detailed case study of a powerful class of daughterboards, dubbed Berets, is provided in §5.
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2.1 Multithreading and scheduling

A central element in the efficient use of limited computational resources for the coordination of complex elec-
tromechanical systems is multithreading; that is, the simultaneous running of many threads (a.k.a. processes or
tasks), each at different rates and priorities, on a microcontroller with only a handful of CPU cores.

The coordination of multiple threads on a microcontroller is handled by the part of the OS called the sched-
uler. At any moment, a thread can be in one of three states: executing (a.k.a. running), ready (to run again, or to
run some more...), or waiting (to be shifted back to the ready state). The component of the scheduler that shifts
threads from the ready list to actually executing on the CPU is called the dispatcher.

Time-critical threads in an embedded setting generally require short periods of computation, called CPU
bursts, followed by idle wait periods [during which file or bus i/o might be performed]. A request to the sched-
uler for a thread to begin a new CPU burst is initiated by some sort of trigger (a.k.a. interrupt) signal, such as

(a) a timer, which triggers requests for new CPU bursts on a thread at precisely predefined intervals ∆t,
(b) a delay, which triggers such requests a set time after completion of previous CPU bursts on the same thread,
(c) a notification of the completion of a file or bus i/o (read or write) previously requested by the thread,
(d) a notification generated by the physical system, such as when a target temperature is reached, or
(e) a notification of new user input.

Other threads (e.g., video encoding) in an embedded setting are CPU-bound (requiring much longer compu-
tation time on the CPU), and may be worked on from time to time in the background, when the CPU bursts
associated with all of the currently-triggered time-critical (higher priority) threads are complete. Note that:

(i) a running thread may shift back to the waiting list because its current CPU burst is complete, and the thread
needs to wait for its next trigger (see above – in particular, a request for file or bus i/o is usually blocking, mean-
ing that the corresponding thread is shifted back to the waiting list until the i/o is complete),
(ii) a running thread may terminate, simply because it finishes its task completely, or
(iii) a running thread may be preempted once the length of time (a.k.a. quantum) alotted to it is expired, or a
higher-priority (time-critical) thread is triggered and needs to run, with the scheduler moving the preempted
thread back to the ready list before the current set of computations in that thread complete, thus giving other
threads a chance to run.

The scheduling algorithm (a.k.a. scheduling policy) is the set of rules used to determine the sequence that the
threads in the ready list will be run, and the quantum that each thread is allowed to run before it is preempted
to give CPU time to other threads. A scheduling algorithm must balance several competing objectives based
on a limited amount of information regarding what might happen next, including:

(1) respecting assigned priorities: the user should be able to assign which threads are most important to complete
in a timely fashion, and this preference should be enforced (thus giving “real-time” behavior – see §2.1.6),
(2) responsiveness: interactive threads should react quickly,
(3) efficiency : the CPU should be kept doing productive work all the time, minimizing the overhead involved in
switching threads (see point iii above), and making maximum use of microcontroller I/O subunits (which are
generally slow compared to the CPU), so that waiting on these I/O subunits does not hold up other threads,
(4) fairness: each thread of the same priority should receive about equal access to CPU time,
(5) throughput : the number of threads that accomplish something significant per second should be maximized,
(6) avoiding starvation: even low-priority threads should get a chance to run from time to time, and
(7) graceful degradation: as the CPU demands approach 100% or more, performance on all threads (particularly
the lower-priority threads) should degrade gradually, and none of the threads should freeze.

Different compromises between these competing objectives are reached by different scheduling policies and
different choices of the time quantums used, as illustrated by the following examples.

2-2



Renaissance Robotics (v.2024-03-19) Chapter 2: Programming Environments and Languages

2.1.1 First-In, First-Out (FIFO) scheduling
To understand what a scheduler does, it is enlightening to consider first the simplest, non-preemptive First-In,
First-Out (FIFO) scheduler. This scheduler simply waits for the CPU burst in the currently running thread to
complete, and for the thread to enter the waiting list on its own (because, to continue, it needs to wait for a new
trigger – like a timer interrupt, a notification of the completion of a blocking i/o request, etc). The dispatcher
then shifts the oldest thread on the ready list over to begin executing on the CPU. Once any waiting thread
receives the trigger it is waiting for, that thread is moved from the waiting list back the end of the ready list.

Though extremely simple, and effective at minimizing the overhead involved in switching threads, the FIFO
approach reaches a relatively poor compromise between the seven competing objectives described in the pre-
vious section: it does not respect assigned priorities for time-critical tasks, interactive threads can be unre-
sponsive when long CPU-bound tasks come up to run, etc. FIFO scheduling on its own is thus generally not
recommended in practice (except in limited, controlled circumstances).

2.1.2 Round Robin (RR) scheduling
Round Robin (RR) scheduling amounts simply to a preemptive variant of FIFO scheduling, which improves
upon the properties of the FIFO approach by limiting the quantum of time that any thread can tie up the CPU
before the next thread gets a chance to run.

Using a large quantum, RR scheduling is effectively the same as FIFO scheduling, whereas using a smaller
quantum results in more frequent switching between ready threads, which makes the overall system more
responsive. However, reducing the quantum also increases percentage of time involved in switching threads
(which typically takes a few ms), which reduces efficiency. For example, assuming a 3ms switch time, a policy
with 10ms quantums spends 3/(10 + 3) = 23% of the time switching, whereas a policy with 50ms quantums
spends 3/(50 + 3) = 5.7% of the time switching. A compromise must thus be reached with an intermediate
quantum (typically 10 to 50 ms) that provides both sufficient responsiveness and also reasonable efficiency.

2.1.3 Shortest Remaining Time First (SRTF) scheduling
Shortest Remaining Time First (SRTF) scheduling is a variant of RR scheduling that, based on historical averag-
ing, estimates the upcoming CPU burst time associated with each thread on the ready list and, whenever the
CPU becomes available, shifts the thread on the ready list with the shortest estimated CPU burst time over to
begin executing on the CPU. A quantum is again used, so any thread with an actual CPU burst longer than the
quantum is again preempted, and moved back to the ready list when its time is up.

A challenge with this approach is estimating future CPU burst times for any thread in the ready list, based
only on previous CPU bursts in the same thread. One way to obtain such an estimate, En, of the n’th CPU
burst time, Bn, is via an exponential average (a sort of IIR filter) given by En+1 = aBn + (1 − a)En for n ≥ 2
with 0.1 ≲ a ≤ 1, where we initialize E1 = 0 and E2 = B1, with n = 1 corresponding to the first CPU burst.

An advantage of SRTF scheduling is that it tends tomove interactive tasks (with, typically, short CPU bursts)
to the head of the ready list (thus improving responsiveness) and, by running the shortest tasks first, it reduces
the mean response time of the system (that is, the average time a thread spends between entering the ready list
to the completion of its corresponding CPU burst), thus maximizing throughput.

2.1.4 Priority scheduling, dynamic priority adjustment, and multilevel schedulers
To allow the user to indicate a preference regarding which threads are most important to complete in a timely
fashion (objective number 1 discussed above for schedulers for embedded systems), some sort of priority schedul-
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ing is required. In the simplest, static form of such a policy, priorities are assigned (either externally, by the user,
or internally, by the OS) for the life of each thread, and the threads on the ready list with the highest priority
run first, with higher-priority threads preempting lower priority threads that may already be running as soon
as they are moved to the ready list. In the event that multiple threads in the ready list are assigned the same
priority, one of the simple policies described above (FIFO, RR, or SRTF) is used to break the tie; preempting may
still be used, of course, to prevent individual threads from consuming the CPU for too long.

A clear advantage of priority-based approaches is that their behavior is easily predicted, and high-priority
threads (e.g., those responsible for time-critical machine control loops, and interactive response) may be set
to always run in a timely fashion, as needed. A challenge with such approaches is that some lower-priority
threads may ultimately be completely starved of CPU time when the total requested CPU load exceeds 100%.
To address this challenge, dynamic forms of this policy are sometimes used. Dynamic approaches occasionally
boost the priority of some low-priority threads that haven’t run in a while, thus making sure that they at
least get a limited opportunity to run (this is sometimes referred to as process aging). Once such a boosted
lower-priority thread runs for a full quantum, its priority is reduced back towards its original value. Often,
longer quantums are implemented by the scheduler at lower priority levels, so with such dynamic approaches
a thread can effectively settle into a priority level with a quantum that matches its typical CPU burst time,
which is efficient. Note that such dynamic priority adjustments may be implemented in such a way as to never
exceed the priorities assigned to the highest-priority (“real-time”) threads.

It is common for a priority-based scheduler to group threads (distributed over about a hundred different
priority levels) into a handful of priority classes [a.k.a. priority queues, for “real-time” (e.g., machine control)
processes, system (a.k.a. kernel) processes, interactive processes, background processes, etc], each with a (pos-
sibly) different scheduling policy (like RR), and each with its own range of quantums implemented. Each of
these priority classes themselves span well over a dozen priority levels, so priority-based scheduling algorithms
(with or without dynamic priority adjustment) may still be used within each class. A multilevel scheduler may
then choose to devote the CPU, when fully loaded, a certain maximum percentage of time to each class of
processes, and to use a simpler priority-based scheduling policy within each class. The Completely Fair Share
(CFS) scheduler implemented in modern Linux kernels is a general purpose multilevel scheduler implement-
ing dynamic priority adjustment within a handful of priority classes, including a RR scheduler at the highest
priority levels for “real-time” tasks.

2-4



Renaissance Robotics (v.2024-03-19) Chapter 2: Programming Environments and Languages

2.1.5 Multicore: load balancing, processor affinity, & power management

SMP and HMP
Most modern embedded processors can actually run multiple threads at the same time, including:

• systems with multithreaded cores, which present themselves as two virtual cores to the scheduler, allowing
multiple instructions [e.g., integer operations (IOPs) and floating-point operations (FLOPS)] to execute simul-
taneously on a single core, as long as they don’t compete for the same resources;
• systems with multiple cores on one CPU, or with multiple CPUs, with or without shared memory caches but
all with Uniform Memory Access (UMA) to all of the main memory, either:
- in a symmetric multiprocessing (SMP) arrangement, in which all cores are equivalent, or
- in a heterogeneous multiprocessing (HMP) arrangement, as in ARM’s big.LITTLE and DynamIQ implemen-
tations, which combine high-performance cores (for computationally-intensive, time-critical tasks), and high-
efficiency cores (for simpler, lower-priority tasks);
• systems with multiple CPUs in a NonuniformMemory Access (NUMA) arrangement, in which each compute
core has a certain portion of the main memory closely affiliated with it, and thus can reach some parts of the
it faster than others (such systems may also be SMP or HMP) - embedded processors with large GPU-based
computational subsystems, and those with dedicated “Neural Processing Units”, are typical examples.

The same general considerations and scheduling policies discussed previously still apply in these settings, but
nowwith the complex additional consideration of needing tomanage the delicate question of which core should
be used to run a particular thread next, and which cores can be run at reduced clock speeds, or powered down
entirely, during relatively idle periods of time in order to save power.

These delicate questions need to be handled carefully by modern schedulers in order to balance compu-
tational throughput and power efficiency in the system, and very different solutions are needed for servers,
laptops, cellphones, andmicrocontrollers for “real-time” control of embedded systems. Notably, balancing com-
putational performance with power efficiency is becoming increasingly important in all types of computational
platforms, and solutions originally developed for small battery-powered systems (cellphones) are working their
way up to laptops and large server farms, which are increasingly limited by power considerations.

In multicore settings, the issues of processor affinity and load balancing must be addressed. That is, it is
usuallymuchmore efficient to run a newCPU burst on the same core (or at least on the sameCPU) that a thread
ran on previously, because the memory cache corresponding to that core (or CPU) is probably already set up
with much of the data that that thread needs to run again. However, sometimes threads still need to be shifted
from one core to another in order to balance the load across multiple cores in the system, as the scheduler seeks
to maintain its target balance between computational throughput and power efficiency. Hierarchical scheduling
domains are often introduced in order to handle these questions, with lower-level schedulers handling each
individual core, and higher-level schedulers occasionally moving threads from one core to another as necessary
(i.e., whenever a given core becomes relatively overloaded, or underloaded, with tasks to complete). To improve
the predictable performance of the most time-critical threads, including those that might share certain cached
data, it is often beneficial to implement hard processor affinity for such threads, binding them permanently to
specific “reserved” cores, while allowing the OS to manage the other threads that might come and go on the
system (but possibly restricting the other major threads on the system from running on the reserved cores,
thereby preventing them from interfering with the most time-critical processes).

Thankfully, the complex coupled problems of scheduling, load balancing, and power management for SMP
and HMP multicore systems are generally taken care of by the OS, not by the embedded programmer, and the
sophistication with which modern schedulers for multicore systems address these problems, to appropriately
balance computational performance with power efficiency, is evolving rapidly. However, understanding gener-
ally how such schedulers work is essential for the embedded programmer, in order to select and use a scheduler
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appropriately, and to tweak its behavior effectively (in particular, to set priorities correctly, and to use hard pro-
cessor affinity where appropriate), in order to strike the desired balance between the seven objectives outlined
previously: namely, to get sufficiently reliable “real-time” performance for high-priority time-critical tasks (see
§2.1.6), sufficient responsiveness from interactive tasks, and efficient performance on all other threads that the
computational system needs to manage, even as the computational system becomes fully loaded.

2.1.6 Characterizing “real time” application requirements
In §2.1, the #1 objective listed for a scheduler on a microcontroller is that the user should be able to assign
which threads are most important to complete in a timely fashion, and that these preferences should some-
how be enforced. In embedded systems, we need to define the importance of such preferences with precision.
Consideration must first be given to the application itself. Embedded programmers often categorize controllers
based on the consequences of not completing a task within a specified time constraint (a.k.a. deadline):

• hard real-time controllers are designed for systems in which a missed deadline may result in total system
failure [an assembly line shuts down and needs to be physically repaired, a rocket blows up, ...];
• firm real-time controllers are designed for systems in which, after a missed deadline, the utility of a result is
zero [a single part will be rejected (automatically) off an assembly line, a toy falls over, ...]; and
• soft real-time controllers are designed for systems in which, after a missed deadline, the utility of a result is re-
duced somewhat [an RC car is momentarily unresponsive to user input, a hamburger bun is slightly singed, ...].

In addition to specifying the relevant deadlines themselves, the above characterizations of the consequences
of missed deadlines are valuable when deciding how to allocate limited computational resources to potentially
complex electromechanical systems.

Hard real time requirements are actually somewhat rare in well-designed mechanical systems; examples
might include the control of an unstable chain reaction, or a pacemaker for a human heart. In hard real-time
systems, particularly those that are safety-critical, mathematical guarantees of no missed deadlines are often
required. Guaranteeing such hard real-time behavior is generally only possible by applying a controller in
a relatively isolated setting with simple (and, thus, highly predictable) bare-metal programming (see §2.2.1),
without several other threads running simultaneously that might occasionally throw the timing off.

More often than not, however, threads running on embedded systems call for firm real-time and/or soft
real-time behavior. In such systems, the priority-based preemptive scheduling strategies described above, as
implemented by a well-designed OS (e.g., the PREEMPT_RT patch of the Linux kernel) and used properly by a
careful programmer, are most often entirely sufficient.

2.2 Operating Systems (OSs)

2.2.1 Bare-metal programming
In this section and the two that follow, we outline the three fundamental programming paradigms for embedded
systems, in order of simplicity.

Arduino
ladder logic
programmable logic controllers (PLCs) used in industrial control applications

2.2.2 Real-Time Operating Systems (RTOSs)
nuttx (posix compliant)
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keil RTX
Real Time Executive for Multiprocessor Systems (RTEMS)
real time linux
more realtime linux
Case study: FreeRTOS

2.2.3 Linux

2.2.3.1 Embedded Linux distros

distros (distributions)
Debian (derivatives: Ubunto, Raspberry Pi OS).
Yocto. OpenWrt.
Commercial: Wind River Linux. Red Hat Embedded
Look for lightweight IoT version (but, man pages are useful...)
shells

2.2.3.2 Chmod

2.2.3.3 Makefiles

real time computing

2.2.4 Realizing hard real time with Linux: dual-kernel approaches vs. RTL

PREMPT-RT
NTP service

2.2.5 Android

2.2.6 Robot Operating System (ROS)

2.3 Programming languages
Many programming languages are growing in importance in different aspects of robotics, including CUDA for
GPU programming, TinyML for machine learning,

2.3.1 C, C++

2.3.2 Python

2.3.3 Graphical programming environments

Scratch
Simulink
Labview
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ping 192.168.8.1 measure speed of connection to machine with IP number 192.168.8.1
ssh 192.168.8.1 securely open a shell on 192.168.8.1
echo $0 show what kind of shell you are currently in
uname -a show info about processor architecture, system hostname, and kernel version
zsh or bash ; exit spawn & enter a new zsh or bash shell (inside current shell); exit this shell
chsh -s /bin/zsh change your default shell to zsh (recommended, if it isn’t already)
pwd print the name of the current working directory
ls -lah list all files in current directory, including ownership, privileges, and size
mkdir foo make a new directory named foo
cd foo ; cd .. change directory to foo; change back to parent directory
touch bar create a new file named bar (or, just update its timestamp)
echo ’hello’ > bar create (or, erase and create) the file bar, and write “hello” to this file
echo ’world’ >> bar append “world” to the file bar (or, create and write to this file)
man echo ; (space) ; q display detailed manual page (alternative to Google) for the command echo
cat bar show contents of the file bar (all at once)
less bar ; (space) ; q show contents of the file bar (pausing after each screenfull)
head bar ; tail bar show the 10 lines at the head (or, the tail) of the file bar
(up arrow) ; (down arrow) scroll up to recently executed commands; scroll down
history show a list of recently executed commands
hist (tab) complete (as far as possible) name of command(s) starting with “hist”
rm bar remove (warning: permanently!) the file named bar
rmdir foo remove directory foo, but only if it is empty
rm -rf foo remove recursively the directory foo and all files contained in it (danger‼!)
cp foo/bar* foo1/. copy all files starting with the letters bar in foo into the directory foo1
cp -r foo foo1 copy recursively everything in foo to the directory foo1
mv bar foo/bar1 move and rename the file bar as bar1 inside the directory foo
chmod 644 bar change mode (§2.2.3.2) of bar to read/write for owner, read for group & world
chown foo1:foo bar change ownership of file bar to user foo1 and group foo
sudo rm bar do the command rm bar as superuser (danger!)
su ; exit enter superuser mode for subsequent commands (danger‼!); exit su mode
df -h report disk free space on the available filesystems
du -sh foo report significant disk use within directory foo
grep psfrag *.tex search files ending in .tex (in current directory) for the string “psfrag”
top periodically report a list of all running threads, sorted by top CPU usage
ps -ef report all running processes (once)
ps -ef |grep kernel pipe output of ps to grep, to extract the lines with “kernel” in them
file bar test bar to determine what type of file it is
find bar scan current directory and all its children for filenames containing bar
tar cvfz fb.tgz fb compress all contents of fb into a (compact) gzipped tarball fb.tgz
scp fb.tgz bar:. securely copy fb.tgz to machine with name bar on local network
tar xvf fb.tgz extract contents of fb.tgz, retaining its original directory structure
alias l=’ls -lah’ use “l” as a shorthand alias for the command “ls -lah” in this shell
env list all aliases and other environmental variables defined in this shell
vim ; nano command-line text editors (see §2.4.1.2) available in all linux distros
~/.bashrc initial run commands executed when a bash or zsh shell is spawned
make foo run commands in Makefile (see §2.2.3.3) to make an executable boo

Table 2.1: Some essential unix/linux/mac commands (in zsh and bash). Explore! You’ll find your way quickly...
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2.4 Text editing & command-line programming versus IDEs

2.4.1 Command-line programming
2.4.1.1 Workflow: edit locally, sync files with SBC, compile, link, run, rinse, repeat

The mind-numbing repetitiveness of this process is sometimes humorously referred to as the shampoo algo-
rithm; a possibly more efficient alternative, once you have everything set up correctly, is to use an IDE (see
§2.4.2).

2.4.1.2 Text editors

text editors built in to modern linux implementations include vim and nano ...
GUI text editors built in to other modern operating systems include, notably, TextEdit (Mac) and Notepad++

(Windows) ...
Code editors that you can run on your Windows or Mac laptop or desktop include Visual Studio Code,

Sublime Text, and Atom.

2.4.1.3 Command-line scp/sftp/rcp vs FTP Clients

SFTP
FileZilla

2.4.2 Programming in an Integrated Development Environment (IDE)
XCode

Eclipse,

STM32CubeIDE (for STM32 devices, based closely on Eclipse)
ARM Keil MDK (for ARM devices)
Visual Studio Code (Microsoft),

NetBeans
Code::Blocks
CodeLite
Qt Creator,

PyCharm (for Python),

MPLAB X (PIC, AVR)

2.4.2.1 Workflow: debug directly within the IDE

Case study: Eclipse
Version of Eclipse for STM32CubeIDE
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2.5 Debuggable, maintainable, and portably fast coding styles
self-optimizing compilers

2.5.1 Platform-optimized libraries: BLAS, LAPack, FFTW

2.5.2 POSIX compliance
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2.6 Software approximation of special functions
Most modernmicroprocessors have fast hardware and/or software libraries built in to compute many important
functions; on some small microcontrollers (see §1.5), however, you must often be prepared to approximate such
special functions efficiently yourself. With this section, we’ve got your back.

As mentioned previously, in embedded applications, we are primarily interested in half precision and single
precision implementations, which form our focus here.

Significant attention has been put into developing efficient and accurate numerical approximations of impor-
tant transcendental functions (sin, cos, tan, asin , acos , atan , exp, ln, log10, log2, . . .). A comprehensive treat-
ment of this subject, which presents many of the commonly needed (complicated-to-derive, yet simply-to-use)
formula, some of which are summarized below, is Hart (1978), Computer Approximations.

The following formula (which may be computed using single precision arithmetic) approximates cos(z) over
the range 0 ≤ z ≤ π/2 to about 3.2 decimal digits (appropriate for use in half precision applications):

c1 = 0.99940307, c2 = −0.49558072, c3 = 0.03679168 ⇒ cos(z) ≈ c1 + z2(c2 + c3 z
2), (2.1a)

and the following formulae (which may be computed using double precision arithmetic) approximates cos(z)
over the range 0 ≤ z ≤ π/2 to about 7.3 decimal digits (appropriate for use in single precision applications):

c1 = 0.999999953464, c2 = −0.4999999053455, c3 = 0.0416635846769, c4 = −0.0013853704264,
c5 = 0.00002315393167 ⇒ cos(z) ≈ c1 + z2(c2 + z2(c3 + z2(c4 + c5 z

2))).
(2.1b)

Note the tradeoff: the first approximation is simpler (smaller table of numbers and faster to compute, but less
accurate), while the second ismore complex (larger table of numbers and slower to compute, butmore accurate).
This tradeoff is evident in all such approximations. To extend the range to −∞ ≤ x ≤ ∞, note that

cos(x) =





cos(y) if q = 0,

− cos(π − y) if q = 1,

− cos(y − π) if q = 2,

cos(2π − y) if q = 3,

where

c = ⌊x/(2π)⌋,
y = x− 2πc, (and thus 0 ≤ y ≤ 2π),

q = ⌊y/(π/2)⌋ ∈ {0, 1, 2, 3},
(2.1c)

where ⌊y⌋ = floor(y) denotes the rounding of y down to the nearest integer, and cos(z) may be approximated
(in any of the four cases) using (2.1a) or (2.1b). Applying (2.1c) in order to extend the approximation (2.1a) or
(2.1b) to the larger range −∞ ≤ x ≤ ∞ is called range reduction. With the above formulae, cos(x) and

sin(x) = cos(x− π/2) (2.2)

may be computed efficiently for half and single precision applications for any real x.
Similarly, the following formula (which may be computed using single precision arithmetic) approximates

tan(z) over the range 0 ≤ z ≤ π/4 to about 3.2 decimal digits (appropriate for half precision applications):

c1 = −3.6112171, c2 = −4.6133253 ⇒ z0 = 4z/π, tan(z) ≈ c1 z0/(c2 + z20), (2.3a)

and the following formula (which may be computed using double precision arithmetic) approximates tan(z)
over the range 0 ≤ z ≤ π/4 to about 8.2 decimal digits (appropriate for single precision applications):

c1 = 211.849369664121, c2 = −12.5288887278448, c3 = 269.7350131214121,

c4 = −71.4145309347748 ⇒ z0 = 4z/π, tan(z) ≈ z0 (c1 + c2 z
2
0)/(c3 + z20(c4 + z20)).

(2.3b)
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To extend the range of either approximation to −∞ ≤ x ≤ ∞, note that

tanx =





tan y if o = 0,

1/ tan(π/2− y) if o = 1,

−1/ tan(y − π/2) if o = 2,

− tan(π − y) if o = 3,

tan(y − π) if o = 4,

1/ tan(3π/2− y) if o = 5,

−1/ tan(y − 3π/2) if o = 6,

− tan(2π − y) if o = 7,

where

c = ⌊x/(2π)⌋,
y = x− 2πc, (and thus 0 ≤ y ≤ 2π),

o = ⌊y/(π/4)⌋ ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
(2.3c)

The following formula (which may be computed using double precision arithmetic) approximates atan z
over the range 0 ≤ z < atan (π/12) to 6.6 decimal digits (appropriate for single precision applications):

c1 = 1.6867629106, c2 = 0.4378497304, c3 = 1.6867633134 ⇒ atanx ≈ x (c1 + x2 c2)/(c3 + x2). (2.4a)

To extend the range to −∞ ≤ x ≤ ∞, define c = tan(π/6), and apply any or all of the following identities

atanx = −atan (−x) if x < 0,

atanx = π/2− atan (1/x) if 1 < x,

atanx = π/6 + atan [(x− c)/(1 + cx)] if tan(π/12) < x ≤ 1.

(2.4b)

Representation of the acos and asin functions is thus straightforward, as

acosx = 2atan [
√
1− x2/(1 + x)], asinx = 2atan [x/

√
1 + x2]. (2.5)

Defining R = (ln 2)/2, the n = 3 Padé approximation [see (8.8)] may be used to approximate exp r over
the range −R ≤ r ≤ R, to about 9 decimal digits or better; this approximation may be written

exp r ≈ 120 + 60 r + 12 r2 + r3

120− 60 r + 12 r2 − r3 . (2.6a)

To extend the range over which we can accurately apply this formula, we define x = a + r for a convenient
choice of a that keeps the residual r in the range −R ≤ r ≤ R, noting that exp(a + r) = exp(a) exp(r).
In particular, we take a = k ln 2 for the appropriate integer k that keeps r in this range by taking

k = ⌊0.5 + x/ ln 2⌋, r = x− k ln 2 ⇒ expx = exp(a+ r) = exp(k ln 2) exp r = 2k exp r. (2.6b)

If exp r is stored as a floating point representation (−1)s × 2e−eoff × 1.f (see §1.1.4), where, e.g., e is an 8 bit
representation of the exponent in single precision, then calculating 2k times exp(r) involves simply adding k to
e, in binary, while leaving the sign bit s and fractional part f unchanged. This can be done (when programmed
appropriately) quickly and without any loss of precision.

For 1 ≤ r < 2, define y as follows, noting that ln r may be expressed conveniently [see (B.84)] as

y =
r − 1

r + 1
↔ r =

1 + y

1− y ⇒ ln r = ln
1 + y

1− y = 2
∞∑

i=0

y2i+1/(2i+ 1). (2.7a)
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Assume now that some x > 0 is stored as a floating point representation x = r 2n, where n = e− eoff, r = 1.f
(and thus 1 ≤ r < 2), and x > 0 (and thus the sign bit used is s = 0; see §1.1.4). Note again that, e.g., for single
precision arithmetic, e is an 8 bit representation of the exponent. It follows from x = 2n r and (2.7a) that

lnx = n ln 2 + ln r ≈ n ln 2 + 2

p∑

i=0

y2i+1/(2i+ 1) for y =
r − 1

r + 1
; (2.7b)

with p = 6 terms retained in this sum, accuracy to 8 decimal digits is obtained (note that constants like ln 2
above, and ln 10 below, may be precomputed and stored). Again, like the approximation of exp(x) in (2.6),
the efficient approximation of ln(x) in (2.7) directly leverages the floating point representation that modern
computers use to express real numbers. Approximation of log functions with other bases is straightforward via

loga x = (logc x)/(logc a), ⇒ log10 x = (lnx)/(ln 10), log2 x = (lnx)/(ln 2), . . . (2.8)

Simple Matlab codes are available in §2 of the RR repository that demonstrate the use of the several approx-
imations above for calculating the most common special functions of interest, specifically (2.1) for cos, (2.2) for
sin, (2.3) for tan, (2.4) for atan and1 atan2, (2.5) for acos and asin , (2.6) for exp, (2.7) for ln, and (2.8) for log10,
log2, etc. Any practical (fast) embedded application must rewrite such algorithms efficiently in C. Accurate and
compact approximations of many other special functions are also available.

2.7 Pseudorandom number generators (PRNGs)
To provide cryptographic security, one can build a true random number generator (TRNG) that generates
random numbers from a physical (e.g., thermodynamic) process with entropy (see §1.5.3.4). However, MPUs
and MCUs are useful in part because their behavior is entirely predictable, so it is not obvious at first how to
use an MPU or MCU appropriately to produce an adequately “random” sequence for a given application2.

The development of a deterministic pseudo random number generator (PRNG) capable of producing
sequences that are “effectively random” in application thus requires significant care. PRNGs generally operate
as iterative algorithms (see, e.g., §2.7.1 and 2.7.2 below) that generate very long sequences of unsigned integers
(usually, 32-bit or 64-bit) that eventually repeat. PRNGs can be initialized randomly, for example, by using the
number of microseconds since some epoch on the system clock when the code is started, and can easily be
postprocessed3 to generate the following three useful types of “effectively random” sequences:

A) real numbers with uniform distribution between two limits a and b,
B) real numbers with gaussian distribution, with mean µ and variance σ2, and
C) integers with equal likelihood between two limits a and b.
1Noting that atanx ∈ [0, π/2) if x ≥ 0, the following definition is often useful to remove ambiguity:

atan2(b, a) ≜





atan |b/a| · sgn b if b ̸= 0, a > 0,

π/2 · sgn b if b ̸= 0, a = 0,

(π − atan |b/a|) · sgn b if b ̸= 0, a < 0,

0 if b = 0, a ≥ 0,

π if b = 0, a < 0,

where sgn b =





−1 if b < 0,

0 if b = 0,

1 if b > 0;

(2.9)

note that atan2(b, a) ∈ (−π, π]. The definition of atan2(b, a) computes atan (b/a), where b is vertical distance from the origin and
a is horizontal distance, while placing the angle in the correct quadrant based on the signs of a and b.

2Indeed, it is often said that The definition of insanity is doing the same thing over and over again and expecting different results...
3Let yi be a sequence of unsigned integers generated by a PRNG, with the max integer in the sequence denoted ymax. Sequences

of type A may be generated by computing xi = a + (b − a) yi/(ymax + 1). Sequences of type B may be generated by applying
a Box Muller transform, taking zi =

√
−2 lnxi cos(2π xi+1) and zi+1 =

√
−2 lnxi sin(2π xi+1) for odd i, where {xi, xi+1} are

generated as in type A with a = 0 and b = 1. Sequences of type C may be generated by rounding down sequences of type A.
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Figure 2.1: (a) The triangular probability distribution function (PDF) generated by a model of the sum of
two fair 6-sided dice (see RR_Fair_Dice_Test). (b) The exponential PDF generated by a model of the minimum
j > 0 for which xi = xi+j in the repeated rolling of a single 6-sided die (see RR_Repeat_Symbol_Test). (c) The
gaussian PDF generated by a model of the sum of 100 real numbers uniformly distributed between 0 and 1
(see RR_Overlapping_Sums_Test). (d) The gamma cumulative distribution function (CDF) generated by a model of
the Birthday Problem, indicating that in a random grouping of only 23 people, there is over a 50% chance that
at least two have the same birthday, and with 50 people, there is a 97% chance (see RR_Birthday_Problem_Test).

Good PRNGs produce unsigned integer sequences that, primarily4:
1) are characterized by good statistical properties, largely mimicking those of a thermodynamic process,
2) have a very large period, so in application they do not exhibit a repeating pattern, and
3) are fast to compute, in a small memory footprint, when coded in a low-level language like C, C++, or Rust.

A fair 6-sided die (cf. loaded or shaved dice) rolls {1, 2, 3, 4, 5, 6} with equal probability. The sum of two
such dice will give a total of {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with probability {1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1}/36. A
good PRNG, adjusted to give integers between 1 and 6 for each die with equal probability (type C above), should
mimic this triangular distribution overmillions of trials (see Figure 2.1a) without a noticeable repeating pattern.

When determining xi by rolling a single fair n-sided die, the odds that the next number rolled, xi+1, is the
same as xi is p(1) = 1/n. Thus, defining c = (n− 1)/n, the odds that the minimum j > 0 for which xi = xi+j
is equal to j is just p(j) = c j−1/n, generating what is called the exponential distribution (see §6.2.2 of NR).
A good PRNG (again, of type C above) measured in this manner should mimic this exponential distribution
over millions of trials (see Figure 2.1b), again without a noticeable repeating pattern.

Consider next a PRNG adjusted to give a real number x between a = 0 and b = 1 (type A above); this
uniform distribution (see §6.2.2 of NR) is said to have a mean of x̄ ≜ µ = (a + b)/2 = 1/2 and a variance
of (x− µ)2 ≜ σ2 = (b − a)2/12 = 1/12. Any sum of n = 100 consecutive real numbers xi so generated,
denoted yi =

∑n−1
j=0 xi+j , should total about yi ≈ nµ = 50, but will sometimes be a bit higher, and sometimes

a bit lower. It is a remarkable consequence of the Central Limit Theorem (§6.2.3 of NR) that a histogram of
the computed values of this sum will tend towards a gaussian distribution (see §6.2.1 of NR), with a mean of
nµ = 50 and a variance of nσ2 = 8.333. A good PRNG measured in this manner should mimic this gaussian
distribution over millions of trials (see Figure 2.1c), again without a noticeable repeating pattern.

Finally, the odds that 2 people selected at random do not have the same birthday is 364/365. By the
same logic, the odds that, in a random grouping of n people, at least 2 do NOT have the same birthday is
pNOT(n) =

∏n−1
k=1(365 − k)/365. The odds this is false (that is, in a random group of n people, at least 2 DO

have the same birthday) is pDO(n) = 1 − pNOT(n). This distribution, known as the Birthday Problem, is a
cumulative distribution function (CDF) of a gamma distribution (see §6.2.2 of NR). A good PRNG measured in
this manner should mimic this type of distribution over millions of trials (see Figure 2.1d),

The Diehard and Dieharder (Yippee-Ki-Yay John McClane!) and TestU01 and PractRand suites of statistical
tests for PRNGs, which quantify property 1 above, evolved from over 100 pages of original analysis of the subject
by Knuth [1]. The many statistical experiments incorporated into such test suites are similar to those described
in the previous four paragraphs. Unfortunately, all such “randomness” tests are only statistical in nature.

4Difficulty to predict is sometimes also mentioned a fourth desired property, though none of the PRNGs surveyed in §2.7 is
cryptographically secure, and most of the modern PRNGs summarized in §2.7.2-2.7.4 have indeed already been “cracked”.
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2.7.1 Linear Congruential Generators (LCGs)
Linear congruential generators (LCGs) are the essential starting point. LCGs are PRNGs defined by a simple
recurrance of the form5

xn = (a · xn−1 + c) modm, (2.10)

where the multiplier a, increment c, modulus m, and states xn, xn−1, . . . are unsigned integers. An LCG with
c = 0 is often called a multiplicative congruential generator (MCG) or Lehmer generator. The evolution
of an LCG is determined by the value of x at the previous iteration, xn−1, together with the {a, c,m} constants.

Two types of LCGs are of particular interest: (a) those with prime m, which have the best statistics, and
(b) those with m = 2b and odd c, where b is the number of bits in the binary representation of the integers
being used, which are even faster to compute when implemented in a language that wraps on integer overflow.
When using either type of LCG, the trick is to select a well for a givenm. Most choices of this parameter result
in bad PRNGs, with short periods and/or bad statistics. Some choices, though, give fairly “good” PRNGs (in
terms of properties 1, 2, and 3 itemized on the previous page) given the simplicity of (2.10). A starting point
to find a good value for a for the m = 2b case, known as the Hull-Dobell Theorem, is to take mod(a, 8) = 5
[i.e., a = m · 8 + 5 for some m]; though this choice generates PRNG sequences with full period (i.e., which
repeat only afterm elements), most values of a so generated in fact still do not have good statistics. Parameters
leading to good LCGs must be searched for exhaustively, and are well tabulated in the literature [6].

As a (very small) example, take a = 19 · 8 + 5 = 157, c = 47, and m = 28 = 256 in (2.10). Starting from
x = 0, this LCG generates every integer, once, from 0 tom− 1 = 255, then repeats:

0 47 2 105 148 243 54 77 104 247 170 113 124 59 94 213 208
191 82 121 100 131 134 93 56 135 250 129 76 203 174 229 160 79
162 137 52 19 214 109 8 23 74 145 28 91 254 245 112 223 242
153 4 163 38 125 216 167 154 161 236 235 78 5 64 111 66 169
212 51 118 141 168 55 234 177 188 123 158 21 16 255 146 185 164
195 198 157 120 199 58 193 140 11 238 37 224 143 226 201 116 83
22 173 72 87 138 209 92 155 62 53 176 31 50 217 68 227 102
189 24 231 218 225 44 43 142 69 128 175 130 233 20 115 182 205
232 119 42 241 252 187 222 85 80 63 210 249 228 3 6 221 184
7 122 1 204 75 46 101 32 207 34 9 180 147 86 237 136 151

202 17 156 219 126 117 240 95 114 25 132 35 166 253 88 39 26
33 108 107 206 133 192 239 194 41 84 179 246 13 40 183 106 49
60 251 30 149 144 127 18 57 36 67 70 29 248 71 186 65 12
139 110 165 96 15 98 73 244 211 150 45 200 215 10 81 220 27
190 181 48 159 178 89 196 99 230 61 152 103 90 97 172 171 14
197 0 47 2 105 148 ...

The above PRNG sequence was generated with the following simple line of Matlab code:
clear , a =157 , c =47 , m=256 , x ( 1 ) = 0 , for i = 2 :m+5 , x ( i ) =mod ( a ∗ x ( i −1 )+ c ,m) ; end , x

In the above line of code, replacing a = 157 with a∗ = 181 and replacing c = 47 with c∗ = 197 generates the
same sequence of integers but in reverse order (try it!); that is, such LCGs are reversible, simply by replacing
a with a∗ and c with c∗, where mod(a · a∗,m) = 1 [that is,m · e+ a · a∗ = 1 for some integer e; see §A.7.1] and
c∗ = mod(c · (m − a∗),m). Replacing c with any other odd integer produces a different PRNG sequence that
is qualitatively similar. The first 9 entries of the above PRNG sequence may be written in binary as

0 00101111 00000010 01101001 10010100 11110011 00110110 01001101 01101000

Note that the least significant bits (LSBs) alternate between 0 and 1 (that is, odd entries in the sequence are
even integers, and even entries in the sequence are odd integers). The next significant bit follows the sequence

5LCGs with c ̸= 0 are affine, not linear, in the state x, though the misnomer “LCG” is used broadly in the literature.
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Figure 2.2: Coordinates of adjacent pairs of random numbers generated by an LCG with m = 256 and
(a) {a, c} = {157, 47}, (b) {a, c} = {181, 47}, (c) {a, c} = {45, 51}, (d) {a, c} = {125, 47}. All four of these full-
period LGCs repeat after m terms; however, the distribution of the pairs so generated is much less “uniform”
(that is, more “clustered”) in case (d) than it is in cases (a), (b), and (c).

0,1,1,0,0,1,1,0,0,1,1, ... That is, the statistics of the lower bits in anm = 2b LCG follow a very noticeable pattern,
as the lower bits of such an LCG affect the evolution of the higher bits, but the higher bits do not affect the
evolution of the lower bits. However, whenm is large, several of these lower bits can easily be suppressed when
outputting the result of the PRNG subroutine; it is effectively the “mod m” part of a (deterministic) LCG that,
when a is a substantial fraction ofm, makes the higher bits of the LCG appear to be “more random”.

Another way to quantify the quality of a PRNG is to examine the coordinates of all adjacent pairs or triplets
or, more generally, k-tuples, of the random numbers generated, when plotted in Rk. A good PRNG reveals a
uniform distribution of the coordinates so generated. In the output of an LCG, even when {a, c,m} are selected
such that the resulting PRNG sequence has a relatively large period, the coordinates generated by this process
sometimes cluster in a relatively small number of lines (for k = 2), planes (for k = 3), or hyperplanes (for
k > 3), as illustrated for the k = 2,m = 256 case in Figure 2.2d; this clustering is undesirable.

The period of the {a, c,m} = {157, 47, 256} LCG discussed above is far too short to be useful in most
applications. Good compilers (like C/C++ and Rust, but unlike Matlab6) that “wrap” on integer overflow (i.e.,
that ignore any bits generated that are larger than b) implement the mod m = 2b in (2.10), for b = 32 or 64,
automatically. Good full-period LCGs of this form are given (see [6]) by taking any odd c and taking, e.g.,
a = 2,891,336,453 form = 232 (using uint32), or a = 3,935,559,000,370,003,845 form = 264 (using uint64).

2.7.1.1 k-dimensional equidistribution

Now reëxamine the coordinates of adjacent pairs, triplets, or more generally k-tuples, in a sequence of integers
generated by a simple LCG. Focusing to begin with on the pairs illustrated in Figure 2.2a-c (taking k = 2), it is
seen that LCGs with “good” uniformity of pairs still only generate m pairs, of a total of m2 possible pairs. In
some specific situations (e.g., generating lottery numbers with a PRNG), it may be desired that a PRNG might
ultimately (in theory, at least) generate every possible k-tuple, for some k, with equal probability.

We can achieve the desired “equidistribution” of all k-tuples, when plotted or considered in k-dimensional
space, simply by running k such independent LCGs (each referred to as a “stream”) in parallel, with each stream
having the same (power of two)m but different (“good”) values of a and c, noting the second paragraph of §2.7.1.
As suggested by [8], to get this to work properly, for j = 1, . . . , (k − 1), each time the j’th stream is updated
to some special value (say, xj = 0), a sort of “carry” (as in integer addition) occurs, and the (j + 1)’th stream
is incremented an extra time, by adding 2c instead of c in (2.10). Implementation of this approach using simple
LCGs is illustrated in Figure 2.3, and illustrates some unfortunate flaws.

6Matlab’s default behavior is to saturate (not wrap) on integer overflow. To get around this, as of this writing, you have to purchase
Matlab’s Fixed-Point Designer, which you might otherwise have no need for, or use, e.g., the RR_uint64.m class, which is free.
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Figure 2.3: Coordinates of ordered pairs of integers generated by k = 2 very small LCG streams (one with
{a, c,m} = {157, 47, 256}, the other with {a, c,m} = {45, 51, 256}) to form a combined LCG with period
2kb = (256)2, which generates each of the mk possible integer k-tuples (e.g., pairs), once, before repeating.
Plots (aka randograms) show the points generated by this approach after (left to right) m, 4m, 7m, and 20m
iterations; unfortunately, significant structure (long diagonals and short vertical clusters) is evident in such
early iterations following this simplistic LCG-based approach. When implemented with significantly largerm,
and in particular by incorporating PRNG output functions which cleverly permute the internal LCG state, the
structure that appears in early iterations of such randograms is greatly reduced.

2.7.1.2 Improving PRNGs beyond LCGs and MCGs

Good PRNGs are hard to find. Much effort has been put into the search for good PRNGs. A candidate PRNG
may be relatively (a) fast to calculate, with (b) small memory footprint and (c) small code size and (d) long
period, and may (e) satisfy many statistical randomness tests (see, e.g., Figures 2.1 and 2.2), only to fail some
other randomness test. Though increasing the size of the internal state is certainly valuable, when restricted to
using 32-bit or 64-bit arithmetic, LCGs alone have proven to be insufficient for many applications.

Over the years, many PRNGs have been developed and implemented, some of which are fairly good statis-
tically but unnecessarily complex in terms of both space usage and code size, including the Mersenne Twister7

and stream ciphers like RC4 and its modern successor ChaCha20, and many of which are simpler but with
inferior statistical properties, including IBM’s once pervasive yet “truly horrible” RANDU, Numerical Recipe’s
RanQ1, and unix’s drand48, rand, and random implementations. In the following, we briefly survey three mod-
ern families of PRNGs, which effectively supersede all of the PRNGs mentioned above:

• Permuted Congruential Generators PRNGs, specifically O’Neill’s PCG32 and PCG64 algorithms, propa-
gate an internal LCG state with n = 64 or 128 bits, and output integers of size n/2 bits (that is, 32 or 64 bits),
which are generated via clever permutations (shifts/XOR/OR) of the internal LCG state.

•XOR/shift,XOR/shift/rotate, andXOR/rotate/shift/rotate PRNGs, specificallyMarsaglia’s XorShift*64/32
and XorShift*128/64 algorithms, and Vigna’s xoshiro256++, xoshiro256**, xoroshiro128++, and xoroshiro128**
algorithms, propagate by taking an XOR of bit-shifted versions of the internal state (with n bits), and output
(via various additional shift/rotate permutations) 32-bit or 64-bit integers of size n/2 or n/4 bits.

•Multiply With Carry PRNGs, such as Kaitchuck’s MWC128XXA32 and MWC256XXA64 algorithms, use an
internal state totaling n = 128 or 256 bits, propagated as 4 separate n/4 bit integers, and output integers of
size n/4 bits, again by implementing permutations (XOR/XOR/Add, thus the “XXA” in the names) of the state.

The pros and cons of these three modern families of high-quality (fast, small, and statistically great) PRNGs
have been debated extensively online by their authors and others; from the typical user’s perspective, in the
present author’s opinion, their differences amount, effectively, to much ado about fairly minor properties.

7The Mersenne Twister is based on the Mersenne primeM19937 = 219,937 − 1. Mersenne primes are prime numbers that may be
written asMn = 2n− 1 for some integer n. The largest known prime numbers are all Mersenne primes; as of this writing, the largest
of these is 282,589,933 − 1, which when written in base 10 has 24,862,048 digits.
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/ / ∗ Rea l l y ∗ minimal PCG32 code / ( c ) 2014 M. E . O ' N e i l l / pcg −random . org
/ / L i c en s ed under Apache L i c en s e 2 . 0 (NO WARRANTY, e t c . s ee webs i t e )
t ypede f s t r u c t { u i n t 6 4 _ t s t a t e ; u i n t 6 4 _ t i n c ; } pcg32_random_t ;
u i n t 3 2 _ t pcg32_random_r ( pcg32_random_t ∗ rng )
{

u i n t 6 4 _ t o l d s t a t e = rng −> s t a t e ;
/ / Advance i n t e r n a l s t a t e
rng −> s t a t e = o l d s t a t e ∗ 6364136223846793005ULL + ( rng −> i n c | 1 ) ;
/ / C a l c u l a t e output f u n c t i o n ( XSH RR ) , uses o ld s t a t e f o r max ILP
u i n t 3 2 _ t x o r s h i f t e d = ( ( o l d s t a t e >> 18u ) ^ o l d s t a t e ) >> 27u ;
u i n t 3 2 _ t r o t = o l d s t a t e >> 59u ;
r e t u r n ( x o r s h i f t e d >> r o t ) | ( x o r s h i f t e d << ( ( − r o t ) & 3 1 ) ) ;

}

Figure 2.4: O’Neill’s minimal (single-stream, no skip) PCG code, implemented in C using uint64 arithmetic and
generating a uint32 output; a separate code is used to randomly initialize the rng struct (based, e.g., on the state
of the system clock). Two 64-bit unsigned integers, rng−>state and rng−>inc, are maintained inmemory to advance
the PRNG stream. Efficient low-level coding like this is essential for fast execution of core functions; to improve
readability, most algorithms in this textbook are instead provided in Matlab syntax (see, e.g., RR_PCG32.m),
ultimately leaving it to the user to convert to the user’s low-level language of choice (C, C++, Rust, . . . ).

2.7.2 Permuted Congruential Generators (PCGs)

O’Neill’s PCG32 and PCG64 Permuted Congruential Generators (PCGs; see [8] for an illuminating discussion)
provide substantial improvements over using LCGs alone. These PRNGs use LCGs as the underlying algo-
rithm to propagate their (64-bit or 128-bit8) internal state (taking a = 6364136223846793005 in the former case,
and a = ahigh · 264 + alow where ahigh = 2549297995355413924 and alow = 4865540595714422341 in the latter),
and simply perform some targeted bit permutations on the LCG state to generate their (32-bit or 64-bit) out-
put, substantially improving the overall PRNG behavior. By so doing, PCGs build upon simple LCGs to im-
prove the statistics of their output, while inheriting many useful features of the LCGs upon which they are
based, including the generation of multiple streams, the formation of combined LCGs with period 2kb providing
k-dimensional equidistribution, and fast skipping forward/backward in any given random number stream.

Figure 2.4 presents O’Neill’s minimal (single-stream, no skip) C implementation of PCG32, with a 64-bit
internal state and increment and a 32-bit output. Note that the line after the “Advance internal state” comment
is simply the underlying LCG algorithm. The precise logic for the specific bit permutations given in the last few
lines of O’Neill’s code is described in [8]; note that
• a >> k denotes a rightshift of the bitwise representation of a by k bits9,
• a << k denotes a leftshift of the bitwise representation of a by k bits,
• a & b denotes a logical AND of the bitwise representations of a and b (see Table 1.3),
• a ^ b denotes a logical XOR of the bitwise representations of a and b,
• a | b denotes a logical OR of the bitwise representations of a and b,
• − a denotes a two’s complement representation of the negation of a (see §1.1.3).
In short, these bit permutations (which execute much faster in C, C++, or Rust than Matlab!) reduce the uint64
LCG variable oldstate to the uint32 output of this PCG in amanner that provides significantly improved statistical
characteristics of the PRNG. PCG64 is structurally similar. A full-featured pedagogical Matlab implementation
of the PCG32 algorithm (including multiple streams, and fast skipping forward/backward within a stream) is
provided in RR_PCG32.m.

8Smaller PCGs by O’Neill are also available, but given the prevalence today of fast 32-bit MCUs for modern robotics applications,
such smaller PCGs are likely of limited practical benefit.

9Note that the bit positions that are vacated by this shift are filled with zeros.
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2.7.3 XOR/shift, XOR/shift/rotate, and XOR/rotate/shift/rotate PRNGs
Marsaglia’s XorShift*64/32 and XorShift*128/64 PRNGs...

xoshiro256++, xoshiro256**,
xoroshiro128++, and xoroshiro128**

2.7.4 Multiply With Carry (MWC) PRNGs
...
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Example 2.1 “Smart” shuffling of jokes and song playlists. To conclude §2.7, consider the following:
Sequence A: 82AF87C1E08A9759EAF1818B2C6E4031F01030A833150974BD4875DFA2195482
Sequence B: 02C8F653742ACD813940FBE673C85109AE4B28CDF03AE9285B601F9475DC0A6E

Sequence A was generated using the Mersenne Twister PRNG, as implemented by Matlab’s built-in command
randi ([0,15],1,64) (see §A.1), which does well on the four batteries of statistical tests mentioned previously.

Youmight aspire to build a device that tells a joke or plays a song at “random”, from a not-very-large list of (in
this example) 16 known jokes or songs, enumerated 0 through F. Note that Sequence A contains subsequences
like “01030” (that is, within of 5 characters, 1 symbol appears 3 times). While such behavior is indeed anticipated
for a long sequence generated by an “effectively random” process10, repeating “joke 0” or “song 0” three out of
five times may seem “insufficiently random” to the user. Sequence B above was also generated with the randi
command, but rejecting each number so generated that duplicates one of the last 8 numbers generated (see
RR_Dad_Jokes.m). A modified (albeit, “less random”) randomizing behavior like this is likely to be preferred if you
are listening to songs on “shuffle mode”, or are attempting robotic comedy (is that even a thing?). △

10For example, within the first 1000 digits of π written in decimal notation, generating a seemingly random (?) sequence of digits,
the subsequence “999999” appears!

2-20

https://www.amazon.com/dp/B07ZBHBPSD
https://www.wired.com/story/requiem-for-the-ipod-shuffle/#:~:text=Smart%20Shuffle%20came
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/chap02/PRNGs/RR_Dad_Jokes.m
http://robotics.ucsd.edu/pi


Chapter 3

Sensors, actuators, and interfaces
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This chapter surveys some of the most common components that attach to SBCs to form useful cyber-
physical (aka electro-mechanical) systems. These components generally come in three broad categories:
sensors, actuators, and user interfaces. Though not at all exhaustive, we discuss many representative ex-
amples of components in each of these categories in turn in this chapter; a brief discussion of how some such
components may be put together to make larger systems is deferred to §16.

3-1



Renaissance Robotics (v.2024-03-19) Chapter 3: Sensors, actuators, and interfaces

Figure 3.1: A prototype 3-axis MEMS accelerometer by ST: (a) photograph, (b) schematic of the y-axis compo-
nent, and (c) principle of operation. The schematic highlights (grey) the “fixed” outer body, including the “fixed”
outer plates, (black) the “moveable” proof mass, including the attached “moveable” inner plates, and (blue) the
flexible beams attaching the “moveable” proof mass to the “fixed” outer body. Note that the notions of “fixed”
and “moveable” here are w.r.t. the vehicle to which the device is rigidly attached, which itself moves. Note also,
at right, that each moveable inner plate forms two capacitors, one with the fixed outer plate directly above,
and one with the fixed outer plate directly below. As the proof mass moves w.r.t. the outer body, the distance
between the plates in these two capacitors changes (one increases, the other decreases). Sensitive electronics
packaged with the MEMS accelerometer measures this difference in capacitance (averaged appropriately over
all the plates), thereby inferring the component of the acceleration of the vehicle in each coordinate direction.

3.1 Sensors for obtaining situational awareness

3.1.1 Inertial Measurement Units (IMUs): accels and gyros
A mobile robot needs a certain degree of “situational awareness” to detect its own motion, and to respond
appropriately to changes in its environment. A starting point to achieve such situational awareness of a vehicle’s
movement is to estimate its linear and angular acceleration in an inertial frame using a modern MEMS1 3-axis
accelerometer, as illustrated in Figure 3.1, and 3-axis gyroscope, built similarly.

Typical accuracy of a modern MEMS accel is better than 10−3 g (that is, 1/1000 of the acceleration due to
gravity), and typical accuracy of a modern MEMS gyro is better than 0.1 deg/s/s. Such convenient sensors may
thus be seen as very good (certainly as compared to a decade ago), but still quite insufficient to integrate over a
long period of time to determine linear and angular velocity as compared to some initial state, a process referred
to as dead reckoning. Other sensors providing absolute position, orientation, linear velocity, and/or angular
velocity (see §3.1.2) are thus also needed to supplement the data provided by the MEMS accels and gyros.

SomeMEMS sensors have inherent dynamics that may be significant at the frequencies of interest in a given
system. Note in Figure 3.1 that a MEMS accelerometer is, effectively, a small floating proof mass supported
by a spring, and therefore has a response magnitude that is inherently a function of the forcing frequency. An
expanded dynamic range of such devices may generally be obtained by active electrostatic force rebalancing;
that is, by closing a feedback control loop around the sensor itself, applying an electrostatic force (using some
of the plates indicated in Figure 3.1) that is just sufficient to keep the proof mass from moving w.r.t. the outer

1AMicro-Electro-Mechanical-System is a very small physical system made using the same mask/expose/etch technology used
to manufacture silicon chips. Today, this COTS (commercial off-the-shelf) technology is very mature, and several types of MEMS
sensors are mass produced on a very large scale. For example, MEMS accelerometers are used in airbag deployment systems in
automobiles, video game controllers & smartphones, and hard disk drives. MEMS gyros are also mass produced, albeit on a somewhat
smaller scale, for use in video game controllers & smartphones.
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body, then measuring the electrostatic force required to “rebalance” the floating mass within the device in
order to determine the acceleration applied to the entire system. This essentially supplants the mechanical
time constant of the device,

√
m/k, with the electrical time constant of the sensor control circuit, RC , which

may generally be made much faster. The most accurate MEMS accels and gyros available today all incorporate
such electrostatic rebalancing feedback.

3.1.2 Inclinometers, magnetometers, barometers, and GNSS/GPS systems

Supplemental sensors may be used by a vehicle to provide data, albeit approximate, regarding absolute position,
orientation, linear velocity, and angular velocity.

If a vehicle is near the Earth’s surface and is relatively motionless in the lab frame, then a MEMS accelerom-
eter may be used as an inclinometer to estimate the vehicle’s angle (pitch and roll) w.r.t. the gravity vector
(directed towards the center of the Earth), which is often useful. An inclinometer can also be used, more simply,
to determine if a box-shaped object like a cellphone (that is, a rectangular cuboid) is oriented, approximately,
(1) face up, (2) face down, (3) right side down, (4) left side down, (5) lower side down, or (6) upper side down;
this problem is commonly referred to as 6D orientation determination.

There is substantial natural variability in the Earth’s magnetic field; this variability can be especially pro-
nounced in human-built environments. However, obtaining even a rough approximation (±10%) of magnetic
north in the local environment is often a useful starting point when attempting to maintain orientation. MEMS
magnetometers provide precisely this functionality. Remarkably, the Earth’s magnetic field may even be mea-
sured underground or underwater, where it is otherwise quite difficult to get useful orientation information.

Atmospheric pressure decreases at a rate of 11.3 Pa per meter increase in altitude at sea level; this variation
is remarkably consistent, even in fairly windy conditions. Thus, a change of about 1 Pa, which a modernMEMS
barometer can easily resolve, corresponds to a change of about 8.8 cm in altitude. When attempting to hold a
particular altitude with a drone, feedback based on barometer measurements is quite helpful.

On Earth, the gold standard of absolute position and time information today is obtained with a global
navigation satellite system (aka GNSS), which include the US Space Force’s GPS system as well as several
others, including EU’s Galileo system, China’s BeiDou system, Russia’s GLONASS system, India’s NavIC
system, and Japan’sQZSS system. Amongst these, GPS (with 31 satellites) is the most extensive and advanced;
indeed, the abbreviation GPS is commonly used synonymously with the more general term GNSS, even when
using GNSS systems that monitor signals from mutiple satellite constellations. GPS systems typically achieve
5meter accuracy; those using the new L5 band, which is scheduled to be fully operational in 2027, achieve
an accuracy of about 30 centimeters. Small units incorporating Differential GPS (aka DGPS, which compare
the GPS signals received locally with those at a known reference station) are now readily available and, quite
remarkably, can achieve relative position accuracies of 1 to 3 centimeters.

Given all of the available techniques discussed above to estimate position and orientation, and the rate
of change thereof, the question of which technique(s) to use in a given application is subtle, and varies from
problem to problem. The best answer is usually to perform some sort of sensor fusion, using several of these
techniques at the same time, blending them together to get the best estimate possible. This problem is delicate,
as each of these different sensor technologies, as well as those discussed in §3.1.3, measure different quantities,
have different types of uncertainties, and provide information at different rates. Essential algorithms that are
used when performing sensor fusion include simply blending the low-frequency information from some sen-
sors with high-frequency information from other sensors, known as complementary filtering and discussed
further in §8.5.3, and leveraging directly the equations modeling the dynamics of the physical system itself,
tother with Bayes’ rule at each measurement update to minimize the estimate uncertainty, known as Kalman
filtering and discussed further in NR.
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3.1.3 Optical flow and Simultaneous Localization and Mapping (SLAM)
Depth imaging

RGB-D
2D and 3D Lidar
Example: Big box store
Camera-based systems

3.1.4 Ground truth viaMotionCapture (MoCap) using triangulation& trilateration
Passive and active markers.

visual & RF beacons and microphone arrays
Broadband high-frequency RF MoCap
3-10 GHz, IndoTraq

3.1.5 Other sensors
Strain gauges. Piezoelectric effect

Liquid level sensors and flow meters
Thermocouples and Ph meters
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3.2 Transferring power and signals to rotating components
It is often necessary to transfer power and/or signals on or off of rotating shafts that coordinate the motion of
wheels, linkages, and other moving parts. Applications in which this need arises, among many, include:

• low-cost BDC motors (see §3.4),
• analog devices, called resolvers, used to measure shaft rotation (see §3.3.1),
• robot arms capable of large ranges of motion (see Figure 3.4c and §16.9.3),
• rotating sets of LEDs leveraging persistance of vision (PoV) effect to make images (see §3.8), etc.

There are four main methods of accomplishing such transfers of power and/or signals to rotating frames:

(a) brushes and commutators (Figure 3.2, discussed in §3.2.1),
(b) rotary transformers (Figure 3.3, discussed in §3.2.2),
(c) local COTS wireless communication protocols (§4.4) like bluetooth2 (§4.4.2), and
(d) flexible wires with careful cable routing3, in applications for which the total rotation is limited (Figure 3.4).

3.2.1 Brushes and commutators
The cheapest method to transfer power and/or signals to a rotating frame is to use stationary spring-loaded
carbon graphite (sometimes with copper added) brushes, mounted to rub against (and, to make reliable elec-
trical contact with) rotating conductive copper rings called commutators (see Figure 3.2). This approach can
efficiently pass both low-bandwidth logical signals, as well as both alternating current (AC) and direct cur-
rent (DC) power, from the stationary frame to the rotating frame, but often introduces significant electrical
noise, motivating the use of some low-pass filtering (see §8 and §9) to remove. Commutators can either be the
continuous-ring type, which provide continuous electrical contact as the shaft turns, or the split-ring type
which, periodically, mechanically break the electrical connection when the shaft turns past a certain angle, and
later reëstablish the electrical connection, with the opposite polarity, as the shaft turns further. Note that the
clever use of split-ring commutators forms an essential component of the operation of brushed DC (BDC) mo-
tors, discussed in §3.4. Either way (using continuous-ring or split-ring commutation), due to mechanical wear,
the brushes will eventually wear out. Most small BDC motors are designed be disposed of when the brushes
wear out; in some older/larger BDC motors, the brushes may be replaceable by the user. Most newer large
motors are brushless, which are more efficient and require less maintenance.

3.2.2 Rotary transformers
A more durable method for transferring AC power or AC signal to or from rotating frames is to use rotary
transformers. With this approach, magnetically-coupled electromagnets are placed near to each other, one
on the rotating shaft, and the other on its stationary housing. One of these electromagnets is driven by an
AC input (typically oscillating at a frequency ωe that is fast w.r.t. the shaft rotation); by magnetic induction,
a concomitant AC current is picked up by the other electromagnet. Typical configurations are illustrated in
Figure 3.3. This approach is more durable than using brushes and commutators, but can only handle AC signals
and, depending on the strength of the magnetic coupling in the design, typically suffers 30% or higher power
loss. This power loss is turned directly into waste heat, which means that rotary transformers are generally not
well suited for power transfer in high-current applications.

2COTS bluetooth solutions are low latency, low power, and inexpensive, and are often preferred in high-bandwidth applications.
3Note that such wires must be routed very carefully, in order to not tug or foul during operation, or to fatigue too quickly.
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Figure 3.2: Brush & commutator systems for transferring both DC and AC power and signals between rotating
(green) and non-rotating parts. (a) Side (cut-away) view of a continuous-ring brush/commutator system;
a spring is used to keep the (relatively soft) carbon graphite brush (gray), which is stationary, in constant
contact with the copper commutator (orange) mounted to the rotating component (green) attached to the
shaft (blue). (b) Top view of split-ring brush/commutator system for coordinated excitation of the rotating
electromagnets of a BDC motor, with brushes {D,E} and commutators {F,G,H} labelled as in Figure 3.9. Images
are schematic representations only; for notational clarity, the housings and bearings that keep the parts aligned
and spinning freely are not shown.

Figure 3.3: Four different configurations of rotary transformers for magnetically transferring AC (only) signals
between rotating (green) and non-rotating parts. (a) & (b) are flat-face (aka pot core), (c) & (d) are axial;
the stationary (black) and rotating (green) windings in (a) & (d) are adjacent, those in (b) & (c) are coaxial.
A small air gap (yellow) separates the rotating and non-rotating components; minimizing the size of this gap
leads to better magnetic coupling and thus higher efficiency. Magnetic flux lines are illustrated in red. Images
are schematic representations only; for notational clarity, the housings and bearings that keep the parts aligned
and spinning freely are not shown. A circle with a dot indicates the windings comes out of the page, and a circle
with a cross indicates the windings go into the page; note that the individual windings are much smaller gauge
wires than suggested by the circles shown here.

Figure 3.4: Example cable routings facilitating limited ranges of movement. (a) Linear drag chain (each link
of the chain pivots in only one direction, and a finite amount, thus ensuring a prespecified minimum radius
of curvature of the cables lying in the channel running through its center), (b) rotary drag chain (that is, a
linear drag chain lying in a channel between two concentric walls which rotate wrt each other), and (c), (d) less-
structured solutions that allow multiple degrees of freedom of movement. Cables manufactured using highly
flexible silicone rubber insulation are particularly well suited for such applications.
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Figure 3.5: Common encoder disk slit patterns: (a) ABZ, (b) binary, (c) Gray. A flexible code for accurately
producing such patterns is available at RR_encoders.m]

3.3 Sensors for measuring shaft rotation
Resolvers and synchros are analog devices that may be used to measure the rotation of a shaft, as discussed
briefly in §3.3.1.

More commonly used today, however, are rotary encoders, which are digital devices used to measure the
rotation of shafts. Rotary encoders (often, just called encoders) thus form the focus of our attention in this
chapter; common constructions are optical, mechanical, and magnetic.

An optical encoder consists of one or more LEDs illuminating one side of a circular encoder disk (mounted
to the rotor shaft) with one or more rings (that is, annular rows) of slits (see Figure 3.5a-c), and one or more
photodiodes per ring of slits on the opposite side. As a slit passes in front of each photodiode, light from an
LED passes through this slit, and the wire attached to that photodiode transmits a logical pulse (transitioning
from 0 to 1, and shortly later back to 0). Reflective optical encoders also exist, in which the LED(s) and the
phototdiode(s) are mounted on the same side of the encoder disk.

Amechanical encoder energizes metal patches on a rotating disk, arranged in the same patterns as shown
in Figures 3.5b or c (power is transferred to the disk using brushes and commutators; seen §3.2). Stationary
brushes slide on and off these metal patches (also acting as commutators), again sending signals down the
wires attached to these brushes. Due to friction and wear issues, mechanical encoders are only appropriate for
shafts that are turned infrequently, and at low speed, such as the rotary selector input on a voltmeter or the
volume knob on a stereo. In other applications, optical or magnetic encoders are preferred.

A magnetic encoder replaces the slits in a disk with magnets, and the photodiodes with magnetic (Hall
effect) sensors, but otherwise again operate according to similar principles. Magnetic encoders are particularly
convenient for use in brushless motors (see §3.4.2), which already have a series of permanent magnets mounted,
with alternating directions of polarity, to the rotor shaft.

There are two principal types of rotary encoders:

• incremental (see §3.3.2), which only count changes to the rotation angle of a shaft from its prior state, and
• absolute (see §3.3.3), which directly indicate the absolute phase angle of a shaft, regardless of its prior state.

Optical and magnetic encoders may be of either type; mechanical encoders are generally of the absolute type.
Note thathybridABZ encoders (also discussed in §3.3.2)may be considered as a third category, hybrid encoders
are incremental over much of their range, with occasional resets at a known angle.
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Figure 3.6: Analog devices for determining the angle of a rotating shaft: (a) a resolver, and (b) a synchro. Both
have a (rotating) reference winding; a resolver has two stationary identical windings nearby, mounted 90◦

apart, and a resolver has three stationary identical windings nearby, mounted 120◦ apart. In control trans-
mitter mode, the (rotating) reference winding is electrically excited sinusoidally, and the induced voltages in
the other windings are measured. In control transformer mode, the other windings are excited sinusoidally
(90◦ or 120◦ out phase from each other), and the induced voltage in the (rotating) reference winding is mea-
sured. In either case, an AC signal Vr, carried over two wires, must be transmitted either to or from the rotating
shaft (this is the driving signal in control transmitter mode, and the measured signal in control transformer
mode). This may be done using brushes and commutators, or using a rotary transformer, as discussed in §3.2.

3.3.1 Resolvers and synchros
Resolvers and synchros (see Figure 3.6) are analog devices capable of determining the angle of a rotating shaft.

In control transmitter mode, the rotating reference winding is driven by Vr = V cosϕ where ϕ(t) = ωe t.
• In a resolver, this generates voltages in the two stationary windings of Vs = η Vr sin θ and Vc = η Vr cos θ
for some efficiency metric η. Regardless of the value of η, the shaft angle θ is then given simply from the
instantaneous output voltages as θ(t) = atan2(Vs, Vc), where atan2 is defined in (B.1).
• In a synchro, this generates voltages in the three stationary windings of V0 = αVr sin 0

◦+β Vr cos 0◦+γ Vr,
V120 = αVr sin 120

◦ + β Vr cos 120
◦ + γ Vr, and V240 = αVr sin 240

◦ + β Vr cos 240
◦ + γ Vr. Solving these

equations to determine {α, β, γ} from {V0, V120, V240}, it works out that γ ≈ 0 if the stationary coils are nearly
identical and 120◦ apart, and we can rewrite the result as V0 = c Vr sin θ for the shaft angle θ(t) = atan2(β, α).

In control transformer mode, again defining ϕ(t) = ωet, the stationary windings are driven:
• in a resolver, such that Vs = V sinϕ and Vc = V cosϕ, and
• in a synchro, such that V0 = V sinϕ, V120 = V sin(ϕ+ 120◦), and V240 = V sin(ϕ+ 240◦).
In either case, this generates a voltage Vr = η V sin(ϕ−θ) in the (rotating) referencewinding for some efficiency
metric η, where θ(t) denotes the angle of the shaft from some appropriately-defined reference angle θ0, and
ωs(t) = dθ(t)/dt denotes the rate of rotation of the shaft. Noting that V̇r = η V [ωe cos(ϕ− θ)−ωs cos(ϕ− θ)]
and assuming that the ωe ≫ ωs [i.e., that the frequency ωe of the electrical excitation is much higher than the
rate of rotation of the shaft ωs], it follows, regardless of the value of η, that θ ≈ ϕ− atan2(ωeVr(t), V̇r(t)).

Resolvers and synchros are often set up in torque chains, in which the (2 or 3) outputs from a “primary”
(resolver or synchro), set up in control transmitter mode, are used to drive the (2 or 3) inputs to a “secondary”
(resolver or synchro), set up in control transformer mode. If the rotation of the primary device is driven by some
process, and the secondary device can rotate freely, as with an analog instrument, and if the reference winding
of the secondary device is excited by the same voltage used to excite the reference winding of the primary
device, then a torque is generated by this electrical connection to the secondary device that tends to drive the
angle of the shaft of the secondary device to match the angle of the shaft of the primary device.
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a b c d →

efgh

A

B
←

Figure 3.7: Encoder signals from a quadrature encoder, indicating the (dashed) A and (solid) B signals. These
signals are generated by a pair of photodiodes placed about 90(1 + 4i)/n degrees apart (for integer i) near an
encoder disk with a single ring of n slits. The {a, b, c, d} transitions (from left to right in the image) indicate
one direction of shaft rotation, and the {e, f, g, h} transitions (from right to left in the image) indicate the other
direction of shaft rotation. For a given n, i may be selected to make the encoder easy to manufacture (e.g.,
physically placing the two photodiodes around 45◦ to 90◦ apart around the shaft).

3.3.2 Incremental encoders: unidirectional, quadrature, and ABZ

The simplest incremental encoder, called a unidirectional encoder, consists of just a single ring of slits (see
Figure 3.5a, without the single slit in the second row) and a single LED/photodiode pair. Every time a slit passes
in front of the photodiode, a pulse is generated on the wire attached to the photodiode. A counter unit (see
§1.5.5) on the MCU increments its counter in response to the rising edge, the falling edge, or both, of these
pulses. This approach is only useful for shafts designed to spin in one direction, but such applications are
common (in conveyer belts, assembly lines, etc.). The number of slits per revolution in the encoder disk defines
the resolution of the encoder, and should be selected based on the maximum speed of rotation of the shaft and
the maximum reliable rate of the counter unit. Note that motors (which often operate most efficiently at speeds
much higher than needed in a particular application) often have speed-reducing (and, thus, torque-increasing)
gearboxes attached. Attaching the encoder disk before (or, after) such a gearbox increases (or, decreases) the
effective resolution of the encoder for a given number of slits in the encoder disk. Also, the number of slits per
revolution of the encoder disk is limited by practical issues; if this number is made too high, the slits become
too narrow to manufacture precisely, the state transitions of the signals from the photodiodes become noisy,
and counting them becomes difficult. Thus, depending on the application specifics, mounting the encoder disk
before or after the gearbox (if one is present) may be preferred.

We next consider a quadrature encoder, built with a single ring of n slits, and two photodiodes, denoted A
and B. If the two photodiodes are placed 360 i/n degrees apart from each other around the shaft (for integer i),
the signals that they generate will be exactly in phase with each other, and the second photodiode will provide
no useful new information. If the two photodiodes are placed 180(1 + 2i)/n degrees apart from each other
around the shaft, the signals that they generate will be of opposite phase, and again the second photodiode
will provide no useful new information. However, if the two photodiodes are placed about 90(1+4i)/n degrees
apart from each other around the shaft, the signals that they generate will be about 90◦ out of phase (see Figure
3.7a), which as described below is quite useful. Note that, for a given n, imay be selected to make the encoder
easy to manufacture (e.g., physically placing the two photodiodes around 45◦ to 90◦ apart around the shaft).

With two signals A and B that are about 90◦ out of phase, we can actually infer the direction of rotation by
looking at state transitions (low-to-high, high-to-low, or both) of one or both logical states, while monitoring
the other state, leading to a bidirectional incremental encoder. Transitions {a, b, c, d} happen only when time
flows from left to right in Figure 3.7 (indicating, say, “clockwise” shaft rotation), and transitions {e, f, g, h}
happen only when time flows from right to left (indicating “anticlockwise” rotation):

a) A transitions from low to high when B is high,
b) B transitions from high to low when A is high,
c) A transitions from high to low when B is low,
d) B transitions from low to high when A is low,

e) A transitions from low to high when B is low,
f) B transitions from low to high when A is high,
g) A transitions from high to low when B is high,
h) B transitions from high to low when A is low.
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Such a bidirectional encoder can be set up to watch for 1, 2, or all 4 of the transitions in each of the above
two groups (and, to increment or decrement its counter as appropriate when these transitions are detected),
referred to as 1x, 2x, and 4xmodes. The capability of using 4x mode (that is, of updating the counter 4n times
per full wheel revolution) lends this sensor its common name as a quadrature encoder.

AnABZ encoder combines a (bidirectional) quadrature encoder as described above with a third photodiode
mounted to detect the passage of a single narrow slit on a second ring in the encoder disk, as shown in Figure
3.5a. This third signal gives an absolute reference point on the shaft angle during each full rotation, and can be
useful to initialize an absolute reference angle when restarting the system, and to correct for possible missed
encoder counts during normal operation. The ABZ encoder is thus actually a hybrid between incremental and
absolute encoder designs.

3.3.3 Absolute encoders: binary, Gray, and commutation
In order determine with high resolution the absolute rotation angle of a shaft, consider again the use of an
optical encoder, but now with an encoder disk with multiple rings, and a radially-aligned row of photodiodes
to read the binary values (slits) in each ring. With 7 rows of slits, it is straightforward to see that 27 = 128
distinct positions can be read off directly; conveniently, the sensed signal will immediately be in simple binary
order if a binary encoder pattern, such as that illustrated in Figure 3.5b, is used.

However, there is a significant problemwith the above approach. Due tomanufacturing inaccuracies (specif-
ically, minor misalignments in the row of photodiodes), during the transition from a single binary number to
another (say, between the state 1111111 and the state 0000000) as the encoder the encoder disk turns, some bits
will inevitably change slightly before the others, making the rotation of the shaft appear, for a moment or two,
to be in a vastly different state than it actually is. These errors can be quite problematical. Note further that the
misalignment of the photodiodes can become significantly more severe in a system as it ages, and inevitably
receives a few substantial bumps and knocks. As a result, binary encoders should never actually be used .

The solution to the above problem is to use a Gray encoder. Consider the following reversible transforma-
tion: start from an n-bit binary number b(1) b(2) . . . b(n), where b(1) denotes the most significant bit (msb) and
b(n) denotes the least significant bit (lsb), and define another n-bit binary sequence g(1) g(2) . . . g(n), dubbed
a Gray code, as follows:

g(1) = b(1), for i = 1 : n− 1, g(i+ 1) = b(i) xor b(i+ 1), end (3.1a)

where xor denotes exclusive or4 (see Table 1.3). The inverse of this operation, it is easy to prove5, is given by

b̄(1) = g(1), for i = 1 : n− 1, b̄(i+ 1) = b̄(i) xor g(i+ 1), end (3.1b)

The transformation of the first 25 = 32 binary numbers (starting from 0) to Gray code and back, by the above
reversible transformations, is listed in Table 3.1. Reading an n-bit Gray code sequence with an optical encoder,
rather than reading an n-bit binary sequence, completely eliminates the problem mentioned in the previous

4The operation a xor b is equal to 1 (true) if its arguments differ, and is equal to 0 (false) if they are the same.
5That is, the reconstructed b̄(i) in (3.1) equals the original b(i) for all i. This may be established with a proof by induction:

assume, for some i, that b̄(i) = b(i). To show that it follows, for this i, that b̄(i+ 1) = b(i+ 1), consider the four possible cases:
(a) If b(i) = 0 and b(i+ 1) = 0, then g(i+ 1) = b(i) xor b(i+ 1) = 0, and b̄(i+ 1) = b̄(i) xor g(i+ 1) = 0.
(b) If b(i) = 0 and b(i+ 1) = 1, then g(i+ 1) = b(i) xor b(i+ 1) = 1, and b̄(i+ 1) = b̄(i) xor g(i+ 1) = 1.
(c) If b(i) = 1 and b(i+ 1) = 0, then g(i+ 1) = b(i) xor b(i+ 1) = 1, and b̄(i+ 1) = b̄(i) xor g(i+ 1) = 0.
(d) If b(i) = 1 and b(i+ 1) = 1, then g(i+ 1) = b(i) xor b(i+ 1) = 0, and b̄(i+ 1) = b̄(i) xor g(i+ 1) = 1.

In all four cases, b̄(i+ 1) = b(i+ 1); i.e., (3.1b) inverts the transformation done by (3.1a). This applies identically for the “base case”
i = 1 [b(1) = g(1) = b̄(1)], and thus, successively, for the case with i = 2, and then for i = 3, etc., ultimately for all integer i ≥ 1.
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Table 3.1: The numbers 0 to 25 − 1 = 31, in binary and Gray code. [Codes: RR_bin2gray.m, RR_gray2bin.m]

paragraph, of some bits changing slightly before other bits when the photodiodes are slightly out of whack.
This is a result of the remarkable fact that only one bit changes at a time when counting through the numbers 0
to 2n− 1, and looping back to 0, when the numbers are represented using an n-bit Gray code, as illustrated for the
n = 5 case in Table 3.1. Further, the conversion from Gray code to a corresponding binary representation can
be done remarkably quickly using the above algorithm.

Finally, one added benefit of a Gray code encoder is that, even though n bits are still needed to represent
all numbers from 0 to 2n − 1, the changes in the lsb happens at half the rate as the changes in the lsb of the
corresponding binary sequence (again, see Table 3.1). As mentioned previously, if the slits become too narrow
to manufacture precisely, the transitions of the signals from the photodiodes become noisy, and, practically,
sensing them becomes difficult. The severity of this problem is reduced in a Gray code encoder, as, at a given
resolution n, the smallest slits are twice as wide as for the corresponding binary encoder, as readily apparent
in the 7-bit Gray code encoder disk illustrated in Figure 3.5c.

Finally, consider a commutation encoder, built with n pairs of N-S poles mounted (with alternating polar-
ity) to a rotating shaft, and three stationary magnetic (Hall effect) sensors, denoted {U, V,W}, mounted nearby.
As illustrated in Figure 3.8, there are two distinct variants on this idea:

• if the sensors are placed about 60(1+6i)/n degrees apart from each other around the shaft, for integer i, the
signals they generate will be about 60◦ out of phase, and
• if the sensors are placed about 120(1 + 3i)/n degrees apart from each other around the shaft, for integer i,
the signals they generate will be about 120◦ out of phase.

Either way, six valid phases of rotation can be uniquely detected6, denoted {a, b, c, d, e, f}. The inputs to the
three sets of electromagnets of a three=phase BLDC motor (see §3.4.2) may then be synchronized to these six
phases by the commutation logic (see §3.4.3) driving these sets of electromagnets in order to coordinate the
motor’s efficient application of torque on the shaft in the clockwise and anticlockwise directions. As a result
of its utility in the commutation of BLDC motors, such an encoder is commonly referred to as a commutation
encoder. Note that, since a commutation encoder indicates which of six phases of rotation that a motor shaft
is in, without reference to where the shaft was previously, it is classified as an absolute encoder.

6The states 101 and 010 are not valid in the 60◦ variant, and the states 111 and 000 are not valid in the 120◦ variant.
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a b c d e f

U V W

a b c d e f

U V
W

Figure 3.8: Encoder signals from (left) the 60◦ variant, and (right) the 120◦ variant, of a commutation encoder,
indicating the (dashed) U, (solid) V, and (dot-dashed) W channels. These signals are picked up by a triplet of
magnetic (Hall effect) sensors placed 60(1 + 6i)/n degrees apart (in the 60◦ variant), or 120(1 + 3i)/n degrees
apart (in the 120◦ variant), near the 2n permanent magnets, of alternating polarity, mounted to the rotating
shaft of a BLDC motor. The {a, b, c, d, e, f} phases (note: not transitions) may be used by six-state logic driving
the motor (see §3.4.3) to coordinate the application of torque on the shaft in the clockwise or anticlockwise
directions. Again, for a given n, i may be selected to make the encoder easy to manufacture (e.g., physically
placing the two photodiodes around 30◦ to 60◦ apart around the shaft).
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Figure 3.9: Principle of operation of a brushed DC (BDC) motor, in which the electromagnets {A,B,C} rotate
and the permanent magnets {1,2} are stationary (cf. Figure 3.10); the pattern illustrated in this case repeats
after 120◦ of rotation. The appropriate coordination of the energizing of the coils driving the electromagnets
with the rotation angle of the shaft is achieved via carbon brushes {D,E} dragging against split-ring commutators
{F,G,H}; see Figure 3.2. The outer ends of the electromagnets that are red (north) are repelled from the inner
surfaces of the permanent magnets that are red (north) and are attracted to the inner surfaces of the permanent
magnets that are blue (south); vice-versa for the outer ends of the electromagnets that are blue. At any instant,
all of the energized electromagnets tend to torque the shaft in the clockwise direction.

3.4 Brushed DC (BDC) and Brushless DC (BLDC) Motors
Though there are many different types of electric motors (see also §3.6), the two main paradigms that drive
small robotic systems today are radial-flux brushedDC (BDC) and brushless DC (BLDC)motors. Their essential
principles of operation are illustrated in Figure 3.9 and Figures 3.10-3.11, respectively; both use electromagnets
to generate alternating magnetic fields in the presence of permanent magnets7, thereby generating torques
which tend to rotate a shaft. Note that, in electromagnets (aka inductors), when energizing (running a current)
through a coil wrapped around a soft iron core, amagnetic field is generated in the core in the direction indicated
by the right-hand rule (when current is flowing from + to− in coils wrapped around the core in the direction
of your fingers, the north pole of the resulting magnetic field is generated in the direction of your thumb). The
key to the proper operation of both BDC and BLDC motors is the appropriate coordination of the energizing
of the coils that generate such magnetic fields with the rotation angle of the shaft, known as commutation,
combined with compatible orientation of nearby permanent magnets to effectively produce torque on the shaft.

7Collectively, these two paradigms are thus sometimes referred to as permanent-magnet DC (PMDC) motors.
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Figure 3.10: Principle of operation of a brushless DC (BLDC) motor, in which the permanent magnets
{1,2,3,4} rotate and the electromagnets {A,B,C} are stationary (cf. Figure 3.9). The pattern illustrated in
this case repeats after 180◦ of rotation. Implementing the appropriate feedback, commutation is achieved
electronically.
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Figure 3.11: Illustration of the Y (Wye) and∆ (Delta) winding connections of BLDC motors. For a given overall
configuration, windings, and power supply, the Y winding connection provides more low-speed torque, and
the ∆ winding connection provides a higher speed. [In theory, the Y and ∆ winding connections of BLDC
motors provide essentially the same performance;∆ has lower effective resistance, lowerKV , and higherKT .]
At the instants shown, in the Y case, electromagnet A is repelling magnet 2, electromagnet C is attracting
magnet 4, and electromagnet B is off, whereas in the ∆ case, electromagnet A is attracting magnet 1 and
repelling magnet 2, electromagnet B is repelling magnet 3, and electromagnet C is attracting magnet 4, all of
which tend to torque the shaft in the clockwise direction. Commutation using the appropriate feedback, using
either the u/v/w hall sensors or the û/v̂/ŵ hall sensors, is discussed in §3.4.3.
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The first BDCmotors were developed by Thomas Davenport (and, others) around 1834, and rapidly became
the dominant mechanism to convert electric energy into mechanical motion (and, when run backwards as a
generator, to convert mechanical motion into electrical energy). With this paradigm, the electromagnets
rotate and the permanent magnets are stationary. As illustrated in Figure 3.9, commutation in BDCmotors
is achieved mechanically, simply by dragging carbon brushes against split-ring commutators. In the figures
shown, note that the brushes are wide enough that, at certain times, they overlap two commutators at a time;
if there are more commutators than brushes in a given ring, this does not result in a short circuit. Unfortunately,
the carbon brushes upon which the BDC paradigm is based wear out over time.

With the advent of low-cost, fast microcontrollers in the early 21st century, BLDC motors are quickly re-
placing BDCmotors in almost all small-scale robotics applications except low-cost toys. With this paradigm, the
permanent magnets rotate and the electromagnets are stationary. As illustrated in Figure 3.10, commu-
tation in BDCmotors is achieved electronically, based on feedback (see §3.4.3) indicating the relative rotational
position of the electromagnet array with respect to the permanent magnet array. In addition to superior wear
characteristics, BLDC motors are much easier to make weatherproof or waterproof; as the electromagnets are
stationary in the BLDC paradigm, they can easily be sealed in plastic, while the rotating components can be
exposed to the elements, or even submerged in water.

3.4.1 Dynamic modeling of BDC and BLDC motors
To model (in SI units; see §9.1.1-9.1.2) the dynamics of both BDC and BLDC motors, we first consider the
following functions of time, averaged over each shaft rotation:

• V (t) is the voltage applied to the motor [measured in volts],
• I(t) is the current through the motor [measured in amps],
• τ(t) is the torque applied by the motor to the mechanical load [measured in N·m],
• ω(t) is the rate of rotation of the motor shaft [measured in rad/s],

An approximate model of the voltage and torque balances, respectively, of such motors is then given by

electrical behavior: V = RI + LdI/dt+ ω/KV , (3.2a)

mechanical behavior: τ = KT I = J dω/dt+ b ω + C sgn(ω), (3.2b)

where the three RHS terms in (3.2b) model the rotational inertia, viscous friction, and dry friction (see Example
6.3) of the full system (that is, the motor together with its attached load), and where (again, in SI units)

• R is the motor resistance [measured in ohms],
• L is the motor inductance [measured in henries],
• KV is the speed constant of the motor [measured in (rad/s)/V, with 1 rpm/V = 2π/60 (rad/s)/V],
• KT is the torque constant of the motor [measured in N·m/A],
• J is the rotational inertia of the full system [measured in kg·m2, with 1 g·cm2 = 10−7 kg·m2],
• b is the viscous friction coefficient of the full system [measured in N·m·s], and
• C is the dry friction coefficient of the full system [measured in N·m; see (6.6c)].

The term ω/KV in (3.2a) is called the motor’s back emf (electromotive force). Key relations to start with are:

A. at steady conditions (d/dt term zero) with negligible R, ω ≈ KV V (speed is proportional to voltage),
B. τ = KT I (torque is proportional to current), and
C. when written in SI units, the essential link between (3.2a) and (3.2b) is thatKV = 1/KT .

In general, the dynamic relationship between the applied voltage V (t) and the resulting motor current I(t),
torque τ(t), and rotation rate ω(t) of the shaft is a result of the coupled equations (3.2a)-(3.2b), and should be
modeled as such when doing model-based control of systems driven by BDC and BLDC motors.
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Figure 3.12: Specifications of the Maxon 110117 BDC motor.

For any BDC or BLDC motor, the unknown parameters in the model (3.2a)-(3.2b), as discussed above,
may be determined using a home-built dynamometer; that is, by repeatedly accelerating and decelerating a
flywheel of known rotational inertia (carefully attached to the motor shaft with low-friction load bearings)
while monitoring the rate of rotation of the shaft with encoders, then performing a least squares fit.

More simply, the parameters in (3.2a)-(3.2b) may be estimated from some values that may be either be mea-
sured or (for motors made by high-endmotor manufacturers) referenced in the corresponding device datasheet.
As a typical example, consider the representative motor specifications in Figure 3.12, which indicate the follow-
ing three conditions when operating the motor at Vo = 6V:

• a “stall” condition of ωstall = 0 in which Istall = 3.42A and τstall = 0.0201N·m;
• a “nominal” speed of ωnom = 7390 · (2π/60) = 774 rad/s when Inom = 0.84A and τnom = 0.00481N·m;
• a “no-load” speed of ωno-load = 9630 ·(2π/60) = 1008 rad/s when Ino-load = 0.0295A and τno-load = b ω+C .

This datasheet also lists an efficiency of 83% at the “nominal” conditions, a terminal resistance ofR = 1.76 ohms,
a terminal inductance of L = 1.06 · 10−4 henries, and a rotor inertia (assuming no applied load) of
J = 4.07 · 10−7 kg· m2. From these values, we can compute the following characteristics:

• KT,stall =
τstall
Istall

= 5.88mN·m/A and KV,stall =
1

KT,stall
=

170.15

2π/60
= 1625 rpm/V at ωstall = 0;

• KT,nom =
τnom
Inom

= 5.73mN·m/A and KV,nom =
1

KT,nom
=

174.64

2π/60
= 1668 rpm/V at ωnom = 7390 rpm;

• KV,no-load =
ωno-load

Vo −R · Ino-load
=

169.47

2π/60
= 1618 rpm/V at ωno-load = 9630 rpm.

Note that these computations are largely consistent with characteristics 12 and 13 reported in Figure 3.12, and
indicate that KT and KV are remarkably constant over the entire range 0 ≤ ω ≤ ωno-load.

The C parameter, which can not be determined accurately from the information provided in Figure 3.12,
is essentially insignificant for large ω. Note that dry friction can lead to a troublesome stick-slip behavior at
low speeds (see, e.g., Example 6.3), which may be effectively overcome in DC motors by driving them with an
input voltage incorporationg pulse-widthmodulation (PWM; see Example ??). Note also that the information
provided, at ωnom = 774 rad/s = 7390 rpm, is consistent with b = τnom/ωnom ≈ 6.2 · 10−6 N·m·s.

The speed/torque gradient is simply ω/τ at equilibrium conditions, which for small ω is approximately
equal to (V/I) ·KV /KT = R ·KV /KT . For the motor specified in Figure 3.12, this equals 1.76 · 1620/5.9 ≈
483 rpm/(mN·m), as reported as characteristic 14. The speed/torque gradient reflects, in a way, the overall
“motor strength”; that is, it quantifies how sensitive (or, for small speed/torque gradient, how insensitive) the
equilibrium motor speed ω is to variations in the equilibrium load torque τ .

The electrical time constant related to (3.2a) is te = L/R, and reflects how quickly the current in the motor
increases in response to a step change in the input voltage, neglecting any changes in ω. For the motor in Figure
3.12, te = (1.06 · 10−4)/1.76 ≈ 0.06ms, and is essentially negligible.

The mechanical time constant is the time it takes for the motor to accelerate from ω = 0 to ω = 0.63·ωno-load

after a step increase in the input voltage from V = 0 to V = Vo. It may be approximated as tm = J · R/K2
T .

For the motor in Figure 3.12, tm = (4.07 · 10−7)(1.76)/(5.9 · 10−3)2 ≈ 20.6ms, as reported as characteristic 15.
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Figure 3.13: Some efficient outrunner BLDC (brushless) motor configurations (6s8p, 12s14p, 18s20p, 24s26p),
shown with Y winding connections. In BLDC motors, the electromagnets are stationary, and the permanent
magnets rotate with the shaft. Commutation (that is, coordination of the electrical signals causing the motor
to turn) is thus achieved electronically rather than mechanically. The windings of these particular three-phase
motors are given by (ABC)2, AabBCcaABbcC, (AaABbBCcC)2, and AaAabBbBCcCcaAaABbBbcCcC (see text).
Images generated via the convenient online tool available at http://www.bavaria-direct.co.za/.

3.4.2 BLDC motor design
A BLDC motor consists of ns stationary8 electromagnets, and np permanent magnets9 (of alternating polarity)
attached to a rotating shaft (see Figure 3.10). Both sets of magnets are placed in a circular arrangement around
the shaft, with a small air gap between them. The (rotating) permanent magnets may be placed to the inside
[called an inrunner configuration] or to the outside [called an outrunner configuration] of the (stationary)
electromagnets. BLDC motor designs are commonly denoted ns snp p; a few examples are given in Figure 3.13.

As the electromagnets are stationary in brushless (BLDC) motors, they are commutated electronically; this
is in contrast with brushed (BDC) motors, in which the electromagnets rotate and the permanent magnets are
stationary, and for which mechanical commutation (with brushes and split-ring commutators) is used instead
(see Figure 3.9). Three-phase commutation of the electromagnets, in which the ns stationary electromagnets
are electrically arranged into 3 equal-sized groups that are powered 120◦ out of phase from each other, are
by far the most common, and form the focus of our study10. The algorithms used to coordinate the electronic
commutation of three-phase BLDC motors with the rotation of the shaft is discussed in §3.4.3.

Recall from Figure 3.11 that the ends of the three sets of electromagnets may be tied together in a Y (aka
wye) configuration, as also done in Figure 3.13, or arranged in a ∆ (aka delta) configuration. For a given set of
windings, the Y configuration has

√
3 times more torque per amp, and the ∆ configuration has a higher top

speed; if a motor with a Y configuration is rewound (with more turns of thinner wire), the performance of the
∆ configuration can be made to be roughly equivalent.

The number of “slots” ns (a multiple of 3), and the number of “poles” np (a multiple of 2) are important in
BLDC motor design11. We focus next on selecting ns and np appropriately, and optimizing the corresponding
winding pattern of the three phases, both of which require closer consideration.

8The maximum number of electromagnets may be determined by counting the slots through which the wires are threaded when
winding the electromagnets; ns is thus often said to indicate the number of slots through which these wires are thread.

9Rare Earth magnets made from Neodymium (Nd) or Samarium Cobalt (SmCo) are most commonly used in BLDC motors.
10Note that five-phase (and, even, seven-phase and nine-phase) BLDC motor designs are also possible, with improved efficiency

and fault tolerance, but with substantially more complex coordination circuitry.
11We focus the present discussion on the case in which every adjacent pair of “slots” is used to wrap a coil, thus making an

electromagnet out of the (iron-core) post in between each pair of slots (see Figure 3.13). This is sometimes said to be a “two-layer”
configuration in which, looking down in any individual slot, two coils are visible: those going around the post on one side, and those
going around the post on the other. This is in contrast to the “one-layer” configurations sometimes encountered, in which, looking
down in any individual slot, only one coil is visible, with alternating posts not coiled to form electromagnets.
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To make maximum use of the volume that the motor occupies for torque production, ns and np should
be close to the same, but not equal. If ns = np, then at certain rotation angles all the electromagnets and
permanent magnets are aligned, and the motor can not self start; this configuration should thus be avoided.

For a given ns and np for a three-phase motor, the following characteristics are commonly defined:

slot/pole ratio: q = ns/(3np), (3.3a)

pole units: u = gcd(ns, np), (3.3b)

coils per phase per pole unit: z = ns/(3u) ⇔ 3u z = ns, (3.3c)

cogging steps: c = lcm(ns, np), (3.3d)

where gcd denotes the greatest common divisor, and lcm denotes the least common multiple.
To keep ns close to but not equal to np for efficient use of the motor volume, as suggested previously, a

slot/pole ratio in the range 0.25 ≤ q ≤ 0.5 is generally advised.
The number of pole units u is themaximum number of electromagnets that align with a permanent magnet

at any moment. The loading on the motor is said to be symmetric when u > 1; configurations that are
not symmetric should be avoided, as the torque produced by the electromagnets would cause the motor to
wobble. The quantity z measures the number of coils per phase per pole unit. The windings are balanced
when z is an integer; configurations which are not balanced should also be avoided. The values of u and z
for several recommended {ns, np} combinations is given in Table 3.2, directly eliminating from consideration:
(a) those with ns = np, (b) those regions outside the recommended slot/pole ratio range of 0.25 ≤ q ≤ 0.5,
(c) those without symmetry, and (d) those that are out of balance. Also listed in Table 3.2 is the electrical
excitation frequency fe = fsnp/2 associated with shaft rotation at fs = 100Hz = 6000 rpm.

To illustrate, the four designs in Figure 3.13 each have u = 2 pole units (and are thus symmetric), and the
values of z for these four designs are 1, 2, 3, and 4 respectively (and each are, thus, balanced).

The quantity c counts the number of times that permanent magnets align directly with electromagnets
during an entire revolution of the shaft (as mentioned previously, u permanent magnets simultaneously align
with electromagnets each time this happens). This quantity also indicates the number of times that the torque
of the BLDC reaches a minimum (and, a maximum) during one complete revolution of the shaft, dubbed the
cogging steps of the motor. The larger c is, the smaller the amplitude of this torque ripple. The worst torque
ripple is given for an equal number of slots and poles, for which c = ns = np, again suggesting that this
condition should be avoided. Values of c for several recommended {ns, np} combinations is given in Table 3.3.

We next consider how the individual electromagnets of a brushless motor should be wound. Denote the
three electrical phases driving the BLDC motor as {A, B, C}, and let {A, a, B, b, C, c} denote windings of these
phases, where uppercase denotes clockwise (CW) windings, and lowercase denotes anticlockwise (ACW) wind-
ings. A BLDC motor configuration with 6 clockwise windings (with u = 2 and z = 1) may thus be denoted
ABCABC, or more compactly as (ABC)2. Defining the (dLRK) winding as AabBCcaABbcC, and also defining

(i) as ABbcaABCcabBCAabcC,
(ii) as (AaABbBCcC)2,
(iii) as (AabBCcaABbcC)2 = (dLRK)2,
(iv) as AaAabBbBCcCcaAaABbBbcCcC,

(v) as (AaABbBCcC)2,
(vi) as ABCcabcaABCABbcabcCABCAabcabBC,
(vii) as AaABbcCcaABbBCcaAabBCcCAabBbcC,
(viii) as (AaAaABbBbBCcCcC)2,

recommended winding patterns that maximize the torque output for several recommended {ns, np} combina-
tions are given in Table 3.4. Note in particular that, for those {ns, np} combination with z = 1, the symmetric
answer must simply be (ABC)u, by inspection. Further, (ACB)u is just (ABC)u operating in reverse.

The remaining winding patterns listed above may be motivated fairly simply via symmetry arguments on
a case-by-case basis, and are not nearly as mysterious as they might at first look. For example, consider first
the 24s26p design, rotated just a couple of degrees from the configuration shown at right in Figure 3.13, such
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np→
ns ↱ 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

6 2, 1 2, 1
9 3, 1 3, 1
12 4, 1 2, 2 2, 2 4, 1 q<0.25
15 5, 1 5, 1
18 6, 1 2, 3 2, 3 2, 3 2, 3 6, 1
21 7, 1 7, 1
24 8, 1 4, 2 2, 4 2, 4 4, 2 8, 1
27 9, 1 3 3
30 q>0.5 10, 1 5 2, 5 2, 5 2, 5 2, 5
33 11, 1
36 12, 1 2, 6 4, 3 6, 2 4, 3 2, 6
fe 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Table 3.2: Pole units and coils per phase per pole unit, {u, z}, of 3-phase motors with recommended combina-
tions of [left] the number of slots ns and [top] the number of poles np. Non-recommended regions include:

those with ns = np, which are not self starting, and have relatively poor cogging numbers,
those with a slot/pole ratio q = ns/(3np) outside the range 0.25 ≤ q ≤ 0.5, which are inefficient,
those without symmetry (that is, those with u = 1), which wobble, and
those that are electrically out of balance, with more windings on some phases than others.

Also listed is the electrical excitation frequency fe associated with shaft rotation at fs = 100Hz = 6000 rpm.
Code to generate and extend Tables 3.2, 3.3, 3.5: RR_BLDC_design.m.

np→
ns ↱ 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

6 12 24
9 18 36
12 24 60 84 48
15 30 60
18 36 126 144 180 198 72
21 42 84
24 48 120 264 312 168 96
27 54 216 270
30 60 330 390 420 480 510
33 66
36 72 468 252 180 288 612

Table 3.3: Cogging steps c (larger is smoother) of 3-phase motors for recommended {ns, np} combinations.

np→
ns ↱ 4 6 8 10 12 14 16 18 20 22 24 26 28

6 (ABC)2 (ABC)2

9 (ABC)3 (ABC)3

12 (ABC)4 (dLRK) (dLRK) (ABC)4

15 (ABC)5 (ABC)5

18 (ABC)6 (i) (ii) (ii) (i) (ABC)6

21 (ABC)7 (ABC)7

24 (ABC)8 (iii) (iv) (iv) (iii)
27 (ABC)9 (v)
30 (ABC)10 (vi) (vii) (viii)

Table 3.4: Recommended winding configurations of 3-phase motors for recommended {ns, np} combinations.
(ABC)2 denotes ABCABC, etc., where {A,B,C,a,b,c} denote (uppercase) CW and (lowercase) ACW winds of
phases A, B, and C. Winding (dLRK) denotes AabBCcaABbcC; windings (i) through (viii) defined in the text.
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np→
ns ↱ 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

6 0.866 0.866
9 0.866 0.866
12 0.866 0.933 0.933 0.866
15 0.866 0.866
18 0.866 0.902 0.945 0.945 0.902 0.866
21 0.866 0.866
24 0.866 0.933 0.949 0.949 0.933 0.866
27 0.866 0.945 0.945
30 0.866 0.874 0.936 0.951 0.951 0.936
33 0.866
36 0.866 0.867 0.902 0.933 0.945 0.953

Table 3.5: Fundamental winding factor kw1 (larger is more powerful) for recommended ns and np combinations.

that there is (pink) permanent magnet exactly halfway between the (CW-wound) electromagnet 7, and the
(ACW-wound) electromagnet 6. If the B phase is sinusoidal, and is phased such that the magnetic field at
electromagnets 6 and 7 (which are of opposite polarity) peak at this moment, then a maximum force will be
exerted on the (pink) permanent magnet halfway in between (ditto on the blue permanent magnet on the
opposite side). Looking around the circumference at the other permanent magnets that, at this instant, are
closest to being halfway between two electromagnets suggests that the electromagnet pairs {5,6} and {7,8}
should also peak at roughly the same time (and, again, be of opposite handedness); again, ditto on the opposite
side. By symmetry, this suggests that, for the 24s26p design, the z = 4 electromagnets of each phase, in each
of the u = 2 pole units, should be placed next to each other, and with opposite handedness. The handedness at
the intersections between the different sets of phases in each pole unit (that is, ab, BC, ca, AB, bc, CA) is then
selected in the sense that continues to apply torque in the same direction, finally arriving at winding (iv). The
other winding patterns listed above (and, those for larger {ns, np} configurations) may be reasoned similarly.

A more detailed discussion of the electromagnetic forces within a BLDC motor is beyond the scope of the
present discussion. A definitive text on this subject is Hendershot & Miller (2010); we will simply state here the
primary definitions that arise in this analysis, leaving derivation and detailed discussion to this text:

slot-pitch angle: γs = πnp/ns = π/(3q), (3.4a)

coil-span angle: ϵ = π − γs, (3.4b)

pitch factor, aka coil-span factor: kpn = cos(nϵ/2), (3.4c)

distribution factor: kdn = sin(nσ/2)/[z sin(nσ/(2z))] where σ = π/3, (3.4d)

winding factor: kwn = kdnkpn. (3.4e)

As discussed in the above-mentioned text, the fundamental winding factor kw1 (that is, kwn with n = 1), as
defined by (3.3)-(3.4), is proportional to the total torque that a BLDC motor can generate. Generally, the higher
kw1 is the better; note that 0.866 ≤ kw1 < 1 for the recommended BLDC motor designs listed in Table 3.5.

In summary, all of the configurations listed in Tables 3.2-3.5 are viable three-phase BLDC designs, and may
be reached by the motor designer for different applications, depending on the relative importance placed on:

• simplicity of construction, for which small ns and small np are preferred,
• efficiency, for which a large fundamental winding factor kw1 is preferred, and
• smoothness of operation, for which a large number of cogging steps c is preferred.

As highlighted in Tables 3.2-3.5, some particularly good tradeoffs between simplicity of construction, efficiency,
and smoothness of operation include the 6s8p, 12s14p, 18s20p, 24s26p, and 30s32p designs, with windings
of (ABC)2, (dLRK), (ii), (iv), and (viii), respectively, as defined above (see Figure 3.13).
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mechanical center 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

rotation angle range −15◦ − 15◦ 15◦ − 45◦ 45◦ − 75◦ 75◦ − 105◦ 105◦ − 135◦ 135◦ − 165◦

electrical center 0◦ 60◦ 120◦ 180◦ 240◦ 300◦

rotation angle range −30◦ − 30◦ 30◦ − 90◦ 90◦ − 150◦ 150◦ − 210◦ 210◦ − 270◦ 270◦ − 330◦

signals from u/v/w 1/1/1 1/1/0 1/0/0 0/0/0 0/0/1 0/1/1
Hall sensors û/v̂/ŵ 0/1/0 0/1/1 0/0/1 1/0/1 1/0/0 1/1/0
A/B/C or a/b/c L/Z/H L/H/Z Z/H/L H/Z/L H/L/Z Z/L/H
Field at edge Y N/-/S N/S/- -/S/N S/-/N S/N/- -/N/S

of electromagnets ∆ N/s/s n/S/n s/s/N S/n/n s/N/s n/n/S

Table 3.6: Caption goes here...

3.4.3 Commutation in BLDC motors
Hall sensors... (see Table 3.6).

Trapezoidal (“six-state”) commutation... simple...
Sinusoidal commutation. minimizes torque ripple
Third harmonic injection, higher torque.
Field oriented control (FOC).

3.5 Servos and Electronic Speed Controllers (ESCs)

3.6 Other types of actuators
many, many

3.6.1 Axial BLDC “pancake” motors

3.6.2 AC motors
Induction motors

3.6.3 Linear actuators and solonoids

3.6.4 Hydraulic and pneumatic actuators

3.6.5 Artificial muscle and electroactive polymers

3-21

https://en.wikipedia.org/wiki/Electric_motor
https://en.wikipedia.org/wiki/Brushed_DC_electric_motor


Renaissance Robotics (v.2024-03-19) Chapter 3: Sensors, actuators, and interfaces

Figure 3.14: (a) Current (in mA) vs applied voltage, and (b) luminous intensity (normalized by value at 20mA)
vs current, of typical small signaling LEDs (see inset) of different colors in the Cree C566D-RFF series.

Figure 3.15: Luminous intensity (normalized by peak value) versus wavelength of (a, from left to right) royal
blue, blue, green, amber, red orange, and red LEDs, and (b) “white” LEDs [at color temperatures of (i) 5000◦K,
(ii) 3700◦K, and (iii) 2600◦K] of typical high-intensity LEDs (see inset) in the Cree XLamp XP-E series.

3.7 Light Emitting Diodes (LEDs), buttons, and touchscreens
The current-voltage relationship of diodes is nonlinear, as shown (and discussed in detail) for general diodes
in Figure 9.14, and as highlighted for typical small Light Emitting Diodes (LEDs) in Figure 3.14a. In both cases,
the current through the diode is nearly zero until a certain “cut-in” voltage across the device is reached (in the
case of LEDs, usually somewhere between 1.5 and 3.5 volts, depending on the chemistry of its construction).
To operate properly without burning out12, an LED is generally driven by an operating voltage higher than
its cut-in voltage, and is placed in series with a current-limiting resistor. This series resistor is responsible for
regulating the current through the LED, which is approximately proportional its brightness as illustrated in
Figure 3.14b. Typical safe operating currents for many small signaling LEDs are in the range of 5 to 40mA.

To determine the appropriate value for the resistor in order to set the desired current passing through the
LED + current-limiting resistor pair, a convenient load line may be drawn on the current-voltage plot of the
LED. This loadline starts at zero for an applied voltage of Vcc on the horizontal axis, and (since V = IR) slopes
upward to the left at a slope of I/V = 1/R. For the loadline shown in Figure 3.14a, (0.040 A)/(3.4 V)=1/(85Ω)
and thus, for Vcc = 5V and R = 85Ω, the current through a blue or green LED would be about 20mA,
whereas the current through a red or amber LED would be about 32mA, where the loadline shown intersects
the corresponding curves. The LED current for other resistor values is determined similarly.

12Beware: if you attach an LED between power and ground without inserting a current-limiting resistor in series, you will burn it
out almost immediately; double check the datasheet of the LED you actually select to ascertain its range of safe operating current.
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x
Vcc GPIO

Figure 3.16: Use of tri-state (H/L/Z) logic plus PWM to independently drive two LEDs with a single GPIO.

3.7.1 Tri-state (H/L/Z) logic
As depicted in Figure 3.16, consider now attaching a GPIO pin (see §4.2.1) through both a green LED through
R1 to power, and (in parallel) a red LED through R2 to ground, taking R1 = 150 ohm and R2 = 85 ohm to run
both LEDs (from the Cree C566D-RFF series) at about 20mA (see Figure 3.14a).
• If the GPIO is set (as an output) to H (that is, to power), then the red LED will illuminate.
• If the GPIO is set (as an output) to L (that is, to ground), then the green LED will illuminate.
If, on the other hand, the GPIO is set as a high-impedance input (which need not be monitored by the MCU),
then its value floats (i.e., it is determined by the rest of the circuit hooked to this GPIO). In this setting, we
refer to this third GPIO state as Z; the circuit then connects, in series between power and ground, the green and
red LEDs and two resistors (totaling 85+150=235 ohm); since the cut-in voltage of the red LED is around 1.7 V,
and that of the green LED is around 2.9 V, the current through the circuit will be about (5-1.7-2.9 V)/(235 ohm)≈
1.7mA; the LEDs will glow so dimly at this low current that they will essentially appear to be off, thus providing
a means to effectively control two LEDs independently with a single GPIO.

Such clever use of Z as a third GPIO state is referred to as tri-state (aka three-state) logic. Pulse width
modulation (PWM) can extend even further what is possible using such logic. In the setting described above,
we can send a square wave at a frequency greater than 30Hz that sets the GPIO as H 50% of the time, and as
L 50% of the time. The result is that both LEDs blink on and off so quickly that, to our eyes (which effectively
average over a timescale of about 1/30 of a second), both LEDs appear to be on 100% of the time, at about 50%
of the intensity than they would otherwise appear with the particular current-limiting resistors selected.

3.7.2 Arrays of LEDs or buttons using x/y multiplexing or crossplexing
When building arrays of LEDs or buttons (keys on a keyboard, resistive or capacitive touchscreens, etc.) it is
desirable to make the maximum use of a limited number of GPIOs, leveraging the speed of the computer or
microcontroller in comparison to the speed of the human with whom it is interacting.

A simple way to build such an array from n GPIO channels, referred to as x/y multiplexing, is to use
n1 = ⌊n/2⌋ GPIOs on the left edge and n2 = ⌈n/2⌉ GPIOs on the lower edge of a (nearly) square array (e.g.,
if n = 15, taking n1 = 7 and n2 = 8), leading to n1 · n2 = ⌊n2/4⌋ wire intersections at which LEDs or buttons
may be placed, as shown in Figure 3.17a. We may then successively (one at a time) energize (as either H or L)
each of the n1 GPIOs controlling the rows, as inputs to the array, and simultaneously either:
- control the state at the other n2 GPIOs (treated as MCU outputs) to turn on the desired LEDs on that row, or
- read the state at the other n2 GPIOs (treated as MCU inputs) to determine which buttons are pressed.

An alternative way to build an array from n GPIO channels, referred to as crossplexing (aka Charlieplex-
ing), is effectively to rotate the “chessboard” of a large x/y multiplexing array by 45◦, attaching the wires along
the rows and columns of this rotated chessboard to the nGPIOs along the left edge of the array, and connecting
the nearby wires of rows and columns of the chessboard along the top and bottom edges of the array, as shown
in Figure 3.17b. We may then cycle quickly through all n of the GPIOs, energizing (as either H or L) one of them
at a time as an input to the array, and controlling (for LEDs) or monitoring (for buttons) all n− 1 other GPIOs,
similar to before. This approach connects each of the n GPIOs to each of the n2 = n−1 other GPIOs at exactly
1 wire intersection, leading to n(n− 1)/2 intersections at which an LED or button may be placed.
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Figure 3.17: Interconnection of n = 12 GPIOs as (a) an x/y multiplexing array, generating (n/2)2 = 36
intersection points (shown as pink and gray circles), and (b) a crossplexing array, generating n(n − 1)/2 =
66 intersection points. The coordinates of the intersection points are more directly enumerated using an x/y
multiplexing array, but crossplexing generates almost twice as many intersection points for large n.

Given an x/y multiplexing or crossplexing array of n GPIOs, as discussed above and illustrated in Figures
3.17a-b, there are several useful things that can be done with each intersection:

a. Put a single LED, together with a current-limiting resistor, between the two wires at each intersection.

- If using an x/y multiplexing array, to activate any number of LEDs, cycle quickly and repeatedly
through the input GPIOs {A,B,C,. . . } to the array, setting one at a time to H while keeping the rest Z
or L; at the same time, coordinate the output GPIOs {1,2,3,. . . } to be L for those LEDs corresponding
to the rows with the intersections that you want to turn on, and leave as Z or H those GPIOs on
the rows corresponding to the intersections that you want to stay off13.

- If using a crossplexing array, to activate any number of LEDs, cycle quickly through the GPIOs
{A,B,C,. . . }, setting one channel at a time toH, while keeping the rest Z; at the same time, coordinate
the remaining GPIOs to be L for the LEDs at the intersections that you want to turn on.

b. Put two LEDs (one facing each direction, each with its own current-limiting resistor), between the two
wires at each intersection (using either an x/y multiplexing or crossplexing array). The first of the pair at
each intersection is illuminated exactly as described above; the second is illuminated by energizing the
channels using precisely the opposite logic (swap H and L).

c. Put a single button, in series with a diode, between the two wires at each intersection, again setting one
channel at a time toH, andmonitoring the n2 other channels to determine which button has been pressed.

The reason that the diode is needed in case c above is to prevent a phenomenon known as ghosting, which
arises when multiple buttons are pressed at the same time. For example, in Figures 3.17a-b, consider what
happens if the 2 green and 1 yellow buttons are pressed at the same time:

• In the case of the x/y multiplexing array in Figure 3.17a, when energizing (as H) channel D, both channels
5 and 3 are pulled high; the former because the yellow button is pressed, as expected, but the latter because
current flows from the yellow button along channel 5, through button B5 to channel B, and through button B3
to channel 3, thus making it appear as if button D3 is pressed, even if it isn’t.
• In the case of the crossplexing array in Figure 3.17b, when energizing (as H) channel L, channels D, G, and I
are all pulled high; the former because the yellow button is pressed, as expected, but the latter because current
flows from the yellow button along channel D, through button DG to channel G, and through button GI to
channel I, thus making it appear as if buttons LG and LI are pressed, even if they aren’t.

13Note that, in this case, the use of tri-state logic is in fact unnecessary. Also, in this case, the current-limiting resistors can all be
moved adjacent to the output GPIOs {1,2,3,. . . } from the array.
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Simply inserting a diode in series with each of the buttons at each of the intersections prevents all of these
spurious effects from arising.
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3.8 Displays and other interfaces
TFT, LCD, OLED

resistive or capacitive touch screens
eInk
Persistance of Vision (POV)
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4.1 Computer networks

4.1.1 Network protocol stacks
A protocol stack is an implementation of a protocol suite, which defines the precise set of rules by which
computers communicate over a network. Network protocols are modeled as a stack of layers, each designed
for a specific purpose. There are two primary models of network protocols in common use. The internet (aka
TCP/IP) model consists of four layers:

4. Application layer
3. Transport layer
2. Internet layer
1. Link layer
The OSI (Open Source Interconnection) model consists of seven layers:

7. Application layer
6. Presentation layer
5. Session layer
4. Transport layer
3. Network layer

a) Subnetwork Access
b) Subnetwork Dependent Convergence
c) Subnetwork Independent Convergence

2. Data link layer
- Logical link control (LLC) sublayer
- Medium access control (MAC) sublayer

1. Physical layer
physical signaling sublayer
- Physical coding

4-2

https://en.wikipedia.org/wiki/Protocol_stack
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Internet_layer
https://en.wikipedia.org/wiki/Link_layer
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Application_layer
https://en.wikipedia.org/wiki/Presentation_layer
https://en.wikipedia.org/wiki/Session_layer
https://en.wikipedia.org/wiki/Transport_layer
https://en.wikipedia.org/wiki/Network_layer
https://en.wikipedia.org/wiki/Data_link_layer
https://en.wikipedia.org/wiki/Physical_layer


Renaissance Robotics (v.2024-03-19) Chapter 4: Communication protocols

4.1.2 Wired network topologies
The topology of a “wired” computer network (interconnected by electrical cables or optical fibers) is a design
criterion that may be tailored to best suit the specific applications for which the system is intended, such as:

• internet connectivity of general-purpose computers,
• centralized fault-tolerant coordination of machines,
• distributed computation of multidimensional PDEs (via spectral, finite difference, or finite element methods),
• weather and climate forecasting [using ensemble methods for forecast uncertainty quantification (UQ)],
• navigation and manipulation of transactional databases (airline ticket sales, large-scale search, . . . ),
• deep learning for medical diagnostics,
• DNA sequencing, etc.

Links between computers (aka nodes) in any such network can be half-duplex (able to maintain communication
in one direction at a time only) or full-duplex (able to maintain communication in both directions simultane-
ously), with the connecting cables attaching to the nodes via a network interface controller (NIC). If links are
physically too long to reliably deliver a signal, one or more repeaters can be used. Possible logical network
topologies1 include the following:

A) The prototypical example of a physically-dedicated point-to-point link is a tin-can telephone. Circuit-
switching technology, as used in conventional telephony, allows temporary dedicated point-to-point elec-
trical connections to be set up when needed in settings incorporating many nodes.

B) Each pair of nodes in a daisy chain is connected via a cable with a NIC at each end; if a received message
is not intended for that node, it is simply retransmitted down the chain. A linear (with two ends) or ring
configuration can be used for such a chain; a ring provides, at modest additional cost, an alternate direction
to pass any given message, which is useful if the other direction is substantially longer, broken, or busy.

C) Each node may be connected (via a NIC) to a single central bus (aka backbone or trunk), and all data carried
on the bus can simultaneously be received (or, ignored) by any connected node. A linear bus has two
endpoints; a distributed bus has branches, and thus multiple endpoints. All endpoints of a bus must be
terminated (see §??) to prevent reflections.

D) The sending of signals out to all nodes in a star configuration is coordinated by a central hub [in which an
input signal on one port is repeated as an output signal on all other ports] or switch [in which an input
signal (say, on port A) is routed only towards its specific destination (say, on port B), allowing simultaneous
communication traffic between the various other ports as needed (say, from port C to D, etc.)].

E) At least some nodes in a mesh network have more than two NICs, and thus can themselves act simulta-
neously as both nodes and switches (note that certain nodes at high-traffic junctions may be replaced by
dedicated switches). This topological class is very versatile. A small network with n nodes can be:

E.1) fully connected, with a point-to-point link between every pair of nodes [that is, with n − 1 NICs
per node, and (n− 1)! total links. . .which quickly becomes unmanageable for fairly small n], or

E.2) a single d-dimensional (aka dD) hypercube, with n = 2d nodes, d NICs per node, and d 2d−1 total
links; with this paradigm, all nodes are within d “hops” from any starting node in the network.

For larger n, a mesh forms some sort of (partially connected) d-dimensional interconnect grid, such as:

E.3) A d-dimensional cartesian grid, usually with periodic connections in each coordinate direction (thus
dubbed a dD torus), with n = n1n2 · · ·nd nodes, and 2d NICs per node. At the cost of more NICs per
node, an dD grid has two important performance advantages over a 1D ring. First, for unstructured data
flow, a key performance metric is how many additional nodes are reached per “hop” from any starting

1Of course, physically, such networks are usually laid out quite differently (leveraging standardized server racks, etc.).
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node in the network; after r ≫ 1 hops, the number of new nodes reached with one more hop is roughly
proportional to rd−1 (that is, a dD grid spreads data faster with increased d). Second, with its more nu-
merous, well-structured pathways, an dD grid can more quickly “transpose” a large multidimensional
grid that is distributed over the cluster2. Note also that circuit switching (see topology A) can be used at
times to temporarily partition a single periodically-connected grid into a number of smaller periodically-
connected grids to better run smaller jobs.

E.4) An d-dimensional noncartesian grid, also with periodic connections, formed by a rare sphere pack-
ing (see RP), with fewer NICs per node for a given dimension d than a cartesian grid3. Examples include
the 2D uniform hexagonal tiling, with 3 NICs per node, the 3D diamond packing D+

3 , with 4 NICs per
node, and the D+

d hyperdiamond packing (a d-dimensional generalization), with d+ 1 NICs per node.

E.5) An unstructured 2D grid interconnecting many computers that are sparsely separated over a large
physical area, such as a factory floor.

Networks may also be arranged logically as a hybrid combination of the above basic topologies, such as:

E.6) An extended star, given by a star (topology D) connecting to additional stars.

E.7) A tree, given by a high-speed bus (aka trunk; topology C) connected to stars (aka branches).

E.8) A spoked ring, given by a ring (topology B) with a central switch connected (as in a star) to a sparse
subset of nodes distributed around the ring. The ring facilitates fast simultaneous nearest-neighbor
communications (in 1D), and the spokes facilitate fast communication farther over the network.

E.9) A spoked grid, generalizing the spoked ring to a d-dimensional grid (topology E.3, E.4, or E.5), with
a central switch connected to a sparse subset of nodes distributed over the grid, to facilitate both fast
simultaneous nearest-neighbor communications (in dD), and fast communication over longer distances.

Illustrations of several such logical network topologies are given in Figure 4.1. Note that topologies E.6 through
E.9 are especially well suited for algorithms that have a coordinating “central” node that needs especially fast
access to all other “compute” or “machine coordination” nodes.

A well-designed structured grid network (topology E.3 or E.4 above) with 2hNICs per node and n≫ 1 nodes
sometimes has embedded within it h nonoverlapping Hamiltonian circuits; that is, h entirely nonoverlap-
ping pathways that reach every other node in the network; a couple of examples are illustrated in Figure 4.1,
which can be useful for certain data sharing tasks within a network. Consider, for example, a difficult all-to-all
data transfer problem, in which each node has a certain (large) amount of data that needs to be transferred to
all other nodes. Splitting the data to be transferred on each node into h equal-sized pieces and directing each
piece along one of the Hamiltonian circuits (from each node simultaneously) gets all of the data where it needs
to go in exactly n hops, utilizing each communication link in the network with maximum efficiency.

Once one of the several above network topologies is selected, and set up correctly, themedium access control
(MAC) sublayer of the network protocol stack (see §4.1.1) handles all of the low-level rules for determiningwhich
links to use to actually route packets across the network in any given situation. This significantly streamlines
the coding task for the embedded programmer, requiring simply the calling of the appropriate one-to-one, one-

2Consider, for example, a high-resolution x-y-z discretization of a 3D field defined over a cube using a 2D cartesian network
topology. Each node in the network can contain the discretized values of the field at all z gridpoints (for a certain range of x and y
gridpoints), which substantially accelerates numerical algorithms involving implicit solves or FFTs in the z coordinate (only). Trans-
ferring data in one set of directions over the 2D network allows one to quickly perform a sort of matrix transpose, putting onto each
node the discretized values of the field at all y gridpoints (for a certain range of x and z gridpoints), thus facilitating fast implicit
solves or FFTs in the y coordinate; transferring data in the other set of directions puts onto each node the discretized values of the
field at all x gridpoints (for a certain range of y and z gridpoints), thus facilitating fast implicit solves or FFTs in the x coordinate.

3The cost of mesh network is proportional to the number of NICs per node. Note that 4 NICs per node form a 2D cartesian or 3D
diamond grid, and 6 NICs per node form a 3D cartesian or 5D hyperdiamond grid, clearly favoring noncartesian grid topologies for
certain applications (particularly, those with unstructured message passing and a very large number of nodes).
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?

Figure 4.1: Illustration of several logical network topologies.

to-all, or all-to-all data transfers in the numerical code, and leaving it to the protocol stack to sort out which
links to use to actually complete the requested data transfer.

4.1.3 Ad hoc wireless networks

4.2 Short-range wired communication protocols

4.2.1 Signaling (“bitbanging”) with GPIOs, and pullup/pulldown resistors

General-purpose input/outputs (GPIOs)

4.2.2 Encoders (ENC)

4.2.3 Pulse Width Modulation (PWM)

PWM (Pulse Width Modulation) can be used for both driving H-Bridges directly, and signaling to Servomotors
(Servos) and Electronic Speed Controllers (ESCs).

A good way to generate a PWM signal of specified frequency and duty cycle is discussed in Example 9.32.

4.2.4 I2C / I3C

4.2.5 SPI / QSPI

4.2.6 UART / USART

4.2.7 USB

4.3 Long-range wired communication protocols

4.3.1 RS485

4.3.2 CAN

4.3.3 Ethernet

(medium range)

4.4 Wireless communication protocols

review

4-5

https://www.iotforall.com/iot-connectivity-comparison-lora-sigfox-rpma-lpwan-technologies/


Renaissance Robotics (v.2024-03-19) Chapter 4: Communication protocols

4.4.1 RFID / NFC

4.4.2 Bluetooth / BLE
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generation standard adoption frequency band(s) MIMO max datarate
Wi-Fi 1 802.11b 1999 2.4GHz 11Mbps
Wi-Fi 2 802.11a 1999 5GHz 54Mbps
Wi-Fi 3 802.11g 2003 2.4GHz 54Mbps
Wi-Fi 4 802.11n 2009 2.4 and 5GHz ✓ 600Mbps
Wi-Fi 5 802.11ac 2014 5GHz ✓ 6.933Gbps

Wi-Fi 6 / 6E 802.11ax 2019 2.4 and 5GHz and 6GHz ✓ 9.607Gbps

Table 4.1: Commonly used variants of the Wi-Fi standard.

4.4.3 Wi-Fi
Commonly used variants of theWi-Fi standard are listed in Table 4.1; note that themaximum practical through-
put that an application can expect to achieve is about 53% of the max data rate using TCP, and about 64% of
the max data rate using UDP.

Wall-powered Wi-Fi routers operating at 2.4GHz are typically effective up to about 46 m indoors and 92 m
outdoors, whereas routers operating at 5GHz are typically effective over only about a third of these distances,
though they can be pushed to significantly higher data rates. Unfortunately, many other household products
operate in the 2.4 GHz band, including Bluetooth (see §4.4.2), microwave ovens, and babymonitors. Due to such
(often, frustrating) interference issues on the 2.4GHz band, Wi-Fi 4 and later protocols do not rely exclusively
on the 2.4GHz band. Notably, Wi-Fi 6 and 6E specifically address channel congestion and interference issues,
as well as significantly reducing the power required by client devices.

4.4.4 3G/4G/5G cellular

4.4.5 Satellite

4.4.6 Zigbee / Zwave

4.4.7 LoRa / SigFox
LoRaWAN, Symphony Link

4.4.8 LPWAN / NBIOT / LTE-M
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4.5 Connector standards

“The nice thing about standards is that you have so many to choose from.” - Andrew Tanenbaum

Standard protocols for wired communication between “hosts” (e.g., SBCs) and “clients” (sensor modules, actu-
ators, ...) are surveyed briefly in §4.2 and §4.3. What many of these protocols leave unaddressed, however, is
the standardization of connectors on host and client devices that implement these protocols.

Venerable connector standards like USB (e.g. Types A, C, and micro-B), HDMI (e.g. standard and micro, aka
Types A and D) and Ethernet (RJ45) are both relatively compact and ubiquitous in modern laptop computers
and SBCs; their use thus requires no further discussion here. Also well standardized are 3.5mm TRRS A/V jacks
(aka TRS or “stereo mini” jacks, unfortunately with certain incompatibilities), and MIPI DSI display ports and
CSI camera ports (though the MIPI specs are not themselves publicly released). However, as addressed in this
chapter, other commonly-needed connectors for wiring together host and client devices are currently much less
standardized, sometimes leading to device incompatibilities and often requiring fragile (and, easily misrouted)
custom wire harnesses to address.

4.5.1 Existing I2C, SPI, and UART connector standards

Many attempts have beenmade to standardize powered wire harnesses for various short-range comm protocols
(see §4.2), prescribing both the connectors and the corresponding pin order to be used, including:

- standard I2C, with data and clock lines {SDA, SCL},
- extended I2C, adding {INT/SMBA, RES/SMBS} lines to standard I2C,
- SPI, with {MOSI,MISO, SCK, SS}, often with multiple SS (slave select) lines to support multiple devices,
- extended SPI, adding {INT, RES} lines to standard SPI,
- simplex or half duplex UART, using Tx or Rx only, or a single combined Tx/Rx line,
- full duplex UART, with separate transmit and receive lines {Tx, Rx},
- UART with Hardware Flow Control (HFC), adding {CTS, RTS} lines to avoid channel contention,
- (synchronous) USART, adding a clock line SCK to UART to synchronize the receiver and transmitter, and
- other analog or digital signals, such as GPIOs, PWMs, encoder signals, clocks, etc.

Several manufacturers have proposed standardized powered4 connection protocols to address this need, and
marketed a variety of host and client devices mounted on small PCBs using the proposed protocols, including:

• PMOD, a standard by Digilent for 6- and 12-wire harnesses mated with 0.1” pin headers, including:
- for I2C channels, a 1x6 connector with pin order5,6 {INT, RESET, SCL, SDA,GND, Vcc},
- for UART channels, a 1x6 connector with pin order {CTS, Tx, Rx, RTS, GND, Vcc},
- for SPI channels, a 1x6 connector with pin order {SS,MOSI,MISO, SCK,GND, Vcc},
- etc. (a handful of other 1x6 and 2x6 connectors are also defined; see the PMOD spec for details);

• Grove, a standard by Seeed for 4-wire harnesses with 2mm pitch proprietary connectors (see here) with:
- for I2C connections, a pin order7 of {SCL, SDA, Vcc, GND},
- for UART connections, a pin order of {Rx, Tx, Vcc, GND},
- for other digital and PWM-driven devices, a pin order denoted {D0,D1, Vcc, GND}, and
- for analog devices, a pin order denoted {A0, A1, Vcc, GND};

4Most devices that implement these standards require 3.3V PWR, some use 5V, and some can use either. Check the specs!
5Many PMOD I2C connectors on clients are 2x6, with identical columns, facilitating easy daisy-chain wiring of I2C devices.
6An older PMOD spec excluded the {INT, RESET} lines from I2C wire harnesses, using 1x4 (or, by Footnote 5, 2x4) connectors.
7Note that Seeed sells branch cables to facilitate multiple I2C devices hooked to a single I2C channel.
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• STEMMA, a standard8 by Adafruit for 3- and 4-wire harnesses with 2mm pitch JST-PH connectors, with:
- 4-pin connectors, designed for I2C only, with pin order {SCL, SDA, Vcc, GND}, and
- 3-pin connectors, designed for analog, digital, and PWM-driven devices, with pin order {GND, Vcc, Signal};

• Gravity, a standard by DFRobot for 3- and 4-wire harnesses with 2mm pitch JST-PH connectors, with:
- for I2C or UART channels, a 4-pin connector with pin order9 {Vcc, GND, SCL, SDA} or {Vcc, GND, Rx, Tx},
- for analog, digital, and PWM-driven devices, a 3-pin connector with pin order {GND, Vcc, Signal};

• Qwiic, a standard by SparkFun for 4-wire harnesses10 with 1mm pitch JST-SH connectors, with:
- 4-pin connectors, designed for I2C only, with pin order {GND, Vcc, SDA, SCL};

• STEMMA-QT, a standard by Adafruit for 4-wire I2C harnesses with JST-SH connectors compatible with Qwiic.

Also noteworthy with regard to connector standardization (or, the glaring lack thereof...) in the industry are:

• the several 1mm pitch JST-SH connectors used by the Beaglebone Blue, including:
- for I2C channels, a 4-pin connector with pin order {GND, 3.3V, SCL, SDA},
- for UART channels, a 4-pin connector with pin order {GND, 3.3V, Rx, Tx},
- for SPI channels, a 6-pin connector with pin order {GND, 3.3V,MOSI,MISO, SCK, SS},
- etc. (a handful of other JST-SH connectors are also incorporated; see, e.g., here for pin order), and

• the 3-pin 1.5mm pitch JST-ZH connector11, with pin order {3.3V, GND, Rx}, used by the DSM radio receivers.
Digilent’s 0.1” pitch PMOD, Seeed’s 2mm pitch Grove, DFRobot’s 2mm pitch Gravity, Adafruit’s 2mm

pitch STEMMA and 1mm pitch STEMMA-QT, and SparkFun’s 1mm pitch Qwiic standards all have their pros
and cons. The substantial benefit that they share is the large catalog (from each respective manufacturer)
of ready-to-use devices, preassembled on PCBs incorporating the necessary passives, and sold with suitable
wiring harnesses and connectors. However 0.1” (2.54mm) pitch pin headers and 2mmpitch JST-PH (and similar)
connectors are unnecessarily large when considering the current requirements of most devices in these catalogs
(connector size becomes an essential limiting factor when designing space-constrained logic boards), whereas
1mm pitch JST-SH, 1.25mm pitch JST-GH, and similar connectors are only available as SMD, which are fragile
(these connectors often rip off a host PCB if used extensively). Further, the general lack of flexibility in existing
standards, in terms of optional additional pins, presents a significant downside for many applications.

4.5.2 Recon: an extensible JST-ZH powered connector standard

The smallest broadly-available, low-cost, 1A-rated connector standard with durable PTH shrouded headers for
mounting on a PCB is the 1.5mm pitch JST-ZH standard, connectors for which are nonreversible (as with all
JST standards, but not with bare 0.1” pitch pin headers), as the pins are displaced from the centerline of the
connector shroud. Conveniently, JST-ZH wire housings with M pins can also fit into JST-ZH shrouded headers
(on a PCB) with N pins so long as M≤N. This leads to the possibility of creating a uniquely extensible standard
using this type of connector that, for each comm protocol, picks up Vcc and GND on the first 2 pins, then all
essential pins for a given comm protocol, followed by a flexible number of optional pins for that comm protocol,
all in a predefined order. Following this approach, hostsmay be used to drive clients directly using a given comm
protocol following this new standard (without incorporating custom wire harnesses that reorder the pins) so
long as the shrouded header on the host incorporates at least as many optional pins as the wire harness from
the client. Such hosts may include multiple connectors of a given comm protocol (like UART), some with fewer
optional pins and some with more, to more efficiently support a rich variety of auxiliary devices.

84-pin STEMMA and Grove I2C devices are interoperable, and (if powered by 3.3V) STEMMA-QT and Qwiic are interoperable.
9Despite published claims to the contrary (1, 2), 4-pin Gravity (with Vcc on pin 1) is not pin compatible with Grove or STEMMA.
10SparkFun’s Qwiic modules each incorporate a pair of 4-pin JST-SH connectors to facilitate easy daisy-chain wiring of I2C devices.
11This 3-pin JST-ZH connector is also included on the BeagleBone Blue, as well as several flight control boards meant for UAVs.
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The new extensible JST-ZH based open connector standard proposed here is dubbed Recon, and comes in
four main types (underlined pins are required, non-underlined are optional):

pin # → 1 2 3 4 5 6 7 8 9 . . .
Recon Basic [ Vcc, GND, S0, S1, S2, S3, S4, S5, S6, . . . ]
Recon I2C [ Vcc, GND, SDA, SCL, INT/G2, RES/G3, G4, G5, G6, . . . ]
Recon SPI [ Vcc, GND, MOSI, MISO, SCK, SSa, INT/SSb, RES/SSc, SSd, . . . ]
Recon UART-T [ Vcc, GND, Tx, Rx/G1, SCK/Vbat/G2, CTS/G3, RTS/G4, G5, G6, . . . ]
Recon UART-R [ Vcc, GND, Rx, Tx/G1, SCK/Vbat/G2, RTS/G3, CTS/G4, G5, G6, . . . ]

(4.1)

To accelerate the adoption of the Recon standard, ready-made wire harnesses that convert directly from Recon
hosts (like the Berets discussed in §5) to PMOD, Grove/STEMMA, Gravity, and Qwiic/STEMMA-QT clients are
available, thus enabling such hosts to connect directly (without requiring user-made custom wire harnesses) to
all of the large catalogs of available client devices incorporating these current competing standards.

The most common voltage used by currently-available client devices is 3.3V; many 5V devices, and an
increasing number of 1.8V devices, are also available. The Recon standard thus requires that hosts provide
Vcc = 3.3V, and use 3.3V TTL logic, by default on all I2C, UART, and SPI connectors. Other voltages (5V and
1.8V in particular) may be selectable on individual connectors on the host, in order to support an even larger
range of client devices. If Vcc = 5V is selectable on a given connector, its (3.3V TTL) digital pins must simply be
5V tolerant. If, Vcc = 1.8V is selectable on a given connector, on the other hand, all of its digital signals must be
level shifted (on the host) to the value of Vcc selected (using, e.g., a TI TxB0108 level shifter).

We now discuss some details related to each of the four main types of Recon connectors.

4.5.2.1 Recon Basic and its variants, including PWM and ENC

The simplest Recon connector is a 2-pin power connector, {Vcc, GND}. From this starting point, the Recon
Basic standard shares power and a set of one or more generic numbered signals, denoted {S0, S1, S2, S3, . . .},
which is useful for signals that do not follow one of the three main short-range digital comm protocols {I2C,
UART, SPI} discussed in the following three subsections. For signals that are intended for more specific pur-
poses, different one- or two-character identifiers, plus a sequencing number, may be used; for example, instead
of using the name Basic and the generic signal names {S0, S1, S2, S3, . . .}, one may substitute as follows:

- GPIOs may be denoted {G0,G1, G2, G3, . . .},
- PWM based signals (usually, as outputs from the host) may be denoted {P0, P1, P2, P3, . . .},
- Encoder (ENC) signals (usually, as inputs to the host) may be denoted12 {E0a, E0b, E1a, E1b, . . .},
- Clock signals for general-purpose applications may be denoted {CK0, CK1, CK2, . . .},
- Analog signals may be denoted {A0, A1, A2, A3, . . .}, and
- Digital comm signals not following the I2C, UART, or SPI standards may be denoted {D0,D1, D2, . . .},

thus defining theReconGPIO,Recon PWM,Recon ENC,Recon Clock, Recon Analog, &ReconDigital13
variants of the Recon Basic standard. Other specific signal names and enumerations may also be proposed
and used when necessary, if appropriately documented in the corresponding device datasheet; the Recon Basic

12Most modern encoders are quadrature encoders, the outputs of which are attached to the host a pair at a time in order to discern
both the speed and direction of rotation of the shaft to which they are attached. For clarity, such pins should thus be enumerated a
pair at a time; this modified enumeration of the signals of the Recon Basic standard should not present any confusion.

13Other digital comm approaches are typically bit-banged from theMCU, which requires the host CPU to manage; the advantage
of the I2C, UART, and SPI standards, and their common extensions, is that they may typically be handled by dedicated subunits on
modern MCUs, offloading the computational burden of controlling these channels from the available CPU core(s) on the host.
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standard itself is meant to be extensible and flexible14.
GPIOs may be appended to the Recon Basic variants described above, and to the Recon I2C, SPI, and UART

standards discussed below; e.g., the connector [ Vcc, GND, CK0, CK1, CK2, G3 ] fully conforms to the Recon
Clock spec. A logical numbering for these optional GPIOs, consistent with the Recon Basic spec, is proposed
in (4.1); other short/descriptive names for these GPIOs, appropriately documented, should instead be used on
clients to identify the functions of the GPIOs that they include, noting that the Recon spec calls for all required
and (if included) optional signals listed in (4.1) to remain in the order specified for the corresponding connector.

4.5.2.2 Recon I2C

Perhaps the most widely adopted standard for low-speed short-distance serial communication between a host
(aka “master”) and multiple clients (aka “slaves”) is I2C. The I2C standard facilitates half-duplex15 communica-
tion rates up to 400 kbps, with extensions to 1Mbps and, via additional logic and clock stretching, to 3.4Mbps.
Standard I2C requires just two digital signals, data and clock {SDA, SCL} (pins 3 and 4 of the Recon I2C stan-
dard). An I2C master may communicate individually with up to 112 slaves at addresses x08 to x77 using simple
7-bit device addresses (or up to 1024 slaves, at addresses x000 to x3FF, using 10-bit device addresses). Tradi-
tionally, communication via standard I2C requires all transmissions to be initiated by a single master; however,
some newer I2C devices implement a multimaster protocol in which different devices (each of which imple-
ment the multimaster protocol) can take over the master role on a single I2C bus at different times. Common
extensions of the I2C standard add the following (optional pins 5 and 6 of the Recon I2C standard):

- INT, an active low open drain output from the slaves(s) meant to alert the master of new data to report, and

- RES, an active low “reset” or “suspend” output from the master meant both to drive the slaves(s) into a low-
power “sleep” state if available, and to re-initialize certain settings on the slaves(s) once released.

The SMBus and related PMBus standards are based closely on I2C; all three types of devices may generally be
mixed on a single bus. Amongst other refinements, SMBus standardizes the behavior of the optional INT (aka
SMBALERT#) and RES (aka SMBSUS#) pins in a useful way; if these standardized behaviors on the optional
INT and/or RES pins are available on a given host or client, they are (for brevity) to be denoted in the Recon
I2C standard as SMBA and SMBS, respectively, on the corresponding device.

The newer I3C standard might well reshape how hosts communicate with multiple low-power clients in
the coming decade. I3C is also based on the I2C standard, and is compatible with older I2C devices, while
allowing much faster commwith other I3C devices over the same {SDA, SCL} pins. The I3C standard facilitates
communication rates up to 12.5Mbps, with extensions to 33Mbps. One of the new features of I3C is in-band
interrupts, which provide an efficient way for slaves to alert the host of new data to report without using
a separate INT/SMBA pin, or swapping out which device plays the role of master (the logic of which can get
complicated). The Recon I2C connector standard is, of course, compatible with I3C; if/when I3C becomes widely
adopted, the name of the Recon I2C standard might well need to be updated to reflect this compatibility.

4.5.2.3 Recon SPI

Another common protocol for short-distance serial communication between one master and multiple slaves is
SPI. The SPI approach, which does not have any formal standard, facilitates fast full-duplex16 synchronous17

14Note that, e.g., H-bridge outputs for driving brushed DCmotors and steppers are generally not considered to be part of the Recon
standard, as they are not “powered” connectors with {Vcc, GND}.

15Half duplex means that communication in one direction at a time only is allowed.
16Full duplex means that simultaneous communication in both directions is possible.
17Synchronous means that there is a shared serial clock signal from the master, denoted SCK, upon which both the transmit and

receive signals at both ends of the comm channel are coordinated.
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communication, often at rates exceeding 10 Mbps. Typical SPI implementations (aka “4-wire SPI”) use four
signals: master-out-slave-in, master-in-slave-out, serial clock, and slave select, denoted {MOSI,MISO, SCK, SS}
(all four signals are required on SPI hosts by the Recon SPI standard), where SS is active low. When multiple
slaves are attached to a single SPI master, a different slave select signal {SSa, SSb, SSc, . . .} is connected to each
attached device; custom wire harnesses are thus generally required.

A few common simplifications of standard SPI (full-duplex, with {MOSI,MISO, SCK, SS} signals) exist:
- In simplex18 mode, either the MOSI or the MISO wire is simply dropped.

- In half-duplex (aka “3-wire SPI”) mode, a single SDIO signal is used for both input and output at different
times19. On someMCUs, 3-wire SPI mode can simply be selected in software when needed (i.e., to communicate
with a 3-wire SPI slave), making SDIO available directly on the host’s SPI MOSI pin. Selecting this feature in
software on a host allows both 3-wire SPI comm to certain slaves at some times, and 4-wire SPI comm to other
slaves at other times. On other MCUs, to facilitate 3-wire SPI, the MOSI pin on the host must be connected via
a resistor (on the PCB, likely as a DNP20) to the MISO pin, and the modified MISO line subsequently connected
to the SDIO pin of the slave. Unfortunately, this hard-wired approach to combining MOSI and MISO on a host
would likely interfere with the communication with other 4-wire SPI slaves on the same SPI channel.

Note that, even if there is only one slave device driven by a given SPI channel, the corresponding SS pin on
the slave can usually not simply be tied off to GND and the SS signal eliminated, as state transitions on the SS
pin are often (but not always) used by the slave to detect the beginning and end of each data transmission.

As with I2C, communication via standard SPI requires all transmissions to be initiated by a single master21.
Thus, common extensions of the SPI protocol add (software-controlled) INT and RES signals (optional pins 7
and 8 of the Recon SPI standard), the functionality of which is defined as for I2C channels (see §4.5.2.2).

4.5.2.4 Recon UART

A UART is a ubiquitous MCU subunit for asynchronous full-duplex short-distance serial communication, nom-
inally point-to-point (between two devices). UART communication speed is configurable (and, measured on
the fly at the opposite end of each wire, rather than being synced via a shared clock), with rates up to 5Mbps
realistically achievable, and 20Mbps possible under ideal conditions, thoughmany devices top out at 115.2 kbps
or less. Unlike I2C and SPI, there is no concept of master or slave in UART; either device can initiate a transmis-
sion. Like I2C, standard UART requires just two digital signals, transmit and receive {Tx, Rx} (pins 3 and 4 of
the Recon UART standard). Unlike I2C and SPI, the connection of these two signals need to be crossed between
one end of the wire harness and the other (i.e., Tx connects to Rx, and Rx connects to Tx); this is accomplished
in the Recon UART standard (4.1) by defining a UART-T pin order, usually implemented on hosts, and a UART-R
pin order, usually implemented on clients, thus obviating the need for crossing wires within harnesses that
connect UART-T connectors to UART-R connectors.

Notable extensions to the UART standard include the following.

- SCK (optional pin 5 of the Recon UART standard) is a serial clock signal used, in a modern yet still somewhat
uncommon extension of UART dubbed USART, to synchronize the transmit and receive signals at both ends
of the comm channel and thereby facilitate faster communication rates, as done in SPI (see §4.5.2.3). In fact,

18Simplex means that communication in one direction only is possible.
19Warning: in 3-wire SPI, a resistor is generally needed somewhere along the communication path between the master and the

slave, to prevent a possible (though, temporary) direct connection between a driven pin on the master and a driven pin on the slave
at the opposite logic state, as the master and slave nodes are not generally synchronized.

20DNP means Do Not Populate, or Do Not Place, a given component during the board assembly process, but instead leave an open
solder pad at this location, for a component to be added later by the user if desired.

21Though rarely used, some hosts do implement amultimaster SPI protocol, thoughmultimaster SPI is restricted to operate between
two compatible devices only; unfortunately, this approach does not readily extend to SPI channels with additional slaves on it.
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some flexible USART subunits on MCUs can also support an SPI (master or slave) mode of operation; the Recon
UART pin order is designed specifically to support this.

- Vbat (optional use of pin 5 in the Recon UART spec) is a secondary (low-current) standby voltage source, which
is required by some UART clients (e.g., GPS modules) for efficient operation22. If implemented, it is anticipated
that Vbat would usually be made available on pin 5 of a Recon UART connector via a PCB solder jumper.

- {CTS, RTS} (optional pins 6 and 7 of the Recon UART spec) are used for Hardware Flow Control (HFC), which
is today also somewhat uncommon in clients. The names and functions of these signals are derived from the
(once-ubiquitous, but now mostly legacy) full RS232 standard23; note that {CTS, RTS} are crossed between the
client and the host, like {Tx, Rx}, as again facilitated by the distinct UART-T and UART-R pin orders.

A few simplifications of standard UART (full-duplex, with {Tx, Rx} signals) are also quite common (and thus
permitted on both hosts and clients by the Recon UART-T and UART-R connector standards):

- In simplex mode, either the Tx or the Rx wire from the host is simply dropped. Notable common examples
include seven segment display drivers, which are transmit only from the host, and DSM receivers, which are
receive only at the host (e.g., a mobile robot or drone).

- In half-duplex (aka “single-wire” or “1-Wire”) mode, a single signal is again used for both input and output.
On some MCUs, this mode (on the Tx line) can simply be selected in software when needed. Usually, a pull-up
resistor is needed somewhere along this single wire; to facilitate this mode, it is thus suggested that DNP pads
be left for such a pull-up resistor on the host. If a hardware single-wire mode is not available in the UART
subunit on the host MCU, and the UART transmit module is (or can be configured as) open drain, the Tx and Rx
pins may simply be connected to enable single-wire functionality. Unfortunately, most UART transmit modules
are push/pull, thus requiring extra circuitry to convert them to open drain behavior before connecting the Tx
and Rx lines to enable single-wire functionality, as discussed further here.

Creative switching strategies and nonstandard ring connections are occasionally proposed to interconnect
multiple UART devices. This gets complicated and inefficient (requiring substantial intervention by the CPU) in
a hurry; if multiple devices need to be interconnected, the authors thus recommend instead using standard I2C
(§4.5.2.2) or SPI (§4.5.2.3) for short-range connections, or CAN or RS485 (§4.5.4.3) for longer-range connections.

4.5.2.5 Reasoning for the Recon pin order

The logic for the pin order adopted across the entire Recon standard is as follows:

- Vcc and GND, which by definition are required on all powered connectors, come first. Following the uniquely
extensible Recon standard, JST-ZH wire housings with M pins will often be fit into JST-ZH shrouded headers
with N pins, where M<N. It is thus important that Vcc be located on the very first pin, as this prevents Vcc
from accidentally being sent directly to any other pin on the client if the connector is inserted incorrectly (not
engaging the first pin), thus minimizing the possibility of damaging the client device.

22To provide such standby power from the host to SPI or I2C clients, or to USART clients which make use of the SCK pin, while
maintaining maximum flexibility and extensibility according to the Recon spec, it is recommended to use a separate 2-pin secondary
power connector of the Recon Basic type (see §4.5.2.1).

23There are 6 control pins on the common DE9 connector used in this once-ubiquitous standard: {CD,CTS, RTS, DSR, DTR, RI},
standing for Carrier Detect, Clear To Send, Request To Send, Data Set Ready, Data Terminal Ready, Ring Indicator. Of these, only
{CTS, RTS} are still in significant use today. If the need arises to support all 6 of the control signals on DE9 connectors (primarily,
to support legacy equipment), the Recon UART-T and UART-R standards may be augmented as follows (with typical outputs, inputs
specified, noting that DTE originally stood for Data Terminal Equipment, and DCE stood for Data Circuit-terminating Equipment):

Recon RS232-T [ Vcc, GND, Tx, Rx, CD, CTS, RTS, DSR, DTR, RI, . . . ] ← host (aka DTE)
Recon RS232-R [ Vcc, GND, Rx, Tx, CD, RTS, CTS, DTR, DSR, RI, . . . ] ← client (aka DCE)

(4.2)
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- Data lines come next, with priority given to output from the master in cases that data is carried over 2 wires,

- Clock comes next, followed by slave select(s).

- Optional coordinating signals come last, after all of the required signals, and ordered by frequency of use;
these optional signals notably include INT/RES, CTS/RTS, extra SS lines, and extra GPIOs.

It is hoped that, following the logic presented here, new host and client devices following the space-efficient
(1.5mmpitch), secure, durable, extensible, and inexpensive JST-ZH based standard outlined in (4.1) will be devel-
oped by various manufacturers. Several conversations advocating for this new standard are already underway;
if interested, please contact the author.

4.5.2.6 Recon compatibility, and incompatibility, with pin muxing on current devices

The Recon pin order is compatible with some essential pin muxing design decisions already made for a number
of currently-available market-leading host and client devices, including the following:

1. Pin multiplexing {SDA, SCL} on I2C lines with, respectively, {Tx, Rx} on UART lines, as suggested by the
UART-T standard, is consistent with the approach taken on several host MCUs, including the Broadcomm
BCM2711 in the RPi4 (Table 5.9), and the TI C2000 and MSP432. Recon I2C connectors on such hosts can be
converted directly into Recon UART-T connectors (at least, on these primary 2 signals) via a switch in software.

2. Alternate pin functions of STM32 USART modules between UART and SPI modes are consistent with the
Recon standard; that is, USART modules on STM32-based hosts can be converted from Recon UART-T connec-
tors (including {SCK, CTS, RTS}) to Recon SPI connectors (including {SCK, SSa, SSb}) via a switch in software.
Further, on certain (host) STM32 ICs, {MOSI,MISO} of at least some dedicated SPI modules align with {Tx,Rx}
of other dedicated UART modules, consistent with the Recon UART-T standard (at least, on these 2 signals).

3. DSM2/DSMX receivers, which happen to be available already with JST-ZH connectors, are compatible with
the Recon UART-R standard. Further, STM32 USART, UART, and LPUART modules, when operating in half-
duplex mode and not transmitting, can perform Rx functions on the Tx pin. Thus, the DSM receiver pinout is
also compatible with the Recon UART-T standard when using an STM32 host operating in half-duplex mode.

Unfortunately, many pin multiplexing decisions made for currently-available host and client devices do not
allow for simple software conversion between different comm protocols with consistent pin orders on a given
connector (especially on the optional additional pins); indeed, some of these pin multiplexing decisions seem
to have been made almost at random. For example:

A. On the STM32, the pin multiplexing between {SDA, SCL} and {Tx, Rx}matches the Recon UART-T order on
some channels, but the Recon UART-R order on other channels.

B. On the RPi4, the pin multiplexing between SPI and UART with (optional) HFC, as shown in Table 5.9, does
not follow any easily discernible reasoning [cf. §4.5.2.5].

It is suggested that broadly adopting a logical pin muxing standard, consistent with (4.1), might help both IC
and PCB manufacturers, of both host and client devices, to market more capable and interoperable products
with fewer pins. Thismay bemade possible by deploying reconfigurable commports thatmay easily be switched
between different comm protocols (e.g., via solder jumpers on clients, or via software on hosts), without hav-
ing to change the wiring between the host and client devices, thus reducing both IC package size and board
and wiring complexity, ultimately reducing manufacturing costs. If the idea of standardizing [to (4.1)] both
pin multiplexing and (on connectors) pin order becomes well adopted, such ports could be named as, e.g., a
Recon I2C/UART-R port (on a client), or a Recon I2C/SPI/UART-T port (on a host), thereby indicating both
the various comm protocols available on those ports as well as the standardized Recon pin order used.
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4.5.2.7 Extended Recon

It is at times useful to provide multiple regulated voltages over a connector. Perhaps the most common need
for this is to provide a (low-current) standby voltage to GPS modules to facilitate warm starts; this need is
addressed with the optional Vbat pin function in the Recon UART standard, as discussed in §4.5.2.4. However,
other situations are anticipated whichmight also call for multiple regulated voltages to be provided over a single
connector. To facilitate this, if appropriately documented (and, if possible, clearly called out on the silkscreen
on the PCB itself), Extended Recon connector standards may be proposed, implementing one or more extra
(optional) regulated voltages provided on pins placed before (to the left of) the Vcc = 3.3V pin appearing in the
Recon standard given in (4.1). Warning: accidentally plugging into these extra voltage pins with a standard
Recon connector will likely damage or destroy the host and/or client device; to reduce the likelihood of such a
consequential mistake, small dummy plugs should be used to block these pins, thus safely reducing an Extended
Recon connector to a standard Recon connector as defined in (4.1).

4.5.2.8 Stackable Recon

The Recon standard is designed to compactly, securely, and extensibly connect PCB hosts to nearby client
devices elsewhere on the same mobile robot or electromechanical machine. As motivated in the first two para-
graphs of §4.5.2, the Recon standard calls for JST-ZH connectors to be used.

At times when building a mobile robot or electromechanical machine, however, the SBC controlling the
machine (and/or its COTS motor control board, such as those described in §5) does not quite have all of the
necessary control or filter electronics implemented, and some addition custom circuits are required. In such
situations, it is necessary for the user to design and use a custom daughterboard, to connect this custom daugh-
terboard to one or more of the analog or digital comm (I2C, SPI, UART) channels on the SBC or the COTSmotor
control board, and to securely mount this custom electronics somewhere nearby.

For this task, the use of multiple single-row 0.1” pitch female headers laid out on a 0.1” grid, as popularized
by Arduino, is quite convenient. Such an arrangement provides both electrical connectivity to the necessary
channels as well as secure physical mounting of the custom daughterboard itself. Also, with such an arrange-
ment and the use of stackable headers, two or more custom daughterboards may be stacked.

Stackable Recon and Stackable Extended Recon standards are thus defined that follow the same pin
order as the Recon and Extended Recon standards defined above, but using single-row 0.1” pitch female headers
(with 0.025” square pins) instead of JST-ZH connectors. The SPI and I2C Headers defined in Table 5.2 are
examples of Stackable Extended Recon SPI and Stackable Extended Recon I2C connectors.

Note that small servos and ESCs ubiquitously come with 1x3 female jacks which mate with 0.1” pitch male
header pins on the host. The (non-Recon) order of pins in modern servo connectors is {PWM signal, Vcc, GND},
respectively, with Vcc in the range of +4.8V to +12V. The reasoning for this order for servo connectors is that
the 1x3 female jack may easily be plugged into the male header pins backwards; with this ordering (only), this
is safe: it will result in the corresponding servo not functioning correctly until the plug is reversed, but it will
not damage either the host or the servo. This ordering is well motivated and should not be changed.

4.5.3 Yukon: unpowered connectors

By removing the shared Vcc connection, to interconnect devices that are otherwise already powered, Recon
connectors of the five types defined in (4.1) reduce to what we dub Yukon24 connectors (again, leveraging the

24In contrast to the Recon (“Renaissance Connector”) standard for short-distance powered connections to sensors, the name of the
Yukon standard, which itself evokes extreme physical distancing, is derived as a homophone of Ucon (“Unpowered Connector”).
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fact that durable [PTH] JST-ZH shrouded headers with N pins can accept JST-ZH wire housings with M pins
when M≤N, thus creating a signal-extensible connector standard) as follows:

Yukon Basic [ GND, S0, S1, S2, S3, S4, S5, S6, . . . ]
Yukon I2C [ GND, SDA, SCL, INT/G2, RES/G3, G4, G5, G6, . . . ]
Yukon SPI [ GND, MOSI, MISO, SCK, SSa, INT/SSb, RES/SSc, SSd, . . . ]
Yukon UART-T [ GND, Tx, Rx/G1, SCK/Vbat/G2, CTS/G3, RTS/G4, G5, G6, . . . ]
Yukon UART-R [ GND, Rx, Tx/G1, SCK/Vbat/G2, RTS/G3, CTS/G4, G5, G6, . . . ]

(4.3)

As with the Recon Basic standard discussed in §4.5.2.1, the Yukon Basic standard may be implemented in
Yukon GPIO, Yukon PWM, Yukon Enccoder, Yukon Clock, Yukon Analog, and Yukon Digital variants.

Provided that significant care is exercised when plugging in the connector (in this case, NOT engaging the
first pin), Recon connectors can actually be used as Yukon connectors. Warning: if this is done incorrectly,
power on one side will be connected directly to GND on the other, likely damaging or destroying one or both
devices; to reduce the likelihood of such a consequential mistake, while also making the connection of the
wire housing even a bit more secure, a small dummy plug should be used to block the first pin of any Recon
connector, thus safely reducing it into a corresponding Yukon connector.

As in §4.5.2.8, Stackable Yukon connectors are also defined, which follow exactly the same pin order as
the Yukon standards defined above, but use single-row 0.1” pitch female headers instead of JST-ZH connectors.
The Analog Header defined in Table 5.2 is an example of a Stackable Yukon Analog connector.
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4.5.4 CAN and RS485 differential interfaces for remote connections
Though a variety of different effective distances are reported around the web under various conditions (spacing
and characteristic impedance of the traces and wires used, electromagnetic interference, possible impedance
mismatches at IC/trace and trace/wire junctions, etc), without a repeater and when operating at low comm
speeds, I2C links are practically limited to somewhere around 5m, SPI links are limited to around 10m, and
UART links are limited to around 15m; at higher comm speeds these effective distance limits are all substantially
reduced. To connect over longer distances, differential interfaces communicating over one or more twisted pairs
of wires are needed. The two dominant standards today for such differential interfaces are25 CAN and RS48526.
A few useful comparisons of these two standards are available here, here, and here. There are a number of
subtle issues, including interconnect topology, termination, biasing, grounding, etc., involved in making such
systems work well; a succinct review is available here. Industrial RS485 data cables are typically 24 AWG with
a characteristic impedence of 100Ω to 120Ω; automotive CAN data cables are typically 18 to 20 AWG with
characteristic impedence of 110Ω to 130Ω. CAT5e or CAT6 cables are often-used inexpensive COTS substitutes
for low-cost RS485 networks. Shielding is helpful for maintaining signal integrity, if it is available.

4.5.4.1 To ground, or not to ground?

The question of whether or not a GND connection should be shared between different devices when using a dif-
ferential interface is particularly delicate. Notwithstanding advice to the contrary in the RS485 (aka TIA485-A)
standard itself, which recommends simply using resistors between the ground wire on the interconnecting
RS485 cable and the local GND on individual devices, as well as a lot of other misleading advice elsewhere
on the web, careful modern guidance is somewhat more nuanced. In short, non-isolated GND should not be
shared in situations for which the ground potential difference (GPD) of all devices to be connected will remain
well within ±7V, and thus non-isolated CAN transceivers and RS485 transceivers may be used, whereas iso-
lated GND should be shared in situations for which the GPD might exceed this range, and thus slightly more
expensive/complex isolated CAN transceivers and RS485 transceivers should be used instead.

4.5.4.2 Field-serviceable, secure, and durable wiring solutions

As discussed in the definition of the Recon standard §4.5.2, for the wiring of single-board computers to nearby
sensors and other devices in mobile robots and within individual space-constrained electromechanical ma-
chines, standardized connectors are called for that are:

(a) small (1.5mm pitch appears to be the sweet spot),
(b) secure (not disconnecting due to system vibrations),
(c) durable (able to withstand hundreds of connector insertion/removal cycles – generally this means PTH),
(d) extensible (able to incorporate additional signals if available/necessary), and
(e) inexpensive (leveraging COTS connectors wherever possible, especially for mass-market products).

In contrast, for long-distance twisted-pair wiring solutions (e.g., for automotive, industrial, and outdoor appli-
cations), wires and connectors are needed that are:

25That is, other than Ethernet, which itself may be a good choice for many long-distance local networks.
26RS485 is related to the older but still commonly used RS422 standard. Through a driver enable (DE) feature, RS485 systems can

operate with multiple drivers (transmitters) on a single pair of wires, thus facilitating half-duplex (two-way communication) over a
single twisted pair (RS422 is simplex only over each pair of wires). RS485 transmitters can handle the load of 32 to 256 receivers on
a single twisted pair; some RS422 transmitters can only handle the load of 10 receivers. RS485 can also handle much larger ground
potential differences between devices. For these reasons, RS485 is generally preferred over RS422 for new designs.
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(A) field serviceable (allowing wires to be replaced with only simple tools, or no tools whatsoever),
(B) even more secure (not disconnecting due to accidental direct tugs on the wire), and
(C) even more durable (surviving heat, direct sunlight, vibration, water, dust, grease, cleaning solvents, etc).

For long-distance connections, the wires themselves are often the weakest links, and must often be replaced
when damaged, or cut to a new lengths when the system is reconfigured. In such a setting, connector size and
cost are often only minor secondary issues, and field serviceability is paramount. A variety of standardized con-
nectors and T-junctions are available, with 2 to 9 poles, that are well suited in such settings, notably including:

• Pico (M8), Micro (M12), and Mini (7/8 in) connectors, many of which are IP6727 rated and IDC28 type,

• RJ45 connectors (8-pin, straight-through T568B, also available as IDC), as used widely for wired ethernet,

• D-sub 9-pin (DE9, aka DB9) connectors, a 0.108” pitch D-shaped shrouded standard that is broadly adopted,

•Micro-D 9-pin connectors, a 0.05” pitch miniaturized version of the DE9 (also available in powered variants),

• simple terminal blocks, which are easy to service by hand but not environmentally hardened, etc.

In each setting, it is essential to follow the corresponding industry or manufacturer’s spec as much as possible
for where to attach the primary (and if present, secondary) pair of signal wires. For example, if using RJ45 con-
nectors [typically, with inexpensive commercial off-the-shelf (COTS) CAT5e or CAT6 cables], it is recommended
that the standard Power over Ethernet pin order be followed:

- the primary twisted pair should be attached to pins 3 and 6,
- the secondary twisted pair (if any; e.g., in full-duplex RS485 mode) should be attached to pins 1 and 2,
- GND (if connected) should be carried on pins 7 and 8, and
- DC power (if connected, which is sometimes convenient for small remote sensors) should be on pins 4 and 5.

4.5.4.3 Recon/Yukon Differential Pairs

The various types of rugged (field serviceable, extra secure, extra durable) connectors discussed above are often
mounted on a bulkhead (that is, on the boundary of an environmentally-hardened shell protecting the electron-
ics), and are often too big to mount directly on the PCB itself. In this common setting, the rugged connector on
the bulkhead needs to connect to a (small, extensible) connector on the PCB via a short jumper wire (twisted
pair ribbon cables are often a good choice). For the connector on the PCB in this setting, a simple extension of
the Recon/Yukon standard is recommended:

Recon/Yukon Differential Pairs: [ Vcc, GND, A+, A-, B+, B-, C+, C-, D+, D-, . . . ] (4.4)

Only the first differential pair, denoted here {A+, A-}, are required by this spec; additional differential pairs
may be added if available. If both Vcc and GND are included, it is referred to as a Recon Differential Pair
connector, otherwise it is referred to as a Yukon Differential Pair connector. Further, on Yukon Differential Pair
connectors, GND is also optional; recalling the discussion in §4.5.4.1, a GND connection should generally not
be made between two or more connected devices unless isolated CAN or RS485 transceivers are used29. Useful
definitions of the CAN and RS485 variants of the Recon/Yukon Differential Pairs spec follow30:

27IP67 means that the component is dust-proof and capable of withstanding temporary immersion up to 1m depth.
28Field-servicable Insulation Displacement Connection (IDC) type connectors may be installed with only simple tools, or in certain

cases with no tools whatsoever.
29To prevent making a mistake in this regard, Yukon connectors without ground pins should be used on PCBs with non-isolated

transceivers, and Recon or Yukon connectors with ground pins may be used on PCBs with isolated transceivers; the latter should
always be selected, and the corresponding isolated GND pins connected, if significant GPDs are expected.

30If using simple terminal blocks on the bulkhead, we recommend following the same order.
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Recon/Yukon CAN: [ Vcc, GND,CANH,CANL ]

Recon/Yukon RS485-H: [ Vcc, GND, A, B ] for half duplex connections over the A/B channel,

Recon/Yukon RS485-Y: [ Vcc, GND, Y, Z, A, B ] full duplex, with the Y/Z (transmit) channel first,

Recon/Yukon RS485-A: [ Vcc, GND, A, B, Y, Z ] full duplex, with the A/B (receive) channel first.

(4.5)

In the full duplex case, akin to the Recon/Yukon UART-T and UART-R standards, note that:

- master devices transmit on the first pair and receive on the second using Recon/Yukon RS485-Y connectors,
- slave devices receive on the first pair and transmit on the second using Recon/Yukon RS485-A connectors,

thus facilitating full duplex communication between any master and any slave on the network. Warning: in
either the full-duplex or half duplex case, care must be taken in software such that, on any given twisted pair,
only one RS485 node has an active driver (transmitting) at an given time.

By electrically connecting the Y and A pins and the Z and B pins of a full-duplex RS485 transceiver at the
JST-ZH connector [e.g., with (initially-open) solder jumpers on the PCB nearby], and attaching a data cable to
the A and B (or, to the Y and Z) pins only, a (full-duplex) Yukon RS485-A or RS485-Y connector is reduced to (half-
duplex) RS485-H functionality. This is a useful way to configure full-duplex RS485 transceivers+connectors for
general use, if you don’t know whether a full-duplex or half-duplex RS485 network will ultimately be deployed.

In the full duplex case, the receive and transmit functions are decoupled from each other at any given node.
In the half-duplex case, it is common to turn the receiver off whenever transmitting, and vice-versa, simply by
tying the (active high) DE (driver enable) pin to the (active low) RE (receiver enable) pin. This is not the only
valid approach, however:
- by receiving all the time (tying RE low), a transmitting node also receives its own data as it is being sent (this
is called a “loopback” or “echo” function, and can be used to verify the quality of each transmission), or
- by shutting off both the transmitter and the receiver (setting DE low and RE high), a node can save energy.

4.5.5 Summary
Severos and ESCs are often controlled with simple PWM signals. Encoders generate signal transitions that get
counted on hosts. The three short-range comm protocols, I2C, SPI, and UART, and the two long-range comm
protocols, CAN and RS485, are also well established. Each of these standards has their place in the development
of modern robotic systems. As discussed briefly in this short chapter, several useful extensions of these standard
protocols are also readily available, and some exciting new extensions, like USART and I3C, are emerging.

As a developer of modern robotic systems, you will primarily use existing dedicated hardware subsystems
to implement these comm protocols, on bothMCU clients (controller boards) and hosts (sensors and actuators);
you will not have to implement them from scratch yourself. However, it is still important to understand them,
and their relative strengths and implementation details, so you can:

(a) select appropriately which standards you will implement to interconnect different subsystems, and
(b) wire together different subsystems implementing these standards with maximum effectiveness.

Curiously, a primary challenge in implementing these comm standards is to converge upon a self-consistent set
of connector standards to attach hosts to clients. Available solutions today, as reviewed in §4.5.1, are rather all
over the map. This chapter suggests a perhaps more deliberate approach to laying out connectors on client and
host PCBs, using durable (PTH), standard (JST-ZH), 1.5mm pitch, 1 A rated connectors wherever possible, with
a deliberate pin order that, uniquely, allows the adoption of a flexible standard, with optional pins available on
hosts that may or may not be needed on clients, and which may be connected with standard (socket-to-socket,
straight, non-reversed) JST-ZH cable assemblies, which are readily available.
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The Raspberry , Red , Black , White , Green and Blue Berets, from RenaissanceRobotics.com, are
a family of 6 bespoke motor control boards that are remarkably compact, powerful, efficient, and extensible.
Berets are designed to be operated as daughterboards for essentially all of the leading SBCs, as reviewed in
Table 1.15, or for standalone operation. Their modern hardware andmodular software, described in detail in this
chapter1, are open source, providing a reference platform that can be reduced or extended for a host of practical
applications in mobile robotics, industrial automation, precision agriculture, pharmaceutical development, food
preparation, remote inspection, smart-grid HVAC, elder care, toys, etc. The motivation for developing and
adopting the Beret family of boards is to simplify and accelerate the deployment of bespoke feedback controllers
for complex mechatronic systems, empowering robotics students (in high school, college, and beyond), and
expediting and streamlining the workflow from lab prototype to commercial product.

Berets are cross-platform2, open-design demonstrators of emerging technologies for motor control, power
regulation, and coordinated feedback in robotics applications. Most of the ICs selected for the Berets, by
TI (motor drivers, voltage regulation, power protection, opamps, switches/multiplexers, digital pots, CAN and
RS485 transceivers, level shifters, LED driver), ST (MCU, magnetometer, barometer), NXP (GPIO expander),
and TDK (IMU), were announced shortly before the Berets were designed (as a Covid lockdown project, in
2020-2021). Being open design, the hardware and software used by the Berets facilitate the development of
bespoke derivative boards custom fit to the user’s application. To realize this vision, we present below various
implementation details and salient features of the several subsystems of the Beret family.

1In fact, this chapter serves as the datasheet for the Beret family of boards. As a developer of feedback control solutions for mobile
robots and cyber-physical systems, the reader must become adept at reading datasheets carefully. This chapter serves as a case study
for such datasheets, and should be informative even if different components are ultimately needed in the user’s application.

2That is, Berets facilitate (a) the easy porting of real-time multithreaded control code from one linux SBC family to another (see
Table 1.15) as algorithmic demands (e.g., vision processing) on the SBC increase, or (b) the elimination of the SBC altogether (in favor
of a multithreaded ARM-Cortex M implementation) to substantially reduce system cost for high-volume production (e.g., toys).
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Beret MB header PCB dimensions balance analog peripherals bolt pattern
Raspberry RPi full size 65× 56 ✓ ✓ 3.3V, 5V RPi

Red RPi full size 65× 56 ✓ × 3.3V, 5V RPi

Black 96B full size 85× 54 ✓ ✓ 3.3V, 5V 96B

White BB full size 3.4′′ × 2.15′′ ✓ ✓ 3.3V, 5V BB
Green , Blue (none) half size 39× 61.5 × ✓ 3.3V only (custom)

Beret MB voltage Drivers: motors encoders, servos/ESCs Remote Busses Optional
Raspberry 5V MB 24 HB 8 7 10 CAN/RS485 Coin, Flash

Red 5VMB 12 HB 4 5 5 (local only) Coin, Flash

Black 12V MB 24 HB 8 7 10 CAN/RS485 Coin, Flash

White 5V MB 24 HB 8 7 10 CAN/RS485 Coin, Flash

Green (none) 0 HB 0 5 10 CAN/RS485 Coin, Flash

Blue (none) 12 HB 4 5 5 (local only) Coin, Flash

Beret PCB edges mounting hole centers IMU center Analog pin 9
Ras , Red (± 32.5,± 28) (± 29,± 24.5) (25,0) (0,?)

Black (± 42.5,± 27) (± 38.5,−8.5), (± 38.5, 23) (?,?) (0,?)

White (± 1.7′′,± 1.075′′) (−1.475′′,± 0.825′′), (1.125′′,± 0.95′′) (?,?) (0,?)
Green , Blue (± 19.5,± 30.75) (± 16, 27.25), (0,−27.25) (12.5,0) (-12.5,0)

Table 5.1: Essential features of the six initial Beret variants. All distances in mm except on the White , for
which distances are given in inches. The center of each board is taken as the reference point when defining
the PCB edges, the mounting hole centers, and the center of the IMU coordinate system. On all Berets, M2.5
hardware may be used; on the White + BB, #4-40 hardware fits a bit better in its 0.125′′ holes.

5.1 Overview
The essential features of the six initial Beret variants are outlined in Table 5.1. In particular:

• the Raspberry (aka Ras ) Beret may be operated as a daughterboard for recent versions of the RaspberryPi,
• the entry-level (lower-cost) Red Beret is a partially-populated Raspberry Beret3 with reduced specs,
• the Black Beret may be operated as a daughterboard for SBCs following the 96Boards CE specification,
• the White Beret may be operated as a daughterboard for the BeagleBone Black and AI, and
• the Green Beret is designed for standalone (or, wired remote) operation with 3.3V peripherals only.
• the Blue Beret is designed for standalone mobile applications with 3.3V peripherals only.

Note that, in fact, all six Beret variants may be operated standalone when properly programmed.

In this section, we briefly summarize the subsystems used in this family of boards; the balance of §5 explains
these subsystems in greater detail. Note that the modern switching regulators, motor drivers, MCU, MOSFET,
op amps, and other power components discussed below are best-in-class in terms of their efficiency. This, of
course, means that the system can run a bit longer on a single battery charge than it could otherwise. Perhaps
even more important, however, is that a reduced amount of waste heat is generated by these components, thus
significantly improving the capability of Berets to handle high-current operating conditions.

3Because red is a less-fancy way of saying raspberry; Prince wrote a song about the latter, not the former...
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POWER

The Raspberry , Red , and White Berets, dubbed 5V MB Berets, target 5V motherboards. They are
powered over an XT30 connector by a Vin = 6.2V – 28V input at up to 15A continuous / 20A peak, thus accom-
modating a 2S – 6S LiPo (3.1 – 4.2V per cell) or LiHV (3.2 – 4.35V per cell), 3S – 7S LiFe (2.5 – 3.65V per cell),
7S – 18S NiMH (1 – 1.5V per cell), or a 7V– 28V wall adapter, which is down-regulated as follows:

- the Vin->Vs1 switching regulator provides Vs1 = 4.8V tomin(12V, 0.8*Vin) at up to 6A for servos & ESCs,
- the Vin->Vmb switching regulator provides Vmb=5.1V at up to 6A for an RPi or BB compatible MB,
- the Vmb->3.3V switching regulator provides 3.3V at up to 3A for logic circuits and connected sensors, and
- the Vs2 power opamp provides Vs2 = 1.2V to 2.1V at up to ± 400mA.

The 12V MB Black Beret targets 12Vmotherboards. It is powered over an XT30 connector by aVin = 12V–
28V input at up to 15A continuous / 20A peak, accommodating a 4S – 6S LiPo or LiHV, 5S – 7S LiFe, 12S – 18S
NiMH, or a 12V– 28V wall adapter, which is down-regulated slightly differently:

- the Vin->Vs1 switching regulator provides Vs1 = 4.8V tomin(12V, 0.8*Vin) at up to 6A for servos & ESCs,
- the Vin->Vmb switching regulator provides Vmb=min(12V, 0.8*Vin) at up to 6A for a 96B compatible MB,
- the Vmb->3.3V switching regulator provides 3.3V at up to 3A for logic circuits and connected sensors, and
- the Vs2 power opamp provides Vs2 = 1.2V to 2.1V at up to ± 400mA;
in addition, per the 96Boards (96B) CE specification, the 96B motherboard, if one is attached, down-regulates
the Vmb line and passes back (via the low-speed header) 5V at up to 1A. The 12V MB Beret thus does not
itself have a 5V regulator (and, thus, the 5V subsystem on this Beret is not functional unless a 96B compatible
motherboard is attached).

The Green and Blue Berets are built for compact standalone aplications with 3.3V peripherals only,
bypassing the generation of both Vmb and 5V (saving both board area and cost). They are powered over an
XT30 connector by a Vin = 5V– 28V input at up to 15A continuous / 20A peak, accommodating a 2S – 6S LiPo
or LiHV, 2S – 7S LiFe, 5S – 18S NiMH, or a 5V– 28V wall adapter, which is down-regulated as follows:

- the Vin->Vs1 switching regulator provides Vs1 = 4.8V tomin(12V, 0.8*Vin) at up to 6A for servos & ESCs,
- the Vin->3.3V switching regulator provides 3.3V at up to 3A for logic circuits and connected sensors, and
- the Vs2 power opamp provides Vs2 = 1.2V to 2.1V at up to ± 400mA.

In general, on all Berets:

- Vin powers the motor drivers directly,
- Vs1 powers the signal headers (for servos & ESCs),
- Vmb powers the attached motherboard,
- the 3.3V and 5V lines power the logic circuits on the Beret, the JSTs, and the digital and analog headers, and
- all digital outputs operate at 3.3V TTL, and all digital inputs are 5V tolerant.
Again, note that the Vmb and 5V lines are absent on the Green and Blue Berets.

MICROCONTROLLER (MCU)
For real-time control of brushed (BDC) motors, stepper motors, servo motors, electronic speed controllers
(ESCs), and brushless (BLDC) motors, coordinating motor commands with a wide variety of sensor inputs,
Berets incorporate4 a 100-pin 170MHz (213DMIPS) STM32G474VEwith an ARMCortex-M4 core, 512 KB flash4,
128 KB SRAM, and integrated DSP, FPU, and CORDIC (transcendental) & FMAC (filter math) accelerators.

Berets run FreeRTOS and leverage the efficient, portable, open-source Robot Control library (written in C)
for driving all hardware. A ROS interface to these subroutines is under development.

4Note that the entry-level Red Beret uses a STM32G474VB instead of a STM32G474VE, with 128 KB flash instead of 512 KB,
but is otherwise identical in terms of the specs described here.
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Significantly, Berets break out many of the STM32G474’s dedicated subsystems, each of which operate
without loading the main ARM core on the STM itself. An additional 24 GPIOs are provided by a dedicated
GPIO expander. Note that computationally-heavy tasks (e.g., for vision-based situational awareness) should be
deferred to the attached linux-based motherboard.

MOTORS, ENCODERS, SERVOS & ESCs

The Raspberry , Black , and White Berets, dubbed 24 HB Berets, have 24 half bridges, with drivers
for simultaneous independent bidirectional control of 8 brushed DC motors operating at Vin at up to 12A
total; the connectors to these half bridges may be ganged together in various ways to control: 2 motors at 6A,
4 motors at 3A, 4 motors at 2A + 4 motors at 1A, etc., or attached in a unique sequential mode for independent
bidirectional control of up to 24 1A motors at reduced duty cycles. The 24 HB Berets also provide dedicated
hardware support for 7 quadrature encoders and 10 servos or ESCs of a wide variety of sizes and types.

The 12 HB Red and Blue Berets have 12 half bridges, with drivers for control of 4 brushed DC
motors operating at Vin at up to 6A total; the connectors to these half bridges may be ganged together to
control: 1 motor at 6A, 2 motors at 3A, 2 motors at 2A + 2 motors at 1A, etc., or attached in sequential mode for
independent bidirectional control of up to 12 1A motors at reduced duty cycles. The Red and Blue Berets
also provide dedicated hardware support and pinouts for 5 quadrature encoders and 5 servos or ESCs.

The 0 HB Green Beret actually has no half bridges itself (which, admittedly, at first seems peculiar for
a motor control board!). This Beret leverages daughterboards, dubbed Beret Shields, for implementing the
specific motor drivers that may be required in any given application. The Green Beret provides dedicated
hardware support and pinouts for 5 quadrature encoders and 10 servos or ESCs.

BATTERY MONITORING & CHARGING

The Raspberry , Red , Black , and White Berets, dubbed full size Berets, monitor individual battery cell
voltages when running. The half size Green and Blue Berets, on the other hand, forgo individual battery
cell voltage monitoring; when running on a battery, they only monitors the overall battery charge.

Note that, on all Berets, battery charging must be done via a (high-quality) off-board battery charger.

SENSORS & CONNECTORS

All six Berets include a sensitive 6-axis IMU (3 accels + 3 gyros), 3-axismagnetometer, and barometer, in ad-
dition to discrete connectors for driving a host of I2C, SPI, and UART sensors and other devices (such as
GPS/GNSS units and DSM radio receivers), a USB Micro-B input for programming, and numerous chan-
nels configurable as GPIOs. In addition, the Raspberry , Black , White , and Green Berets, dubbed
the CAN/RS485 Berets, include high-speed CAN-FD and full duplex RS485 transceivers and connectors.

Servos and ESCs are supported on the Berets by industry-standard (triple row, 0.1” pitch, 3A per pin, PTH)
Signal Headers, arranged in one or two easy-to-use 3x5 cluster(s) of pins. All six Berets also have an Arduino-
style (1x9, 0.1” pitch, 3A per pin, PTH) SPI Header and I2C Header.

ANALOG SUBSYSTEM

The Raspberry , Black , White , Green and Blue Berets also have a 1x9, 0.1” pitch Analog Header,
limited to 0V to 3.3V operation in a unipolar or bipolar setting, with reference GND at 0V or Vs2≈ 1.65V, and:
- two 16-bitADCs with tunable gain (x1 to x4096) & tunable second-order low-pass filtering (fc = 34 to 3400Hz),
- two 12-bit DACs with ±400mA outputs, and
- a ±400mA opamp pinout (V+, V-, Vo).

The entry-level Red Beret forgoes the entire analog subsystem, including the Analog Header.
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CONNECTOR STANDARDS: RECON AND YUKON

Sturdy JST-ZH connectors (1.5mm pitch, 1A per pin, PTH) are used for motors, encoders, U(S)ART, CAN, and
RS485. The pin order on all JST-ZH connectors and single-row headers follow the standards defined in §??:
- E1-2 (I2Cd), E3-4 (UARTt), E5 (UARTr), E6-7, USART (UARTb/SPIb) follow the Recon Basic, Recon I2C, Recon
UART-T, Recon UART-R, and Recon SPI pin order standards defined in §4.5.2,
- CAN follows the Yukon CAN standard defined in §4.5.4.3, while RS485 follows the Yukon RS485-Y (host)
standard on the Raspberry , Black , and White Berets, and the RS485-A (client) standard on the Green
Beret (and, when acting as UARTa, the Recon UART-T standard on all four of these Berets). On the Blue Beret,
the corresponding connector is UART-T only.
- the SPI and IC2 Headers follow the Stackable Extended Recon standards defined in §4.5.2.8, and
- the Analog Header follows the Yukon Basic standard defined in §4.5.4.1.

EXPANSION BOARDS: BERET SHIELDS

The (1x9) SPI Header, I2C Header, and (if included) Analog Header, in addition to the (3x5) Signal Header A, are
all aligned on a 0.1” pitch grid, facilitating the easy and secure mounting of stackable COTS and user-designed
Beret Shields with additional analog and digital circuitry.

MOTHERBOARD (MB) HEADERS

Berets communicate with motherboards using SPI. To make this connection easier,
- the Raspberry and Red Berets, dubbed the RPi Berets, have a 2x20, 0.1” pitch stackable RPi header,
- the Black Beret, dubbed the 96B Beret, has a 2x20, 2mm pitch stackable 96B header, and
- the White Beret, dubbed the BB Beret, has a 2x23, 0.1” pitch stackable BB header.
The Green and Blue Beret do not have any board-specific MB headers, though they may be connected
locally to virtually any MB (e.g., over SPI, CAN or RS485, etc), or operated standalone.

On the full size Berets, the MB Header may be broken out with additional compact PCBs (a.k.a. SHIMS),
and standardized EEPROMs are included to identify the Berets appropriately to connected MBs.

OTHER FEATURES

The STM’s dedicated hardware timers (for, e.g., encoder counting and PWM generation) are highly reconfig-
urable, with additional (unidirectional) encoder counters easily configurable on the Signal Headers, or addi-
tional PWM outputs (for more servos and ESCs) easily configurable on the encoder connectors, if necessary.

The battery state of charge is indicated with a three bicolor LED power gauge. Three buttons (reset/shut-
down, pause, mode), three user-programmable stoplight LEDs, and various status LEDs are also included.

An (optional) rechargeable Vcoin = 2.6V to 3.05V coin cell may be installed on Berets to keep the real-time
clock (RTC) current, thus facilitating scheduled system wakeups.

Berets are also easily upgraded with an (optional) low-cost 4MB to 512MB flash IC.
Note: Ras and Red are 36.4 cm2, Black is 45.9 cm2, White is 47.2 cm2, Green and Blue are 24 cm2.

FEATURE SET SUMMARY, PINOUTS, LAYOUT, AND FUNCTIONAL DIAGRAMS

The distribution of the above-described features over the six different Beret versions is summarized in Table 5.1.
Layout and functional representations of each is given in Figures 5.1-5.6.

The pinouts of the several connectors on the Berets are listed in Table 5.2. The rest of §5 is devoted to
explaining these subsystems further. In particular, discussion of how the specific channels on the STM32 are
hooked up to these several connectors is summarized in §5.5; see in particular Figure 5.9 and Table 5.4.
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ConnectorA Pins Signal

MB HeaderD all (see §5.9)

USB Micro-B 1 USB_5V
2,3,4 DM, DP, GND

XT30 1 Vin (up to 28V/20A)
(Power In) 2 GND

BalanceE,F 1 B1 (cell 1 low)
2 B2 (cell 1 high / 2 low)
3 B3 (cell 2 high / 3 low)
4 B4 (cell 3 high / 4 low)
5 B5 (cell 4 high / 5 low)
6 B6 (cell 5 high / 6 low)
7 B7 (cell 6 high)

M1 1,2 M1a, M1b
M2-3 1-4 M2a, M2b, M3a, M3b
(M4-5-6, M7-8-9, M10-11, and M12 are similar)

E1-2G (I2Cd) 1,2 [3.3V/5V/Vs1/off]B, GND
3 E1b/SDA/G0
4 E2a/SCL/G1
5 E2b/SMBA/G2
6 E1a/RES/G3

E3-4 (UARTt) 1,2 [3.3V/5V]B, GND
3,4 E3a/Tx/G0, E3b/G1
5,6 E4a/G2, E4b/G3

E5 (UARTr) 1,2 [3.3V/5V]B, GND
3,4 E7a/Rx/G0, E7b/G1

E6-7 1,2 [3.3V/5V/Vs1/off]B, GND
3,4 E5a/G0, E5b/G1
5,6 E6a/G2, E6b/G3

ConnectorA Pins Signal

USART (UARTb/SPIb) 1,2 [3.3V/5V]B, GND
3,4 Tx/MOSI/G0, Rx/MISO/G1
5,6 SCK/G2/Vcoin, CTS/SSa/G3
7 RTS/INT/SSb/G4
8 RES/SSc/G5

CANC 1,2 CANH, CANL

RS485C (UARTa) 1 Y or A or [3.3V/5V]B
2 Z or B or GND
3 A or Y or Tx/G0
4 B or Z or Rx/G1

Signal Header AH 1 S1/I2Cb_SDA/I2S_MCK
(S1-S5/I2Cb/I2Cc) 2 S2/I2Cb_SCL/I2Cc_SMBA
(top row) 3 S3/I2Cb_INT

4 S4/I2Cc_SDA
5 S5/I2Cc_SCL

(middle row) 1-5 [Vs1/Vin]B

(bottom row) 1-5 GND
(Signal Header B is similar, with S6 - S10 in top row,

and restricted to Vs1 in the middle row)

SPI Header (SPIa) 1,2,3 5V, 3.3V, GND
4,5,6 MOSI/SD/G0, MISO/G1
4,5,6 SCK/G2, SSa/WS/G3
7,8,9 SSb/G4, SSa/IR_OUT/G5

I2C Header (I2Ca) 1-5 Vcoin, Vs2, Vs1, 3.3V, GND
6,7 SDA/G0, SCL/BOOT0/G1
8,9 G2, G3

Analog HeaderA,I 1,2 DAC1buf, DAC2buf
3,4,5 V+, V-, Vo
6,7,8 Vref, ADC1, ADC2
9 ADC2filt

Table 5.2: Pinouts (primary role: output, input, i/o, power/ground) of the connectors on all six Berets, with some
of the connectors in italics dropped on the 12 HB and 0 HB Berets (for details, see Table 5.1).

USAGE NOTES

A. Connector pins, except on the MB Header, are numbered W (left) to E (right), or N (top) to S (bottom) [see
Figs 5.1-5.6]. All digital signals on the encoder and USART JSTs, and on the Signal, SPI, and I2C Headers, may be
configured as GPIOs in software. All connectors follow the Recon and Yukon standards of §??. Digital outputs
all operate 0 to 3.3V TTL. Digital inputs are all 5V tolerant, however: warning: all pins on the Analog Header
are limited to 0 to 3.3V operation.

B. Warning: the power supplied to this pin (default is bold) may be changed changed by the user, using a
multiplexer, a backside solder jumper, or a shunt connector (see §5.2.9).
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C. Warning: the differential CAN and RS485 transceivers operate 0 to 3.3V; RS485 may be changed to 0 to
5V via a backside solder jumper. Using a 4PDT switch, if the Beret GPIO RS485_SEL=1 (see §5.5), the RS485
connector functions as a full-duplex RS485-Y (host) connector on Raspberry , Black , and White Berets,
and as a RS485-A (client) connector on Green Berets; if RS485_SEL=0, it functions as a UART-T connector. On
the Blue Beret, the corresponding connector is UART-T only.

D. The wiring of the Beret’s SPI3 channel, its user-defined {MB_G0,MB_G1, MB_G2} GPIOs, and (optionally)
its three sensor interrupt channels to the motherboard (MB) header varies somewhat amongst the different
Beret versions, as described in §5.9. All JSTs and single-row pin headers on the Berets are connected to the
STM and its associated ICs on the Beret, not to the attached MB. Compact breakout-boards (aka SHIMs) are
available separately to conveniently break out the functionality on the corresponding MB Headers.

E. The Balance connector is JST-XH, and all other JSTs on the Beret are JST-ZH. As opposed to, e.g., the fragile
SMD JST-SHs on the Beaglebone Blue, all JSTs and headers on the Beret are PTH, for durability (still, be gentle!).

F. The custom JST-XH connector on the Beret is modified in such a way as to connect securely to the (3-pin to
7-pin) JST-XH balance connectors on 2S-6S batteries. Included with this custom connector is a set of small/snug
“dummy plugs” that may be used to cover the 1 to 4 unused pins on this connector when using 5S to 2S batteries,
which helps to provide a more secure fit, and also prevents the balance connector from being plugged into the
wrong pins when swapping such batteries to recharge; always make sure that one end of the JST-XH balance
connector lines up with white triangle printed on the PCB. Warning: these dummy plugs can be pried out
with a small screwdriver when necessary, but do so only when the board is not connected to a power source.

G. As specifically permitted in the flexibility of the Recon Basic standard in §4.5.2.1, note that the order of the
{E1a, E1b, E2a, E2b} signals on the E1-2 connector are permuted in such a way that, if used for I2Cd, this
connector is in standard Recon I2C pin order using the hardware I2C4 channel on the STM.

H. The signal headers, designed to drive up to5 10 servos (motors packaged with simple control logic designed
to turn a shaft to a desired position and hold it there) or ESCs (motors packaged with control logic designed to
accelerate/decelerate a shaft to a desired angular velocity and keep it there), accept all modern 0.1” pitch 3x1
servo connectors6,7, including both Fubata J and JR/Universal/Hitec S/Airtronic Z. Low-power servos and ESCs
typically power both their control logic and their motor using the GND and Vs1 pins on the signal header. High-
power servos and ESCs, on the other hand, typically power their control logic using the GND and Vs1 pins on the
signal header, but power their motor directly from the power supply (i.e., not via the Beret!). The Beret provides
Vs1 = 4.8V to 12V (adjustable in software), at up to 3A on each individual servo connector (6A total), to support
a broad range of small servos, ESCs, or other peripherals. Y Adapters (available separately) may be inserted
between high-capacity LiPos and the Beret to break out power separately for higher-current servos and ESCs.

I. The (buffered) DAC outputs operate between GND and 3.3V at up to 400mA. The ADC inputs may be con-
figured for software-tunable amplification (x1 to x4096) and 2nd-order low-pass filtering (with fc =34 to 3400
Hz) of unipolar or bipolar analog signals, or for differential comparison of two analog signals (see §5.7).

5The 12 HB Berets have one bank of 0.1” pitch 3x5 pin headers, for driving up to 5 servos or ESCs. The 24 HB Berets have two such
banks of 0.1” pitch 3x5 pin headers, for driving up to 10 servos or ESCs; the signal headers are broken out into separate 3x5 banks
like this because many servo connectors are, unfortunately, about 0.1mm wider than the standard 2.54mm pin spacing near their
tips, and 0.2mm wider away from their tips, which gradually adds up; putting more than N=5 such connectors next to each other on
standard 0.1” 3xN pin headers ultimately puts undue stress on the header pins.

6Note: modern servo connectors, all of which have power (the red wire) attached to the central pin, may easily be accidentally
plugged into the 3x5 pin headers backwards. This is completely safe; it will result in the corresponding servo not functioning correctly
until the plug is reversed, but it will not damage either the Beret or the servo.

7Warning: do not use old servos with Airtronic T connectors with the Beret; damage to the Beret and/or servo will result. This
obsolete configuration can be recognized easily by the fact that, on it, power is connected to pin 1 or 3, not to the central pin.
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Figure 5.1: (top) Layout of the (left) front and (right) back sides, and (bottom) a functional cartoon, of the
Raspberry Beret ( RPi Header, full size , 5V MB , 24 HB , CAN/RS485 busses). In the cartoon: blue
denotes JST-ZH connectors of various sizes; gray is used for the MB Header, the 3x5 Signal Headers, and the
USB Micro-B port; green is used for the JST-XH Balance connector. Beret Shields (§5.8) may be placed atop the
Analog Header, the SPI Header, the I2C Header, and (optionally) the first row of the 3x5 Signal Header A (SigA),
with the Beret’s main logic ICs lying on the PCB beneath. The XT30 main power input and all solder jumpers
are situated on the back side of the board; the user may (optionally, also on the back side) install a 6mmx 8mm
Flash IC, a rechargeable VL-1220/FCN coin cell, and/or passives for RS485 or CAN termination.
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Figure 5.2: (top) Layout of the (left) front and (right) back sides, and (bottom) a functional cartoon, of the Red
Beret ( RPi Header, full size , 5V MB , 12 HB ); for legend, see Fig. 5.1. Note that the entry-level Red
Beret is simply a partially-populated Raspberry Beret, with the lower-cost STM32G4VB implemented (with
128KB flash instead of 512KB).
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Figure 5.3: Layout of the (top) front and (bottom) back sides, and (center) a functional cartoon, of the
Black Beret ( 96B Header, full size , 12V MB , 24 HB , CAN/RS485 busses); for legend, see Fig. 5.1.
NOTE: this board is still under development.
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Figure 5.4: Layout of the (top) front and (bottom) back sides, and (center) a functional cartoon, of the
White Beret ( BB Header, full size , 5V MB , 24 HB , CAN/RS485 busses); for legend, see Fig. 5.1.
NOTE: this board is still under development.
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Figure 5.5: Layout of the (a) front and (b) back sides, (c) a functional cartoon, and (d) an oblique view, of the
Green Beret (standalone, half size , 0 HB , CAN/RS485 busses); for legend, see Fig. 5.1.
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Figure 5.6: Layout of the (a) front and (b) back sides, (c) a functional cartoon, and (d) an oblique view, of the
Blue Beret (standalone, half size , 12 HB ); for legend, see Fig. 5.1.
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5.2 Power subsystem

5.2.1 Main power source (Vin)
As outlined in §5.1, the power input (Vin = 6.2V – 28V on the 5V MB Berets, and Vin = 12V– 28V on the
12V MB Beret, at up to 15A continuous / 20A peak) is brought onto the Berets via a backside XT30 connector.
The XT30 jack provides the sole source of power for the motor drivers and servo headers on the Berets; power
provided over the XT30 jack also drives all other circuits on the Beret and the attached MB, via the voltage
regulators discussed in the sections that follow. Adapters are available separately to convert the connector on
the main power source, if necessary, from XT60, Traxxas, EC3, and Deans (aka “T”) connectors, 5.5mm x 2.1mm
barrel jacks8, and 4.75mm x 1.65mm barrel jacks9 to the XT30 standard10.

WARNINGS: when using high-power batteries like LiPos, it is essential that the user be aware of several
delicate issues regarding their selection, care, use, charging, storage, and disposal. One of the more thorough
online guides available on this important subject is available here; key takeaways include:
i. invest in a high-quality charger appropriate to the batteries you will be using,
ii. though LiPo cells can operate from 3.0 V to 4.2 V, a range of 3.1 V to 4.1 V extends battery life significantly,
iii. always balance while charging, as some cells will discharge faster than others (especially in older batteries),
iv. never use parallel charging boards,
v. store batteries at about half charge (∼3.8V per cell for LiPos),
vi. don’t tug on bare wires (AB Clips can help),
vii. watch for swelling (dispose of swollen battery immediately), and
viii. always dispose of batteries properly.
Keeping an inexpensive tester handy for checking the charges of all cells of a given battery is often useful.

DC motors and steppers connected to a Beret operate directly at Vin, after the TVS and reverse-voltage
protections (see §5.2.3); this power ismodulated by theH-bridges (§5.3) to control themotor speed and direction.
Y adapters may be inserted between the power source and the Beret to drive high-current servos, ESCs, and
BLDC motors directly off the power source, at Vin. The choice of the voltage Vin of the power source (e.g., a
2S to 6S LiPo) should thus be made according to the voltage required the motors and steppers (and, the high-
current servos, ESCs, and BLDCmotors) to be used. Note that the voltage of a LiPo battery reduces significantly
as the battery is discharged; tuned feedback gains used to drive the motors (see §5.3) may be scaled inversely
with the battery voltage to offset this effect over time. In contrast, the behavior of most servos and ESCs,
which incorporate their own feedback, is relatively insensitive to the voltage supplied, as long as it remains
within the recommended operating range; selecting Vs1 (for low-current servos/ESCs) or Vin (for high-current
servos/ESCs) near the upper end of this operating range generally provides increased maximum torque.

5.2.2 Supplemental power sources
As discussed in §5.2.1, if main power is provided to the Beret over the XT30 connector (which is, in fact, the
only way that the Beret will actually power the motor drivers and signal headers), then this power also drives
the STM and all other circuits on the Beret, as well as the attached MB, as detailed in the sections that follow.
There are a few other places that supplemental powermight be brought onto a Beret (or, to a Beret+MB system),
however, that the user also needs to be well familiar with.

8Wall adapters with 5.5mm barrel jacks, with positive 2.1mm pins and negative sleeves, is an emerging standard in robotics
applications that the user should stick with. Warning: this standard for 5.5mm barrel jacks is not universal; some 5.5mm barrel
jacks have either negative pins with postive sleeves, and/or 2.5mm pins. If you are using a wall adapter with such a barrel jack, which
is not recommended, a custom adapter to the XT30 standard will be required; make absolutely certain you get the polarity right!

9Wall adapters with 4.75mm barrel jacks, with positive 1.65mm pins operating at 12V, is the power supply standard for 96Boards.
10A substantial power source, capable of delivering 4A or more, is recommended for driving motors, servos, etc. with a Beret.
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In normal operation, power is provided to a Beret via ONE of the following three sources:

1. the main XT30 power input on the Beret (connected to a high-power battery or a wall wart), OR
2. via the MB Header, up from a MB that is powered directly, OR
3. via the USB Micro-B connector on the Beret itself (connected, e.g., to a laptop or desktop computer).

Modes 2 and 3, which are discussed further in the following few paragraphs, may be useful at times for pro-
gramming the STM on the Beret, for reading the Beret’s onboard sensors, and for testing various other devices
connected to the Beret’s JSTs. WARNING: Mode 1 and mode 2 must NOT be used at the same time, to elimi-
nate the possibility of these two power sources interfering with each other. Note that mode 3 is protected with
a diode, and may thus be wired in conjuction with mode 1 or mode 2 (or, used stand alone) without concern.

Power from the MB, up through the MB Header, to the Beret
As mentioned above, RPi, 96B, and BB (and compatible) motherboards can all be powered by a Beret over the
corresponding MB Header. Power may INSTEAD be provided to such motherboards directly, e.g.:
- via USB C on an RPi-4B or BeagleBone AI,
- via a USB Micro B input attached to a substantial (2A to 3A) 5V wall wart on RPi-2 and RPi-3 models,
- via the DC input jack on the BeagleBone Black and 96B CE boards,
etc. If power is provided to such motherboards directly, in most cases this power is transmitted back up to the
Beret via the same MB Header pins that are otherwise used to transmit power down to the MB from the Beret.
When this happens, the Vmb circuit on the Beret is energized with sufficient power (again, in most cases) to
drive the Vmb->3.3V switching regulator (see §5.2.7), thus booting the STM on the Beret, and powering up the
Beret’s onboard sensors (see §5.4) as well as any small devices connected to the Beret’s JSTs.

WARNING: As mentioned above, one should NOT provide power directly to both the Beret (via the XT30)
and an attached MB11. Doing this can fry the Beret, the MB, and/or one or both of the power sources used.

5V power from the USB Micro-B port on the Beret
An unpowered, isolated (not connected to any MB) Beret may also, conveniently, be powered via the 5V line
on the USB Micro B connector on the Beret, which may also be used for programming the (3.3V) STM on the
Beret, for reading the Beret’s onboard sensors, and for testing various other small devices connected to the
Beret’s JSTs. This programming mode is quite convenient, as it only requires a single standard USB cable (Type
A Male to Micro B Male), in addition to the Beret and your laptop/desktop computer.

Unfortunately, the current capability of USB ports on most laptop/desktop computers is not sufficient to
drive both the Beret and a connected MB, and attempting to do so is thus not advised.

Note that the USB specification prohibits a USB client from back-driving a USB host with 5V power on the
USB voltage bus. Doing such can, in fact, cause major damage to a (potentially, expensive) USB host (i.e., your
laptop/desktop computer). To protect against this possibility, a schottky diode (rated to 10V/3A on the 5V MB
Berets, and rated to 40V/3A on the Black , Green , and Blue Berets), with a 0.35 to 0.55V voltage drop, is
implemented between the 5V power bus of the USB Micro B connector on the Beret and the Vmb line on the
Beret (or, the Vin line on the Green and Blue Berets). Thus, when powered by the USB Micro-B port alone,
the Vmb (or, Vin) line will be held to about 4.5V, which is sufficient to generate 3.3V and fire up the STM.

When the Beret is otherwise powered (either via the XT30, or by the MB via the MB Header), the diode
mentioned above will be under reverse bias, and no current will flow (either in to, or out of) the 5V power bus
on the USB Micro B connector on the Beret; this configuration is thus considered to be safe.

11In certain special cases, this situation is known to be ok. Specifically, on the 5V MB Berets, the Vin->Vmb switching regulator
(see §5.2.5) is operated in a mode that can handle ∼5V being driven at its output, whether or not power is provided (from the XT30)
at its input [thus, no protection diode (aka ZPD) is required to isolate the Vin->Vmb regulator on the Beret]; note also that the last
few paragraphs of the RPi HAT design guide specifically state conditions in which ∼5V may safely be provided over the MB Header
to an already-powered RPi. Regardless, there truly appears to be no practical reason to push your luck by trying this. So, don’t.
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RTC backup battery (VL-1220/FCN rechargeable 3V coin cell)
All Berets come configured with backside solder pads for a VL-1220/FCN (only!) rechargeable 3V coin cell.
Warning: special care is required careful when soldering the VL-1220/FCN battery bracket onto the Beret.
Panasonic’s Lithium Handbook, which describes the VL-1220/FCN on pages 56-59, gives the following advice
(on page 80): Do not allow the soldering iron to make direct contact with the body of the battery. Proceed with the
soldering quickly (within 5 seconds) while maintaining the iron tip temperature at about 350◦C, and do not allow
the temperature of the battery body to exceed 85◦C.

The VL-1220 keeps the real-time clock (RTC) of the STM powered up during replacements of the main
battery (for recharging), and facilitates the scheduled wake-up of the Beret and the arrached MB from a low-
power sleep (aka VBATmode), during which main power is turned off to both the Beret and the MB (see §5.5.1).
The VL-1220 battery is automatically recharged, when necessary, by the 3.3V line on the Beret when the STM
is in run mode.

5.2.3 Reverse-voltage, over-current/short-circuit, and ESD protections
All Berets implement a TVS diode across the XT30 input, and TI TPD6E004 TVS diode arrays on USB and S1-
S10, for protection from Electrostatic Static Discharge (ESD, i.e.. voltage spikes). On the 5V MB Berets, the
{Vs1, 5V, 3.3V} lines are protected from voltage spikes by {13V, 5.6V, 3.6V} 1.5W zener diodes; on the 12V MB
Beret, the {Vs1, 12V, 5V, 3.3V} lines are protected using {13V, 13V, 5.6V, 3.6V} 1.5W zener diodes. 100 Ω resistor
arrays are used on S1 - S10 for over-current (short-circuit) protection. The modern voltage regulators (§5.2.4-
5.2.7), motor drivers (§5.3), and CAN & RS485 transceivers (§5.6.4) on the Beret provide further over-current
and ESD protections. A TI CSD18510Q5B MOSFET [with RDS(on) = 0.96mΩ and td(off) = 44 ns] is implemented at
the XT30 to provide reverse voltage protection, and to turn off the board when necessary; the gate voltage of
this MOSFET is optimally adjusted by a TI LM74700-Q1 ideal diode controller, wired as suggested in figure 21
of its datasheet. The battery gauge LEDs (see §5.6.8) are illuminated whenever this main MOSFET is enabled
[and, thus, the Vmb (5V or 12V) and 3.3V switching regulators (see §5.2.5-5.2.7) are powered up].

WARNINGS: Notwithstanding the modern power protections implemented, as outlined above, it is still
quite possible to “release the magic smoke” 12 from a Beret; the user is thus strongly urged to carefully:
• ensure proper polarity at the XT30 (red/positive wire to the right when viewed from above; see Figures 5.1-5.6),
• keep the power input at the XT30 at or below 28V, preventing any voltage spikes beyond this value, and
• avoid any short circuits between any two pins (see Table 5.2), or draw current on any subsystem beyond the
maximum current values highlighted in §5.2.4 - §5.2.8, and §5.3, of this datasheet.

In §5.2.4 through §5.2.8, the voltage regulation circuits on the Berets are described in detail.

5.2.4 Vin->Vs1 switching regulator
The Vin->Vs1 switching regulator implemented on all five of the Berets, for generating a software-adjustable
Vs1 = 4.8V to min(12V, 0.8*Vin) at up to 6A (for SigA, SigB), is the TI TPS56637, coupled with a 5.6µH inductor
and three 22 µF output capacitors. The TPS56637 converter is wired as suggested in figure 17 its datasheet,
with EN and PG wired to Vs1_EN and Vreg_FAULT on the GPIO expander (see Table 5.6), taking13 R7=6.49 kΩ
and replacing R6 by a 28.7 kΩ resistor in series with half of POT3, a TI TPL0102-100 dual digital pot, in Rheostat

12It is sometimes said that “magic smoke” makes an IC work, as whenever this smoke escapes, the IC ceases to function; some
vendors even sell replacement magic smoke. Warning: more seriously, the Beret can deliver very high currents indeed; severe injury
or death may result from its misuse, so extreme caution and adherance to the warnings in this datasheet is absolutely required.

13These resistor values were selected by noting eq. 5 in the TPS56637 datasheet, applying a 3% margin to the desired limits, solving
the following simultaneous systems of equations in Matlab, and rounding to the nearest common resistor values:

syms x y; S=solve( 3.3/1.03==0.6*(1+y/x), 12*1.03==0.6*(1+(y+100)/x) ); x=eval(S.x), y=eval(S.y)
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mode, that is adjustable electronically14 from 0 to 100 kΩ in 256 increments, providing amaximum peak-to-peak
ripple current accoring to eq. 7 of the datasheet of up to 2.4mA (at Vs1=12V). A blue status LED in this quadrant
illuminates whenever the Vs1 voltage regulator is enabled, and an amber status LED illuminates whenever any
of the voltage regulators signal a fault condition (see §5.6.8).

5.2.5 Vin->Vmb switching regulator
The Vin->Vmb switching regulator implemented, for generating both Vmb= 5.1V at up to 6A on the 5V MB
Berets and Vmb=min(12V, 0.8*Vin) at up to 6A on the 12V MB Berets, is another TI TPS56637 again coupled
with a 5.6µH inductor, and a 68 µF output capacitor on the 5V MB Berets, or a 47 µF output capacitor on the
12VMB Berets. In both cases, the TPS56637 converter is again wired as suggested in figure 17 of its datasheet,
with EN tied to Vin and PG to Vreg_FAULT, using values from its table 4 for 5V or 12V output as appropriate.

The Vin->Vs1 and Vin->Vmb switching regulators, as well as the motor drivers (see §5.3), are placed close
to each other, allowing them to share the same 100 µF bulk capacitor near their respective inputs.

As mentioned previously, on the 12V MB Beret, the 96B motherboard, if one is attached, down-regulates
from the Vmb=12V line (and, passes back via the low-speed header) 5V at up to 1A; the 12V MB Beret makes
use of this 5V line directly, and thus does not itself have a 5V regulator.

5.2.6 Vin->3.3V switching regulator
The Vin->3.3V switching regulator implemented on the Green and Blue Berets, for generating 3.3V at up
to 3A, is another TI TPS56637 with a 2.2µH inductor, and a 33 µF output capacitor. The TPS56637 converter is
again wired as suggested in figure 17 of its datasheet, with EN tied to Vin and PG to Vreg_FAULT. The Vin->Vs1
and Vin->3.3V switching regulators are placed close to each other, allowing them to share the same 18 µF bulk
capacitor near their respective inputs.

5.2.7 Vmb->3.3V switching regulator
The Vmb->3.3V switching regulator implemented on the 5V MB Berets, for reducing Vmb= 5.1V to 3.3V at
up to 3A, is the fixed voltage TI TPS6208833, coupled with a 220 nH inductor and a 22 µF output capacitor.
This converter is wired as suggested in figure 6 of its datasheet, with EN tied to Vmb and PG to Vreg_FAULT.

On the other hand, the Vmb->3.3V switching regulator implemented on the 12VMB Beret, for reducing
Vmb= 12V to 3.3V at up to 3A, is the TI TPS62913, coupled with a 4.7µH inductor and a 47 µF output capacitor.
This converter is wired as suggested in figure 8.1 of its datasheet (with Rfbt=15.4 kΩ, Rfb=4.87 kΩ, Cff open,
and Lf removed), with EN tied to 5V and PG to Vreg_fault.

The Vin->Vmb and Vmb->3.3V switching regulators are placed close to each other (on both the 5V MB and
12V MB Berets), allowing the output capacitor of the former to serve as the input capacitor of the latter.

14Specific care is taken in the software driving this digital potentiometer in order to cycle the power to the switching regulator off
completely before adjusting the value of the resistance of the digital potentiometer (leveraging a look-up table, which is calibrated
on the fly, and a false-position search based on this look-up table) in order to, whenever the value of the digital potentiometer is
changed, both (a) reset the (internal) compensation coefficient of the switching regulator IC, and (b) prevent Over Voltage Protection
(OVP) from kicking in and triggering a soft restart of the switching regulator IC.
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5.2.8 Vs2 power opamp
The Vs2 power opamp implemented, for generating a second adjustable voltage Vs2 = 1.2V to 2.1V at up to
± 400mA, is provided by a TI ALM2402-Q1 high-power opamp, wired as described in Figure 5.10a-b (and sur-
rounding discussion). As opposed to the other regulated voltages mentioned in the above four subsections, Vs2
can source or sink up to 400mA.

Note that, in addition to the Vs1, 12V, 5V, 3.3V, and Vs2 lines discussed above, DAC1 and DAC2 (see §5.7.1)
can also each source (or, sink) 400mA, and can be set as constant (or, time varying) voltage sources, if needed,
in the 0V to 3.3V range.

Note that Vs2, DAC1, and DAC2 are not available on the Red Beret and, again, that Vmb and 5V are not
available on the Green and Blue Berets.

5.2.9 Switching default power on various connectors and sensors
The power provided to {E1-2, E6-7} may be switched between {3.3V, 5V, Vs1, off} by a TI TS5A3359 multiplexer,
via the Venc_3.3V and Venc_5V Beret GPIOs (see §5.5).

The nominal 3.3V power provided to {E3-4, E5, USART, USART} may be switched to 5V via backside solder
jumpers, as illustrated in Figures 5.1-5.6.

The nominal 3.3V power supplied to the IMU, magnetometer, and barometer may be switched to the coin
cell (i.e., Vcoin) via a backside solder jumper, as discussed further in §5.4.1.

The nominal Vs1 power supplied to Signal Header A may be changed to Vin by reorienting the 12A shunt
connector. TODO: provide some photos of how to make these changes.

5.2.10 Charging and voltage monitoring of Vcoin
When in run mode, the STM monitors the voltage, Vcoin, of the VL-1220/FCN coin cell (if installed) using the
STM’s internal ADC1_IN17 channel, and (if necessary) recharges this cell, which generally operates in the 2.6V
to 3.05V range, using the 3.3V power bus. If it is ever found that 2.6V <Vcoin < 2.8V, software on the STM selects
VBRS=1 in the PWR_CR4 register on the STM (see the STM datasheet), thereby charging the coin cell (until
Vcoin = 3.0V, after which charging is turned off) through a 1.5 kΩ resistor internal to the STM, while limiting
the charging current applied to

(3.3V− 2.6V)/1.5 kΩ ≈ 0.47mA

or less, as per the VL-1220 specification on page 57 of Panasonic’s LithiumHandbook, which requires this charge
current to be 0.5mA or less. If it is ever found that 2.0V <Vcoin < 2.6V, software on the STM selects VBRS=0 in
the PWR_CR4 register on the STM, thereby charging the coin cell (until Vcoin = 2.6V, after which VBRS is set
to 1) through a 5 kΩ resistor internal to the STM, while limiting the charging current applied to

(3.3V− 2.0V)/5 kΩ ≈ 0.26mA.

or less. If ever the charge of the VL-1220 coin cell is found to be less than 2.0V, the battery is flagged as either
dead or not installed, and no charging is attempted.
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DRVa DRVb (24 HB Berets only)
Outputs on DRVs 6,4 9,11 3,10 5,1 7,12 8,2 3,10 11,9 4,6 8,2 12,7 1,5

JST connector on Beret M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

Table 5.3: Connections between DRVs and the motor JSTs M1 through M12.

DRVa

M

M

M

M

M

M
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Motor Connections

Parallel BDC

Motor Connections

Sequential BDC
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M
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M
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M1b
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Figure 5.7: Illustration of the independent, parallel, and sequential modes of operation of the 12 outputs of
DRVa. For convenience when operating in independent mode, these outputs (reordered and renamed as de-
scribed in Table 5.3) are arranged on the Beret as six pairs of outputs on each DRV8912-Q1 (M1-M6 on DRVa
and, if present, M7-M12 on DRVb).
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Figure 5.8: Closeup of the connections to the two DRV8912-Q1 motor drivers on a Raspberry Beret.

5.3 Control of brushed DC motors & steppers with the DRV8912-Q1
A central feature of the Berets is the TI DRV8912-Q1 brushed motor driver(s) (hereafter, DRVa and/or DRVb)
about which they are built15 (see Figure 5.8). This powerful subsystem draws a maximum of 6A per DRV, or
1A max per channel. Each of these remarkably versatile motor drivers incorporates 12 half bridges, which
may be configured in any of a myriad of ways, and 4 synchronized internal PWM generators (operating
at about 80Hz, 100Hz, 200 Hz, or 2000Hz, selectable in software) to drive them. The outputs of the DRVs
are broken out on the Beret one pair at a time, labelled M1 through M6 on DRVa (and, if present, M7 through
M12 on DRVb). To simplify layout, the Beret reorders the outputs of the DRVs, as shown in Table 5.3, with a
single combined drv_SLEEP channel and a single combined drv_FAULT channel tied to the GPIO expander (see
Table 5.6). A blue status LED near the DRVs illuminate whenever they are enabled, and an amber status LED
illuminates when the DRV signals a fault (see §5.6.8). Note that the outputs of the DRVs may also be used to
drive high-power PWM-driven circuits like LEDs (again, max 6A total per DRV, or max 1A per output).

Note that the Beret’s SPIdrv channel (that is, the STM’s SPI4 channel), operating with a single SS line in
daisy-chain mode, gives the STM a dedicated high-speed connection to DRVa and DRVb.

The user might at first just plug into theM1 –M12 discrete JSTs directly, and use the half-bridge outputs one
pair at a time, in independent mode, for bidirectional control on each DRV of up to 4 “independent” motors
running at up to 1 A each, and up to 2 “slave” motors operating in brake, coast, full forward, or full reverse,
or duplicating the PWM frequency and duty cycle of one of the “independent” motors. If 6 motors are wired
to one DRV at the same time, which 4 are chosen to be the “independent” motors, and which 2 as the “slave”
motors, may be redefined on the DRV whenever necessary.

Notably, by ganging the DRV outputs together in parallel mode, and/or stringing the DRV outputs along
in sequential mode (see Figure 5.7), a wide array of different motor configurations also becomes possible, as
discussed further in the following two subsections. Note, of course, that the independent, parallel, and/or
sequential modes can actually be combined on each of the DRV(s), for a wide variety of possible configurations
for developing complex yet practical systems.

15The DRV8912-Q1 drivers described here provide a compact general-purpose solution for the control of a wide range of small (up
to 28V and 6A) brushed-DC (BDC) motors (in forward, reverse, coasting, and braking operational modes, and alternating between
two such modes with PWM) and stepper motors. The other main type of motors used in mechatronic systems, brushless-DC (BLDC)
motors, require more carefully tuned electronic coordination, with BLDC motor drivers fairly closely matched to the BLDC motors
to be used. BLDC motor drivers are therefore located on Beret Shields (see §5.8) when using the Beret ecosystem.
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5.3.1 Parallel mode
Parallel mode gangs the outputs of 2 to 6 pairs of half bridges on each DRV together, using external wire
harnesses, to create full H-bridges for powering higher-current motors, thus driving (on each DRV):
- 1 motor at 1A, 1 motor at 2A, and 1 motor at 3A (as shown in Figure 5.7),
- 1 motor at 6A,
- 2 motors at 3A, etc.
Warnings: on the 24 HB Berets, DRVa & DRVb operate independently, and thus asynchronously. Thus:
a. any individual motor may be wired to DRVa or DRVb, but never to both;
b. parallel connections must join together the same number of DRV outputs on the left and right sides of any
motor using a custom wire harness, using a sufficient wire gauge to handle the resulting current; and
c. parallel connections must synchronize, via appropriate programming, the wires that are ganged together
(e.g., in the configuration shown in Figure 5.7, {M2a, M2b} and {M3a, M3b} must be synchronized to form the
left and right sides of the 2A motor, and {M4a, M4b, M5a} and {M5b, M6a, M6b} must be synchronized to form
the left and right sides of the 3A motor, see, e.g., §8.3.1.1.3 and §8.3.1.1.4 of the DRV8912-Q1 datasheet).

5.3.2 Sequential mode
Sequential mode, on the other hand, strings the output of one motor together with the input of the next, in
a serial fashion, for bidirection control of a remarkable total of up to 12 motors at up to 1A on each DRV,
albeit at reduced duty cycles (i.e., not all at once). Note that interleaving half-bridges must to be turned off at
any instant for sequential mode to work correctly, and the voltage used must be slightly above the stall torque
of a single motor, so that two motors can not be driven by the supply voltage when applied in series. Thus, for
example, if 12 motors are hooked up to a single DRV as shown in Figure 5.7, then:

A. the 1st, 4th, 7th, & 10th motors are driven for a while (with M2a, M3b, M5a, & M6b off), then
B. the 2nd, 5th, 8th, & 11th motors are driven for a while (with M1a, M2b, M4a, & M5b off), then
C. the 3nd, 6th, 9th, & 12th motors are driven for a while (with M1b, M3a, M4b, & M6a off);

these three steps then repeat from the beginning. PWM with independently controllable duty cycles may be
used on each channel (e.g., at 2000 Hz) to run these motors (4 at a time on each DRV) at partial power and
in either direction, while the cycling between these three steps happens much more slowly (e.g., at 10 to 100
Hz). If, periodically, 4 to 8 of the motors hooked to each DRV are not used (e.g., in sequential assembly-line
operations), then these motors may be grouped together as appropriate, and the corresponding step(s) in the
above-described cycle can be skipped, improving the smoothness in the driving of the remaining motors (by
reducing the time that they spend in a step that turns them off).
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5.4 IMU, magnetometer, and barometer
All six Berets includes three built-in environmental sensors:
• a TDK ICM-42688-P 6-axis IMU (3-axis accel + 3-axis gyro + thermometer), connected via SPI,
• an ST LIS3MDLTR 3-axis magnetometer, connected via I2C, and
• an ST LPS22HB barometer + thermometer, connected via I2C.

The dedicated SPIimu connection between the STM and the IMU facilitates, if needed, remarkably fast update
rates (up to 32 kHz) for IMU data, suitable for problems in which high-frequency mechanical vibrations need
to be characterized. Data from the magnetometer and barometer is usually low-pass filtered (on the sensors
themselves) to reduce noise. The magnetometer is generally operated at 80Hz or less, and the barometer at
75Hz or less; for such signals, communication over the shared I2Ca bus is thus sufficient.

Note that the extensive bus connectivity (UART, I2C, SPI, USB, CAN) provided by the Beret allows, of course,
many additional sensors to be attached easily, as necessary for the user’s particular application.

If the center of the top surface of each Beret is taken as the origin, then the centers of themounting holes and
the IMU coordinate system are situated as defined in Table 5.1. Note also that, on each Beret, themagnetometer
is located in a corner of the logic quadrant that is as distant as possible from the board’s power electronics,
thus minimizing the contamination of its readings by stray EM fields.

As depicted by the axes printed next to the STM, the native (x, y, z) coordinates of both the IMU and the
magnetometer on the Beret are (in the reference orientation depicted in Figs 5.1-5.6, where “up” is towards the
viewer when looking at the top side of the board) aligned with the (East, North, Up) [a.k.a. ENU] directions,
respectively. Positive rotations are given by right-hand rotations about each of these axes. For example, as in
the ISO 8855 automotive standard, if the body-fixed (x, y, z) axes are taken as vectors out the (front, left, top)
of a vehicle, respectively, then positive [a.k.a. 3-2-1 Tait-Bryan] rotations about the (z, y, x) coordinates may be
referred to as (yaw, pitch, roll), and denoted (α, β, γ), respectively, where each of these rotations being positive
is given by, respectively, (nose to the left, nose down, right side down).

Other coordinate conventions are easily derived from the native (x, y, z) coordinates used by the Beret.
For example, taking (x̂, ŷ, ẑ) as (North, East, Down) [a.k.a. NED] on the board (again, in the reference orienta-
tion depicterd in Figs 5.1-5.6), with positive (right-hand) rotations about each denoted (α̂, β̂, γ̂), it follows that
(x̂, ŷ, ẑ) = (y, x,−z) and (α̂, β̂, γ̂) = (β, α,−γ); linear and angular velocities and accelerations in these two
different coordinate conventions are related similarly. For example, as implemented broadly in the aerospace
industry, as well as by the SAE J670 and J1594 automotive standards, if the body-fixed (x̂, ŷ, ẑ) axes are taken
as vectors out the (front, right, bottom) of a vehicle, respectively, then positive rotations (α̂, β̂, γ̂) about the
(ẑ, ŷ, x̂) coordinates may again be referred to as (yaw, pitch, roll), where each of these rotations being positive
is now given by, respectively, (nose to the right, nose up, right side down).

To estimate the time evolution the 6DOF configuration [position plus orientation] of the system to which
the Beret is attached, in addition to the 6DOF rate of change of this configuration [together referred to as the
12DOF state of the system], one must integrate the raw linear acceleration and angular velocity data from the
IMU, and (optionally, on a slower time scale) fuse this information with the absolute position and orientation
measurements that may be obtained from the magnetometer, barometer, and/or attached GPS/GNSS unit, as
well as the linear and angular velocity measurements that may be obtained from laser rangefinders, optical
flow processing, etc. This complex task, discussion of which is beyond the scope of the present document, must
be solved on the STM (not on the IMU itself).

However, the IMU does features a flexible set of built-in programmable digital filters, and includes a pro-
prietary on-chip motion processing engine designed for gesture recognition and activity classification, and can
also function effectively as a pedometer (see also §5.4.1).
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Note that not all IMUs, magnetometers, and barometers are created equal. Far from it, in fact (buyer
beware!). The specs on the sensors selected for the Beret are, as of 2021, best in class:

- the accelerometer noise is about 70 µg/
√
Hz, and the gyro noise about 2.8 mdps/

√
Hz,

- the sensitivity of the magnetometer is about ±0.4mT, and
- the relative accuracy of the barometer is about ±1 Pa (i.e., ±8.8 cm change in altitude at sea level16).

See the corresponding datasheets for further such characterizations, and compare such specs carefully when
selecting IMUs, magnetometers, and barometers for your own board designs. Note in particular that many
popular “9-axis” IMUs, which (conveniently) incorporate a 3-axis magnetometer as well as a motion processing
engine to automatically estimate the system state (albeit, without incorporating inputs from auxiliary sensors
such as barometers, GPS/GNSS units, laser rangefinders, etc), compromise on sensor sensitivity in order to fit
more functionality onto a single IC; we have thus avoided using such a 9-axis IMU in the Berets.

Note also that the STM and IMU are slaved to the same external 32.7680 kHz MEMS oscillator (see §5.5.1)
on the Berets, which keeps their clocks accurately in sync.

5.4.1 Data-ready and sensor-driven interrupts
The IMU, magnetometer, and barometer used on all six Berets are each capable of taking measurements at a
pre-specified rate17, and alerting the STM (via the imu_INT2_DRDY, mag_DRDY, and bar_INT_DRDY channels,
as shown in Tables 5.5-5.6) as soon as there is fresh data ready (DRDY) to be read from the corresponding sensor,
so that this sensed data may subsequently be used, with minimum latency, in feedback algorithms.

The IMU, magnetometer, and barometer are also capable of running in the background (without constant
monitoring by the STM), and issuing interrupts when a variety of environmental conditions are detected. The
IMU can be programmed to issue an interrupt to the STM, over the imu_INT1_DRDY and/or imu_INT2 chan-
nels, when any of the following events are detected:
• a step or tap,
• a tilt beyond 35◦ for more than a certain (programmable) period of time,
• a raise-to-wake or lower-to-sleep gesture, or
• when net accelerations exceed a certain (programmable) magnitude.

Similarly, the magnetometer can be programmed to issue an interrupt, over the mag_INT channel, when
• the magnetic field exceeds a (programmable) magnitude in the x, y, or z direction (selectable),

and the barometer can be programmed to issue an interrupt, over the bar_INT_DRDY channel, when
• the atmospheric pressure attains a (programmable) maximum or minimum threshold.

The {imu_INT1_DRDY,mag_INT, bar_INT_DRDY} channels may also be made connected (via backside solder
jumpers on the Beret that are initially open) to the MB (see §5.5 for details).

As also noted in §5.2.9, the nominal power supplied to the IMU, magnetometer, and barometer is 3.3V, but
this may be switched via a backside solder jumper to the coin cell (i.e., Vcoin). Combining this feature with
the programmable interrupts discussed above, any of the above noted events can programmed to generate an
interrupt that wakes both the Beret and the motherboard from a low power sleep mode, which operates solely
on the coin cell.

16Note that atmospheric pressure decreases at a rate of about 11.3 Pa per meter increase in altitude at sea level.
17The IMU operates at datarates of 12.5Hz to 32 kHz, the barometer operates at datarates of 1Hz to 75Hz, and the magnetometer

nominally operates at datarates from 0.625Hz to 80Hz, though in fast mode the magnetometer can be operated from 155Hz to 1 kHz.
The IMU and barometer both incorporate convenient digital low-pass filters that may be enabled.
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Figure 5.9: Connectivity of the primary STM busses on Berets, with rectangles denoting ICs, brown rectangles
denoting environmental sensors, octagons denoting connectors, capsules denoting channels, ellipses denoting
buttons & LEDs, and ()a denoting optional backside components. See Table 5.4 for the correspondence between
Beret channel names and the STM32 hardware channel names.

Beret location Beret channel names STM32 hardware channel names §
USART JST USARTb; UARTb; SPIb USART3 5.6.5
RS485 JST RS485; UARTa UART5 (+ RS485 transceiver) 5.6.4
CAN JST CAN FDCAN1 (+ CAN transceiver) 5.6.4
E1-2 JST E1-2; I2Cd TIM3_CH1/2, TIM8_CH1/2; I2C4 5.6.1
E3-4 JST E3-4; UARTt TIM4_CH1/2, TIM2_CH1/2; USART1_TX 5.6.1
E5 JST E5; UARTr TIM1_CH1/2; LPUART1_RX 5.6.1
E6-7 JST E6-7 TIM5_CH1/2, TIM20_CH1/2 5.6.1

Signal Header A S1-S5; I2Cb, I2Cc HRTIM_CHA1/A2/E2/E1, TIM16_CH1; I2C2, I2C3 5.6.2
Signal Header B S6-S10 TIM15_CH1/2, TIM17_CH1, HRTIMCHD1/C2 5.6.2

SPI Header SPIa; I2S, IR SPI2, I2S2, IR_OUT 5.6.7
I2C Header I2Ca I2C1 5.6.6

Analog Header DAC1, DAC2 DAC1_OUT1, DAC1_OUT2 5.7.3
MB Header SPImb SPI3 5.9

comm to DRVs SPIdrv SPI4 5.3
comm to IMU SPIimu USART2 5.4
comm to flash QSPIflash QSPI1_BK2 5.5.2

Table 5.4: High-level correspondence between various Beeret channel names and the corrgesponding STM32
hardware channel names. See Table 5.2 for the assignments to each individual pin on the Beret connectors, and
Table 5.5 for the assignments to each individual pin on the STM32. Note that, by default, UARTt is transmit-only
or half duplex, and UARTr is receive only. See also Figure 1.7.

5-25



Renaissance Robotics (v.2024-03-19) Chapter 5: Berets

pin STM name(s) Beret name(s)
B5 PB5 SPI3_MOSI (GPIO) SPImb_MOSI (I2C_G3)
C7 PC11 SPI3_MISO (GPIO) SPImb_MISO (Vs1_EN)
A5 PB3 SPI3_SCK (GPIO) SPImb_SCK (Vreg_FAULT)
H6 PE9 ADC3_IN2 Vmon1
K7 PE13 ADC3_IN3 Vmon2
C5 PB4 TIM3_CH1 E1a

F10 PC7
{TIM3_CH2
I2C4_SDA

{E1b
I2Cd_SDA

F9 PC6
{TIM8_CH1
I2C4_SCL

{E2a
I2Cd_SCL

B10 PA14
{TIM8_CH2
I2C4_SMBA

{E2b
I2Cd_SMBA

A4 PB6
{TIM4_CH1
USART1_TX

{E3a
UARTt_TX

G9 PD13 TIM4_CH2 E3b
B9 PA15 TIM2_CH1 E4a
A8 PD4 TIM2_CH2 E4b

F2 PC0
{TIM1_CH1
LPUART1_RX

{E5a
UARTr_RX

J6 PE11 TIM1_CH2 E5b
J4∗ PB2† TIM5_CH1 (GPIO) E6a_s (Vmon_A0)
G2∗ PA1† TIM5_CH2 (GPIO) E6b_s (Vmon_EN)
C3 PE2 TIM20_CH1 (GPIO) E7a (CAN_SHDN)
B2 PE3 TIM20_CH2 (GPIO) E7b (CAN_STB)
C9 PA12 USB_DP USB_DP
C10 PA11 USB_DM USB_DM
B8 PD0 FDCAN1_RX CAN_RX
A9 PD1 FDCAN1_TX CAN_TX
B7 PD2 UART5_RX UARTa_RX
A10 PC12 UART5_TX UARTa_TX
H7 PE15 USART3_RX USARTb_RX
C8 PC10 USART3_TX USARTb_TX
G7 PD10 USART3_CK USARTb_CK
D8 PA13 USART3_CTS USARTb_CTS
J10∗ PD12† USART3_RTS_DE USARTb_RTS_s

E10 PA8

{
HRTIM1_CHA1
I2C2_SDA
I2S2_MCK

{
S1
I2Cb_SDA
I2S_MCK

D10 PA9

{HRTIM1_CHA2
I2C2_SCL
I2C3_SMBA

{S2
I2Cb_SCL
I2Cc_SMBA

C4 PE0 TIM16_CH1 S3

E9 PC9
{HRTIM1_CHE2
I2C3_SDA

{S4
I2Cc_SDA

E8 PC8
{HRTIM1_CHE1
I2C3_SCL

{S5
I2Cc_SCL

E3 PF9 TIM15_CH1 S6
E4 PF10 TIM15_CH2 S7
B3 PE1 TIM17_CH1 S8
H9∗ PB14† HRTIM1_CHD1 S9_s
J9∗ PB13† HRTIM1_CHC2 S10_s

Table 5.5: Pinouts of the STM32G474 (VE or VB) on all six Berets. ()∗ denotes an STM pin that is not natively
tolerant to 5V inputs; those marked ()∗ are also available at a JST or header on the Beret. The 8 digital i/o
channels marked ()† are passed through an 8-channel TI TXB0108 level shifter to assure 5V tolerance. The 12
channels marked (GPIO) have different functions on the Green and Blue Berets, as indicated. (Note: table
continues on next page.)
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pin STM name(s) Beret name(s)
K1∗ PA7 OPAMP1_VINP ADC1
H3∗ PA3 OPAMP1_VINM Vref
H1 PA2 OPAMP1_VOUT lpf1a
F8∗ PD14 OPAMP2_VINP lpf1c
J3∗ PC5 OPAMP2_VINM Vref
H4∗ PB0 OPAMP3_VINP ADC2
J8∗ PB10 OPAMP3_VINM Vref
K3∗ PB1 OPAMP3_VOUT lpf2a
H10∗ PD11 OPAMP4_VINP lpf2c
K10∗ PD8 OPAMP4_VINM Vref
H2∗ PA4 DAC1_OUT1 DAC1
J1∗ PA5 DAC1_OUT2 DAC2
B4 PB7 I2C1_SDA I2Ca_SDA

A3 PB8
{
I2C1_SCL
BOOT0

{
I2Ca_SCL
BOOT0

A2 PB9 IR_OUT IR_OUT

K9∗ PB15†
{SPI2_MOSI
I2S2_SD

{
SPIa_MOSI_s
I2S_SD_s

D9 PA10 SPI2_MISO SPIa_MISO

E2 PF1
{SPI2_SCK
I2S2_CK

{
SPIa_SCK
I2S_SCK

E1 PF0
{SPI2_NSS
I2S2_WS

{SPIa_SS
I2S_WS

A7 PD5 USART2_TX SPIimu_MOSI
A6 PD6 USART2_RX SPIimu_MISO
B6 PD7 USART2_CK SPIimu_SCK
G4∗ PA0 USART2_CTS SPIimu_SS
J7 PE14 SPI4_MOSI (GPIO) SPIdrv_MOSI (pause)
B1 PE5 SPI4_MISO (GPIO) SPIdrv_MISO (mode)
G6 PE12 SPI4_SCK (GPIO) SPIdrv_SCK (RS485_RE)
A1 PE4 SPI4_NSS (GPIO) SPIdrv_SS (RS485_DE)
C2 PE6 RTC_TAMP3 reset
F3 PG10 NRST reset
D4 PC13 RTC_OUT1 power
D3 VBAT VBAT Vcoin
C1 PC14 OSC32_IN OSC32
F4∗ PC1 QSPI1_BK2_IO0 QSPIflash_IO0
F1 PC2 QSPI1_BK2_IO1 QSPIflash_IO1
G1∗ PC3 QSPI1_BK2_IO2 QSPIflash_IO2
K2 PC4 QSPI1_BK2_IO3 QSPIflash_IO3
K6 PE10 QSPI1_CLK QSPIflash_SCK
C6 PD3 QSPI1_BK2_NCS QSPIflash_SS
J2∗ PB11 GPIO gpio_INT
H8∗ PA6 GPIO mag_INT
K8∗ PB12 GPIO (GPIO) imu_INT2 (amp_OTF_SLEEP)
G5∗ PE7† GPIO bar_INT_DRDY
G8∗ PD9† GPIO imu_INT1_DRDY
D1 PC15 GPIO (GPIO) SPImb_SS (RS485_SEL)
G3 PF2 GPIO USART_G5
G10 PD15 GPIO I2C_G2
H5 PE8 GPIO SPI_G4

Table 5.5: Continued from previous page.
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GPIO connections on the STM

pin i/o channel name notes §

G5† i bar_INT_DRDY OD, AL, PU 5.4
G8† i imu_INT1_DRDY OD, AL, PU 5.4
K8∗ i imu_INT2 OD, AL, PU 5.4
H8∗ i mag_INT PP, AL 5.4
J2∗ i gpio_INT OD, AL, PU 5.5
G3 i/o USART_G5 configurable 5.6.5
G10 i/o I2C_G2 configurable 5.6.6
H5 i/o SPI_G4 configurable 5.6.7
D1 i SPImb_SS PP, AL 5.9

Connections on the LED Driver

pin LED name §

P0 gauge_G1 5.6.8
P1 gauge_G2 5.6.8
P2 gauge_G3 5.6.8
P3 gauge_R 5.6.8
P4 LED_R 5.6.8
P5 LED_Y 5.6.8
P6 LED_G 5.6.8

Connections on the GPIO Expander

pin i/o channel name notes §

P0_4 o Vs1_EN PP, AH, B/G 5.2.4
P0_5 i Vreg_FAULT OD, AL, PU, A/3 5.2.4
P1_3 o drva_SLEEP PP, AL, B/G 5.3
P1_4 o drvb_SLEEP PP, AL, B/G 5.3
P1_5 i drv_FAULT OD, AL, PU, A/3 5.3
P1_2 i mag_DRDY PP, AL 5.4
P1_6 o Venc_3.3V PP, AH 5.6.1
P1_7 o Venc_5V PP, AH 5.6.1
P2_0 o CAN_SHDN PP, AH 5.6.4
P2_1 o CAN_STB PP, AH, B/3 5.6.4
P2_2 o RS485_SEL PP, AH 5.6.4
P2_3 o RS485_RE PP, AL, B/3 5.6.4
P2_4 o RS485_DE PP, AH, A/G 5.6.4
P0_3 i/o I2C_G3 OD, AL, PU 5.6.6
P2_5 i pause OD, AL, PU 5.6.8
P2_6 i mode OD, AL, PU 5.6.8
P2_7 i/o amp_OTF_SLEEP OD, AL, A/G 5.7
P0_6 o Vmon_EN PP, AH 5.7.4
P0_7 o Vmon_A0 PP 5.7.4
P1_0 o Vmon_A1 PP 5.7.4
P1_1 o Vmon_A2 PP 5.7.4
P0_0 i/o SPImb_G0 configurable 5.9
P0_1 i/o SPImb_G1 configurable 5.9
P0_2 i/o SPImb_G2 configurable 5.9

Table 5.6: GPIOs on the Raspberry , Black , and White Berets located on (top/left) the STM and (right) the
GPIO expander; note that the Green and Blue Berets, with fewer GPIOs, do not use a GPIO expander at all
(they have all GPIOs moved to the STM, as indicated in Table 5.5). (bottom/left) The LED Driver connections
on all six Berets. Inputs with a Pull Up resistor are labelled PU; internal pull up resistors on the STM are 40 kΩ,
those on the GPIO expander are 55 kΩ. Outputs: OD = Open Drain, PP = Push/Pull. Logic: AL = Active Low,
AH = Active High. {B/G, B/3, A/G, A/3} indicate the channel is associated with a Blue or Amber status LED,
connected to Ground or 3.3V; all 9 LEDs tied to the LED driver connect to 3.3V. TODO: update pin #s of GPIOs.

5.5 STM32G474 microcontroller features, pinouts, and GPIOs
All six Berets are controlled by a 100-pin STM32G474VE (or, VB) microcontroller18, which includes a 170MHz
ARM Cortex-M4 core with 512 KB flash and 128 KB SRAM, and several useful features for efficient implemen-
tation of difference equations for feedback control of electromechanical systems, such as STM’s Adaptive real-
time (ART) memory accelerator and a Filter Math Accelerator (FMAC), which implements low-level circular
buffers for offloading the computation of FIR and IIR filters from the main ARM core (see §??).

The STM32G474 includes an extensive set of dedicated hardware subsystems for driving busses and periph-
erals without putting a computational load on the ARM core itself. As shown in Figure 5.9, the Beret makes
considerable use of these hardware subsystems on the STM. In fact, after connecting up these many subsystems
and connectors on the Raspberry , Black , and White Berets, only 9 pins on the STM were left over to use
as dedicated STM GPIOs; 24 additional GPIOs are thus obtained on these Berets using a NXP PCAL6524HEHP
GPIO expander19. As stated in Note A of Table 5.2, any STM i/o channel available on a Beret JST that is not

18Key references for the STM32G474, which users of the Beret will need frequently, are its datasheet and reference manual. Also
available from ST is a comprehensive set of training courses (both videos and PDFs) specifically designed for the STM32G4 series.

19A change of state of an input to the GPIO expander is indicated by the gpio_INT channel on the STM (see Tables 5.5-5.6).
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otherwise being used for its primary purpose can be reconfigured as an auxiliary STM GPIO.
The pinouts and GPIO channels20 of the STM32G474VE/B (TFBGA100 variants of the STM32G474), the LED

Driver, and the GPIO Expander are specified in Tables 5.5-5.6. The {VSS, VSSA} pins {D2, D6, E5, E6, E7, F6, K4}
are wired to GND, and the {VDD, VDDA, VREF+} pins {D5, D7, F5, F7, J5, K5} are wired to 3.3V.

5.5.1 Real-time clock (RTC), and scheduled/commandedwakeup fromVBATmode
All six Berets include a modern MEMS oscillator (specifically, an SiTime SIT1532AC-J5-DCC-32.768E, operating
at 32.7680 kHz), rather than a quartz crystal resonator with load caps, to generate OSC32 to drive both the STM
real-time clock (RTC) as well as the ICM-42688-P IMU (see §5.4).

When in run mode, pressing the reset button on the Beret drives the STM NRST channel on the PG10 pin
low, resetting the STM. When in VBAT mode (low-power sleep, powering the STM solely by the VL-1220 coin
cell, with the main power to the Beret turned off at the power MOSFET), pressing the reset button drives the
RTC_TAMP3 channel on the PE6 pin21 low. The STM RTC module is used to wake the board from VBAT mode
(either if RTC_TAMP3 is driven low, or if scheduled, or if a wake-up signal is received over the LPUART channel),
leveraging the STM RTC_OUT1 channel on the PC13 pin, which is wired to the enable pin on the Beret’s ideal
diode controller, which in turn is wired to the main power MOSFET (see §5.2.3); the 5V and 3.3V Vregs, as well
as the STM, quickly power back up automatically when this power MOSFET is turned back on. [Check!]

5.5.2 Customization withQuad-SPI Flash
The full size Berets are also preconfigured with a pinout of the STM QuadSPI module QSPI1_BK2 for easy
addition of a standard-size (6mm x 8mm, 8-WSON) fast, low-cost, high-capacity 4MB to 512MB flash IC for
extending the (NAND or NOR) flash memory capacity of the system, for those applications that need it.

20A GPIO may be either active high or active low, and either push-pull or open drain. Active high means the channel is “active”
or “on” in the Logical 1 state (3.3V on the Beret), and “inactive” or “off” in the Logical 0 state (GND); active lowmeans the opposite.
Push-Pullmeans the connected device either drives the channel low (through an NPN BJT or n-channel MOSFET to GND), or drives
the channel high (through a PNP BJT or p-channel MOSFET to 3.3V). Open Drain (a.k.a. Open Collector), in contrast, means the
connected device drives or “asserts” the channel to the low state (through an NPN BJT or n-channel MOSFET to GND), but the
channel is left floating by the connected device instead of driving it to the high state, thus requiring a pull-up resistor (connecting
the channel to 3.3V via a resistor, often internal to the MCU) to achieve a definitive boolean state. [A pull-down resistor (connecting
to GND) is occasionally needed in certain analogous situations, in which a device (like a button) might assert a channel to the high
state, but otherwise leaves it floating.] An advantage of the Open Drain setting is that several devices can be tied to a single GPIO
channel on the MCU; this channel then functions as a wired OR device for active low logic (or, as a wired AND device for active
high logic).

21The PE6 pin and the PG10 pin, operated as inputs, are wired together; when in run mode, PE6 is ignored, and when in VBAT
mode, PG10 is ignored.
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5.6 Connectivity and i/o

5.6.1 Quadrature encoder counters and connectors

As indicated in Figure 5.9 and Tables 5.4-5.5, the encoder channels E5, E2, and E7 on the Berets connect to pairs
of outputs on the STM advanced control timers TIM1, TIM8, and TIM20, and the encoder channels E4, E1, E3,
and E6 on the Beret connect to pairs of outputs on the STM general purpose timers TIM2, TIM3, TIM4, and
TIM5. All 7 of these hardware timers are nominally operated in the quadrature encoder counting mode, with
up/down counting, without loading the main ARM core. The encoder connectors on the Beret also include
connections to power. As discussed in §5.2.9, the (3.3V or 5V) power provided to the E3-4 and E5 connectors
may be changed via backside solder jumpers, and the (3.3V, 5V, Vs1, or off) power provided to the E1-2 and E6-7
connectors is selected via a multiplexer using the Venc_3.3V and Venc_5V Beret GPIOs.

Further, the E1-2, E3-4, E5, and E6-7 connectors are wired, primarily, for standard two-channel (AB) quadra-
ture encoders. However, if needed, the STM32 ETR pins for 5 of these 7 encoder channels are readily available
on other various other available pins the Berets, specifically:

• PE7 is connected to I2C_G2 on the I2C Header, and can act as ETR for TIM1 (E5).
• PB12 is connected to SPI_G4 on the SPI Header, and can act as ETR for TIM5 (E6).
• PA8 is connected to S1 on Signal Header A, and can act as ETR for TIM4 (E3).
• PE0 is connected to I2C_G2 on the I2C header, and can act as ETR for TIM20 (E7).
• PD2 is connected to UARTa_RX on the RS485/UART JST, and can act as ETR for TIM3 (E1).

This facilitates the use of up to five three-channel (ABZ) encoders without requiring a Beret Shield.
As discussed in section 3.24 of the STM32G474 datasheet, these timers are quite powerful, and thus the

convenient E1-2, E3-4, E5, and E6-7 connectors may be used for a host of alternative functions, such as the
generation of PWMs for driving up to 14 additional servos and ESCs (again, without loading the ARM core
itself), which may be useful if the 10 discrete servo/ESC connectors discussed in §5.6.2 provide insufficient
connectivity for a given application. Other functionality also available on the encoder connectors includes:
- I2C4 (including SMBA), available on E1-2 (see §5.6.6),
- a half-duplex UART channel (USART1_TX), available on E3-4 (see §5.6.5), and
- the LPUART1_RX channel (in receive only mode, as used by DSM receivers), available on E5 (see §5.6.5).

Warning: no specific Electrostatic Discharge (ESD) protection is provided on the encoder connectors.

5.6.2 PWM-based servo and ESC controllers and the Signal Headers

As indicated in Figure 5.9 and Table 5.5, signals {S1, S2, S4, S5, S9, S10} connect to the STMhigh-resolution timer
HRTIM1, and signals {S6, S7, S3, S8} connect to the STM general purpose timers TIM15, TIM16, and TIM17.
Signal Headers A and B expose signals S1 through S10, along with power and GND, in an industry-standard
manner (see Note H of Table 5.2). Vs1 is provided on Signal Header B, and the user may select between Vs1
and Vin on Signal Header A (see §5.2.9). A blue status LED near the Vs1 voltage regulator illuminates whenever
power (Vs1) to the signal headers is enabled (see §5.6.8).

Again, these timers are quite powerful, and thus signals S1 through S10 on Signal Headers A and B may be
used for a variety of alternative functions, such as adding a few unidirectional encoder counters (using TIM15,
TIM16, and TIM17, with up-counting only – and, again, without loading the ARM core itself), which may be
useful if the 7 quadrature encoder counters (with up/down counting) discussed in §5.6.1 are insufficient for a
given application. The following alternative functionality is also available on the signal headers:
- I2C2 is available on {S1,S2} (see §5.6.6), and
- I2C3 is available on {S4,S5}, with SMBA available on S2 (see §5.6.6).
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Note also that signals S1 through S5, and thus the high-resolution timer to which they connect, are readily
available for creative use on Extended Beret Shields, as discussed in §5.8.

ESD protection is provided on the S1 - S10 signal lines by two TI TPD6E004s.

5.6.3 Encoding for IR communication
The output of the STM IR communication module may be routed (as IR_OUT) to pin 9 of the SPI Header. When
the IR communication module is enabled, S3 and S8 on Signal Headers A and B are converted into GPIOs.

5.6.4 CAN FD and RS485 transcievers and connectors
On the CAN/RS485 Berets, the STM FD-CAN controller of the STM32G4 is paired with a (3.3V) TI TCAN334G
CAN-FD transceiver, to generate the differential pair of signals, {CANH,CANL}, required for CAN commu-
nication, supporting the CAN FD (CAN with flexible data-rate) protocol at up to 5 Mbps. These two signals are
made available on the CAN JST connector (see Table 5.2). Note that the STB and SHDN pins of the TCAN334G
are wired to the Beret CAN_STB and CAN_SHDNGPIO channels (see §5.5), to put the transceiver in low-power
standby and shutdown states when not in use (see the device datasheet for details).

On the CAN/RS485 Berets, the STM’s UART5 channel may be used to drive a (3.3V or 5V selectable) TI
THVD1452 RS485 transceiver, with built-in idle bus failsafe, to generate the two differential pairs of signals,
{Y,Z,A,B}, required for full-duplex RS485 communication, supporting the RS485 protocol at up to 50 Mbps.
This is accomplished by setting the Beret’s RS485_SEL GPIO to 1, and using the GPIO channels RS485_RE and
RS485_DE to enable its receiver and driver (i.e., transmitter) as necessary. Note that this transceiver presents a
1/8 Unit Load, allowing up to 256 receivers on a single bus.

On the backside of these Berets, the user may install (in the footprints provided) two 0804 resistors and
(optionally) a 0804 capacitor for termination of the CAN bus, and a single resistor (on each differential pair) for
termination of the (full-duplex) RS485 bus, as discussed in the TI AN-1057 report.

Note that the CAN and RS485 transceivers provide certain levels of ESD protection, as specified in the
corresponding device datasheets. For both, if necessary, additional TVS diodes may be placed on the bulkhead
of the environmental housing (see §4.5.4.3), where the rugged field-serviceable connectors (see §4.5.4.2) attach
to the short jumper cables that brings the differential CAN and/or RS485 signal pairs onto the Beret. This
physical separation helps to prevent voltage transients, ESD, and noise from propagating onto the Beret itself.

5.6.5 USART, UART, and LPUART modules and connectors
Four independent STM USART and UART modules, and the STM LPUART module, are used on the Beret:
• the STM USART3 module (RX, TX, CK, CTS/NSS, & RTS/DE) is fully broken out on the USART JST,
• the STM UART5 module (RX & TX) is broken out on the RS485 (UARTa) JST if RS485_SEL=0 (see also 5.6.4),
• the STM USART1 module (TX only22, for use in half duplex mode) is available (as E3a) on the E3-4 JST,
• the STM LPUART1 module (RX only23, for use in receive mode only) is available (as E5a) on the E5 JST, and
• the STM USART2 module (in SPI mode) gives the Beret a dedicated high-speed connection to the IMU.

22Via a backside solder jumper, the 4th pin on the E3-4 JST can be switched over to STM pin B3, which can be set in software to
function as the USART1_RX input. If this is done, E3-4 can then function as a full duplex Recon UART-T connector with two GPIOs.
Note that doing this makes the S8 channel on Signal Header B unusable for other purposes.

23Via a backside solder jumper, the 4th pin on the E5 JST can be switched over to STM pin H8, which can be set in software to
function as the LPUART1_TX output. If this is done, E5 can then function as a full duplex Recon UART-R connector. Note that doing
this makes the mag_INT channel (to the STM and the MB Header) unusable as a magnetometer interrupt. Note also that, though
H8 is not 5V tolerant, it is set as an output when E5 is converted to a UART-R connector in this manner, so this connector can still be
connected to 5V TTL UART devices.
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The four JSTs mentioned above are useful for connecting (primarily point-to-point, with one device per
channel24) a variety of additional sensors and other devices to the Beret, such as GPS/GNSS units. Extra GPIOs,
if needed by a particular device, can be picked up from unused pins on other JSTs, or from the I2C and SPI
headers (see Note A of Table 5.2). The first three pins (power, GND, signal) of E5 is suitable for direct connection
to 2.4Ghz DSMX/DSM2 radio receivers, such as the Spektrum SPM4648 and OrangeRx R110x.

Supported modalities on the STM32’s flexible USART channel (available on the Beret’s USART JST) include:
- full duplex (RX-to-TX and TX-to-RX) and single-wire half duplex (TX-to-TX) UART modes,
- UART (asynchronous, without CK) and USART (synchronous, with CK) modes,
- multiprocessor communication [e.g., direct from the STM on one Beret to the STM(s) on other Beret(s)],
- SPI master (TX-to-MOSI, RX-to-MISO) and SPI slave (TX-to-MISO, RX-to-MOSI, slave select on NSS) modes,
- Smartcard ISO7816 communication,
- IrDA serial infrared communication, and
- RS232 and RS485 hardware flow control.

Warning: no specific ESD protection is provided on the USART or UART JSTs, or other pins where UART
functionality is available, as specified above.

5.6.6 I2C modules and the I2C Header

Four independent STM I2C modules, at comm speeds up to 1MHz, are broken out and used on the Beret:
• the STM I2C1 module (SDA & SCL) is broken out on the I2C Header,
• the STM I2C2 module (SDA & SCL) is available (as S1 & S2) on Signal Header A,
• the STM I2C3 module (SDA, SCL, & SMBA) is available (as S4, S5, & S2) on Signal Header A, and
• the STM I2C4 module (SDA, SCL, & SMBA) is available on the E1-2 JST.
Note that the I2C1 channel (on which the STM operates as master) also connects on the Beret to:
• three TI TPL0102-100 dual digital pots25:

– POT1, at I2C address 101 0101b (0x55h), POT2, at I2C address 101 0110b (0x56h) [see §5.7.2], and
– POT3, at I2C address 101 0111b (0x57h) [see §5.2.4 and §5.7.1],

• the GPIO expander, at I2C address26 010 0010b (0x44h for write, 0x45h for read) [see §5.5],
• the LED driver, at I2C address 100 0101b (0x8Ah for write, 0x8Bh for read) [see §5.6.8],
• the barometer, at I2C address27 101 1100b (0xB8h for write, 0xB9h for read) [see §5.4], and
• the magnetometer, at I2C address28 001 1100b (0x38h for write, 0x39h for read) [see §5.4].
Warning: when connecting other common I2C devices on the I2C Header, care must be taken to not conflict
with the eleven underlined I2C hex addresses listed above, which are already used. Due to this exisiting traffic
on the I2C1 channel, when attaching additional I2C devices, it is recommended that the user instead consider
the use of the I2C2, I2C3, and I2C4 modules, if the various pins for them are available, as discussed above.

Warning: no specific ESD protection is provided on the I2C Header, or other pins where I2C functionality
is available, as specified above.

24Operating the USART3 module (wired to the USART JST) in SPI mode allows it to connect to multiple devices, with one Beret
GPIO operating as a dedicated CS for each connected device.

25POT1 is wired with {A2,A1,A0}={1,0,1}, POT2 is wired with {A2,A1,A0}={1,1,0}, POT3 is wired with {A2,A1,A0}={1,1,1}.
26The GPIO expander is wired with {A2,A1,A0}={0,0,1}.
27The barometer is wired with SA0=0.
28The magnetometer is wired with SA1=0.
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5.6.7 SPI modules and the SPI Header

Three29 independent STM SPI modules are broken out and used on the Berets:
- the STM SPI2/I2S2 module (MOSI, MISO, SCK, NSS in SPI mode, or SD,WS/LRCLK, SCK/BCLK in I2S mode30)
is broken out on the SPI Header, providing unencumbered SPI (or I2S) functionality to the user,
- the STM SPI3 module gives the Beret a dedicated high-speed connection to the SPI channel on theMB (except,
of course, on the Green and Blue Berets), using (on the STM) GPIOs connected to MB’s SS channels (see
Table 5.6) for software slave select, and
- the STM SPI4 module, operating with a single SS line in daisy-chain mode, gives the Beret a dedicated high-
speed connection to DRVa and DRVb (see §5.3).

The USART JST (i.e., USART3, see §5.6.5), operating in SPI mode, provides further unencumbered SPI func-
tionality to the user if needed.

NSS on the SPI header (i.e., SPI2) provides a hardware slave select line when the Beret is used as an SPI
slave on this channel. When the Beret is used as the SPI master on this channel, on the other hand, multiple
SPI slaves can be attached using STM GPIOs as separate slave select pins, recalling again that extra GPIOs,
where needed, can be picked up from any unused pins on the SPI and I2C headers, or over on the JSTs.

Warning: no specific ESD protection is provided on the SPI or MB Headers.

5.6.8 LEDs, Buttons, and Displays

LEDs. A TI TCA6507 LED driver is used to control the main LED circuits on the Beret, including three user
LEDs (LED_R, LED_Y, LED_G, forming a “stoplight” of sorts) and three bicolor LEDs (controlled via the chan-
nels gauge_G1, gauge_G2, gauge_G3, gauge_R31), forming a “power gauge” next to the XT30 input, which are
programmed to be illuminated (if a battery is detected at the Balance connector) based on the charge of the
individual cell operating with the lowest charge as follows:
• • • Three solid green 85% to 100% charge
• • ◦ Two solid + one flashing green 70% to 85% charge
• • • Two solid green 55% to 70% charge
• ◦ • One solid + one flashing green 40% to 55% charge
• One solid green 25% to 40% charge
◦ One flashing green 10% to 25% charge
• • • Three solid red 1% to 10% charge, user should shutdown immediately
◦ ◦ ◦ Three (quickly) flashing red Vmin reached, automatic board shutdown imminent.

The voltage levels for these indicator transitions come pre-programmed for LiPo batteries, with Vmin = 3.2V
and Vmax = 4.1V, but may be adjusted further by the user. If no battery connection is detected on the Bal-
ance connector32, the center green LED is illuminated simply to indicate that the board is powered up and
running normally (most likely from a wall adapter). Note that alternate red/green patterns slowly flashing in
the power gauge, using a simple binary representation in the greens, may be used to indicate eight distinct
user-programmable error codes.

In addition, there are blue and amber status LEDs on the Berets, each located in the respective quadrant of
Figs 5.1-5.6, and attached directly to the corresponding GPIO channel (see Table 5.6):

29In addition (see §5.6.5), recall that the STM USART2 module, operating in SPI mode, gives the Beret a dedicated high-speed
connection to the IMU.

30If the I2S MCK channel is needed, it is available on pin S1 of Signal Header A when using Extended Beret Shields (see §5.8).
31The three green gauge LEDs are controlled independently, whereas the three red gauge LEDs are controlled by a single channel.
32Warning: this system is designed to be used with a balance connector whenever a battery is being used, and will not actively

monitor the state of charge of the battery unless the balance connector is plugged in.
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• the blue Vs1 LED illuminates whenever the Vs1 Vreg circuit is enabled,
• the blue DRVa LED illuminates whenever the DRVa motor driver is enabled,
• the blue DRVb LED illuminates whenever the DRVb motor driver is enabled,
• the blue CAN LED illuminates when the CAN transceiver is in run mode,
• the blue RS485_RE LED illuminates when the RS485 receiver is enabled,
• the amber RS485_DE LED illuminates whenever the RS485 driver (transmitter) is enabled,
• the amber Vreg_fault LED illuminates whenever any of the Vreg ICs signals a fault,
• the amber drv_FAULT LED illuminates whenever either of the DRVs signals a fault, and
• the amber opamps LED illuminates when the Beret opamps are enabled and no fault is triggered33.

The red, yellow, amber, and bicolor LEDs on the Berets, including those in the bicolor LEDs, operate at about
2V and 6mA, and the blue and green LEDs on the Berets operate at about 2.9V and 5mA. As the LED circuits
are all powered with 3.3V, (3.3V-2V)/6mA≈ 220Ω resistor arrays are used to regulate the current to the red,
amber, yellow, and bicolor LEDs, and (3.3V-2.9V)/5mA≈ 82Ω resistor arrays are used to regulate the current to
the blue and green LEDs.

The several red and amber LEDs on the Beret aremanufactured using AlInGaP (Aluminium, Indium, Gallium
and Phosphorous) technology, and the several green and blue LEDs on the Beret are manufactured using InGaN
(Indium, Gallium and Nitrogen) technology. These modern choices provide maximum brightness while drawing
the minimum amount of current.

Buttons. Two small user-programmable buttons (with white actuators) are included as inputs, with pull-up
resistors on the GPIO expander; pressing these buttons connects these resistors to GND. The buttons can be
used for any function in software, but are preassigned the names “pause” and “mode”, which is appropriate for
typical use cases. A third button (with a black actuator), named “reset”, is used to reset the STM when in run
mode, or to wake the entire board from low-power sleep mode when the board is powered down (see §5.5.1).

Displays. A Beret Shield (see §5.8) implementing COTS I2C 0.96” OLED Display module is planned. An eInk
Beret Shield would also be nice. Size?

5.6.9 USB Micro-B connector and Device Firmware Upgrades
The STM USB module, available on pins USB_DP and USB_DM, is wired directly to a standard USB Micro
B connector on all six Berets. This USB connector may be used for ordinary programming, in addition to
performing Device Firmware Upgrades (DFUs) using the STM DeFuse software, as discussed further here, in
conjunction with the BOOT0 pin available on pin 7 of the I2C header (see Table 5.2).

The USB connector can power a Beret for the purpose of STM programming only (see §5.2.2); the USB
connector does not provide enough current to powermotors or a connectedMB, which should not be attempted.

ESD protection is provided on the USB data lines by a TI TPD6E004.

33The amp_OTF_SLEEP i/o channel, when set as an output and driven low by the GPIO expander, puts the ALM2402-Q1 opamps
(§5.7.1) and TLV9002S opamps (§5.7.2) into a low-power sleep mode. When set as an input on the GPIO expander, it is left floating
by the opamps during normal operation, and is pulled up to logic high by an external 2.5 kΩ resistor to 5V while simultaneously
illuminating a corresponding 2V amber opamps LED tied to ground, unless/until a fault is triggered, then it is driven low.
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5.7 Analog subsystem
The Raspberry , Black , White , Green , and Blue Berets include a 0V – 3.3V analog subsystem with:
• two high-power (400mA) DAC channels,
• (V+, V-, Vo) pinouts for a spare opamp that may be configured (on a Beret Shield) by the user, and
• two ADC channels with:

– adjustable gain, x1 to x4096, and
– adjustable second-order filtering, with tunable cutoff frequency ωc = 2πfc and damping ζ = 1/(2Q).

A amber status LED (see §5.6.8) next to the Analog Header illuminates whenever the analog subsystem, and
the opamps that drive it, are enabled by the STM.

5.7.1 Generation of Vs2 = 1.2V to 2.1V, and two high-power DAC outputs
Figure 5.10a illustrates how the reference voltage V2 = 1.2V to 2.1V is generated, with Ra = Rb = 133 kΩ and
Rv given by half of POT3, a TI TPL0102-100 dual digital pot (100 kΩ) operating in voltage divider mode.

Two TI ALM2402-Q1 dual high-power opamps are included on the full size Berets, each with a pair of IGBTs
arranged as class AB amplifiers with zero crossover distortion, negligible voltage offset, and robust current
limiting. The [open-drain, active low] amp_OTF_sleep i/o channel, with an external 2.5 kΩ pull-up resistor to
5V (CHECK for Blue) as well as a 2V amber diode to GND, is connected to the GPIO expander via a 220 Ω
resistor (see Table 5.6). When this channel is set on the GPIO expander as an input, it is used to monitor for
an Over Temperature Flag on these opamps; when set as an output and driven low, this channel puts both
ALM2402-Q1s into a low-power sleep mode.

Figure 5.10b shows how three of these high-power opamps are used to buffer V ∈ {V2, DAC1, DAC2},
thereby generating the buffered outputs V̄ ∈ {Vs2, DAC1buf, DAC2buf}made available on the Analog Header,
each of which is capable of sourcing or sinking 400mA. [Note that the 3 terminals of the fourth high-power
opamp are provided directly on the Analog Header, as discussed further in §5.7.3.] When set near 1.65V, Vs2 is
useful as a bipolar offset for the analog subsystem.
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Figure 5.10: Circuits for (a) generation of V2 = 1.2 V to 2.1 V adjustable, (b) buffering of V ∈ {V2, DAC1, DAC2}
(each buffered output, V̄ ∈ {Vs2, DAC1buf, DAC2buf}, is capable of sourcing or sinking 400mA), and (c) ampli-
fication and filtering of the Vin ∈ {ADC1, ADC2} inputs, each of which are compared to the reference voltage
Vref ∈ {GND, Vs2, ADC3}, with outputs Vout routed to ADC2_IN3 and ADC4_IN3 channels internally on the
STM. Note that magenta components/traces are within the STM, and black traces/components/signals are on
the Beret. See Table 5.2 for how these various input, output, and power pins appear on the Analog Header.

5.7.2 Tunable filtering/gain of two unipolar, bipolar, or differential ADC inputs
Figure 5.10c illustrates the circuit used (leveraging 4 of the internal opamps on the STM, together with a
TI TLV9002S dual low-cost opamp) to amplify and filter the Vin ∈ {ADC1, ADC2} inputs on the Analog Header,
before their corresponding amplified/filtered outputs Vout are routed to internal ADC units on the STM.

There are three natural choices for selecting the bias voltage Vref about which these ADC inputs are com-
pared and amplified (this choice is made, by the user, by the wiring on the Beret Shield where the analog circuit
is developed; for further discussion, see §5.8):

- for unipolar analog signals, the user should wire Vref to GND (again, on the Beret Shield);
- for bipolar analog signals, wire Vref to Vs2 (as a Bipolar Offset, tunable in the vicinity of 1.65V);
- for differential comparison of analog signals, wire Vref to a third (user-provided) analog signal ADC3.

Note that the ADC1 and ADC2 inputs on the Analog Header lead directly (without any intervening resistors
or capacitors) to opamp input terminals in Figure 5.10c, so these filters perform predictably even for “weak”
analog sources with low output impedance. Note further that:

- For Vin =ADC1, A is OPAMP1, B is half of the TLV9002S, C is OPAMP2, and Vout =ADC2_IN3;
- For Vin =ADC2, A is OPAMP3, B is half of the TLV9002S, C is OPAMP4, and Vout =ADC4_IN3.

In the (non-inverting) “PGAmode” shown for both opampsA andC, the internal resistors {RA1, RA2, RC1RC2}
can be selected (in software) to achieve amplification ratios of x2 to x64; note that {RA2, RC2} can also be by-
passed, and the corresponding connections to Vref (through {RA1, RC1}) cut (in software, by selecting “follower
mode”, as shown here for opamp B) in order to achieve amplification ratios of x1 on all three opamps. Thus,
the overall low-frequency amplification of this circuit can be varied, in software, from x1 to x4096.

The pairs of resistors {R1, R2} and capacitors {C1, C2} in Figure 5.10c, looping around opamp B, form a
Sallen-Key second-order low-pass filter (LPF), leading (see, e.g., here or here) to the transfer function

Vout(s)

Vin(s)− Vref
= AAAC

ω2
c

s2 + 2 ζ ωc s+ ω2
c

where AA = 1+RA2/RA1, AC = 1+RC2/RC1, and the cutoff frequency ωc = 2πfc and damping ζ = 1/(2Q)
of the second-order low-pass filter are ωc = 1/

√
R1C1R2C2 rad/s and ζ = C2 (R1 +R2)ωc/2.

A target value of damping to use in such a filter is ζ ≈ 0.7. Common capacitor values of C1 = 68 nF and
C2 = 33 nF have been selected for the Beret, together with POT1 and POT2, two TI TPL0102-100 dual digital
potentiometers that are adjustable electronically (over I2C) from 0 to 100 kΩ in 256 increments, for R1 and R2.
Setting R1 = R2 and adjusting both (together) over a range from 100 kΩ down to 1 kΩ results in ζ ≈ 0.7, and
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fc ranging from 34Hz to 3400Hz, as appropriate for many small electromechanical systems; adjusting R1 and
R2 separately also allows the damping ratio ζ to be tuned34.

Warning: attempting the following is quite difficult, voids any sort of manufacturer’s warranty expressed
or implied, and should only be attempted by advanced users willing to possibly fry their board. Using a very
fine-tipped soldering iron, advanced users might choose to attempt to replace C1 and C2 in these circuits with
capacitors 1 or 2 orders of magnitude larger or smaller than those selected here in order to achieve different
frequency ranges for the low-pass filter on the ADC channels. Alternatively, and more simply, removing C2

altogether (i.e., taking C2 → 0 in the transfer function listed above and simplifying) reduces the circuit to a
first-order filter with transfer function

Vout(s)

Vin(s)− Vref
= AAAC

ω1

s+ ω1

with cutoff frequency ω1 = 1/[C1(R1 + R2)]; setting R1 = R2 and adjusting both over the range from 100 kΩ
to 1 kΩ results in f1 = ω1/(2π) ranging from 12Hz to 1200Hz. Subsequently replacing C1 with a capacitor
1 or 2 orders of magnitude larger or smaller can again be done to achieve different frequency ranges. Finally,
removing bothC1 andC2 altogether (and settingR1 = R2 = 1 kΩ) removes the low-pass filter entirely, allowing
the user to take responsibility for any necessary analog low-pass filtering (on a Beret Shield) of an ADC input
before it is sampled by the STM’s ADC unit. Warning: please re-read the warning at the beginning of this
paragraph. Ok, you’ve been warned, good luck. (Actually, if you have a specific/substantial need for low-pass
filtering over a different frequency range, it’s probably better to contact us and have us make a variant of the
board with different capacitors installed...)

5.7.3 Analog Header and user-developed analog filters
As shown in Table 5.2, the Analog Header provides the following nine analog (0V – 3.3V) signals:

- two buffered (up to +/- 400mA) outputs DACbuf1, DACbuf2,
- the positive and negative inputs, and (0V – 3.3V, ±400mA) output, of a power opamp, {V+,V-,Vo},
- the voltage Vref (input to the Beret) about which the ADCs are compared and amplified (see §5.7.2),
- two inputs ADC1, ADC2, and
- the low-pass-filtered ADC2filt [i.e., the analog output of OPAMP B (see Figure 5.10c) in the ADC2 filter].

Again, low-pass filtering with tunable gain (x1 to x4096), tunable cutoff frequency (fc ranging from 34Hz to
3400Hz) and tunable damping (nominally, ζ ≈ 0.7) is applied to the ADC inputs before sampling by the STM.

Note also that GND, 3.3V, and Vs2 are readily available on the nearby SPI and I2C Headers.
The functionality describe above facilitates the connection of a number of analog sensors and actuators,

the experimental determination of MIMO Bode Plots of continuous-time electro-mechanical systems, as well
as the easy implementation of other user-developed analog filters on Beret Shields (see, e.g., TI’s Op Amps For
Everyone for several filter ideas).

Warning: no specific ESD protection is provided on the pins of the Analog Header.

34By sinusoidally exciting a DAC channel over a range of frequencies, and routing the output directly to an ADC channel, the Bode
plot of the corresponding Sallen-Key second-order low-pass filter may bemeasured directly, and the values ofR1 andR2 subsequently
tuned in software to achieve the desired filter response.
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Figure 5.11: Vmon1 circuit with a TI MUX508 8:1 multiplexer, used to monitor {Vs1, Vin, B7, B6, B5, B4, B3, B2}
on the full size Berets, with {R1, R2, R3, R4, R5, R6, R7, R8} = {27.4, 76.8, 73.2, 59.0, 45.3, 31.6, 17.4, 3.74} kΩ and
R0 = 10 kΩ [standard 1% resistor values in the E96 series; see Table 9.5]. Note that B1=GND. When EN=0,
Vmon1=GND, and the current through all voltage dividers is zero. Note that Vmon2 is connected directly to
Vs2, with no voltage divider. A TI TMUX6219 SPDT switch is used to monitor {Vs1, Vin} only on the half size
Beret, using effectively same circuit and dropping {A2, A1}, with the same values of {R1, R2} and R0. The nominal
scale factors relating the measured values at Vmon1 to the quantities of interest is laid out in Table 5.7.

control inputs 000 001 010 011 100 101 110 111
input voltage Vs1 Vin B7 B6 B5 B4 B3 B2

nominal scale factor 3.74× 8.68× 8.32× 6.90× 5.53× 4.16× 2.74× 1.374×
Table 5.7: Quantities measured by the circuit in Figure 5.11 for different inputs {A2, A1, A0} on the full size
Berets, and their nominal associated scale factors. Only the first two columns apply on the half size Berets.

5.7.4 Voltage monitoring of Vin, Vs1, Vs2, and the individual battery cells

Berets periodically monitor Vin, Vs1, and Vs2 when running. Noting warnings ii and iii of §5.2.1, full size
Berets also periodically monitor (using the custom JST-XH balance connector described in Note F of Table
5.2) the differential voltage over the individual battery cells of 2S – 6S batteries via their stock JST-XH balance
connectors, to ensure that no individual cell drops below the minimum allowed voltage, Vmin, while the Beret
is operating. Vmin is adjustable in software; a value in the range of 3.1V to 3.2V is appropriate for LiPos.

Voltage monitoring of Vin, Vs1, and the battery cells is done using the multiplexed voltage divider circuit
in Figure 5.11, with EN and {A2, A1, A0} tied to the GPIO expander (see Table 5.6) to enable the system and
select the active input. The STM’s ADC3_IN3 channel, denoted Vmon1 on the Berets, periodically monitors the
output of the 8:1 multiplexer in this circuit on the full size Berets, or of the SPDT switch on the half size
Beret, while the STM’s ADC3_IN3 channel, denoted Vmon2, periodically monitors Vs2 directly. As suggested
by the analysis of TI Report SLVA450A, a target current of about 0.3mA was chosen for the voltage dividers.
For a target maximum value for Vmon1 of about 3.2V, this gives R0=10 kΩ. Given the relationship between the
voltages at the top, middle, and bottom of a voltage divider (see Example 9.1), the resistor values Ri, for i=1 to
8, were then selected (see code) so that Vmon1 was about 3.2V for the maximum values of each input Vi.

1% tolerance resistors (E96 series, 0.01W rating is sufficient) are implemented in the Vmon1 circuit on the
Berets. This gives some inaccuracy in the calculated voltages, as quantified by equation (13) of SLVA450A. The
nominal scale factors (to determine each input voltage Vi from the measured value of Vmon1) listed in Table
5.7 should thus be calibrated using otherwise-measured voltages {Vs1, Vin, B7, B6, B5, B4, B3, B2} in order to
eliminate these inaccuracies, as the relationships between the Vi and Vmon1 are accurately linear. Note that
higher-precision resistors (with the same nominal values, in the E192 series) could be used in this circuit, but
doing such is expensive and unnecessary if the scale factors are to be calibrated after manufacturing.
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5.8 Beret Shields
On all six Berets, convenient and stackable Small (1.3” x 0.9”) and Extended (1.3” x 1.1”, 1.3” x 1.3”, or larger)
Beret Shields (that is, small daughterboards) may be attached, in a manner similar to Arduino Shields, atop

(i) the (1x9) SPI/I2S Header,
(ii) the (1x9) I2C Header,
(iii) the (1x9) Analog Header (if present), and
(iv) (on 1.3” x 1.1” or larger Beret Shields) the first row (signals S1 - S5) of Signal Header A, or

(on 1.3” x 1.3” or larger Beret Shields) all three rows (S1 - S5, Vs1/Vin, and GND) of Signal Header A,

thus enabling the user to build up quickly, and attach securely, any extra analog or digital circuitry that might
be needed in a given application. The pins on these headers are aligned on a 0.1” grid, facilitating the use of:

Prototyping Beret Shields, with an array of predrilled holes on a 0.1” grid, which may be
- plated, for rapid development and testing of simple circuit designs, or
- unplated, providing a sturdy mechanical backing for COTS PCBs.

Prefabricated Beret Shields implementing commonly needed additional components, such as:
- 2x custom 128-pin solderless breadboards + 2x more 1x9 Headers (USART and GPIO) + LEDs/buttons,
- a 0.96” OLED display + 2x buttons,
- 2x more BDC motor drivers (24 half bridges), wired as described in §5.3,
- 6x sensorless BLDC motor drivers with integrated 28V/3A MOSFETs and JST-PA connectors,
- 2x continuous-time (CT, i.e., analog) notch filters (to eliminate the tonal “buzz” in 2 input signals),
- 2x CT lead/lag/PID feedback control circuits with digitally-adjustable poles, zeros, and gain,
- a u-blox zed-f9p dGPS/GNSS unit,
- a wifi/bluetooth module,
- an array of additional buttons, LEDs, and Recon UART and I2C connectors,
- arrays of connectors supporting other standards (PMOD, Grove, STEMMA, Qwiic, etc).

Custom Beret Shields compactly implementing your choice of components, layout, and connectivity.

Examples are shown in Figure 5.12. All three types of Beret Shields are low cost and easy to use. In particular:

• Prefabricated Beret Shields provide a fast and flexible way to extend the capability of the Beret ecosystem
with a variety of commonly-needed additional components via open hardware designs.
• Custom Beret Shields facilitate the dense and secure arrangements of electronic components of the user’s
choosing for long-term use, and may easily be designed using free software, leveraging directly the open
hardware circuit designs of the Prefabricated Beret Shields, and may be fabricated at remarkably low cost.

The (1.3” x 0.9”) Small Beret Shields connect to the Beret using three 1x9 male headers. The (1.3” x 1.1” or larger)
Extended Beret Shields may also include a 1x5 female header connecting to the first row of Signal Header A,
whereas the (1.3” x 1.3” or larger) Extended Beret Shields may include a 3x5 female header connecting to all
three rows of Signal Header A, including high-current Vs1 or Vin, and GND, on the second and third rows.

Use of a (1.3” x 0.9”) Small Beret Shield leaves unobstructed all JSTs, buttons, and LEDs on the Berets, in
addition to all 5 columns of Signal Header A and all 5 columns of Signal Header B, for easy attachment of
10 servo and/or ESC connectors. A (1.3” x 1.1” or 1.3” x 1.1”) Extended Beret Shield connects directly to Signal
Header A, but leaves unobstructed all 5 columns of Signal Header B.

Small and Extended Beret Shields are directly portable across the entire line of Berets. Note that the entry-
level Red Beret does not have an Analog substem, and the corresponding Analog Header is absent; Beret
Shields that do not use the analog subsystem are still fully compatible with this board.

We are also designing a stand-alone high-current brushless motor driver board, in the footprint of a Rasp-
berry Pi, with an STM32G474VE (controllable over a Recon SPI connector), 6x gate drivers, 18x 40V/50A dual
MOSFETs, and high-current XT60 (LiPo) and 6x MR30 (BLDC motors) AMASS connectors.
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Figure 5.12: Layout of the (top) Prototyping (unplated and plated) and Breadboard, (middle) OLED, and (bottom)
BLDC Beret Shields, including various views illustrating how they mount (and, stack) on a Raspberry Beret.
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5.9 MB headers, MB header breakout SHIMs, and ID EEPROMs

5.9.1 RPi-compatible motherboards (MBs)
As shown in Table 5.8, the 2x20 header on the RPi Berets has 2 pins over which 5V/2A power may be provided
to the RPi, 2 pins over which 3.3V power (regulated by the RPi) may be picked up by connected daughterboards,
8 GND pins, and 28 “BCM” pins, arranged in a peculiar order, connected to the RPi’s Broadcom MCU. BCM0
and BCM1 are used for an I2C connection to an EEPROM to identify attached daughterboards (a.k.a. HATs).
BCM2 through BCM27 may be used as GPIOs, denoted GPIO2 through GPIO27; each of these channels may
instead be switched over in software to provide various alternative functions. The “primary” such alternative
functions, available on all RPis with 40-pin headers (and most RPi clones, as outlined in Table 1.15), are listed
in Table 5.8.

A more comprehensive list of the useful alternative functions of GPIO2 through GPIO27 is given by Table
5.9, which also highlights many of the new alternative functions available with the RPi4. In this table:
- CTS and RTS are (optional) UART hardware flow control (HFC) channels,
- PCM (pulse-code modulation) is an advanced digital audio standard (used, e.g., by hifiberry),
- SD0 is a proprietary Broadcom controller channel used to boot and communicate with the RPi eMMC,

Beret name alt. function PWR/BCM pin pin PWR/BCM alt. function Beret name

- 3.3V 1 2 5V - Vmb
I2C1_SDA GPIO2 3 4 5V - Vmb
I2C1_SCL GPIO3 5 6 GND - GND

mb_G0 GPCLK0 GPIO4 7 8 GPIO14 UART0_TX
GND - GND 9 10 GPIO15 UART0_RX

SPI1_CE1 GPIO17 11 12 GPIO18 SPI1_CE0
SD0_DAT3 GPIO27 13 14 GND - GND
SD0_CLK GPIO22 15 16 GPIO23 SD0_CMD

- 3.3V 17 18 GPIO24 SD0_DAT0
SPImb_MOSI SPI0_MOSI GPIO10 19 20 GND - GND
SPImb_MISO SPI0_MISO GPIO9 21 22 GPIO25 SD0_DAT1
SPImb_SCK SPI0_SCLK GPIO11 23 24† GPIO8 SPI0_CE0 SPImb_SS†

GND - GND 25 26∗ GPIO7∗ SPI0_CE1 mag_INT∗/SPImb_SS†

ID_SDA I2C0_SDA 0 (reserved) 27 28 1 (reserved) I2C0_SCL ID_SCL
mb_G1 GPCLK1 GPIO5 29 30 GND - GND
mb_G2 GPCLK2 GPIO6 31 32∗ GPIO12∗ PWM0 bar_INT_DRDY∗

imu_INT1_DRDY∗ PWM1 GPIO13∗ 33∗ 34 GND - GND
SPI1_MISO GPIO19 35 36 GPIO16 SPI1_CE2
SD0_DAT2 GPIO26 37 38 GPIO20 SPI1_MOSI

GND - GND 39 40 GPIO21 SPI1_SCLK

Table 5.8: PWR function or BCM (Broadcom pin number, each associated with a GPIO) corresponding to each
pin on the 2x20 header on the RPi Berets, along with the “primary” alternative function and corresponding
Beret name (if any) of each, indicating PWR, GPIO, UART, I2C, SPI, and SDIO channels, as well as PWM and
GPCLK functions. Table 5.9 lists the additional functions available on each. Boldface indicates channels that
are connected by default to the Beret. ()∗ denotes 3 optional interrupt GPIOs, connected via backside solder
jumpers; ()† denotes 2 possible SPI0 SS connections, 1 of which must be selected via a backside solder jumper
(default is SPI0_CE0).
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- SD1 is a 50MHz SD/SDIO standard channel for interfacing with secondary SD cards, eMMC, wifi, etc,
- ARM is a universal 6-pin JTAG debugging channel, with adaptive clocking via a Return TCK channel,
- ALT3 mode on BCM8 - BCM11 (on the RPi4) provides slave mode SPI or I2C, denoted here SPIs and I2Cs,
- PWM0/1 are hardware-generated (on the RPi) PWM channels, and GPCLK0/1/2 are gerneral purpose clocks.

Which function is selected on any given pin is configured by the corresponding {ALT0, ALT3, ALT4, ALT5}
flag. [As explained at elinux.org, other features not shown (on ALT1 and ALT2) relate primarily to a secondary
memory interface and a parallel display interface, neither of which can be used with the Raspberry Beret.]

BCM pin ALT0 ALT3 ALT4 ALT5 Beret name SHIM pin
0 (res) 27 I2C0_SDA - - - ID_SDA I2C0 3
1 (res) 28 I2C0_SCL - - - ID_SCL I2C0 4
GPIO2 3 I2C1_SDA - - - I2C1 3
GPIO3 5 I2C1_SCL - - - I2C1 4
GPIO4 7 GPCLK0 SPI4_CE0 UART3_TX I2C3_SDA mb_G0 GPIO 3
GPIO5 29 GPCLK1 SPI4_MISO UART3_RX I2C3_SCL mb_G1 GPIO 4
GPIO6 31 GPCLK2 SPI4_MOSI UART3_CTS I2C4_SDA mb_G2 GPIO 5
GPIO7∗ 26∗ SPI0_CE1 SPI4_SCLK UART3_RTS I2C4_SCL mag_INT∗/SPImb_SS† GPIO 6∗

GPIO12∗ 32∗ PWM0 SPI5_CE0 UART5_TX I2C5_SDA bar_INT_DRDY∗ GPIO 7∗

GPIO13∗ 33∗ PWM1 SPI5_MISO UART5_RX I2C5_SCL imu_INT1_DRDY∗ GPIO 8∗

GPIO10 19 SPI0_MOSI SPIs_MOSI UART4_CTS I2C5_SDA SPImb_MOSI SPI0 3
GPIO9 21 SPI0_MISO SPIs_MISO UART4_RX I2C4_SCL SPImb_MISO SPI0 4
GPIO11 23 SPI0_SCLK SPIs_SCLK UART4_RTS I2C5_SCL SPImb_SCK SPI0 5
GPIO8 24† SPI0_CE0 SPIs_CE UART4_TX I2C4_SDA SPImb_SS† SPI0 6†
GPIO14 8 UART0_TX SPI5_MOSI UART5_CTS UART1_TX UART0 3
GPIO15 10 UART0_RX SPI5_SCLK UART5_RTS UART1_RX UART0 4
GPIO20 38 PCM_DIN SPI6_MOSI SPI1_MOSI GPCLK0 SPI1 3
GPIO19 35 PCM_FS SPI6_MISO SPI1_MISO PWM1 SPI1 4
GPIO21 40 PCM_DOUT SPI6_SCLK SPI1_SCLK GPCLK1 SPI1 5
GPIO18 12 PCM_CLK SPI6_CE0 SPI1_CE0 PWM0 SPI1 6
GPIO16 36 - UART0_CTS SPI1_CE1 UART1_CTS SPI1 7
GPIO17 11 - UART0_RTS SPI1_CE2 UART1_RTS SPI1 8
GPIO24 18 SD0_DAT0 SD1_DAT0 ARM_TDO - SDIO 3
GPIO25 22 SD0_DAT1 SD1_DAT1 ARM_TCK SPI4_CE1 SDIO 4
GPIO26 37 SD0_DAT2 SD1_DAT2 ARM_TDI SPI5_CE1 SDIO 5
GPIO27 13 SD0_DAT3 SD1_DAT3 ARM_TMS SPI6_CE1 SDIO 6
GPIO22 15 SD0_CLK SD1_CLK ARM_TRST I2C6_SDA SDIO 7
GPIO23 16 SD0_CMD SD1_CMD ARM_RTCK I2C6_SCL SDIO 8

Table 5.9: Alternative functions of each of the 28 digital i/o pins on the RPi header, and the corresponding Beret
names (if any). Italics indicate functions that are available on the RPi4 only. As in Table 5.8, indicated are GPIO,
UART, I2C, SPI, SDIO channels, as well as PWM and GPCLK functions with, as before, boldface indicating
default connections, and ()∗ and ()† indicating optional connections, between the Beret and the RPi. BCM pins
0 through 8 have default pull up resistors, and BCM pins 9 through 27 have default pull down resistors. Data
from the RPi v4 datasheet, elinux.org, and the RPi forums. Note that {SPIs_MOSI, SPIs_SCLK } on the RPi4 (pins
19 and 23 in ALT3 mode) can also function as {I2Cs_SDA, I2Cs_SCL }.
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As indicated by Table 5.9, the RPi4 (when NOT connected to the Beret) can simultaneously operate, e.g.:

• 4 UART channels: UART0/3/4 (w/ HFC) and UART5 (w/o HFC), or
• 4 SPI channels (w/ 8 total SS lines): SPI0 (w/ CE0), SPI1 (w/ CE0/1/2), and SPI4/5 (each w/ CE0/1), or
• 6 I2C channels: I2C1/3/4/5/6, plus (in slave mode) I2Cs [in addition to I2C0, reserved for the EEPROM], or
• mix A: UART1 (w/ HFC), UART4/5 (w/o HFC), SPI4/6 (each w/ CE0/1), and I2C1/5/6, or
• mix B: UART0 (w/o HFC), SPIs (in slave mode), SPI4 (w/ CE0), SPI1 (w/ CE0/1/2), I2C1, PWM0/1, SD1.

When an RPi2, RPi3, RPi4, or RPi Zero is fully connected via the RPi Header to a Beret, including the MB SPI
channel, theMB ID I2C channel, the interrupt connections {imu_INT1_DRDY, bar_INT_DRDY,mag_INT}, and
the GPIOs {mb_G0,mb_G1,mb_G2}, the RPi still has 16 unused BCM channels available on the RPi Header.
These channels can be used as GPIOs or, alternatively, can simultaneously operate, e.g.:

• I2C1, UART0 (w/o HFC), SPI1 (w/ 3 available SS lines), and either SD1 or JTAG.

If using an RPi4, and/or not using one or more of the (optional) sensor interrupt (INT) connections mentioned
above, various alternative channels and functions also become available if needed, as shown in Table 5.9.

In summary, even though the RPi Berets connect to up to 10 of the BCM2 to BCM27 channels on the RPi
Header, in addition to the ID pins on BCM0/1, substantial connectivity options remain for connecting the RPi to
other boards or devices. Further, using different SS pins on the SPI0 channel for each board, and programming
the {mb_G0,mb_G1,mb_G2} channels appropriately, two RPi Berets can be directly attached to a single RPi
using COTS RPi HAT stacking solutions (see, e.g., here).

As discussed further in the paragraph below, convenient MB header breakout SHIMs, which may be used
even when one or more Beret(s) are attached to the MB, are available separately, and may be used to break out
the additional functionality on the MB header discussed above onto standard Recon connectors.

MBHeader Breakout SHIM. A small SHIM is under development to conveniently break out all 28 BCM pins
of the RPi Header, one functional group at a time, in Recon order, in addition to incorporating an SD card
holder and a multichannel LED display driver. TODO: include further explanation and a pic of this SHIM, once
available. Warning: Though the MB Header breakout JSTs on this SHIM can provide 3.3V or 5V power, as
selected via backside power jumpers, they operate at 5V TTL, not 3.3V TTL, so any devices connected to the
JSTs on this SHIM must be 5V tolerant.

ID EEPROM. On the RPi Berets, the UDFN8 version of the (32 Kb) CAT24C32 EEPROM is used for board
identification, programmed as described in the RPi HAT ID EEPROM spec. The 7-bit address used for this
EEPROM is 101 0000b (0x50h) by default, as required by this spec; however, the last bit of this device’s I2C
address may be changed, via a backside solder jumper, to 3.3V or GND, thus enabling the use of either 0x50h
or 0x51h as the ID EEPROM address on these Berets, and making the connection of two Berets to a single RPi
straightforward (using an RPi header extension cable) while keeping both of the ID EEPROMs of the connected
Berets individually readable. Note that the write protect (WP) pin on the EEPROM is by default connected to
3.3V (read only), but this may also be switched to GND (to enable write mode) via a backside solder jumper.
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5.9.2 96B-compatible MBs
As shown in Table 5.10, the 2x20 header on 96Bmotherboards has 2 pins over which Vmb= 8V to 18V power may
be provided to the 96B motherboard by connected daughterboards (aka mezzanines, e.g. the Black Beret),
1 pin over which 5V power (regulated by the 96B motherboard) may be picked up by connected mezzanines,
1 pin over which 1.8V power (regulated by the 96B motherboard) may be picked up by connected mezzanines,
4 GND pins, and 32 other pins, arranged in a rather well-structured order by their primry functions as defined
by the MCU on the 96B motherboard. The pins on this header that are connected to the Black Beret are also
indicated in Table 5.10. Warning: All digital pins on the 96B header operate at 1.8V TTL, and thus must usually
be level shifted on attached mezzanines (e.g. to be used by 3.3V MCUs, as implemented on Berets).

MBHeader Breakout SHIM. The pins on the 96B Header (Table 5.10) are logically ordered by their associated
functions. A SHIM designed to level shift these functions to (5V tolerant) 3.3V TTL, and present these functions
on JSTs in Recon order (with associated power/GND pins) will be developed if sufficient interest is expressed.

ID EEPROM.On the 96B Beret, the UDFN8 version of the (1Mb) CAT24M01WI-GT3 EEPROM is used for board
identification, programmed (for the moment) as described in §5.9.1 (as for the RPi Berets); the programming of
this (larger-capacity) EEPROM is subject to change during the next rev of the 96BMezzanine Design Guidelines.

Beret name function pin pin function Beret name
GND GND 1 2 GND GND

UART0_CTS 3 4 PWR_BTN_N
UART0_TxD 5 6 RST_BTN_N
UART0_RxD 7 8 SPI0_SCLK SPImb_SCK
UART0_RTS 9 10 SPI0_DIN SPImb_MISO
UART1_TxD 11 12 SPI0_CS SPImb_CS0
UART1_RxD 13 14 SPI0_DOUT SPImb_MOSI

ID_SCL I2C0_SCL 15 16 PCM_FS
ID_SDA I2C0_SDA 17 18 PCM_CLK

I2C1_SCL 19 20 PCM_DO
I2C1_SDA 21 22 PCM_DI

mb_G0 GPIO-A 23 24 GPIO-B
mb_G1 GPIO-C 25 26 GPIO-D
mb_G2 GPIO-E 27 28 GPIO-F

mag_INT∗ GPIO-G 29∗ 30 GPIO-H
bar_INT_DRDY∗ GPIO-I 31∗ 32 GPIO-J
imu_INT1_DRDY∗ GPIO-K 33∗ 34 GPIO-L

1V8 35 36 SYS_DCIN Vmb
5V 5V 37 38 SYS_DCIN Vmb

GND GND 39 40 GND GND

Table 5.10: Primary functions corresponding to each pin on the 2x20 header of the 96B format, along with the
corresponding net name (if any) on the Black Beret, indicating PWR, GPIO, UART, I2C, and SPI. Boldface
indicates channels that are connected by default to the Beret. ()∗ denotes 3 optional interrupt GPIOs, attached
to the header via backside solder jumpers.
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5.9.3 BB-compatible MBs
As shown in Tables 5.11 and 5.12, the 2x23 header on BBmotherboards has 2 pins over which a Vmb≈ 5V power
supply may be provided to the BB motherboard by connected daughterboards (aka capes, e.g. the White
Beret), 2 pins over which 5V power (regulated by the 96B motherboard) may be picked up by connected capes,
2 pins over which 5V power (regulated by the BB motherboard) may be picked up by connected capes, 6 GND
pins, and 34 other pins with various digital and analog functions. The pins on this header that are connected
to the White Beret are also indicated in Tables 5.11 and 5.12.

MB Header Breakout SHIM. The pins on the BB Header (Tables 5.11 and 5.12) are generally clustered by
their associated functions. A SHIM designed to present these pins on JSTs in Recon order (with associated
power/ground pins) will be developed if sufficient interest is expressed.

ID EEPROM. On the BB Berets, the UDFN8 version of the (32 Kb) CAT24C32 EEPROM (as also ued on the RPi
Berets) is used for board ID, programmed as described, e.g., in this BB ID EEPROM programming tutorial.

Beret name alt. function PWR/GPIO pin pin PWR/GPIO alt. function Beret name

GND - DGND 1 2 DGND - GND
- 3.3V 3 4 3.3V -

Vmb - VDD_5V 5 6 VDD_5V - Vmb
- SYS_5V 7 8 SYS_5V -

PWR_BTN - 9 10 - SYS_RESET
UART4_RX GPIO_30 11 12∗ GPIO_60∗ - mag_INT∗

UART4_TX GPIO_31 13 14∗ GPIO_40∗ PWM1A bar_INT_DRDY∗

- GPIO_48 15 16∗ GPIO_51∗ PWM1B imu_INT1_DRDY∗

SPImb_SS SPI0_CS0 GPIO_4 17 18 GPIO_5 SPI0_D1 SPImb_MISO
ID_SCL I2C2_SCL - 19 20 - I2C2_SDA ID_SCL

SPImb_MOSI SPI0_D0 GPIO_3 21 22 GPIO_2 SPI0_SCLK SPImb_SCK
mb_G0 - GPIO_49 23 24 GPIO_15 UART1_TX
mb_G1 - GPIO_117 25 26 GPIO_14 UART1_RX
mb_G2 - GPIO_125 27 28 GPIO_123 SPI1_CS0

SPI1_D0 GPIO_111 29 30 GPIO_112 SPI1_D1
SPI1_SCLK GPIO_110 31 32 VDD_ADC -
ADC_IN4 - 33 34 GND_ADC -
ADC_IN6 - 35 36 - ADC_IN5
ADC_IN2 - 37 38 - ADC_IN3
ADC_IN0 - 39 40 - ADC_IN1

- GPIO_20 41 42 GPIO_7 SPI1_CS1
GND - DGND 43 44 DGND - GND
GND - DGND 45 46 DGND - GND

Table 5.11: PWR function or GPIO number, and the “primary” alternative function, corresponding to each
pin on the 2x23 header on the BB Black, along with the corresponding net name (if any) on the White
Beret, indicating PWR, GPIO, UART, I2C, and SPI, as well as PWM and ADC functions (cf. Table 5.12 for the
corresponding numbering of the GPIO, UART, SPI, I2C, and PWM channels on the BB AI). Boldface indicates
channels that are connected by default to the Beret. ()∗ denotes 3 optional interrupt GPIOs, attached to the
header via backside solder jumpers.
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Beret name alt. function PWR/GPIO pin pin PWR/GPIO alt. function Beret name

GND - DGND 1 2 DGND - GND
- 3.3V 3 4 3.3V -

Vmb - VDD_5V 5 6 VDD_5V - Vmb
- SYS_5V 7 8 SYS_5V -

PWR_BTN - 9 10 - SYS_RESET
UART5_RX GPIO_241 11 12∗ GPIO_128∗ - mag_INT∗

UART5_TX GPIO_172 13 14∗ GPIO_121∗ PWM3A bar_INT_DRDY∗

- GPIO_76 15 16∗ GPIO_122∗ PWM3B imu_INT1_DRDY∗

SPImb_SS SPI2_CS0 GPIO_209 17 18 GPIO_208 SPI2_D0 SPImb_MISO
ID_SCL I2C4_SCL - 19 20 - I2C4_SDA ID_SCL

SPImb_MOSI SPI2_D1 GPIO_67 21 22 GPIO_179 SPI2_SCLK SPImb_SCK
mb_G0 SPI2_CS1 GPIO_203 23 24 GPIO_175 UART10_TX
mb_G1 - GPIO_177 25 26 GPIO_174 UART10_RX
mb_G2 - GPIO_111 27 28 GPIO_113 SPI3_CS0

SPI3_D1 GPIO_139 29 30 GPIO_140 SPI3_D0
SPI3_SCLK GPIO_138 31 32 VDD_ADC -
ADC_IN4 - 33 34 GND_ADC -
ADC_IN6 - 35 36 - ADC_IN5
ADC_IN2 - 37 38 - ADC_IN3
ADC_IN0 - 39 40 - ADC_IN1

- GPIO_180 41 42 GPIO_114 SPI3_CS1
GND - DGND 43 44 DGND - GND
GND - DGND 45 46 DGND - GND

Table 5.12: PWR function or GPIO number, and the “primary” alternative function, corresponding to each pin on
the 2x23 header on the BB AI, along with the corresponding net name (if any) on the White Beret, indicating
PWR, GPIO, UART, I2C, and SPI, as well as PWM and ADC functions (cf. Table 5.11 for the corresponding
numbering of the GPIO, UART, SPI, I2C, and PWM channels on the BB Black). Boldface indicates channels
that are connected by default to theMBHeader on the Beret. ()∗ denotes 3 optional interrupt GPIOs, connected
to the MB Header via backside solder jumpers on the Beret. Note in particular that, between the BB Black
pinout depicted in Table 5.11, and the BB AI pinout depicted here, the D0 & D1 nets are swapped on pins 18 &
21, and on pins 29 & 30; these swaps are easily accounted for in software.
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Figure 5.13: General layout of the Berets, as organized into quadrants.

Figure 5.14: (left) Stitching of Vin traces on layers 1 and 8. (right) Stitching of Vs1 traces on layers 1 and 4.

5.10 Layout

5.10.1 Overall organization and power flow

As indicated previously, it is convenient to refer to directions on the Berets in terms of directions on a compass.
As illustrated in Figure 5.13, the layout of the Berets is generally organized into four main quadrants:

• the Logic, Sensor, and ExpansionQuadrant, in the NE,
• the Connector Quadrant, split between the NW and SE,
• the PowerQuadrant, in the SW, and
• the Motor Quadrant, located just N of PowerQuadrant.

The bottom layer of the Power andMotorQuadrants is mostly large Power andGND pours, withmany “thermal
vias” connected to the (hot) undersides of the high-power components, for enhanced thermal radiation. Also,
short and wide traces are used for all high-current pathways. Stitching of overlying vias is performed across
multiple current-carrying layers for the highest-current pathways, including those taking Vin from the Power
Quadrant to the MotorQuadrant, as shown in Figure 5.14a, and those taking Vs1 from the PowerQuadrant to
the SE Connector Quadrant, as shown in Figure 5.14b.
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Logic & Connector Quadrants Power & MotorQuadrants
Layer Color Function Trace Directions Function copper oz/ft2

Top ■ Signal/ICs N-S, E-W Power/Signal/ICs 1.5
2 ■ GND (fills) Power 2
3 ■ Signal E-W Power/Signal 1
4 ■ GND/5V/Vs1 (fills) GND/5V/Vs1 2
5 ■ GND/5V/Vs1 E-W GND/5V/Vs1 1
6 ■ Signal N-S Signal 1
7 ■ 3.3V (fills) 3.3V 2

Bottom ■ Power/Signal N-S GND 1.5

Table 5.13: Eight-layer stackup used on the Berets, indicating the colors used in Figures 5.14, 5.16, and 5.17.

Figure 5.15: (left) Closeup of the SE corner of a Beret, illustrating the extensive use of via-in-pad techniques.
(center) Comparison of blind, buried, and through-hole vias. (right) Copper traces on one of the layers under
the BGA on a Beret, illustrating the removal of unnecessary annular rings, which gives substantially increased
clearance for breaking out the 8mm pitch BGA using 6 mil traces, 7 mil spaces, and through-hole vias only.

5.10.2 Layer stackup, signal routing, and high-density integration (HDI)

With some careful design effort (see in particular the stackup plan in Table 5.13), Berets achieve a remarkabe
high-density integration (HDI) of components and functionality in a very small footprint for an 8-layer board.
This is achieved, in part, by making extensive use of via-in-pad technology, which allows the placement of
solder pads for various components directly over vias, as illustrated in Figure 5.15a. The (per board, not per
instance) cost of implementing this modern (but by now fairly common) technology for HDI, which necessitates
plugging the vias and plating them over, is much less than the cost of traditional blind vias (exposed on only
one side of the PCB) and buried vias (not exposed on either side of the PCB), as illustrated in Figure 5.15b.
Indeed, all vias on the Berets are in fact the (much lower-cost) through-hole vias.

Careful tradeoffs were involved in the stackup design (Table 5.13). Layer thicknesses had to be made:

• sufficiently thin to use 6 mil traces, 7mil spaces, 6mil diameter vias, and 18 mil diameter annular rings to
break out the 8mm (31.5mil) pitch BGA (ball grid array) on the STM, and
• sufficiently thick to handle high current (up to 12A in places) where necessary.

A useful technique implemented to break out the BGA at this resolution was the removal of the (unnecessary)
annular rings on the (through-hole) vias under the BGA on layers in which these vias did not actually connect
to traces, as illustrated in Figure 5.15c. This resulted in increased clearance to route traces out from under the
BGA between the closely-spaced vias with, on any given layer, most of these annular rings removed.
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Layout of all 8 layers of the Raspberry Beret is illustrated in full in Figures 5.16-5.17. As indicated in Table
5.13, note that different thicknesses of copper are used on these different layers, based on their differing primary
functions, which is helpful to better handle the high-current traces/pours. Though this is a tad unusual, most
PCB fab facilities can accomodate this when fabricating PCBs at high volume.

To address the routing of the many crossed traces in the design, the following approach was followed:

• primarily N-S traces were isolated on layers 6 and 8 (see, e.g., the purple traces of Layer 6 in Figure 5.17), while
• primarily E-W traces were isolated on layers 3 and 5 (see, e.g., the green traces of Layer 5 in Figure 5.17).

Carefully selecting where such traces are joined (using vias) facilitated the “untangling” of the hundreds of nets
involved in the design.

5.10.3 EMI and signal-integrity considerations
Four primary techniques were used to maintain signal integrity on high-speed communication channels (SPI,
USART, I2C) and (simultaneously) to reduce the electromagnetic interference (EMI) generated by the board:

1. GND and/or Power planes were situated immediately next to each high-speed signal trace35.
2. Curved traces with no sharp corners were used everywhere.
3. Matched-length traces were used, on each layer, for the parallel traces associated with clocked high-speed
communication channels (e.g., MOSI, MISO, SCK), as illustrated, e.g., by the extra wiggles of the purple traces
in the NE corner of Layer 5 in Figure 5.17.
4. Power GND, which inevitably fluctuates some due to the strongly time-varying loads placed on it (associated
with the PWM generation used by the high-power components), was carefully isolated from Signal GND.

The use of modern ECAD software (Altium) was essential in order to implement techniques 2 and 3 above.

Figure 5.16: Layout of layers 1 and 2 of the Raspberry Beret (continued on next page).

35A high-speed signal is actually mostly carried in the space between the trace and the corresponding reference layer, not along the
trace itself, so the close proximity of such reference layers is essential in order to not turn your PCB into a radio unintentionally!
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Figure 5.17: Layout of layers 3 through 8 of the Raspberry Beret (continued from previous page).
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manufacturer part description $ R r K W G B §

TI DRV8912-Q1 motor drivers 2.42 2 1 2 2 0 1 5.3
TI CSD18510Q5B power MOSFET 0.75 1 1 1 1 1 1 5.2.3
TI LM74700-Q1 ideal diode controller 0.62 1 1 1 1 1 1 5.2.3

TI TPS56637 Vin->Vs1, Vin->Vmb Vregs 1.32 2 2 2 2 2 2
{5.2.4
5.2.5
5.2.6

TI TI TPS6208833 Vmb->3.3V switching Vreg 1.10 1 1 0 1 0 0 5.2.7
TI TI TPS62913 Vmb->3.3V switching Vreg 1.10 0 0 1 0 0 0 5.2.7
TI TS5A3359 Venc mux (3:1+off) 0.34 1 1 1 1 1 1 5.2.9
TI TXB0108DQSR 8 channel 5V - 3.3V level shifter 0.39 1 0 1 1 0 0 5.5
TI TCA6507 LED driver 0.40 1 1 1 1 1 1 5.5
TI THVD1452 RS485 transceiver 1.003 1 0 1 1 1 0 5.6.4
TI TCAN334GDCNR CAN-FD transceiver 1.114 1 0 1 1 1 0 5.6.4
TI SN74CBTLV3257 RS485-UART mux 0.200 1 0 1 1 1 0 5.6.4

TI ALM2402-Q1 power opamps (DAC1, DAC2, Vs2, user) 1.13 2 0 2 2 2 2

{5.7.1
5.7.1
5.7.3

TI TLV9002 dual mini opamp (low-pass filters) 0.21 1 0 1 1 1 1 5.7.2

TI TPL0102-100 digital pots (Vs1, Vs2, ωc1a/b, ωc2a/b) 0.60 3 1 3 3 3 3

{5.2.4
5.7.1
5.7.2

TI TMUX1208 Vmon mux (8:1+off) 0.32 2 2 2 2 0 0 5.7.4
TI TS5A23166 Vmon SPDT switch 0.24 1 1 1 1 0 0 5.7.4
TI TMUX1204DQAR Vmon 4:1 switch 0.09 0 0 0 0 1 1 5.7.4

ST STM32G474VEH6 microprocessor with 512KB Flash 4.488 1 0 1 1 1 1 5.5
ST STM32G474VBH6 microprocessor with 128KB Flash 3.521 0 1 0 0 0 0 5.5
ST LIS3MDLTR 3-axis magnetometer 0.714 1 1 1 1 1 1 5.4
ST LPS22HB barometer 1.28 1 1 1 1 1 1 5.4

TDK ICM-42688-P 6-axis IMU 2.997 1 1 1 1 1 1 5.4

NXP PCAL6524HEHP GPIO expander 0.825 1 1 1 1 0 0 5.5

SiTIME SIT1532AC 32.7680 kHz oscillator (STM RTC & IMU) 0.60 1 1 1 1 1 1
{5.5.1
5.4

ON CAT24C32HU4I-GT3 32 Kb I2C EEPROM 0.276 1 1 0 1 0 0 5.9.1
ON CAT24M01WI-GT3 1Mb I2C EEPROM 0.523 0 0 1 0 0 0 5.9.2

Table 5.14: BOM Part A: primary components of the Ras , Red , Black , White , Green , Blue Berets
(R, r, K, W, G, B). Identifying components by the underlined abbreviated names is convenient.

5.11 Bill Of Materials (BOM)
The Bill Of Materials of the Raspberry Beret is listed in Tables 5.14-5.15. A complete BOM, including all minor
components (including, e.g., all of the small 0402 discrete resistors and capacitors) are listed in the Altium
viewer for the project, available online at http://dynamics.ucsd.edu/berets. Some commonly-needed add-on
components are listed in Table 5.16. Random notes and questions:
1. The custom 7-pin XH-compatible has a slot cut out of one side of a JST-XH, so 3-pin to 6-pin connectors can
be plugged in as well. We need to find someone to manufacture that for us. See the Revolectrix SPA Single Port
Safe Parallel Adapter and the ISDT PC-4860 1S-6S Lipo Battery Charger for examples.
2. Do we need common-mode chokes for Electro Magnetic Interference (EMI) filtering on USB, RS485, or CAN?
This post says it degrades USB signal quality, but might be necessary to pass FCC Title 47 CFR Part 15. This
post discusses it for CAN. For RS485 and CAN, maybe we can leave places for it off of the Beret, out on the
enclosure bulkhead (next to the spot for the optional TVS diodes; see §5.6.4).
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manufacturer part description $ R r K W G B §

Littelfuse SMBJ33CA main TVS diode for Vin spikes 0.140 1 1 1 1 1 1 5.2.3
ON 1SMA5928BT3G 13V zener diode for 12V spikes 0.0924 1 1 2 1 1 1 5.2.3
ON 1SMA5919BT3G 5.6V zener diode for 5V spikes 0.0924 1 1 1 1 0 0 5.2.3
ON 1SMA5914BT3G 3.6V zener diode for 3.3V spikes 0.0924 1 1 1 1 1 1 5.2.3
ST BAT60JFILM 10V Schottky for USB 5V protection 0.0363 1 1 1 1 1 1 5.2.3
TI TPD6E004 ESD diode arrays for USB, S1-S10 0.16 2 2 2 2 2 2 5.2.3

Bourns SRP5050FA-5R6M 5.6µH (7.2A) inductors on Vs1, Vmb 0.533 2 2 2 2 2 2
{5.2.4
5.2.5

Vishay Dale IHHP0806ABERR22M01 220 nH (5.3A) inductor on 3.3V 0.148 1 1 0 1 1 1 5.2.7
Coincraft XGL4030-472 4.7µH (3.2A) inductor on 3.3V 0.49 0 0 1 0 0 0 5.2.7

Chemi-Con EMZR350ARA101MF61G 100 µF bulk cap on Vin 0.220 1 1 1 1 1 1 5.2.4
Samsung CL21A226MAYNNNE 22µF output caps on Vs1 0.0716 3 3 3 3 3 3 5.2.4
TDK C3216X5R0J686M160AB 68µF output cap on Vmb 0.2871 1 1 0 1 0 0 5.2.5

Taiyo-Yuden EMK316BBJ476ML-T 47µF output cap on Vmb 0.2210 0 0 1 0 0 0 5.2.5
Samsung CL10A226MQ8NRNE 22µF output cap on 3.3V 0.0527 1 1 0 1 1 1 5.2.7
Murata GRM188R60J476ME15D 47µF output cap on 3.3V 0.1493 0 0 1 0 0 0 5.2.7

Panasonic EXB-28V820JX 82 Ω 4RA for {B,G} LEDs, S1-S10 0.0084 1 1 1 1 1 1 5.2.3
Panasonic EXB-24V820JX 82 Ω 2RA for {B,G} LEDs, S1-S10 0.0105 1 1 1 1 1 1 5.2.3
Panasonic EXB-28V221JX 220 Ω 4RA for {A,Y,R,R/G} LEDs 0.0084 1 1 1 1 1 1 5.2.3
Panasonic EXB-24V221JX 220 Ω 2RA for {A,Y,R,R/G} LEDs 0.0105 1 1 1 1 1 1 5.2.3

Inolux IN-S42BTR red LED (stoplight) 0.0606 1 1 1 1 1 1 5.6.8
Inolux IN-S42BT5Y yellow LED (stoplight) 0.0707 1 1 1 1 1 1 5.6.8
Inolux IN-S42BT5G green LED (stoplight) 0.0818 1 1 1 1 1 1 5.6.8

Kingbright APHB1608LZGKSURKC bicolor LEDs (power gauge) 0.2282 3 3 3 3 3 3 5.6.8
Inolux IN-S42BT5B blue LEDs (enable status) 0.0873 6 5 6 6 2 2 5.6.8
Inolux IN-S42BT5A amber LEDs (fault status) 0.0707 3 3 3 3 2 2 5.6.8

C&K PTS815-SJM-250-SMTR white buttons (pause, mode) 0.111 2 2 2 2 2 2 5.6.8
C&K PTS815-SJG-250-SMTR black button (reset) 0.143 1 1 1 1 1 1 5.6.8

Amass XT30PW-M sideways XT30 (main power in) 0.500 1 1 1 1 1 1 5.2.1
custom custom custom 7-pin XH (Balance) cost? 1 1 1 1 0 0 5.7.4
4Ucon 01056 3x5 0.1” male (SIGa, SIGb) 0.0422 2 1 2 2 2 1 5.6.2
4Ucon 11071 USB Micro-B female 0.0795 1 1 1 1 1 1 5.6.9

4Ucon 00532
{1x9 0.1” female for
Analog, SPI, I2C Headers

0.0625 3 2 3 3 3 3 5.8

JST B8B-ZR-3.4(LF)(SN) 8-pin JST-ZH for USART 0.171 1 1 1 1 1 1 5.6.5

JST B6B-ZR-3.4(LF)(SN)
{6-pin JST-ZH for M4-5-6,
M7-8-9, E1-2, E3-4, E6-7

0.131 5 3 5 5 2 3
{5.3
5.6.1

JST B4B-ZR-3.4(LF)(SN)
{4-pin JST-ZH for M2-3,
M10-11, E5 RS485/UART

0.096 4 2 4 4 2 3

{5.3
5.6.1
5.6.4

JST B2B-ZR-3.4(LF)(SN) 2-pin JST-ZH for M1, M12, CAN 0.072 3 1 3 3 1 1 5.6.5
4Ucon 20565 2x20 0.1” stackable RPi header 0.4139 1 1 0 0 0 0 5.9.1
4Ucon 00324 pins too short? 2x20 2mm 96B header 0.4139 0 0 1 0 0 0 5.9.2
4Ucon 20582 2x23 0.1” stackable BB header 0.4139 0 0 0 1 0 0 5.9.3

Table 5.15: BOM Part B: secondary components for the Ras , Red , Black , White , Green , Blue Berets
(R, r, K, W, G, B). This table still under construction.
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https://www.digikey.com/product-detail/en/inolux/IN-S42BT5A/1830-IN-S42BT5ATR-ND/10384757
https://www.mouser.com/ProductDetail/CK/PTS815-SJM-250-SMTR-LFS?qs=ahcBuItHZ3xKWmfV%2F2E6bA%3D%3D
https://www.mouser.com/ProductDetail/CK/PTS815-SJG-250-SMTR-LFS?qs=ahcBuItHZ3yjoEmU1Oppnw%3D%3D
https://www.tme.eu/en/details/xt30pw-m/dc-power-connectors/amass/
http://4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=01056
http://4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=11071
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=00532
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B8B-ZR-3-4-LF-SN/B8B-ZR-3-4-LF-SN-ND/7802276
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B6B-ZR-3-4-LF-SN/B6B-ZR-3-4-LF-SN-ND/7802275
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B4B-ZR-3-4-LF-SN/B4B-ZR-3-4-LF-SN-ND/7802273
https://www.digikey.com/product-detail/en/jst-sales-america-inc/B2B-ZR-3-4-LF-SN/B2B-ZR-3-4-LF-SN-ND/7802271
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=20565
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=00324
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=20582
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manufacturer part description $ # § usage notes

Panasonic VL1220/FCN rechargeable 3V coin cell 4.03 1 5.2 with SMT bracket (solder on backside)
{Winbond
Winbond
GigaDevice

W25Q64JVZEIQ
W25N512GVEIG
GD5F1GQ4UFYIGR

8MB 133MHZ
64MB 166MHz
128MB 120MHz

1.053
1.95
3.05

}
1 5.5.2 QSPI Flash (solder on backside)

4Ucon 00812 1x9 0.1” male 0.0207 3 5.6.2 mates with Analog, SPI, I2C headers
4Ucon 00526 1x5 0.1” female 0.0370 1 5.8 mates with first row of SigA header

Table 5.16: Commonly-needed add-on components for Berets, including the rechargeable coin cell, flash mem-
ory, and connectors for Beret Shields. Prices quoted are for single unit quantities as of Spring 2021, except
for the 4Ucon connectors, which are quoted for quantities of 1000. The components used for CAN and RS485
termination (also an optional add-ons) are standard 0804 resistors and capacitor (see §5.6.4), solder footprints
for which are provided on the back of the Berets. This table still under construction.

5.12 Schematics

A shared schematic arrangement is used to define the six Berets. The Raspberry Beret, which was designed
first, uses eleven schematic sheets (included as the following eleven pages of this datasheet):

1. Master_Raspberry (the main datasheet that connects all others for the Raspberry Beret; see §5.1),
2. Power (defines the wiring of the various voltage regulators on the PCB; see §5.2),
3. Motors (defines the wiring of the DRV8912-Q1 motor drivers; see §5.3),
4. Sensors (defines the wiring of the IMU, magnetometer, and barometer; see §5.4),
5. MCU (defines the pinouts of the STM32, GPIO expander, Level Shifter, Flash, and OSC32; see §5.5),
6. Connectors (defines the wiring of most of the connectors on the PCB; see §5.6),
7. Signal_Headers (defines the wiring of the Signal Headers; see §5.6.2),
8. UI (i.e., User Interface, defines the wiring of the buttons and LEDs; see §5.6.8),
9. Analog (defines the wiring of the analog subsystem; see §5.7),
10. Vmon (defines the wiring of the voltage monitoring circuit; see §5.7.4), and
11. Header_RPi (defines the wiring to the RPi header; see §5.9.1).
Note that the Red Beret is a variant of the Raspberry Beret, using the same PCB (and, thus, the same
schematics), but with a lower-cost STM32G4, and several components flagged Do Not Populate (DNP). Eleven
alternative schematic sheets are also defined, with different functionality implemented (generating Vmb= 12V
instead of Vmb = 5V, etc), as listed here:

1a. Master_Black,
1b. Master_White,
1c. Master_Green,
1d. Master_Blue,
2a. Power_12V_MB,

2b. Power_No_MB,
5a. MCU_No_GPIO_Expander,
6a. Connectors_Black,
6b. Connectors_Green,
6c. Connectors_Blue,

10a. Vmon_No_Balance,
11a. Header_96B,
11b. Header_BB.

The other Berets are then defined using the following shared schematic sheet arrangement:

• Schematic sheets {1a, 2a, 3, 4, 5, 6a, 7, 8, 9, 10, 11a} define the Black Beret,
• Schematic sheets {1b, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11b} define the White Beret,
• Schematic sheets {1c, 2b, 4, 5a, 6b, 7, 8, 9, 10a} define the Green Beret.
• Schematic sheets {1d, 2b, 3, 4, 5a, 6c, 7, 8, 9, 10a} define the Blue Beret.

In this way, as the designs of the Berets are tweaked (changing resistor values in certain circuits, etc), the entire
set of PCBs in the Beret family can more easily inherit all the updates made, and thus be kept in sync.

5-53

https://www.digikey.com/product-detail/en/panasonic-bsg/VL-1220-FCN/P665-ND/2404070
https://www.digikey.com/product-detail/en/winbond-electronics/W25Q64JVZEIQ/W25Q64JVZEIQ-ND/5803997
https://www.digikey.com/product-detail/en/winbond-electronics/W25N512GVEIG/256-W25N512GVEIG-ND/12143334
https://www.digikey.com/product-detail/en/gigadevice-semiconductor-hk-limited/GD5F1GQ4UFYIGR/1970-1081-1-ND/9484830
http://4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=00812
http://www.4uconnector.com/online/SearchPro.asp?FormName=ProSearch&FormAction=search&s_GroupNo=&s_keyword=00526
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Part II

Theoretical Foundations





Chapter 6

Kinematics & Dynamics

The complete representation of a system’s configuration, and the derivation of the full equations of motion
governing how such a configuration evolves in time as a result of its initial motion, its internal connectivity,
its contact with the ground and other stationary structures, and the applied forces and torques, is in general
an involved and delicate subject. As a gentle introduction to this subject, in §6.1, we develop the equations of
motion of some very simple dynamic systems that are used as examples in the remainder of this text. However,
the reader is advised to not let the simple academic examples of §6.1 lull one into a false sense of complacency
regarding this important and difficult subject, which is introduced only briefly in the remainder of this chapter.

The general problem of defining a system’s configuration, and identifying the equations ofmotion governing
how such a configuration evolves in time, is generally divided into two distinct subproblems. Kinematics is the
study of properties of motion, such as the inherent relationships between linear & angular positions, velocities,
and accelerations in different reference frames, and the constraints imposed by various types of contact between
solid bodies. Dynamics is the study of the actual equations governingmotion, including the effects of the forces
and torques applied to a system. This chapter briefly considers both subjects. The presentation is inherently
3D, with essentially 2D problems treated as special cases.

We begin with the notion of a particle: that is, a body with mass whose dimensions are sufficiently small
(compared with the rest of the system being considered) that its rotation may be neglected when modeling its
motion. In this case, the problem of kinematics is essentially trivial: in Cartesian coördinates in 3D, the position
of a particle is denoted by a vector1 r⃗ ∈ R3, its velocity v⃗ = dr⃗/dt, and its acceleration2 a⃗ = dv⃗/dt = d2r⃗/dt2.
The position of N particles in 3D is thus specified by s = 3N coördinates (a.k.a. degrees of freedom). Any
s quantities qi for i = 1, . . . , s (collectively, q) which uniquely specify the configuration of a system (e.g., in
coördinate systems other than Cartesian) are referred to as generalized coördinates, and their derivatives q̇i
generalized velocities.

In §6.2, the dynamics of a system of N interacting particles is derived, starting from two basic axioms:

A. If the (Cartesian or generalized) coördinates and velocities (collectively, the state) of a mechanical system
is specified, its subsequent motion can be calculated; that is, the accelerations q̈i may be determined
uniquely from the coördinates qi and the velocities q̇i, and thus the system may be marched in time with
any of a variety of ODE time marching methods, such as the RK4 method discussed briefly in §7.

B. The motion of a mechanical system is characterized by a principle of least action (a.k.a. Hamilton’s
principle), in which an integral of some function of the coördinates and velocities is minimized.

1To disambiguate, we denote vectors defined inR3 with an arrow over the symbol, andmore general vectors (including quaternions,
introduced in §6.3.2.2) with boldface. Also, we sometimes denote differentiation with respect to time with a dot, e.g., q̇ = dq/dt.

2The quantity d3r⃗/dt3 is called the jerk, and the quantity d4r⃗/dt4 is sometimes called the jounce; alternatively, the quantities
d4r⃗/dt4, d5r⃗/dt5, and d6r⃗/dt6 are sometimes humorously referred to as snap, crackle, and pop.
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From these axioms, via a formulation known as Lagrangian mechanics, the laws of classical mechanics
are derived; note that classical mechanics neglects the relativistic effects that arise when the characteristic
velocities are a significant fraction of the speed of light3. The consequences of homogeneity and isotropy of the
equations of motion, in both space and time, are also considered, leading to the conservation of momentum,
angular momentum, and energy, and to the reversibility of trajectories in the absence of frictional losses.

In §6.3, we discuss the notion of a solid body, first by approximation as several particles rigidly connected
by massless rods, then by passing to the limit as the number of particles approaches infinity. In both cases,
it is shown that the dynamic properties of a solid body is characterized completely by its total mass and its
inertial tensor, both of which are easy to compute. The configuration of a solid body is specified uniquely by the
position of its center of mass together with its orientation, the latter of which may be described as a rotation
of the body, as specified by three degrees of freedom, from some reference orientation. There are a number
of different ways to describe the orientation of a body and how it changes in time; this subject is somewhat
delicate, and requires some care.

Once the notions of a solid body and its orientation and rotation are at hand, the equations governing the
dynamics of solid bodies are developed in §6.4, building from the dynamics of particles discussed previously.
This development includes the derivation of the equations of motion themselves, using various descriptions of
rotations and accounting for various types of contact, as well as a description the conservation of momentum,
angular momentum, and energy, and the consequences of these conservation properties.

6.1 The equations of motion of some simple physical systems
We now introduce a few simple mechanical, fluid, chemical, automotive, structural, and aerospace systems, and
develop the low-dimensional ODEs governing their dynamics. These canonical systems are considered further,
in the analysis and control settings, in the remainder of this text, and in the companion volume NR.

Example 6.1 A (linear) mass/spring/damper system

u1

m1

x1

Figure 6.1: The single mass/spring/damper system set up in Example 6.1.

Recalling Newton’s second law, f = ma where m is the mass of the body, f is the force applied to the body,
and a is the resulting linear acceleration of the body, the motion of the simple mass/spring/damper4 system
illustrated in Figure 6.1 is governed by

m1
d2x1
dt2

= u1 − k x1 − c
dx1
dt
, (6.1)

where x1 is the deflection of the mass from its rest position, u1 is the applied force, {m1, k, c} are constants, and
the spring and damper have been modeled as linear in the deflection and velocity, respectively.

Identifying a SISO model by taking the output of the system as y = x1, the input to the system as u = u1,
and defining a1 = c/m1, a0 = k/m1, and b0 = 1/m1, we may rewrite (6.1) in a standard input/output ODE

3Such relativistic effects occur, e.g., in the everyday setting of an electron moving along a wire, giving rise to themagnetic field.
4A.k.a. dashpot or shock absorber. Note that shock absorbers often exhibit significant nonlinear characteristics for large or fast

motions, in which case the linear model used here should be considered as only approximate.
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form as
d2y

dt2
+ a1

dy

dt
+ a0 y = b0 u. (6.2)

If the spring and damper are removed (k = c = 0), the system reduces to the double integrator d2y/dt2 = b0 u.
RecallingNewton’s second law of rotation, τ = Iαwhere I is the moment of inertia of the about the axis

of rotation, τ is the applied torque, and α is the resulting angular acceleration, analogous rotational systems are
easily identified that are governed by the same ODEs as those identified above. Hard disk read/write head/arm
assemblies are an important engineering example system that fit such a model. △
Example 6.2 A (linear) cascade mass/spring system with viscous friction

u1
m1

x1

u2

m2

x2

Figure 6.2: The cascade mass/spring system with viscous friction set up in Example 6.2.

The equations governing the motion of each mass in the cascade system illustrated in Figure 6.2 also follow
immediately from Newton’s second law:

m1
d2x1
dt2

= u1 − k1x1 + k2(x2 − x1)− µ1m1g
dx1
dt
, (6.3a)

m2
d2x2
dt2

= u2 − k2(x2 − x1)− µ2m2g
dx2
dt
, (6.3b)

where x1 and u1 are the deflection of and applied force on the first mass, x2 and u2 are the deflection of and
applied force on the second mass, {m1,m2, k1, k2, µ1, µ2} are constants, and g = 9.8m/sec2. Note that the linear
damping in this case is modeled as arising from the viscous friction between the blocks and the horizontal
surface, assuming this interface is lubricated; in this case, the friction force is accurately modeled as proportional
to both the weight of the respective block5 and the velocity of the relative motion at the interface (i.e., roughly
independent of the contact area!), and is of a sign that opposes this motion.

To manipulate a set of ODEs like (6.3) algebraically, it is convenient to first express it in operator form:
[
m1

d2

dt2
+ µ1m1g

d

dt
+ k1 + k2

]
x1 +

[
− k2

]
x2 = u1, ⇒ L1x1 + L2x2= u1, (6.4a)

[
− k2

]
x1 +

[
m2

d2

dt2
+ µ2m2g

d

dt
+ k2

]
x2 = u2, ⇒ L3x1 + L4x2= u2. (6.4b)

Identifying a SISOmodel by taking, for example, the output of the system as y = x2 and the input to the system
as u = u1 (and, for the moment, taking u2 = 0), we may thus rewrite (6.3) by subtracting L3 times (6.4a) from
L1 times (6.4b), noting that, e.g., L1L3x1 = L3L1x1, thus leading again to the standard ODE form:

(L1L4 − L3L2)x2 = −L3u1 ⇒ d4y

dt4
+ a3

d3y

dt3
+ a2

d2y

dt2
+ a1

dy

dt
+ a0 y = b0 u (6.5)

where a3 = (µ1 + µ2)g, a2 = k2/m2 + (k1 + k2)/m1 + µ1µ2 g
2, a1 = µ1g k2/m2 + µ2g (k1 + k2)/m1,

a0 = k1k2/(m1m2), and b0 = k2/(m1m2).
Finally, as in (6.2), note that there are more derivatives on the output y than there are on the input u in the

SISO ODE model given in (6.5); this property is essentially ubiquitous in mechanical systems with inertia, and
is discussed further in §8.2.3.1. △

5Or, the component of this weight normal to the interface if the interface is at an incline.
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Example 6.3 A (nonlinear) mass/elastic-conveyer-belt system with dry friction

(a)

L

w

m

y

φ

r

0 5 10 15 20 25 30 35 40 45
0

1

2

3

4

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30 35 40 45

(b)

y

dy

dt

t

(c)

Figure 6.3: (a) The elastic conveyer belt system, with dry friction, in Example 6.3. To simplify the analysis, we
assume thatw ≪ L and r ≪ L. The (b) position and (c) velocity components of the step response of this system
as a function of time are also shown; note the stick/slip behavior that results from the nonlinear friction model.
Note also that the frequency of the resulting jerks increases as the mass approaches the end of the belt.

We now consider the more problematical elastic conveyer belt system illustrated in Figure 6.3a.
In this system, the sections of the pretensioned elastic belt (that is, the “springs”) acting to pull the mass to

the left and right are effectively changing in “length” as the driven pulley, on the right end of the system, drags
the mass across the table to the right. The modeling of the force applied by the belt thus requires some care. We
first assume that the belt does not slip on the driven pulley and that the mass doesn’t slip on the belt, though
the idler pulley on the left end of the system is free to rotate and the belt, though it makes contact with the table
under the mass, and slides (with friction in the region of this contact patch) across the table. We will refer to the
“length” of the portion of the belt tending to pull the mass to the right as the distance from the mass directly to
the driven pulley, ℓ1 = L/2 − y, and the “length” of the portion of the belt tending to pull the mass to the left
as the distance from the mass to the driven pulley around the idler, ℓ2 = 3L/2 + y. For any given amount of
rotation of the driven pulley ϕ(t), measured in radians, there is a corresponding nominal position of the mass
y(t) at which the force applied by the pretensioned belt to the left and right sides of the mass is equal. The actual
position of the mass, y(t), may thus be written

y = y + y′ where y = r ϕ, (6.6a)

where y′(t) denotes the (small) perturbation of the mass from the nominal position y(t). The total force applied
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by the belt to the mass, which opposes the perturbation y′, is then given by

fbelt = −y′(k0/ℓ1 + k0/ℓ2) (6.6b)

where k0, the spring constant per unit length of the belt, is a constant.
The friction force ffriction caused by the dry contact of the portion of the belt under the mass with the table

is accurately modeled in two parts. If you have ever tried to push a heavy object without wheels across a level
surface6, you probably recall that it takes more force to get the object moving than it takes to keep it moving,
and that once the object is moving, the force required to keep it moving is approximately independent of the
speed at which it is moving (this latter property is know as Coulomb’s law). That is,
• if the velocity of the mass is zero (i.e., the system is stuck), the magnitude of the friction force ffriction

precisely matches the force applied to the mass by the belt, with a sign that opposes the force applied by the
belt, up to a maximum absolute value of µsmg, wheremg is the weight of the mass7,8, whereas
• if the velocity of the mass is nonzero (i.e., the system is unstuck), the magnitude of the friction force

ffriction is µkmg, with a sign that opposes the motion of the belt (and the mass that sits thereon), where µs is the
coefficient of static friction and µk is the coefficient of kinetic friction; thus,

ffriction =

{
−min(|fbelt|, µsmg) sgn (fbelt) if dy/dt = 0,

−µkmg sgn (dy/dt) if dy/dt ̸= 0.
(6.6c)

Typically, µs > µk; representative values9 of these two coefficients for a rubber belt and a metal surface are
µs ≈ 1.0 and µk ≈ 0.5.

The motion of the mass is thus governed by

m
d2y

dt2
= fbelt + ffriction, (6.6d)

where fbelt and ffriction are given above, with y = y′ = ϕ = 0 corresponding to the mass at the center of the
conveyer belt with no net force applied by the belt to the mass.

The motion that the above system exhibits is illustrated in Figure 6.3b-c; for the purpose of this numerical
simulation, we takem = 1 kg, r = 0.1 m, k0 = 500 N, and L = 10 m. This system may be simulated accurately
using, e.g., the standard RK4 technique (see §7); however, care must be taken in order to switch accurately
between the “stuck” and “unstuck” conditions. The code used to perform the simulation illustrated in Figure
6.3b-c is available as RR_Example_Conveyer_Belt.m.

The stick/slip behavior illustrated in Figure 6.3b-c is a nonlinear phenomenon that defies any reasonably
accurate linear approximation. Some physical systems are like this, with systems exhibiting dry friction being
particularly “sticky” to deal with. Fortunately, many10 “highly nonlinear”11 systems are not like this, and can be
treated adequately via linearization about an operating point of interest, as illustrated in the several examples
presented next. △

6Most students attempt this at least once when moving into or out of college and/or graduate school...
7This type of frictional force is often referred to as stiction.
8If the belt is at an angle θ from horizontal, the normal forcemg cos(θ) across the interface should be used instead.
9Tables of such coefficients, for different materials in contact, are broadly available on the web.
10Indeed, it is our experience that most control problems encountered in practice may be treated effectively with linear methods.
11The phrase “highly nonlinear”, like “mostly dead” and “very unique”, should be avoided in scientific writing.
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Example 6.4 A rolling cart system, and its linearization

cba

Figure 6.4: A simple second-order system in: (a) an unstable configuration with β < 0, (b) a neutrally-stable
configuration with β = 0, and (c) an oscillatory configuration with β > 0.

We now consider now the dynamics of a simple rolling cart, as shown in Figure 6.4, governed by

m
d2x

dt2
+ c

dx

dt
+mg sin

(dy
dx

)
= u, where y = β x2.

Combining these two equations, applying the identity sin(ϵ) = ϵ− ϵ3/3!+ . . ., and linearizing (i.e., performing
the necessary Taylor series expansions and, assuming x and u are small, neglecting all terms that are quadratic
or higher in x and/or u) leads to

d2x

dt2
+ a1

dx

dt
+ a0 x = b0 u where a1 =

c

m
, a0 = 2βg, b0 =

1

m
. △

Example 6.5 Inverted and hanging pendulum/cart systems, and their linearization
It is straightforward to derive the full nonlinear equations of motion of the inverted and hanging pendu-

lum/cart systems illustrated in Figure 6.5. Define Px and Py as the forces the pendulum exerts on the cart in
the e1 and e2 directions (and, thus, the cart exerts the opposite forces on the pendulum), x(t) as the horizontal
position of the cart, θ(t) as the angle of the pendulum (measured counterclockwise from upright), and r(t) as
a vector from a (stationary) coördinate system origin to the center of mass of the pendulum. Writing r(t) as a
function of x(t) and θ(t) (known as a kinematic relationship), differentiating twice, and reärranging gives

r = [x− ℓ sin θ ] e1 + [ ℓ cos θ ] e2, (6.7a)

d2r

dt2
=
[d2x
dt2
− ℓ cos θ d

2θ

dt2
+ ℓ sin θ

(dθ
dt

)2 ]
e1 −

[
ℓ sin θ

d2θ

dt2
+ ℓ cos θ

(dθ
dt

)2 ]
e2 (6.7b)

=
[
cos θ

d2x

dt2
− ℓ d

2θ

dt2

]
e⊥ −

[
sin θ

d2x

dt2
+ ℓ
(dθ
dt

)2 ]
e∥, (6.7c)

where e⊥ = e1 cos θ+e2 sin θ is the direction perpendicular to the pendulum, and e∥ = e2 cos θ−e1 sin θ is the
direction parallel to the pendulum (see Figure 6.5a). We then write Newton’s second law for the acceleration in
the e1 direction of the cart, and the pendulum, and Newton’s second law of rotation for the pendulum:

mc
d2x

dt2
= Px + u, (6.8a)

mp

[d2r
dt2
· e1
]
= mp

[d2x
dt2
− ℓ cos θ d

2θ

dt2
+ ℓ sin θ

(dθ
dt

)2 ]
= −Px (6.8b)

Ip
d2θ

dt2
= −Py ℓ sin θ − Px ℓ cos θ; (6.8c)

we are also interested in Newton’s second law for the acceleration of the pendulum in the e⊥ direction:

mp

[d2r
dt2
· e⊥

]
= mp

[
cos θ

d2x

dt2
− ℓ d

2θ

dt2

]
= −mp g sin θ − Py sin θ − Px cos θ. (6.8d)
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u
c

p

θ

x

e⊥
e‖

e1
e2

ℓ

Figure 6.5: Pendulum/cart systems: (a) schematic, (b) lab realization in the inverted configuration θ(t) ≈ 0
[see (6.10)], and (c) a large-scale realization in the hanging configuration θ(t) ≈ π [see (6.11)].

Note that {mp,mc} are the masses of the pendulum and cart, Ip is the moment of inertia of the pendulum about
its center of mass, ℓ is the distance from the center of mass of the pendulum to the point where it is pivotally
attached to the cart, and g is the acceleration due to gravity; all of these parameters are positive.

First combining (6.8a) and (6.8b), then combining (6.8c) and (6.8d), leads to the two nonlinear equations of
motion:

(mc +mp)
d2x

dt2
−mp ℓ cos θ

d2θ

dt2
+mp ℓ sin θ

(dθ
dt

)2
= u, (6.9a)

−mp ℓ cos θ
d2x

dt2
+(Ip +mp ℓ

2)
d2θ

dt2
−mp g ℓ sin θ = 0. (6.9b)

Linearization of this system is performed by taking x = x + x′, θ = θ + θ′, and u = u + u′ in (6.9), ex-
panding with Taylor series, multiplying out, applying the fact that the nominal condition {x, θ, u} is itself also
a solution of (6.9), and keeping only those terms which are linear in the perturbation (primed) quantities, as
terms that are quadratic or higher in the perturbations are negligible if the perturbations are sufficiently small.
Often, a nonlinear system is linearized about a stationary (a.k.a. equilibrium) nominal condition; such an equi-
librium condition might be stable, such as the hanging pendulum configuration with {x = 0, θ = π, u = 0},
or unstable, such as the inverted pendulum configuration with {x = 0, θ = 0, u = 0}. More generally,
the nominal condition about which small perturbations of a nonlinear system are modeled in a linearization
may also be an unsteady trajectory of the system considered, which we denote {x(t), θ(t), u(t)} for the prob-
lem considered in (6.9); this is called a tangent linear approximation of the equations of motion governing
perturbations {x′(t), θ′(t), u′(t)} of the system from the “target” nominal trajectory {x(t), θ(t), u(t)}.

Taking {x = 0, θ = 0, u = 0}, the linearized equations of motion of the inverted pendulum are

(mc +mp)
d2x′

dt2
−mp ℓ

d2θ′

dt2
= u′, (6.10a)

−mp ℓ
d2x′

dt2
+(Ip +mp ℓ

2)
d2θ′

dt2
−mp g ℓ θ

′ = 0. (6.10b)
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Taking {x = 0, θ = π, u = 0}, the linearized equations of motion of the hanging pendulum are

(mc +mp)
d2x′

dt2
+mp ℓ

d2θ′

dt2
= u′, (6.11a)

mp ℓ
d2x′

dt2
+(Ip +mp ℓ

2)
d2θ′

dt2
+mp g ℓ θ

′ = 0. (6.11b)

Finally, considering an unsteady nominal trajectory {x(t), θ(t), u(t)} gives

(mc +mp)
d2(x+ x′)

dt2
−mp ℓ cos(θ + θ′)

d2(θ + θ′)

dt2
+mp ℓ sin(θ + θ′)

(d(θ + θ′)

dt

)2
= u+ u′,

−mp ℓ cos(θ + θ′)
d2(x+ x′)

dt2
+(Ip +mp ℓ

2)
d2(θ + θ′)

dt2
−mp g ℓ sin(θ + θ′) = 0;

leveraging (B.52) and (B.53), multiplying out, applying the condition that {x(t), θ(t), u(t)} itself satisfies (6.9),
and keeping only those terms linear in the perturbation (primed) quantities then gives the tangent linear
approximation of the equations of motion governing perturbations of the pendulum system, {x′(t), θ′(t), u′(t)},
in the vicinity of any “target” nominal trajectory {x(t), θ(t), u(t)}:

(mc +mp)
d2x′

dt2
−mp ℓ cos(θ)

d2θ′

dt2
+mp ℓ

[d2θ
dt2

sin(θ) θ′ +
(dθ
dt

)2
(cos θ)θ′ + 2

dθ

dt
sin(θ)

dθ′

dt

]
= u′.

−mp ℓ cos(θ)
d2x′

dt2
+(Ip +mp ℓ

2)
d2θ′

dt2
−mp ℓ

[
g (cos θ) θ′ − d2x

dt2
sin(θ) θ′

]
= 0. △

Example 6.6 The Mobile Inverted Pendulum problem, and its linearization
The derivation of the equations of motion of the Mobile Inverted Pendulum (MIP; see Figure 6.6) is related to

that of the classical inverted pendulum (Example 6.5). Define Px and Py as the forces that the MIP body exerts
on the wheels in the e1 and e2 directions, x(t) as the horizontal position of the center of the wheels, ϕ(t) as the
angle of rotation of the wheels as they roll (measured counterclockwise from a reference position), θ(t) as the
angle of the MIP body (measured counterclockwise from upright, with−π/2 < θ(t) < π/2), and r(t) as a vector
from a stationary coördinate system origin to the center of mass of the MIP body. Writing r(t) as a function of
x(t) and θ(t), differentiating twice, and re"arranging again gives (6.7).

A motor is attached which applies an input torque τ that tends to rotate the body in one direction and the
wheels in the other. We assume for the moment that the two wheels of the vehicle move together (that is, the
vehicle isn’t turning), and that a stiction force between the wheels and the ground is generated such that the
wheels do not slip, and thus

r ϕ = x. (6.12)

We then write Newton’s second law for the acceleration in the e1 direction of the wheel centers and the center-
of-mass of the MIP body, and Newton’s second law of rotation for the MIP body and the wheels:

mw
d2x

dt2
= Px − f, (6.13a)

mb

[d2r
dt2
· e1
]
= mb

[d2x
dt2
− ℓ cos θ d

2θ

dt2
+ ℓ sin θ

(dθ
dt

)2 ]
= −Px, (6.13b)

Ib
d2θ

dt2
= −τ − Py ℓ sin θ − Px ℓ cos θ, (6.13c)

Iw
d2ϕ

dt2
= τ − r f ; (6.13d)
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b

w

θ

φ

e⊥
e‖ e1

e2

ℓ

Figure 6.6: MIP, a Mobile Inverted Pendulum; (a) schematic, (b) prototype, (c) toy product commercialized by
WowWee Robotics and the UCSD Coördinated Robotics Lab.

we are also interested in Newton’s second law for the acceleration of the MIP body in the e⊥ direction:

mb

[d2r
dt2
· e⊥

]
= mb

[
cos θ

d2x

dt2
− ℓ d

2θ

dt2

]
= −mb g sin θ − Py sin θ − Px cos θ. (6.13e)

Note that {mb,mw, Ib, Iw} are the masses and moments of inertia (about their respective centers of mass) of the
body and the sum of both wheels moving together, r is the radius of the wheels, ℓ is the distance from the center
of mass of the MIP body to the axis of rotation of the wheels, g is the acceleration due to gravity; all of these
parameters are positive. First combining (6.12), (6.13a), (6.13b) and (6.13d), then combining (6.13c) and (6.13e),
leads to the nonlinear equations of motion of the MIP:

[Iw + (mw +mb)r
2]
d2ϕ

dt2
+mb r ℓ cos θ

d2θ

dt2
−mb r ℓ sin θ

(dθ
dt

)2
= τ, (6.14a)

mb r ℓ cos θ
d2ϕ

dt2
+(Ib +mb ℓ

2)
d2θ

dt2
−mb g ℓ sin θ = −τ. (6.14b)

Linearization of this system is performed by taking ϕ = ϕ+ϕ′, θ = θ+ θ′, and u = u+u′ in (6.14), applying
the fact that the nominal condition {θ, ϕ, u} is itself also a solution of (6.14), and keeping only those terms
which are linear in the perturbation (primed) quantities.

Taking {ϕ = 0, θ = 0, u = 0}, the linearized equations of motion of the MIP about its upright state are

[Iw + (mw +mb)r
2]
d2ϕ′

dt2
+mb r ℓ

d2θ′

dt2
= τ ′, (6.15a)

mb r ℓ
d2ϕ′

dt2
+(Ib +mb ℓ

2)
d2θ′

dt2
−mb g ℓ θ

′ = −τ ′. (6.15b)

Considering an unsteady nominal trajectory {ϕ(t), θ(t), u(t)} and applying the same manipulations as before
gives the tangent linear approximation of the equations governing the perturbations {ϕ′(t), θ′(t), u′(t)} of the
MIP in the vicinity of the nominal trajectory {ϕ(t), θ(t), u(t)}:

[Iw + (mw +mb)r
2]
d2ϕ′

dt2
+mb r ℓ cos θ

d2θ′

dt2
+mb r ℓ

[
2 sin θ

dθ

dt

dθ′

dt
− sin θ

d2θ

dt2
θ′ + cos θ

(dθ
dt

)2
θ′
]
= τ ′,

mb r ℓ cos θ
d2ϕ′

dt2
+(Ib +mb ℓ

2)
d2θ′

dt2
−mb g ℓ (cos θ) θ

′ +mb r ℓ sin θ
d2ϕ

dt2
θ′ = −τ ′. △
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Example 6.7 A (linear) temperature bath system with a transport delay

bath
outf

stirrer

valve
pipe outlet

50◦ C hot water source

10◦ C chilled water source

Figure 6.7: The temperature bath system set up in Example 6.7. The valve allows an adjustment of the flow
temperature between Tvalve,min = 10◦ C and Tvalve,max = 50◦ C, and maintains a constant flow rate of dV/dt = 6
liters per minute in the inflow pipe; the wastewater flows out from the bath at precisely the same rate. The
volume of fluid in the inflow pipe and the bath at any given time are Vpipe = 1.2 liters and Vbath = 20 liters. We
assume further that (i) the inflow pipe is perfectly insulated, (ii) its walls have negligible thermal capacity, (iii)
there is negligible heat diffusion within the fluid as it flows through the inflow pipe, and (iv) the bath is stirred
quickly enough that it is maintained at essentially uniform temperature.

Performing a control volume analysis of the temperature bath system illustrated in Figure 6.7 to compute
the thermal energy of the bath at time t+∆t (for small ∆t), at which time the bath has lost ∆V of the liquid
it had at time t and gained ∆V of the new liquid from the pipe outlet, it follows that

Vbath Tbath(t+∆t) = (Vbath −∆V )Tbath(t) + ∆V Toutlet(t) = (Vbath −∆V )Tbath(t) + ∆V Tvalve(t− d),

where d = Vpipe / dV/dt = 12 s represents the convective transport delay (that is, the time it takes the fluid
to flow from the valve to the pipe outlet), and thus

Tbath(t) +
dTbath(t)

dt
∆t+ . . . = Tbath(t) +

∆V

Vbath
[Tvalve(t− d)− Tbath(t)];

taking y(t) = Tbath(t), u(t) = Tvalve(t), and a0 = b0 = dV/dt / Vbath = 0.005 s−1, in the limit of small ∆t we
have

dTbath(t)

dt
=
dV/dt

Vbath

[
Tvalve(t− d)− Tbath(t)

]
⇒ dy(t)

dt
+ a0 y(t) = b0 u(t− d). △

Example 6.8 An automobile with a throttle delay, and its linearization

v(t)

u(t)

fr(t) ff (t)fd(t)

Figure 6.8: Coördinate system for the analysis of an automobile at cruise, as considered in Example 6.8 (to
clarify the drawing, the vertical and lateral forces are not marked).
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The equations of motion for the velocity v(t) an automobile at cruise (see Figure 6.8) may be written

m
dv(t)

dt
= u(t− d)− fd(t)− [fr(t) + ff (t)] + w(t)

= u(t− d)− CdA · 0.5 ρ v(t)2 −mg[C0 + C1v(t)
2.5] + w(t), (6.16)

where

• u(t) denotes the “control” force applied to accelerate the vehicle by the engine,

• fd(t) = CdA · 0.5 ρ v(t)2 models the aerodynamic drag,

• fr(t) + ff (t) = mg[C0 + C1v(t)
2.5] models the rolling drag (see p. 117 of Gillespie 1992), and

• w(t) denotes the “disturbances” (caused by headwind/tailwind, road inclination, modeling errors, etc.).

Note that this model accounts for a slight delay d between the actuation of the throttle and its effect on the force
applied to accelerate the vehicle. In our model of the vehicle depicted in Figure 6.8, we will take Cd = 0.36,
A = 2.06, ρ = 1.2, m = 1520, g = 9.8, C0 = .01, C1 = 1.2 · 10−6, and d = 0.04, where all variables are in SI
units (length in meters, mass in kilograms, time in seconds, force in Newtons, etc.)

At an equilibrium target car velocity, v(t) = v, the corresponding throttle position u(t) = u is given by

dv/dt = du/dt = 0, u = CdA · 0.5 ρ v2 +mg[C0 + C1v
2.5]. (6.17)

We now show how to linearize the dynamics of this system, taking v(t) = v+ v′(t) and u(t) = u+ u′(t) where
v′(t) and u′(t) denote perturbations to the equilibrium car velocity and throttle position respectively.

Recall that any smooth function f(x) may be expanded about x = x via a Taylor Series as follows:

f(x+ x′) = f(x)
∣∣∣
x=x

+
df(x)

dx

∣∣∣
x=x

(x′) +
d2f(x)

dx2

∣∣∣
x=x

(x′)2

2!
+
d3f(x)

dx3

∣∣∣
x=x

(x′)3

3!
+ . . . ;

thus, the function f(v) = v2.5 may be expanded about v = v as follows:

[v + v′]2.5 = v2.5 + 2.5 v1.5 v′ +O[(v′)2]. (6.18)

Considering small perturbations about the equilibrium condition {v, u}, by substituting v(t) = v + v′(t) and
u(t) = u + u′(t) into (6.16), applying (6.18), then applying (6.17), then finally eliminating all terms which are
quadratic or higher in the perturbation (primed) quantities, leads to a linear equation as follows:

m
d{v + v′(t)}

dt
= {u+ u′(t− d)} − CdA · 0.5 ρ {v + v′(t)}2 −mg[C0 + C1{v + v′(t)}2.5],

m
d{v + v′(t)}

dt
= u+ u′(t− d)− 0.5CdAρ {v2 + 2v[v′(t)] + [v′(t)]2}
−mg[C0 + C1{v2.5 + 2.5v1.5v′(t) +O[(v′(t))2]}],

⇒ m
d{v′(t)}
dt

= u′(t− d)− 0.5CdAρ {2 v v′(t) + [v′(t)]2} −mg[C1{2.5 v1.5 v′(t) +O[(v′(t))2]}],

m
d{v′(t)}
dt

= u′(t− d)− CdAρ v v′(t)−mgC1 2.5 v
1.5 v′(t),

thus resulting in the linear ODE
(
d

dt
+ a0

)
v′(t) = b0 u

′(t− d) where a0 = CdAρ v/m+ 2.5C1 g v
1.5 > 0. △
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Example 6.9 A three-story building during an earthquake, and its linearization

f3f3

f2

f1

p5 p6

p3 p4

p1 p2

d5 d6

d3 d4

d1 d2

v

w

y

mmm

v
w y

Figure 6.9: (a) The three-story building considered in Example 6.9, and (b) a cascade spring/mass/damper system
which provides an equivalent model for the linearized horizontal dynamics of this structure.

We now analyze the dynamics of the three-story building illustrated in Figure 6.9 during an earthquake.
Each of the three floors is of massm = 1000 kg, and the diagonals are nominally at 45◦ angles. The lengths

of the pillars and floors are nominally ℓp = ℓf ≜ ℓ = 5 m; by the Pythagorean theorem, the lengths of the
diagonals are nominally ℓd = ℓ

√
2. All joints are assumed to be pinned, so no members bear bending loads.

The vertical pillars are under compression. The diagonal stabilizers are under tension, and each has a spring
constant k and damping coefficient c; note that the structure is pretensioned, so the diagonal members remain
under tension even as the building is deformed. An earthquake is modeled as horizontal motion of the ground,
w(t). We are primarily interested in the horizontal motion of the top floor, y(t), which, we will see, can deflect
a lot even for relatively small ground motion w(t) if the building is forced at a critical resonant frequency of
the structure by the earthquake.

We now model the horizontal motion of the ground floor, x1(t), the second floor, x2(t), and the top floor
x3(t) = y(t), as a function of both the horizontal motion of the ground, w(t), and the force applied to the top
floor, v(t). It will be seen that we can neglect the vertical motions of the floors, which (for small deflections) are
small as compared with the horizontal motions.

Assume first that the horizontal position of the third floor is perturbed a small amount to the right of the
horizontal position of the second floor; that is, 0 < (x3 − x2)/ℓ ≪ 1. Denote by θ6 = sin−1[(x3 − x2)/ℓ] ≈
(x3 − x2)/ℓ the (clockwise) angle that the sixth pillar is deflected from its nominally vertical orientation. Note
that, since cos θ6 = 1+O([(x3− x2)/ℓ]2), the perturbations in the vertical forces and vertical deflections of the
floor are quadratic in the horizontal perturbation quantities; that is, they are negligible as compared with the
horizontal forces and deflections if these quantities are small. The (clockwise) angles that the other pillars are
deflected from their nominally vertical orientations may be defined and computed similarly,

θ5 ≈ θ6 ≈ (x3 − x2)/ℓ, θ3 ≈ θ4 ≈ (x2 − x1)/ℓ, θ1 ≈ θ2 ≈ (x1 − w)/ℓ, (6.19)

and also result in negligible perturbations in the vertical forces and vertical positions of the floors; we thus focus
on the horizontal dynamics in the remainder of this example.

Denote by δ5 the changes in length of the fifth diagonal member from its nominal (pretentioned) length ℓd.
Noting that |x3 − x2|/ℓ≪ 1 [and, therefore, |δ5|/ℓ≪ 1], we again appeal to the Pythagorean theorem:

ℓ2 + [ℓ+ (x3 − x2)]2 = [ℓd + δ5]
2 ⇒ 2 ℓ (x3 − x2) + (x3 − x2)2 = 2

√
2 ℓ δ5 + δ25 ⇒ δ5 ≈ (x3 − x2)/

√
2.
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Again, when performing linearizations of this sort, terms which are quadratic in the perturbation quantities
are negligible as compared with terms which are linear in the perturbation quantities, which are assumed to be
small. The changes in lengths of the other diagonal members may be computed similarly:

δ5 ≈ (x3 − x2)/
√
2,

δ6 ≈ −(x3 − x2)/
√
2,

δ3 ≈ (x2 − x1)/
√
2,

δ4 ≈ −(x2 − x1)/
√
2,

δ1 ≈ (x1 − w)/
√
2,

δ2 ≈ −(x1 − w)/
√
2.

(6.20)

Finally, denote by ϕ5 = tan−1[(ℓ + x3 − x2)/ℓ] − π/4 the angle that the fifth diagonal member is rotated
from its nominal π/4 radian orientation (again, measured clockwise from vertical). Noting the identities (B.55),
(B.90), and (B.87),

tan(x+ y) =
tanx+ tan y

1− tanx tan y
,

1

1− ϵ = 1 + ϵ+ ϵ2 + . . . , tan(ϵ) = ϵ+
ϵ3

3
+ . . . ,

when ϕ5 ≪ 1 it follows that

tan(π/4 + ϕ5) =
1 + tanϕ5

1− tanϕ5

= [1 + ϕ5 +O(ϕ3
5)][1 + ϕ5 +O(ϕ2

5)] = 1 + 2ϕ5 +O(ϕ2
5);

thus, ϕ5 ≈ (x3 − x2)/(2ℓ). The (clockwise) angles that the other diagonal members are rotated from their
nominal orientations (±π/4 radians from vertical) may be computed similarly:

ϕ5 ≈ ϕ6 ≈ (x3 − x2)/(2ℓ), ϕ3 ≈ ϕ4 ≈ (x2 − x1)/(2ℓ), ϕ1 ≈ ϕ2 ≈ (x1 − w)/(2ℓ). (6.21)

We are now in a position to add up all of the horizontal forces on the floors when the structure undergoes
small horizontal movements. The horizontal acceleration of the top floor is acted upon by the external force v,
the horizontal component of the force from the two rotated pillars [see (6.19)], and the horizontal component
of the force from the two extended [see (6.20)] and rotated [see (6.21)] diagonal members; noting the nominal
loading computed in (??) and the identity (B.52) [sin(x + y) = sinx cos y + cosx sin y], neglecting terms that
are quadratic or higher in the perturbations, this may be summed up as follows,

m
d2x3
dt2

= v + p5 sin θ5 + p6 sin θ6 −
(
d5 + k δ5 + c

dδ5
dt

)
sin
(π
4
+ θ5

)
−
(
d6 + k δ6 + c

dδ5
dt

)
sin
(
−π
4
+ θ6

)

≈ v + 2p5
x3 − x2

ℓ
−
[
d5 +

(
k + c

d

dt

)
x3 − x2√

2

]
1 + (x3 − x2)/ℓ√

2

−
[
d6 −

(
k + c

d

dt

)
x3 − x2√

2

] −1 + (x3 − x2)/ℓ√
2

≈ v + 2p5
x3 − x2

ℓ
− 2d5

x3 − x2√
2ℓ
− 2

(
k + c

d

dt

)
x3 − x2

2

≈ v − k3(x3 − x2)− c
(
dx3
dt
− dx2

dt

)
; (6.22a)

note that the horizontal forces of the other two floors may be summed up in a similar fashion,

m
d2x2
dt2

=− k2(x2 − x1) + k3(x3 − x2)− c
(
dx2
dt
− dx1

dt

)
+ c

(
dx3
dt
− dx2

dt

)
, (6.22b)

m
d2x1
dt2

=− k1(x1 − w) + k2(x2 − x1)− c
(
dx1
dt
− dw

dt

)
+ c

(
dx2
dt
− dx1

dt

)
, (6.22c)
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where, noting the solution of the statics of this building derived in Example ??,

k1 = k − 2p1/ℓ+
√
2d1/ℓ = k − 5880 kg/sec2, (6.23a)

k2 = k − 2p3/ℓ+
√
2d3/ℓ = k − 3919 kg/sec2, (6.23b)

k3 = k − 2p5/ℓ+
√
2d5/ℓ = k − 1960 kg/sec2. (6.23c)

For the purpose of clear visualization of the essence of this problem, we may thus ignore the vertical separation
of the floors, and model small horizontal motions of this building linearly as a cascade spring/mass/damper
system, as illustrated in Figure 6.9b, with spring constants k1, k2, and k3 and damping c1 = c2 = c3 = c.

The three second-order equations governing x1, x2, and x3 may thus be rewritten as
(
m
d2

dt2
+ 2c

d

dt
+ k1 + k2

)
x1 =

(
c
d

dt
+ k1

)
w +

(
c
d

dt
+ k2

)
x2 ⇒ L1x1 = L2w + L3x2, (6.24a)

(
m
d2

dt2
+ 2c

d

dt
+ k2 + k3

)
x2 =

(
c
d

dt
+ k2

)
x1 +

(
c
d

dt
+ k3

)
x3 ⇒ L4x2 = L5x1 + L6x3, (6.24b)

(
m
d2

dt2
+ c

d

dt
+ k3

)
x3 =

(
c
d

dt
+ k3

)
x2 + v ⇒ L7x3 = L8x2 + v. (6.24c)

The task of eliminating x1 and x2 from these three second-order ODEs, thereby determining a single sixth-
order ODE relating y = x3 to v and w, is algebraically involved; it is thus helpful (as in Example 6.2) to use
the streamlined notation introduced above right for the scalar linear differential operators Li. Premultiplying
(6.24a) by L5 and (6.24b) by L1 and combining to eliminate x1 (noting, e.g., that L1L5 = L5L1) leads to

L1L4x2 = (L5L2w + L5L3x2) + L1L6x3 ⇒ (L1L4 − L5L3)x2 = L5L2w + L1L6x3; (6.25)

premultiplying (6.25) by L8 and (6.24c) by (L1L4 − L5L3) and combining to eliminate x2 then leads to

(L1L4L7 − L5L3L7 − L8L1L6)x3 = (L1L4 − L5L3)v + (L8L5L2)w,

which, denoting y = x3, may be rewritten as
(
d6

dt6
+ a5

d5

dt5
+ a4

d4

dt4
+ a3

d3

dt3
+ a2

d2

dt2
+ a1

d

dt
+ a0

)
y =

(
b4
d4

dt4
+ b3

d3

dt3
+ b2

d2

dt2
+ b1

d

dt
+ b0

)
v +

(
b3
d3

dt3
+ b2

d2

dt2
+ b1

d

dt
+ b0

)
w.

(6.26)

Symbolic manipulation tools may now be used to do the necessary (but tedious) algebraic simplifications (for
Matlab implementation, see RR_Example_06_8.m) in order to determine the coefficients. As seen by run-
ning this code, for k = 10000 and c = 10, the coefficients work out to be:

a5 = .05, a4 = 32.361, a3 = .76881, a2 = 237.95, a1 = 1.0706, a0 = 201.40, (6.27a)

b4 = .001, b3 = .00004, b2 = .024320, b1 = .00036480, b0 = .10706, (6.27b)

b3 = .000001, b2 = .0018240, b1 = 1.0706, b0 = 201.40; (6.27c)

the values of the coefficients for other values of k and c may be determined similarly. The Bode plot of this
system, the design of a passive vibration damper for this system, and the conversion of this system is to state-
space form, are all problems that are, in due course, considered in the exercises. △
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Example 6.10 The launch of a rocket, and its linearization
The dynamics of a Saturn V rocket during liftoff (see Figure 6.10) may be considered in the x− z plane and

the y− z plane separately, as the rocket is not spinning. Considering the dynamics in one of these planes, there
are three equations governing the motion of the vehicle, two of the form d2x/dt2 = f/m and one of the form
d2θ/dt2 = τ/J :

m
d2z(t)

dt2
= ft cos[θ(t)− u(t)]− fd(t) cos[α(t) + θ(t)] + w(t) sin[α(t) + θ(t)]− fg, (6.28a)

m
d2x(t)

dt2
= ft sin[θ(t)− u(t)] − fd(t) sin[α(t) + θ(t)] − w(t) cos[α(t) + θ(t)], (6.28b)

J
d2θ(t)

dt2
= ftD sin[u(t)] − fd(t)L sin[α(t)] − w(t)L cos[α(t)], (6.28c)

which may be taken together with the kinematic condition

vx(t)

|v(t)| = sin[α(t) + θ(t)]. (6.29)

Note that the three second-order ODES in (6.28)may easily be rewritten as six first-order equations, and describe
the evolution in time of the six state variables listed in Figure 6.10.

Taking the disturbance force w(t), the horizontal velocity vx(t), and the angles {θ(t), α(t), u(t)} to be small,
the equation for the vertical acceleration, (6.28a), reduces upon linearization to

m
d2z(t)

dt2
= ft − 10

∣∣∣dz(t)
dt

∣∣∣
2

− fg, (6.30a)

whereas the equations for the horizontal and angular acceleration, (6.28b)-(6.28c), reduce to

m
d2x(t)

dt2
= ft [θ(t)− u(t)]− fd(t) [α(t) + θ(t)]− w(t). (6.30b)

J
d2θ(t)

dt2
= ftDu(t) − fd(t)Lα(t) − Lw(t). (6.30c)

Note that (6.30a) can be marched in order to compute dz(t)/dt = vz(t) = |v(t)| at any instant t1. Given this
value of v = |v(t1)|, which varies only slowly in time due to the large mass of the rocket (and the fact that its
thrust only slightly exceeds its weight), the linearized form of the auxiliary equation (6.29) may be written

dx(t)

dt
= v [α(t) + θ(t)]. (6.31)

Considering v as essentially constant, defining fd = 10 v2, and combining (6.30b)-(6.30c) and (6.31) to eliminate
α leads to

m
d2x(t)

dt2
+
fd
v

dx(t)

dt
− ft θ(t) = −ft u(t)− w(t), (6.32a)

fd L

v

dx(t)

dt
+ J

d2θ(t)

dt2
− fd Lθ(t) = ftDu(t)− Lw(t). (6.32b)
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θ
v(t)

α

fg

fd(t)

w(t)

ft

ℓ

L

D

u(t)

x

z

State variables:
z(t) = vertical position
vz(t) = dz(t)/dt = vertical velocity
x(t) = horizontal position
vx(t) = dx(t)/dt = horizontal velocity
θ(t) = angle (clockwise from vertical)
ω(t) = dθ(t)/dt = angular velocity

Auxiliary variables:
fd(t) = 10 |v(t)|2 = aerodynamic drag
α(t) = angle of attack [see (6.29)]

Control input:
u(t) = angle of thruster

Disturbance input:
w(t) = wind + aerodynamic lift

Constants:
ℓ = 110 = length
m = 3× 106 = mass
J = mℓ2/20 = moment of inertia
L = 10± 5% = distance Cp is ahead of Cm
D = 40 = distance from nozzle pivot to Cm
ft = 34× 106 = thrust
fg = mg = weight (g = 9.8)

Figure 6.10: Coördinate system for a rocket stabilization problem. There are four forces acting on the rocket,
directed as indicated: thrust ft, weight fg, drag fd(t), and “disturbances” (lift + wind) w(t); the control u(t) is
the angle of the thruster. The rocket is assumed to be not spinning, and all angles indicated are assumed to be
small, which decouples the control problem in the x-z plane (shown) from that in the y-z plane. All variables
in SI units. [To clarify the diagram, only one of the five thrusters is shown in this sketch of the Saturn V.] △
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Example 6.11 Linearized dynamic models of aircraft
The state of an aircraft in flight may be defined by twelve variables: three to identify the position {X, Y, Z},

three to identify the velocity {U, V,W}, three to identify the orientation {ϕ, θ, ψ}, and three to identify the rate
of change of the orientation, {p, q, r}. To identify the orientation, we first denote:
• the body-fitted coördinates of the aircraft as three orthogonal vectors from the center of mass out the nose,
out the right wingtip, and out the bottom of the aircraft for the x, y, and z axes, respectively, and
• a reference set of inertial coördinates (that is, a non-accelerating and non-rotating reference frame) as north,
east, and down (NED) from the aircraft center of mass for the x1, x2, and x3 axes, respectively.
Starting from the reference configuration of the aircraft, with its body-fitted coördinates aligned with the inertial
(NED) coördinates, the orientation of the aircraft may then be identified unambiguously by three successive
rotations12 about its body-fitted coördinates, the most common choice in the aerodynamics literature being the
3-2-1 Tait-Bryan rotation sequence13 (a.k.a. 3-2-1 Euler rotation sequence14) given by:
3 yaw the aircraft by an angle ψ about the z (down) axis (positive ψ yaws the nose to the right),
2 pitch the aircraft by an angle θ about the y (out-the-right-wing) axis (positive θ pitches the nose up),
1 roll the aircraft by an angle ϕ about the x (out-the-nose) axis (positive ϕ rolls the right wing down).
In the reference frame of the aircraft, three convenient auxiliary variables used to describe the dynamics are
• the airspeed vT the magnitude of the relative wind past the aircraft,
• the angle of attack (AOA) α, the angle between the x axis and the component of the relative wind in the
x− y plane, and
• the sideslip angle β, the angle between the x axis and the component of the relative wind in the x− z plane.
The airspeed, angle of attack, and sideslip angle, {vT , α, β}, may be determined from the absolute velocity of
the aircraft, {U, V,W}, together with the local wind velocity and the aircraft orientation as defined by the roll,
pitch, and yaw variables, {ϕ, θ, ψ}, of the 3-2-1 rotation sequence described above (alternatively, {U, V,W}
may be determined from {vT , α, β} and {ϕ, θ, ψ} and the local wind velocity). For the purpose of describing the
dynamics of flight, of course, {vT , α, β} are the natural variables to consider.

Next, an ODE model for how the state of the aircraft evolves in time must be developed. The process of
developing accurate linearized dynamic models of an aircraft in flight is quite involved; this process may be
started using simplified aerodynamic models and small-scale wind-tunnel tests, but generally must be subse-
quently refined using high-fidelity computational fluid dynamics simulations, large-scale wind-tunnel tests, and
flight tests. Almost all models of aircraft dynamics today are based on static stability derivatives; that is, the
forces and moments on the aircraft and the effectiveness of the control surfaces for any given state of the aircraft
within its flight envelope15 are determined assuming the aircraft is maintained in equilibrium in this config-
uration; that is, a dynamic model accounting for the unsteadiness of the flow itself is not accounted for with
this approach. Certain dynamic maneuvers, such as the so-called dynamic lift available right before vortex
separation and stall of a rapidly pitching airfoil moving at low speed (e.g., during spot landings with a flapping
wing) are thus not accounted for well with such static models of the flow evolution. Nonetheless, a static model
of the flow is in fact quite adequate for most fixed wing aircraft throughout most of their flight envelope.

12Even though these three rotations are usually not the actual rotations that brought the aircraft into this configuration!
13Note that order matters (that is, such rotations are noncommutative), as the latter steps rotate the aircraft about the body-fitted

coördinates only after the former steps are complete. Various alternative rotation sequences may also be used to unambiguously
identify the orientation of an aircraft, spacecraft, or other solid body; which rotation sequence is most convenient depends on the
application.

14Note that the 3-2-1 rotation sequence used here is often casually referred to as an Euler rotation sequence though, strictly
speaking, an Euler rotation sequence repeats a rotation around one of the axes, a common choice being the 3-1-3 Euler rotation
sequence (in the present setting, yaw, then roll, then yaw again).

15A flight envelope is the set of states of an aircraft deemed safe for flight.
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Linearized dynamic models governing the time evolution of the 12 variables describing an aircraft in cruise
approximately decouple16 into three essentially independent subsystems:
• the lateral/directional dynamics of the aircraft model, which relates the yaw (a.k.a. heading angle) ψ, the
roll ϕ, the yaw rate r = dψ/dt, the body-axis roll rate p = dϕ/dt, and the sideslip angle β,
• the longitudinal dynamics of the aircraft model, which relates the pitch θ, the pitch rate q = dθ/dt, the
angle of attack α, and the airspeed vT , and
• the navigation equations dX/dt = U , dY/dt = V , dZ/dt = W ; as mentioned previously, {U, V,W} may,
via simple geometry, be determined from the orientation angles {ϕ, θ, ψ} together with knowledge of the local
wind velocity and measurements of the relative wind past the aircraft, {vT , α, β}.
The navigation equations are straightforward to integrate in time (see §??) to track changes in the vehicle’s
absolute position in order to navigate; we thus focus our attention below on the more complex problems of the
lateral/directional dynamics and the longitudinal dynamics of some representative aircraft.

Defining the deflection of the elevator, aileron, rudder, and throttle from their trimmed flight positions as
δe, δa, δr, and δth, respectively, a representative linearized model of the lateral/directional dynamics of a large
transport aircraft on approach to landing (see Minto, Chow, & Beseler 1989) is

yaw:
roll:

yaw rate:
roll rate:
sideslip:

d

dt




ψ
ϕ
p
r
β




=




0 0 1 0 0
0 0 .199 1 0
0 −.002 −.194 −.167 .748
0 −.003 .636 −2.02 −5.37
0 .136 −.970 .198 −.148




︸ ︷︷ ︸
A1




ψ
ϕ
p
r
β




+




0 0
0 0
.053 −.74
.865 .904
.002 .047




︸ ︷︷ ︸
B1

(
δa
δr

)
. (6.33)

A representative linearized model of the longitudinal dynamics of a large transport aircraft on approach to
landing (see Stevens & Lewis 2003, Example 4.6-4) is

airspeed:
AOA:
pitch:

pitch rate:

d

dt




vT
α
θ
q


 =




−.0386 19.0 −32.1 0
−.00103 −.633 .0056 1

0 0 0 1
−.00008 −.76 −.0008 −.52




︸ ︷︷ ︸
A2




vT
α
θ
q


+




10 0
−.00015 0

0 0
.025 −.011




︸ ︷︷ ︸
B2

(
δth
δe

)
. (6.34)

A representative linearized model of the longitudinal dynamics of an F-16 in cruise (300 knots at sea level; see
Stevens & Lewis 2003, Example 4.4-1) is

airspeed:
AOA:
pitch:

pitch rate:

d

dt




vT
α
θ
q


 =




−.0193 8.82 −32.2 −.575
−.000254 −1.02 0 .905

0 0 0 1
0 .822 0 −1.08




︸ ︷︷ ︸
A3




vT
α
θ
q


+




.174
−.00215

0
−.176




︸ ︷︷ ︸
B3

(
δe
)
. (6.35)

The systems given above are written in the ubiquitous state-space form, dx/dt = Ax+Bu, the characterization
of which is studied in §??, and the control of which is considered in §??. We will also develop a variety of
convenient ways to convert back and forth between first-order state-space forms and single input, single
output (SISO) higher-order ODE forms; note that state space forms have the significant advantage of easily

16That is, if the linearized dynamics of these 12 variables is written in the state-space form dx/dt = Ax+Buwith the components
of x appropriately ordered, A may written in a 3× 3 block upper-triangular form.
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handling multiple input, multiple output (MIMO) systems. Further, state-space models reveal the inherent
coupling present as the several states of a system (e.g., yaw, roll, yaw rate, roll rate, and sideslip) evolve in time,
which often leads to significant practical insight regarding the physical system (see Exercise ??). △
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6.2 The dynamics of systems of N interacting particles

6.2.1 The principle of least action, and Lagrange’s equations
Our first task is to establish from first principles the equations of motion of a mechanical system, starting from
axioms A and B above. Following Landau & Lifshitz (1976), the principle of least action asserts that the
motion of a system from some initial position q(t1) to some final position q(t2) minimizes an integral

S =

∫ t2

t1

L(q, q̇, t) dt,

where the function L(q, q̇, t), called the Lagrangian of the system considered, is, so far, unspecified. Starting
from this ansatz, we now develop a key equation relating various derivatives of L, assuming that q(t) is the
trajectory from a specified q(t1) to a specified q(t2) that minimizes the action integral S. To proceed, consider
an infinitesimal perturbation δq(t) to the trajectory q(t) such that δq(t1) = δq(t2) = 0. The modified value of
S corresponding this perturbed trajectory is

S + δS =

∫ t2

t1

L(q+ δq, q̇+ δq̇, t) dt.

Assuming the dependence of S on q is smooth, a necessary condition for q(t) to minimize S is that the first
variation δS = 0; that is, in summation notation,

δS =

∫ t2

t1

(∂L
∂qi

δqi +
∂L

∂q̇i
δq̇i

)
dt =

∫ t2

t1

(∂L
∂qi
− d

dt

∂L

∂q̇i

)
δqi dt−

[∂L
∂q̇i

δqi

]t2
t1
= 0,

where the second expression follows from the first via integration by parts. Noting δqi(t1) = δqi(t2) = 0, and
that the above result holds for any set of infinitesimal perturbations δqi, we obtain Lagrange’s equation

d

dt

(∂L
∂q̇i

)
=
∂L

∂qi
. (6.36)

Once the Lagrangian L of a system is identified, (6.36) provides the equation of motion governing the dy-
namics of the system, relating the accelerations to the velocities and the coördinates.

The Lagrangian L characterizing the dynamics of a system is not unique. Any constant times L is also
a valid Lagrangian for the same system; this happens, e.g., when changing units of measurement. Further,
consider two Lagragians that differ by a total time derivative of a function of the coördinates and time:

L2(q, q̇, t) = L1(q, q̇, t) + df(q, t)/dt. (6.37a)

The action integral S corresponding to these two Lagrangians are related as follows:

S2 =

∫ t2

t1

L2(q, q̇, t) dt =

∫ t2

t1

L1(q, q̇, t) dt+

∫ t2

t1

df

dt
dt = S1 + f(q(t2), t2)− f(q(t1), t1); (6.37b)

that is, S1 and S2 differ by an amount which is not affected by variation of the trajectory q(t) between q(t1)
and q(t2), and thus the Lagrangians L1 and L2 characterize the same motion. Note also the Lagrangian of a
system C composed of two non-interacting subsystems A and B is additive: LC = LA + LB .

An inertial reference frame (a.k.a. aGalilean reference frame) can always be chosen such that the equations
governingmotion are17 homogeneous and isotropic in space, and homogeneous in time; that is, the equations of

17Homegeneous in this setting means translation invariant, whereas isotropic means direction invariant.
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motion don’t change if the coördinate system origin is shifted or rotated in space, or if the clock is reset. Note
that, in an arbitrary (that is, noninertial) reference frame (e.g., a reference frame that spins), the equations
governing motion are inhomogeneous and anisotropic, which is much less convenient.

Thus, in an inertial reference frame, the Lagrangian L of a single particle can not explicitly depend on
the position vector18 r⃗, the direction of the velocity vector v⃗, or the time t. Rather, L can only depend on
the magnitude of the velocity, v = ∥v⃗∥; we may thus write L = L(v2). In Cartesian coördinates, Lagrange’s
equation (6.36) thus reduces to d/dt(∂L/∂v) = 0, and thus ∂L/∂v is constant. Since ∂L/∂v depends only on
v, it follows that v⃗ itself is constant for a single free particle, a fact which is known as Newton’s first law.

Indeed, in classical mechanics, the equations of motion in any two inertial reference frames, one of which
may be rotated, translated, and moving uniformly in a straight line with respect to the other, are entirely equal;
this important principle is known as Galileo’s relativity principle; it implies that there is no “one reference
frame to rule them all” (cf. Tolkien 1954). The position of a particle in a frame of reference G which moves
relative to another frame of reference G ′ at a constant velocity V⃗ , and the corresponding times in these two
different reference frames, are related by the Galilean transformation:

r⃗ ′ = r⃗ + V⃗ t, t′ = t. (6.38)

Differentiating the above expression with respect to time, we have v⃗ ′ = v⃗ + V⃗ . Assuming V⃗ = ϵ⃗ is small and
expanding in powers of ϵ⃗, neglecting powers higher than first, we may write, in Cartesian coördinates,

L(v′2) = L(v⃗ ′ · v⃗ ′) = L(v2 + 2 v⃗ · ϵ⃗+ ϵ⃗ · ϵ⃗) ≈ L(v2) +
∂L

∂v2
2 v⃗ · ϵ⃗.

Since the equations of motion themselves must be the same in the two different frames, by (6.37), L(v′2) and
L(v2) must differ at most by a function that may be written df(r⃗, t)/dt. The last term on the RHS above may
be written in this form only if it is linear in v⃗. Therefore, ∂L/∂v2 is independent of v, and L is proportional to
v2; we thus write L = mv2/2 (this step, in fact, may be said to be that which defines the massm, withm > 0).
Indeed, even if V⃗ is not small, L(v′2) and L(v2) differ only by a function that may be written df(r⃗, t)/dt:

L(v′2) =
1

2
mv′2 =

1

2
m ∥v⃗ + V⃗ ∥2 = 1

2
mv2 +m v⃗ · V⃗ +

1

2
mV 2 = L(v2) +

d

dt
(m r⃗ · V⃗ +mV 2 t/2). (6.39)

By the additive property mentioned previously, the Lagrangian of a system of noninteracting particles is thus
given, in Cartesian coördinates, by

L =
∑

a
ma ∥v⃗a∥2/2. (6.40)

For a system of N interacting particles, a term is added to the Lagrangian to model their interaction: in
Cartesian coördinates,

L =
∑

a
ma ∥v⃗a∥2/2− U(r) = T (v)− U(r) (6.41)

with v = {v⃗1, v⃗2, . . .) and r = {r⃗1, r⃗2, . . .), where T (v) is called the kinetic energy and U(r) the potential
energy. Note that T (v) is quadratic in v. The form of U(r) is problem specific; as the distance between each
pair of particles gets large, U approaches an arbitrary constant (usually taken as zero), and (6.40) is recovered.
Given the form of L in (6.41), in Cartesian coördinates, the equations of motion may be derived from (6.36):

d

dt

( ∂L
∂v⃗a

)
=
∂L

∂r⃗a
⇒ ma

dv⃗a
dt

= −∂U
∂r⃗a

≜ f⃗a. (6.42)

18Reminder: see footnote 1 on page 6-1 regarding the disambiguating notation used for vectors in R3 in this chapter.
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The term f⃗a, which depends only on the coördinates of the particles, is called the force on the a’th particle,
and (6.42) is known as Newton’s second law.

One example of a system of N interacting particles is given by Newton’s law of universal gravitation:

U = −
∑

a

∑

b ̸=a

Gmamb

∥r⃗b − r⃗a∥
and f⃗a = −

∂U

∂r⃗a
=
∑

b ̸=a

Gmamb(r⃗b − r⃗a)
∥r⃗b − r⃗a∥3

, (6.43)

where G = 6.67384 × 10−11 N m2 / kg2; this force is attractive between bodies. Another example is given by
Coulomb’s law between charged bodies:

U =
∑

a

∑

b̸=a

ke qa qb
∥r⃗b − r⃗a∥

and f⃗a = −
∂U

∂r⃗a
= −

∑

b̸=a

ke qa qb(r⃗b − r⃗a)
∥r⃗b − r⃗a∥3

, (6.44)

where the charges qa and qb are measured in coulombs (note that 1 coulomb is the charge of 6.24151 × 1018

protons), and ke = 8.98755 × 109 N m2 / C2; this force is attractive between bodies of opposite charge, and
repulsive between bodies of like charge.

For a system of N interacting particles in generalized coördinates, writing r⃗a = r⃗a(q), it follows that
v⃗a =

∑
i (∂r⃗a(q)/∂qi) q̇i. Substituting this expression into (6.41), it follows that

L =
∑

i,k
aik(q) q̇i q̇k/2− U(q) = T (q, q̇)− U(q). (6.45)

Note that T (q, q̇) is quadratic in q̇, though the coefficients aik are, in general, functions of q.
Consider a closed system C with two interacting subsystems, denoted A and B. By (6.45), we may write

LC = TA(qA, q̇A) + TB(qB, q̇B)− U(qA,qB). If subsystem B (e.g., the Earth) is much bigger than subsystem
A (e.g., a rocket), then qB may be considered as a specified function of time, as the motion of subsystem B is
effectively independent of the motion of subsystem A. When deriving the motion of subsystem A, referred to
as an open system, we may thus consider the simplified Lagrangian

LA(qA, q̇A, t) = TA(qA, q̇A)− U(qA,qB(t)), (6.46)

where qB(t) is a specified function of time, and thus LA also depends explicitly on time.
Considering subsystem A in an open system as described above as a single particle a (and, for simplicity,

taking subsystem B as stationary), and performing a path integral of (6.42) from r⃗ 1
a to r⃗

2
a, leads to

U(r⃗ 2
a)− U(r⃗ 1

a) =

∫ r⃗ 2a

r⃗ 1a

(−f⃗a) · dr⃗a; (6.47)

that is, the change in the potential energy of the particle over the path considered is precisely the work (i.e.,
the integral of the force overcome over the distance travelled) required to move the particle from r⃗ 1

a to r⃗
2
a.

As an even simpler example, let r⃗ denote the position of an object of massm in Cartesian coördinates in the
lab, where r3 measures the height of the object above the floor, and let R⃗ = {0, 0,−R} denote the position of
the center of the earth (which is independent of the motion of subsystem A), noting that R = 6.371 × 106 m
and that the mass of the Earth isM = 5.972 × 1024 kg. It follows from (6.43), taking each object as acting on
the other like a particle, and noting (B.90), that the force f⃗ on the object, and its potential energy U , are

f⃗ =
GmM(R⃗− r⃗)
∥R⃗− r⃗∥3

≈ −mg e⃗ 3, U = − GmM

∥R⃗− r⃗∥
= − GmM/R

∥R + r3∥/R
≈ −mgR

(
1− r3

R

)
= C− f⃗ · r⃗, (6.48)

where g = GM/R2 ≈ 9.8 m / sec2, e⃗ 3 is a unit vector pointed up, and C is constant and may thus be ignored.
Note that f⃗ is essentially constant everywhere in the lab (that is, the gravitational field over this domain is
uniform), and that the vector from the center of the earth to the object is aligned in the e⃗ 3 direction; thus, the
expression for U in (6.48) is a special case of the more general expression given in (6.47).
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6.2.2 Consequences of the homogeneity and isotropy of space and time
6.2.2.1 Conservation of momentum, and the center of mass

Due to the homogeneity of space, the Lagrangian of a closed system is unchanged by a (fixed) infinitesimal
displacement of the entire system in space, δr⃗a = ϵ⃗ ∀a. As ϵ⃗ is arbitrary, noting (6.41)-(6.42), we have

L(r,v) = L(r+ δr,v) = L(r,v) +
∑

a

∂L

∂r⃗a
· δr⃗a = L(r,v) + ϵ⃗ ·

∑

a

∂L

∂r⃗a
⇒

∑

a

∂L

∂r⃗a
=
∑

a

f⃗a = 0.

[In the special case of two particles, it is thus seen that f⃗1 = −f⃗2 (that is, the forces are equal in magnitude
and opposite in direction); this is known as Newton’s third law.] It thus follows from (6.36) that

∑

a

d

dt

∂L

∂v⃗a
= 0 ⇒ dP⃗

dt
= 0, (6.49)

where P⃗ =
∑

a ∂L/∂v⃗a. Noting (6.45), and defining the momentum of each particle p⃗a = ma v⃗a, it follows
that the total momentum P⃗ =

∑
a ma v⃗a =

∑
a p⃗a of a closed system is conserved.

Define the total mass of the system µ =
∑

a ma and the center of mass R⃗ =
∑

a mar⃗a/µ, and note by
(6.38) that the velocity of a particle in a frame of referenceGwhich moves relative to another frame of reference
G ′ at a constant velocity −V⃗ is related by v⃗ ′ = v⃗ − V⃗ . The momentum in reference frame G ′ is thus given
by P⃗ ′ =

∑
a ma v⃗

′
a = P⃗ − µV⃗ . Selecting V⃗ = P⃗ /µ =

∑
a ma v⃗a/µ, the total system is said to be at rest in

reference frameG ′, in which the total momentum P⃗ ′ = 0 (and, thus, the center of mass is stationary), and the
total system is said to be moving at velocity V⃗ in reference frame G, in which the total momentum is P⃗ = µV⃗ .

6.2.2.2 Conservation of energy

Due to the homogeneity of time, the Lagrangian of closed systems does depend explicitly on time. Indeed,
as discussed above, even in open systems for which the external field is constant (that is, if the subsystem B is
stationary), the Lagrangian does not depend explicitly on time. In either case, noting (6.36), we may write

dL

dt
=
∑

i

∂L

∂qi
q̇i +

∑

i

∂L

∂q̇i
q̈i =

∑

i

q̇i
d

dt

(∂L
∂q̇i

)
+
∑

i

∂L

∂q̇i
q̈i =

d

dt

(∑

i

q̇i
∂L

∂q̇i

)
⇒ d

dt

(∑

i

q̇i
∂L

∂q̇i
− L

)
= 0.

Note from (6.45) that L = T (q, q̇)− U(q) where T is quadratic in q̇; it follows that

∑

i

q̇i
∂L

∂q̇i
=
∑

i

q̇i
∂T

∂q̇i
= 2T ⇒ dE

dt
= 0, (6.50)

where E = T (q, q̇) + U(q) in generalized coördinates, or E = T (v) + U(r) in Cartesian coördinates. That is,
in such conservative systems, the total energy E (kinetic energy plus potential energy) is conserved.

Also, using the definitions of µ, V⃗ , G, and the rest frame G ′ given in §6.2.2.1, noting the definition of T (v)
in (6.41) and that v⃗a = V⃗ + v⃗ ′a, the total energy E derived above, in the G frame, may be written

E =
1

2

∑

a

ma (V⃗ + v⃗ ′a)
2 + U(r) =

1

2
µV 2 + V⃗ ·

�
���

���*0∑

a

ma (v⃗
′
a) +

1

2

∑

a

ma (v⃗
′
a)

2 + U(r′) =
1

2
µV 2 + E ′,

where µV 2/2 is the energy due to the motion of the center, and E ′ is the internal energy of the system in the
frame G ′, where the center of mass is at rest.
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6.2.2.3 Conservation of angular momentum

Due to the isotropy of space, the Lagrangian L(r,v) of a closed system is unchanged by a (fixed) infinitesimal
rotation of the entire system in space. Denote this rotation by the vector δϕ⃗, where the magnitude of this vector
is the (infinitesimal) angle of rotation δϕ, and the direction of this vector is the axis of rotation, using the right-
hand rule. For the radius vector r⃗a from the origin to each particle in the system, the increment δr⃗a due to this
rotation is δr⃗a = δϕ⃗ × r⃗a, and thus δv⃗a = δϕ⃗ × v⃗a. Noting from §6.2.2.1 that ∂L/∂v⃗a = p⃗a, from (6.42) that
∂L/∂r⃗a = ˙⃗pa, applying (B.20), and noting that the infinitesimal variation δϕ⃗ is arbitrary, we have

δL =
∑

a

( ∂L
∂r⃗a
· δr⃗a +

∂L

∂v⃗a
· δv⃗a

)
=
∑

a

(
˙⃗pa · δϕ⃗× r⃗a + p⃗a · δϕ⃗× v⃗a

)

= δϕ⃗ ·
∑

a

(
r⃗a × ˙⃗pa + v⃗a × p⃗a

)
= δϕ⃗ · d

dt

∑

a

r⃗a × p⃗a = 0 ⇒ dM⃗

dt
= 0, (6.51)

that is, the total angular momentum M⃗ =
∑

a r⃗a × p⃗a of a closed system is conserved.
Also, using the definitions of µ, R⃗, V⃗ , P⃗ , G, and the rest frame G ′ given in §6.2.2.1, assuming the origins

of the reference frames G and G ′ coincide at the instant considered, the total angular momentum M⃗ derived
above, in reference frame G, may be written

M⃗ =
∑

a

ma r⃗a × v⃗a =
∑

a

ma r⃗a × V⃗ +
∑

a

ma r⃗a × v⃗ ′a = µR⃗× V⃗ + M⃗ ′ = R⃗× P⃗ + M⃗ ′,

where R⃗ × P⃗ is the angular momentum due to the motion of the center, and M⃗ ′ is the intrinsic angular
momentum of the system in the frame G ′, where the center of mass is at rest.

6.2.2.4 Reversibility of trajectories

Due to the isotropy of time, the Lagrangian of a closed system is unchanged by a reversal of the trajectories
of the system in time. That is, in the purest form of Lagrangian mechanics, there are no losses of energy (for
example, to heat or sound), and thus trajectories are reversible. Methods to generalize this setting to account
for frictional losses are discussed in §6.4.4.

6.2.3 Hamiltonian and Routhian formulations†

Define the generalized momenta pi = ∂L/∂q̇i and the Hamiltonian H =
∑

i q̇ipi − L. Consider now the
variation of L(qi, q̇i, t) arising from an arbitrary infinitesimal variation of its arguments:

δL =
∑

i

(∂L
∂qi

δqi +
∂L

∂q̇i
δq̇i

)
+
∂L

∂t
δt =

∑

i

(∂L
∂qi

δqi + piδq̇i

)
+
∂L

∂t
δt

=
∑

i

(∂L
∂qi

δqi + δ(piq̇i)− q̇iδpi
)
+
∂L

∂t
δt ⇒ δH =

∑

i

(
− ∂L

∂qi
δqi + q̇iδpi

)
− ∂L

∂t
δt.

Consider also the variation of H(qi, pi, t) arising from an arbitrary infinitesimal variation of its arguments:

δH =
∑

i

(∂H
∂qi

δqi +
∂H

∂pi
δpi

)
+
∂H

∂t
δt.
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Setting δH equal in the two previous expressions, for arbitrary δqi, δpi, and δt, results in:

∂H

∂qi
= −∂L

∂qi
,

∂H

∂pi
= q̇i,

∂H

∂t
= −∂L

∂t
.

Finally, incorporating Lagrange’s equation (6.36) with the definition of pi above, it follows that ∂L/∂qi = ṗi,
thus leading to Hamilton’s equations

dp

dt
= −∂H

∂q
,

dq

dt
=
∂H

∂p
,

∂H

∂t
= −∂L

∂t
. (6.52)

For a closed system, ∂L/∂t = 0, and thus, noting (6.50) and (6.45),H is simply the (conserved) total energy of the
system,H = 2T −L = T +U = E . Writing a system in this symplectic form leads to numerical advantages
in the long-time integration of such conservative systems, as discussed in §??. To recap, the equations of motion
in the Lagrangian approach, given in (6.36), are fundamentally second order, whereas the equations of motion
in the Hamiltonian approach, given in (6.52), are fundamentally first order and exhibit special structure which
may be exploited when performing long-time integration of conservative systems.

A hybrid approach, called the Routhian formulation, develops the evolution equations for the coördinates
explicitly appearing in the Lagrangian in the (second-order) Lagrangian manner, and develops the evolution
equations for the coördinates not explicitly appearing in the Lagrangian (called cyclic coördinates) in the
(first-order) Hamiltonian manner. In certain problems with many coördinates, some of which are cyclic, this
approach can significantly simplify the resulting computations required to march the system in time.
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6.3 Solid bodies and their kinematics
We now turn to the defintion of a solid body, and characterize its mass distribution, orientation, and rate of
rotation. Once this subject is well at hand, the dynamics of solid bodies is considered in §6.4. Much of the
machinery of §6.2 carries over directly to this discussion as, for the purpose of derivation, solid bodies may be
considered simply as a cloud of particles constrained to move together.

6.3.1 Description of a solid body and its mass distribution
Consider first a cloud of particles rigidly connected by, in effect, massless rods; the total mass µ, center of
mass R⃗, and inertial tensor Iik ≜

∑
ama(r

2
j δik − rirk)a (where the sum is taken over each particle a) of this

cloud of particles are defined (denoting r1 as x, r2 as y, and r3 as z) by:

µ =
∑

a

ma, R⃗ =
∑

a

mar⃗a
µ

, I =



∑

ama(y
2
a + z2a) −∑ama xa ya −∑ama xa za

−∑ama ya xa
∑

ama(x
2
a + z2a) −∑ama ya za

−∑ama za xa −∑ama za ya
∑
ma(x

2
a + y2a)


. (6.53a)

Passing to the limit of an infinite number of infinitesimal particles, a solid body is characterized by:

µ =

∫

Ω

ρ dV, R⃗ =

∫

Ω

ρ r⃗

µ
dV, I =



∫
Ω
ρ(y2 + z2) dV −

∫
Ω
ρ x y dV −

∫
Ω
ρ x z dV

−
∫
Ω
ρ y x dV

∫
Ω
ρ(x2 + z2) dV −

∫
Ω
ρ y z dV

−
∫
Ω
ρ z x dV −

∫
Ω
ρ z y dV

∫
Ω
ρ(x2 + y2) dV


. (6.53b)

In the sections that follow, it is shown that the equations of motion of any solid body are built on these simple
aggregate functions of itsmass distribution. It follows from (6.53) that, if the origin is shifted such that r⃗ ′ = r⃗+s⃗,
then I ′ik = Iik + µ(s2δik − sisk). Note also that, by construction, the inertial tensor is symmetric positive
semi-definite, I ≥ 0. Thus, by Fact ??, its eigenvalues are non-negative, its eigenvectors may chosen to be
orthonormal, and we may decompose the inertial tensor as I = SΛSH . The three eigenvalues of I , denoted
{I1, I2, I3} and usually ordered I1 ≥ I2 ≥ I3 ≥ 0, are known as the principal moments of inertia of the body,
and the corresponding eigenvectors identify, in the initial reference frame considered, the principal axes of
the body. The equations of motion of a body will simplify significantly when considered in these coördinates.
Note that I1 ≤ I2 + I3. The following names and properties are associated with solid bodies:

(a) the case with I1 = I2 = I3 is called spherical top (e.g., a European football),

(b) the case with I1 = I2 > I3 is called an elongated symmetric top (e.g., an American football),

• further, the limit of case (b) with all particles colinear (a.k.a. a rotator, with r1 = r2 = 0) has I3 = 0,

(c) the case with I1 > I2 = I3 is called a flattened symmetric top (e.g., a frisbee), and

(d) the case with I1 > I2 > I3 is called an asymmetric top (e.g., a textbook or cellphone),

• further, the limit of case (c) or (d) with all particles coplanar (with r1 = 0) has I1 = I2 + I3.

To describe a solid body’s orientation, we use two orthogonal frames of reference, an inertial (a.k.a.Galilean)
frame {i, j,k} that is non-accelerating and non-rotating, and a Body frame {x, y, z} fixed to the solid body
(usually with its origin at the center of mass, and often with its axes aligned with the principal axes of the body),
translating and rotating with the solid body itself. Right-handed coördinate systems are used everywhere. A
solid body has six degrees of freedom: three to describe the location of its center of mass, and three to describe
its orientation as a 3D rotation (see §6.3.2) from some reference orientation.
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6.3.2 3D Rotations
The orientation of a solid body may be defined by a real orthogonal 3 × 3 matrix B whose columns specify
the orientation of the principle axes of the body frame within the inertial frame. A finite 3D rotation from
any orientation B1 to any other orientation B2 may be related by a real, orthogonal rotation matrix R such
that B2 = RB1 (that is, R = B2B

T
1 ); via this rotation, any vector p⃗ affixed to a point on the body maps to a

corresponding vector p⃗ ′ such that p⃗ ′ = Rp⃗. It follows that RRT = I (i.e., R must also be orthogonal), which
imposes six constraints on the nine components of R, and thus R has three degrees of freedom; taking the
determinant (see §??) of this expression, it is seen that |R| = ±1. The case with |R| = 1 is called a proper
rotation; the 3D Givens rotation matrix G (see §??), which performs a rotation in a single coördinate plane
and is formed as 2× 2 rotation matrix embedded within a 3× 3 identity matrix, is a special case. The case with
|R| = −1 is called an improper rotation, and can be formed as the product of a proper rotation matrix with a
real Householder reflector matrix H (see §??) with |H| = −1; as it is generally not possible to "reflect" a solid
body through itself, we restrict our attention to proper rotations with |R| = 1.

As shown in §6.3.2.1, any proper rotation R may be expressed as a single rotation of they body by some
angle θ about some unit vector u⃗ via Rodrigues’ rotation formula; this may be represented as a single vector
in the direction of u⃗ of length θ or, as shown in §6.3.2.2, as a single unit vector in R4, interpreted as a unit
quaternion. Alternatively, as shown in §6.3.2.3, any rotation of a body may be represented as a sequence of
three distinct rotations of the body around it’s own body-fitted axes, called an Euler or Tait-Bryan rotation
sequence. All of these representations of a rotation have exactly three degrees of freedom.

6.3.2.1 Euler’s rotation theorem and Rodrigues’ rotation formula

Fact 6.1 (Euler’s rotation theorem) Any orientation of a 3D solid body can be expressed as a single rotation of
the body by a certain angle around a certain unit vector from a reference orientation.

Proof : By the properties of the determinant (see §??), it follows for any proper rotation matrix R that

|I−R| = |(I−R)T | = |I−RT | = |I−R−1| = |−R−1(I−R)| = −|R−1| |I−R| = −|I−R| ⇒ |I−R| = 0.

Thus, |λ1I −R| = 0 for the eigenvalue λ1 = 1, and R s⃗ 1 = λ1s⃗
1 = s⃗ 1 for the corresponding eigenvector s⃗ 1; s⃗ 1

is identified as the rotation axis of R, as any vector in this direction is unchanged via premultiplication by R.
For any eigenvalue/eigenvector pair {λ, s⃗} of the orthogonal matrix R, we have s⃗H s⃗ = s⃗HRHR s⃗ =

|λ|2 s⃗H s⃗, and thus |λ| = 1. Since R is orthogonal, |R| = λ1 · λ2 · λ3 = 1. Since R is real, {λ2, λ3} are ei-
ther real, or come as a complex-conjugate pair; if they are real, it follows that λ2 = λ3 = 1, or λ2 = λ3 = −1.
In either case, we may write λ(R) = {1, c+ si, c− si} where c2 + s2 = 1, with c and s real. The most general
way to achieve this is by taking c = cos θ and s = sin θ for some angle θ. Writing the real Schur decomposition
of R (see §??), it follows that

R = UT̂UT , T̂ =



1 0 0
0 c s
0 −s c


 , U UT = I, U =



| | |
s⃗ 1 u⃗ 2 u⃗ 3

| | |


 .

It is seen that T̂ is just a Givens rotation matrix; that is, in the coordinate system defined by the (orthonormal)
columns of U , any rotation matrix R has a rotation axis s⃗ 1, and represents a regular 2D rotation by the angle
θ in the plane u⃗ 2-u⃗ 3. □

Fact 6.2 (Rodrigues’ rotation formula) Given a real 3D vector p⃗, define p⃗ ′ as the rotation of p⃗ about a unit
vector u⃗ by an angle θ (counterclockwise positive, according to the right-hand rule); p⃗ ′ is given by

p⃗ ′ = p⃗ cos θ + (u⃗ · p⃗) u⃗ (1− cos θ) + (u⃗× p⃗) sin θ. (6.54)
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Proof : Decompose p⃗ = p⃗∥ + p⃗⊥ into components parallel and perpendicular to u⃗:

p⃗∥ = (u⃗ · p⃗) u⃗, p⃗⊥ = p⃗− p⃗∥ = p⃗− (u⃗ · p⃗) u⃗.

The p⃗∥ component of p⃗ is unaffected by the rotation. Define w⃗ = u⃗× p⃗⊥ = u⃗× (p⃗∥ + p⃗⊥) = u⃗× p⃗; since u⃗ is a
unit vector, w⃗ represents a 90◦ clockwise rotation of p⃗⊥ around u⃗. Thus,

p⃗ ′ = p⃗∥ + p⃗⊥ cos θ + w⃗ sin θ

= (u⃗ · p⃗) u⃗+ (p⃗− (u⃗ · p⃗) u⃗) cos θ + u⃗× p⃗ sin θ = p⃗ cos θ + (u⃗ · p⃗) u⃗ (1− cos θ) + u⃗× p⃗ sin θ. □

Noting the definition of
[
u⃗
]
× in (B.18), Rodrigues’ rotation formula may be written in matrix form as

p⃗ ′ = R p⃗ where R = I cos θ + (1− cos θ) u⃗ u⃗T + sin θ
[
u⃗
]
×. (6.55)

6.3.2.2 Quaternions

In the early 1700s, Leonhard Euler established the theory of complex numbers, as summarized in §B.1. Starting
with the construct i =

√
−1, complex numbers z = a+ b i are said to have a real part a and an imaginary part

b. When plotting z = a+b i in the “complex plane”, the real dimension is taken as horizontal and the imaginary
dimension as vertical; in a sense, in the expression z = a + b i, i is a unit vector in the imaginary dimension,
and the unit vector in the real dimension is only implied. The product of two complex numbers treats i like an
ordinary algebraic variable, noting that i2 = −1. For example, if we take q = c+ s i and z = a+ b i, the product
q z = (c+ s i)(a+ b i) = (ca− sb)+ (cb+ sa)i; note in particular that complex arithmetic is commutative (that
is, q z = z q). Using this definition of complex arithmetic, Euler identified that

eiϕ = cosϕ+ i sinϕ = c+ s i (6.56)

Fact 6.3 (Rotation using complex numbers) Taking q = eiϕ = c+ s i for some angle ϕ, any complex number
z = a+ b i may be rotated counterclockwise by ϕ in the complex plane by taking the product

z′ = q z = (c+ s i)(a+ b i) = (ca− sb) + (cb+ sa)i = a′ + b′ i (6.57)

Proof : Follows from the definition of 2D vector rotation z′ = GTz (§??), with
(
a′

b′

)
=

(
c −s
s c

)(
a
b

)
. □
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In a flash of inspiration19 in 1843, Sir William Hamilton extended Euler’s definitions of complex numbers by
defining three distinct square roots20 of −1, and the following noncommutative relations between them:

i2 = j2 = k2 = i j k = −1 ⇒ i j = −j i = k, j k = −k j = i, k i = −i k = j. (6.58)

A quaternion is a 4D generalization of a complex number, with a real part and three imaginary parts. The
Hamilton product of two quaternions p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k treats i, j, and
k like noncommutative algebraic variables, noting (6.58). Each of the four components of the resulting vector
r = pq = r0 + r1i+ r2j+ r3k has four terms, as summarized by the following equivalent matrix forms:

r = pq =




r0
r1
r2
r3


 =




p0 −p1 −p2 −p3
p1 p0 −p3 p2
p2 p3 p0 −p1
p3 −p2 p1 p0







q0
q1
q2
q3


 =




q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1
q3 q2 −q1 q0







p0
p1
p2
p3


 . (6.59a)

Denoting p = p0 + p⃗ and q = q0 + q⃗ where p⃗ = p1i+ p2j+ p3k and q⃗ = q1i+ q2j+ q3k, we may also write

pq = (p0 + p⃗)(q0 + q⃗) = (p0q0 − p⃗ · q⃗) + (p0q⃗ + q0p⃗+ p⃗× q⃗), (6.59b)

where p⃗ · q⃗ and p⃗× q⃗ denote 3D dot and cross products (see §B.3). In particular, it follows from (6.59b) that

pq = −p⃗ · q⃗ + p⃗× q⃗ if p0 = q0 = 0. (6.59c)

The Hamilton product is noncommutative [that is, pq ̸= qp; note, e.g., the cross products in (6.59b) and (6.59c),
and the fact that p⃗× q⃗ = −q⃗ × p⃗]. Further, akin to (6.56), it follows that

eu⃗ ϕ = e(u1i+u2j+u3k)ϕ = cosϕ+ (u1i+ u2j+ u3k) sinϕ ≜ q. (6.60)

The conjugate of a quaternion q = q0 + q1i+ q2j+ q3k is defined as q∗ = q0 − q1i− q2j− q3k. Thus,

(qp)∗ = p∗q∗ (6.61a) (q∗)∗ = q (6.61b) q0 = (q+ q∗)/2 (6.61c) q⃗ = (q− q∗)/2 (6.61d)

The norm of q is defined as ∥q∥ = √qq∗ = √q∗q = (q20 + q21 + q22 + q23)
1/2. If ∥q∥ = 1 (referred to as a unit

quaternion or versor), q may be written in the form of (6.60) for some angle ϕ and some unit vector u⃗. This
representation is not unique: an angle of −ϕ and a unit vector of −u⃗ results in the same quaternion q.

Fact 6.4 The inverse q−1 of the quaternion q, for which qq−1 = 1, is given simply by q−1 = q∗/ ∥q∥2.
In particular, if q is a unit quaternion, then q−1 = q∗.

Proof : Follows directly from (6.59a). □

Fact 6.5 (Rotation using quaternions) If u⃗ = u1i+ u2j+ u3k is a 3D unit vector (that is, u21 + u22 + u23 = 1),
and thus q = q0 + q1i + q2j + q3k defined by (6.60), with ϕ = θ/2 for some angle θ, is a unit quaternion (that is,
q20 + q21 + q22 + q23 = 1), then any 3D vector p⃗ = p1i + p2j + p3k may be rotated by the angle θ = 2ϕ around the
vector u⃗ by taking the product

p⃗ ′ = q p⃗q∗. (6.62)
19In fact, upon this inspiration, Hamilton carved the defining relations on the left in (6.58) into the Broom Bridge in Dublin.
20It is common to denote the various square roots of−1 in a quaternion representation with boldface, to emphasize their interpre-

tation as three unit vectors in a four-dimensional space. We thus adopt that convention here.
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Proof : Noting the formula for the Hamilton product given in (6.59c) [interpreting p⃗ and u⃗ as quaternions p and
u with zero real part, i.e., p0 = u0 = 0, for the purpose of performing multiplication], as well as the identities
(B.21), (B.54), and (B.56), Fact 6.5 may be verified by comparing with Rodrigues’ rotation formula (Fact 6.2) as
follows:

p⃗ ′ = qpq∗ =
(
cos

θ

2
+ u sin

θ

2

)
p
(
cos

θ

2
− u sin

θ

2

)
= p cos2

θ

2
+ (up− up) sin

θ

2
cos

θ

2
− upu sin2 θ

2

= p⃗ cos2
θ

2
+ 2 u⃗× p⃗ sin

θ

2
cos

θ

2
+ u⃗ (p⃗ · u⃗− p⃗× u⃗) sin2 θ

2

= p⃗ cos2
θ

2
+ u⃗× p⃗ sin θ + [u⃗(p⃗ · u⃗) + u⃗ · (p⃗× u⃗)− u⃗× (p⃗× u⃗)] sin2 θ

2

= p⃗ cos2
θ

2
+ u⃗× p⃗ sin θ + [u⃗(p⃗ · u⃗) + 0− (p⃗(u⃗ · u⃗)− u⃗(u⃗ · p⃗))] sin2 θ

2

= p⃗
(
cos2

θ

2
− sin2 θ

2

)
+ u⃗× p⃗ sin θ + 2 u⃗ (u⃗ · p⃗) sin2 θ

2
= p⃗ cos θ + (u⃗ · p⃗) u⃗ (1− cos θ) + u⃗× p⃗ sin θ. □

Note that, applying (6.59a) to (6.62), a 3× 3 matrix formula for the rotated vector p⃗ ′ = q p⃗q∗ is given by


p′1
p′2
p′3


 = Rq



p1
p2
p3


 with Rq =



q20 + q21 − q22 − q23 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q20 − q21 + q22 − q23 2q2q3 − 2q0q1
2q1q3 − 2q0q2 2q2q3 + 2q0q1 q20 − q21 − q22 + q23


 . (6.63)

Fact 6.6 The product of two unit quaternions is a unit quaternion.

Proof : Assume p and q are unit quaternions. In the first expression in (6.59a), the matrix derived from p
is orthogonal, and q20 + q21 + q22 + q23 = 1; in the second expression in (6.59a), the matrix derived from q is
orthogonal, and p20 + p21 + p22 + p23 = 1. Fact 6.6 thus follows directly from either expression. □

Coupling Facts 6.5 and 6.6, it is seen that, if a rotation characterized by a unit quaternion q is followed by
a rotation characterized by a unit quaternion p, the total effect of the two rotations is equivalent to a single
rotation characterized by the unit quaternion r = pq.

6.3.2.3 Euler and Tait-Bryan rotation sequences

It is easy to see that, starting from a reference orientation, successively rotating a body about one of its body-
fixed axes, then about a different body-fixed axis, then about the first body-fixed axis, called a Euler rotation
sequence, any possible final orientation of the body can be achieved. Once the axes are affixed to the body,
there are 3! = 6 choices for which axes to rotate about following this approach. Starting from a reference
configuration, one commonly-used convention is known as the 3-1-3 Euler rotation sequence:

3 rotate the body by an angle α about the body-fixed z axis, then

1 rotate the body by an angle β about the body-fixed x axis, then

3 rotate the body by an angle γ about the body-fixed z axis.

Note that rotations are always performed using the right-hand rule (pointing your right thumb along the
axis, the direction that your fingers curl corresponds to positive rotation). Note also that order matters: these
rotations must be applied in succession, in this order, or a different final orientation results.

Similarly, it is easy to see that successively rotating a body about each of its body-fixed axes in turn, called
a Tait-Bryan rotation sequence, any possible final orientation of the body can be achieved. There are again
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3! = 6 choices for which axes to rotate about following this approach. Starting from a reference configuration,
one commonly-used convention is known as the 3-2-1 Tait-Bryan rotation sequence21:

3 rotate the body by an angle α about the body-fixed z axis, then

2 rotate the body by an angle β about the body-fixed y axis, then

1 rotate the body by an angle γ about the body-fixed x axis.

This convention is commonly used in the aerospace industry, where the Body frame axes are taken as vectors
from the nominal center of mass out the nose, the right wingtip, and the bottom of the aircraft for x, y, and
z, respectively, and the Reference frame axes are taken as north, east, and down (NED) for i, j, and k axes,
respectively. In this case, the 3-2-1 Tait-Bryan rotation sequence may be described as follows22:

3 yaw the aircraft by α about the z (down) axis (positive α yaws the nose to the right), then

2 pitch the aircraft by β about the y (out-the-right-wing) axis (positive β pitches the nose up), then

1 roll the aircraft by γ about the x (out-the-nose) axis (positive γ rolls the right wing down).

The 3-2-1 Tait-Bryan rotation sequence is also commonly used in the automobile industry, where two different
conventions are used: in the SAE standards J670 (c. 2008, regarding automobile dynamics) and J1594 (c. 2010,
regarding automobile aerodynamics), essentially same conventions as described above are used, whereas in the
ISO standard 8855 (c. 2011) the body-fixed axes are taken as vectors out the front of the automobile, the left
side, and the top for the x, y, and z axes, respectively, and the reference orientation is taken as east, north,
and up (ENU) for the inertial i, j, and k axes, respectively23. It is important to note that, in both the SAE and
ISO automobile standards, the center of the coördinate system is taken as some reference point at the center
of the automobile chassis, not necessarily the nominal center of mass; these rotation sequences are, of course,
otherwise identical mathematically to the 3-2-1 Tait-Bryan rotation sequence used in the aerospace industry,
but with the ISO convention having a slightly different physical interpretation:

3 yaw the automobile by α about the z (up) axis (positive α yaws the front to the left), then

2 pitch the automobile by β about the y (out-the-left-side) axis (positive β pitches the front down), then

1 roll the automobile by γ about the x (out-the-front) axis (positive γ rolls the right side down).

21The Euler and Tait-Bryan rotation sequences described here are called intrinsic rotation sequences, as subsequent rotations are
applied around the (new) body axes after the previous rotations are complete. Alternatively, extrinsic rotation sequences may be
applied, with each subsequent rotation applied around the inertial (unrotated) axes. Curiously, any intrinsic rotation sequence is
equivalent to a corresponding extrinsic rotation sequence applied in the reverse order. Thus, for example, the (intrinsic) 3-2-1 Tait-
Bryan rotation sequence described here is equivalent to the following (extrinsic) rotation sequence: [1] rotate the body by an angle γ
about the inertial i axis, then [2] rotate the body by an angle β about the inertial j axis, then [3] rotate the body by an angle α about
the inertial k axis.

22In this work, we denote the three successive rotations of any intrinsic rotation sequence as α, β, and γ, in order to emphasize
the order in which the rotations are applied, where α and γ are defined modulo 2π radians (e.g., −π < α ≤ π, −π < γ ≤ π, and β
covers π radians (e.g., −π/2 ≤ β ≤ π/2). Note that, for the 3-2-1 Tait-Bryan rotation sequence commonly used in the aerodynamics
literature, the notation ϕ, θ, and ψ for, respectively, yaw, pitch, and roll (a.k.a. heading, elevation, and bank), is somewhat more
customary.

23Note that ENU is also a natural Reference frame for the 3-1-3 Euler rotation sequence discussed previously. When applied to a
rotating top, the {α, β, γ} angles of the 3-1-3 Euler rotation sequence correspond precisely to precession, nutation, and intrinsic
rotation (a.k.a., spin), as discussed further in Example 6.15.
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There are many other possible choices for which axes to rotate about and which reference to compare with in
Euler and Tait-Bryan rotation sequences; it is advised to stick with one of these common conventions.

To describe the orientation of a body as a rotation from its reference orientation using an Euler or Tait-Bryan
rotation sequence, we may simply apply a product of three Givens rotations (see §??). To simplify, denote
{cosα, sinα, cos β, sin β, cos γ, sin γ} as {c1, s1, c2, s2, c3, s3}. Using the 3-1-3 Euler rotation sequence, first
yaw about the z axis by α, then roll about the x axis by β, then yaw about the z axis by γ; that is, we define
RB←R

313 = G(1, 2; γ)G(2, 3; β)G(1, 2;α):

RB←R
313 =




c3 s3 0
−s3 c3 0
0 0 1





1 0 0
0 c2 s2
0 −s2 c2






c1 s1 0
−s1 c1 0
0 0 1


 =



c1 c3− c2 s1 s3 c3 s1 + c1 c2 s3 s2 s3
−c1 s3− c2 c3 s1 c1 c2 c3− s1 s3 c3 s2

s1 s2 −c1 s2 c2




To rotate the body back to the reference orientation, perform the same rotations, using the opposite angles,
and apply in the reverse order; that is,

RR←B
313 = G(1, 2;−α)G(2, 3;−β)G(1, 2;−γ) = [RB←R

313 ]T =



c1 c3− c2 s1 s3 −c1 s3− c2 c3 s1 s1 s2
c3 s1 + c1 c2 s3 c1 c2 c3− s1 s3 −c1 s2

s2 s3 c3 s2 c2




Similarly, using the 3-2-1 Tait-Bryan rotation sequence, first yaw about the z axis by α, then pitch about
the y axis by β, then roll about the x axis by γ; that is, we define RB←R

321 = G(2, 3; γ)G(3, 1; β)G(1, 2;α):

RB←R
321 =



1 0 0
0 c3 s3
0 −s3 c3





c2 0 −s2
0 1 0
s2 0 c2






c1 s1 0
−s1 c1 0
0 0 1


 =




c1 c2 c2 s1 −s2
c1 s2 s3− c3 s1 c1 c3 + s1 s2 s3 c2 s3
s1 s3 + c1 c3 s2 c3 s1 s2− c1 s3 c2 c3




Again, to rotate the body back to the reference orientation, perform the same rotations, using the opposite
angles, and apply in the reverse order; that is,

RR←B
321 = G(1, 2;−α)G(3, 1;−β)G(2, 3;−γ) = [RB←R

321 ]T =



c1 c2 c1 s2 s3− c3 s1 s1 s3 + c1 c3 s2
c2 s1 c1 c3 + s1 s2 s3 c3 s1 s2− c1 s3
−s2 c2 s3 c2 c3




Thus, for example, the (extrinsic) quaternion representation of the (intrinsic) 3-1-3 Euler rotation sequence,
applying the Hamilton product corresponding to each rotation in the reverse order of the intrinsic rotation as
required by footnote 21 on page 6-31, is




q0
q1
q2
q3


 =




cosα/2
0
0

sinα/2







cos β/2
sin β/2

0
0







cos γ/2
0
0

sin γ/2


 =




cosα/2 cos β/2 cos γ/2− sinα/2 cos β/2 sin γ/2
cosα/2 sin β/2 cos γ/2 + sinα/2 sin β/2 sin γ/2
sinα/2 sin β/2 cos γ/2− cosα/2 sin β/2 sin γ/2
cosα/2 cos β/2 sin γ/2 + sinα/2 cos β/2 cos γ/2




whereas the (extrinsic) quaternion representation of the (intrinsic) 3-2-1 Tait-Bryan rotation sequence is




q0
q1
q2
q3


 =




cosα/2
0
0

sinα/2







cos β/2
0

sin β/2
0







cos γ/2
sin γ/2

0
0


 =




cosα/2 cos β/2 cos γ/2 + sinα/2 sin β/2 sin γ/2
cosα/2 cos β/2 sin γ/2− sinα/2 sin β/2 cos γ/2
cosα/2 sin β/2 cos γ/2 + sinα/2 cos β/2 sin γ/2
sinα/2 cos β/2 cos γ/2− cosα/2 sin β/2 sin γ/2
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Conversely, comparingRR←B
313 above toRq in (6.63), it is easy to verify that the following relations convert from

a quaternion rotation sequence to the equivalent 3-1-3 Euler rotation sequence:

if r3,3 ≈ 0





α = atan2(r3,3, r1,1),
β = acos (r3,3),

γ = 0,

else

α = atan2(r1,3,−r2,3),
β = acos (r3,3),

γ = atan2(r3,1, r3,2),

and, comparingRR←B
321 above toRq in (6.63), the following relations convert from a quaternion rotation sequence

to the equivalent 3-2-1 Tait-Bryan rotation sequence:

α = atan2(2q1q2 − 2q0q3, q
2
0 + q21 − q22 − q23),

β = −asin (2q1q3 + 2q0q2),

γ = atan2(2q2q3 − 2q0q1, q
2
0 − q21 − q22 + q23).

These relations, and those for the other 10 rotation sequences, are implemented in RR_rotation_sequence.
Euler and Tait-Bryan rotation sequences are singular, which means that the three angles {α, β, γ} must

make a finite jump, in the vicinity of certain critical orientations, as the orientation goes through an infinitesimal
change. [This singularity is akin to the (simpler, 2D) description of your location on the surface of the Earth, in
terms of longitude and latitude, suddenly jumping (in longitude) by 180◦ when you take a single step over one of
the poles.] The singularity of rotation sequences, and the nonsingular behavior of the quaternion representation
of rotations, is illustrated well by comparing Examples 6.12 and 6.13 below.

The singularity of rotation sequences is often associated with gimbal lock, which is the loss of a degree of
freedomof a three-gimbalmechanism in a gyroscope (used tomeasure vehicle orientation) which happenswhen
the axes of two of the three gimbals become parallel. Note, however, that the singularity of rotation sequences is
inherent to the mathematical description of the orientation itself, and is independent of the mechanical device
actually used to measure the orientation of the vehicle.

Example 6.12 Starting with a body in the NED reference orientation, consider two rotations in succession:
first roll the body (about its x axis) by π/2, then pitch the body (about its y axis) by π/2. We now describe
the orientation of the body during each rotation using the (intrinsic) 3-2-1 Tait-Bryan rotation sequence, the
(intrinsic) 3-1-3 Euler rotation sequence, and the (extrinsic) quaternion description of rotation.

In terms of a 3-2-1 Tait-Bryan rotation sequence, during the first rotation, γ changes continuously from 0 to
π/2, while α = 0 and β = 0 stay constant. During the second rotation, α (note: not β!) changes continuously
from 0 to π/2, while β = 0 and γ = π/2 stay constant. After both rotations, {α, β, γ} = {π/2, 0, π/2}.

In terms of a 3-1-3 Euler rotation sequence, during the first rotation, β changes continuously from 0 to π/2,
while α = 0 and γ = 0 stay constant. During the second rotation, α changes continuously from 0 to π/2, while
β = π/2 and γ = 0 stay constant. After both rotations, {α, β, γ} = {π/2, π/2, 0}.

In terms of quaternions, the first rotation is given by a rotation of θ1 = π/2 degrees about the i axis (i.e.,
u⃗1 = i). Thus, noting (6.60) and Fact 6.5, q1 = (

√
2/2)(1 + i). The second rotation is given by a rotation of

θ2 = π/2 degrees about the k axis (that is, u⃗2 = k). Thus, q2 = (
√
2/2)(1 + k). The total rotation is given by

q = q2 q1 = (1 + k)(1 + i)/2 = (1 + i+ j+ k)/2 = cos(π/3) + [(i+ j+ k)/
√
3] sin(π/3);

that is, it is given by a rotation of θ = 2π/3 radians around the unit vector u⃗ = (i+ j+ k)/
√
3.

Example 6.13 We now repeat Example 6.12 for the following two rotations: first pitch the body (about its y
axis) by π/2, then yaw the body (about its z axis) by π/2. Note that the final orientation after these two rotations
happens to be the same as that after the two rotations considered in Example 6.12.
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In terms of a 3-2-1 Tait-Bryan rotation sequence, during the first rotation, β changes continuously from 0 to
π/2, whileα = 0 and γ = 0 stay constant. In contrast with Example 6.12, describing the second rotation in terms
of Tait-Bryan angles is problematical, as the coördinate description of the configuration after the first rotation
is singular. Before the second rotation begins, the Tait-Bryan angles must jump suddenly, from {α, β, γ} =
{0, π/2, 0} to, e.g., {α, β, γ} = {π/2, π/2, π/2}. During the second rotation, β then gradually reduces, from
π/2 to 0. After both rotations are complete, {α, β, γ} = {π/2, 0, π/2}.

In terms of a 3-1-3 Euler rotation sequence, before the first rotation begins, the Euler angles must jump sud-
denly, from {α, β, γ} = {0, 0, 0} to, e.g., {α, β, γ} = {π/2, 0,−π/2}, as in this case the coördinate description
of the initial configuration is singular. During the first rotation, β then gradually increases, from 0 to π/2. Dur-
ing the second rotation, γ changes continuously from −π/2 to 0, while α = π/2 and β = π/2 stay constant.
After both rotations are complete, {α, β, γ} = {π/2, π/2, 0}.

In terms of quaternions, the first rotation is given by a rotation of θ1 = π/2 degrees about the j axis (that
is, u⃗1 = j). Thus, noting (6.60) and Fact 6.5, q1 = (

√
2/2)(1 + j). The second rotation is given by a rotation of

θ2 = π/2 degrees about the i axis (that is, u⃗2 = i). Thus, q2 = (
√
2/2)(1 + i). The total rotation is given by

q = q2 q1 =
1

2
(1 + i)(1 + j) =

1

2
(1 + i+ j+ k) = cos(π/3) +

i+ j+ k√
3

sin(π/3);

that is, it is given by a rotation of θ = 2π/3 radians around the unit vector u⃗ = (i+ j+ k)/
√
3.

As expected, the final configurations in Examples 6.12 and 6.13 are identical in terms of the final angles
of the 3-2-1 Tait-Bryan rotation sequence and the 3-1-3 Euler rotation sequence, as well as the total rotation
quaternion q. These configurations are interrelated by the several equations derived earlier in this subsection.

Note that special treatment was required in Example 6.13 to move through the singularities of both the 3-
2-1 Tait-Bryan rotation sequence as well as the 3-1-3 Euler rotation sequence, neither of which happened to be
encountered in Example 6.12. In sharp contrast, the quaternion description of a rotation is always nonsingular,
never requiring such special treatment. In problems in which general vehicle rotations must be well handled (for
example, in a fighter aircraft), quaternion descriptions are thus preferred; in problems in which the expected
motions of the vehicle is limited in ways that avoid such singularities (for example, in a commercial transport
aircraft), rotation sequences are sometimes more intuitive and convenient.

6.3.3 Vectors in different frames of reference, and the rate of rotation ω⃗
We will have occasion in the discussion that follows to describe vectors in different frames of reference, some
of which are moving. Though straightforward, this process is somewhat subtle, and must be treated with care.

We begin with a nonrotating, nonaccelerating reference frameE, with the Cartesian unit vectors {e⃗1, e⃗2, e⃗3}
(see §??) providing an orthogonal set of basis vectors satisfying the right-hand rule. In this reference frame,
we define additional sets of orthogonal unit vectors satisfying the right-hand rule, {g⃗1, g⃗2, g⃗3} and {⃗b1, b⃗2, b⃗3}
(each referred to as a dextral set), which may be assembled as the columns of corresponding matrices, G and
B (each sometimes referred to as a vectrix), satisfying the following properties

g⃗i · g⃗j = δij, g⃗1 × g⃗2 = g⃗3, g⃗2 × g⃗3 = g⃗1, g⃗3 × g⃗1 = g⃗2; GTG = I, |G| = 1; (6.64a)

b⃗i · b⃗j = δij, b⃗1 × b⃗2 = b⃗3, b⃗2 × b⃗3 = b⃗1, b⃗3 × b⃗1 = b⃗2; BTB = I, |B| = 1. (6.64b)

The unit vectors {⃗b1, b⃗2, b⃗3} may be considered as rotations of {g⃗1, g⃗2, g⃗3} into new directions by the action
of some rotation matrix RB←G; it follows that

B = RB←GG with RB←G = BGT , and G = RG←BB with RG←B = GBT = [RB←G]T . (6.65)
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Consider now some vector r⃗ defined in the original E frame, which is now represented as a linear combina-
tion of the unit vectors in the G frame and in the B frame, that is, r⃗ = G r⃗G = B r⃗B , and thus

r⃗B = DB←Gr⃗G with DB←G = BTG, and r⃗G = DG←B r⃗B with DG←B = GTB = [DB←G]T ; (6.66)

the vectors r⃗G and r⃗B are called the representations of the vector r⃗ in the G and B frames, respectively. The
(orthogonal) direction cosine matrixDB←G relates these two representations. The elements of the direction
cosinematrixDB←G derived in (6.66) are given by the inner products [see (??)] of the corresponding unit vectors
in the B and G frames, these inner products are referred to as the direction cosines of the corresponding
frames such that dB←Gij = b⃗i · g⃗j = cosα ij , where α ij is the angle between b⃗i and g⃗j . In contrast, the rotation
matrix RB←G defined in (6.65) is given by the sum of the outer products [see (??)] of the corresponding unit
vectors in the B and G frames. In certain special cases (e.g., if G is the identity matrix, and thus the G frame
coincides with E frame), the direction cosine matrix and rotation matrices relating the G and B frames satisfy
DB←G = RG←B and DG←B = RB←G; however, these relations are not true in general24.

We now develop a useful identity that will be leveraged in the discussion that follows.

Fact 6.7 If a⃗ = B a⃗B , c⃗ = B c⃗B , and B is a vectrix with columns satisfying (6.64b), then, noting (B.18),

a⃗× c⃗ =
[
a⃗
]
×c⃗ = (B a⃗B)× (B c⃗B) = B

[
a⃗B
]
×c⃗

B = B(⃗aB × c⃗B). (6.67)

Proof : Write B a⃗B =
∑

i b⃗
iaBi and B c⃗B =

∑
j b⃗

jcBj . Then

(B a⃗B)×(B c⃗B) =
∑

i,j

aBi c
B
j (⃗b

i× b⃗j) = b⃗1(aB2 c
B
3 −aB3 cB2 )+ b⃗2(aB3 cB1 −aB1 cB3 )+ b⃗3(aB1 cB2 −aB2 cB1 ) = B

[
a⃗B
]
×c⃗

B.

The other relations in (6.67) follow trivially from the stated definitions. □
Now consider some vector r⃗ and its time derivative, ˙⃗r = dr⃗/dt. Since r⃗ = G r⃗G = B r⃗B , we have

˙⃗r = Ġ r⃗G +G ˙⃗rG = Ḃ r⃗B +B ˙⃗rB. (6.68)

Recalling from (6.66) that B = GDG←B and differentiating, we also may write

Ḃ = ĠDG←B +GḊG←B.

We now suppose that the G frame is fixed in time (i.e., Ġ = 0), but the B frame is attached in a convenient
manner to the body, and rotates with it; noting that G = B (DG←B)T , it follows that

Ḃ = GḊG←B = B (DG←B)T ḊG←B, and thus BT Ḃ = (DG←B)T ḊG←B.

Recalling that B is orthogonal, it follows that BTB = I ; differentiating, it follows that

ḂTB +BT Ḃ = 0 ⇒ BT Ḃ = −(BT Ḃ)T ;

that is, the expression BT Ḃ itself is skew symmetric. Thus, noting (B.18), we may write

BT Ḃ = (DG←B)T ḊG←B ≜




0 −ωB3 ωB2
ωB3 0 −ωB1
−ωB2 ωB1 0


 =

[
ω⃗B
]
× ⇒ Ḃ = B

[
ω⃗B
]
×, ḊG←B = DG←B[ω⃗B

]
×.

24This point is somewhat muddled in many available texts and online resources, which sometimes use the terms “direction cosine
matrix” and “rotation matrix” essentially synonymously. The reader is advised to be semantically precise, to avoid mistakes when
G ̸= I .

6-35



Renaissance Robotics (v.2024-03-19) Chapter 6: Kinematics & Dynamics

The vector ω⃗B defined above requires further analysis to be properly interpreted. From the above together with
Fact 6.7, defining ω⃗ = Bω⃗B , we have Ḃ r⃗B = B

[
ω⃗B
]
×r⃗

B = ω⃗ × r⃗; thus, by (6.68) with Ġ = 0,

˙⃗r = G ˙⃗rG = B ˙⃗rB +Bω⃗B × r⃗B = B ˙⃗rB + ω⃗ × r⃗. (6.69)

If the body is not rotating (that is, if Ḃ = 0), then ω⃗ = ω⃗B = 0, and ˙⃗r = G ˙⃗rG = B ˙⃗rB ; however, if the body
is rotating, then the ω × r⃗ term must be added as shown above to account for this rotation. [Alternatively, if
the vector r⃗B is fixed to some point a on the (rotating) body, then ˙⃗rB = 0, and ˙⃗r = G ˙⃗rG = ω⃗ × r⃗.] The vector
ω⃗ is called the instantaneous rate of rotation of the body; as with r⃗, it may be represented in three different
reference frames: ω⃗ = Gω⃗G = Bω⃗B .

We now provide an alternative derivation of the instantaneous rate of rotation ω⃗. We again define a vector
r⃗B [in some convenient set of Body coördinates B] that is fixed to some point a on the (rotating) body, so that
˙⃗rB = 0, and consider its corresponding (time-varying) coördinates in the original frame E at time t, which
we denote r⃗(t). Further, the Body frame B considered is taken as aligned with the original frame E at time
t, so that r⃗(t) = r⃗B . Recall from Fact 6.1 that any finite rotation is representable as a single vector in R3 in
the direction of the rotation axis and of length given by the angle of rotation. Consider now an infinitesimal
rotation, which occurs over the infinitesimal time δt, which may thus be expressed as the product of some
unit vector along the instantaneous axis of rotation of the solid body, u⃗, times some infinitesimal angle of
rotation, δϕ, around this axis via the right-hand rule. Via Fact 6.2, taking θ = δϕ, we may write

r⃗(t+ δt) = r⃗(t) + δϕ(u⃗× r⃗) ⇒ r⃗(t+ δt)− r⃗(t)
δt

=
δr⃗

δt
=
u⃗ δϕ

δt
× r⃗ = ω⃗ × r⃗,

thus identifying the instantaneous rate of rotation at time t as ω⃗(t) = u⃗ dϕ/dt ≜ dϕ⃗/dt.
The 3-2-1 Tait-Bryan rotation RG←B

321 derived previously, taking G = I and the infinitesimal rotations
δϕ⃗ = (δϕ1, δϕ2, δϕ3) = (γ, β, α), provides an equivalent formulation of the scenario described in the previ-
ous paragraph. Noting the definition of

[
δϕ⃗
]
× in (B.18), this rotation reduces to25

Rδϕ⃗ =




1 −δϕ3 δϕ2

δϕ3 1 −δϕ1

−δϕ2 δϕ1 1


 = I +

[
δϕ⃗
]
× (6.70)

It is thus seen that the infinitesimal rotations of a solid body about each of its axes are decoupled, and may be
performed in any order. By (6.70), taking ω⃗(t) = dϕ⃗/dt, we may thus write

r⃗(t+ δt) = Rδϕ⃗r⃗(t) =
(
I +

[
δϕ⃗
]
×

)
r⃗(t) = r⃗(t) +

dr⃗

dt
δt ⇒ dr⃗

dt
=

[
δϕ⃗
]
×

δt
r⃗ =

δϕ⃗

δt
× r⃗ = ω⃗ × r⃗.

The vector ω⃗B(t) describes the instantaneous rate of rotation of a solid body around its own body fitted
axes at time t; the relations ω⃗ = Gω⃗G = Bω⃗B may be used as necessary transform this vector to the E or
G frame. More generally, to describe the evolution of the orientation of the body itself after the body rotates
for a finite period of time, the rate of change of the Euler, Tait-Bryan, and quaternion descriptions of the solid
body’s orientation itself must be computed by integrating the effect of the instantaneous rate of rotation ω⃗(t)
on these descriptions of the orientation over time, as discussed next.

25The quaternion representation of the 3-2-1 Tait-Bryan rotation sequence reveals an equivalent expression for an infinites-
imal rotation about each of the axes. With (ϕ1, ϕ2, ϕ3) = (γ, β, α), this rotation may be represented as {q0, q1, q2, q3} =
{1, δϕ1/2, δϕ2/2, δϕ3/2}; applying these relations to (6.63), the same expression for Rδϕ⃗ as given in (6.70) results.
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6.3.4 The rate of change of a solid body’s orientation as a function of ω⃗
The rate of change of the 3-2-1 Tait-Bryan rotation sequence

Recall the 3-2-1 Tait-Bryan rotation sequence and the transformation RB←R
321 = G(2, 3; γ)G(3, 1; β)G(1, 2;α)

from the R frame to the B frame. We now associate with this rotation sequence two intermediate frames, I
and II , such that

• R I←R
321 = G(1, 2;α) (i.e., the I frame is given by yawing the R frame by α),

• R II←I
321 = G(3, 1; β) (i.e., the II frame is given by pitching the I frame by β), and

• RB←II
321 = G(2, 3; γ) (i.e., the B frame is given by rolling the II frame by γ);

it follows that RB←R
321 = RB←II

321 R II←I
321 R I←R

321 . Note further that

• the yaw rate α̇ represents rotation of the body about the z-axis in both the R and I frames,

• the pitch rate β̇ represents rotation of the body about the y-axis in both the I and II frames, and

• the roll rate γ̇ represents rotation of the body about the x-axis in both the II and B frames.

Thus, to relate the rotations implied by the rate of change of the 3-2-1 Tait-Bryan angles (α̇, β̇, and γ̇) to the
three instantaneous body rotation rates in the B frame (ωB1 , ω

B
2 , and ω

B
3 ), we may transform as follows:



ωB1
ωB2
ωB3


 = G(2, 3; γ)G(3, 1; β)G(1, 2;α)



0
0
α̇


+G(2, 3; γ)G(3, 1; β)



0

β̇
0


+G(2, 3; γ)



γ̇
0
0




= G(2, 3; γ)G(3, 1; β)



0
0
α̇


+G(2, 3; γ)



0

β̇
0


+



γ̇
0
0


 =



1 0 − sin(β)
0 cos(γ) sin(γ) cos(β)
0 − sin(γ) cos(γ) cos(β)





γ̇

β̇
α̇


 .

Thus, taking the inverse (easily confirmed by multiplying the matrix below by the last matrix above),

d

dt



γ
β
α


 =



1 sin(γ) tan(β) cos(γ) tan(β)
0 cos(γ) − sin(γ)
0 sin(γ)/ cos(β) cos(γ)/ cos(β)





ωB1
ωB2
ωB3


 . (6.71)

Note that (6.71) is valid for all angles except the singular points β = ±π/2 identified in Example 6.13.

The rate of change of the 3-1-3 Euler rotation sequence

Recall now the 3-1-3 Euler rotation sequence and transformation RB←R
313 = G(1, 2; γ)G(2, 3; β)G(1, 2;α). We

now associate with this rotation sequence two intermediate frames, I and II , such that

• R I←R
313 = G(1, 2;α) (i.e., the I frame is given by yawing the R frame by α),

• R II←I
313 = G(2, 3; β) (i.e., the II frame is given by rolling the I frame by β), and

• RB←II
313 = G(1, 2; γ) (i.e., the B frame is given by yawing the II frame by γ);
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it follows that RB←R
313 = RB←II

313 R II←I
313 R I←R

313 . Note further that

• the yaw rate α̇ represents rotation of the body about the z-axis in both the R and I frames,

• the roll rate β̇ represents rotation of the body about the x-axis in both the I and II frames, and

• the yaw rate γ̇ represents rotation of the body about the z-axis in both the II and B frames.

Thus, to relate the rotations implied by the rate of change of the 3-1-3 Euler angles (α̇, β̇, and γ̇) to the three
instantaneous body rotation rates in the B frame (ωB1 , ω

B
2 , and ω

B
3 ), we may transform as follows:



ωB1
ωB2
ωB3


 = G(1, 2; γ)G(2, 3; β)G(1, 2;α)



0
0
α̇


+G(1, 2; γ)G(2, 3; β)



β̇
0
0


+G(1, 2; γ)



0
0
γ̇




= G(1, 2; γ)G(2, 3; β)



0
0
α̇


+G(1, 2; γ)



β̇
0
0


+



0
0
γ̇


 =




cos(γ) sin(γ) sin(β) 0
− sin(γ) cos(γ) sin(β) 0

0 cos(β) 1





β̇
α̇
γ̇


 .

To simplify the resulting expression, the last vector on the RHS above has been reordered. Taking the inverse,

d

dt



β
α
γ


 =




cos(γ) − sin(γ) 0
sin(γ)/ sin(β) cos(γ)/ sin(β) 0
− sin(γ) cot(β) − cos(γ) cot(β) 1





ωB1
ωB2
ωB3


 . (6.72)

Note that (6.71) is valid for all angles except the singular point β = 0 identified in Example 6.13.

The rate of change of the quaternion description of orientation

Let the unit quaternion q represent the rotation of any vector p⃗B in the Body frame to the corresponding vector
p⃗ = q p⃗B q∗ in the original E frame, noting Fact 6.5. We now consider a vector p⃗B fixed in the Body frame (that
is, dp⃗B/dt = 0), and relate dq/dt to the instantaneous rate of rotation of the body ω⃗. Applying the product rule
of differentiation,

dp⃗

dt
=
dq

dt
p⃗B q∗ + q p⃗B

dq∗

dt
=
dq

dt
p⃗B q∗ +

[dq
dt

(
p⃗B
) ∗

q∗
]∗

=
dq

dt
p⃗B q∗ −

(dq
dt
p⃗B q∗

)∗
. (6.73)

Recalling from (6.69) that dp⃗/dt = ω⃗ × p⃗, the quaternion formulation of this equation [noting (6.61d)] is

dp⃗

dt
= [ω⃗ p⃗− (ω⃗ p⃗)∗]/2. (6.74)

Equating the RHS of (6.73) and (6.74), we have (dq/dt) p⃗B q∗ = ω⃗ p⃗/2 = (ω⃗ q/2) p⃗B q∗ for arbitrary p⃗B ; thus,
applying ω⃗ = q ω⃗B q∗, we have

dq

dt
= ω⃗ q/2 = q ω⃗B/2. (6.75)

Unlike the expressions for the evolution of the 3-2-1 Tait-Bryan rotation sequence in (6.71) and the evolution of
the 3-1-3 Euler rotation sequence in (6.72), the expression above for the evolution of q is nonsingular for all q,
as identified in Example 6.13.
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6.4 Solid body dynamics

6.4.1 The (conserved) momentum, energy, and angular momentum of a free body

Recall the total mass µ =
∑

a ma, the position of the center of mass R⃗ =
∑

a ma r⃗a/µ, and the inertial
tensor Iik ≜

∑
ama(r

2
j δik − rirk)a of a cloud of rigidly connected particles given in (6.53a); these definitions

easily pass to the limit of a solid body (that is, to an infinite number of infinitesimal particles) by converting the
sums to integrals, as given in (6.53b). We now develop the formulae for the momentum, energy, and angular
momentum of a free solid body (i.e., a closed system) by passing the corresponding formula in §6.2 to the
same continuüm limit, recalling that a solid body has six degrees of freedom: three to describe the location of
its center of mass, and three to describe its orientation as a finite 3D rotation from a reference orientation, as
discussed extensively above. To disambiguate the discussion that follows, we will make use of three reference
frames (identified, perhaps pedantically, with superscripts): a stationary (that is, nonrotating, nonaccelerating)
frame E, a moving frame A, aligned with E but centered at the center of mass of the body, and a body frame
B, both centered at the center of mass of the body and rotating with the body itself.

In §6.2.2.1, the velocity of the center of mass of anN particle system (in the originalE frame) was identified
as V⃗ =

∑
a ma v⃗a/µ = dR⃗/dt, and the total momentum was defined as P⃗ =

∑
a p⃗a =

∑
a ma v⃗a =

µV⃗ . These definitions, and the property of conservation of momentum dP⃗ /dt = 0 given in (6.49), extend
immediately to solid bodies by defining

R⃗ =

∫

Ω

ρ r⃗E dV/µ, V⃗ =

∫

Ω

ρ v⃗E dV/µ, and P⃗ = µV⃗ . (6.76)

Once the solid body’s position, velocity, and instantaneous rate of rotation are identified, we may write the
position and velocity of any point a on the solid body, located a fixed position with respect to the center of
mass in body coördinates (i.e., r⃗Ba /dt = 0), as the sum the two components.

r⃗Ea = R⃗ + r⃗Aa = R⃗ +B r⃗Ba and v⃗Ea = V⃗ + ω⃗A × r⃗Aa = V⃗ +B ω⃗B × r⃗Ba . (6.77)

In §6.2.2.2, the kinetic energy of a system of particles was identified in (6.41) as T (v) =
∑

ama ∥v⃗a∥2/2;
passing to the continuüm limit, noting (6.77), (B.20), (B.19), and the definition of Iik in §6.3.1, this definition
may be extended to solid bodies by taking

T =

∫

Ω

ρ∥v⃗E∥2
2

dV =

∫

Ω

ρ∥V⃗ + ω⃗A × r⃗A ∥2
2

dV =
µ∥V⃗ ∥2

2
+

∫

Ω

ρ
(
V⃗ · ω⃗A × r⃗A +

∥ω⃗A × r⃗A ∥2
2

)
dV

=
µ∥V⃗ ∥2

2
+

���
���*0∫

Ω

ρr⃗A dV · V⃗ × ω⃗A +

∫

Ω

ρ
∥ω⃗A∥2 ∥r⃗A∥2 − (ω⃗A · r⃗A)2

2
dV

=
µ∥V⃗ ∥2

2
+

∫

Ω

ρ
∥ω⃗B∥2 ∥r⃗B∥2 − (ω⃗B · r⃗B)2

2
dV =

µ∥V⃗ ∥2
2

+

∫

Ω

ρ
ωBi ω

B
k δik r

B
j r

B
j − ωBi rBi ωBk rBk
2

dV

=
µ∥V⃗ ∥2

2
+
Iikω

B
i ω

B
k

2
where Iik ≜

∫

Ω

ρ(δik r
B
j r

B
j − rBi rBk ) dV, (6.78a)

where µ∥V⃗ ∥2/2 is the kinetic energy due to the motion of the center of mass of the solid body, and IikωBi ω
B
k /2

is the kinetic energy due to the rotation of the solid body about its center of mass. Note that, if the B frame is
taken in the principal axes (in which the inertial tensor Iik is diagonal), then (6.78a) reduces to

T =
µ∥V⃗ ∥2

2
+
I1(ω

B
1 )

2 + I2(ω
B
2 )

2 + I3(ω
B
3 )

2

2
. (6.78b)
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As in (6.41), the Lagrangian of a solid body is again given by L = T − U . Considering the total energy
E = T + U , the property of the conservation of energy dE/dt = 0 given in (6.50) follows again as before.

In §6.2.2.3, the total angular momentum of a system of particles was defined as M⃗ =
∑

a r⃗a × p⃗a where,
following (6.49), the momentum of each particle is p⃗a = ma v⃗a; passing to the continuüm limit, noting (B.21),
the definition of Iik in (6.78a), and that

∫
Ω
ρr⃗A dV = 0, this definition may be extended to solid bodies by

taking

M⃗ =

∫

Ω

ρ r⃗E × v⃗E dV =

∫

Ω

ρ r⃗E × (V⃗ + ω⃗A × r⃗A) dV

=

∫

Ω

ρ r⃗E

µ
dV × (µV⃗ ) +

∫

Ω

ρ[ω⃗A((R⃗ + r⃗A) · r⃗A)− r⃗A((R + r⃗A) · ω⃗A)] dV

= R⃗× P⃗ +B

∫

Ω

ρ[ω⃗B(r⃗B · r⃗B)− r⃗B(r⃗B · ω⃗B)] dV

= R⃗× P⃗ + M⃗ A where M⃗ A = B M⃗ B and MB
i = Iikω

B
k , (6.79)

where R⃗× P⃗ is the angular momentum due to the motion of the center of mass of the body, M⃗ A is the intrinsic
angular momentum due to the rotation of the body about its center of mass in the nonrotating reference frame
A, and M⃗ B is the intrinsic angular momentum in the body frame B. Note that, if the B frame is taken in the
principal axes (in which the inertial tensor Iik is diagonal), then M⃗ B reduces to

MB
1 = I1ω

B
1 , MB

2 = I2ω
B
2 , MB

3 = I3ω
B
3 . (6.80)

The property of the conservation of angular momentum dM⃗/dt = 0 given in (6.51) follows as before; it
follows that the squared magnitude of the angular momentum, ∥M⃗∥2, is also conserved.

6.4.2 Lagrange’s equations of motion for a solid body in an external field
In this section, we develop the equations of motion for the instantaneous translation and rotation of a solid
body in an inertial (nonrotating, nonaccelerating) reference frame E.

Returning to (6.42), noting p⃗a = ma v⃗a, summing over each particle, and taking P⃗ =
∑

a p⃗a = µV⃗ =

µ dR⃗/dt, it follows that the equation of motion for the translation of a solid body in the reference frame E is
simply

dP⃗

dt
= F⃗ =

∑

a

f⃗a. (6.81a)

Note that the forces accounted for in the sum abovemay be taken as the externally-applied forces on the system
only, as the internally-generated forces cancel when computing the sum. TakingU as the potential energy of the
solid body in an external field (i.e., in an open system) and considering an infinitesimal translation of the entire
body through a distance δR⃗, noting from (6.42) that f⃗a = −∂U/∂r⃗a and from (6.41) that L = T (v)−U(r), the
corresponding change in the potential energy may be written

δU =
∑

a

∂U

∂r⃗a
· δr⃗a =

(∑

a

∂U

∂r⃗a

)
· δR⃗ = −

(∑

a

f⃗a

)
· δR⃗ = − F⃗ · δR⃗ ⇒ F⃗ = −∂U

∂R⃗
=
∂L

∂R⃗
. (6.81b)

Noting from and (6.78) that ∂L/∂V⃗ = ∂T/∂V⃗ = µV⃗ = P⃗ , it is seen that (6.81a) may be interpreted as a direct
consequence of Lagrange’s equation for the coördinates of the center of mass, d(∂L/∂V⃗ )/dt = ∂L/∂R⃗.
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We now consider r⃗a× (6.42). To simplify the derivation, we will restrict the reference frame E such that
the center of mass is centered at the origin, at zero velocity, at the instant considered. Recall from §6.2.2.3 that
M⃗ E =

∑
a r⃗a× p⃗a. It follows that dM⃗ E/dt =

∑
a(dr⃗a/dt)× p⃗a+

∑
a r⃗a× (dp⃗a/dt); since dr⃗a/dt and p⃗a point

the same direction, the first term in this sum is zero. Recalling from (6.42) that f⃗a = dp⃗a/dt, it follows that the
instantaneous equation of motion for the rotation of a solid body in the inertial frame E is simply

dM⃗ E

dt
= K⃗ =

∑

a

r⃗a × f⃗a. (6.82a)

Note that the moments accounted for in the sum above may be taken as the externally-applied moments on
the system only, as the internally-generated moments cancel when computing the sum. As in §6.2.2.3, consider
again the rotation of a solid body by the vector δϕ⃗, where the magnitude of this vector is the (infinitesimal)
angle of rotation δϕ, and the direction of this vector is the axis of rotation, using the right-hand rule. As derived
there, we again have δL = δϕ⃗ · d

dt

∑
a r⃗a × p⃗a; considering L for an open system, however, δL ̸= 0 in general.

Taking L = T (v)− U(r) and noting (6.82a), we instead have

K⃗ = −∂U
∂ϕ⃗

=
∂L

∂ϕ⃗
. (6.82b)

Noting from (6.78b) that, in principle coordinates, ∂L/∂ω⃗E = ∂T/∂ω⃗E = M⃗ E where ME
i = Iiω

E
i , it is seen

that (6.82a) may be interpreted as a direct consequence of Lagrange’s equation for the rotation of the body
about center of mass, d(∂L/∂ω⃗E)/dt = ∂L/∂ϕ⃗.

Together, (6.81)-(6.82) are referred to as Lagrange’s equations for the instantaneous translation and rota-
tion of a solid body with applied forces and moments, such as those arising from an external field, in inertial
coordinates. Recalling the restriction on the inertial reference frame E that led to the simple form for the
instantaneous equation of motion for the rotation of the solid body given in (6.82a), this equation can not im-
mediately be integrated in time to develop an evolution equation for the long-time evolution of the orientation
of the body. This shortcoming is addressed in §6.4.3, where we develop the equations of motion for a solid body
in the body frame B
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Example 6.14 Momentum, energy, and angularmomentumconservation of a free solid bodyConsider
a solid body moving freely in space. By the conservation of momentum, we have

dP⃗

dt
= 0; (6.83a)

that is, the center of mass of the solid body moves at a constant speed in a straight line. Fixing the center of
the E frame at the center of mass of the solid body, we thus have R⃗ = V⃗ = P⃗ = 0. Taking the B frame in
the principal axes, the inertial tensor is diagonal (w.l.o.g., we take I1 ≥ I2 ≥ I3 ≥ 0). By the conservation of
energy, noting (6.80), we have

dT

dt
= 0 where 2T =

(MB
1 )2

I1
+

(MB
2 )2

I2
+

(MB
3 )2

I3
; (6.83b)

that is, the total energy T is constant. Finally, by the conservation of angular momentum, we have

dM⃗

dt
= 0 where M⃗ = B M⃗ B and MB

i = Iikω
B
k ; (6.83c)

that is, the total angular momentum M⃗ is constant. It follows that ∥M⃗∥ is also constant, and thus

dM2

dt
= 0 where M2 = (MB

1 )2 + (MB
2 )2 + (MB

3 )2. (6.84)

The fact that both (6.83b) and (6.84)must be satisfied simultaneously limits the three components of M⃗ B to
move on the intersection of the ellipsoid defined by the energy conservation constraint (6.83b) and the sphere
defined by the squared magnitude of the angular momentum conservation constraint (6.84). This intersection
is illustrated in Figure 6.11 for three different solid bodies. For the asymmetric top (top row) and the elongated
symmetric top (middle row), it is seen that, in the nearly maximal energy configuration possible for a given value
ofM2 (left), the momentum vector in body coordinates wobbles slightly around theminor principal axisMB

3 ;
further, as the energy of rotation is dissipated (reduced), this wobble is magnified. For the asymmetric top (top
row) and the flattened symmetric top (bottom row), it is seen that, in the nearly minimal energy configuration
possible for a given value ofM2 (right), the momentum vector in body coordinates wobbles slightly around the
major principal axis MB

1 ; further, as the energy of rotation is dissipated, this wobble is diminished. For all
threemass distributions considered, it is evident that small perturbations from spinning about the intermediate
principal axisMB

2 leads to a large deviation of the M⃗ B vector.
The mass distribution of the elongated symmetric top considered in the middle row of subfigures in Figure

6.11 is approximately that of America’s first satellite, Explorer 1, illustrated in Figure 6.11. For the purpose of
computing its principle moments of intertia, we we may idealize this satellite as a uniform cylinder with mass
m = 13.37 kg, length h = 2.05m, and radius r = 0.0825m; the principal moments of its inertial tensor are thus
I1 = I2 = m(3 r2+h2)/12 = 4.705 and I3 = mr2/2 = 0.0455. This satellite was spin stabilized about its minor
principal axis,MB

3 , in the nearly maximal energy configuration possible for the prescribed value ofM2. As seen
in Figure 6.11, Explorer 1 had four small whip antennae. As the momentum vector wobbled slightly, these
antennae deformed, generating heat and thereby gradually dissipating the energy of rotation. As the energy
of rotation dissipated towards the minimal energy configuration possible for the prescribed value of M2, this
wobble was magnified until eventially Explorer 1 was tumbling, and the M⃗ B vector was rotating between the
MB

1 andMB
2 directions (recall of course that the M⃗ A vector remains constant). Since such gradual dissipation of

the energy of rotation is essentially inevitable (liquid fuel sloshing in tanks is another common source of energy
dissipation), all subsequent satellites have been constructed as either asymmetric tops or flattened symmetric
tops, and are spin stabilized about their major principal axisMB

1 .
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Figure 6.11: The intersection (a.k.a. polhode), in the space of {MB
1 ,M

B
2 ,M

B
3 } (theminor principal axisMB

3

is up in each figure), of the ellipsoid defined by (blue) the energy conservation constraint (6.83b) and (red) the
sphere defined by the squared magnitude of the angular momentum conservation constraint (6.84) for three
different solid bodies: (top) an asymmetric topwith I1 = 4, I2 = 3, and I3 = 2, (middle) an elongated symmetric
top (the Explorer 1 satellite illustrated in Figure 6.11) with I1 = I2 = 4.705 and I3 = 0.0455, and (bottom) a
flattened symmetric top with I1 = 4, I2 = I3 = 2, in (left) the nearly maximal energy configuration possible
for a given value of M2, (center) intermediate energy configurations, and (right) the nearly minimal energy
configuration possible for a given value ofM2.

Figure 6.12: The Explorer 1 satellite, an elongated symmetric top with I1 = I2 = 4.705 and I3 = 0.0455.
Spin stabilization of such a body about its axis of symmetry (i.e., it’s minor principal axisMB

3 ) is problematic;
as the energy of rotation is dissipated (by heat generation in the whip antennae, etc) while the magnitude of
the angular momentum is conserved, the body will begin to tumble. Constructing satellites as asymmetric or
flattened symmetric tops, and spin stabilizing about the major principal axisMB

1 , is thus preferred.
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6.4.3 Euler’s equations of motion for a solid body in an external field
(This section still under construction.)

In the frame of a rotating rigid body, Euler’s equations for the motion of body are

µ
dV

dt
+ΩΩΩ× (µV) = F (6.85) I

dΩΩΩ

dt
+ΩΩΩ× (IΩΩΩ) = K (6.86)

where I is the inertial tensor (computed in some convenient body-fixed coördinates), and ΩΩΩ and K are, re-
spectively, the rate of rotation and torque applied around these coördinate directions.

In the special case that the coördinate directions are aligned with the principal coördinate directions of the
body, Euler’s equations (6.85)-(6.86) reduce to:

µ
(dV1
dt

+ Ω2V3 − Ω3V2

)
= F1, (6.87a)

µ
(dV2
dt

+ Ω3V1 − Ω1V3

)
= F2, (6.87b)

µ
(dV3
dt

+ Ω1V2 − Ω2V1

)
= F3, (6.87c)

I1
dΩ1

dt
+ (I3 − I2)Ω2Ω3 = K1, (6.88a)

I2
dΩ2

dt
+ (I1 − I3)Ω3Ω1 = K2, (6.88b)

I3
dΩ3

dt
+ (I2 − I1)Ω1Ω2 = K3. (6.88c)

where I1, I2, and I3 are the principal moments of inertia of the body.
Transforming the instantaneous rotation rates of the body {Ω1,Ω2,Ω3}, which is measured directly by the

rate gyros in the Body frame, into the rate of change of the Euler angles or the Tait-Bryan angles is a bit involved.

Evolution equation for the 3-2-1 Tait-Bryan rotation sequence

Evolution equation for the 3-1-3 Euler rotation sequence

Evolution equation for a quaternion representation

Taking the time derivative of (??), applying the product rule of differentiation, and substituting in (??) and (??)
results in a nonlinear equation of the form q̈ = f(q, q̇, t):

q̈ = [q̇Ω⃗ + q̇⃗Ω]/2 = [q̇Ω⃗ + qI−1(K− Ω⃗× (I Ω⃗)]/2

= q̇ q∗ q̇+ q I−1(K− 4q∗q̇× (I q∗q̇)/2 ≜ g(q, q̇, t).

6.4.4 Frictional losses
Example 6.15 A spinning top ??
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Chapter 7

Numerical Methods

7.1 Interpolation
In interpolation problems, we aspire to draw an “appropriately smooth” curve which passes exactly through
a set of available datapoints in one or more dimensions, as illustrated in Figure 7.1. This problem description is
subject to a significant degree of interpretation; only a few such interpretations will be discussed here.

Interpolation is a foundational idea in numerics that is useful when, e.g., developing differentiation and
integration strategies, estimating the value of a function between known values, producing computer-generated
imagery (CGI), etc.

Note specifically that the process of interpolation passes a curve exactly through each datapoint. This is
sometimes what is desired. However, if the data is from an experiment and has any appreciable uncertainty
associated with it, then it is preferred to take many measurements and use a least-squares technique to fit a
low-order curve in the general vicinity of several datapoints, as discussed in the data fitting framework described
in §2 of NR. This technique minimizes a weighted sum of the square distance from each datapoint to this curve
without forcing the curve to pass through each datapoint individually, and generally produces amuch smoother
curve (and a more physically-meaningful result) when the available data is noisy.

7.1.1 Linear spline interpolation

Linear spline interpolation amounts to nothing more than the game of Connect the Dots, using straight line
segments between each pair of points. Implementation (see RR_LinearSpline) is straightforward, and provides
a reference solution against which improved interpolation schemes may be compared.

7.1.2 Lagrange interpolation: n’th-order polynomials fitting n+ 1 datapoints

Suppose we have a set of n + 1 datapoints {xi, yi}. The process of Lagrange interpolation fits an n’th degree
polynomial (that is, a polynomial with n + 1 degrees of freedom) exactly through this data. There are two
ways of accomplishing this: solve a system of n + 1 simultaneous equations for the n + 1 coefficients of this
polynomial, or construct the polynomial directly in factored form.

Solving n+ 1 simultaneous equations for the n+ 1 coefficients

Consider the polynomial
P (x) = ao + a1 x+ a2 x

2 + . . .+ an x
n.
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Figure 7.1: The interpolation problem: fit a curve of the specified form to intersect n+1 points (◦); the solutions
illustrated are ( ) the Lagrange interpolant and ( ) the cubic spline interpolant with parabolic run-out.
Lagrange interpolation often gives a spurious result when the number of datapoints is large.

At each point xi, the polynomial has the value yi; that is,

yi = P (xi) = ao + a1 xi + a2 x
2
i + . . .+ an x

n
i for i = 0, 1, 2, . . . , n.

In matrix form, we may write this system as



1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

. . .
...

1 xn x2n · · · xnn




︸ ︷︷ ︸
V




a0
a1
...
an




︸ ︷︷ ︸
a

=




y0
y1
...
yn




︸ ︷︷ ︸
y

. (7.1)

This system is of the form V a = y, where V is commonly referred to as Vandermonde’s matrix, and may be
solved for the vector a containing the coefficients ai of the desired polynomial. Vandermonde’s matrix is often
poorly conditioned, and thus this technique of finding an interpolating polynomial is unreliable.

Constructing the polynomial directly

Consider the n’th degree polynomial given by the factored expression

Lκ(x) =
(x− x0)(x− x1) · · · (x− xκ−1)(x− xκ+1) · · · (x− xn)

(xκ − x0)(xκ − x1) · · · (xκ − xκ−1)(xκ − xκ+1) · · · (xκ − xn)
=

n∏

i=0
i ̸=κ

x− xi
xκ − xi

. (7.2a)

Note that, by construction,

Lκ(xi) = δiκ =

{
1 i = κ,

0 i ̸= κ.

Scaling this result, the polynomial yκ Lκ(x) (no summation implied) passes through zero at every datapoint
x = xi except at x = xκ, where it has the value yκ. Finally, a linear combination of n+ 1 of these polynomials

P (x) =
n∑

κ=0

yκLκ(x) (7.2b)
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provides an n’th degree polynomial which exactly passes through all of the datapoints, by construction. To
verify, note that P (xι) =

∑n
κ=0 yκδικ = yι as required. Implementation of this constructive technique to

determine the interpolating polynomial is given in RR_Lagrange).
Unfortunately, if the number of datapoints is large, high-order polynomials sometimes meander signifi-

cantly between the datapoints even if the data appears to be fairly regular, as shown in Figure 7.1. Thus, La-
grange interpolation should be thought of as dangerous for anything more than a few datapoints, and should
be avoided in favor of other techniques, such as the cubic spline interpolation technique discussed below.

7.1.3 Piecewise cubic interpolation
Instead of forcing a high-order polynomial through the entire dataset, we may instead construct a continuous,
smooth, piecewise cubic function through the data. We will first construct this function to be smooth in the
sense of having continuous first and second derivatives at each datapoint. These conditions, together with the
appropriate conditions at each end, uniquely determine a piecewise cubic function through the data which is
usually reasonably smooth; we will call this function the cubic spline interpolant.

Defining the interpolant in this manner is akin to deforming a single spline, or a thin piece of wood or
metal, to pass over all of the datapoints plotted on a large block of wood and marked with thin nails. The
elasticity equation governing the deformation f of such a spline is

f ′′′′ = G, (7.3a)

where G is a force localized near each nail which is sufficient to pass the spline through the data. As G is
nonzero only in the immediate vicinity of each nail, such a spline takes an approximately piecewise cubic shape
between the datapoints. Thus, between the datapoints, f(x) is cubic:

f ′′′′(x) = 0, f ′′′(x) = C1, f ′′(x) = C1 x+C2, f ′(x) =
C1

2
x2+C2 x+C3, f(x) =

C1

6
x3+

C2

2
x2+C3 x+C4.

(7.3b)

Constructing the cubic spline interpolant

Let fi(x) denote the cubic in the interval xi ≤ x ≤ xi+1 and let f(x) denote the collection of all the cubics
for the entire range x0 ≤ x ≤ xn. As noted above, f ′′i varies linearly with x between each datapoint. At each
datapoint, we would like to piece these cubics together as smoothly as possible, thereby mimicking the physical
situation in which the force G localized on the spline near each nail is as smooth as possible; in fact, we have
enough flexibilty to impose C2 continuity, that is:

(a) continuity of the function f , i.e., fi−1(xi) = fi(xi) = f(xi) = yi,

(b) continuity of the first derivative f ′, i.e., f ′i−1(xi) = f ′i(xi) = f ′(xi), and
(c) continuity of the second derivative f ′′, i.e., f ′′i−1(xi) = f ′′i (xi) = f ′′(xi).

We now describe a procedure to determine an f which satisfies conditions (a) and (c) by construction, in a
manner analogous to the construction of the Lagrange interpolant in §7.1.2, and which satisfies condition (b)
by setting up and solving the appropriate system of equations for the value of f ′′ at each datapoint xi.

To begin the constructive procedure for determining f , note that on each interval xi ≤ x ≤ xi+1 for
i = 0, 1, . . . , n − 1, we may write a linear equation for f ′′i (x) as a function of its value at the endpoints,
f ′′(xi) and f ′′(xi+1), which are (as yet) undetermined. The following form (which is linear in x) fits the bill by
construction:

f ′′i (x) = f ′′(xi)
x− xi+1

xi − xi+1

+ f ′′(xi+1)
x− xi
xi+1 − xi

. (7.4)
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Note that this first degree polynomial is in fact just a Lagrange interpolation of the two datapoints {xi, f ′′(xi)}
and {xi+1, f

′′(xi+1)} [see (7.2), for n = 1]. By construction, condition (c) is satisfied. Integrating this equation
twice and defining ∆i = xi+1 − xi, it follows that

f ′i(x) = −
f ′′(xi)

2

(xi+1 − x)2
∆i

+
f ′′(xi+1)

2

(x− xi)2
∆i

+ C1,

fi(x) =
f ′′(xi)

6

(xi+1 − x)3
∆i

+
f ′′(xi+1)

6

(x− xi)3
∆i

+ C1x+ C2.

The undetermined constants of integration are obtained by matching the end conditions

fi(xi) = yi and fi(xi+1) = yi+1.

A convenient way of constructing the linear and constant terms in the expression for fi(x) in such a way that
the desired end conditions are met is by writing fi(x) in the form

fi(x) =
f ′′(xi)

6

(
(xi+1 − x)3

∆i

−∆i(xi+1 − x)
)
+
f ′′(xi+1)

6

(
(x− xi)3

∆i

−∆i(x− xi)
)

+ yi
(xi+1 − x)

∆i

+ yi+1
(x− xi)

∆i

, where xi ≤ x ≤ xi+1.

(7.5)

By construction, condition (a) is satisfied. Finally, an expression for f ′i(x) may now be found by differentiating
this expression for fi(x), which gives

f ′i(x) =
f ′′(xi)

6

(
−3(xi+1 − x)2

∆i

+∆i

)
+
f ′′(xi+1)

6

(
3
(x− xi)2

∆i

−∆i

)
+
yi+1

∆i

− yi
∆i

.

The second derivative of f at each node, f ′′(xi), is still undetermined. A system of equations from which the
f ′′(xi) may be found is obtained by imposing condition (b), which is achieved by setting

f ′i(xi) = f ′i−1(xi) for i = 1, 2, . . . , n− 1.

Substituting appropriately from the above expression for f ′i(x), noting that ∆i = xi+1 − xi, leads to

∆i−1
6

f ′′(xi−1) +
∆i−1 +∆i

3
f ′′(xi) +

∆i

6
f ′′(xi+1) =

yi+1 − yi
∆i

− yi − yi−1
∆i−1

(7.6)

for i = 1, 2, . . . , n − 1. This is a diagonally-dominant tridiagonal system of n − 1 equations for the n + 1
unknowns f ′′(x0), f ′′(x1), . . ., f ′′(xn). We find the two remaining equations by prescribing conditions on the
interpolating function at each end. We will consider three types of end conditions:

• parabolic run-out: f ′′(x0) = f ′′(x1) and f ′′(xn) = f ′′(xn−1);
• free run-out (also known as natural splines): f ′′(x0) = 0 and f ′′(xn) = 0; or
• periodic end conditions: f ′′(x0) = f ′′(xn−1) and f ′′(x1) = f ′′(xn).

Equation (7.6) may be taken together with the appropriate choice of end conditions (depending upon the prob-
lem at hand) to give n + 1 equations for the n + 1 unknowns f ′′(xi). This set of equations is then solved for
the f ′′(xi), which thereby ensures that condition (b) is satisfied. Once this system is solved for the f ′′(xi), the
cubic spline interpolant follows immediately from (7.5).

Note that, when (7.6) is taken together with parabolic or free run-out at the ends, a tridiagonal system
results which can be solved efficiently with the Thomas algorithm. When (7.6) is taken together periodic end
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conditions, a tridiagonal circulant systemAx = b results with a1,1 = 0. A pair of codes which sets up and solves
these systems with any of the above three end conditions is given in RR_CubicSplineSetup and RR_CubicSpline.

Applying periodic end conditions to develop a spline for a system that is not well approximated as periodic
can lead to significant non-physical meanderings of the interpolant near the ends of the domain; thus, periodic
end conditions should be reserved for systems which are actually periodic. On the other hand, parabolic run-
out extends a parabolic curve between x0 and x1, and free run-out tapers the curvature of the interpolant down
to zero near the endpoints; both of these choices usually generate reasonably smooth interpolants.

Tension splines

For certain interpolation problems, cubic splines aren’t adequately smooth. In such problems, it is helpful to use
tension splines, which are cubic splines with the mechanical equivalent of a bit of tension added to straighten
out the curvature between the datapoints. As the tension gets large in this approach, the interpolant approaches
a piecewise linear function. Tensioned splines obey the differential equation [cf. (7.3a)]:

f ′′′′ − σ2f ′′ = G

where σ is the tension of the spline. This leads to the following relationships between the datapoints [cf. (7.3b)]:

[f ′′ − σ2f ]′′ = 0, [f ′′ − σ2f ]′ = C1, [f ′′ − σ2f ] = C1 x+ C2.

Solving the ODE on the right leads to an equation of the form [cf. (??)]

f = −σ−2(C1x+ C2) + C3e
−σx + C4e

σx.

Proceeding with a constructive process to satisfy condition (a) analogous to that used previously, we assemble
the linear and constant terms of f ′′ − σ2f such that [cf. (7.4)]

[
f ′′i (x)− σ2fi(x)

]
=
[
f ′′i (xi)− σ2yi

] x− xi+1

xi − xi+1

+
[
f ′′i (xi+1)− σ2yi+1

] x− xi
xi+1 − xi

.

Similarly, we assemble the exponential terms in the solution of this ODE for f in a constructive manner such
that condition (c) is satisfied. Rewriting the exponentials as sinh functions, the desired solution may be written
[cf. (7.5)]

fi(x) = −σ−2
{ [
f ′′(xi)− σ2yi

] xi+1 − x
∆i

+
[
f ′′(xi+1)− σ2yi+1

] x− xi
∆i

− f ′′(xi)
sinhσ(xi+1 − x)

sinhσ∆i

− f ′′(xi+1)
sinhσ(x− xi)

sinhσ∆i

}
where xi ≤ x ≤ xi+1.

(7.7)

Differentiating once and appling condition (b) leads to the tridiagonal system [cf. (7.6)]
(

1

∆i−1
− σ

sinhσ∆i−1

)
f ′′(xi−1)

σ2
−
(

1

∆i−1
− σ coshσ∆i−1

sinhσ∆i−1
+

1

∆i

− σ coshσ∆i

sinhσ∆i

)
f ′′(xi)

σ2

+

(
1

∆i

− σ

sinhσ∆i

)
f ′′(xi+1)

σ2
=
yi+1 − yi

∆i

− yi − yi−1
∆i−1

.

(7.8)

The tridiagonal system (7.8) can be set up and solved exactly as was done with (7.6), even though the coefficients
have a slightly more complicated form. The tensioned-spline interpolant is then given by (7.7).
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B-splines

We may easily express the cubic spline (or tension spline) interpolant in a form similar to our construction of
the Lagrange interpolant, that is,

f(x) =
n∑

κ=0

yκbκ(x),

where the basis functions bκ(x) are spline interpolations of Kronecker delta functions such that bκ(xi) = δiκ,
as discussed in §7.1.2 for the functions Lκ(x). The basis functions so constructed are found to have localized
support (in other words, bκ(x)→ 0 for large |x− xκ|).

By relaxing some of the continuity constraints, we may confine each of the basis functions to have compact
support (i.e., we can set bκ(x) = 0 exactly for |x−xκ| > R for someR). With such functions, it is easier both to
compute the interpolations themselves and to project the interpolated function onto a different grid of points.

Cubic Hermite interpolation

Cubic spline interpolants f̃(x) areC2 continuous, and pass through the given function values at the datapoints,
f(xi). This is achieved by selecting appropriately the the first and second derivatives of the interpolant at the
datapoints, f̃ ′(xi) and f̃ ′′(xi).

On the other hand, if the values of both the function and its derivative, f(xi) and f ′(xi), are specified at
the datapoints, then a C1 continuous Cubic Hermite interpolant f̃(x) may be fit to this data in a simple
fashion using basis functions with compact support. This approach is in fact a variant of the B-spline approach;
defining x̃ = (x− xi)/(xi+1 − xi), it produces an interpolant f̃(x) on each interval x ∈ [xi, xi+1] such that

f̃(x) = h00(x̃) fi + h01(x̃) (xi+1 − xi) f ′i + h10(x̃) fi+1 + h11(x̃) (xi+1 − xi) f ′i+1, (7.9)

using the following four simple basis functions on each interval x ∈ [xi, xi+1]:

h00(x̃) = 2 x̃3 − 3 x̃2 + 1, with h00(0) = 1 and h′00(0) = h00(1) = h′00(1) = 0, (7.10a)

h01(x̃) = x̃3 − 2 x̃2 + x̃, with h′01(0) = 1 and h01(0) = h01(1) = h′01(1) = 0, (7.10b)

h10(x̃) = −2 x̃3 + 3 x̃2, with h10(1) = 1 and h10(0) = h′10(0) = h′10(1) = 0, (7.10c)

h11(x̃) = x̃3 − x̃2, with h′11(1) = 1 and h11(0) = h′11(0) = h11(1) = 0. (7.10d)

7.1.4 Multivariate interpolation of structured data
The interpolation strategies described above are well suited for 1D problems, and can be extended fairly easily
to higher dimensions on structured n-dimensional grids. Below we describe two such extensions.

Multilinear interpolation

The idea of 1D linear spline interpolation (see §7.1.1) extends immediately to the multilinear interpolation
of data defined on an n-dimensional Cartesian grid (that is, function values fi1,i2,...,in = f(x1i1 , x2i2 , . . . , xnin

)
where i1 = 1, . . . , N1, i2 = 1, . . . , N2, etc.) as follows:

• Determine the grid cell that new interpolating point x lies in: that is, find the i1 through in such that
xkik ≤ xk ≤ xk(ik+1)

for 1 ≤ k ≤ n.
• Determine the fraction of the distance that the new point x is across this cell in each direction: that is,
compute ηk,0 = (xk(ik+1)

− xk)/(xk(ik+1)
− xkik ) and ηk,1 = 1− ηk,0 for 1 ≤ k ≤ n.
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• Linearly interpolate in each direction independently by setting the interpolant f̃(x) such that

f̃(x) =
1∑

d1=0

1∑

d2=0

· · ·
1∑

dn=0

fi1+d1,i2+d2,...,in+dn η1,d1η2,d2 · · · ηn,dn .

Implementation for n = 2 is given in RR_BilinearSpline; see Figure 7.2a for typical results.

Multicubic interpolation

The idea of cubic spline interpolation (see §7.1.3) may be extended in a couple of different ways to data defined
on an n-dimensional Cartesian grid.

An accurate and simple approach is to do cubic spline interpolation in each dimension, one at a time:

• First, interpolate onto the specified value of x1 for each value of x2 through xn on the grid (that is, for
i2 = 1, . . . , N2, i3 = 1, . . . , N3, i4 = 1, . . . , N4, etc.).
• Then, working only with those function values interpolated onto the specified value of x1, interpolate
onto the specified value of x2 for each value of x3 through xn on the grid (that is, for i3 = 1, . . . , N3,
i4 = 1, . . . , N4, etc.).
• Continue in an analogous fashion through the remaining dimensions, one at a time.

Recall that, in the one-dimensional case described in §7.1.3, the computationally expensive part of setting up the
cubic spline interpolant could be computed once during the initialization step, then used for interpolating onto
any specified point x. Unfortunately, in the multidimensional approach described above, this is no longer the
case, as the interpolations performed in the xj direction, for j = 2, . . . , n, depend on the data that results from
the interpolations performed in the x1 to xj−1 directions. This approach is thus too expensive to be practically
useful when interpolating onto a large number of gridpoints.

An inexpensive alternative1 for extending cubic spline interpolation to n-dimensional grids follows:

(i) First, during an initialization step, approximate all first and cross derivatives of f at each gridpoint where
the function f is initially specified. Note that these numerical approximations may be computed by
successive cubic spline interpolations along the gridlines, evaluated at the gridpoints.

(ii) Then, as in the multilinear interpolation approach described in §7.1.4, determine (for each new interpola-
tion point) which grid cell that the new interpolation point x lies in, and the fraction of the distance that
the new point x is across this cell in each coordinate direction.

(iii) Finally, construct a function which is cubic in each coordinate variable and matches the first and cross
derivative information computed in step i at each of the corners of the cell identified in step ii.

This idea is best made concrete by example. In the case of n = 2 (bicubic interpolation), we first use cubic
spline interpolation along each of the gridlines to compute {fx, fy, fxy} at each of the gridpoints where the
function values f are initially specified. Then, as in bilinear interpolation, we determine which grid cell that
the new interpolating point x lies in, and the fraction of the distance that the new point x is across this cell in
each direction (denoted here x and y). Finally, the interpolant on the cell is defined by

f(x, y) =
3∑

i=0

3∑

j=0

aijx
iyj, (7.11)

1Recall (from the introduction to §7.1) that the interpolation problem itself is an approximate problem subject to a significant
degree of interpretation; it may thus be argued that approximate solution to a problem of this class is good enough, and one should
not code up an unduly expensive scheme in order to solve an approximate problem of this class “exactly”.
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Figure 7.2: (left) Bilinear interpolation and (right) bicubic interpolation of a 10×20 grid of data from the function
sinc(r) ≜ sin(r)/r where r =

√
x2 + y2; the bilinear case reveals some noticeable artifacts of the interpolation,

whereas the bicubic interpolant is visually almost indistinguishable from the original function.

where the aij for i = 0, . . . , 3 and j = 0, . . . , 3 are selected to match the values of {f, fx, fy, fxy} at each of
the 4 corners of the cell (w.l.o.g, taken here to be the unit square, with corners denoted {x00,x01,x10,x11}) that
contains the new interpolation point; this results in a linear 16× 16 problem of the form Ax = b where
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=




f |x00

f |x10

f |x01

f |x11

fx|x00

fx|x10

fx|x01

fx|x11

fy|x00

fy|x10

fy|x01

fy|x11

fxy|x00

fxy|x10

fxy|x01

fxy|x11




.

Note that A−1 is simple, with all integer entries, and is thus entered directly in the implementation of bicubic
interpolation in given in RR_BicubicSplineSetup and RR_BicubicSpline; see Figure 7.2b for typical results.

Similarly, in the case of n = 3 (tricubic interpolation), we use cubic spline interpolation along each
gridline to compute {fx, fy, fz, fxy, fyz, fxz, fxyz} at each of the gridpoints where the values of f are initially
prescribed. We then determine which grid cell that new interpolating point x lies in, and the fraction of the
distance that the point x is across this cell in each direction. Finally, the interpolant on the cell is defined by

f(x, y, z) =
3∑

i=0

3∑

j=0

3∑

k=0

aijk x
i yj zj, (7.12)
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Figure 7.3: Interpolation via inverse distance of 200 points with (a) p = 2, (b) p = 3, (c) p = 4, (d) p = 20.

where the aijk are selected to match the values of {f, fx, fy, fz, fxy, fyz, fxz, fxyz} at each of the 8 corners of the
cell (w.l.o.g, taken to be a unit cube) that contains the new interpolation point; this results in 64 linear equations
for 64 unknowns which may easily be solved.

7.1.5 Multivariate interpolation of unstructured data
The extension of interpolation strategies to unstructured data (that is, for data not lying on a regular grid)
requires a bit more effort than the case of structured data considered above; we will thus consider three different
approaches to this problem.

7.1.5.1 Interpolation via inverse distance

The simplest approach for approximating the function value f at location x based onN known function values
fi at various locations ci, for i = 1, . . . , N , is the inverse distance interpolation formulae given by

f(x) =
1

C

N∑

i=1
di≤R

fi/d
p
i where C =

N∑

i=1
di≤R

1/dpi and di = ∥x− ci∥2,

7-9



Renaissance Robotics (v.2024-03-19) Chapter 7: Numerical Methods

where 1 ≤ p < ∞ is some power and the sum includes all known function values within some prespecified
distance R of the point in question, x. Implementation is given in RR_InvDistanceInterp, and typical results
are illustrated in Figure 7.3. Note that the minima and maxima of this interpolating function coincide with
datapoints representing the largest and smallest function values in the dataset. For small p (e.g., p = 2), the
interpolant looks like a tent propped up, and pushed down, at the various datapoints; for increasing values of p
(e.g., p = 3, p = 4), the interpolant gains stronger “shoulders” near each datapoint; for p→∞, the interpolant
takes the known function value at the nearest datapoint, and thus leads to a piecewise constant function
over the Voronoi cell associated with each datapoint. For finite p in the limit that R → ∞, the interpolation
function is continuous; for reduced values of R, the interpolating function, though sometimes approximating
the original function a bit more accurately, is discontinuous.

7.1.5.2 Polyharmonic spline interpolation

In many interpolation problems, such as that illustrated in Figure 7.3, the simple inverse distance formula for
interpolation, discussed in §7.1.5.1, fails to give a sufficiently accurate result for any value of p. An effective
alternative approach is given by the polyharmonic spline, a special case of which (in 2D and with k = 2),
known as a thin plate spline, corresponds to the mechanical modeling of a 2D spline that is bent in order to
make it touch the specified unstructured data points. This interpolation formula takes the form2

f(x) =
N∑

i=1

wiϕ(r) + vT
[
1
x

]
where r = ∥x− ci∥2, (7.13a)

ϕ(r) =

{
rk for k odd
rk ln(r) for k even,

(7.13b)

and where the weights wi and vi are selected such that: (a) f(ci) = fi in the above equation for theN available
data points {ci, fi}, (b) the sum of the weights,

∑
iwi, is zero, and (c) in each of the n coordinate directions,

j = 1, . . . , n, the weighted sum of the center locations,
∑

iwicji, is also zero. These three sets of conditions on
the weights may be enforced by solving the (N + 1 + n)× (N + 1 + n) linear system

[
A V T

V 0

] [
w
v

]
=

[
y
0

]
where Aij = ϕ(∥cj − ci∥2), V =

[
1 1 . . . 1
c1 c2 · · · cN

]
. (7.14)

Implementation is given in RR_PolyharmonicSplineSetup and RR_PolyharmonicSpline. Typical results are il-
lustrated in Figure 7.4; note that increasing values of k are usually found to give a smoother interpolant on the
interior of the portion of the domain covered by the data, but higher irregularities near the edges of this portion
of the domain. Also, smaller values of k (e.g., 2 or 3) are often found to be more accurate when a relatively small
number of function evaluations are available, with larger values of k (e.g., 6 to 8) being more accurate when
more function evaluations are available.

It is worth noting that the polyharmonic spline basis functions ϕ(r) given in (7.13b), used in the interpo-
lation formula given in (7.13a) and plotted in Figure 7.5, are special cases of what are commonly referred to as
radial basis functions (RBFs), as they depend on the Euclidian distance r = ∥x − ci∥2 of the new point x
from the centers ci only. RBFs come in two essential types: those which decay with radius, such as the Gaus-
sian RBF ϕ(r) = e−(ϵr)

2
as well as the inverse distance RBF ϕ(r) = 1/rp used in the interpolation strategy

presented in §7.1.5.1, and those which eventually grow with radius, such as the polyharmonic spline RBF
defined in (7.13b) and used in the interpolation strategy presented in §7.1.5.2; the former are essentially “local”

2In cases with k even, the equivalent formula ϕ(r) = rk−1 ln(rr) is better behaved numerically for r < 1. Various other possible
formulae for ϕ(r), such as ϕ(r) = r2, are found to be ill-behaved in this setting, and are not considered further here.
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Figure 7.4: Polyharmonic spline interpolation of 200 points with (a) k = 1 through (f) k = 6. Over
the domain illustrated, the maximum error is {0.176, 0.123, 0.119, 0.131, 0.186, 0.259} and the rms error is
{0.0376, 0.0220, 0.0157, 0.0130, 0.0142, 0.0171}, respectively, in the six cases considered.
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Figure 7.5: Polyharmonic spline radial basis functions [see (7.13b)] for (dashed) k = 1, k = 2, k = 3;
(dot-dashed) k = 4, k = 5; (solid) k = 6, k = 7. Though they eventually grow with radius, these non-local
RBFs are found to be effective in the polyharmonic spline interpolation strategy presented in §7.1.5.2.

in nature, whereas the latter are “global” in effect, and thus their weights must be determined via a solve over
the entire set of datapoints [see (7.14)].
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Signals & Systems
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In §8.1, we briefly introduce the three essential classes of transforms at the heart of signal analysis: Fourier,
Laplace, and Z . The Fourier transform, which comes in four forms appropriate for either continuous-time
(CT) signals or discrete-time (DT) signals {that is, defined only at regularly-spaced intervals over the time
domain of interest}, and for signals defined on either infinite domains {that is1, t ∈ (−∞,∞)} or bounded
domains {that is, t ∈ [0, T )}, is built on sinusoidal basis functions, written as eiω t = cos(ω t) + i sin(ω t),
as studied in depth in §5 of NR. The Laplace and Z transforms extend this tetralogy of Fourier transforms to
semi-infinite domains {that is, t ∈ [0,∞)}, for CT and DT signals respectively.

Before considering further the presentation of the Laplace and Z transforms in this chapter, and their
extensive utility in control theory in §10, it is helpful to make this discussion more concrete by considering the
ODEs modeling a handful of simple physical systems (a.k.a. “plants”), as reviewed briefly2 in §6.1.

1As in §5 of NR, the physical coördinate over which such transforms may be applied may be interpreted as time or space, and is
denoted without loss of generality in the present chapter as t; see also footnote 19 in §5.5 of NR.

2Note also related discussions of (a) the realization of various ODEs of interest as (CT) electric circuits, as considered in §9, par-
ticularly as low-pass, high-pass, or notch “filters” or as analog “controllers”, and (b) the realization of various difference equations of
interest on microcontrollers, as (DT) finite impulse response (FIR) or infinite impulse response (IIR) filters, as considered in §1.5.3.2.
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The Laplace transform, appropriate for the analysis of continuous-time signals on semi-infinite
domains t ∈ [0,∞), as well as for the analysis of differential equations governing their evolution from given
initial conditions at t = 0, is built on exponential basis functions, es t, and is considered in depth in §8.2.

The Z transform, appropriate for the analysis of discrete-time signals on semi-infinite domains
tk ∈ {0, h, 2h, . . .}, as well as for the analysis of difference equations governing their evolution from given
initial conditions around t0 = 0, is built on polynomial basis functions, zk−1, and is considered in depth in §8.3.

The use of Fourier transforms to analyze systems (specifically, using Bode plots) is examined in §8.4.

8.1 Introduction to transforms: Fourier, Laplace, and Z
Recall first the tetralogy of Fourier representations3, which are defined for both continuous and discrete func-
tions, on both bounded and infinite domains:
1. The forward and inverse infinite Fourier series transform [see §5.2 of NR], defined for continuous signals
u(t) on bounded domains t ∈ [0, T ) with ωn = 2πn/T for n ∈ {. . . ,−2,−1, 0, 1, 2, . . .}, are defined by

ûn =
1

T

∫ T

0

u(t)e−iωnt dt ⇔ u(t) =
∞∑

n=−∞
ûne

iωnt. (8.1a)

2. The forward and inverse infinite Fourier integral transform [see §5.3 ofNR], defined for continuous signals
u(t) on infinite domains t ∈ (−∞,∞) with ω ∈ (−∞,∞), are defined4 by

û(ω) =
1

2π

∫ ∞

−∞
u(t)e−iω t dt ⇔ u(t) =

∫ ∞

−∞
û(ω)eiω tdω. (8.1b)

3. The forward and inverse finite Fourier series transform [see §5.4 of NR], defined for discrete signals
uk = u(tk) on bounded domains tk = kh for k = {0, . . . , N − 1} and h = T/N with5 ωn = 2πn/T for
n ∈ {−N/2, . . . , N/2}, are defined by

ûn =
1

N

N−1∑

k=0

uke
−iωntk ⇔ uk =

N/2∑

n=−N/2
ûne

iωntk . (8.1c)

4. The forward and inverse finite Fourier integral transform [Exercise 5.2 of NR], defined for discrete signals
uk = u(tk) on infinite domains tk = kh for k = {. . . ,−2,−1, 0, 1, 2, . . .} with ω ∈ (−π/h, π/h), are defined by

û(ω) =
h

2π

∞∑

k=−∞
uke

−iω tk ⇔ uj =

∫ π/h

−π/h
û(ω)eiω tj dω. (8.1d)

Similarly, the forward and inverse Laplace transform [developed in §8.2], defined for continuous signals
u(t) on semi-infinite domains, t ∈ [0,∞), are defined by

U(s) =

∫ ∞

0

u(t)e−s tdt ⇔ u(t) =
1

2πi

∫ γ+i∞

γ−i∞
U(s)es tds, (8.2)

and the forward and inverse Z transform [developed in §8.3], defined for discrete signals uk = u(tk) on
semi-infinite domains, tk = kh for k = {0, 1, 2, . . .}, are defined by

U(z) =
∞∑

k=0

ukz
−k ⇔ uk =

1

2πi

∮

Γ

U(z)zk−1 dz. (8.3)

3Time permitting, it is instructive at this point to also examine various other aspects of Fourier representations; see §5 of NR.
4Different authors place the factor of 1/(2π) in the Fourier integral (8.1b) in different ways (see Footnote 10 in §5.4 of NR).
5Note in particular the discussion in §5.5 of NR of the peculiar component of this signal at theNyquist frequency ωN/2 = πN/T .

8-2

http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr


Renaissance Robotics (v.2024-03-19) Chapter 8: Signals & Systems

8.1.1 The relation of the Laplace and Z transforms to the Fourier transform
At the outset, note that the Laplace transform at right in (8.2) is simply a representation, or “expansion”, of a
continuous function u(t) on t ∈ [0,∞) as a linear combination of a set of exponential basis functions es t with
the coefficient function U(s) as weights. Similarly, the Z transform at right in (8.3) is simply a representation
of a discrete function uk on k = 0, 1, 2, . . . as a linear combination of a set of polynomial basis functions zk−1

with the coefficient function U(z) as weights. The Laplace and Z transforms are thus remarkably similar to
the corresponding Fourier transforms (8.1b) and (8.1d), respectively, which similarly represent continuous and
discrete functions on infinite domains as a linear combination of a set of complex exponential basis functions
with the Fourier coefficients as weights. Indeed, noting the definition of the Laplace transform in (8.2) and the
infinite Fourier integral expansion in (8.1b), it follows (taking s = iω) that

U(s) =

∫ ∞

0

u(t)e−s tdt

û(ω) =
1

2π

∫ ∞

−∞
u(t)e−iω t dt





⇒ û(ω) =
1

2π
U(iω) if u(t) = 0 for t < 0. (8.4)

Similarly, noting the definition of the Z transform in (8.3) and the finite Fourier integral expansion in (8.1d), it
follows (taking z = esh with s = iω) that

U(z) =
∞∑

k=0

ukz
−k

û(ω) =
h

2π

∞∑

k=−∞
uke

−iω tk





⇒ û(ω) =
h

2π
U(eiωh) if uk = 0 for k < 0. (8.5)

8.1.2 The remarkable utility of such transforms
The utility of the Fourier transform in the identification and analysis of the various sinusoidal components of
a signal at different temporal “wavenumbers” or spatial “frequencies” should already be well familiar to the
reader. Indeed, any aspiring young audiophile is already familiar with the need to route the “low-frequency
sinusoidal components” of an audio signal to a woofer, to route the “high-frequency sinusoidal components”
of an audio signal to a tweeter, and to dampen the “highest-frequency sinusoidal components” of an audio
signal associated with noise, which can come from a variety of sources; the Fourier transform simply makes
this decomposition of a signal into sinusoidal components at different frequencies mathematically precise.

The Laplace and Z transforms are similarly natural for the analysis of the evolution of continuous-time
(CT) systems and discrete-time (DT) systems from initial conditions, governed by differential equations and
difference equations respectively. As such transform methods are centrally based on an abstraction (the tem-
poral frequency ω or spatial wavenumber k in the case of the Fourier transforms, the exponential scaling s in
the case of the Laplace transform, and the base of the polynomial expansion, z, in the case of the Z transform),
they require a bit of analysis, as provided in §8.2 and §8.3, before their utility is fully apparent.

It should be noted at the outset that all of these transforms are linear: that is, if X and Y are the (Fourier,
Laplace, or Z) transforms of x and y, then W = αX + βY is the corresponding transform of w = αx + βy.
Further, all of these transforms are invertible: that is, knowledge of the untransformed variable x over the
appropriate region of the physical domain is sufficient to reconstruct the transformed variable X over the
abstracted domain, and knowledge of the transformed variableX over the appropriate region of the abstracted
domain is sufficient to reconstruct the untransformed variable x over the physical domain. These two points
are essential to the practical utility of analysis, filtering, and control techniques based on such transforms.
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Figure 8.1: Three families of curves of unit area that are nonzero only in the immediate vicinity of the origin:
(left) the two-sided function δσ(t) = e−t

2/(2σ2)/(σ
√
2π) taking (dashed) σ = 0.1, (dot-dashed) σ = 0.025, and

(solid) σ = 0.01, and (center, right) the one-sided function δλ,m(t) = λm tm−1 e−λx/(m−1)! for t > 0, withm = 2
and m = 3, respectively, taking (dashed) λ = 20, (dot-dashed) λ = 80, and (solid) λ = 200. As σ → 0 in the
definition of δσ(t), and as λ → ∞ in the definition of δλ,m(t) for m ≥ 2, these curves become increasingly
accurate finite approximations of the Dirac Delta, as discussed at length in §5.3.3 and §5.3.4 of NR. Note that,
form ≥ 2, δλ,m(t) and all its derivatives up to orderm− 2 are continuous at the origin.

8.2 Laplace transform methods
The (one-sided) Laplace transform F (s) of a continuous-time (CT) signal f(t) is, in general, defined as

F (s) = lim
ϵ→0

∫ ∞

−ϵ
f(t)e−s tdt ≜

∫ ∞

0−
f(t)e−s tdt. (8.6)

In this text, we restrict all CT unit impulses to be constructed as the large λ limit of the one-sided function
of unit area δλ,m(t), as defined and plotted in Figure 8.1b and c, rather than the small σ limit of the two-sided
function of unit area δσ(t), as defined and plotted in Figure 8.1a. That is, we define the Dirac delta in this work as
the limit of some smooth function of unit area that begins at the time of the impulse and is zero before it, rather
than being centered at the time of the impulse, in the limit that the duration of the impulse is infinitesimally
short. In this restricted6 setting, the Laplace transform may be defined (see LePage 1961) more simply as

F (s) =

∫ ∞

0

f(t)e−s tdt. (8.7a)

6This “restriction” is said to be technical; that is, it narrows the precise mathematical setting in which the transform definition
may be used, but in application does not limit the practical problems to which the transform may, when used correctly, be applied.
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Given a function f(t) for t ≥ 0 restricted as stated above, we define F (s) via (8.7a); the inverse Laplace
transform is then

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
F (s)es tds, (8.7b)

where the real number γ is chosen such that the vertical line of the contour in the complex plane s as given in
the above integral is to the right of all of the singularities7 of F (s).

Verification that (8.7b) in fact represents the inverse of the relationship expressed in (8.7a) is straightforward,
by substituting (8.7a) into the RHS of (8.7b), substituting s = γ + ik, applying Fubini’s theorem (see Footnote
2 in §5.2.1 of NR), and noting that, for sufficiently large γ, f(t) is indeed recovered:

1

2πi

∫ γ+i∞

γ−i∞

[ ∫ ∞

0

f(t′) e−st
′
dt′
]
es t ds = lim

K→∞

1

2πi

∫ K

−K

[ ∫ ∞

0

f(t′) eγ(t−t
′)eik(t−t

′)dt′
]
i dk

= lim
K→∞

∫ ∞

0

f(t′)eγ(t−t
′)
[ ∫ K

−K

1

2π
eik(t−t

′)dk
]
dt′ =

∫ ∞

0

[f(t′) eγ(t−t
′)] δ(t− t′) dt′ = f(t),

where the definition of the Dirac delta given in §5.2.2 of NR has been applied in the second line. The reason
that the eγ(t−t

′) factor, for sufficiently large positive γ, is required by this formula is to ensure that the term
g(t′) = [f(t′) eγ(t−t

′)] decays to zero exponentially as t′ →∞, which allows us to swap the order of the integrals
using Fubini’s theorem and obtain the result that

∫∞
0
g(t′) δ(t− t′) dt′ = g(t).

As discussed further below, the forward and inverse transforms expressed by (8.7) are immensely useful
when solving differential equations (in CT). By (8.7a), knowing f(t) for t ≥ 0, one can define F (s) for any
s. Conversely, by (8.7b), knowing F (s) on an appropriate contour, one can determine f(t) for t ≥ 0. Before
demonstrating furtherwhy such a transformation is useful, we firstmention that, in practice, you do not actually
need to compute the somewhat involved integrals given in (8.7) in order to use the Laplace transform effectively.
Rather, leveraging the linearity of this transform and the process of partial fraction expansion, it is sufficient to
reference a table listing some Laplace transform pairs in a few special cases, as shown in Table 8.1. Note also
the following:

Fact 8.1 The Laplace transform is linear; that is, superposition holds, and thus if the Laplace transforms of
x(t) and y(t) areX(s) and Y (s), then the Laplace transform of w(t) = αx(t)+βy(t) isW (s) = αX(s)+βY (s).

Fact 8.2 If the Laplace transform of f(t) isF (s), then the Laplace transform of the exponentially scaled function
g(t) = e−atf(t) is G(s) =

∫∞
0
f(t)e−(s+a)tdt = F (s + a), and the Laplace transform of the delay function

g(t) = f(t− d) is G(s) =
∫∞
0
f(t− d)e−s tdt =

∫∞
−d− f(t)e

−s(t+d)dt = e−dsF (s).

Note in Table 8.1 that the Laplace transform of the delay function, f(t) = δλ,m(t−d) for d > 0 andm ≥ 2
in the limit of large λ, is F (s) = e−ds. This is not a rational function8 of s, which is inconvenient. The following
Padé approximation of F (s) = e−ds, valid for small values of |ds|, is thus convenient to use in its place

e−ds ≈ Fm,n(s) ≜
∑m

k=0 ak(−ds)k∑n
k=0 bk(ds)

k
, ak =

(m+ n− k)!m!

(m+ n)! k! (m− k)! , bk =
(m+ n− k)!n!

(m+ n)! k! (n− k)! . (8.8a)

7That is, the contour of integration in (8.7b) is chosen to the right of all points s for which |F (s)| → ∞ as s→ s in (8.7a).
8A rational function of s is a polynomial in s divided by another polynomial in s. Both polynomials are often normalized such

that the leading coefficient of the polynomial in the denominator ismonic (that is, has a leading coefficient of one). In addition, the
polynomial in the numerator of a rational function is sometimes normalized to be monic, with its leading coefficient factored out
(this coefficient is called the gain, and is often denotedK). Further, the numerator and denominator are often factored; the roots of
the polynomial in the denominator are called poles, and the roots of the polynomial in the numerator are called zeros.
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f(t) (for t ≥ 0) F (s)

eat 1/(s− a)
t eat 1/(s− a)2
t2 eat 2/(s− a)3

tp eat (for integer p ≥ 0) p!/(s− a)p+1

1 [i.e., f(t) = H0(t)] 1/s

t 1/s2

t2 2/s3

tp (for integer p ≥ 0) p!/sp+1

δλ,m(t) (form ≥ 2) −−−→
λ→∞

1

δλ,m(t− d) (for d ≥ 0) −−−→
λ→∞

e−ds

d[δλ,m(t)]/dt ≜ δ′(t) −−−→
λ→∞

s

d2[δλ,m(t)]/dt2 ≜ δ′′(t) −−−→
λ→∞

s2

cos(ωdt) s/(s2 + ω2
d)

sin(ωdt) ωd/(s
2 + ω2

d)

e−σt cos(ωdt)
s+ σ

(s+ σ)2 + ω2
d

e−σt sin(ωdt)
ωd

(s+ σ)2 + ω2
d

cosh(at) s/(s2 − a2)
sinh(at) a/(s2 − a2)

fk (for k = 0, 1, . . .) F (z)

rk z/(z − r)
k rk r z/(z − r)2
k2rk r z(z + r)/(z − r)3

k3rk
rz(z2 + 4 r z + r2)

(z − r)4
kprk (for integer p > 0) Li−p(r/z)

1 [e.g., fk = H0k] z/(z − 1)

k z/(z − 1)2

k2 z(z + 1)/(z − 1)3

kp (for integer p > 0) Li−p(1/z)

δ0k 1

δdk (for integer d > 0) 1/zd

rk cos(θk)
z[z − r cos(θ)]

z2 − 2 r z cos(θ) + r2

rk sin(θk)
z r sin(θ)

z2 − 2 r z cos(θ) + r2

rkH1k r/(z − r)
(k − 1) rkH2k r2/(z − r)2

(k − 2)(k − 1) rkH3k 2 r3/(z − r)3
(k − 3)(k − 2)(k − 1) rkH4k 6 r4/(z − r)4
(k − p) · · · (k − 1) rkHp+1,k p! rp+1/(z − r)p+1

Table 8.1: Tables of (left) some Laplace transform pairs, as considered in §8.2, and (right) some Z transform
pairs, as considered in §8.3. The values of the CT fns f(t) for t < 0, and the values of the DT fns fk for k < 0,
do not affect the above calculations. Note that:
• The CT unit impulse (aka the Dirac delta) in this work is defined via the large λ limit of the one-sided
function δλ,m(t) for some integerm ≥ 2 (see Figures 8.1b and c), and is thus taken to begin at t = 0.
• The CT unit step (aka the CT Heaviside step fn) is defined asH0(t) = 0 for t ≤ 0 andH0(t) = 1 for t > 0.
• The DT unit impulse is defined via the Kronecker delta such that δdk = 1 for k = d and δdk = 0 for k ̸= d.
• The DT unit step (aka the DT Heaviside step fn) is defined as Hdk = 0 for k < d and Hdk = 1 for k ≥ d.
• Also, the polylogarithm Li−p(x) is defined such that Li−p(x) = (x d/dx)p[x/(1− x)].

Such rational approximations of e−ds havem RHP zeros and n LHP poles. Examples include

F2,2(s) =
s2 − 6s/d+ 12/d2

s2 + 6s/d+ 12/d2
=

(s+ p+)(s+ p−)

(s− p+)(s− p−)
where p± = (−3±

√
3 i)/d, (8.8b)

F3,4 =
−4s3/d+ 60s2/d2 − 360s/d3 + 840/d4

s4 + 16s3/d+ 120s2/d2 + 480s/d3 + 840/d4
, F4,4 =

s4 − 20s3/d+ 180s2/d2 − 840s/d3 + 1680/d4

s4 + 20s3/d+ 180s2/d2 + 840s/d3 + 1680/d4
;

RR_pade.m generates other approximations, and plots the poles & zeros, and the step & ramp response, of each.
One often takesm = n, but note that takingm slightly less than n generates a smoother step response.

8-6

https://github.com/tbewley/RR/blob/main/chap08/RR_pade.m


Renaissance Robotics (v.2024-03-19) Chapter 8: Signals & Systems

8.2.1 The Laplace Transform of derivatives and integrals of functions

Assume f(t) is smooth and bounded and define f (1)(t) = df(t)/dt = f ′(t). Then, by integration by parts [i.e.,∫ b
a
u dv = (uv)ba −

∫ b
a
v du, taking u = e−st and dv = f (1)(t) dt], the Laplace transform of f (1)(t) is given by

F (1)(s) =

∫ ∞

0

f (1)(t) e−s tdt = lim
b→∞

∫ b

0

f (1)(t)e−s tdt

= lim
b→∞

[
e−sbf(a)− f(0) + s

∫ b

0

e−s tf(t)dt
]
= sF (s)− f(0)

(8.9a)

for ℜ(s) > 0. Similarly, if f (2)(t) = d2f(t)/dt2 = f ′′(t) and f (n)(t) = dnf(t)/dtn, then

F (2)(s) =

∫ ∞

0

f (2)(t) e−s tdt = . . . = s2F (s)− sf(0)− f (1)(0), (8.9b)

F (n)(s) =

∫ ∞

0

f (n)(t) e−s tdt = . . . = snF (s)− sn−1f(0)− sn−2f (1)(0)− . . .− f (n−1)(0). (8.9c)

Thus, if f (1)(t) = df(t)/dt, then F (1)(s) = sF (s)−f(0). Conversely, by integration, it therefore follows that, if
f(t) =

∫ t
0
f (1)(t′)dt′, and thus f(0) = 0, then F (s) = 1

s
F (1)(s). We thus arrive at the most useful interpretation

of the s variable:

Fact 8.3 Multiplication of the Laplace transform of a CT signal by s corresponds to differentiation of this signal in
the time domain, multiplication times s2 corresponds to twice differentiation, etc. Conversely, multiplication by 1/s
corresponds to integration of this signal (from t = 0), multiplication by 1/s2 corresponds to double integration, etc.

Note that, with f (1)(t) = df(t)/dt,

lim
s→0

[
F (1)(s)

]
= lim

s→0

[ ∫ ∞

0

f (1)(t)e−s tdt
]
=

∫ ∞

0

lim
s→0

[
f (1)(t)e−s t

]
dt =

∫ ∞

0

f (1)(t)dt = f(∞)− f(0).

Combining this result with that achieved by taking the limit of (8.9a) as s→ 0, it follows that

Fact 8.4 (The CT final value theorem) lim
s→0

sF (s) = lim
t→∞

f(t).

If we now consider the limit as s→∞ instead of s→ 0, we have to be a bit more careful. In the case in which
f(t) is a scalar c = limϵ→0 f(ϵ)−f(0) times a (left-continuous) unit step plus other terms which are continuous
near the origin, we define f (1)(t) (kept under the integral sign; see Fact 5.6 of NR) as the scalar c times the Dirac
delta9 plus other terms which are bounded near the origin. From the sifting property of the Dirac delta [see
(5.21c) of NR], it follows by taking the limit of (8.9a) as s→∞ that c = lims→∞ sF (s)− f(0), and thus

Fact 8.5 (The CT initial value theorem) lim
s→∞

sF (s) = lim
t→0+

f(t).

9In this case, the Dirac delta δ(t) may be defined via the effect of a one-sided impulse function of unit area, specifically δλ,m(t)
form ≥ 2 in the limit of large λ (see Figure 8.1b-c), when kept under the integral sign and integrated against some test function, as
discussed in detail in §5.3.4 of NR.
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8.2.2 Using the Laplace Transform to solve unforced linear differential equations
Consider the unforced linear constant-coefficient second-order differential equation given by

f ′′(t) + a1f
′(t) + a0f(t) = 0 with f(0), f ′(0) given. (8.10)

Taking the Laplace transform of this equation and applying the above relations gives
∫ ∞

0

{f ′′(t) + a1f
′(t) + a0f(t) = 0}e−s tdt ⇒ [s2F (s)− sf(0)− f ′(0)] + a1[sF (s)− f(0)] + a0[F (s)] = 0

⇒ F (s) =
c1s+ c0

s2 + a1s+ a0
where c1 = f(0), c0 = f ′(0) + a1f(0).

Defining the roots of the denominator p± =
(
− a1 ±

√
a21 − 4a0

)
/2, known as the poles of this second-order

equation, and performing a partial fraction expansion10, it follows that

F (s) =
c1s+ c0

(s− p+)(s− p−)
=

d+
s− p+

+
d−

s− p−
⇒

{
d+ + d− = c1

−d+p− − d−p+ = c0

}
⇒





d+ =
c1p+ + c0
p+ − p−

,

d− =
c1p− + c0
p− − p+

.

Thus, by Table 8.1a and the linearity of the Laplace transform (Fact 8.1, from which the superposition principle
follows immediately), we deduce that

f(t) = d+e
p+t + d−e

p−t, (8.11)

thus solving the original differential equation (8.10). It is seen that, if the real parts of the poles p± are negative,
the magnitude of the solution decays with time, whereas if the real parts of p± are positive, the magnitude
of the solution grows with time. Also note that, if the coefficients {a0, a1} and initial conditions {f(0), f ′(0)}
defining the system in (8.10) are real, then the roots p± are either real or a complex conjugate pair, and thus
the solution f(t) given by (8.11) is real even though the roots p± might be complex.

Higher-order unforced constant-coefficient CT linear differential equations of the form

f (n)(t) + an−1f
(n−1)(t) + . . .+ a1f

′(t) + a0f(t) = 0,

may be solved analogously, again leveraging partial fraction expansions (see RR_partial_fraction_expansion ) to
split up F (s) into simple terms whose inverse Laplace transforms may be found in Table 8.1a. In such cases,
as in the second-order case discussed above, the speed of oscillation and the rate of decay or growth of the
various components of the solution are characterized solely by the poles [that is, in this case, the roots of
sn + an−1sn−1 + . . . + a1s + a0 = 0], whereas how much of each of these components this solution actually
contains, in addition to their relative phase, is a function of the initial conditions on f(t) and its derivatives.

10The pedestrian way of computing the coefficients of a partial fraction expansion is to multiply the RHS factors [in this case,
d+/(s − p+) and d−/(s − p−)] by simple rational expressions of s, equivalent to unity, in order to form a common denominator
with the LHS, then setting like powers of s in the numerator on the LHS and RHS as equal and solving the resulting set of linear
equations, as indicated here in curly brackets. A much more direct way to compute the same coefficients is the Heaviside Cover-up
Method in which, for rational expressions F (s) with no repeated roots in the denominator, you simply multiply F (s) by one of the
factors in its denominator [in this case, say, (s − p+)], cancel this term everywhere it now appears in both the numerator and the
denominator, and then evaluate what is left as s approaches this root [in this case, as s→ p+]. In the present case, this gives:

lim
s→p+

[
(s− p+)

{ c1s+ c0
(s− p+)(s− p−)

=
d+

s− p+
+

d−
s− p−

}]
⇒ lim

s→p+

[
����(s− p+)(c1s+ c0)

����(s− p+)(s− p−)
=
d+����(s− p+)
����(s− p+)

+
d−(s− p+)
s− p−

]
.

Since the last term on the RHS goes to zero in the s → p+ limit, this gives d+ = (c1p+ + c0)/(p+ − p−), consistent with the
answer found using the method of simultaneous equations; d− may be computed similarly, and the method extends immediately to
higher-order rational functions with distinct poles. Generalization to rational function with repeated poles is given in §B of NR.
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8.2.3 Continuous-time (CT) transfer functions

Now consider the forced, CT, linear time invariant (LTI; that is, constant-coefficient), single input, single
output (SISO) second-order ODE for y(t) (the output) given by

y′′(t) + a1y
′(t) + a0y(t) = b0u(t), (8.12)

where u(t) (the input) is specified, assuming y(t) and y′(t) are zero at t = 0. Taking the Laplace transform
now gives

∫ ∞

0

{y′′(t) + a1y
′(t) + a0y(t) = b0u(t)}e−s tdt ⇒ [s2 + a1s+ a0]Y (s) = b0U(s)

⇒ G(s) ≜ Y (s)

U(s)
=

b0
s2 + a1s+ a0

=
b0

(s− p+)(s− p−)
, (8.13)

where, again, the poles p± =
(
− a1±

√
a21 − 4a0

)
/2. The quantity G(s) given above is known as the transfer

function of the linear system (8.12).
Higher-order forced SISO constant-coefficient CT linear systems of the form

y(n)(t) + an−1y
(n−1)(t) + . . .+ a1y

′(t) + a0y(t) = bmu
(m)(t) + bm−1u

(m−1)(t) + . . .+ b1u
′(t) + b0u(t), (8.14)

with bm ̸= 0 [and, normally, m ≤ n; see §8.2.3.1], may be manipulated in an analogous manner, leading to a
transfer function of the rational form

G(s) =
Y (s)

U(s)
=
bms

m + bm−1sm−1 + . . .+ b1s+ b0
sn + an−1sn−1 + . . .+ a1s+ a0

= K
(s− z1)(s− z2) · · · (s− zm)
(s− p1)(s− p2) · · · (s− pn)

. (8.15)

The m roots of the numerator, zi, are referred to as the zeros of the system, the n roots of the denomenator,
pi, are referred to as the poles of the system, and the coefficient K is referred to as the gain of the system.

Note that a differential equation governing a CT system with mechanical and/or electrical components,
taken on its own, simply relates, at a single instant in time, linear combinations of two or more variables and
their derivatives. Such a differential equation does not itself indicate one variable as a “cause” and another as an
“effect” in a cause-effect relationship; the indication of that is left to the engineer. The statement of a transfer
function, however, inherently defines a cause-effect or input-output relationship; in the examples discussed
above, by putting U(s) in the denominator and Y (s) in the numerator, u(t) is identified as the “input” (the
prescribed quantity put into the system), and y(t) is identified as the “output” (a resulting quantity generated
by action of the system). This distinction between input and output, imposed by the engineer, is significant.

Further, as a differential equation only relates variables and their derivatives in a particular CT system at
a single instant in time, there is no notion of “causality” associated with a differential equation11. However,
differential equations that are actually implementable as physical systems or electric circuits generally have
higher-order derivatives on the output than they do on the input, as discussed further in §8.2.3.1.

Given a CT linear system’s transfer function G(s), its response to simple inputs is easy to compute. Noting
Table 8.1a:

• if u(t) is a unit impulse [u(t) = δλ,m(t) for large λ and integerm ≥ 1], then U(s) ≈ 1;
• if u(t) is a unit step [u(t) = H0(t); then U(s) = 1/s;
• if u(t) is a unit ramp [u(t) = t for t > 0], then U(s) = 1/s2, etc.

11This is in contrast to difference equations relating DT signals at different timesteps, as discussed in §8.3.3; see in particular §8.3.3.2.
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In such cases, Y (s) = G(s)U(s) is easy to compute, and thus y(t) may be found by partial fraction expansion
(again, see RR_partial_fraction_expansion for automation of this process) and subsequent inverse Laplace trans-
form. As in the unforced case discussed in §8.2.2, the speed of oscillation and the rate of decay or growth of
the various components of the system’s response to a simple input is characterized solely by the poles of the
system, whereas how much of each of these components this response actually contains, in addition to their
relative phase, is a function of its zeros and gain.

It is important to keep clear the distinction between the Laplace transform (a.k.a. transfer function) of a
system, such as G(s) above, and the Laplace transform of a signal, such as Y (s) above. To make clear the
connection between them, note in the special case that the input to the system happens to be a unit impulse
u(t) = δλ,m(t) for large λ and integerm ≥ 2, it follows that U(s) ≈ 1 and thus Y (s) ≈ G(s). In other words,

Fact 8.6 The transfer function of a CT linear system is the Laplace transform of its impulse response.

It follows from the relation Y (s) = G(s)U(s), expanding Y (s), G(s), and U(s) with the Laplace transform
(8.7a), noting that the impulse response g(t) = 0 for t < 0 (that is, that the system is causal, as discussed
above), that

∫ ∞

0

[
y(t)

]
e−s tdt =

∫ ∞

0

g(t)e−s tdt

∫ ∞

0

u(t′)e−s t
′
dt′ =

∫ ∞

0

u(t′)

(∫ ∞

−(t′)
g(t)e−s tdt

)
e−s t

′
dt′

=

∫ ∞

0

u(t′)

(∫ ∞

0

g(t− t′)e−s(t−t′)dt
)
e−s t

′
dt′ =

∫ ∞

0

[∫ t

0

u(t′)g(t− t′) dt′
]
e−s tdt,

from which we deduce that, for t ≥ 0,

y(t) =

∫ t

0

u(t′)g(t− t′)dt′; (8.16)

note in particular that y(t) ≈ g(t) when u(t) = δλ,m(t) for large λ. Thus, as similarly noted for the Fourier
transform in Fact 5.4 of NR,

Fact 8.7 The product Y (s) = G(s)U(s) in Laplace transform space corresponds to a convolution integral [of the
input u(t) with the impulse response g(t)] in the untransformed space.

Products are generally much easier to work with than convolution integrals, thus highlighting the utility of the
Laplace transform when solving constant-coefficient CT linear systems.

8.2.3.1 Proper, strictly proper, and improper CT systems

We now revisit the differential equation in (8.14) and its corresponding transfer function in (8.15), where the
degree of the polynomial in the numerator is m, and the degree of the polynomial in the denominator is n.
Define the relative degree of such a transfer function as nr = n − m. In CT, such systems are said to
be improper if nr < 0. In §10 we will further distinguish the CT systems of interest as “plants” G(s) and
“controllers” D(s). Most real plants G(s) are strictly proper, with nr > 0 [or at least proper, with nr ≥
0], as most plants have some sort of inertia, capacitance, or storage which attenuates [or at least bounds]
their response at high frequencies, as characterized precisely by their Bode plots (see §8.4). Further, to avoid
amplifying high-frequency measurement noise which might be present as the measured signal is fed back to
the actuator via control feedback, it is strongly advised to use a strictly proper [or, at least, proper], controller
D(s). Thus, we will focus our attention in this study almost exclusively on the case with nr ≥ 0. Note also that
a transfer function with nr = 0, which is proper but not strictly proper, is occasionally said to be semi-proper.
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Example 8.1 The step response of second-order CT linear systems

We now focus further on the forced second-order case (8.12) when forced by a (CT) unit step u(t) = H0(t):

G(s) =
b0

s2 + a1 s+ a0
=

b0
s2 + 2 ζ ωn s+ ω2

n

=
b0

(s− p+)(s− p−)
and U(s) =

1

s
.

note that ωn is called the undamped natural frequency or speed of the system, and ζ is called the damping
ratio. If the poles p± =

(
−a1±

√
a21 − 4a0

)
/2 are complex with negative real part, the solution may be written

in terms of sines and cosines modulated by a decaying exponential, as implied by (8.11). To illustrate this more
clearly, assume first that a0 > 0 and 0 ≤ a1 < 2

√
a0; it follows that

a0 = ω2
n and a1 = 2ζωn,

noting that ωn > 0 and 0 ≤ ζ < 1, it is seen (see Figure 8.2) that p± = −σ ± iωd = −Re±i θ where

θ = asin ζ, σ = ζωn = a1/2 and ωd = ωn
√

1− ζ2 =
√
a0 − a21/4 ⇒ σ2 + ω2

d = ω2
n,

in which case, via partial fraction expansion, we may write

Y (s) = G(s)U(s) =
b0

(s− p+)(s− p−)
· 1
s
=

d+
s− p+

+
d−

s− p−
+
d0
s
,





d+ = −i b0/(2ωd p+),
d− = i b0/(2ωd p−) = d+,

d0 = b0/ω
2
n.

Thus, by Table 8.1a, noting that y(t) = 0 for t ≤ 0, the closed-form solution of y(t) for t > 0 is given by

y(t) = d+e
p+t + d−e

p−t + d0 = e−σt
[
dc cos(ωdt) + ds sin(ωdt)

]
+ d0,

{
dc = d+ + d− = −b0/ω2

n,

ds = i(d+ − d−) = dc ζ/
√

1− ζ2,
as plotted in Figure 8.3 using the corresponding code in RR.ch08. Since the G(s) in this example is real, the
complex poles {p+, p−} are a conjugate pair; as u(t) in this example is also real, the coefficients {d+, d−} are
also a conjugate pair, and thus {dc, ds, d0}, and y(t) itself, are real. Note that the speed of oscillation ωd and
the rate of decay σ are simple functions of the location of the poles of G(s).

As indicated in Figure 8.3, three useful characterizations of the step response are the rise time tr, defined
as the time it takes the response to increase from 0.1 to 0.9 of the steady state value of the step response, the
settling time ts, defined as the total time it takes the response to settle to within ±5 percent of the steady
state value of the step response, and the overshoot Mp, defined as the maximum percentage by which the
output of the system exceeds its steady-state value when the system responds to a step input. By performing
least-squares fits of the rise time, settling time, and overshoot of several such step responses of second-order
systems as a function of ωn, σ, and ζ , the following approximate relations are readily determined:

tr ≈ 1.8/ωn, ts ≈ 4.6/σ, Mp ≈ e−πζ/
√

1−ζ2 .

If the maximum values of tr, ts, and/or Mp are specified, the following approximate design guides for the
admissible pole locations of a second-order system follow:

ωn ≳ 1.8/tr, σ ≳ 4.6/ts,

{
ζ ≳ 0.5 for Mp ≤ 15%

ζ ≳ 0.7 for Mp ≤ 5%.
(8.17)

Typical approximate design guides of this sort are illustrated graphically in Figure 8.4. The response of many
higher-order systems is dominated by the response due to a pair of dominant second-order poles [i.e., the
slowest (smallest ωn) poles of the system that are not approximately cancelled by nearby zeros]. Thus, these
approximate design guides are often handy even if the system is not second order.
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Figure 8.2: The poles p± of the system y′′(t)+2 ζ ωn y
′(t)+ω2

n y(t) = b0 u(t) in the complex plane s in terms of
ωn, θ = asin ζ , σ = ζωn, and ωd = ωn

√
1− ζ2. The response y(t) to a step input u(t) is plotted in Figure 8.3;

note that ωd sets the speed of oscillation and σ sets the exponential rate of decay.
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Figure 8.3: The unit step response of the system y′′(t) + 2 ζ ωn y
′(t) + ω2
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Figure 8.4: Approximate constraints, or design guides, on the admissible pole locations of a CT second-order
system (or a higher-order system whose response is dominated by a pair of second-order poles) in the complex
plane s in order to not exceed specified constraints on the rise time, settling time, and overshoot of the system’s
step response (see Figure 8.3), as specified in (8.17).
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8.3 Z transform methods
The Z transform (a.k.a. the unilateral Z transform), F (z), of a discrete-time (DT) signal fk for k =
0, 1, 2, . . . is defined by

F (z) =
∞∑

k=0

fkz
−k. (8.18a)

Given fk for k = 0, 1, 2, . . ., we define F (z) via (8.18a). The inverse Z transform is given by

fk =
1

2πi

∮

Γ

F (z)zk−1 dz, (8.18b)

where the complex contour Γ is a circle around the origin in complex plane z that is chosen to be of sufficiently
small radius that it does not contain any singularities12 of F (z) in the complex plane z.

Verification that (8.18b) represents the inverse of the relationship expressed in (8.18a) is straightforward:
substitute (8.18a) into the RHS of (8.18b) and note that

∫ π
−π e

in θ dθ = 0 for integer n ̸= 0; it is seen that, for
a contour Γ given by z = Reiθ for θ = (−π, π) with sufficiently small R (thus, dz = iReiθ dθ), fk is indeed
recovered:

1

2πi

∮

Γ

[ ∞∑

k′=0

fk′z
−k′
]
zk−1 dz =

1

2πi

∫ π

−π

∞∑

k′=0

fk′R
−k′e−iθk

′
Rk−1eiθ(k−1)Rieiθ dθ

=
∞∑

k′=0

fk′R
k−k′

[ 1

2π

∫ π

−π
eiθ(k−k

′) dθ
]
=

∞∑

k′=0

fk′R
k−k′δk,k′ = fk,

The reason that the Rk−k′ factor, for sufficiently small positive R, is required by this formula is to ensure that
the magnitude of the integrand decays to zero exponentially as k′ →∞, which allows us to swap the order of
the integral and the sum using Fubini’s theorem.

As shown below, the forward and inverse transforms expressed by (8.18) are immensely useful when solving
difference equations (in DT). By (8.18a), knowing fk for k = 0, 1, 2, . . ., one can define F (z) on an appro-
priate contour. Conversely, by (8.18b), knowing F (z) on an appropriate contour, one can determine fk for
k = 0, 1, 2, . . . As in §8.2, before demonstrating further why such a transformation is useful, we first mention
that, in practice, you don’t actually need to compute the somewhat involved integrals given in (8.18) in order
to use the Z transform effectively. Rather, it is sufficient to reference a table listing some Z transform pairs in
a few special cases, as shown in Table 8.1b. Note also the following:

Fact 8.8 The Z transform is linear; that is, superposition holds, and thus if the Z transforms of the sequences
xk and yk areX(z) and Y (z), then the Z transform of the sequence wk = αxk + βyk isW (z) = αX(z) + βY (z).

Fact 8.9 If the Z transform of the sequence fk is F (z), then the Z transform of the scaled sequence gk = bkfk
is G(z) =

∑∞
k=0 fk(z/b)

−k = F (z/b), and the Z transform of the delayed sequence gk = fk−d is G(z) =∑∞
k=0 fk−dz

−k = F (z)/zd.

12That is, the circular contour of integration in the (8.18b) is chosen to be of sufficiently small radius that it does not contain any
points z for which |F (z)| → ∞ as z → z in (8.18a).
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8.3.1 The Z Transform of translated sequences

Define f [1]
k = fk+1 for k = 0, 1, 2, . . .. Then the Z transform of f [1]

k is given by

F [1](z) =
∞∑

k=0

f
[1]
k z
−k = z

∞∑

k=0

fk+1z
−(k+1) = z

∞∑

k=1

fkz
−k = zF (z)− zf0. (8.19)

Similarly, if f [2]
k = fk+2 and f

[n]
k = fk+n, then

F [2](z) =
∞∑

k=0

f
[2]
k z
−k = z2F (z)−z2f0−zf1, F [n](z) =

∞∑

k=0

f
[n]
k z−k = znF (z)−znf0−zn−1f1−. . .−zfn−1.

Thus, if f [1]
k = fk+1, then F [1](z) = zF (z) − zf0. Conversely, it follows that, if fk+1 = f

[1]
k for k = 0, 1, 2, . . .

with f0 = 0, then F (z) = 1
z
F [1](z). We thus arrive at the most useful interpretation of the z variable:

Fact 8.10 Multiplication of the Z transform of a DT signal by z corresponds to an advance of this signal by one
timestep, multiplication times z2 corresponds to an advance by two timesteps, etc. Conversely, multiplication by
1/z corresponds to a delay by one timestep, multiplication by 1/z2 corresponds to a delay by two timesteps, etc.

Defining a new sequence gk = fk+1 − fk for all k and taking the Z transform of gk, applying (8.19), gives

G(z) =
∞∑

k=0

gkz
−k ⇒ [zF (z)− zf0]− F (z) = lim

a→∞

a−1∑

k=0

(fk+1 − fk)z−k.

Taking the limit of this expression as z → 1, noting that the limit on the RHS approaches f∞ − f0 if the limit
indicated in the above equation is bounded, thus gives

Fact 8.11 (The DT final value theorem) If lim
k→∞

fk is bounded, then lim
z→1

(z − 1)F (z) = lim
k→∞

fk.

On the other hand, it follows directly from the z →∞ limit of (8.18a) that

Fact 8.12 (The DT initial value theorem) lim
z→∞

F (z) = f0.

8.3.2 Using the Z Transform to solve unforced linear difference equations
Now consider the unforced linear constant-coefficient second-order difference equation given by

fk+2 + a1fk+1 + a0fk = 0 with f0, f1 given. (8.20)

Taking the Z transform of this equation and applying the above relations gives

∞∑

k=0

{fk+2 + a1fk+1 + a0fk = 0}z−k ⇒ [z2F (z)− z2f0 − zf1] + a1[zF (z)− zf0] + a0[F (z)] = 0

⇒ F (z) =
c2z

2 + c1z

z2 + a1z + a0
where c2 = f0, c1 = f1 + a1f0.

8-14



Renaissance Robotics (v.2024-03-19) Chapter 8: Signals & Systems

Defining p± = (−a1 ±
√
a21 − 4a0)/2 and performing a partial fraction expansion, it follows that

F (z) =
c2z

2 + c1z

(z − p+)(z − p−)
=

d+z

z − p+
+

d−z

z − p−
⇒

{
d+ + d− = c2

−d+p− − d−p+ = c1

}
⇒





d+ =
c2p+ + c1
p+ − p−

d− =
c2p− + c1
p− − p+

.

Thus, by Table 8.1b and the linearity of the Z transform (Fact 8.8), we deduce that

fk = d+p
k
+ + d−p

k
−, (8.21)

thus solving the difference equation (8.20) [i.e., fk for any k can be calculated directly, without marching (8.20)].
It is seen that, if the magnitudess of both p+ and p− are less than one, the magnitude of the solution decays
with time, whereas if the magnitudes of either is greater than one, the magnitude of the solution grows with
time. Note also that taking f0 = 0 and f1 = 1 and a0 = a1 = −1 in (8.20) generates to Fibonacci’s sequence.

Higher-order linear difference equations may be solved in an identical manner, leveraging partial fraction
expansions to split up F (z) into simple terms whose Z transforms may be found in Table 8.1b.

8.3.3 Discrete-time (DT) transfer functions
Now consider the forced linear constant-coefficient second-order difference equation, a.k.a. DT SISO LTI sys-
tem, for uk (the output13) given by

uk+2 + a1 uk+1 + a0 uk = b0 ek, (8.22)

where ek (the input) is specified, assuming uk and ek are zero for k < 0. Taking the Z transform now gives

∞∑

0

{uk+2 + a1 uk+1 + a0 uk = b0 ek}z−k ⇒ [z2 + a1 z + a0]U(z) = b0E(z)

⇒ D(z) ≜ U(z)

E(z)
=

b0
z2 + a1 z + a0

=
b0

(z − p+)(z − p−)
, (8.23)

where, again, the poles p± =
(
− a1 ±

√
a21 − 4 a0

)
/2. The quantity D(z) is known as the transfer function of

the linear system (8.22). Higher-order forced SISO constant-coefficient DT linear systems of the form

uk+n + an−1 uk+n−1 + . . .+ a1 uk+1 + a0 uk = bm ek+m + bm−1 ek+m−1 + . . .+ b1 ek+1 + b0 ek (8.24a)

with bm ̸= 0 [and, normally, n ≥ m; see §8.3.3.2], may be manipulated in an analogous manner, leading to a
transfer function of the form

D(z) =
U(z)

E(z)
=
bm z

m + bm−1 zm−1 + . . .+ b1 z + b0
zn + an−1 zn−1 + . . .+ a1 z + a0

= K
(z − z1)(z − z2) · · · (z − zm)
(z − p1)(z − p2) · · · (z − pn)

. (8.24b)

By comparison, the parallels with the CT case in §8.2.3 are clear. Note that, in implementation [see §1.5.3.2], it
is often more convenient to write (8.24a) [in the case that n ≥ m] as

uk = −a1 uk−1 − . . .− an−1 uk−(n−1) − an uk−n + b0ek + b1ek−1 + . . .+ bn−1ek−(n−1) + bnek−n, (8.24c)

13For the sake of later convenience (in §10), we have changed the letters associated with the inputs and outputs in §8.3.3, where
we consider a DT controller D(z) = U(z)/E(z), as compared with §8.2.3, where we considered a CT plant G(s) = Y (s)/U(s).
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where, for convenience, we have renumbered the coefficients ak = an−k and bk = bn−k; this form is often
referred to as a finite impulse response (FIR) filter if ak = 0 for k > 0, and an infinite impulse response
(IIR) filter if not. Note that the FIR case is distinguished by an impulse response that vanishes after finite
number of steps, whereas [due to the feedback built in to the difference equation (8.24c)] the IIR case is not.

Again, a difference equation governing a DT system simply relates linear combinations of two or more vari-
ables describing the system and their tap delays; such an equation does not itself indicate one variable as a
“cause” and another as an “effect”. However, the definition of a transfer function implies an input-output rela-
tionship; in the examples discussed above, ek is the input, and uk is the output. Almost all systems encountered
are causal, meaning the variable identified as the output only responds to the current and past inputs, but not
to future inputs. In the DT setting, this happens when n ≥ m; for further discussion, see §8.3.3.2.

In the n > m (“strictly causal”) case, the MCU has a full timestep h to calculate the RHS of (8.24c) before
changing the output of uk−1 to uk. In the n = m (“semi-causal”) case, the MCU can first calculate all of
the explicit terms (i.e., those corresponding to previous timesteps) on the RHS of (8.24c). Then, when the
measurement ek comes in, the term b0 ek can be calculated with high priority (see §2.1.4) and added to the result
to generate uk, which can then be updated on the output pin shortly after the measurement ek is received.

Once a (causal) DT linear system’s transfer function is known, its response to simple inputs is easy to
compute. Noting Table 8.1b, if ek is a unit impulse (that is, ek = δ0,k), then E(z) = 1, and if ek is a unit step
[that is, ek = 1 for k ≥ 0], then E(z) = z/(z− 1). In both cases, U(z) is easy to compute from (8.23), and thus
uk may be found by partial fraction expansion and subsequent inverse Z transform.

As in the CT case, it is important to keep clear the distinction between the Z transform (a.k.a. transfer
function) of a system, such as D(z) above, and the Z transform of a signal, such as E(z) above. To make clear
the connection between them, note in the special case that the input to the system happens to be a unit impulse
ek = δ0,k, it follows that E(z) = 1 and thus U(z) = D(z). In other words,

Fact 8.13 The transfer function of a DT linear system is the Z transform of its impulse response.

It follows from the relation U(z) = D(z)E(z), expanding U(z),D(z), and E(z) with the Z transform formula
(8.18a), noting that the impulse response dk = 0 for k < 0 (that is, that the DT system is causal), and following
an analogous derivation as that leading to (8.16), that

∞∑

k=0

[
uk

]
z−k =

∞∑

j=0

ejz
−j

∞∑

k=0

dkz
−k =

∞∑

j=0

ej

( ∞∑

k=−j
dkz

−k
)
z−j

=
∞∑

j=0

ej

( ∞∑

k=0

dk−jz
−(k−j)

)
z−j =

∞∑

k=0

[
k∑

j=0

ejdk−j

]
z−k,

from which we deduce that, for k ≥ 0,

uk =
k∑

j=0

ej dk−j; (8.25)

note in particular that uk = dk when ej = δj,0. Thus, as similarly noted in the CT case,

Fact 8.14 The product U(z) = D(z)E(z) in Z transform space corresponds to a convolution sum [of the input ek
with the impulse response dk] in the untransformed space.

Products are generally much easier to work with than convolution sums, thus highlighting the utility of the Z
transform when solving constant-coefficient DT linear systems.
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8.3.3.1 The transfer function of a DAC – G(s) – ADC cascade

By Fact 8.13, we may determine the transfer function of a DT system, G(z), simply by computing the response
of the system to an impulse input, uk = δ0,k, then taking the Z transform of this response. Applying this
experiment to a cascade of components given by (i) a digital-to-analog converter (DAC) implementing a
zero-order-hold14 (ZOH), (ii) a CT system G(s), and (iii) an analog-to-digital converter (ADC) , noting in
this case that u(t) [that is, the input to G(s)] is simply a unit step (with Laplace transform 1/s in CT) followed
by a one-timestep-delayed negative unit step, it follows that

G(z) = Z
{1− e−sh

s
G(s)

}
= (1− z−1)Z

{G(s)
s

}
=
z − 1

z
Z
{G(s)

s

}
, (8.26)

where z−1 corresponds to as one-timestep delay, with Laplace transform e−sh, and the shorthand Z{G(s)/s}
means the Z transform of the discretization of the CT signal whose Laplace transform isG(s)/s. We will make
use of this convenient (and exact!) conversion, implemented in RR_C2D_zoh, in §10.4.2.

8.3.3.2 Causal, strictly causal, and noncausal DT systems

Define the relative degree of the DT transfer function in (8.24b) as nr = n − m, where n is the degree of
the polynomial in the denominator, andm is the degree of the polynomial in the numerator. DT systems with
nr < 0 are noncausal (i.e., the output depends, in part, on future values of the input). In §10 we will further
distinguish the systems of interest as “plants” and “controllers”s. All real DT plants G(z), or DT analogs of CT
proper (see §8.2.3.1) plants [formed, e.g., via the technique given in (8.26) of §10.4.2], are causal, with nr ≥ 0.
Further, any controllerD(z)must only be based on available measurements, and thus must also be causal, with
nr ≥ 0. A DT transfer function with nr = 0 in (8.24a) [that is, with b0 ̸= 0 in (8.24c)] is said to be semi-causal.
If there is significant computation time necessary to compute the control (in digital electronics) before it can be
applied to the system, it is sometimes convenient to restrict the controller to be strictly causal, with nr > 0.

If the output depends only on the current and future inputs, the transfer function is said to be anti-causal,
and if the output depends strictly on future inputs, it is said to be strictly anti-causal. We will focus our
attention exclusively on the causal case, with nr ≥ 0.

Example 8.2 The step response of second-order DT linear systems

Wenow focus further on the forced second-order case (8.22), written as Y (z) = G(z)U(z), with b0 = 1+a1+a0,
when forced by a unit step uk = 1 for k ≥ 0; that is,

G(z) =
1 + a1 + a0
z2 + a1z + a0

=
1 + a1 + a0

(z − p+)(z − p−)
and U(z) =

z

z − 1

where 1+ a1 + a0 = (1− p+)(1− p−). Assuming the poles are complex, p± =
(
− a1±

√
a21 − 4a0

)
/2 = r e±iθ

with
r =
√
a0 and θ = cos−1[−a1/(2r)],

and have magnitude less than one (i.e., a21/4 < a0 < 1), the solution of this system may again be written in
terms of sines and cosines modulated by a decaying exponential: writing the partial fraction expansion

Y (z) = G(z)U(z) =
1 + a1 + a0

(z − p+)(z − p−)
· z

z − 1
=

d+p+
z − p+

+
d−p−
z − p−

+
d0

z − 1





d+ =
1+a1+a0

(p+−p−)(p+−1)
,

d− =
−(1+a1+a0)

(p+−p−)(p−−1)
= d+,

d0 = 1.

14That is, holding the value of the analog signal as constant between timesteps
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Figure 8.5: The unit step response of the system uk+2 + a1uk+1 + a0uk = b0ek, where b0 = 1 + a1 + a0, with
r = 0.7 (circles), r = 0.9 (asterisks), and r = 1.0 (squares) for θ = π/5 (left) and θ = π/10 (right), where
r =
√
a0 and θ = cos−1[−a1/(2r)] (cf. Figure 8.3b). The lines in this figure are drawn to improve readability;

the DT signals are defined only at each step, indicated by the symbols.

and computing the inverse Z transform of Y (z) via Table 8.1b, noting that ei θ k = cos(θ k) + i sin(θ k), the
closed-form solution of yk for k > 0 is

yk = d+p
k
+ + d−p

k
− + d0 = rk

[
dc cos(θ k) + ds sin(θ k)

]
+ 1,

{
dc = d+ + d− = −1,
ds = i(d+ − d−) = −(a1 + 2)/

√
4a0 − a21,

as plotted in Figure 8.5 using the corresponding code code in RR.ch08. As in the CT case, since the system
G(z) considered in this example is real, the complex poles {p+, p−} come as a conjugate pair. In addition, as
consequence of the fact that the input uk to this system is also real, the coefficients {d+, d−} also work out to
be a complex conjugate pair, and thus {dc, ds, d0}, and yk itself, are real. Again, the speed of oscillation θ and
the rate of decay r of this response are a function of the location of the poles of the transfer function p± = r eiθ.
Note also that y0 = y1 = 0; this follows directly from (8.22), noting the k + 2 subscript on y on the LHS and
the k subscript on u on the RHS.

As evident in Figure 8.5, rise time tr, settling time ts, and overshootMp characterizations, introduced in the
CT case in Figure 8.3, may also be defined in the DT case. Appropriate design guides for the pole locations in the
z plane in order to ensure specified maximum values of tr, ts, andMp are presented in the following subsection.

8.3.4 Reconciling the Laplace and Z transforms
We now revisit the Laplace transform as defined in (8.7a) and the Z transform as defined in (8.18a):

F (s) =

∫ ∞

0

f(t)e−s tdt, F (z) =
∞∑

k=0

fkz
−k.

Note that, if we take z = esh where h is the timestep [that is, tk = hk and fk = f(tk)], and if h is small as com-
pared with the time scales of the variation of f(t), then F (z), scaled by h, is a rectangular-rule approximation
of F (s). Another way of making this connection between the CT analysis and the DT analysis is by comparing
the closed-form solutions of the step responses of second-order CT and DT systems, as given in Examples 8.1
and 8.2. We see that the latter response is simply a discretization of the former if rk = e−σt and θk = ωdt; that
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is, if the CT second-order pole locations s± = −σ± iωd and the DT second-order pole locations z± = re±iθ are
related such that r = e−σh and θ = ωdh, and thus z± = re±iθ = e(−σ±iωd)h = es±h.

Thus, the pole locations in DT and CT are related by the mapping

z = esh = 1 + sh+
s2h2

2!
+
s3h3

3!
+ . . . , (8.27)

as indicated in Figure 8.6. This connection is quite significant. For example, the approximate design guides for
CT systems dominated by a pair of second-order poles, as illustrated in Figure 8.4, may be mapped immedi-
ately using this relation to obtain corresponding approximate design guides for DT second-order systems, as
illustrated in Figure 8.7. It is seen that, for sinusoidal signals (that is, for r = 1), the number of timesteps per
oscillation is 2π/θ. It is also seen that the settling time is related to r, with r = 0.9 corresponding to a settling
time of 43 timesteps, r = 0.8 corresponding to a settling time of 21 timesteps, and r = 0.6 corresponding to a
settling time of 9 timesteps.

For small h, (8.27) provides a simple connection between s-plane pole locations in the vicinity of s = 0 and
the (scaled) z-plane pole locations in the vicinity of z = 1 via Euler’s approximation

z ≈ 1 + sh. (8.28)

That is, for small h, the neighborhood of z = 1 in the z plane may be interpreted in a similar fashion as the
(scaled) neighborhood of s = 0 in the s plane, and the three families of design guides (for tr, ts, and Mp) in
these two regions indeed look quite similar.

8.3.4.1 Tustin’s approximation

For larger h, Euler’s approximation is not accurate. Motivated by the accuracy analysis of the CNmethod given
in §7, the following rational approximation of (8.27), referred to in this setting as Tustin’s approximation (aka
the bilinear approximation, is preferred for most applications:

z ≈ 1 + sh/2

1− sh/2 = 1 + sh+
s2h2

2
+
s3h3

4
+ . . . ⇔ s ≈ 2

h

z − 1

z + 1
. (8.29)

Conveniently, both the exact mapping (8.27) and Tustin’s approximation (8.29) map the left half plane of s to
the interior of the unit circle in z; in particular, the stability boundary of s (the imaginary axis) maps to the
stability boundary of z (the unit circle). This is why Tustin’s approximation is strongly preferred over Euler’s
approximation (8.28), or other manners of truncating or approximating (8.27).

To see how to use Tustin’s rule to approximate a general CT differential equation [interpreted in §10 as a
controller] whose Laplace transform is D(s) with a DT difference equation whose Z transform is D(z), it is
useful to consider first the transfer function of the following simple differential equation, with u(t) and e(t)
taken to be zero for t < 0:

U(s)

E(s)
= D(s) =

s+ a

s+ p
⇒ (s+ p)U(s) = (s+ a)E(s) ⇒ du

dt
+ pu =

de

dt
+ ae.

Approximating the time derivatives in this ODE with the CN method (see §7), we may write

uk − uk−1
h

+ p
uk + uk−1

2
=
ek − ek−1

h
+ a

ek + ek−1
2

.

Taking the Z transform of this difference equation and rearranging leads immediately to
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D(z) =
U(z)

E(z)
=

2

h

z − 1

z + 1
+ a

2

h

z − 1

z + 1
+ p

=
s+ a

s+ p

∣∣∣∣∣
s =

2

h

z − 1

z + 1

= D(s)

∣∣∣∣∣
s =

2

h

z − 1

z + 1

. (8.30)

Using Tustin’s rule (8.29), higher-order CT transfer functions D(s) may similarly be approximated with a cor-
responding DT transfer functionsD(z), simply replacing each occurence of s inD(s) with 2

h
z−1
z+1

, then reducing
to a rational expression in z, as illustrated in (8.30).

8.3.4.2 Tustin’s approximation with prewarping

The exact mapping (8.27) maps the interval on the imaginary axis between s = 0 and s = iπ/h to the edge of
the upper half of the unit circle (see Figure 8.6); in contrast, Tustin’s rule (8.29) maps the entire upper half of
the imaginary axis to the same region. Thus, though the stability boundaries of these two mappings coincide,
the mapping due to Tustin’s rule is warped, and is only accurate in the vicinity of s = 0 and z = 1. When
designing controllers for mixed DT/CT systems (see §10.4), there is often a frequency ω of primary concern, such
as a gain crossover frequency (see §10.2) or notch frequency (see §10.3.2). It is easy to adjust Tustin’s rule via a
prewarping strategy that scales the s plane by a factor f > 1 prior to mapping it to the z plane, thus recovering
the exact mapping (8.27) for the point s = iω (for some ω < π/h) and providing a rational and accurate
approximation of this mapping for points in the vicinity of s = iω without disrupting the correspondence of
the two stability boundaries given by the exact mapping. To accomplish this, define

eiωh =
1 + ifωh/2
1− ifωh/2 ⇒ f =

2[1− cos(ωh)]

ωh sin(ωh)
.

Note that, when ω is in the range 0 ≤ ω < π/h, the factor f is in the range 1 ≤ f <∞; note specifically that
f → 1 as ω → 0. We may then modify Tustin’s rule (8.29) such that

z ≈ 1 + fsh/2

1− fsh/2 ⇔ s ≈ 2

fh

z − 1

z + 1
. (8.31)

This is referred to asTustin’s rulewith prewarping, and is conveniently implemented in code in RR_C2D_tustin;
this rule is used in §10.4.1 to develop DT controllers D(z) which have the desired behavior near a particular
frequency of interest ω̄, mimicking the behavior of effective CT controllers D(s) designed for CT plants15.

15Though Tustin’s rule is the method of choice for convertingD(s) into a DTD(z), various simple alternatives to this method are
sometimes enlightening to consider. For example, with the heuristic pole-zero mapping (a.k.a.matched z-transform) approach:
(i) All poles and finite zeros of D(s) are mapped to D(z) via z = esh.
(ii) All infinite zeros ofD(s) are mapped z = −1 inD(z) (effectively, to the highest-frequency point on the stability boundary in the
z plane). If a strictly causal D(z) is required (see §8.3.3.2), one of the infinite zeros is instead mapped to z =∞ in D(z).
(iii) The gain of D(z) at z = eiω h is chosen to match the gain of D(s) at s = iω, either for ω = 0, or (better) for some critical ω of
interest.
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Figure 8.6: The mapping of several curves and points between the s plane (left) and the z plane (right) using
(8.27). Taking s = a+ bi and z = reiθ, the shaded strip in the s plane with −∞ < a ≤ 0 and −π/h ≤ b ≤ π/h
maps uniquely to the shaded disk in the z plane with r ≤ 1. Points above and below this strip in the s-plane
do not map uniquely to points in the z-plane; e.g., both points marked by asterisks in the s plane map to the
same point marked in the z plane. This is a manifestation of the aliasing phenomenon depicted in Figure 8.7a.
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Figure 8.7: (a) Demonstration of the aliasing apparent in Figure 8.6: taking h = 0.1, DT samples (indicated by
the × symbols) of sin(ω1 t) and sin(ω2 t), for ω1 = (9/8)π/h and ω2 = −(7/8)π/h are coincident, and thus,
based on these samples alone, one can not distinguish which sine wave from which they were sampled. (b)
Approximate constraints, or design guides, on the admissible pole locations of a DT second-order system (or a
higher-order system whose response is dominated by a pair of second-order poles) in the complex plane z in
order to not exceed specified constraints on the rise time and overshoot of the system’s step response (see Figure
8.5). These DT design guides are found simply by mapping the corresponding CT design guides (see Figure 8.4)
using (8.27), and may be drawn with the command zgrid in Matlab syntax. Around the circumference are
marked the values of ωd, from 0.1π/T to π/T (with h denoted T ...), and in the upper-right quadrant are marked
the values of ζ , from 0.1 to 0.9, for the corresponding CT second-order design guides discussed in Example 8.1.
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8.4 Bode plots: thinking in the frequency domain
The Bode plot (a.k.a. open-loop Bode plot) is best introduced via a simple experiment: if a stable SISO linear
system G(s) = Y (s)/U(s), with all poles in the LHP, is excited with a sinusoidal input u(t) = cos(ω t), then
the output y(t) (which, if G(s) is known, may be determined via partial fraction expansion) will be composed
of several components which decay exponentially in time, plus a sinusoidal component of the same frequency
ω as the input but with a different magnitude and phase, y(t) = A cos(ω t+ϕ)+ decaying terms. The Bode plot
shows the gain in magnitude,A, and change in phase, ϕ, of this persistent component of the output over a range
of sinusoidal input frequencies ω of interest; the plot of the gain A vs. frequency ω is represented in loglog
form, and the plot of the phase change ϕ versus frequency ω is represented in semilogx form. If the system is
MIMO, a Bode plot may be developed for every input/output combination. Bode plots of two important simple
systems (first-order and second-order low pass filters, as discussed further in §8.5) are given in Figure 8.8; Bode
plots of two more complicated systems (with multiple breakpoints) are given in Figure 8.9.

The fact that any sinusoidal input in the experiment described above eventually leads to a sinusoidal output
at the same frequency, but at a different magnitude and phase, is clearly seen if we consider first what happens
if we put a complex input u1(t) = eiω t into a SISO system. [This is not possible in a real physical experiment,
of course, but can easily be done as a Gedankenexperiment if we know the transfer functionG(s) of the (stable)
system under consideration.] In this case, by Table 8.1, U1(s) = 1/(s− p0) where p0 = iω, and thus the partial
fraction expansion of the output Y1(s) may be written [see Footnote 10 in §8.2.2] as

Y1(s) = G(s)U1(s) = d0/(s− p0) + other terms ⇒ y1(t) = d0e
iω t + other terms.

The “other terms” in the partial fraction expansion of Y1(s) all have their poles in the LHP, because G(s) is
assumed to be stable, and thus the “other terms” in the corresponding inverse Laplace transform, y1(t), are all
stable. Thus, the magnitude and phase of the persistent component of the output is given by the magnitude
and phase of the complex coefficient d0 which, by the discussion in §8.2.2, may be found simply as follows:

d0 =
[
Y1(s) · (s− p0)

]
s→iω

=
[
G(s)

1

s− p0
· (s− p0)

]
s→iω

= G(iω).

The magnitude and phase shift of the persistent sinusoidal component d0eiω t of the output y1(t) are simply
the magnitude and phase of G(iω). For the complex input u2(t) = e−iω t, the result is similar:

U2(s) = 1/(s+ p0) where p0 = iω, Y2(s) = G(s)U2(s) = c0/(s+ p0) + other terms ⇒

y2(t) = c0e
−iω t + other terms, c0 =

[
Y2(s) · (s+ p0)

]
s→−iω

=
[
G(s)

1

s+ p0
· (s+ p0)

]
s→−iω

= G(iω).

Finally, consider what happens if we put the real input u3(t) = [u1(t) + u2(t)]/2 = cos(ω t) into the system.
Appealing to superposition and noting that a sin(x) + b cos(x) =

√
a2 + b2 sin(x+ ψ) where ψ = atan2(b, a),

y3(t) = [y1(t) + y2(t)]/2 = (d0e
iω t + c0e

−iω t)/2 + other terms
= {G(iω)[cos(ω t) + i sin(ω t)] +G(iω)[cos(ω t)− i sin(ω t)]}/2 + other terms
= [G(iω) +G(iω)] cos(ω t)/2 + [G(iω)−G(iω)]i sin(ω t)/2 + other terms
= ℜ{G(iω)} cos(ω t)−ℑ{G(iω)} sin(ω t) + other terms
= |G(iω)| sin[ω t+ atan2(ℜ{G(iω)},−ℑ{G(iω)})] + other terms

= |G(iω)| sin[ω t+ π

2
+ ∠G(iω)] + other terms = |G(iω)| cos[ω t+ ∠G(iω)] + other terms. (8.32)

The magnitudeA and phase shift ϕ of the persistent sinusoidal component of the output y3(t) = A cos(ω t+ϕ)
as compared with the real input u3(t) = cos(ω t) are thus, again, simply the magnitude and phase of G(iω).
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Figure 8.8: Bode plots of (left) a stable first-order low-pass filter F1(s) = ωc/[s+ ωc] (with ωc > 0), and (right)
a stable second-order low-pass filter F2(s) = ω2

c/[s
2 + 2ζ ωc s + ω2

c ] (with 0 < ζ ≤ 1), illustrating (top) the
gain, |F (iω)|, and (bottom) the phase, ∠F (iω), of the filter response as a function of the normalized frequency,
ω/ωc, of a sinusoidal input. In the first-order filter, the asymptotes illustrated as dashed lines are helpful to
sketch the curve, noting that the gain at ω/ωc = 1 is 0.707 and the phase at ω/ωc = 0.2 is −11◦; if the system
were unstable (F (s) = ωc/[s−ωc]), the phase would shift up by 90◦ instead of down by 90◦. In the second-order
filter, plotted are curves corresponding to (solid) ζ = 0.01, (dot-dashed) ζ = 0.1, 0.2, 0.3, 0.5, (solid) 0.707, and
(dashed) ζ = 1; if the system were unstable (with −1 < ζ < 0), the phase would shift up by 180◦ instead
of down by 180◦. The Bode plots of systems with a first-order or second-order zero, 1/F1(s) or 1/F2(s), are
obtained by taking the reciprocals of the gain and swapping the sign of the phase in the plots shown above.

Computing the Bode plot of unstable systems†

A Bode plot may also be developed for unstable systems. If the transfer function G(s) of an unstable system
is known, the process of computing its Bode plot is identical to that described above: simply calculate the
magnitude and phase of G(iω) for the relevant range of values of ω. Note that it doesn’t matter that some of
the components of the partial fraction expansion of Y (s) have RHP poles in this case, because we need not
actually perform the experiment described above, and thus need not consider all of the terms y(t).

If the transfer function G(s) of an unstable system is unknown, however, this computation can not be
performed, and the response of the experiment described in the first paragraph of §8.4 would be dominated
by one or more exponentially-growing component(s), and thus be inconclusive. However, if we can guess a
simple D(s) [e.g., D(s) = K for some K] that is adequate to stabilize the closed-loop transfer function
T (s) = G(s)D(s)/[1+G(s)D(s)] (see Figure 10.1 and the introduction to §10), then the Bode plot of T (s)may
again be determined experimentally and, since D(s) is known, the magnitude and phase of G(iω) for the cor-
responding range of ω may be deduced from the corresponding relation G(iω) = T (iω)/[(1− T (iω))D(iω)].
Based on the Bode plot ofG(s) so determined, a better controllerD(s)may then be developed using any of the
several constructive techniques developed in §10.

Sketching Bode plots of real systems by hand

The Bode plot, together with the root locus plot of §10.2.1, are two essential tools for classical feedback control
design (§10). Though quite easily plotted using a computer, it is valuable to first know how to sketch a Bode
plot by hand, in order to anticipate how the Bode plot changes when a controller is modified, and to understand
how to modify a controller to change a Bode plot in a desired manner.
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To proceed, consider a stable or unstable real CT SISO LTI system with ℓ zeros [or (−ℓ) poles] at the origin,
q real first-order zeros zi ̸= 0, r real first-order poles pi ̸= 0, Q pairs of complex-conjugate zeros zci±, and R
pairs of complex-conjugate poles pci±, written in transfer function form

G(s) = Ko s
ℓ · (s− z1)(s− z2) · · · (s− zq)

(s− p1)(s− p2) · · · (s− pr)
· (s− z

c
1+)(s− zc1−)(s− zc2+)(s− zc2−) · · · (s− zcQ+)(s− zcQ−)

(s− pc1+)(s− pc1−)(s− pc2+)(s− pc2−) · · · (s− pcR+)(s− pcR−)
.

Usually, ℓ ≤ 0; if ℓ > 0, there are one or more zeros, rather than poles, at the origin. Multiplying together the
factors corresponding to the pairs of complex-conjugate poles & zeros, we have

G(s) = Ko s
ℓ · (s− z1) · · · (s− zq)

(s− p1) · · · (s− pr)
· (s

2 + 2Z1Ω1 s+ Ω2
1) · · · (s2 + 2ZQΩQ s+ Ω2

Q)

(s2 + 2 ζ1 ω1 s+ ω2
1) · · · (s2 + 2 ζR ωr s+ ω2

R)
, (8.33)

where −1 ≤ Zi ≤ 1, −1 ≤ ζi ≤ 1, Ωi > 0, and ωi > 0. A term in G(s) is said to have multiplicity k if it is
repeated k times. If all pi < 0 and all ζi > 0, then all poles are in the LHP and the system is stable, though the
following discussion is valid even for neutrally stable or unstable systems. Evaluating (8.33) at s = iω gives

G(iω) = Ko(iω)ℓ ·
(iω − z1) · · · (iω − zq)
(iω − p1) · · · (iω − pr)

· (−ω
2 + 2Z1Ω1 iω + Ω2

1) · · · (−ω2 + 2ZQΩQ iω + Ω2
Q)

(−ω2 + 2 ζ1 ω1 iω + ω2
1) · · · (−ω2 + 2 ζR ωR iω + ω2

R)
, (8.34)

Noting that G(iω) above is the product of three types of terms, the Bode plot may be sketched using the
following handy rules16 (Bode 1930), as demonstrated in practice in Example 8.3:

1. For small ω, the gain and phase of the Bode plot approach the gain and phase of the following expression:

G(iω) ≈ (iω)ℓKo[(−z1) (−z2) · · · (−zq) · Ω2
1Ω

2
2 · · ·Ω2

Q]/[(−p1) (−p2) · · · (−pr) · ω2
1 ω

2
2 · · ·ω2

R].

2. The (positive) frequencies {|p1|, . . . , |pr|; |z1|, . . . , |zq|;ω1, . . . , ωR; Ω1, . . . ,ΩQ} are called the breakpoints.
Starting from the asymptote at the far left of the gain and phase plots and working from left to right, the gain
and phase components of the Bode plot change in an orderly fashion in the vicinity of each breakpoint17:

a. Near each 1st-order [pole or zero] of multiplicity k, the slope of the gain [decreases or increases] by k.
b. Near each 1st-order LHP [pole or zero] of multiplicity k, the phase [decreases or increases] by k · 90◦.
c. Near each 1st-order RHP [pole or zero] of multiplicity k, the phase [increases or decreases] by k · 90◦.
For 1st-order breakpoints, the phase and the slope of the gain change gradually over a range of frequencies,
from an order of magnitude below to an order of magnitude above the breakpoint, as shown in Figure 8.8a.

d. Near each 2nd-order breakpoint [pole or zero] of mult. k, the gain slope [decreases or increases] by 2 · k.
e. Near each 2nd-order LHP breakpoint [pole or zero] of mult. k, the phase [decreases or increases] by k · 180◦.
f. Near each 2nd-order RHP breakpoint [pole or zero] of mult. k, the phase [increases or decreases] by k · 180◦.
For 2nd-order breakpoints, the phase and the slope of the gain change gradually over a range of frequencies,
from an order of magnitude below to an order of magnitude above the breakpoint, as shown in Figure 8.8b. The
behavior of both curves near the breakpoint depends on the damping [ζi or Zi] with small values of damping
resulting in a [resonance or anti-resonance]; i.e., a response with [large or small] gain close to the breakpoint.

When sketching a Bode plot, it is useful to ignore, at first, the fact that the slope of the gain curve and the value
of the phase curve change gradually over two decades around the breakpoints, and simply plot straight-line
asymptotes between each breakpoint. With these asymptotes as guides, the gain and phase curves may then
be sketched by rounding out the corners of these asymptotes, using Figures 8.8a-b as guides.

16Many texts cite the gain in terms of decibels (dB), defined as 20 · log10 of the value. We avoid this convention, as integer slopes
of the gain curve on log-log plots are more readily recognized. If a gain in decibels is used, all slopes are multiplied by a factor of 20.

17Each of the rules here is to be read twice, first using the first word in brackets, then using the last word in brackets.
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Drawing the asymptotes between the breakpoints of a Bode plot, using rules 2a and 2b above while working
from low frequencies to high frequencies, is in fact quite straightforward. As demonstrated in Example 8.3,
the slope j of the asymptotes for any given ω between the breakpoints in the system G(iω) in (8.34) may be
computed simply by assuming (even if its not true) thatω ismuch smaller than the higher-frequency breakpoints
and that ω is much larger than the lower-frequency breakpoints, thus allowing each first-order and second-
order factor in both the numerator and denominator of (8.34) to be reduced to either its first or last term as
appropriate; the slope j is then given simply by the remaining power of ω in the numerator minus the remaining
power of ω in the denominator. Further, in systems that are both stable (with no RHP poles) andminimum phase
(with no RHP zeros; see §10.3.4.1), the corresponding phase is simply j ·90◦ (mod 360); this useful rule of thumb
is referred to as Bode’s gain/phase relationship.

Computing the Bode plot of CT systems numerically

Programming a computer to draw a Bode plot of a given transfer function F (s) is trivial, and is easily done
in a few lines of code18 (see RR_bode): simply loop over several values of frequencies ω, from well below the
first breakpoint to well above the last breakpoint, compute the magnitude and phase of F (iω) at each of these
frequencies, and then perform a loglog plot of the former and a semilogx plot of the latter.

Give it a try!

Though the previous page might at first look a bit daunting, the process of sketching and/or computer plotting
Bode plots is actually fairly straightforward, and becomes easy with practice. For example, taking ωc = 10,
the first-order low-pass filter F1(s) = 10/(s+10) of Figure 8.8 may be plotted using either the built-in Matlab
commands tf and bode, or the RR commands (see §A.4) RR_tf and RR_bode, as follows:

Fa=tf (10,[1 10]), bode(Fa) or Fb=RR_tf(10,[1 10]), RR_bode(Fb)

The behavior of the correspondingMatlab built-in and RR codes is slightly different19, and in certain ways those
in RR are more powerful. For example, the RR codebase can easily handle the following20 (Matlab can’t...):

syms z p, G=RR_tf(1,[1 1]), D=RR_tf([1 z ],[1 p ]), T=G∗D/(1+G∗D)

As a starting point, after you follow through Example 8.3 on the following page, try sketching the Bode plots
of each of the following filters following the rules on the previous page, then checking in Matlab:

high-pass, low-pass, band-pass: FHPa(s) = s/(s+ 1), FLPa(s) = 100/(s+ 100), FBP(s) = FLPa(s) · FHPa(s),
lag, lead, lead-lag: Flag(s) = (s+1)/(s+0.1), Flead(s) = 10(s+100)/(s+1000), Flead-lag(s) = Flead(s) ·Flag(s),
proportional, integral, derivative, PID:FP(s) = 1, FI(s) = 1/s, FD(s) = s, FPID(s) = 0.01 (s+1)(s+100)/s,
low-pass, high-pass, band-stop: FLPb(s) = 1/(s+ 1), FHPb(s) = s/(s+ 100), FBS(s) = FLPb(s) + FHPb(s),
notch: Fnotch(s) = (s2 + ω2

0)/(s
2 + ω0 s/Q+ ω2

0), taking ω0 = 10 for both for Q = 0.5 and Q = 5,
all-pass: FAP1(s) = (s− 1)/(s+ 1), FAP2(s) = −(s− 1)/(s+ 1), FAP3(s) = −(s+ 1)/(s− 1).

If you’ve made it this far in this text, I trust you’ll get the hang of this process quickly.

Computing the Bode plot of DT systems

By (8.27), a Bode plot in DT may be drawn with the same code as that used in CT, taking z = eiωh rather than
s = iω when evaluating the response of the transfer function at various frequencies. Note that the frequency
response of a DT system is only defined up to the Nyquist frequency, and thus a Bode plot in DT should only
be drawn up to the Nyquist frequency.

18However, note that it takes several more to make such a code reasonably user friendly!
19Try h=bodeplot(Fa ), setoptions (h, 'MagUnits', 'abs ' , 'MagScale', ' log ' ) to get Matlab’s built-in commands to drop the extra

factor of 20 in the plot of the gain.
20Of course, you will need to insert values for z and p before making a Bode plot.
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Figure 8.9: Bode plots of two more complicated systems: (left) G1(s) and (right) G2(s), as defined in (8.35).

Example 8.3 Sketching the Bode plot of representative systems.
To illustrate how to use the above-listed rules, Figure 8.9 shows the Bode plots of

G1(s) =
s2 + 10s+ 10000

100 (s+ .01)(s2 + 2ζs+ 1)
and G2(s) =

s2 + s+ 100

100 (s+ .1)(s2 + 2ζs+ 1)
(8.35)

for ζ = 0.1 (solid) and ζ = 1 (dot-dashed), and effectively illustrate the process used for drawing the Bode
plot of many other systems. Note that G1(iω) has breakpoints at ω = .01, 1, and 100, whereas G2(iω) has
breakpoints at ω = .1, 1, and 10. In both cases, in order to sketch these Bode plots by hand, we can simply draw
the asymptotes (dashed) from left to right as if these breakpoints were far apart, whereG1(s) andG2(s) act like

G1(iω) =





10000 for ω ≪ .01

100/(iω) for .01≪ ω ≪ 1

100/(iω)3 for 1≪ ω ≪ 100

1/(100 iω) for 100≪ ω

and G2(iω) =





10 for ω ≪ .1

1/(iω) for .1≪ ω ≪ 1

1/(iω)3 for 1≪ ω ≪ 10

1/(100 iω) for 10≪ ω

(8.36)

The asymptotes for each of these regions are easily drawn. The Bode plot is then given by “smearing out” the
corners of these asymptotes, using the behavior in the vicinity of simple first-order and second-order breakpoints
illustrated in Figure 8.8 as guides. Note in particular the resonance (that is, the peak in the magnitude of the
Bode plot) in Figures 8.9a-b in the case with ζ = 0.1, and the lack of resonance (no peak) in the case with ζ = 1.
Note also that the approach described above (that is, sketching the asymptotes between the breakpoints, then
“smearing out” the corners in accordance with Figure 8.8) is generally effective even if, as in the G2(s) case of
Figure 8.9b, the breakpoints are so close together that ω is actually never simultaneously “far” from both of the
neighboring breakpoints. △

A final important point to note about Bode plots is that:

Fact 8.15 Bode plots are additive.

In other words, if L(s) = G(s)D(s), and if for some ω we have G(iω) = R1 e
iϕ1 and D(iω) = R2 e

iϕ2 , then
L(iω) = R3 e

iϕ3 = R1R2 e
i(ϕ1+ϕ2); that is, log(R3) = log(R1) + log(R2) and ϕ3 = ϕ1 + ϕ2 for each ω.

Thus, given log-log plots of R1 and R2 versus ω, and semilogx plots of ϕ1 and ϕ2 versus ω [i.e., given the
Bode plots of G(s) & D(s)], the corresponding log-log plot of R3 versus ω and semilogx plot of ϕ3 versus ω
[i.e., the Bode plot of L(s)] is easily drawn. Alternatively, given the Bode plot of G(s) and a desired target for
L(s), it is easy to determine what the Bode plot ofD(s)must look like. This useful fact is leveraged in the loop
shaping control design technique presented in §10.2.2.
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8.5 Low-pass, high-pass, band-pass, and band-stop filters

We now explore the concept of rational CT filters; that is, of tunable systems (usually implemented as electric
circuits, as discussed in §9) which selectively “accept” and “reject” the various frequency components of a signal.
The goal an ideal filter is to have a gain of 1 and a phase of 0 over a specified passband of frequencies, and a
gain of nearly 0 over the remaining frequencies (referred to as the stopband). Unfortunately, no rational filters
ever attain this ideal; this section discusses a few of the common families of filters available which attempt to
approximate this ideal behavior.

An ideal low-pass filter has a passband of all signal components below some “cutoff” frequency ωc, and a
stopband of all components above this frequency. The simplest realizable low-pass filters are the first-order filter
F1(s) = 1/[1 + (s/ωc)] depicted in Figure 8.8a and the second-order filter F2(s) = 1/[1 + 2ζ(s/ωc) + (s/ωc)

2]
depicted in Figure 8.8b (generally, ζ = 0.707 is a good choice). For both filters, the gain approaches 1 and
the phase approaches 0 for frequencies ω much smaller than ωc, and the gain rolls off (on a log-log plot, at
a slope of −1 in the first-order case and a slope of −2 in the second-order case) for frequencies much larger
than ωc. Neither filter has the ideal sharp “cutoff” at the boundary between the passband and the stopband as
described above; in the remainder of this text, we thus refer to this boundary ωc as the corner frequency of
the corresponding filter.

The higher-order filters discussed below provide a variety of ways of achieving a sharper corner at the
boundary between the passband and the stopband, at the cost of sometimes significant phase loss, even at
frequencies down to an order of magnitude below the corner frequency21.

Note that an ideal high-pass filter is a filter with a passband of all frequencies above the corner frequency
ωc, and a stopband of all frequencies below the corner frequency. Any realizable low-pass filter may be converted
into a high pass filter simply by replacing (s/ωc) with (ωc/s) in its transfer function and simplifying; we thus focus
exclusively on low-pass filter design in the discussion that follows.

Note also that an ideal band-pass filter is a filter with a passband of all frequencies between two critical
frequencies, and a stopband at all other frequencies, whereas an ideal band-stop filter is a filter with a stop-
band of all frequencies between two critical frequencies, and a passband at all other frequencies. A band-pass
filter may be constructed from a low-pass filter and a high-pass filter connected in series, whereas a band-stop filter
may be constructed from a low-pass filter and a high-pass filter connected in parallel.

8.5.1 Maximal flatness filters: Butterworth and Bessel

Recalling Figure B.1b and defining rk for k = 1, . . . , 2n as the (2n)’th roots of −1, a Butterworth filter is
defined by a transfer function with poles given by those values of pk ≜ (irk) which have a negative real part:

FBu
n (s) =

1

Bn(s)
where s = s/ωc, Bn(x) =

n∏

k=1

(x− pk), and pk = eiπ(2k−1+n)/(2n), (8.37)

as conveniently implemented in RR_LPF_butterworth. Noting that the complex poles come in complex-conjugate
pairs, Bn(x) may be written with real coefficients by grouping together those factors in the above expression
with complex-conjugate poles, such as p1 and pn; the first eight of the resulting normalized Butterworth

21Such phase loss can have important negative consequences; as discussed in §10.2.2, loss of phase at crossover can lead to a
significant loss of closed-loop system performance, and even closed-loop instability. Thus, if a low-pass filter is used to reject high-
frequency measurement noise in a feedback control loop, the cutoff frequency of the low-pass filter should be placed at least an order
of magnitude above the crossover frequency of the closed-loop system.
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Figure 8.10: Bode plots of (solid) first-order to (dashed) sixth-order (left) Butterworth filters and (right) Bessel
filters, illustrating (top) the magnitude, |G(iω)|, and (bottom) the phase, ∠G(iω), of the system response as a
function of the normalized frequency, ω = ω/ωc, of a sinusoidal input. In the vicinity of ωc, the Butterworth
filter is optimal in terms of the flatness of the gain, whereas the Bessel filter is optimal in terms of the flatness
of the group delay (that is, the phase). Note that the slope of the magnitude plot of the n’th-order filter in both
cases is monotonic, and approaches −n for ω ≫ 1.

polynomials Bn(x) are:

B1(x) = (x+ 1),

B2(x) = (x2 + 1.41421x+ 1),

B3(x) = (x+ 1)(x2 + x+ 1),

B4(x) = (x2 + 0.76537x+ 1)(x2 + 1.84776x+ 1),

B5(x) = (x+ 1)(x2 + 0.61803x+ 1)(x2 + 1.61803x+ 1),

B6(x) = (x2 + 0.51764x+ 1)(x2 + 1.41421x+ 1)(x2 + 1.93185x+ 1),

B7(x) = (x+ 1)(x2 + 0.44504x+ 1)(x2 + 1.24698x+ 1)(x2 + 1.80194x+ 1),

B8(x) = (x2 + 0.39018x+ 1)(x2 + 1.11114x+ 1)(x2 + 1.66294x+ 1)(x2 + 1.96157x+ 1).

Bode plots of the first 6 Butterworth filters are given in Figure 8.10a. For sinusoidal inputs at normalized
frequency ω = ω/ωc, the gain of the n’th-order Butterworth filter is given by the square root of

|FBu
n (iω)|2 = FBu

n (iω)Fn(−iω) =
1∏n

k=1[(iω)− pk]
∏n

k=1[(−iω)− pk]
=

1

ω2n + 1
,

where the expression on the right follows simply because {i p1, . . . , i pn,−i p1, . . . ,−i pn} is the set of all roots
of the equation ω2n + 1 = 0. Defining the gain GBu

n (ω) = 1/(ω2n + 1)1/2, it follows that

dGBu
n (ω)

dω
= −n

[
GBu
n (ω)

]3
ω2n−1 < 0 and GBu

n (ω) = 1− 1

2
ω2n +

3

8
ω4n + . . . ; (8.38)

that is,GBu
n (ω) decreases monotonically with ω, and the first (2n−1) derivatives ofGBu

n (ω) evaluated at ω = 0
are zero; this property is referred to as maximal flatness of the gain curve, and is the central strength of
the Butterworth filter. Unfortunately, as seen in Figure 8.10a, the higher-order Butterworth filters with sharp
rolloff for ω > 1 suffer from significant phase loss over a large range of frequencies below ωc.

A Bessel filter is defined by the transfer function

FBe
n (s) =

θn(0)

θn(s)
where s = s/ωc and θn(x) =

n∑

k=0

(2n− k)!
(n− k)! k!

xk

2n−k
, (8.39)
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as conveniently implemented in RR_LPF_bessel; the θn(x) functions are known as reverse Bessel polynomials,
the first eight of which are given by

θ1(x) = x+ 1,

θ2(x) = x2 + 3x+ 3,

θ3(x) = x3 + 6x2 + 15x+ 15,

θ4(x) = x4 + 10x3 + 45x2 + 105x+ 105,

θ5(x) = x5 + 15x4 + 105x3 + 420x2 + 945x+ 945,

θ6(x) = x6 + 21x5 + 210x4 + 1260x3 + 4725x2 + 10395x+ 10395,

θ7(x) = x7 + 28x6 + 378x5 + 3150x4 + 17325x3 + 62370x2 + 135135x+ 135135,

θ8(x) = x8 + 36x7 + 630x6 + 6930x5 + 51975x4 + 270270x3 + 945945x2 + 2027025x+ 2027025.

Bode plots of the first 6 Bessel filters are given in Figure 8.10b. Defining ω = ω/ωc as before and (for FBe
6 ) the

phase ϕBe6 (ω) = −atan [(21ω5 − 1260ω3 + 10395ω)/(−ω6 + 210ω4 − 4725ω2 + 10395)], it follows that

dϕBe6 (ω)

dω
= − 21ω10 + 630ω8 + 18900ω6 + 496125ω4 + 9823275ω2 + 108056025

ω12 + 21ω10 + 630ω8 + 18900ω6 + 496125ω4 + 9823275ω2 + 108056025
< 0 (8.40a)

= 1− ω12

108056025
+

ω14

1188616275
+O(ω16); (8.40b)

that is, ϕBe6 (ω) decreases monotonically with ω, and the first 11 derivatives of the group delay DBe
6 (ω) ≜

−dϕBe6 /dω evaluated at ω = 0 are zero; this property is referred to as maximal flatness of the group delay
curve, and is the central strength of the Bessel filter. [To verify the correctness of (8.40), as well as to confirm
that the group delay of Bessel filters at other orders are similarly flat, see the Exercises.] Unfortunately, as
seen in Figure 8.10b, Bessel filters have significantly less attenuation at any given frequency ω > 1 than do
the corresponding Butterworth filters at the same order; although the both |FBu

n (iω)| and |FBe
n (iω)| eventually

roll-off at slope −n on a log-log plot versus ω for ω ≫ 1, Bessel filters approach this asymptote at frequencies
roughly an order of magnitude higher than do Butterworth filters at the same order.

8.5.2 Equiripple filters: Chebyshev, inverse Chebyshev, and elliptic†

The Butterworth and Bessel filter gains illustrated Figure 8.10 decrease monotonically with frequency. A com-
parison of these filters indicates an interesting tradeoff between the flatness of the gain in the passband, the
flatness of the phase in the passband, and the rate of roll-off of the gain above the passband. Different trade-
offs between such generally competing objectives may be considered; we indulge ourselves here with a brief
discussion of one additional such family, known as equiripple filters.

Equiripple filters are based on the Chebyshev function [see Figures 8.11a-c], which are defined iteratively
[see §5.13 of NR for further discussion] such that

T0(x) = 1, T1(x) = x, Tn(x) = 2xTn−1(x)− Tn−2(x) for n = 2, 3, . . . (8.41a)

noting that Tn(x) = cos[n θ(x)] where θ = acos (x), (8.41b)

and a powerful relative of the Chebyshev function known as the elliptic function [see (8.44) and Figure 8.11d].
For the remainder of this subsection (only), we focus our attention on the filter gain, plotting the square of

this gain on a linear plot rather than a log-log plot, as this convention illustrates well the criteria considered in
equiripple filter design, as shown in Figures 8.12 and 8.13. We also define the transition band as the region
between the passband and the stopband. In equiripple filter design (see Figures 8.12 and 8.13), one attempts to
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Figure 8.11: Plots of (a) the Chebyshev function Tn for n = 0, . . . , 6 [see (8.41a)], and [taking n = 8, ϵ = δ = 0.1,
and ξ = 1.011] the squared and scaled (b) Chebyshev function fCn (ω) = ϵ2T 2

n(ω), (c) inverse Chebyshev
function f In(ω) = 1/[δ2T 2

n(1/ω)], and (d) elliptic function fEn (ω) = ϵ2R2(ξ, ω) [see (8.44)]. The corresponding
Chebyshev, inverse Chebyshev, and elliptic filters, collectively known as equiripple filters, are characterized
by the filter gain |Fn(ω)|2 = 1/(1 + fn(ω)) [see Figures 8.12-8.13].

make this transition band as narrow as possible by sacrificing the monotonic behavior of the filter gain seen
in Figure 8.10. That is, equiripple filters achieve rapid roll-off in the transition band by allowing the gain to
ripple between minimum and maximum admissible values: in particular, Chebyshev filters allow ripples in
the passband, inverse Chebyshev filters allow ripples in the stopband, and the (most general) elliptic filters
allow ripples in both the passband and the stopband. The Chebyshev and inverse Chebyshev filters are both
special cases of the elliptic filter, and the Butterworth filter is a special case of all three.

Chebyshev filters

For sinusoidal inputs at normalized frequency ω, the Chebyshev filter FC
n (s; ϵ) is characterized by the gain

|FC
n (iω; ϵ)| =

1√
1 + ϵ2T 2

n(ω)
where s = s/ωc, ω = ω/ωc; (8.42)

note the tunable parameter ϵ in addition to the order parameter n and corner frequency ωc.
In order to write the Chebyshev filter in transfer function form

FC
n (s; ϵ) = cC

1

(s− pC1 )(s− pC2 ) · · · (s− pCn )
,

wemust identify the transfer function poles pCm and gain cC (the zeros of the Chebyshev filter are all at infinity).
Noting (8.42) for s = iω, and additionally noting (8.41b), the poles of FC

n (s; ϵ) are given by

1 + ϵ2T 2
n(ω) = 1 + ϵ2T 2

n(cos θ) = 1 + ϵ2 cos2(nθ) = 0 where ω = −is ≜ cos θ,

and thus the (stable) transfer function poles (with negative real part) may be written

pCm = i cos(θm) where θm =
1

n
acos

i
ϵ
+
mπ

n
for m = 0, . . . , n− 1.

The transfer function gain is given simply by cC =
∏
pCm = 1/(ϵ2n−1).

These equations are implemented in RR_LPF_chebyshev and visualized in Figures 8.12b and 8.13b.

Inverse Chebyshev filters

For sinusoidal inputs at normalized frequency ω, the inverse Chebyshev filter F I
n(s; δ) is characterized by

|F I
n(iω; δ)| =

1√
1 + 1/[δ2T 2

n(1/ω)]
where s = s/ωc, ω = ω/ωc; (8.43)
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Figure 8.12: Linear plots of the square of the filter gain of the (a) Butterworth, (b) Chebyshev, (c) Inverse Cheby-
shev, and (d) Elliptic filters, along with the criteria used for the equiripple filter designs with ϵ = δ = 0.2 and
order n = 4. The interval (0, ωp) is referred to as the passband, where the square of the filter gain is con-
strained to lie between 1/(1+ ϵ2) and 1, whereas the interval (ωs,∞) is referred to as the stopband, where the
square of the filter gain is constrained to lie between 0 and δ2. The interval (ωp, ωs) is referred to as the transi-
tion band. By allowing small ripples in the gain in the passband (Chebyshev), stopband (inverse Chebyshev),
or both (elliptic), the width of the transition band is substantially reduced as compared with the nonrippled
(Butterworth) case at a given order n.

note the tunable parameter δ in addition to the order parameter n and corner frequency ωc.
In order to write the inverse Chebyshev filter in transfer function form

F I
n(s; ϵ) = cI

(s− zI1)(s− zI2) · · · (s− zIn)
(s− pI1)(s− pI2) · · · (s− pIn)

,

we must identify the transfer function zeros zIm, poles p
I
m, and gain cI . Noting (8.43) for s = −iω, and addi-

tionally noting (8.41b), the poles of F I
n(s; ϵ) are given by

1 +
1

δ2T 2
n(1/ω)

= 1 +
1

δ2T 2
n(cos θ)

= 1 +
1

δ2 cos2(nθ)
= 0 where 1

ω
=

1

is ≜ cos θ,

and thus the (stable) transfer function poles (with negative real part) may be written

pIm =
−i

cos θm
where θm =

1

n
acos

i
δ
+
mπ

n
for m = 0, . . . , n− 1.
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Figure 8.13: Linear plots of the square of the filter gain of the (a) Butterworth, (b) Chebyshev, (c) Inverse Cheby-
shev, and (d) Elliptic filters with ϵ = δ = 0.1 and order n = 8 (cf. Figure 8.12).

By (8.43), the transfer function zeros are simply the inverse of the zeros of the Chebyshev polynomial:

Tn

( 1
ω

)
= cos(nϕ) = 0 where 1

ω
≜ cosϕ ⇒ zIm =

i
cosϕm

, ϕm =
(2m− 1)π

2n
for m = 1, . . . , n.

The transfer function gain is given by cI =
∏
pIm/

∏
zIm.

These equations are implemented in RR_LPF_inv_chebyshev and visualized in Figures 8.12c and 8.13c.

Elliptic filters

The elliptic filter (a.k.a. Cauer filter) FE
n (s; ϵ, ξ) is a remarkably flexible filter design characterized, for sinu-

soidal inputs at normalized frequency ω, by the gain function

|FE
n (iω; ϵ, ξ)| =

1√
1 + ϵ2R2

n(ξ, ω)
where s = s/ωc, ω = ω/ωc;

with tunable parameters ϵ and ξ in addition to the order parameter n and corner frequency ωc, where Rn(ξ, x)
is a special function known as the elliptic rational function (a.k.a. Chebyshev rational function), which
is normalized such that Rn(ξ, 1) = 1. A complete exposition of the elliptic rational function for all orders n is
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Figure 8.14: The factor Ln(ξ) of elliptic filter design for (solid) n = 8, (dashed) n = 4, (dot-dashed) n = 2.

quite involved and a bit peripheral to the present discussion22; suffice it to note here that the elliptic rational
function may be defined for order n = 2s for integer s via the recursive nesting property

Rm·p(ξ, x) = Rm(Rp(ξ, ξ), Rp(ξ, x)) where R2(ξ, x) =
(t+ 1)x2 − 1

(t− 1)x2 + 1
and R1(ξ, x) = x, (8.44a)

and, defining the discrimination factor Ln(ξ) ≜ Rn(ξ, ξ) [see Figure 8.14], the factor t defined according to

tm(ξ) ≜
√

1− 1/L2
m(ξ) and t ≜ t1(ξ) =

√
1− 1/ξ2. (8.44b)

In order to write the elliptic filter in transfer function form

FE
n (s; ϵ, ξ) = cE

(s− zE1 )(s− zE2 ) · · · (s− zEn )
(s− pE1 )(s− pE2 ) · · · (s− pEn )

,

we must identify the transfer function zeros zEm, poles p
E
m, and gain cE . The zeros zEm of the elliptic filter

FE
n (s; ϵ, ξ) are i times the poles pRm of the elliptic rational function, which may be written in the form

Rn(ξ, x) = cR
(x− zR1 )(x− zR2 ) · · · (x− zRn )
(x− pR1 )(x− pR2 ) · · · (x− pRn )

.

The poles pRm of the elliptic rational function, in turn, are given by the reciprocal of the zeros zRm of the elliptic
rational function, scaled by ξ, according to the inversion relationship

Rn(ξ, ξ/x) =
Rn(ξ, ξ)

Rn(ξ, x)
⇒ pRmz

R
m = ξ ⇒ zEm = iξ/zRm.

For n = 2s, the zeros of Rn(ξ, x), zRm ≜ zR,1m for m = 1, . . . , n, may be determined by initializing zR,n = 0 and
iterating

[
zR,2

r

m = 1
/
√

1 + t2r
1− zR,2r+1

m

1 + zR,2
r+1

m

and zR,2
r

m+2s−1−r = −zR,2
r

m for m = 1, . . . , 2s−1−r
]

for r = s−1, . . . , 0.

The poles pEm of the elliptic filter FE
n (s; ϵ, ξ) are given by pEm = (am + ibm)/cm form = 1, . . . , n where

am = −ζn
√

1− ζ2n
√

1− (zRm)
2
√

1− (zRm)
2/ξ2, bm = zRm

√
1− ζ2n(1− 1/ξ2), cm = 1− ζ2n

(
1− (zRm)

2

ξ2

)
,

22The interested reader is referred to Lutovac (2001) for a comprehensive discussion of elliptic rational functions at other orders.
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where the ζn function may be found for n = 2s via the recursive formula

ζn(ξ, ϵ) = ζ2

(
ξ,

√
1

ζ2n/2(L2(ξ), ϵ)
− 1

)
with ζ2(ξ, ϵ) =

2

(1 + t)
√
1 + ϵ2 +

√
(1− t)2 + ϵ2(1 + t)2

.

The transfer function gain is given by

cE =
1√

1 + ϵ2

∏
pEm∏
zEm
.

These equations are implemented in RR_LPF_elliptic and visualized in Figures 8.12d and 8.13d. Given con-
straints on ϵ and δ and a choice for n, the necessary value for ξ may be calculated via the discrimination factor
(see Figure 8.14), using a bisection search (see §3.1.2 of NR) to find that value of ξ such that Ln(ξ)−1/(ϵδ) = 0.

In audio applications, the sharp cutoff in the transition band of equiripple filters is sometimes useful, as
long as the ripples in their response characteristics are kept sufficiently small so as to not be noticable.

Chebyshev and Elliptic filters have ripples in the amplitude response in the passband, along with corre-
sponding ripples in the phase response. In the feedback setting, these ripples can have significant spurious ef-
fects, and thus the use of these filters is not recommended. However, Inverse Chebyshev filters only have such
ripples down in the stopband, where the magnitude of the response of the filter is substantially diminished;
these ripples have negligible spurious effects in the feedback setting, and thus higher-order Inverse Chebyshev
filters are an attractive alternative to higher-order Butterworth and Bessel filters for feedback applications.

8.5.3 Complementary filters and audio crossovers
Complementary filters are matched pairs of low-pass and high-pass filters that add to unity across all
frequencies, FLPF(iω) + FHPF(iω) = 1. Typical implementations use first-order filters: FLPF1 = ωc/(s + ωc)
and FHPF1 = s/(s + ωc), though higher-order filters that add to unity can also be constructed, such as
FLPF2 = (3ω2

c s+ω3
c )/(s+ωc)

3 and FHPF2 = (s3 +3ωc s
2)/(s+ωc)

3. Complementary filters are typically used
for sensor fusion, when combining the measurements from two sensors that measure the same thing, but with
one sensor (e.g., an accelerometer) more accurate at lower frequencies, and the other sensor (e.g., a gyro) more
accurate at higher frequencies. The drawback of high-order complementary filters in such implementations
[see RR_complementary_filters] is that they typically have a resonant peak23; this means that, for certain frequen-
cies near the corner frequency, the measurement from once sensor is actually subtracting significantly from the
measurement of the other, which can have the effect of amplifying measurement noise.

Crossover filters are matched pairs of low-pass and high-pass filters in which the magnitude of the sum
of the two filters is unity across all frequencies24, |FLPF(iω) + FHPF(iω)| = 1. Crossover filters are typically
used in two-way audio systems, sending the bass frequencies of an audio signal to the woofers and the treble
frequencies to the tweeters25. The best crossover filters, known as (2nd-, 4th-, and 8th-order26) Linkwitz-Riley
(LR) filters, are just two Butterworth filters in series [see RR_linkwitz_riley_filters ]. When implemented properly
(using an inverter on one of the outputs in the 2nd-order case), FLPF,LR(iω) and FHPF,LR(iω) have the same phase
(modulo 360◦) at any given frequency ω, which prevents strange nodes and antinodes from forming across an
auditorium when the woofers and tweeters are placed at slightly different spatial locations on the stage.

23In the second-order case listed here, these resonant peaks are pretty mild, with a maximum amplification of about 30%. These
resonant peaks typically get worse as the order of the complementary filter designs is increased.

24By relaxing the constraint that the phase shift of the sum of the filters be zero across all frequencies, which is perhaps unimportant
in audio systems, the (undesirable) resonant peak of higher-order complementary filters can be eliminated.

25In high-performance multi-way audio systems,midrange speakers and subwoofers are also used, implementing multiple pairs
of audio crossover filters to divide up the signal appropriately.

261st, 2nd, 4th, and 8th order filters are commonly referred to in the audio setting as 6, 12, 24, and 48 dB per octave, respectively.
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9.1 Introduction

9.1.1 Length, mass, and time in the SI system
From basic mechanics, the reader should already be familiar with the fundamental units of {length, mass, time}
as {meter (m), kilogram (kg), second (s)} in the International System of Units (SI, the modern form of the metric
system), as well as several derived units, such as force (newton, N = kgm/s2), pressure (pascal, Pa = kg/m/s2),
energy orwork (joule, J =Nm), power (watt,W= J/s), frequency (hertz, Hz = 1/s), speed (m/s), acceleration (m/s2),
angular velocity (rad/s) and acceleration (rad/s2), momentum (N s), angular momentum (Nm s), torque (Nm),
etc. Recall also the usual prefixes of the SI system listed in Table 1.1.
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9.1.2 Electric charge, energy, power, and potential in the SI system
The SI units of the various quantities encountered in electric circuits is now summarized:

• Charge is denoted q. The fundamental unit of charge is that of an electron; the (negative) charge of
6.2415× 1018 electrons is called a coulomb (C), which is the SI unit for charge.
• Electric charge passing a given point per unit time is called current. The cufent at any instant is denoted
I = dq/dt. The SI unit for current is the ampere (A, a.k.a. amp), which is a flow of 1 C/s.
• Energy (akawork) is denoted w, and the SI unit for (mechanical or electrical) energy is the joule (J). In
mechanical terms, a joule of energy is 1 kgm2/s2, which may be interpreted as 1 Nm when applying a
force to a mass over a distance, or as 0.2390 calories of thermal energy, where 1 calorie (cal) is the amount
of thermal energy it takes to warm 1 g (that is, 1 mL, or 1 cm3) of water by 1◦C at standard atmospheric
conditions1. Electric energy, also measured in joules, is the electric equivalent, as electrical energy can
easily be converted to heat, or to mechanical energy (to apply a force over a distance) plus heat.
• Power is the rate of change of energy at any instant (that is, energy is the integral of power over time),
and is denoted P = dw/dt; the SI unit for power is the watt (W), which is 1 J / s. In mechanical terms,
a watt of power is 1 kg m2 / s3, which may be interpreted as 1 N m / s when applying a force to a mass
moving at a certain speed, or as 0.2390 cal / s when warming a material.
• In an electric circuit, associated with any electron is its potential to do work2 relative to some convenient
(yet, arbitrarily-defined) base state, called the ground state. This definition is analogous to the gravita-
tional potential energy associated with any mass at any given height relative to an (arbitrarily-defined)
gravitational ground state. The potential of a charge to do work, also called the voltage of this charge,
is denoted V = dw/dq, and is defined analogously, relative to an (arbitrarily-defined) electrical ground
state. The SI unit for potential is the volt (V), which is 1 J / C.

Via the above definitions and the chain rule for differentiation, it follows immediately that

P =
dw

dt
=
dw

dq

dq

dt
⇒ P = V I (9.1)

Current may be envisioned as a flow of electrons, as described above; however, by convention, the (positive)
direction of the current is defined as the direction opposite to the flow of electrons. This is known as the passive
sign convention. Using this (at first, somewhat peculiar3) convention, when considering the voltage V across
a device and the current I through a device, multiplying V times I as suggested by (9.1) results in

• positive power P if the device absorbs electric power from the rest of the circuit, as in a resistor4, with
current flowing from higher voltage to lower voltage, and
• negative power P if the device delivers electric power to the rest of the circuit, as in a battery, with current
flowing from lower voltage to higher voltage.

As a departure from the SI convention, on the electric grid of a city, energy is usually billed in kilowatt hours
(kW h) instead of megajoules (MJ); note that 1 kW h = 3.6 MJ. Similarly, battery charge is usually measured as
milliamp hours (mA h) instead of coulombs (C); note that 1 mA h = 3.6 C.

1A Calorie (with a capital C), of food, is the amount of thermal energy it takes to warm 1 kg (that is, 1 L) of water by by 1◦C.
2As an example, consider two identical metal spheres, one with an excess of electrons (said to be of lower voltage), and one with

a depletion of electrons (said to be of higher voltage). If a resistor is connected between the two spheres, the excess repulsive force
between the electrons on the first sphere tends to push electrons through the resistor and onto the second sphere until a balanced
distribution of electrons is reached. In the process, the electrons being pushed through the resistor do work, generating heat.

3The reason for this peculiar convention is that the fundamental charge associated with an electron is defined as being negative.
4The power absorbed may be converted into heat, as in a resistor, a combination of heat & electromagnetic radiation, as in a

lightbulb, laser, or RF transmitter, a combination of heat & mechanical power, as in a motor, fluid pump, or speaker coil, etc., or it
may alternatively be stored (and, later, released), as in a capacitor or inductor (see §9.1.3.1), a rechargeable battery, a flywheel, etc.
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The change of energy of a single electron if it is moved across a potential difference of one volt is defined
as an electron volt (eV), and is given by 1/(6.2415 × 1018) = 1.6022 × 10−19 J. Note that the energy E of
a photon is given by E = hc/λ, where Planck’s constant h = 6.626 × 10−34 J s and the speed of light
c = 2.99792 × 108 m / s; thus, if a single electron moves across a 1.91 V potential difference, then releases its
excess energy as a photon, the resulting photon has wavelength λ = 650 nm, and is thus red in color.

9.1.3 Fundamental analog circuit elements
9.1.3.1 Resistors, capacitors, & inductors

Idealized current-voltage relationships for three common components used in analog circuits are

resistor (denoted ): V = RI ⇒ PR = V I = I2R = V 2/R ≥ 0, (9.2a)

capacitor (denoted ): I = C dV/dt ⇒ PC = V I = (C/2) dV 2/dt = dwC/dt, (9.2b)

inductor (denoted ): V = L dI/dt ⇒ PL = V I = (L/2) dI2/dt = dwL/dt, (9.2c)

where wC = C V 2/2 and wL = L I2/2. Approximate values of R, C , and L for such devices are identified with
color bands or numerical codes, the interpretation of which are easy to find online. Note that:

• The SI unit for resistance R is the ohm (Ω) [thus, (9.2a) is known as Ohm’s law]; an ohm is 1 V / A.
• The SI unit for capacitance C is the farad (F); a farad is 1 A s / V.
• The SI unit for inductance L is the henry (H); a henry is 1 V s / A.

When operating, electric power is always absorbed (i.e., dissipated as heat) by a resistor, but at any instant may
either be absorbed from or delivered to the rest of the circuit by a capacitor or inductor [see (9.2)].

The idealized linear models listed above are accurate only for sufficiently small V and I inside what are
known as the rated limits of the corresponding device; outside these limits, nonlinearities become significant
(and, far outside these limits, the corresponding device will fail).

The flow of electrons along a metal wire, like that of water through a pipe, is almost always5 associated
with some loss of potential per unit length (and, therefore, some resistance), as energy is lost as heat to sustain
the flow when the magnetic fields generated by the flowing electrons interact with the electromagnetic fields
of the atoms within the material. Wires are simply made from an appropriate metal, like copper, with relatively
low (often, negligible) resistance per unit length, whereas resistors are made from an appropriate metal, like
Nichrome (a non-magnetic alloy of nickel and chromium), that exhibits a relatively high resistance per unit
length, with a resistance that is fairly insensitive to the inevitable temperature fluctuations caused by driving a
current through a resistor. Note that, when running a large current through a resistor, the metal warms up, and
thus atoms within the metal start vibrating more energetically; this generally reduces the effective resistance
R of the resistor when |I| is large, eventually leading to a nonlinear relationship between V and I [cf. (9.2a)].

Though they are packaged in a variety of compact geometries, capacitors are perhaps best visualized as
two parallel metal plates with a nonconducting material, called a dielectric, between them. If a current is
directed through a capacitor, electrons flow in one wire and accumulate on one of the plates, repelling the
electrons on the other (nearby) plate, which then flow out the other wire. As electrons accumulate on the
first plate and are depleted from the second, an electric potential difference is gradually built up, thus inhibit-
ing the further flow of electrons; at steady state, the current through the capacitor therefore reduces to zero.
The resulting (linearized) relationship between between V and I is given in (9.2b). As shown in (9.2b), the
power absorbed by or released from a capacitor at any instant, PC , is simply the rate of change of the energy,

5The exception to this statement is the class of materials known as superconductors, which at temperatures below a material-
dependent critical temperature exhibit essentially zero resistance, due to the expulsion of magnetic fields from within the material.
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wC = C V 2/2, stored6 in the capacitor, where V is the voltage across the capacitor, which quantifies the accu-
mulated charge difference across its two plates. Further, if the current through the capacitor is I = cos(ωt) =
sin(ωt + π/2), then the voltage across the capacitor is V = (1/C) sin(ωt)/ω [the voltage “lags” behind the
current by π/2, and its magnitude reduces like 1/ω, as the charge difference between the two sides of the ca-
pacitor takes time to accumulate; think of the current variation as the “cause”, and the voltage variation as the
subsequent “effect”]. The absorbed power PC , averaged over any multiple of periods T = 2π/ω, is exactly zero.

Conversely, inductors are perhaps best visualized as tightly-wound (often, toroidal) copperwire coils wrapped
around an air or (better) a ferromagnetic core; when a current flows through the wire, a compatible magnetic
field develops within this core. If a voltage is applied across an inductor, the existing magnetic field in the core,
or lack thereof, exerts an electromotive force on the flow of electrons which initially opposes a corresponding
change in the current. As a voltage difference is maintained across the inductor (which, in turn, is generated
by the circuit that is connected to it), the current through the inductor, and the corresponding magnetic field,
grows in response; at steady state, the voltage across the inductor reduces to zero7. The resulting (linearized)
relationship between between V and I is given in (9.2c). As shown in (9.2c), the power absorbed by or released
from an inductor at any instant, PL, is simply the rate of change of the energy, wL = L I2/2, stored7 in the
inductor, where I is the current through the inductor, which quantifies the accumulated magnetic field through
its core. Further, if the voltage across an inductor is V = cos(ωt) = sin(ωt+π/2), then the current through the
inductor is I = (1/L) sin(ωt)/ω [the current “lags” behind the voltage by π/2, and its magnitude reduces like
1/ω, as the magnetic field within its core takes time to accumulate; think of the voltage variation as the “cause”,
and the current variation as the subsequent “effect”]. The absorbed power PL, averaged over any multiple of
periods T = 2π/ω, is exactly zero.

The prepackaged resistors, capacitors, and inductors that are commercially available are manufactured with
significant variation. Resistors are commonly available with the following tolerances on their nominal resis-
tance: {±20%, ±10%, ±5%, ±2%, ±1%, ±0.5%, ±0.25%, ±0.1%}. Associated with each of these tolerance
levels is a family of resistance values denoted Ex, where x is the number of resistance values per decade that
are available in that family, as listed in Tables 9.1-9.6. Available resistors in, e.g., the E6 family include 1.0 kΩ,
1.5 kΩ, 2.2 kΩ, 3.3 kΩ, 4.7 kΩ, 6.8 kΩ, 10 kΩ, 15 kΩ etc. The process of converting (rounding up or down) a given
resistance to a value in one of these families is, of course, easily automated (see RR_common_RLC_value.m).
Note that higher-precision resistors are more expensive and less commonly stocked at PCB fabrication facili-
ties, and should be avoided. Note also that calibrationmay be used to eliminate the error associated with the
use of lower-precision (less expensive) resistors in, e.g., voltage divider circuits, as discussed in §5.7.4.

Resistors at various tolerance levels are often produced as the result of a single manufacturing process,
then tested to determine their precise resistance (using, for example, the Wheatstone bridge circuit analyzed in
Example 9.6). They are then binned accordingly and, of course, those resistors most closely matching the target
resistance of the higher-precision class sold at a higher price. The result of this manufacturing/sorting process is
that the distribution of the actual resistance of those resistors marked at, say, 2% tolerance are often bimodal,
as those units that more accurately match target resistance values at 1% tolerance are not placed in the looser-
tolerance (2%) bins. The manufacture of (more expensive) high-precision resistors is often accomplished by
accurate laser trimming of resistors that are initially slightly below the target resistance.

6Amechanical spring stores and releases the energy associated with its compression; as a rough analog, a capacitor can be thought
of as a sort of “spring” on the voltage, storing and releasing the energy associated with an accumulated charge, whereas an inductor
can be thought of as a “spring” on the current, storing and releasing the energy associated with an accumulated magnetic field.

7As a mnemonic, a capacitor has low voltage across it at high frequencies, as electric charge doesn’t have enough time build up on
it, whereas an inductor has low current through it at high frequencies, as a compatible magnetic field doesn’t have time to form.
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1.0 1.5 2.2 3.3 4.7 6.8
Table 9.1: The 6 values per decade in the E6 family of ±20% tolerance RLC components.

1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2
Table 9.2: The 12 values per decade in the E12 family of ±10% tolerance RLC components.

1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0
3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1

Table 9.3: The 24 values per decade in the E24 family of ±5% tolerance RLC components.

1.00 1.05 1.10 1.15 1.21 1.27 1.33 1.40 1.47 1.54 1.62 1.69 1.78 1.87 1.96 2.05
2.15 2.26 2.37 2.49 2.61 2.74 2.87 3.01 3.16 3.32 3.48 3.65 3.83 4.02 4.22 4.42
4.64 4.87 5.11 5.36 5.62 5.90 6.19 6.49 6.81 7.15 7.50 7.87 8.25 8.66 9.09 9.53

Table 9.4: The 48 values per decade in the E48 family of ±2% tolerance RLC components.

1.00 1.02 1.05 1.07 1.10 1.13 1.15 1.18 1.21 1.24 1.27 1.30 1.33 1.37 1.40 1.43
1.47 1.50 1.54 1.58 1.62 1.65 1.69 1.74 1.78 1.82 1.87 1.91 1.96 2.00 2.05 2.10
2.15 2.21 2.26 2.32 2.37 2.43 2.49 2.55 2.61 2.67 2.74 2.80 2.87 2.94 3.01 3.09
3.16 3.24 3.32 3.40 3.48 3.57 3.65 3.74 3.83 3.92 4.02 4.12 4.22 4.32 4.42 4.53
4.64 4.75 4.87 4.99 5.11 5.23 5.36 5.49 5.62 5.76 5.90 6.04 6.19 6.34 6.49 6.65
6.81 6.98 7.15 7.32 7.50 7.68 7.87 8.06 8.25 8.45 8.66 8.87 9.09 9.31 9.53 9.76

Table 9.5: The 96 values per decade in the E96 family of ±1% tolerance RLC components.

1.00 1.01 1.02 1.04 1.05 1.06 1.07 1.09 1.10 1.11 1.13 1.14 1.15 1.17 1.18 1.20
1.21 1.23 1.24 1.26 1.27 1.29 1.30 1.32 1.33 1.35 1.37 1.38 1.40 1.42 1.43 1.45
1.47 1.49 1.50 1.52 1.54 1.56 1.58 1.60 1.62 1.64 1.65 1.67 1.69 1.72 1.74 1.76
1.78 1.80 1.82 1.84 1.87 1.89 1.91 1.93 1.96 1.98 2.00 2.03 2.05 2.08 2.10 2.13
2.15 2.18 2.21 2.23 2.26 2.29 2.32 2.34 2.37 2.40 2.43 2.46 2.49 2.52 2.55 2.58
2.61 2.64 2.67 2.71 2.74 2.77 2.80 2.84 2.87 2.91 2.94 2.98 3.01 3.05 3.09 3.12
3.16 3.20 3.24 3.28 3.32 3.36 3.40 3.44 3.48 3.52 3.57 3.61 3.65 3.70 3.74 3.79
3.83 3.88 3.92 3.97 4.02 4.07 4.12 4.17 4.22 4.27 4.32 4.37 4.42 4.48 4.53 4.59
4.64 4.70 4.75 4.81 4.87 4.93 4.99 5.05 5.11 5.17 5.23 5.30 5.36 5.42 5.49 5.56
5.62 5.69 5.76 5.83 5.90 5.97 6.04 6.12 6.19 6.26 6.34 6.42 6.49 6.57 6.65 6.73
6.81 6.90 6.98 7.06 7.15 7.23 7.32 7.41 7.50 7.59 7.68 7.77 7.87 7.96 8.06 8.16
8.25 8.35 8.45 8.56 8.66 8.76 8.87 8.98 9.09 9.20 9.31 9.42 9.53 9.65 9.76 9.88

Table 9.6: The values in the E192 families of ±0.5%, ±0.25%, and ±0.1% tolerance RLC components.

Capacitors are commonly available8 from 1 pF through 10 nF in 24 capacitance values per decade (in the
E24 series in Table 9.3), and from 10 nF=0.01µF through 10mF=104 µF in 6 capacitance values per decade (in
the E6 series in Table 9.1). Inductors are commonly available8 from 1 nH through 1mH in 24 inductance values
per decade (in the E24 series in Table 9.3). Capacitors and inductors in the higher ends of these ranges are both
large and expensive; increased voltage ratings on capacitors, and increased current ratings on inductors, also
increase their size and cost significantly.

9.1.3.2 Power sources
In order to make an electric circuit do something, of course, you need a source9 of electric power. Such sources
come in two types, voltage sources (which are most common) and current sources, either of which may drive
the connected circuit in a constant or time-varying manner, and are denoted as indicated in Figure 9.1a-d.

8Time constants in RLC circuits (incorporating resistors, inductors, and capacitors) may be tuned by selecting the resistors in the
circuit (see, e.g., Example 9.2), so a finer granularity in available values per decade is not necessary for capacitors and inductors.

9Note that some devices that normally act as sources of electric power, like rechargeable batteries, may also from time to time
be used safely as sinks of electric power, like a capacitor. The practical distinction between a capacitor and a rechargeable battery is
that a capacitor, which simply stores and releases electrons, typically loses its charge fairly quickly when not being used, whereas a
battery, which stores and releases charge via internal chemical reactions, typically holds its charge for much longer periods of time.
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Figure 9.1: Symbols for various power sources: (a) ideal constant-voltage (direct current, or DC) source, (b)
ideal time-varying voltage (alternating current, or AC) source, (c) ideal constant-current source, (d) ideal time-
varying current source, (e) practical constant-voltage (DC) source, (f) practical constant-current source.
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Figure 9.2: Current-voltage relationship of (left) the practical DC voltage source of Figure 9.1e (that is, a common
battery), and (right) the practical current source of Figure 9.1f.

The current-voltage relationships of ideal voltage and current sources may be written

ideal voltage source: V = Vs (regardless of I) ideal current source: I = Is (regardless of V ) (9.2d)

Note that an ideal voltage source generates a specified voltage across its terminals10 regardless of the current
drawn by the rest of the circuit; an ideal voltage source can not function correctly if a wire (with zero resistance)
is connected across its terminals (a.k.a. a short circuit), as that would cause the ideal voltage source to produce
infinite current. Similarly, an ideal current source generates a specified current through the device(s) connected
across its terminals regardless of the voltage required over the rest of the circuit in order to maintain it; an ideal
current source can not function correctly if the circuit connected across its terminals is not closed (a.k.a. an
open circuit), as that would cause the ideal current source to produce infinite voltage.

Despite the above-mentioned limitations, ideal voltage and current sources are reasonably good models in
many situations when a circuit is properly configured. More accurate (yet still linear) models of real-world
voltage and current sources are indicated in Figure 9.1e-f. In these more practical models,

• a (preferably, small) resisterRV is included in serieswith the voltage source, which thus generates a finite
current of I = Vs/RV , instead of an infinite current, in the case of a short circuit across its terminals, and
• a (preferably, large) resister RI is included in parallel with the current source, which thus generates a
finite voltage of V = IsRI , instead of an infinite voltage, in the case of a open circuit across its terminals.

The current-voltage relationship of the practical voltage and current sources indicated in Figures 9.1e-f are given
in Figure 9.2. Note that, taking Is = Vs/RV and RI = RV , these two relationships are identical, and thus these
two sources are, consistent with the following definition, said to be11 “equivalent”.

Fact 9.1 (Equivalent circuit definition) Two circuits are said to be “equivalent” at a specified pair of termi-
nals if they exhibit an identical current-voltage relationship, which may be static or dynamic.

10Note that a terminal of an electric circuit or individual circuit element is a point at which other electric circuits are intended to
be attached, as denoted by black dots in Figure 9.1.

11Though these two practical source models are “equivalent” from the perspective of the current-voltage relationship at their
terminals, they are not at all equivalent in terms of their internal operation:
• a practical voltage source (e.g., a common battery) expends essentially no power whatsoever if there is an open circuit across

its terminals (since the current through, and therefore the power consumed by, its internal resistor is zero in this case), but it
expends significant power if there is a short circuit across its terminals (since the power consumed by its internal resistor in
this case is P = Vs I , where I = Vs/RV for small RV );
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9.1.3.3 Sensors & actuators for interfacing with the physical world

To connect an electric circuit to the physical world, sensors and actuators12 are needed, as surveyed in §3. Ac-
tuators are often built from some type of electric motor (see §??-3.5); others include linear actuators (like
voice coils), electroactive polymers, etc. Common sensors include accelerometers (accels) to measure lin-
ear acceleration, gyroscopes (gyros) to measure angular acceleration, encoders to measure wheel rotation,
thermocouples to measure temperature, etc. Note that some actuators which convert electrical energy to me-
chanical energy (like motors and piezoelectric actuators13) can also be used as sensors or energy scavengers to
convert mechanical energy back into electrical energy (like generators and piezoelectric sensors13); this concept
is central to the efficient operation of hybrid and fully electric cars, in which the motor normally used to drive
the wheels may be operated as a generator during regenerative braking.

9.1.4 Kirchoff’s laws
A node of an electric circuit is defined as any point at which two or more circuit elements (and, thus, two
or more current paths) are connected. In a complex electric circuit with several circuit elements and several
current paths, the following two simple rules facilitate analysis:

Fact 9.2 (Kirchoff’s Current Law, or KCL) The sum of the currents entering a node equals the sum of the cur-
rents leaving that node at any instant.

Fact 9.3 (Kirchoff’s Voltage Law, or KVL) The sum of the voltages across the elements around any closed loop
in a circuit is zero at any instant.

Note that KVL may be satisfied by construction, simply by keeping track of the voltage at each node of the
circuit, rather than the voltage drop across each circuit element. Note also that, in a circuit with n nodes, there
are only (n− 1) independent KCL equations for the currents between these nodes, as the KCL at the last node
may be derived by combining appropriately the KCL relations at the other (n− 1) nodes.

Defining the voltage at each node (thus implicitly satisfying the KVL equations) and the current between
each node, writing KCL at all but one of the nodes, and writing the current-voltage relationship across each
circuit element [see, e.g., (9.2a)-(9.2d)] leads to a set of ODEs which, together with the initial conditions, com-
pletely describe the time evolution of the circuit. This is sometimes referred to as nodal analysis of a circuit,
and is illustrated by the following examples, most of which have corresponding implementations in code in
RR.ch09; please experiment with these (many!) codes when reading these examples.

Example 9.1 Voltage divider. Consider first a simple circuit formed as a series connection of two resistors,
R1 and R2, with an ideal voltage source applied between the first node V1 and the last node V2, and denote by
Vmid the voltage at the middle node. Since the current through the first resistor equals the current through the
second resistor by KCL, applying (9.2a) to R1 and R2 leads immediately to

I1 = I2 ⇒ V1 − Vmid

R1

=
Vmid − V2

R2

⇒ Vmid =
R2 V1 +R1 V2
R1 +R2

.

It is seen that Vmid = (V1 + V2)/2 if R1 = R2, that Vmid → V1 if R1 ≪ R2, and that Vmid → V2 if R2 ≪ R1. △

• in contrast, a practical current source (e.g., as developed in Examples 9.19 and 9.20) expends essentially no power whatsoever if
there is a short circuit across its terminals (since the voltage across, and therefore the power consumed by, its internal resistor
is zero in this case), but it expends significant power if there is an open circuit across its terminals (since the power consumed
by its internal resistor in this case is P = V Is, where V = IsRI for large RI ).

12More broadly, devices which convert one form of energy (electric, mechanical, thermal, etc.) to another are called transducers.
13That is, actuators/sensors built onmaterials exhibiting the piezoelectric effect, generating an electric field in response to applied

mechanical strain, and the reverse piezoelectric effect, generating mechanical strain in response to an applied electric field.
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Figure 9.3: Four simple passive filters: (a) a first-order low-pass RC filter, (b) a first-order high-pass RC filter, (c)
a voltage-biased first-order high-pass RC filter, and (d) a second-order low-pass LC filter.

Example 9.2 Passive low-pass and high-pass filters. Consider the circuits in Figures 9.3, assuming that
(a) the input voltage Vin(t) is precisely specified regardless of the current drawn by the filter, and
(b) if anything else is connected to the output terminal Vout(t), it draws negligible current [cf. Figure 9.4].

It follows (see codes in RR.ch09) that the first-order low-pass RC filter in Figure 9.3a is governed by

IR = IC , Vin − Vout = IRR, IC = C
dVout
dt

⇒ Vin(s)− Vout(s) = RC sVout(s) ⇒ Vout(s)

Vin(s)
=

ω1

s+ ω1

where ω1 = 1/(RC), the first-order high-pass RC filter in Figure 9.3b is governed by

IC = IR, IC = C
d[Vin − Vout]

dt
, Vout = IRR ⇒ RC s [Vin(s)−Vout(s)] = Vout(s) ⇒ Vout(s)

Vin(s)
=

s

s+ ω1

,

the voltage-biased first-order high-pass RC filter in Figure 9.3c is governed by

IC + I1 = I2, IC = C
d[Vin − Vout]

dt
, (Vs − Vout) = I1R1, Vout = I2R2 ⇒

Vout(s) =
R2 Vs

R1 +R2 +R1R2C s
+

R1R2C sVi(s)

R1 +R2 +R1R2C s
=

R2

R1 +R2

ω2

s+ ω2

Vs +
s

s+ ω2

Vi(s)

where the effective resistance Re is Re = R1R2/(R1 + R2) [that is, 1/Re = 1/R1 + 1/R2] and ω2 = 1/(ReC),
and the undamped second-order low-pass LC filter in Figure 9.3d is governed by

IL = IC , Vin−Vout = L
d[IL]

dt
, IC = C

dVout
dt

⇒ Vin(s)−Vout(s) = LC s2 Vout(s) ⇒
Vout(s)

Vin(s)
=

ω2
3

s2 + ω2
3

where ω3 = 1/
√
LC . Bode plots of first- and second-order low-pass filters (which are clearly quite useful for,

e.g., cleaning up signals that are corrupted by high-frequency noise) are given in Figure 8.8. Unfortunately,
assumptions (a) and (b) are quite restrictive: if the inputs of such passive filters are attached to real sensors,
if they are cascaded, or if their outputs are attached to real loads (actuators, etc), one or both of these assump-
tions are violated, and the resulting dynamic behavior changes. To tune the dynamic behavior of filter circuits
precisely when assumptions (a) and/or (b) are relaxed, we need active filters, as developed in §9.2.

Nevertheless, the simple low-pass and high-pass filters illustrated in Figure 9.3 are useful building blocks for
the circuits developed in the remainder of this chapter. As noted in §9.1.3, when excited by a sinusoid (or, by
a square wave, which amounts to a sum of sinusoids), the power absorbed by an ideal inductor or capacitor,
averaged over a multiple of periods T = 2π/ω, is exactly zero. Thus, in contrast with resistors (which always
dissipate power), both inductors and capacitors act like “springs” of sorts, storing and releasing energy when
excited sinusoidally (see Footnote 6 on page 9-4). Second-order low-pass LC filters in particular thus operate
with high energetic efficiency, even though their precise dynamic behavior depends on the load applied when
assumptions (a) or (b) are relaxed. Indeed, inmany cyber-physical systems, the only place that you commonly see
inductors being used in the associated circuits is for low-pass filters in the power regulation circuitry; elsewhere,
resistors and capacitors (which are smaller and cheaper) are more commonly used instead. △

9-8

https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap09


Renaissance Robotics (v.2024-03-19) Chapter 9: Circuits

x

x

Vin(t)

Vm(t)

Vout(t)R

Rload

L

C
7 8 9 10 11 12 13 14 15 16 17

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 9.4: A notch filter with a resistive load Rload = R/c1 applied, and the magnitude part of its Bode plot
Vout(s)/Vin(s), normalized by K , (solid) with c1 = 0 and with {R,L,C} such that ω0 = 10 and Q = 5, and
(dot-dashed) with the same {R,L,C}, but with c1 = 1 (i.e., modified Rload), and thus Q = 10. In this Bode
plot, the magnitude is about 1, and the phase shift is about zero, outside the frequency range shown.

Example 9.3 A passive notch filter. As mentioned above, if the inputs of passive filters are attached to real
sensors, if they are cascaded, or if their outputs are attached to real loads, one or both of the assumptions upon
with their simplified analyses are based are violated, and the resulting dynamic behavior changes. To illustrate,
consider the filter circuit with resistive load depicted in Figure 9.4, which is governed [see Algorithm 9.1] by

IR = IL + Iload, IC = IL, Vin − Vout = IRR, IL = L
d[Vout − Vm]

dt
, IC = C

dVm
dt

, Vout = IloadR/c1

⇒ Vout(s)

Vin(s)
=

LC s2 + 1

LC (1 + c1) s2 +RC s+ (1 + c1)
≜ K

s2 + ω2
0

s2 + 2 ζ ω0 s+ ω2
0

≜ K
s2 + ω2

0

s2 + (1/Q)ω0 s+ ω2
0

,

where ω0 = 1/
√
LC , K = 1/(1 + c1), ζ = R

√
C/L/[2 (1 + c1)], Q = 1/(2 ζ) = (1 + c1)

√
L/C/R. The

variable Q, dubbed the “quality” of this notch filter, defines the sharpness of the valley in the vicinity of the
frequency ω0 that is attenuated by the filter; such a circuit is useful for removing a tonal “buzz” from a signal.

An equivalent definition of quality is Q = ω0/BW , where BW is the range of frequencies for which the
magnitude of the output is reduced by 3 dB= 0.707 or more, corresponding to the power of the output being
reduced by 50% or more. Taking a look at the Bode plot in Figure 9.4, designed (for c1 = 0) with {R,L,C}
such that ω0 = 10 and Q = 5, attenuation by 3 dB is seen between 9.05 rad/s and 11.05 rad/s. Thus, ω0/BW =
10/(11.05− 9.05) = 5, which is exactly the value of Q that this second-order notch filter was designed for. △

Algorithm 9.1: Code for solving Example 9.3, first by setting up Ax = b by hand and calling x = A\b, then by
using an equivalent, more human-readable approach leveraging a convenient built-in “solve” algorithm.
c lear ; syms s R L C c1 Vin % <− Lap l a c e v a r i a b l e s , parameters , i npu t Vin
% x = { Vout ; Va ; I r ; I c ; I l o a d } <− unknown v e c t o r
A =[ 1 0 R 0 0 ; % Vout +R ∗ I r = Vin r e s i s t o r eqn

1 −1 0 −L ∗ s 0 ; % Vout −Va −L ∗ s ∗ I c = 0 i ndu c t o r eqn [ note : I c = IL ]
0 −C∗ s 0 1 0 ; % −C∗ s ∗Va + I c = 0 c a p a c i t o r eqn

−1 0 0 0 R / c1 ; % −Vout + I l o a d ∗R / c1 = 0 load eqn
0 0 1 −1 −1 ] ; % I r − I c − I l o a d = 0 KCL1 [KCL2 i s j u s t I c = IL ]

b =[ Vin ; 0 ; 0 ; 0 ; 0 ] ; x=A \ b ;
F_notch1= s imp l i f y ( x ( 1 ) / Vin ) % t r a n s f e r fn o f f i l t e r = Vout / Vin v i a Ax=b method .
c lear ; syms s R L C c1 Vin % <− Lap l a c e v a r i a b l e s , parameters , i npu t Vin
syms Vout Va I r I c I l o a d % <− unknown v a r i a b l e s
eqn1= Vin −Vout == R ∗ I r ; % r e s i s t o r eqn [ w r i t t e n here i n " e a s i l y r e adab l e " form ]
eqn2= Vout −Va == L ∗ s ∗ I c ; % i ndu c t o r eqn [ note : I c = IL ]
eqn3= I c == C∗ s ∗Va ; % c a p a c i t o r eqn
eqn4= Vout == I l o a d ∗R/ c1 ; % load eqn
eqn5= I r == I c + I l o a d ; % KCL1 [KCL2 i s j u s t I c = IL ]
s o l = s o l v e ( eqn1 , eqn2 , eqn3 , eqn4 , eqn5 , Vout , Va , I r , I c , I l o a d ) ; % r e a r r ang e au t oma t i c a l l y , s o l v e !
F_notch2= s imp l i f y ( s o l . Vout / Vin ) % t r a n s f e r fn o f f i l t e r = Vout / Vin v i a " s o l v e " method .
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As see in the above examples, circuits with just a handful of components appear to be useful for various
types of signal conditioning (removing high-frequency noise, removing a tonal buzz, etc), and are easily
characterized by taking the Laplace transform of the set of linear equations governing them (n equations in n
unknowns) and combining by hand. Such sets of linear equations are also easily converted to the form Ax = b
and solved using a computer14, leveraging a symbolic version of Gaussian elimination, as discussed in §2.2 of
NR. One of the benefits of this approach is that it is readily apparent under what conditions the set of equations
being combined cease to be independent from each other, and thus the matrix A becomes singular, which can
be monitored by keeping an eye on the condition number of A, as discussed in §2.5 of NR.

As the number of components in the circuits of interest increases, the use of a computer to perform such
symbolicmanipulations becomes essential, both to save time, and to entirely prevent the possibility of algebra
mistakes. Converting a set of linear equations to Ax = b form, though straightforward, becomes increasingly
prone to transcription error as the size of the problem grows. The code given in Algorithm 9.1 thus illustrates
an alternative, more human-readable approach of writing such equations in code, leveraging a built-in “solve”
algorithm to do the necessary reorganizing of each equation automatically, in order to arrive at an equivalent
Ax = b problem. In the case of linear systems of equations, both approaches (either setting up and solving
Ax = b, or writing the equations in more human-readable form and calling the automated “solve” algorithm)
give the same result, and work in both Matlab and Octave. Significantly, the latter approach works for both
linear and even certain nonlinear systems of equations, as shown in Example 9.4 below.

(a) (b)

R 1
R
2

R3

R
c

R b
R

a

(c) (d)

C 1
C
2

C3

C
c

C b
C

a

Figure 9.5: Two pairs of electrical networks with identical voltage/current relationships between their 3 nodes.

Example 9.4 Y-∆ transformations are techniques for analysis of electric circuits based on the equivalent
voltage/current between each pair of nodes of two different appropriately-configured networks, one shaped like
a Y (upside down, sorry) and one shaped like a ∆. In the resistor networks in Figure 9.5a-b, setting

Rb+Rc = 1/[1/R1+1/(R2+R3)], Ra+Rc = 1/[1/R2+1/(R1+R3)], Ra+Rb = 1/[1/R3+1/(R1+R2)],

achieves this equivalence (see Example 9.5). These 3 relations may be rearranged (see code in RR.ch09) to
determine the resistors of the ∆ network in terms of those in the Y network, or vice versa, resulting in

Ra =
R1R2

R1 +R2 +R3

, Rb =
R1R3

R1 +R2 +R3

, Rc =
R2R3

R1 +R2 +R3

, (9.3a)

R1 =
RaRb +RaRc +RbRc

Rc

, R2 =
RaRb +RaRc +RbRc

Rb

, R3 =
RaRb +RaRc +RbRc

Ra

; (9.3b)

the relations in (9.3a) may be used to determine {Ra, Rb, Rc} from {R1, R2, R3}, and
the relations in (9.3b) may be used to determine {R1, R2, R3} from {Ra, Rb, Rc}. △

Similar equivalence relations may be determined for the Y and ∆ configurations of capacitors in Figures
9.5c-d (see code in RR.ch09). The Y-∆ transformation developed in Example 9.4 is applied to find the equivalent
resistance of a network of resistors (see Figure 9.6d-e) at the end of Example 9.5 below.

14Following the recommendations of Appendix A, make certain that you comment your codes sufficiently, in English, to make such
codes easy to understand and debug. As seen in Algorithm 9.1, note in particular that well-structured comments in the vicinity of the
lines of code that define A and b significantly improve readability, minimizing transcription errors.
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Figure 9.6: (a) Series, (b) parallel, and (c) “reducible” networks of a single type of component, with the Zk
denoting either resistors Rk, capacitors Ck, or inductors Lk; (d) a so-called “irreducible” network of resistors,
and (e) an equivalent “reducible” network of resistors, with {Ra, Rb, Rc} given by (9.3a).

Example 9.5 Equivalent resistance, capacitance, and inductance. The notion of equivalent circuits, with
identical current-voltage relationships at one or more pairs of terminals, was defined in Fact 9.1. By the KCL
and KVL, it follows that a set of n resistors, capacitors, or inductors in a series connection (see Figure 9.6a), in
which the current I through the devices is equal and the voltages add, ∆V1 +∆V2 + . . .∆Vn = ∆V , have the
equivalent resistance R, equivalent capacitance C , or equivalent inductance L, respectively, of:
∆V1 = I R1, ∆V2 = I R2, . . . ∆Vn = I Rn ⇒ ∆V = I R where R = R1 +R2 + . . . Rn,

d∆V1
dt

=
I

C1

,
d∆V2
dt

=
I

C2

, . . .
d∆Vn
dt

=
I

Cn
⇒ d∆V

dt
=
I

C
where 1

C
=

1

C1

+
1

C2

+ . . .
1

Cn
,

∆V1 = L1
dI

dt
, ∆V2 = L2

dI

dt
, . . . ∆Vn = Ln

dI

dt
⇒ ∆V = L

dI

dt
where L = L1 + L2 + . . . Ln.

Similarly, a set of n resistors, capacitors, or inductors in a parallel connection (see Figure 9.6b), in which the
voltage∆V across the devices is equal and the currents add, I1+I2+. . . In = I , have the equivalent resistance
R, equivalent capacitance C , or equivalent inductance L, respectively, of:

I1 =
∆V

R1

, I2 =
∆V

R2

, . . . In =
∆V

Rn

⇒ I =
∆V

R
where 1

R
=

1

R1

+
1

R2

+ . . .
1

Rn

,

I1 = C1
d∆V

dt
, I2 = C2

d∆V

dt
, . . . In = Cn

d∆V

dt
⇒ I = C

d∆V

dt
where C = C1 + C2 + . . . Cn,

dI1
dt

=
∆V

L1

,
dI2
dt

=
∆V

L2

, . . .
dIn
dt

=
∆V

Ln
⇒ dI

dt
=

∆V

L
where 1

L
=

1

L1

+
1

L2

+ . . .
1

Ln
.

In “reducible” networks of a single type of components, repeated application of the above simple rules for series
and parallel connections of a single type of components is sufficient to determine an equivalent single component
value. For example, if the Zk in Figure 9.6c denote resistors, then
• the equivalent resistance of the parallel connection of R1 and R2 is Ra = R1R2/(R1 +R2),
• the equivalent resistance of the parallel connection of R4 and R5 is Rb = R4R5/(R4 +R5), and
• the equivalent resistance of the entire series connection (of Ra, R3, and Rb) is R = Ra +R3 +Rb.
On the other hand, repeated application of the above rules for parallel and series connections of a single type

of components is not sufficient to simplify a so-called “irreducible” network, such as that shown in Figure 9.6d,
to an equivalent single component value. However, additionally applying Y-∆ transformations, such as that
derived in Example 9.4, can often convert such a network to a reducible form. To illustrate, with {Ra, Rb, Rc}
as given in (9.3a), Figure 9.6d can be equivalently realized as Figure 9.6e with (applying the above rules) the
equivalent resistance of R = Ra+1/[1/(Rb+R4)+1/(Rc+R5)], which upon (computer-aided) simplification
reduces to

R =
R1R2R3 +R1R2R4 +R1R2R5 +R1R3R5 +R2R3R4 +R1R4R5 +R2R4R5 +R3R4R5

R1R3 +R1R4 +R2R3 +R1R5 +R2R4 +R2R5 +R3R4 +R3R5

. △
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(a) I0
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Va Vb
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C2

C5

R3

Va Vb

Figure 9.7: Wheatstone bridges for accurate measurement of (a) resistance, and (b) capacitance.

Example 9.6 Full analysis of a Wheatstone bridge. Consider the Wheatstone bridge of Figure 9.7a. For
convenience, we number the elements of a circuit sequentially, and denote by Ik the current through element
k, with positive current indicated by the direction of the arrow (this keeps us from having to label each current
component individually in the figure). The (constant) voltage at the top of the bridge is V0 (as it is connected
to the top of the battery), and the voltage at the bottom of the bridge is 0 (as it is connected to the bottom of
the battery, which is defined as ground), thus leaving two undetermined nodal voltages, {Va, Vb}. We may thus
determine the eight unknowns {I0, I1, I2, I3, I4, I5, Va, Vb} given the six parameters {V0, R1, R2, R3, R4, R5} via
KCL at three of the four nodes and the current-voltage relationship across each of the five resistors:

I0 = I1 + I2, I1 = I3 + I4, I2 + I3 = I5, (9.4a)

Vo − Va = I1R1, Vo − Vb = I2R2, Va − Vb = I3R3, Va = I4R4, Vb = I5R5. (9.4b)

These eight linear equations in the eight unknowns x = {I0, I1, I2, I3, I4, I5, Va, Vb} may easily be written in
the form Ax = b and solved for x, as illustrated in the corresponding code in RR.ch09, which is provided for
R1 = R4 = 1 kohm, R3 = 100 kohm, and V0 = 5V, keeping R2 and R5 as symbolic (all choices that are easily
changed), from which it follows immediately that I3 = (R2 −R5)/(201000R2 + 201000R5 + 2R2R5) amps.

The Wheatstone bridge is particularly useful for the precise measurement of an unknown resistor value
(taken here as R5) given three accurately known (often, equal) resister values (taken here as {R1, R2, R4}), and
a center resistorR3. Indeed, ifR1/R4 = R2/R5, then the bridge is said to be balanced, and the current through
the resister in the center of the bridge, I3 (which may be measured precisely using a galvanometer), will be
exactly zero, as Va = Vb in this case. △

Example 9.7 A Wheatstone bridge for measuring capacitance. If we simply replace the resistors R2 and
R5 in Figure 9.7a with capacitors C2 and C5, where C2 is known and C5 is unknown, and observe the circuit at
steady state, we run into a problem: setting the time derivatives of the current through the capacitors equal to
zero at steady state (that is, taking I2 = I5 = 0), it follows that I3 = 0 and thus Va = Vb regardless of the value
of C5! Thus, C5 can not be determined in this simplistic manner.

However, as indicated in Figure 9.7b, if we replace resistors R2 and R5 with capacitors C2 and C5, and we
also replace the constant voltage source with a (sinusoidal) time-varying voltage source, then we can now easily
determine C5. Our eight equations for the eight unknowns {I0, I1, I2, I3, I4, I5, Va, Vb} now take the form

I0 = I1 + I2, I1 = I3 + I4, I2 + I3 = I5,

Vo − Va = I1R1, I2 = C2 d(Vo − Vb)/dt, Va − Vb = I3R3, Va = I4R4, I5 = C5 d(Vb)/dt,

where only two equations (those for the capacitors) have changed. Assuming R1 = R2 = 1 kΩ, C3 = 10µF,
and R5 = 100 kΩ, assuming that {I0, I1, I2, I3, I4, I5, Va, Vb, Vo} are all initially zero, taking the Laplace trans-
form [see §9.1.5], and performing an analogous symbolic manipulation (see code in RR.ch09), it follows that, in

9-12

https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap09
https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap09


Renaissance Robotics (v.2024-03-19) Chapter 9: Circuits

Laplace transform space,
I3(s)

V0(s)
= G(s) =

(C5 − C2)s

2.01× 105(C5 + C2)s+ 2
.

As in the case of drawing Bode plots (see §8.4), we are interested in the magnitude and phase of the persistent
sinusoidal component of the output current I3(t) when the input voltage V0(t) is sinusoidal. That is, for the
transfer function G(s) given above, taking V0(t) = V sin(ωt) will result in I3(t) = I sin(ωt + ϕ)+ terms that
decay with time, where I = |G(iω)| and ϕ = ∠G(iω), and thus

I

V
=

|C5 − C2|ω√
[2.01× 105(C5 + C2)]2ω2 + 4

, ϕ =

{
90◦ − atan2{[2.01× 105(C5 + C2)]ω, 2} if C5 > C2,

−90◦ − atan2{[2.01× 105(C5 + C2)]ω, 2} if C5 < C2.

If ω = 0, then I = 0 regardless of C5, consistent with the comments made in the previous paragraph.
If ω > 0 and I = 0, it follows immediately that the bridge is in balance, and thus C5 = C2 = 10 µF.
If ω > 0 and I ̸= 0, C5 may be determined from I according to the above expressions (with C5 > C2 if ϕ > 0,
and C5 < C2 if ϕ < 0; note the 180◦ phase shift in ϕ when C5 is changed from below C2 to above C2).

Inductance may be quantified with a Wheatstone bridge in an analogous fashion. △

Example 9.8 Equivalent sources Any combination of voltage sources, current sources, and resistors leads to
a linear current-voltage relationship like those in Figure 9.2; the following facts follow as consequence.

Fact 9.4 (Thévenin’s theorem) Any circuit containing only voltage sources, current sources, and resistors can be
converted to a Thévenin equivalent circuit, with one ideal voltage source and one resistor in series.

Fact 9.5 (Norton’s theorem) Any circuit containing only voltage sources, current sources, and resistors can be
converted to a Norton equivalent circuit, with one ideal current source and one resistor in parallel.

+

x

Vo Io

R1

R2

Iout
Vout

I1

I2

Figure 9.8: A circuit with both voltage and current sources as well as two resistors.

To illustrate, consider the circuit shown in Figure 9.8. Writing down KCL at the node at the top of the circuit and
Ohm’s law across each resistor, the (linear) current-voltage relationship at the terminals may be determined:

I1 + Io = Iout + I2

Vo − Vout = I1R1

Vout = I2R2





⇒ Iout = Io + I1 − I2 =
(
Io +

Vo
R1

)
−
( 1

R1

+
1

R2

)
Vout. (9.5)

It follows from this analysis of the circuit in Figure 9.8 that
• its Thévenin equivalent (Figure 9.1e) sets RV = R1R2/(R1 +R2) and Vs = (Io + Vo/R1)RV , and
• its Norton equivalent (Figure 9.1f) sets RI = R1R2/(R1 +R2) and Is = Io + Vo/R1;

note that all of these circuits have “equivalent” current-voltage relationships, as illustrated in Figure 9.2.
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Of particular interest in this example is the question of how much power is actually provided by the two
sources in Figure 9.8. To simplify, assume first that R1 = Iout = 0; in this case, Vout = Vo, and
• the power absorbed by the current source is −IoVo < 0 (that is, power is provided by the current source
regardless of the relative magnitudes of Io and Vo/R2), whereas
• the power absorbed by the voltage source is −I1Vo = −(I2 − Io)Vo = −(Vo/R2 − Io)Vo (that is, power
is provided by the voltage source if Vo/R2 > Io, and is absorbed by the voltage source if Vo/R2 < Io).

Taking R1 > 0 and Iout ̸= 0, similar conclusions may be drawn. △

9.1.5 Laplace transform analysis of circuits and the definition of impedance
In simple circuits without capacitors or inductors, combining KCL and the current-voltage relationship across
each component leads to straightforward systems of linear algebraic equations, which may be solved by hand
or with symbolic numerical tools. In more interesting circuits incorporating capacitors and/or inductors, com-
bining KCL and the current-voltage relationship across each component often leads, more generally, to sets of
linear constant-coefficient ODEs together with various algebraic constraints (jointly referred to as descriptor
systems). Without the Laplace transform, as developed in §8, the analysis of such systems would be difficult.
However, as seen in the various examples presented above, application of the Laplace transform to such systems
converts them back to straightforward systems of algebraic equations, incorporating the Laplace transform
variable s, that are again easy to solve by hand or with simple symbolic numerical tools.

It is thus seen that, when analyzing electric circuits, working in the Laplace domain is essential. Further, one
is often interested in the frequency response of an electric circuit subject to sinusoidal excitation. As shown
in §8.4, the gain and phase shift of the persistent sinusoidal component of the output of a linear system G(s)
when excited by a sinusoidal input may be summarized by the Bode plot ofG(s), and may be calculated simply
by evaluating the magnitude and phase of G(iω) as a function of the frequency ω of the input sinusoid.

Example 9.9 Impedance of the fundamental circuit elements. Taking the Laplace transform of the current-
voltage relationships of resistors, capacitors, and inductors [see (9.2)] and evaluating at s = iω gives

Gresistor(iω) =
V (iω)
I(iω) = R ≜ ZR, Gcapacitor(iω) =

V (iω)
I(iω) =

−i
ω C

≜ ZC , Ginductor(iω) =
V (iω)
I(iω) = iω L ≜ ZL.

The quantities ZR, ZC , and ZL are used often, and are commonly referred as the impedance of each of
these components. In other texts, the concept of impedance is often discussed somewhat loosely as a com-
plex, frequency-dependent generalization of resistance even before Laplace transforms are properly introduced.
This approach is, perhaps, unnecessarily convoluted; pedagogically, the author recommends instead mastering
the Laplace transform (§8.2) and Bode plot (§8.4) before reading the present discussion (and that which follows);
the frequency response of the current-voltage relationships represented by the (complex) transfer functions
Gresistor(s), Gcapacitor(s), and Ginductor(s) as listed above [and, Gspeaker(s) and Gpiezo(s), as discussed in Examples
9.10 and 9.11 below] are then quite easy to interpret. In particular, these characterizations are consistent with
the phenomenological description of the general behavior of capacitors and inductors given in §9.1.3.1:
• the voltage across a capacitor lags the current through the capacitor by 1/4 cycle [ϕ = −90◦, associated
with the −i factor in Gcapacitor(iω)], with the magnitude of the sinusoidal voltage across the capacitor
divided by the magnitude of the sinusoidal current through the capacitor decreasing with frequency ω;
• the voltage across an inductor leads the current through the inductor by 1/4 cycle [ϕ = 90◦, associated
with the i factor inGinductor(iω)], with the magnitude of the sinusoidal voltage across the inductor divided
by the magnitude of the sinusoidal current through the inductor increasing with frequency ω. △
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Figure 9.9: Bode plot of the transfer function G(s) = V (iω)/I(iω) from current to voltage, also referred to as
the impedance, of (a) a Intimus 533-T speaker, (b) Murata LQH43C 1µH, 10µH, & 100µH inductors, and (c) a
Samsung CL21A226 22µF capacitor. In (a), the solid curve indicates the magnitude, with its linear scale at left
(in ohms), and the dotted curve indicates the phase, with its scale at right (in degrees), w.r.t. the frequency in Hz;
note the magnitude is around 6 ohms (varying between about 5.3 ohms and 6.7 ohms) over audio frequencies
from 100 Hz to 10 kHz, and the phase is around 0◦ (varying between about -10◦ and 23◦) over frequencies in
this range. In (b) the magnitude of the impedance is shown in kohms, w.r.t. the frequency in MHz; and in (c)
the magnitude of the impedance is shown in ohms, w.r.t. the frequency in MHz.

Example 9.10 Impedance of real devices. Figure 9.9 illustrates the (experimentally determined) Bode plots
of the transfer function G(s) = V (s)/I(s) from current to voltage [commonly referred to as the (frequency-
dependent) impedance] of a typical COTS (a) audio speaker, (b) inductor, and (c) capacitor.

If the speaker in Figure 9.9a presented a purely resistive load to an electric circuit, the magnitude of its
impedance (measured in ohms; 4 ohm, 6 ohm, and 8 ohm speakers are common) would be constant across all ω,
and its phase would be zero. Of course, the dynamics of a speaker depends on several mechanical and electrical
details of its construction; nonetheless, over typical audio frequencies (from 100 Hz to 10 kHz), this speaker
approximates a simple resistive load of about 6 ohm. The magnitude of this Bode plot, |G(iω)|, reveals peaks
and valleys (“resonances” and “antiresonances”) as a function of ω, while the phase∠G(iω) is generally positive
wherever |G(iω)| increases with ω, and negative wherever |G(iω)| decreases with ω.

The devices in Figure 9.9b and Figure 9.9c act, respectively, like inductors (with impedance increasing linearly
with ω) and capacitors (with impedance decreasing linearly with ω) up to near a Series Resonant Frequency
(SRF) of between 10 and 200MHz; above this SRF, their behavior generally switches (with the inductor beginning
to act more like a capacitor, and the capacitor beginning to act more like an inductor). △
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Figure 9.10: Bode plot of the transfer function G(s) = V (iω)/I(iω) from current to voltage, also referred to as
the impedance, of the Butterworth/van Dyke circuit model of a piezoelectric material. The system is said to
be essentially inductive (ϕ ≈ 90◦) for ωr < ω < ωa, and essentially capacitive (ϕ ≈ −90◦) outside this range.
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Figure 9.11: The Butterworth/van Dyke circuit model of a piezoelectric material (see Example 9.11).

Example 9.11 Impedance of piezos. Many crystalline materials, such as quartz crystals, exhibit a piezoelec-
tric effect such that
• when a voltage is applied across the material, it mechanically deforms, and
• when the material is deformed, a charge accumulates on its surface that generates a measurable voltage.
Electromechanical devices (both sensors and actuators) that exhibit strong resonant oscillations may be con-
structed using such piezoelectric materials. A model electric circuit capturing the essence of such electro-
mechanical devices is illustrated in Figure 9.11. The Laplace-transformed equations governing this circuit are

Ii = Io + I1, Io = Co s Vi, I1 = C1 s [Vi − Va], [Va − Vb] = sL1 I1, Vb = R1 I1;

that is, 5 eqns in the 5 variables x(s) = {Io(s), I1(s), Vi(s), Va(s), Vb(s)}, treating the current Ii(s) as an input
and {Co, C1, L1, R1} as parameters. Solving (see code in RR.ch09) gives

Gpiezo(s) =
Vi(s)

Ii(s)
=

L1C1 s
2 +R1C1 s+ 1

s (L1CoC1 s2 +R1CoC1 s+ Co + C1)
= K

s2 + 2 ζr ωr s+ ω2
r

s(s2 + 2 ζa ωa s+ ω2
a)
,

where ωr = 1/
√
L1C1, ζr = R1/(2ωr L1), ωa = 1/

√
L1Ca with Ca = CoC1/(Co + C1), ζa = R1/(2ωa L1),

K = 1/Co; for {Co, C1, L1, R1} = {2 nF, 0.5 nF, 5µH, 1 ohm}, the Bode plot of Gpiezo(s) is given in Figure 9.9b,
indicating a lightly-damped resonance and antiresonance at ωr = 3.18MHz and ωa = 3.56MHz. △
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Figure 9.12: The LC tank oscillator considered in Example 9.12.

Example 9.12 LC tank oscillator. We now consider the oscillator circuit in Figure 9.12, initialized with the
switch in the off position, current equal to zero everywhere, and all capacitors fully discharged.

Startup. At t = 0, with Vout(t = 0) = 0, we turn the switch from off to position 1. Current flows from the
battery, at a (constant) voltage Vs, through R0, through C1, to ground. Note that the current through R0 and C1

are equal, and are thus denoted here as simply

I0(t) = I1(t) = I(t),

with positive current in the direction of the arrows shown. Note by Table 8.1 that the Laplace transform of
Vbattery(t) = Vs (i.e., constant in time) is Vbattery(s) = Vs/s. The component equations for R0 and C1 are thus

Vs/s− Vout(s) = R0 I(s), s C1Vout(s) = I(s).

These two eqns in {I(s), Vout(s)} are easily reduced to one eqn in Vout(s). Defining a = 1/(R0C1), we have:

Vs/s− Vout(s) = sR0C1Vout(s) ⇒ (sR0C1 + 1)Vout(s) = Vs/s ⇒

Vout(s) = Vs
a

s(s+ a)
= Vs

(1
s
− 1

s+ a

)
⇒ Vout(t) = Vs(1− e−t/(R0C1)) . (9.6a)

By the component equation for C1, the corresponding current I(t) is

I(t) = C1 dVout(t)/dt ⇒ I(t) = (Vs/R0) e
−t/(R0C1). (9.6b)

The responses of Vout(t) and I(t) are characterized by exponential decay, with

Vout(t)→ Vs and I(t)→ 0 as t→∞. (9.6c)

If you know values for {Vs, R0, C1}, the time ts after which Vout(t) settles to within, say, 95% of its steady state
value is given by setting 0.95Vo = Vo(1− e−t/(R0C1)) and solving for t, giving

t = −R0C1 ln(0.05) ≈ 3R0C1. (9.6d)

Decaying oscillations. We now move the switch from position 1 to position 2, and for simplicity we also
reset the clock, so that t = 0 now corresponds to the time that we flip the switch to position 2. Starting from
the steady-state values of the startup phase, we have Vout(t = 0) = Vs and I(t = 0) = 0 [see (9.6c)]. KCL now
gives simply

I2(t) = I3(t) = I4(t) = I1(t) ≜ I(t).

Note by (8.9a) that the Laplace transform of V ′out(t) = d[Vout(t)]/dt is V ′out(s) = s Vout(s) − Vs. Implementing
KCL, given above, into the Laplace transform of the component equations for {C2, L3, R4, C1}, we have four
eqns with three intermediate variables, {I(s), Va(s), Vb(s)}, to be eliminated:

I(s) = sC2 [−Va(s)], Va(s)− Vb(s) = sL3 I(s), Vb(s)− Vout(s) = R4I(s), I(s) = C1[s Vout(s)− Vs].
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Reducing these four algebraic eqns in the four variables {I(s), Va(s), Vb(s), Vout(s)} to one eqn in Vout(s) is
easily done by hand (or, better, in Matlab; see code in RR.ch09), giving immediately:

Vout(s) =
b2s

2 + b1s+ b0
s[s2 + a1s+ a0]

with (9.7)

a1 =
R4

L3

, a0 =
1

L3C
,

1

C
=

1

C1

+
1

C2

=
C1 + C2

C1C2

, b2 = Vs, b1 =
VsR4

L3

, b0 =
Vs
L3C2

.

Noting the e−σt cos(ωdt) and e−σt sin(ωdt) entries in Table 8.1, and setting

s2 + a1s+ a0 = (s+ σ)2 + ω2
d = s2 + 2σ s+ (σ2 + ω2

d) ⇒ σ = a1/2, ωd =
√
a0 − a21/4,

we may rewrite (9.7) via partial faction expansion as

Vout(s) =
b2 s

2 + b1 s+ b0
s [(s+ σ)2 + ω2

d]
= B2

1

s
·(s+ σ)2 + ω2

d

(s+ σ)2 + ω2
d

+B1
(s+ σ)

(s+ σ)2 + ω2
d

·s
s
+B0

ωd
(s+ σ)2 + ω2

d

·s
s
. (9.8)

This may be solved for {B2, B1, B0} by forming a common denominator, as shown above, and setting like
powers of s in the numerator as equal (again, see code in RR.ch09), which immediately gives

B2 =
b0

σ2 + ω2
d

, B1 = b2 −B2, B0 =
b1 − b2σ
ωd

−B2
σ

ωd
.

Thus, for t ≥ 0,

Vout(t) = B2 +B1 e
−σt cos(ωd t) +B0 e

−σt sin(ωd t), (9.9a)

I(t) = C1dVout(t)/dt = C1e
−σt[(−σB1 + ωdB0) cos(ωd t) + (−σB0 − ωdB1) sin(ωd t)], (9.9b)

where the constants {ωd, σ, B2, B1, B0} depend on {Vs, R0, C1, C2, L3, R4} via the various equations above.
If R4 = 0 and C1 = C2, then C/C1 = C/C2 = 1/2, a1 = b1 = σ = B0 = 0, and B2 = B1 = Vs/2, and thus

a sort of balanced “see-saw” effect sets in, with

Vout(t) = Vs[1 + cos(ωd t)]/2, I(t) = −(C1Vs/2)ωd sin(ωd t),

Va(t) = Vout(t) + [L3 d/dt]I(t) = (Vs/2)[1 + cos(ωd t)− L3C1 ω
2
d cos(ωdt)] = Vs[1− cos(ωd t)]/2];

that is, the charge shifts from C1 to C2 (i.e., from Vout to Va), and back, sinusoidally (undamped) over the period

T = 2π/ωd = 2π
√
L3C ⇒ T = 2π

√
L3C1C2/(C1 + C2).

Again, there will always be some resistance in practical capacitors and inductors; we model its net effect in this
circuit with the (small) resistor R4. Any such resistance (i.e., taking R4 > 0) will result in σ > 0, and thus cause
the oscillations to decay in time. This decay may be offset with an op amp, as explored in Example 9.34. △
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9.2 Active analog circuits & filters

A semiconductor is a material (often, a single crystal15) that has conduction properties that may be tuned
during fabrication in various useful ways. A single pure crystal of semiconductor material, such as silicon (see
Figure 9.13), is generally nonconductive (that is, it acts as an insulator), as all of the valence (outer-shell)
electrons of the constituent atoms are tied up by the covalent bonds of the crystal.

However, if a semiconductor crystal is formed, or doped, with n-type dopant atoms such as phosphorus
(see Figure 9.13), an extra valence electron is introduced in the crystal lattice for each atom of the n-type dopant
in the crystal. These extra valence electrons can move fairly easily when a voltage is applied across the material,
thus making an n-doped semiconductor, such as phosphorus-doped silicon, a conductor.

Similarly, if a semiconductor crystal is formed with p-type dopant atoms such as boron (see Figure 9.13),
a valence electron is missing from the crystal lattice for each atom of the p-type dopant present in the crystal,
forming what is known as a “hole” in the electron structure of the crystal. These holes in the electron structure
of the crystal can also move fairly easily16 when a voltage is applied across the material, thus making a p-doped
semiconductor, such as boron-doped silicon, also a conductor.

Many useful devices may be made with semiconductors, some of which are reviewed in this section.

9.2.1 p-n junctions & diodes
When a semiconductor crystal has various neighboring sections, some that are p-doped and some that are
n-doped, thus forming p-n junctions within the semiconductor, useful electrical characteristics arise. For
example, a semiconductor crystal which has just two adjacent doped regions, with a single p-n junction in the
middle, is called a semiconductor diode, which behaves in the ideal setting as follows:

• If a semiconductor diode is put under forward bias, with positive voltage applied to the p side of the
semiconductor and negative voltage applied to the n side, then electrons will flow into the n side of
the semiconductor, pushing free valence electrons in the crystal lattice towards the p-n junction. These
electrons, in turn, flow into the nearby holes on the p side of the semiconductor and create, in effect, a
flow holes on the p side of the semiconductor that is equal in magnitude and opposite in direction to
the flow of electrons on the n side of the semiconductor, thus sustaining an electric current through the
material with very little (ideally, zero) resistance17.
• If a semiconductor diode is put under reverse bias, with positive voltage applied to the n side of the
semiconductor and negative voltage applied to the p side, then some of the extra valence electrons on
the n side of the semiconductor are pulled away from the p-n junction and out of the semiconductor, and
some of the holes in the electron structure of the crystal on the p side of the semiconductor are pulled
away from the p-n junction and, effectively, out of the semiconductor, creating a so-called depletion
layerwith neither holes nor free valence electrons to carry moving charge (that is, to sustain the current)
in the vicinity of the p-n junction. As a result, an ideal diode under negative bias does not conduct.

15Amorphous semiconductors, which lack a long-range ordered crystal structure, can also be manufactured, and can be done so
in especially thin layers over large areas. Such semiconductors may be doped in a manner similar to the single-crystal semiconductors
discussed here, and can be switched from one physical state to another (e.g., from translucent to opaque), whichmakes them especially
useful in a variety of applications, such as CDs/DVDs/BDs, liquid-crystal displays (LCDs), and solar cells.

16Note that it is actually a neighboring electron in the electron structure of a crystal lattice that moves, thereby changing the “hole”
location in this electron structure; several successive movements of electrons into neighboring hole locations give the appearance that
it is the hole itself that is moving.

17As a loose physical analogy of current flow in a diode under forward bias, one might visualize the electron motion (on the n-
doped side) towards the p-n junction as tiny drops of rain falling through air toward an air/water interface, and the corresponding
hole motion (on the p-doped side) towards the p-n junction as tiny bubbles of air rising through water toward the air/water interface
at the same rate, resulting in zero net accumulation of negative or positive charge (raindrops or bubbles) at the interface.
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−Vbr

Vdleakage current

I

V

Figure 9.14: Typical current-voltage relationship of a real diode, with forward bias given by V > 0 and reverse
bias given by V < 0, indicating the breakdown voltage Vbr, the leakage current, and the cut-in voltage Vd.

Though the ideal model of a semiconductor diode described above is sometimes adequate, the deviations
of real semiconductor diodes from this behavior, as indicated in Figure 9.14, are important to quantify:

• Within the depletion layer described above in the reverse bias setting, the n-doped side, now lacking its
extra valence electrons, is positively charged, and the p-doped side, now lacking its holes, is negatively
charged by the same amount. This sets up an electric field across the p-n junction. When the applied
voltage exceeds a certain breakdown threshold Vbr (typically 5 to 20 volts), one of two phenomena
occurs (which phenomena sets in first depends on various particular details of the diode).

• In Zener breakdown, this electric field directly breaks some of the covalent bonds in the semicon-
ductor crystal, thus allowing the resulting freed electrons to act as charge carriers.
• In avalanche breakdown, on the other hand, the electric field accelerates free valence electrons
near the edge of the depletion layer to sufficient energies that their subsequent collision with bound
electrons can break covalent bonds within the depletion layer, resulting in the creation of additional
charge carriers (pairs of free electrons and holes), which in turn collide with other bound electrons
within the depletion layer to create still more charge carriers, etc.

Note that avalanche breakdown is hysteretic (that is, after it sets in and the additional charge carriers
are created within the depletion layer, the semiconductor continues to conduct even after the voltage
is reduced below the breakdown threshold), whereas Zener breakdown is not. Diodes designed to un-
dergo these types of breakdown at specific voltages without being damaged, called Zener diodes and
avalanche diodes respectively, are both useful in electric circuit design.

• Diffusion of charge carriers (electrons and holes) across the p-n junction in a diode sets up a small
depletion zone and a corresponding built-in voltage even when the external voltage applied to the diode
is zero. Thus, under forward bias, the applied voltage must exceed a certain cut-in voltage Vd (0.6 to 0.7 V
for silicon diodes, 0.25 to 0.3 V for germanium diodes, and 0.15 to 0.45 volts for Schottky diodes) before
current will begin to flow.

• Due to a weak thermodynamic process of carrier generation and recombination inside the depletion
layer, a small leakage current always flows through a diode under reverse bias even when the applied
voltage is below the breakdown threshold. Note in particular that

• carrier generation due to the absorption of energy of incident photons, and the resulting current
when under forward bias, is how photodiodes respond to the intensity of incident light, whereas
• in light-emitting diodes (LEDs), during carrier recombination, energy is released as photons.

• Finally, under both forward bias (with the applied voltage exceeding the cut-in voltage Vd) and reverse
bias (with the magnitude of the applied voltage exceeding the breakdown voltage Vbr), a diode exhibits
very small effective resistance, thus creating a very steep slope in a plot of I versus V (see Figure 9.14).
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Figure 9.15: (a) A full-wave bridge rectifier circuit, with direction of current flow through diode bridge indicated
as solid when Vi > 2Vd, and as dashedwhen Vi < −2Vd; when |Vi| ≤ 2Vd, no current flows. (b) Output voltage,
V+(t)− V−(t), and (c) the percent of power lost in the diodes, ϵ(t), for Vi(t) = 18 sin(ωt) and Vd = 0.7V.
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Figure 9.16: Circuits implementing zener diodes to trim (a) flutuating DC and (b) AC inputs Vi(t); (c) the (solid)
output Vo(t) of the AC trimming circuit in in response to the (dashed) input Vi(t) = A sin(ωt), with A > Vmax.

Regular diodes are denoted by the symbol , and both avalanche and Zener diodes by the symbol
(Zener diodes are much more common), with the arrow pointing in the direction of the current when under
forward bias. Real semiconductor diodes are often axial (small cylinders with a wire out each end), with the
n-doped end marked with a single bar, consistent with the bar at the end of the diode symbol.

To analyze circuits with diodes, assume at any moment that any given diode is in one of two states:

(i) either the circuit outside of the diode of interest is such that it can bring the magnitude of the voltage
across the diode just high enough (Vd if under forward bias or, if zener diode, Vbr if under reverse bias)
such that current flows through the diode, or

(ii) it isn’t, and the current through that diode is zero.

If case (i), the current through the diode is established by the rest of the circuit. If case (ii), the voltage across
the diode is established by the rest of the circuit. Following these simple rules, the following two examples
illustrate how to analyze electric circuits with diodes. Note that, in such analyses, both the leakage current and
the effective resistance, as discussed above, are typically assumed to be negligible.

Example 9.13 A full-wave diode bridge rectifier is illustrated in Figure 9.15a, with the current direction
through the bridge indicated. Taking Vi(t) = A sin(ω t), the corresponding voltage across the load,
V+(t) − V−(t), is illustrated in Figure 9.15b. This output is rectified; that is, Vi(t) is converted from AC to
a (fluctuating) DC. Substantial low-pass filtering is needed at the output to minimize its voltage fluctuations.
Note that, when the current is flowing, it passes through two diodes; thus, if −2Vd ≤ Vi ≤ 2Vd, no current
flows, and V+ − V− = 0. Noting (9.1), the percentage of power lost in the diodes when current is flowing,
ϵ(t) = Pdiodes/(Pload + Pdiodes), is plotted in Figure 9.15c; if Vd/Vmax is not small, this loss is substantial. △
Example 9.14 Figure 9.16a illustrates the use of a zener diode to trim a fluctuating DC signal Vi(t) ≥ Vmax
down to a specified value Vmax = Vbr, and Figure 9.16b-c illustrates the use of a pair of zener diodes, installed
back to back, to trim (aka “clip”) an AC signal Vi(t) = A sin(ω t) down to the range Vmax ≤ Vo(t) ≤ Vmax, where
Vmax = Vbr + Vd. When using zener diodes to trim such signals, it is essential to use a resistor upstream of the
zener to limit the magnitude of the current through the zener(s) to |Iquiescent(t)| = [|Vi(t)| − Vmax]/R; if R is
reduced or omitted, the resulting current increases and the associated components may fail. A drawback of this
simplistic approach is that, even with no load applied, these circuits waste Plost = |Vi · Iquiescent| as heat; with a
resistive load Rload applied at Vo, this power loss increases by |(Vi − Vo) · Iload| where Iload = Vo/Rload. △
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9.2.2 Bipolar Junction Transistors (BJTs)
A semiconductor crystal designed to behave as an amplifier or an electronically-activated switch is called
a transistor, and is built from adjacently doped regions of alternating type. As depicted in Table 9.7, there
are essentially eight basic types of transistors, which are all somewhat similar in their application, though
they differ considerably in their physical construction and internal operation. The simple and robust bipolar
junction transistor (BJT) was once the most common. A BJT is, in effect, two oppositely-facing diodes placed
back-to-back in a single semiconductor crystal. As suggested by their respective names and symbols,

• in a p-n-p type BJT, the emitter-base connection is a p-n diode nominally under forward bias, whereas
• in an n-p-n type BJT, the base-emitter connection is a p-n diode nominally under forward bias.

If the middle section of a BJT, called the base, is left unconnected, then (in the ideal setting, assuming no
breakdown) there will be zero current between the two ends of the BJT (called the emitter and the collector),
as one of its two p-n junctions will always be under reverse bias. If (in the p-n-p case) a small emitter→ base
current (or, in the n-p-n case, a small base→ emitter current) is initiated, this current populates the central
region of the transistor (including the depletion zone in the p-n junction between the base and the collector,
which is nominally under reverse bias) with charge carriers, thus causing a much larger current between the
emitter and collector to flow, proportional to the current at the base. We denote the voltages and the magnitude
of the currents of the emitter, base, and collector as, respectively, {VE, VB, VC} and {IE, IB, IC}; note that, by KCL,
IE = IC + IB in both n-p-n and p-n-p type BJTs. Assuming the voltage differences are sufficiently small that
breakdown does not set in, the three useful modes of operation of a n-p-n transistor depend on where VB is
with respect to VC and VE , with VC > VE (the p-n-p case is similar, with all inequalities reversed):

• Saturation or “on” mode: VB > VC > VE . Both p-n junctions are forward biased; current flows freely
(small effective resistance RCE(on)), limited by resisters elsewhere in the circuit. Energetically efficient!
• Forward active or “linear” mode: VC > VB > VE. This is the nominal setting in which the transistor
acts as a current amplifier, as used in many audio systems. The current gain from IB to IC in this mode
is denoted hFE or βF, and is typically about βF = IC/IB ≈ 100, whereas the ratio IC/IE is denoted αF, and
(since IE = IC + IB) is typically about αF = IC/IE = βF/(1 + βF) ≈ 0.99. Not energetically efficient.
• Cutoff mode: VC > VE > VB . Both p-n junctions are reverse biased; very little current flows. Efficient!

The fourth mode of an n-p-n transistor, reverse active or “backwards” mode, given by VC < VE, is the result
of installing the transistor backwards. The construction of a BJT (see Table 9.7) is not symmetric (notwith-
standing introductory explanations of how a BJT functions, that might initially seem to imply the contrary).
In particular, the surface area of the p-n junction between the base and the collector needs to be much larger
than the surface area of the p-n junction between the base and the emitter for the BJT to perform well.

Bipolar Junction Field-Effect Transistor (FET) (see §9.2.3)
Transistor (BJT) Junction FET (JFET) Insulated-Gate FET (IGFET)

(see §9.2.2) (depletion mode) depletion mode enhancement mode
n-p-n type p-n-p type p-channel n-channel p-channel n-channel p-channel n-channel
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Table 9.7: Eight types of transistors, their symbols, and some key construction features. The three nodes of a
BJT are denoted the base (B), emitter (E), and collector (C), whereas the corresponding nodes of an FET are
denoted the gate (G), source (S), and drain (D). The most common type of IGFET is theMOSFET.
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Figure 9.17: (a) Common base (CB), (b) common emitter (CE), and (c) common collector (CC)
configurations of an n-p-n BJT. In each, the “common” terminal is held at constant voltage, and the other two
terminals are interpreted as the “input” and “output”, the latter of which drives the “load”, denoted here RL.

Noting that IB is typically much smaller than IC, the power dissipated by a BJT is nearly P = |VC − VE| IE
[similarly, the power dissipated by a FET is nearly P = |VD−VS| IS]. A transistor operating in the linear region
is not power efficient; in audio applications, these diminutive devices may dissipate many watts of power in
linear mode, often necessitating heat sinks. On the other hand, when used as a switch (in both saturation and
cutoffmodes), very little power is dissipated by a transistor (BJT or FET); further, modern transistors (MOSFETs,
described below, are by far the most common today) can switch from saturation (full on) to cutoff (full off), or
back, in tens of nanoseconds. Thus:

Guideline 9.1 For power-efficient operation of transistors, use them as fast switches rather than amplifiers.

As mentioned above, the simplest model of a BJT in forward active mode is as a current amplifier,

IC = βF IB, IC = αF IE with αF = βF/(1 + βF) and IE = IC + IB, (9.10a)

and the current gain βF (aka hFE) taken as a (large) constant, with βF ≈ 100 and thus αF ≈ 0.99 as typical
values (commonly, 50 ≤ βF ≤ 300). The more accurate Early model of forward active mode models βF as a
function of the magnitude of the collector-emitter voltage VCE = |VC − VE| such that

βF = (1 + VCE/VA) βF0 (9.10b)

in (9.10a), where the constants VA and βF0 are called the Early voltage and the current gain at zero bias,
respectively. This model may be extended to incorporate the base-emitter voltage VBE = |VB − VE| such that

IC = (1 + VCE/VA) (e
VBE/VT − 1) IS ⇒ IC ≈ IS e

VBE/VT if VCE/VA ≪ 1 and VBE ≫ VT. (9.10c)

where the constants IS and VT are referred to as the reverse saturation current and the thermal voltage,
respectively. Typical constant values are IS = 10−15 to 10−12 amps, VT = 26 mV, and VA = 15 V to 150 V.
Practically speaking, if IC is non-negligible, VBE = 0.7V is a good approximation for silicon BJTs.

9.2.2.1 Static characteristics of BJTs

The specifications of various transistor designs vary substantially, and are (usually) documented quite carefully
in their datasheets. BJTs are benchmarked in one of three basic configurations, as shown in Figure 9.17:

• common base (CB), with the emitter driven as the (low-imedance) input, and the collector used as ouput;
• common emitter (CE), with the base driven as the (high-imedance) input, and the collector used as ouput;
• common collector (CC), with the base driven as the (high-imedance) input, and the emitter used as ouput.

High impedance inputs (that is, the CE and CC configurations) are quite valuable to isolate (often, delicate)
input stages from the (often, power-hungry) output stages that they drive. The CE configuration provides both
substantial voltage gain and substantial current gain, and thus the best overall power gain.
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It is instructive to model and plot the “typical” characteristics of various types transistors in these basic
configurations, although these characteristics vary substantially from one transistor design to the next (check
the datasheets!). Some “representative” characteristics of a “typical” general-purpose n-p-n BJT are illustrated
in Figure 9.18. Note that the variation of IC with VCE and IB does not accurately follow (9.10a)-(9.10b) over the
range of VCE and IB illustrated, and that the variation of βF with both IC and TA is significant [representing
βF as a constant, or as simple linear function of VCE only, is only a rough approximation].

Further, as shown in Figure 9.19, modern robust plug-in (3-pin) replacements for single transistors, with
similar nominal performance characteristics, incorporate complex internal circuitry that robustly protect the
transistor in the event of a host of possible overload conditions, including the exceeding of safe thermal, current,
and power (current times voltage) specifications, which would likely cause a simple single transistor to fail.
Due to their similar performance to simple BJTs in the vicinity of the load line (where the transistor is normally
operated, see next subsection), they may often be used as simple plug-in replacements for single transistors.

Figure 9.18: Static characteristics of a typical general-purpose n-p-n BJT, the MCC 2N3904. (left) Collector
current IC vs. collector-emitter voltage VCE = VC − VE as a function of the base current IB . (right) DC current
gain βF vs. collector current IC as a function of the device temperature TA. The diagonal load line connects
the VCE,max point (with IC = 0) to the IC,max point (with VCE = 0), as set up by the supply voltage provided to
the circuit, as well as the passive components surrounding the transistor; further explanation of the importance
of this line is given in §9.2.2.2 and Example 9.15.

Figure 9.19: A high-reliability replacement for a single n-p-n BJT, the TI LM395. (a) standard 3-pin package,
as used by many BJTs. (b) Complex internal wiring, incorporating various forms of protection circuitry. (c)
Collector current IC vs. collector-emitter voltage VCE as a function of the base-emitter current VBE .
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9.2.2.2 BJT load line

When implementing BJTs properly into linear amplifier circuits that leverage them, as discussed in Examples
9.15-9.17 below, the gain of the overall amplifier is governed by the connectivity and passives in the circuit
surrounding the transistor, and not by the specific IB -to- IC or VBE -to- IC characteristics of the transistor
itself, as long as βF is sufficiently large (recall that βF varies significantly from one transistor to another, and
depends nonlinearly on operating temperature, the current at the base, etc.).

The design process for BJT-based Class A amplifiers (see Example 9.15) generally involves drawing a diagonal
load line (see, e.g., Figures 9.18a and 9.19c) between two extreme operating conditions:

• the maximum possible voltage VCE across the transistor (usually, the supply voltage) when IC ≈ 0, and
• the maximum possible current IC through the transistor when it is “saturated” (that is, when VCE ≈ 0).

[Again, these conditions are defined by the circuit around the transistor, not by the transistor itself.] The
voltage biasing that sets up the nominal conditions at the gate (as illustrated in Figure 9.3c, and discussed
further in Example 9.15) is then arranged to operate nominally near the center (referred to as the Q point)
of the linear part of this VCE to IC relationship, with variations in the input (IB or VBE) around this Q point
creating an approximately linear response in the current IC , which in turn (again, due to the circuit surrounding
the transistor; see e.g. Figure 9.20a) creates an approximately linear response in the output voltage VC .

The region to the far left in the collector current IC vs. collector-emitter voltage VCE plot (see Figures 9.18a
and 9.19c, noting where the several curves depicting the voltage at or current through the gate collapse into a
single steep line) is sometimes called the saturation region or ohmic region. In this region, the middle of the
transistor is effectively “saturated” with charge carriers, and the transistor acts effectively like a resistor, with
a relatively small resistance (that is, VCE = IC RCE(on)), independent of the precise conditions at the base.

To the right of the saturation region is the forward active region, where (in the n-p-n case) VC > VB > VE,
and below that is the cutoff region, where (approximately) VC > VE > VB, as discussed further in §9.2.2.

As described in §9.2.2, the three useful modes of operation of an n-p-n BJT (with VC > VE) are:

• saturation (with VB above both VC and VE),
• linear (withVB betweenVC andVE), and n-p-nBJT: B

C

E• cutoff (with VB below both VC and VE),

and the three useful modes of a p-n-p BJT (with Ve > Vc, switching to lowercase e, b, c for clarity), are:

• cutoff (with Vb above both Ve and Vc),
• linear (withVb betweenVe andVc), and p-n-pBJT: b

e

c• saturation (with Vb below both Ve and Vc).

There are a variety of ways to build an amplifier with such transistors for various applications, including
• the amplification of audio signals (for playing sounds on speakers, including woofers, tweeters, and mids),
• the amplification of the very-low-amplitude signals from analog sensors, like piezos and thermocouples,
• the isolation and amplification of AM or FM radio frequency (RF) signals, etc.
Amplification systems may also be built by cascading multiple amplifier stages (e.g., a pre-amplifier followed
by a power amplifier). Individual amplifier stages are classified by the number of degrees that their transistors
are held in linear mode (i.e., the so-called conduction angle) during the amplification of a sinusoidal input:

Class A amplifiers include a single transistor that is held in linear mode for 360 degrees (100% of the time).
Class B amplifiers include two transistors, each held in linear mode for almost 180 degrees (50% of the time)18.

18The Class B approach significantly improves power efficiency as compared to the Class A approach, but often exhibits significant
crossover distortion during the time in which one transistor is shifting out of cutoffmode, and the other is shifting into cutoffmode,
as these processes happen somewhat gradually as the input signal changes.
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Figure 9.20: Typical embodiments of three different classes of simple BJT-based amplifiers:
(a) Class A, with a single n-p-n transistor with a 360◦ conduction angle.
(b) Class B (“push-pull”), with a matched pair of n-p-n and p-n-p transistors, each with 180◦ conduction angle.
(c) Class AB, with a matched pair of transistors each with conduction angle somewhat greater than 180◦.
Class A amplifiers actually work best as preamplifiers, and Class AB amplifiers work best as power amplifiers.

Class AB amplifiers include two transistors, each held in linear mode for slightly more than 180 degrees19.
Class C amplifiers include two transistors, each held in linear mode for significantly less than 180 degrees20.
Class D amplifiers are built for the amplification of binary or ternary PWM signals.

A brief introduction to representative designs in a few of these classes is given below.

Example 9.15 A representative Class A amplifier, built around a single n-p-n BJT, is given in Figure 9.20a.
Denoting {VC , VB, VE} and {IC , IB, IE} as the voltage and current at the collector, base, and emitter of the BJT
(positive current to the right and down), noting I4 = IE , and assuming21 that the BJT is operating in linear mode
100% of the time under normal operation, the equations governing the BJT in this design are

IE = IB + IC, IC = αF IE, VB − VE ≈ Vd ; (9.11a)

the rest of the component and KCL equations governing this circuit are determined as in previous examples22:

I0 = C0 d(Vin − VB)/dt, Vs − VB = I1R1, VB = I2R2, I0 + I1 = I2 + IB, (9.11b)

I3 = IC + I5, Vs − VC = I3R3, VE = IER4, I5 = C5 d(VC − Vout)/dt, Vout = I5RL. (9.11c)

The full system has 12 eqns in the 12 variables {Vout, VC , VB, VE, IC , IB, IE, I0, I1, I2, I3, I5}, plus the input signal
Vin, the source voltage Vs, the transistor constants {αF, Vd}, and the passives {C0, R1, R2, R3, R4, RL}. These
12 linear equations are easily Laplace transformed and combined.

For large βF [and thus αF ≈ 1] and appropriate choices for {R1, R2}, IB(t) is negligible in (9.11b), and
the transfer function governing how Vout(s) responds to Vin(s) essentially decouples into two cascaded parts:
(i) one from Vin(s) to VB(s) via {C0, R1, R2}, (ii) one from VB(s) to Vout(s) via the transistor and {R3, R4, C5}
[in the present analysis, Vout is also routed through a speaker, with characteristic resistanceRL, to ground]. This
decoupling provides particular insight; we thus derive these two separate transfer functions here.

19The slight overlap of the “on” time of each of the two transistors when amplifying a sinusoidal signal in the Class AB approach
is helpful in reducing the crossover distortion exhibited by a pure Class B approach.

20A Class C amplifier is often used to excite an LC oscillator that may be tuned to resonate at a particular frequency (e.g., for the
modulation or demodulation of an RF transmission). The LC oscillator establishes the underlying sinusoidal nature of the signal; a
Class C amplifier on its own (not exciting such an oscillator) would otherwise introduce significant distortion.

21Once our analysis of the circuit is established, we will tune the passives in the circuit to assure this assumption is satisfied.
22We (roughly) model the speaker here as a purely resistive load with resistance RL; see Example 9.10 for further discussion.
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For part (i) in this large βF limit, it is seen that {C0, R1, R2} amount simply to a biased first-order high-
pass filter with unit gain, exactly as in Figure 9.3c; this is seen by combining the 4 eqns in (9.11b) together
with IB ≈ 0, in the 5 variables {I0, I1, I2, IB, VB}, and the input Vin, which immediately gives

VB(s) =
R2 Vs

R1 +R2 +R1R2C0 s
+

R1R2C0 s Vin(s)

R1 +R2 +R1R2C0 s
=

R2

R1 +R2

ωi

s+ ωi
Vs +

s

s+ ωi
Vin(s),

where Ri = R1R2/(R1 + R2) [that is, 1/Ri = 1/R1 + 1/R2] and the corner frequency is ωi = 1/(RiC0).
The voltage divider biasing drives the steady component of VB(t) towards VQ = VsR2/(R1 + R2) [instead of
towards zero, as done by the filter in Figure 9.3b, which effectively takes R1 →∞ in Figure 9.3c].

For part (ii) in the large βF limit, it is found that the transistor (assumed to be operating in the linear mode)
and {R3, R4, C5} amount simply to another first-order high-pass filter with negative gain; this is seen by com-
bining the 8 eqns in (9.11a) and (9.11c), in the 8 variables {IC , IB, IE, VC , VE, I3, I5, Vout}, together with the input
VB(t), which immediately (see code in RR.ch09) gives:

Vout(s) =
C5RL s

(R3 +RL)C5 s+ 1
Vs − αF

R3

R4

RLC5 s

(R3 +RL)C5 s+ 1
(VB − Vd) = Vii(s) +K

s

s+ ωii
VB(s)

where K = −αF (R3/R4) [RL/(R3 + RL)], the corner frequency of the high-pass filter on VB(t) is
ωii = 1/(RiiC5)whereRii = R3+RL, and the term Vii(s) is driven solely by the voltages Vs and Vd, and quickly
approaches a constant. Note again thatK is negative (that is, this amplifier is inverting); for audio signals, that
doesn’t really matter. In the case that the current through the load resistor is negligible (i.e.,RL →∞; e.g., if the
speaker is removed, and replaced with a power amplifier stage with high input impedance),K ≈ −αF (R3/R4)
and ωii → 0 [i.e., all frequencies are passed through part (ii)]; in this case, C5 may be removed. Conveniently,
taking R3 as a potentiometer (potentially... one that goes all the way to 11), the voltage gain of this amplifier is
adjustable, making it particularly well suited as a (highly linear) preamplifier stage.
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When the input signal is time varying, the following two extreme cases are of interest:
• when VB is near its maximum, the transistor is nearly saturated, VCE ≈ 0, and thus IC,max ≈ Vs/(R3 +R4);
• when VB is near its minimum, the transistor is nearly in cutoff, and IC,max ≈ 0.
When the input signal is constant (i.e., with the amplifier operating near its Q point, as discussed in §9.2.2.2),
the transistor is near the center of its linear active region, and substantial current flows, IC,quiescent ≈ IC,max/2.
As a result, Class A amplifier designs, though accurately linear in behavior, are generally quite inefficient.

Consider an application with the silicon BJT in Figure 9.18, with Vd = 0.7V and 100 < βF < 285 depending
on both IC and the ambient temperature (thus, αF ≈ 1 in the calculations below), with an output connected to
a (high-impedance) input on a power amplifier (RL →∞), and with Vs = 12V:
• For part ii, design targets of |K| = 10 = R3/R4 and IC,max ≈ 0.05A (see load line in Figure 9.18a), and thus
R3 +R4 = Vs/IC,max ≈ 240 ohm, leads to {R3, R4} ≈ {218.4 ohm, 21.6 ohm}, and C5 can be removed.
• For part i, taking IC,quiescent ≈ IC,max/2 = 0.025A at the Q point, we have VE ≈ IC,quiescent · R4 = 0.54V and
VB = VE + Vd = 1.24V. By Figure 9.18a, at the Q point indicated (assuming the device is at 25◦C), the base
current is23 IB ≈ 120e−6A. At this steady (Iin = I0 = 0) condition, we take small currents in part i by setting,
say, I1 = 35 · IB = 0.0042A; together with the KCL condition I0 + I1 = I2 + IB and V = IR across each
resistor gives {R1, R2} ≈ {2491, 295} ohm (see code in RR.ch09). A final design target (appropos of an audio
preamp) of fi = 1/(RiC0) ≈ 10 Hz where Ri = R1R2/(R1 +R2) [see Example 9.2] gives C0 ≈ 22mF. △

Example 9.16 A representative Class B amplifier, built around a matched pair of n-p-n and p-n-p BJTs, is
given in Figure 9.20b. The {C5, R1, R2} components, with R1 = R2, again provide high-pass filtering with
voltage divider biasing at the input stage, the output of which is applied to the base of both the (upper) n-p-n BJT
and the (lower) p-n-p BJT. Note also that the emitters of both BJTs are tied together, and that the C6 component
into RL at the output stage again provides high-pass filtering which eliminates the DC ouput current.

With this simple “push-pull” configuration, the base voltage VB = Vb is either:
(a) above VE = Ve, in which case the n-p-n BJT is in linear active mode and the p-n-p BJT is in cutoff, or
(b) below VE = Ve, in which case the p-n-p BJT is in linear active mode and the n-p-n BJT is in cutoff.
Thus, in this basic Class B design, either one of these BJTs is “on”, and amplifying the input in accordance with
the model IC ≈ IS e

VBE/VT [see (9.10c)], or the other BJT is on; they are never both “on” simultaneously.
Looking a bit more closely [see, in particular, Figure 9.14], it actually takes the VBE junction to be slightly

above a small cut-in voltage Vd (in silicon, Vd ≈ 0.7V) before the n-p-n BJT enters linear active mode, and it
takes the Veb junction to be slightly below−Vd before the p-n-p BJT enters linear active mode. As a result, there
is a range of (small) inputs Vin, referred to as a “dead zone”, for which both BJTs remain in cutoff, and the output
current is zero. The resulting lack of linearity in the response, which is especially pronounced for small input
signals, is referred to as crossover distortion. As both BJTs are actually in cutoff for zero (or, small) inputs,
however, Class B amplifier designs are generally much more efficient than Class A amplifier designs.

Despite the crossover distortion mentioned above, this simple “push-pull” configuration is useful in applica-
tions in which a linear response is not especially important; a typical example24 is the output stage of a power
op amp, such as the TI ALM2402-Q1 included in the Berets, as discussed in §5. △

Example 9.17 A Class AB amplifier, as illustrated in Figure 9.20c, is a tweak on the Class B amplifier design
which adjusts the bias VB to be about 2Vd ≈ 1.4V above Vb. This has the effect of effectively eliminating the
dead zone of the Class B amplifier mentioned previously. As the transition between cutoff and active mode of

23For the value of I1 used, this value of IB is negligible; the result thus applies even if this device is at a different temperature.
24Note that op amps (see §9.3) are characterized by very high gain, and are invariably used in feedback configurations, and thus

their precise gain characteristics are actually rather unimportant.

9-29

https://github.com/tbewley/RR/blob/main/Renaissance_Robotics/RR_chap09
http://www.ti.com/product/ALM2402-Q1


Renaissance Robotics (v.2024-03-19) Chapter 9: Circuits

s

g

d

G

D

S

s

g

d

G

D

S

y
y

Vin

Vin

VoutVout

VsVs

pushpush

pullpull RLRL

Figure 9.21: (a) A schematic representation of a Class D amplifier in which, at any given time, one transis-
tor is “on” and one transistor is “off”. Like the Class B amplifier design in Figure 9.20b, this circuit may be
characterized as incorporating a “push-pull” architecture for driving the output. (b) A perhaps more accurate
representation of a Class D amplifier, in which the control electronics carefully incorporate a dead time between
when one transistor turns off and the other transistor turns on, in order to avoid shoot through.

the transistors is actually somewhat gradual, diodes are usually selected, carefully, with slightly larger Vd than
base-emitter junctions of the two transistors, thus slightly overlapping the regions in which the two diodes are
on (that is, increasing their conduction angles to somewhat more than 180 degrees), in an effort to minimize
crossover distortion, at the cost of a slight reduction in efficiency. △

Example 9.18 A Class D amplifier, as illustrated schematically in Figure 9.21a, is a straightforward tweak
on the Class B (“push-pull”) amplifier design in Figure 9.20b, in which the two transistors that it incorporates
are driven as fast on/off switches (often, modern MOSFETs are used, which are remarkably efficient when func-
tioning in this capacity). Typically, binary input logic is used, with a logical PWM input signal at the gate of
one of the transistors [transitioning quickly between a “logical low” (“transistor off”) state and “logical high”
(“transistor on”) state, at an adjustable duty cycle], and the NOT of this logical signal (see §1.1.2) used at the
gate of the other transistor, thus effectively turning one transistor on and the other transistor off at any given
moment. Often, a very high PWM frequency is used (say, around 1MHz), with a second-order low-pass LC filter
(see Figure 9.3d) incorporated at the output (with, say a cut-off frequency of 100 kHz) to substantially attenuate
the oscillations at the PWM frequency and its higher harmonics, audio signals (at frequencies from 20 Hz up to
20 kHz) can even be amplified cleanly with with approach, with remarkably high efficiency. Setting the PWM
at 50% duty cycle, and low-pass filtering the output, holds the output constant at Vs/2; modulating the PWM
duty cycle then results in very high signal fidelity at Vout, with very efficient current amplification.

When actually implementing the control electronics driving the transistors for such an amplifier, as illus-
trated perhaps more realistically in Figure 9.21b, particular care needs to be incorporated to avoid the condition
in which both transistors are in the “on” state at the same time, even if just for a moment. This creates a path-
way straight from power to ground through the two transistors, and results in large current spikes, called shoot
through, that can easily break the amplifier. To avoid this condition, a certain dead time needs to be built
in, between when one transistor turns off and the other transistor turns on. The calculation of how long this
dead time needs to be in order to eliminate the possibility of shoot through should account accurately for the
manufacturing tolerances of the devices to be incorporated.

Three state (ternary) logic can also be incorporated in Class D amplifiers, with the control electronics turning
both transistors “off”, allowing Vout to “float”, when a “high impedance” state (that is, neither logical high nor
logical low) is detected at Vin. △
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Figure 9.22: Simple transistor circuits. (a) A current source based on a p-n-p BJT and a Zener diode, with
Iload ≈ (Vbr − Veb)/Rref. (b) A current mirror based on two n-p-n BJTs, with Iload ≈ Iref = (Vs − VBE)/Rref.
(c) A differential amplifier based on four BJTs and a current source, as in (a), with Vout ≈ D(V+− V−) where
D = ISR/VT; note that the lower half of this circuit is exactly the current mirror considered in (b).

Other amplifier designs, including minor variations of these typical embodiments, are easily found online.
We now present a handful of other useful transistor-based circuit designs.

Example 9.19 Current source. Consider first the circuit in Figure 9.22a. As discussed previously (see Figure
9.14), a Zener diode under a sufficiently large reverse bias has an essentially constant voltage drop across it,
Vbr, regardless of the current flowing through it; note that the resistor R1 in this circuit limits this Zener diode
current. The Zener breakdown voltage Vbr is also applied across the series connection of the resistorRref and the
emitter-base terminals of the transistor in this circuit; the voltage across resister Rref is thus given by Vbr − Veb,
where Veb is the voltage drop between the emitter and base of the transistor (about 0.7V for silicon). The emitter
current of the transistor is thus given by Ie = (Vbr − Veb)/Rref; since Vbr and Veb are approximately constant,
Ie is approximately constant. Finally, since a BJT acts as a current amplifier with Ib = βF Ic where βF ≈ 100,
it follows that Ie ≈ Ic = Iload regardless of the precise values of Vs and βF, provided they are sufficiently large,
and regardless of the precise values of R1 and |Zload|, provided they are sufficiently small. △
Example 9.20 Current mirror. Consider the circuit in Figure 9.22b. Assuming VCE ≪ VA and thus βF ≈ βF0 in
(9.10b), which is often a good assumption, it follows from (9.10c) that IC of transistorQ1 is related (exponentially)
to VBE such that IC = IS e

VBE/VT . Since the base-emitter voltage of the (matched) transistors Q1 and Q2 are
precisely equal in this circuit, their collector currents are equal as well. Finally, since the base currents are
negligible compared with the collector currents, it follows from KCL that Iload ≈ Iref. △

Example 9.21 Differential amplifier. Consider the circuit in Figure 9.22c. Let {VEk , VBk , VCk
} and

{IEk , IBk , ICk
} denote the voltage and current of the emitter, base, and collector, respectively, of transistor Qk,

with positive current in the directions indicated in the figure. Due to the current mirror in the lower half of the
circuit (see Example 9.20 and Figure 9.22b), IC1 ≈ IC4 . Taking VCE/VA ≪ 1 in (9.10c), and assuming that both
(V1 − V+)/VT ≪ 1 and (V1 − V−)/VT ≪ 1, noting that eϵ ≈ 1 + ϵ for ϵ≪ 1, it follows that

Ic1 = IS (e
(V1−V+)/VT − 1) = αF Ie1

Ic2 = IS (e
(V1−V−)/VT − 1) = αF Ie2

I0 = Ie2 + Ie1
Iout = Ic2 − IC4 ≈ Ic2 − Ic1




⇒

I0 ≈
IS
αF

(V1 − V−
VT

+
V1 − V+
VT

)
⇒ V1 ≈

1

2

[VT αF I0
IS

+ V+ + V−
]
,

Iout ≈ IS

(V1 − V−
VT

− V1 − V+
VT

)
=
IS
VT

(
V+ − V−

)
,

Vout = IoutR ≈ D(V+ − V−) with D = ISR/VT.

Taking V+ and V− as the inputs, note that Vout responds primarily to the differential voltage (V+−V−), while
V1 = Ve1 = Ve2 “floats” up and down in response to the common voltage (V+ + V−). △
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Figure 9.23: RepresentativeH-bridge circuit for efficient bidirectional operation of a BDCmotor at partial power
via a PWM signal and twoGPIOs. All three of theseMCU output signals are electrically isolated from the power
electronics via optoisolators, which are simply LEDs packaged in close proximity with photodiodes.

Example 9.22 H-bridges for driving Brushed DC motors. Brushed DC (BDC) motors are remarkably in-
expensive and efficient for converting electrical power to mechanical (rotatary) power. They do not, however,
operate effectively at low voltage, due to stiction (that is, dry friction) acting within the motor (see, e.g., the
BDC motor model developed in §??), thus motivating a PWM-based control approach (see §4.2.3). They also
have significant inductance, as they contain coils of wires, wrapped around ferromagnetic cores, acting as elec-
tromagnets; PWM approaches must therefore be implemented with significant caution.

A representative H-bridge implementing a PWM-based solution for driving BDC motors at partial power,
in a bidirectional fashion, is shown in Figure 9.23. Such H-bridges implement flyback diodes to ensure that
the voltages at the motor terminals effectively remain between V− − Vbr and V+ + Vbr, thus preventing the
generation of sparks even when driving motors with substantial inductance. The H-bridge circuit shown in
Figure 9.23 operates in four distinct modes, as illustrated in Figure 9.24, based on the FWD and REV logic states:
• Forward drive/brake (FWD= 1, REV= 0). In this mode, Q1 is on, Q4 is on the same percentage of time
that the PWM signal is low, andQ2 andQ3 are off. DC power is thus provided from left to right across the
motor at a duty cycle set by the PWM.When the PWM signal is high,Q4 is off, and the current recirculates
in the top loop of the bridge through the flyback diode next to Q2, and the motor “brakes” (see below).
• Reverse drive/brake (FWD= 0, REV= 1). In this mode, Q2 is on, Q3 is on the same percentage of time
that the PWM signal is low, andQ1 andQ4 are off. DC power is thus provided from right to left across the
motor at a duty cycle set by the PWM.When the PWM signal is high,Q3 is off, and the current recirculates
in the top loop of the bridge through the flyback diode next to Q1, and again the motor “brakes”.
• Brake/coast (FWD= 1, REV= 1). In this mode, Q3 and Q4 are on the same percentage of time that the
PWM signal is low, andQ1 andQ2 are off. The braking mode essentially shorts together the two terminals
of the motor at a duty cycle set by the PWM; this braking action effectively negates the back emf otherwise
generated by the free rotation of the motor, thus causing the motor to slow down. When the PWM signal
is high, all four transistors are off, and the motor “coasts” (see below).
• Coast (FWD= 0, REV= 0). In this mode, Q1, Q2, Q3 andQ4 are all off, regardless of the PWM signal. No
extra torque is generated by the motor. If the motor momentum and load are such that a significant current
is generated in one direction through the motor or the other, this current is sustained by pulling current up
from V− through a flyback diode on one side of the bridge, and pushing this current up through a flyback
diode to V+ on the other side of the bridge, thereby converting mechanical power to electrical power,
storing energy back in the battery. Coast mode can thus also be considered as regenerative braking.
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forward drive/brake reverse drive/brake forward brake forward coast

Figure 9.24: Current flow in the four modes of the H-bridge circuit illustrated in Figure 9.23. Note that the use
of high-speed flyback diodes, which turn on quickly when put under forward bias, are essential in order to
keep the voltage at the motor terminals in a limited range, thus preventing the buildup of large voltages and
the generation of sparks during the PWM cycle when operating, particularly for motors with large inductance.

In practice, the use of ICs implementing an entire H-bridge circuit are often convenient, such as the Toshiba
TB6612FNG, which implements the H-bridge illustrated in Figure 9.23, using MOSFETs instead of BJTs to in-
crease efficiency.

The condition that must absolutely be avoided at all times is both transistors on the same side of an H-
bridge being open at the same time, which leads to a short circuit between power and ground. The circuit of
Figure 9.23 inherently prevents such a short condition from happening. Other more flexible circuit designs,
with more independent control of the four transistors in the bridge, require the appropriate controller logic to
be implemented to prevent a short condition. Dedicated motor driver ICs reliably implement such logic.

One feature that other H-bridge circuits (and the motor driver ICs that implement them) can facilitate is the
implementation of drive/coast modes as an alternative to drive/brake modes; that is, the use of “coast” (aka
“regenerative braking”) during the “off” phase of the PWM when driving, which is energetically more efficient
than drive/brake. Some of the more flexible dedicated motor driver ICs, like the remarkable TI DRV8912-Q1
motor drivers implemented by the Berets (see §5.3), internally generate their own PWMs, and allow the user to
select between the drive/brake and the drive/coast modes of operation.

Note finally that, as BDCmotors sometimes draw very substantial current, the voltage drop across the flyback
diodes can be associated with significant power loss and heat generation. Advanced motor driver ICs, like the
one mentioned in the previous paragraph, thus turn on the corresponding transistor (which has a much lower
effective resistance, aka RDS(on), than a regular diode) whenever it is detected that current would otherwise
flow through a flyback diode, thereby substantially reducing the associated power loss and corresponding heat
generation in the device. △
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9.2.3 Field Effect Transistors (FETs)

In a manner analogous to BJTs, the main flow of current in a Field-Effect Transistor (FET), between the drain
and the source, is regulated by the voltage at the gate (relative to that at the source). The main distinction
between an FET and a BJT is that the drain-source current of a FET is regulated by the voltage at the gate,
whereas the emitter-collector current of a BJT is regulated by the current through the base. FETs come in two
main types, Junction FETs and Insulated-Gate FETs.

A Junction Field-Effect Transistor (JFET) is a (often, essentially symmetric) transistor design in which the
source and drain are connected to the two ends of a single semiconductor channel that is a either n-doped or p-
doped. As indicated Table 9.7, adjacent to the channel are oppositely-doped semiconductor regions connected
to the gate. A JFET operates in what is known as depletion mode: if the gate of the JFET is left disconnected,
the (n-doped or p-doped) channel of the JFET readily conducts current from the source to the drain, or from the
drain to the source. However, if a voltage is applied to the gate of the appropriate sign such that the p-n junctions
along the edge of the channel are reverse-biased, a depletion zone forms in the channel which diminishes the
amount of current the JFET channel can conduct between the source and the drain. Increasing the magnitude
of the voltage applied to the gate increases the size of this depletion zone, which further diminishes the current
that the JFET can conduct between the source and the drain, until a pinch-off level is reached, in which the
current the JFET can conduct between the source and the drain is essentially reduced to zero.

In an Insulated-Gate Field Effect Transistor (IGFET), the gate is electrically insulated from the channel
carrying the current between the source and the drain. Again, the semiconductor channel in an IGFET is either
n-doped or p-doped. The most common type of IGFET today by far, in which the gate insulation (indicated
in red in Table 9.7) is a metal oxide, is known as a Metal Oxide Semiconductor Field-Effect Transistor
(MOSFET). Due to the insulation of the gate, an IGFET has a very high input impedance, with almost zero
current flowing through the gate. This makes IGFETs particularly efficient in both logic circuits and power
electronics as fast switches; however, the gate insulation of a MOSFET is generally susceptible to damage from
static electricity. IGFETs come in two classes, those that work in a depletion mode similar to that of a JFET
as described above, and those that work in an enhancement mode, in which the channel (the region directly
below the red insulation in Table 9.7) between the source and the drain is generally nonconducting (it may even
be undoped) until a sufficiently large voltage is applied between the gate and ground, which populates the
channel between the source and drain with charge carriers, thus enabling current to flow [in power electronics,
this mode is often the safest, as current does not flow until conditions at the gate enable it].

Though the first working transistor was demonstrated back in 1947, the technology of transistors designed
for various different purposes is still evolving rapidly today. In particular, for applications in digital logic
(CPUs, GPUs, DSPs, etc.), designed for fast power-efficient numerical computation, transistors continue to
be shrunk in size, packed more densely together, and reduced in operating voltage (thus improving power
efficiency). Such ICs are developed with photolithography fabrication techniques leveraging short wavelength
DUV (deep ultraviolet, ∼200 nm) and EUV (extreme ultraviolet, 13.5 nm) light sources. Using so-called “3 nm”
processes, densities of well over 200 MTr/mm2 (million transistors per mm2) are now possible in large-scale
chip fabrication. Transistor counts in modern high-end microprocessors and GPUs (graphics processing units)
are in the tens of billions. In contrast, microcontrollers (MCUs) incorporate much more streamlined CPUs (for
example, an ARMCortexM0 has about 12k gates, and thus about 72k transistors); themajority of the transistors
on an MCU are associated with cache and memory (as a datapoint, a 64 KiB cache has about 3.1M transistors).

For applications in power electronics, transistor technology is also still evolving quickly. Four transistor
metrics of interest in high-power applications are particularly important:
• The effective resistance of a MOSFET when operating in the “on” state, aka RDS(on). In addition to wasting
less power (and thus being able to run on a given battery charge for a bit longer), even more significant in many
power protection (reverse-voltage, over-voltage, etc) applications is that reduced values of RDS(on) on the power
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MOSFET imply much less waste heat generated under normal operating conditions that must be dissipated
(on the PCB, and/or with a heat sink), thereby facilitating a higher density integration of power components
on the PCB. MOSFETs with values of RDS(on) in the neighborhood of 1mΩ (‼) are now common.
• The time delay from the on state to the off state of the transistor when the gate is triggered, aka td(off). This
measure characterizes how quickly a power protection MOSFET can turn the power off to a system when a
fault condition occurs. MOSFETs with values of td(off) in the neighborhood of 20 to 40 ns (‼) are now common.
• The rise time tr and fall time tf associated with repeated fast switching of the transistor between the on
and off states. Many MOSFETs are commonly used for switching power to a device (e.g., an LED) on and
off thousands of times a second, an approach referred to as pulse width modulation (PWM; see §4.2.3).
Averaged over several cycles (e.g., by the human eye), this makes the device look as if it is running at partial
power (proportional to the fraction of time that the transistor is in the on state, referred to as the duty cycle
of the PWM signal). PWM-based driving strategies will be used in multiple circuits discussed in the remainder
of this chapter. As discussed previously (see Guideline 9.1), a transistor is generally quite efficient in both the
on state and the off state; the time spent switching between these two states is where most of the inefficiencies
lie. Thus, at a given switching frequency, the faster the switching time, the more efficient this PWM approach
is. MOSFETs with values of tr and tf in the neighborhood of 10 to 20 ns (‼) are now common.

Examples of modern high-performance MOSFETs include the TI CSD18510Q5B and the CSD88584Q5DC,
as used for power protection and BLDC motor control, respectively, in the Beret family of boards (see §5).
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Figure 9.25: Essential components of (left) a buck converter, as considered in Example 9.23, (center) a boost
converter, as considered in Example 9.24, and (right) a buck-boost converter, as considered in Example 9.25.

9.2.4 DC-to-DC voltage conversion

Example 9.23 Buck converters. A buck converters is used for DC-to-DC voltage conversion, to step from
one voltage (e.g., from a battery) down to a well-regulated lower voltage, which is a common problem in elec-
tromechanical systems. The essential components of a buck converter are illustrated in Figure 9.25a.

Assume a square wave at Vm, formed by repeated pressing of the button25 b, with current flowing from Vin
(through the button) when it is pressed, and current flowing from ground (through the diode) when it is not.
Defining ωc = 1/

√
LC , the output Vout when the button is pressed may be determined as follows:

Vm − Vout = L
dIL
dt
, IC = C

dVout
dt

, Vout = IRR, IL = IC + IR ⇒ Vout(s)

Vm(s)
=

ω2
c

s2 + s/(RC) + ω2
c

.

Thus, regardless of the precise value of the load R, if L and C are selected to be large enough that ω2 ≫ ω2
c ,

where ω is the frequency of square wave at Vm, then the fundamental and higher harmonics of this square
wave will be significantly damped by the unit-gain second-order low-pass LC filter (see Example 9.2) in the
buck converter, leaving at Vout only the average value of Vm, which is simply Vin times the duty cycle D (where
0 ≤ D ≤ 1) of the square wave at Vm, plus a small essentially sinusoidal ripple at the PWM frequency.

In implementation, rather than running at a fixed duty cycle, feedback can be implemented to identify and
implement the duty cycle D required to achieve a desired value of Vout. This may be achieved, e.g., by imple-
menting a TI TPS56637, which is compact (less than 9mm2), easy to hook up (SMT, 10 pins), and inexpensive
(less than $1.50). The (simple) external wiring and (complex) internal circuitry diagrams for the TPS56637 (which
generates the required PWM signal with a few op amps) are illustrated in Figure 9.26; note that the button b
is replaced by a PWM-actuated MOSFET-driven class D amplifier (shown near the SW pin in the internal cir-
cuitry diagram), as discussed further in Example 9.32. The output Vout(t) may then be hooked to a load of a few
hundred ohms (or more), and this circuit will drive the tens of mA (or less) necessary to drive the load.

Example 9.24 Boost converters. A boost converter is also used for DC-to-DC voltage conversion, but to step
from a given Vin up to a higher output voltage Vout. Its essential components are illustrated in Figure 9.25b.

Startup. For the purpose of analysis, assume the circuit is initialized with the switch at left in the off position,
and with V1 = Vm = Vout = 0. At time t = 0, the switch at left is moved to the on position, thus setting V1 = Vin
(the voltage of the source), and the button b is left open as shown, so the current through the diode is IL.

The eqns for the R, C , and L components, and the KCL eqn at the Vout node, may be written

Vout(t) = RIR(t), IC(t) = C d[Vout(t)]/dt, V1(t)− Vm(t) = Ld[IL(t)]dt, IL(t) = IC(t) + IR(t). (9.12)

25In application (see Figure 9.26), the button is replaced by a PWM signal driving a Class D amplifier (see Example 9.32).
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Figure 9.26: The (left) simple external wiring and (right) complex internal circuitry of the TI TPS56637 buck
converter IC. In the external wiring diagram, the discrete components marked L and COUT correspond to the L
and C components in Figure 9.25a, and the discrete resistors marked RFBT and RFBB form a voltage divider (see
Example 9.1) that generate VFB = VOUT · RFBB/(RFBT + RFBB) at the FB pin on the IC, which is compared to an
(internally-generated, with a zener diode) VFB, ref = 0.6V reference voltage within the IC, in order to increase or
decrease the duty cycle of the PWM signal at the SW pin, as appropriate, in order to reach a desired VOUT, target.
[Thus, e.g., if VOUT, target = 5V, one could select, say, RFBT = 73.25 kohm and RFBB = 10 kohm.]

Figure 9.27: The (left) simple external wiring and (right) complex internal circuitry of the TI LMR62014 boost
converter IC. In the external wiring diagram, the discrete components marked {L1,C2,D1} correspond to the
{L,C, d} components in Figure 9.25b, and the discrete resistors marked R1 and R2 form a voltage divider (see
Example 9.1) that generate VFB = VOUT · R2/(R1 + R2) at the FB pin on the IC, which is compared to an
(internally-generated, with a zener diode) VFB, ref = 1.23V reference voltage within the IC, in order to increase
or decrease the duty cycle of the PWM signal at the SWpin, as appropriate, in order to reach a desired VOUT, target.
[Thus, e.g., if VOUT, target = 12V, one could select, say, R1 = 117 kohm and R2 = 13.3 kohm.]
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Assume the voltage drop of the diode d, under forward bias, is Vd (with Vd ≪ Vs), so that the moment that
current begins to flow, at t = 0, Vm jumps up to Vd. Thereafter, the eqn for the voltage across the diode, while
it remains under forward bias, is simply Vm − Vout = Vd. Noting Table 8.1, we thus have

Vm(t)− Vout(t) =
{
0 t < 0

Vd t ≥ 0
⇒ Vm(s)− Vout(s) = Vd/s. (9.13a)

Noting similarly that V1(t) = 0 for t < 0 and V1(t) = Vin for t ≥ 0, we have V1(s) = Vin/s.
In the development that follows (which will account for the periodic pressing and releasing of the button),

we will focus specifically on the time evolution of both Vout(t) and IL(t). In this startup phase, the initial
values of both of these variables is zero. However, in order to better handle “Phase B” of the analysis below, we
will consider even from the beginning here the possibility of nonzero initial values of both of these variables,
denoting the initial value of Vout as V B

out, and the initial value of IL(t) as IBL . With this, the Laplace transform of
the component and KCL equations in (9.18) may be written

Vout(s) = RIR(s), IC(s) = C [sVout(s)− V B
out], Vin/s− Vm(s) = L [sIL(s)− IBL ], (9.13b)

IL(s) = IC(s) + IR(s). (9.13c)

In (9.13a)-(9.13c), we have 5 eqns in the 5 variables {IL(s), IC(s), IR(s), Vm(s), Vout(s)}. These 5 eqns may be
combined to determine stand-alone algebraic eqns for Vout(s) and IL(s) [see code in RR.ch09], which gives:

Vout(s) =
b2 s

2 + b1 s+ b0
s [s2 + a1s+ a0]

, IL(s) =
c2 s

2 + c1 s+ c0
s [s2 + a1s+ a0]

, where a1 = 1/(C R), a0 = 1/(LC) (9.14)

b2 = V B
out, b1 = IBL /C, b0 = (Vin − Vd)/(LC),

c2 = IBL , c1 = (Vin − Vd − V B
out)/L+ IBL /(C R), c0 = (Vin − Vd)/(LC R).

Noting the e−σt cos(ωdt) and e−σt sin(ωdt) entries in Table 8.1, setting σ = a1/2 and ωd =
√
a0 − a21/4, gives

Vout(s) =
b2 s

2 + b1 s+ b0
s [s2 + a1s+ a0]

=
b2 s

2 + b1 s+ b0
s [(s+ σ)2 + ω2

d]
= B2

1

s
+B1

(s+ σ)

(s+ σ)2 + ω2
d

+B0
ωd

(s+ σ)2 + ω2
d

. (9.15a)

IL(s) =
c2 s

2 + c1 s+ c0
s [s2 + a1s+ a0]

=
c2 s

2 + c1 s+ c0
s [(s+ σ)2 + ω2

d]
= C2

1

s
+ C1

(s+ σ)

(s+ σ)2 + ω2
d

+ C0
ωd

(s+ σ)2 + ω2
d

. (9.15b)

This may be solved for {B2, B1, B0} and {C2, C1, C0} by forming a common denominator and setting like
powers of s in the numerator as equal, which gives

B2 =
b0

σ2 + ω2
d

, B1 = b2−B2, B0 =
b1 − b2σ
ωd

−B2
σ

ωd
, C2 =

c0
σ2 + ω2

d

, C1 = c2−C2, C0 =
c1 − c2σ
ωd

−C2
σ

ωd
,

and thus, for t ≥ 0,

Vout(t) = B2+B1 e
−σt cos(ωd t)+B0 e

−σt sin(ωd t), IL(t) = C2+C1 e
−σt cos(ωd t)+C0 e

−σt sin(ωd t), (9.16)

where the constants {ωd, σ, B2, B1, B0, C2, C1, C0} depend on {L,C,R, Vin, Vd, V B
out, I

B
L } via the equations above.

It follows from (9.16) that Vout(t = 0) = B2 + B1 = b2 = V B
out and IL(t = 0) = C2 + C1 = c2 = IBL , as

specified. Thus, simplifying (9.16) by taking V B
out = IBL = 0 gives Vout(t = 0) = IL(t = 0) = 0, as expected.

Both Vout(t) and IL(t) are oscillating decaying sinusoids with frequency ωd =
√
1/(LC)− 1/(4C2R2) and

damping σ = 1/(2C R), eventually approaching Vout(t)→ B2 = Vin − Vd and IL(t)→ C2 = (Vin − Vd)/R.
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If the diode is removed (thus setting Vd = 0 in our equations), the above expressions would apply for all
t ≥ 0. With the diode present, this solution is only valid until IL(t) falls to zero, after which time the diode
shuts off. However, taking V B

out = IBL = 0 and finite positive values for {L,C,R}, IL(t) > 0 for all t ≥ 0, so the
above solution is valid for all t ≥ 0 in the setting described as long as the button b is not pressed.

Phase A. At time t = tA, the button b is pressed closed (leaving the switch at left in the on position); the
moment this button is pressed, Vm jumps down to 0 (that is, to GND). Thus, by pressing this button, the diode
is put under reverse bias, effectively isolating the portion of the circuit to the left of the diode from that to its
right. These two portions of the circuit, now electrically isolated, are thus analyzed separately below.

The current IL(t) for tA ≤ t ≤ tB is governed by a single ODE, with an initial value at t = tA of IAL :

dIL(t)/dt = Vin/L with IL(tA) = IAL ⇒ IL(t) = Vin(t− tA)/L+ IAL for tA ≤ t ≤ tB.

The voltage Vout(t) for tA ≤ t ≤ tB is also governed by a single ODE, with an initial value at t = tA of V A
out:

[1/(RC) + d/dt]Vout(t) = 0 with Vout(tA) = V A
out ⇒ Vout(t) = V A

out e
−(t−tA)/(RC) for tA ≤ t ≤ tB.

Phase B. At time t = tB , the button b is released to open (leaving the switch at left in the on position); the
moment the button is released, the current from the inductor is again rerouted through the diode, and Vm jumps
back up to again satisfy the equation Vm − Vout = Vd. The voltage and current of this circuit are thus precisely
as given in (9.16) in the vicinity of t′ = t − tB = 0, with nonzero initial values, at t′ = 0 (that is, at t = tB), of
IBL and V B

out, determined by evaluating the boxed expressions above for IL(t) and Vout(t) at t = tB :

Vout(t) = B2 +B1 e
−σ(t−tB) cos[ωd (t− tB)] +B0 e

−σ(t−tB) sin[ωd (t− tB)] for tB ≤ t ≤ tC

IL(t) = C2 + C1 e
−σ(t−tB) cos[ωd (t− tB)] + C0 e

−σ(t−tB) sin[ωd (t− tB)] for tB ≤ t ≤ tC .

Periodic oscillation. At time t = tC , the button b is again pressed closed (again, leaving the switch at left in
the on position), thus re-entering Phase A, with nonzero initial values for IAL and V A

out, determined by evaluating
the expressions above for Vout(t) and IL(t) at t = tC . Replacing the button with a MOSFET connected to GND,
and excited at its gate with a PWM signal (generated by a microcontroller, like that on the Berets in §5), this
process repeats periodically, at a constant (very high) frequency f and duty cycleD where 0 < D < 1, for some
tA and corresponding tB = tA +D/f and tC = tA + 1/f . After repeating many times, a periodic behavior of
the circuit settles in over each period tA ≤ t ≤ tC (that is, at the same frequency f as this PWM excitation).

The periodic condition that this system converges to may be found by setting the values of IL(t) and Vout(t)
at t = tA equal to the values of IL(t) and Vout(t) at t = tC in the above analysis. Evaluating the first two boxed
equations at time t = tB , setting Vout(tB) = V B

out and IL(tB) = IBL , and the second two boxed equations at time
t = tC , setting Vout(tC) = V A

out and IL(tC) = IAL , gives four conditions for this periodic behavior, which may
then be solved to find the {V A

out, V
B
out, I

A
L , I

B
L } which simultaneously solve these four equations:

V B
out = V A

out e
−(tB−tA)/(RC), (9.17a)

IBL = Vin(tB − tA)/L+ IAL , (9.17b)

V A
out = B2 +B1 e

−σ(tC−tB) cos[ωd (tC − tB)] +B0 e
−σ(tC−tB) sin[ωd (tC − tB)], (9.17c)

IAL = C2 + C1 e
−σ(tC−tB) cos[ωd (tC − tB)] + C0 e

−σ(tC−tB) sin[ωd (tC − tB)], (9.17d)

where
ωd =

√
1/(LC)− 1/(4C2R2), σ = 1/(2C R), tB − tA = D/f, tC − tB = (1−D)/f = D̄/f,

B2 = Vin − Vd, B1 = V B
out − (Vin − Vd), B0 = [IBL /C − V B

outσ]/ωd −B2σ/ωd,

C2 = (Vin − Vd)/R, C1 = IBL − (Vin − Vd)/R, C0 = [(Vin − Vd − V B
out)/L+ IBL (σ − 1/(C R))]/ωd − C2.
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Figure 9.28: Representative curves for (left) Vout(t) and (right) IL(t) over tA ≤ t ≤ tC for a boost converter.

The equations above are easily typed directly into the computer and solved (see code in RR.ch09), to give
{V A

out, V
B
out, I

A
L , I

B
L } as complicated functions of {Vin, Vd, L, C,R, f,D}.

Given the values of {IAL , V A
out, I

B
L , V

B
out, I

C
L , V

C
out} characterizing the periodic oscillations (with IAL = ICL and

V A
out = V C

out) as determined above, taking Vin = 5V, Vd = 0.5V, L = 10µH, C = 4.7µF, R = 250 ohms,
f = 1.6MHz, andD = 7/12, and noting the four boxed equations above for Vout(t) and IL(t) over both Phase A
(tA ≤ t < tB) and Phase B (tB ≤ t < tC), the corresponding Vout(t) and IR(t) are plotted over the entire interval
tA ≤ t ≤ tC in Figure 9.28. Note that Vout is a decaying exponential on (tA, tB), and a decaying sinusoid on
(tB, tC); IL is linear on (tA, tB), and a decaying sinusoid on (tB, tC). When excited at a high frequency f , most
of these curves appear to be nearly linear over each phase. Overall, there are relatively small fluctuations in
Vout(t), and relatively large fluctuations in IL(t). Note also that Imean

L ≈ V mean
out /[R (1−D)]. By trial and error, it

is found that a slightly adjusted value of D ≈ 0.60086 gives V mean
out ≈ 12V .

Implementation. Rather than running at a fixed duty cycle, feedback can again be implemented to identify the
duty cycleD required to more precisely achieve a desired value of V mean

out . This is especially important when the
value of Vin is not accurately known (e.g., if it comes from the output of a LiPo, which ranges from 3.0 to 4.2 V per
cell). This may be achieved, e.g., by implementing a TI LMR62014, which is compact (less than 9mm2), easy to
hook up (SMT, 5 pins), and inexpensive ($0.27). The (simple) external wiring and (complicated) internal circuitry
diagrams for the LMR62014 (which generates the required PWM signal with a few op amps) are illustrated in
Figure 9.27; note the button b is replaced by a PWM-actuatedMOSFET illustrated near the SW pin of the internal
circuitry diagram (Figure 9.27b). Vout(t) may then be hooked to a load of a few hundred ohms (or more), and
this circuit will drive the tens of mA (or less) necessary to drive the load.

Note that the IL(t) plot given in Figure 9.28 also appears on page 12 of the LMR62014 datasheet.

Example 9.25 Buck-boost converters.
A buck-boost converter can step a DC input voltage Vin either up or down, as necessary, to generate a desired

DC output voltage Vout. Its essential components are illustrated in Figure 9.25c. Note that what we refer to in
this discussion as the “button” is replaced in the implementation by a MOSFET, acting as a high-speed “switch”
driven by a PWM signal at a specified (relatively high) frequency ω and duty cycle D, with 0 ≤ D < 1.

The principle of operation of a buck-boost converter is similar to that of the boost converter (Example 9.24).
During Phase A, the “button” is closed (i.e., the MOSFET is “on”), and thus the current travels from the top

of the battery (which generates Vin), through the closed button, down through the inductor to ground (i.e., back
to the battery). During this phase, the current through the inductor, Iin increases linearly.

During Phase B, the “button” is open (i.e., the MOSFET is “off”). Note that the current through the inductor
is continuous. This current has to go somewhere during Phase B; since the battery is disconnected from the
inductor (by the button) during this phase, this current flows back up through the capacitor the load resistor,
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and through the diode back to the top of the inductor. Defining the voltage at the bottom of the battery, inductor,
capacitor, and load resistor in Figure 9.25c as ground, it is thus seen that the voltage at Vout must be negative.

The voltage drop across the capacitor (and, thus, Vout) is continuous. Since the frequency of the PWM exci-
tation of the button is relatively high, the magnitude of the voltage fluctuation at Vout is relatively small. Thus:
• during Phase A, the diode is “off” (as Vm = Vin, and Vout < 0), and
• during Phase B, the diode is “on” (with Vm = Vout − Vd, where Vd is the cut-in voltage of the diode).
Note that Vm jumps when switching from Phase A and Phase B, and again when switching back to Phase A.

Again, the full analysis of the buck-boost converter is quite similar to Example 9.24, which we follow closely
below. We focus specifically on the periodic condition that the system quickly settles into.

Phase A. At time t = tA, the button is pressed closed, and the diode is off, effectively isolating the portion of
the circuit to the left of the diode from that to its right. The current IL(t) for tA ≤ t ≤ tB is governed by a single
ODE, with an initial value at t = tA of IAL :

dIL(t)/dt = Vin/L with IL(tA) = IAL ⇒ IL(t) = Vin(t− tA)/L+ IAL for tA ≤ t ≤ tB.

The voltage Vout(t) for tA ≤ t ≤ tB is also governed by a single ODE, with an initial value at t = tA of V A
out < 0:

[1/(RC) + d/dt]Vout(t) = 0 with Vout(tA) = V A
out ⇒ Vout(t) = V A

out e
−(t−tA)/(RC) for tA ≤ t ≤ tB.

Phase B. At time t = tB , the button is open.
The eqns for the R, C , and L components, and the KCL eqn at the Vout node, may be written

Vout(t) = RIR(t), IC(t) = C d[Vout(t)]/dt, Vm(t) = Ld[IL(t)]dt, IL(t) + IC(t) + IR(t) = 0. (9.18)

9.2.5 BDC and BLDC motor control
move some motor control stuff to here...

9.2.6 Implementing digital logic using CMOS: Inverters, NOR, and NAND
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Figure 9.29: Internal construction of an LM324 op amp, with Ia = Ib = 6µA, Ic = 100µA, Id = 50µA.
The first stage of the op amp is the differential amplifier considered in Example 9.21 (see Figure 9.22c), with
darlington transistors (that is, a cascade of two transistors, interconnected as shown) used on each of the
inputs to increase the gain, and the output resistor replaced by the op amp’s second stage. The rest of the circuit
amplifies the output from the first stage, effectively implements an RC first-order low-pass filter (note the
resistor and the capacitor) to suppress very-high-frequency noise, and provides high current driving capability
with low output impedance as well as short circuit protection. The LM324 quad op amp implements four such
circuits together in a single, robust, and convenient 14-pin dual in-line package (DIP).

9.3 Operational amplifiers
An operational amplifier (a.k.a. op amp) is an active (powered) integrated circuit with two inputs, V+(t)
and V−(t), and one output, Vout(t), that functions as a differential amplifier with output

Vout(t) =





Vs+ if Vs+ < Vo(t)

Vo(t) if Vs− < Vo(t) < Vs+

Vs− if Vo(t) < Vs−

with Vo(t) ≈ A [V+(t)− V−(t)], (9.19a)

where the gain A is very large (indeed, it is often approximated as A→∞), and two additional properties:

a) very high input impedance (that is, the input terminals of the op amp draw negligible current), and
b) very low output impedance (that is, the output voltage of the op amp is set by the input voltages as

specified above, essentially independent of the attached load).

The internal construction of an op amp is a fairly involved arrangement of transistors and other circuit elements,
as typified by26 the LM324 op amp illustrated27 in Figure 9.29. A more accurate dynamic model of Vo(t) in the
(typical) LM324 op amp, which takes into account the fact that the magnitude of its frequency response rolls
off at a couple hundred kilohertz [cf. (9.19a)], may be written in transfer-function form as

Vo(s) = G(s) [V+(s)− V−(s)] with G(s) = A
a

s+ a
, (9.19b)

whereA ≈ 105 and a ≈ 106. Note that the low-pass-filter nature of an op amp is usually neglected [see (9.19a)];
that is, the corner frequency a is so large that the transfer functionG(s) of the op amp is usually approximated
as a pure gain (and, further, the gain A of an op amp is so large that it is often considered to be essentially
infinite when modeling the behavior of an op amp circuit). However, the more precise model of an op amp

26Note that there are many such op amp designs that lead to the same essential properties.
27Note that, in Figure 9.29, Vs+ is denoted Vs, and Vs− is denoted by ground. Both conventions are common.
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Figure 9.30: Two simple op amp circuits: (a) an op amp wired with negative feedback and (b) its corresponding
block diagram, and (c) an op amp wired with positive feedback and (d) its corresponding block diagram. As op
amps are active devices, their connections to Vs+ & Vs− are often shown explicitly in the op amp symbol, as in
(a) and (c); these connections are suppressed for notational simplicity in most of the remainder of this text.

given in (9.19b) is the best starting point to understand op amp behavior, as it explains why an op amp with
feedback is either stable or unstable (note that both modes have their uses), depending on which input terminal
the feedback is connected to, as shown below.

Consider first the simple op amp circuit in Figure 9.30a, with negative feedback, and its corresponding
block diagram in Figure 9.30b, with an input-output transfer function of

Vo(s) = G(s)E(s)

E(s) = Vin(s)− Vo(s)

}
⇒ H(s) =

Vo(s)

Vin(s)
=

G(s)

1 +G(s)
=

aA

s+ a+ aA
≈ aA

s+ aA
.

The gain of this first-order low-pass filter is nearly unity over a very wide range of frequencies; note the fast
stable pole at s ≈ −aA. With large A, this circuit behaves as a voltage follower or buffer, with Vout(t) ≈
Vin(t). This active circuit is useful because, due to its high input impedance and low output impedance, it
isolates the circuits hooked to its input and output terminals; that is, it draws negligible current from the
circuit connected to its input terminal, and maintains Vout(t) ≈ Vin(t) while providing as much current as
required (within limits) by the circuit connected to its output terminal, thus allowing filters to be constructed
and analyzed as independent stages then cascaded together, effectively relaxing the restrictive assumptions of
Example 9.2.

Now consider the op amp circuit in Figure 9.30c, with positive feedback, and its corresponding block
diagram in Figure 9.30d, with an input-output transfer function of

Vo(s) = G(s)E(s)

E(s) = Vo(s)− Vin(s)

}
⇒ H(s) =

Vo(s)

Vin(s)
=
−G(s)
1−G(s) =

−aA
s+ a− aA ≈

−aA
s− aA.

Due to the (fast) unstable pole at s = aA, the equilibrium Vo(t) ≈ Vin(t) is unstable, and is thus, in practice,
never realized. Instead, Vout(t) is driven to one of the limiting values of the op amp, Vs+ or Vs−, and stays there;
which limit it goes to depends on the initial values of Vo(t) and Vin(t) when the op amp is turned on.

9.3.1 Design and analysis of a few useful op amp circuits

We now show via several examples how the arrangement of transistors in an op amp is convenient in a variety
of practical situations. Note that almost all useful op amps circuits implement feedback, with Example 9.26 being
a notable exception. Further, almost all useful op amps circuits implementing feedback use the (stable) negative
feedback configuration discussed above, with Examples 9.29, ??, and 9.32 being notable exceptions.
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Example 9.26 Voltage comparator. When implemented without feedback, a bare op amp (9.19a) in the large
gain limit A→∞ functions simply as a voltage comparator:

Vout(t) =

{
Vs+ if V+(t) > V−(t),

Vs− if V+(t) < V−(t).

Example 9.27 Inverting andnoninverting amplifiers. Implementing (stabilizing) feedback to the inverting
input of the op amp, an inverting amplifier may be implemented as shown in Figure 9.31a, in which

Vin(t)− V−(t) = Iin(t)R/M, V−(t)− Vout(t) = IR(t)R, Iin(t) = IR(t);

applying (9.19b) thus leads to

Vout(s) =
aA

s+ a
[0− V−(s)] ⇒ Vout(s)

Vin(s)
=

−M aA

(M + 1)s+ [aA+ a(M + 1)]
=⇒
A→∞

Vout(t) ≈ −M Vin(t).

Similarly, a noninverting amplifier may be implemented as shown in Figure 9.31b, in which

V−(t) = IO(t)R/f, V−(t)− Vout(t) = IR(t)R, IO(t) = −IR(t);

applying (9.19b) leads to

Vout(s) =
aA

s+ a
[Vin(s)− V−(s)] ⇒ Vout(s)

Vin(s)
=

aA

s+ a+ aA/(1 + f)
=⇒
A→∞

Vout(t) ≈ (1 + f)Vin(t).

As illustrated by both of these examples, the (stabilizing) feedback to the inverting input of the op amp leads, in
the A→∞ limit, to the condition that V+ = V−; note in both cases the very fast stable poles. It often simplifies
the analysis of a stable op amp circuit to simply apply the condition V+ = V− at the outset; if you have doubts
whether or not the circuit considered is stable, implement (9.19b) instead, as done above.

Example 9.28 A general op amp circuit for adding and subtracting. Appropriate combination of the
inverting and noninverting amplifiers of Example 9.27 leads to an op amp circuit such that

Vout(t) =
n∑

j=1

mj vj −
N∑

j=1

Mj Vj, (9.20)

that is, to an op amp circuit that can perform an arbitrary linear combination of n +N inputs, with n positive
coefficients mj and N negative coefficients (−Mj). Defining f =

∑
mj −

∑
Mj − 1, we will consider three

cases: f < 0, f = 0, and f > 0. In the sample circuit we will consider, we take n = N = 3; the modifications
required to handle a different numbers of inputs are trivial. Most op amp circuits used for adding and subtracting,
as found online, are special cases of the general circuit presented here.

The circuit required in the f < 0 case is illustrated in Figure 9.31c. For notational clarity, in this example
only, we take the voltages, currents, and resistances in the upper half of the circuit as uppercase, and the voltages,
currents, and resistances in the lower half of the circuit as lowercase. Ohm’s law and KCL then give

V1 − V− = I1R/M1, V2 − V− = I2R/M2, V3 − V− = I3R/M3, V− − Vout = IRR, I1 + I2 + I3 = IR,

va − v+ = ia r/ma, vb − v+ = ib r/mb, vc − v+ = ic r/mc, v+ = io r/|f |, ia + ib + ic = io.

Since negative (stable) feedback is used, assumingA→∞, we take V− = v+; noting that f =
∑
mj−

∑
Mj−1

and solving then leads immediately to (9.20).
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Figure 9.31: Some useful op amp circuits. (a) Inverting amplifier. (b) Noninverting amplifier. (c) A general
adder/subtractor [note: the ground connection shown is for f < 0; if f = 0, this connection to ground is
removed; if f > 0, the connection to ground is attached to V− instead of V+, through a resistance R/f].
(d) Noninverting Schmitt trigger. (e) Inverting Schmitt trigger. Note that (d) and (e) are hysteretic.

As f → 0, the resistance of the connection between the noninverting input of the op amp and ground in
Figure 9.31c goes to infinity. In the f = 0 case, this connection may thus be eliminated entirely; removing the
equation v+ = io r/|f | from the above set of equations, taking io = 0, and solving leads again to (9.20).

Finally, in the f > 0 case, we replace the connection between the noninverting input of the op amp and
ground with a connection between the inverting input of the op amp and ground, with resistance R/f . In this
case, the equation v+ = io r/|f | in the above set of equations is replaced by V− = IoR/f , and the two KCL
relations are now I1 + I2 + I3 = Io + IR and ia + ib + ic = 0; solving again leads to (9.20).

In all three cases, f < 0, f = 0, and f > 0, the resulting relation between the voltages, (9.20), is in fact
independent of both R and r, which are typically selected so that all resistors used in the circuit are between
1 kΩ and 100 kΩ. Note that, in the case that n = 0 (see, e.g., Figure 9.31a), we may take r = 0, wiring the
noninverting input of the op amp directly to ground. In the case that n = 1 and f ≥ 0 (see, e.g., Figure 9.31b),
we may also take r = 0, wiring the noninverting input of the op amp directly to va.

Example 9.29 Schmitt triggers. We now consider two hysteretic circuits that are simply the inverting
and noninverting amplifiers of Example 9.27 with the inputs to the op amp swapped from the stable (negative-
feedback) configuration to the unstable (positive-feedback) configuration. Assuming Vs+ = Vs and Vs− = −Vs,
• in the unstable circuit illustrated in Figure 9.31d, called a noninverting Schmitt trigger,
• if Vout = +Vs, then it will stay there until Vin passes below −Vs/M (that is, until V+ passes below
V−), after which the output will switch to Vout = −Vs, whereas
• if Vout = −Vs, then it will stay there until Vin passes above Vs/M (that is, until V+ passes above V−),
after which the output will switch to Vout = +Vs;

• in the unstable circuit illustrated in Figure 9.31e, called a inverting Schmitt trigger,
• if Vout = +Vs, then it will stay there until Vin passes above Vs/(1 + f) (that is, until V− passes above
V+), after which the output will switch to Vout = −Vs, whereas
• if Vout = −Vs, then it will stay there until Vin passes below −Vs/(1 + f) (that is, until V− passes
below V+), after which the output will switch to Vout = +Vs.

A primary application of Schmitt triggers is switch debouncing: once a remotely-operated Schmitt trigger,
acting as a switch, is flipped one way, it takes a large change in the input to flip the Schmitt trigger the other
way, thus preventing “chatter” of the switch due to noise over the communication channel.
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Figure 9.32: Some dynamic op amp circuits: (a) the inverting first-order filter F (s) = −K(s + z)/(s + p)
of Example 9.30, which may be simplified in of several different useful ways, and (b) the notch filter
Fnotch(s) = K(s2 + ω2

o)/(s
2 + ωo s/Q+ ω2

o) of Example 9.31. .

Example 9.30 A general-purpose inverting first-order filter. The circuit illustrated in Figure 9.32a is a
remarkably flexible general-purpose inverting first-order filter design with transfer function

F (s) =
Vout(s)

Vin(s)
= −C1

C2

s+ 1/(R1C1)

s+ 1/(R2C2)
= −R2

R1

1 +R1C1s

1 +R2C2s
= −R2C1

s+ 1/(R1C1)

1 +R2C2s
= − 1

R1C2

1 +R1C1s

s+ 1/(R2C2)
.

That is, F (s) = −K0(s + z)/(s + p), where K0 = C1/C2, z = 1/(R1C1), and p = 1/(R2C2); we also define
K1 = R2/R1, K2 = R2C1, and K3 = 1/(R1C2). If the op amp is ideal, the circuit design in Figure 9.32a is
actually nine circuits in one, reducing28 in the appropriate limits to all of the inverting first-order filters:
• taking R1C1 > R2C2, it is an inverting lead filter with F (s) = −K0(s+ z)/(s+ p) where z < p;
• taking R2C2 > R1C1, it is an inverting lag filter with F (s) = −K0(s+ z)/(s+ p) where p < z;
• removing C1, it is an inverting first-order low-pass filter with F (s) = −K3/(s+ p);
• removing R1, it is an inverting first-order high-pass filter with F (s) = −K0 s/(s+ p);
• removing29 R2, it is an inverting PI filter with F (s) = −K0 (s+ z)/s;
• removing29 R2 and C1, it is an inverting pure integrator F (s) = −K3/s;
• removing C2, it is an inverting PD filter30 with F (s) = −K2 (s+ z);
• removing C2 and R1, it is an inverting pure differentiator30 F (s) = −K2 s;
• removing C1 and C2, it is an inverting amplifier F (s) = −K1.

The development of a corresponding general-purpose noninverting first-order filter is considered in Exercise
9.6. To build a second-order filter that incorporates both a first-order lag filter at low frequencies (to reduce
steady-state error) and a first-order lead filter at high frequencies (to improve damping and reduce overshoot),
creating what is called a lead/lag filter (see Figure 10.3.2b), one may simply cascade together the lead and lag
filters described above as necessary. Note that a PID filter is simply a special case of a lead/lag filter with
• the roll-off of the integral action of the lag filter taken all the way down to ω → 0, and
• the roll-off of the derivative action of the lead filter taken all the way up to ω →∞.

To build a PID filter, one could simply cascade together the PI and PD filters described above. However, note that
lead/lag filters are strongly preferred over PID filters for the reasons discussed in §10.3.1: that is, the roll-off of
the low-frequency gain and the high-frequency gain mentioned above almost never need to be taken all the way

28Removing a capacitor corresponds to taking its capacitance C → 0, and removing a resistor corresponds to taking its resistance
R→∞; in both cases, by (9.2), the current goes to zero through the (removed) component regardless of the applied voltage.

29Alternatively, R2 may be replaced by a switch, allowing the integrator to be reset whenever desired.
30PD filters and pure differentiators must never be used in practice, because they amplify high-frequency noise without bound,

which is a significant problem. Lead filters and first-order high-pass filters (a.k.a. dirty differentiators) should be used instead.
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Figure 9.33: Bode plot of the notch filter of Example 9.31, rescaled such that K = 1, taking ωo = 1, (dot-
dashed) Q = 0.5, and (solid) Q = 5. Note the “notch” shape of the magnitude part of the Bode plot.

to zero and infinity respectively, and doing such generally causes significant problems (specifically, integrator
windup and the amplification of high-frequency noise) in the closed-loop setting.

Example 9.31 Notch filter. The circuit illustrated in Figure 9.32a, called an active twin-T filter, is a conve-
nient op amp circuit implementation of the notch transfer function

Fnotch(s) =
Vout(s)

Vin(s)
= K

s2 + ω2
o

s2 + (ωo/Q)s+ ω2
o

(9.21)

where31 K = 1 + R2/R1, Q = 1/[2(2 − K)], and ωo = 1/(RC). Note that the zeros of the notch are pure
imaginary, and the so-called “quality” of the notch is given byQ = 1/(2ζ), where ζ is the damping of its poles;
thus, Q = 0.5 (that is, K = 1, or R2 = 0 and R1 → ∞) corresponds to two identical real poles, and Q > 0.5
corresponds to a pair of complex-conjugate poles with damping which decreases as Q is increased.

The Bode plot of Fnotch(s) for ωo = 1 and two different values of Q is illustrated in Figure 9.33; note that the
gain of the notch filter is zero at ωo, and that the width of the range of frequencies significantly affected by the
notch decreases with increasing Q. When using a notch to eliminate, e.g., a 50 or 60 Hz “buzz” (that is, noise
with a very narrow power spectrum) in a signal, a high Q value is used to minimize the impact of the notch on
the signal of interest outside of the range of frequencies corrupted by the buzz. However, when using a notch
in a feedback control setting to “knock out” the oscillatory dynamics of a plant (see §10.3.2), one certainly does
not want to introduce lightly damped poles with the notch, and values of Q in the range 0.5 ≤ Q ≤ 0.707 are
preferred32. Note finally that an active twin-T implementation of a notch filter may be cascaded with a doubled
lead filter to move the poles resulting from the notch even further into the LHP.

31Note that Q and K can not be set independently in this particular circuit; this usually does not create much of issue, however,
because a notch filter is usually cascaded with other op amp circuits that can be used to set the gain to the desired value.

32That is, when implementing a notch filter to stabilize, e.g., a Ford automobile, achieving high quality is not necessarily job one.
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Figure 9.34: A PWM generation circuit with duty cycle Vin/Vs and frequency 1/(4R1C) Hz, formed by the
cascade of (a) a passive stabilized voltage divider, (b) a triangle-wave generator, and (c) a comparator.

Example 9.32 Efficient control of high-power loads via pulse width modulation. Given a power supply
(e.g., a battery) and a resistive load (e.g., a light bulb), we now consider how to run the load at partial power. An
inefficient solution to this problem is simply to put a variable resistor (a.k.a. rheostat) in series with the load,
thus reducing both the current through the load and the voltage across the load, thereby reducing the power
consumed by the load. Unfortunately, the variable resistor used in such a setting itself consumes a lot of power
that is rejected as waste heat, thereby wiping out any potential senergy savings that might otherwise be realized.

A more efficient solution is to cycle the voltage applied to the load on and off very quickly; the percentage of
the time the switch is on, called the duty cycle, then regulates the (time-averaged) percentage of full power
at which the load will operate. This solution, referred to as pulse width modulation (PWM; see §4.2.3), is
facilitated by the fact that transistors are quite efficient when operated as fast switches (see Guideline 9.1).

A good way to produce a PWM signal, which operates at a constant frequency ω = 1/(4R3C) Hz, is given
by cascading together the three stages shown in Figure 9.34. The first stage (Figure 9.34a) is a passive voltage
divider with Vo = Vs/2, with a capacitor added to stabilize the output voltage in case the (small) load attached
to its output fluctuates; values of R ∼ 10 kΩ and C ∼ 100 nF are typical. The second stage (Figure 9.34b)
generates a triangle wave Vw between 0 and Vs and operating at a frequency of ω = 1/(4R1C)Hz, as discussed
below. The third stage (Figure 9.34c) then compares the triangle wave Vw with Vin, outputting Vs whenever Vin
is greater than Vw, and outputting 0 whenever Vin is less than Vw, thus resulting in a duty cycle of Vin/Vs.

To analyze the operation of the triangle-wave generator of Figure 9.34b, denote the inputs and outputs of
op amp A (configured in an unstable configuration with positive feedback) as {VA,+, VA,− = Vo, VA,out}, and
denote the inputs and outputs of op amp B (configured in a stable configuration with negative feedback) as
{VB,+ = Vo, VB,−, VB,out = Vw}. Note that, since op amp B is wired with (stabilizing) negative feedback, VB,out
adjusts so that VB,− = VB,+ = Vo = Vs/2 at all times. Note also that resistors R2 and R3 form another voltage
divider so that, taking33 R2 ≈ R3, it follows that VA,+ = (VA,out + VB,out)/2 at all times. As in the Schmitt trigger
considered previously, there are two states to consider:

(a) VA,out = 0. Assuming the capacitor is initially charged such that VB,out = 0, current flows from the
output of op amp B through C and R1 to the output of op amp A, charging the capacitor until VB,out = Vs
and thus VA,+ just33 exceeds VA,− = Vs/2, and op amp A flips to state (b).
(b) VA,out = Vs. Assuming the capacitor is initially charged such that VB,out = Vs, current flows from the
output of op amp A through R1 and C to the output of op amp B, charging the capacitor until VB,out = 0
and thus VA,+ falls just33 below VA,− = Vs/2, and op amp A flips back to state (a).

The period of this oscillation is constant, andmay be calculated by determining how long it takes the capacitor of
the relaxation oscillator to gather sufficient charge to flip the switch in each state. For example, taking VA,out = 0

33Note that R3 should actually be chosen to be just slightly smaller than R2, so that VA,+ = (0.5− ϵ)VA,out + (0.5 + ϵ)VB,out, and
the states indeed flip as described. This can be achieved by selecting two resistors of the same rated resistance and, say, 5% variance,
then carefully measuring the resistance of the two and and putting the one with smaller resistance in the R3 location.
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Figure 9.35: Application of a PWM circuit, formed by cascading the three stages of Figure 9.34, to an inductive
load, incorporating a pair of protective flyback diodes to prevent voltage spikes from forming at VPWM (and,
possibly, an arc between exposed wires, and/or damage to one of the op amps) when the PWM circuit acts to
quickly turn the power on and off to an inductive load.

and VB,out(0) = 0, the dynamics of state (a) are governed by

C
d

dt
(VB,out − VB,−) =

VB,− − VA,out
R1

⇒ R1C
d

dt
VB,out = VB,− − VA,out ⇒

VB,out(t) =
1

R1C
(VB,− − VA,out)t, VB,out(T/2) = Vs ⇒ T = 4R1C.

Example 9.33 Efficient power control of inductive loads via pulse width modulation. The PWM strat-
egy for driving loads at partial power, described above, is highly efficient and remarkably inexpensive to imple-
ment with modern electronics. If applied to a load with inductance, however, a problem is encountered. The
PWM effectively acts as a switch, quickly turning on and off the power to (and, thus, the current through) the
attached load. If the load contains an inductor governed by V = L dI/dt [see (9.2c)], rapid changes in the cur-
rent through the inductor would tend to induce large voltage spikes at VPWM. As introduced in Figure 9.23, the
diodes used in the circuit in Figure 9.35, called flyback (a.k.a. snubber, freewheeling, or suppressor) diodes,
ensure (by providing a current path from ground, or to power, when necessary) that VPWM does not exceed the
range−Vd to Vs+Vd, where Vd is the (small) cut-in voltage of the diode. A good PWM circuit should always have
such a flyback diodes incorporated, just in case the load attached to the PWM circuit has inductive elements.
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Figure 9.36: The Colpitts oscillator considered in Example 9.34.

Example 9.34 Colpitts oscillator. A Colpitts oscillator is an LC tank oscillator (see Example 9.12) with a
simple transistor or op amp circuit implemented in order to offset the losses associated with the inevitable
resistance of the real components in the circuit, thereby exhibiting sustained oscillations. We will consider here
the case with an op amp implemented, as illustrated in Figure 9.36 (cf. Figure 9.12), initialized with both switches
in the off position, current equal to zero everywhere, and all capacitors fully discharged.

Startup. Startup of the Colpitts oscillator, which occurs whenwe turn the switch from off to position 1 (leaving
the 2-way switch at off), is the same as the startup of the LC tank oscillator discussed in Example 9.12.

Decaying oscillations. Starting from the steady values of Vout(t) = Vs and I1(t) = 0, moving the 3-way switch
from position 1 to position 2 (leaving the 2-way switch at off) initiates sinusoidal oscillations that gradually
decay due to the inevitable parasitic resistance of the components in the circuit. Analysis of these oscillations
is the same as the analysis of the decaying oscillations of the LC tank oscillator discussed in Example 9.12.

Sustained oscillations. Some time after starting the oscillations discussed above, we turn the 2-way switch
from off to on (leaving the 3-way switch at position 2), thereby attaching the op amp to the LC tank oscillator.
Selecting {R5, R6, R7} appropriately, the net effect of hooking in this op amp is to provide just enough energy
back into the oscillations, phased appropriately, to make up for the energy lost in R4.

To derive the equations governing this circuit, we extend the analysis of the LC tank in Example 9.12, mod-
ifying the statements of KCL as appropriate (include I8, the current coming out of the op amp), incorporating
the component equations for {R5, R6, R7}, and applying the relation V− = V+ = 0 to account for the behavior
of the op amp, which is implemented in the stable (negative feedback) configuration. We assume that, when the
2-way switch is turned on [taken here as t = 0], Vout(t=0) = V 0

out, Va(t=0) = V 0
a , and I3 = I03 . The Laplace

transforms of {V ′out(t), V ′a(t), I ′3(t)} are thus (s Vout(s) − V 0
out), (s Va(s) − V 0

a ), and (s I3(s) − I03 ), and our 12
governing eqns (5 KCLs and 7 components) are:

I2(s) = I3(s) + I5(s), I3(s) = I4(s), I4(s) + I7(s) = I1(s), I5(s) = I6(s), I6(s) + I8(s) = I7(s),

I1(s) = C1[s Vout(s)− V 0
out], I2(s) = −C2 [s Va(s)− V 0

a ], Va(s)− Vb(s) = L3 [s I3(s)− I03 ],
Vb(s)− Vout(s) = R4 I4(s), Va(s) = R5 I5(s), −Vs(s) = R6 I6(s), Vs − Vout(s) = R7 I7.

Thus, 12 linear eqns in 12 variables {I1(s), I2(s), I3(s), I4(s), I5(s), I6(s), I7(s), Va(s), Vb(s), Vout(s)}, the first
11 of which are to be eliminated, as easily solved via Matlab (see code in RR.ch09), thus giving:

Vout(s) =
b2s

2 + b1s+ b0
s3 + a2s2 + a1s+ a0

=
b2s

2 + b1s+ b0
(s+ a3)[s2 + a4s+ a5]

where (9.22)

a2 =
C1 C2R4R5R7 +C2 L3R5 +C1 L3R7

C1 C2 L3R5R7

, a1 =
L3 +C2R4R5 +C1R4R7 +C1R5R7 +C2R5R7

C1 C2 L3R5R7

, a0 =
R4 +R5 +R6 +R7

C1 C2 L3R5R7

.
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The values of {a2, a1, a0}, all of which are seen to be positive, determine the behavior of the solution. The values
of {b2, b1, b0} just determine the coefficients of the solution components that are present, based on the precise
values of {V 0

out, V
0
a , I

0
3}, and are not considered further here.

Factoring the denominator of (9.22), a3 may be determined via Cardano’s formula: taking q = (3 a1−a22)/3,
r = (2 a32−9 a2 a1+27 a0)/27, and d = r2/4+q3/27, it follows that a3 = a2/3− 3

√
−r/2 +

√
d− 3

√
−r/2−

√
d,

where 3
√
x denotes the principal (that is, the real) 3rd root of the real number x. It then follows immediately that

a4 = a2 − a3 and a5 = a0/a3. The variables {a3, a4, a5} are determined from {C1, C2, L3, R4, R5, R6, R7} by
the Barkhausen condition (see code in RR.ch09). It turns out that a3 > 0 and a5 > 0 [that is, the first term in the
denominator of Vout(s) is stable, and the second term is oscillatory] if all seven of these parameters are positive.
The oscillatory term has:
• positive damping (thus, damped oscillations) if a4 > 0, and
• negative damping (thus, sustained oscillations) if a4 < 0 (this is known as the Barkhausen criterion).
If a4 < 0, the oscillations grow until the output of the op amp reaches the minimum and maximum values of the
power supply itself, after which the clipping of the op amp output [see (9.19)] reduces its effective gain slightly,
and a periodic, essentially sinusoidal oscillation is established.

When designing a Colpitts oscillator of the form illustrated in Figure 9.36, one first selects {C1, C2, L3} such
that the LC tank part of the circuit (see Example 9.12) oscillates at the desired frequency, ωd = 1/

√
L3C where

1/C = 1/C1+1/C2. Often a balanced configuration is chosen, with C1 = C2. In this design, a tradeoff is made,
keeping both the capacitors and the inductor sufficiently small to minimize the overall size, cost, and parasitic
resistance (modeled as R4 in this analysis) of the components selected. Intermediate values of R5 and R7 are
then assigned, to keep the current demands on the op amp relatively small. Finally, one then tunes R6 in order
to make a4 slightly negative, thus sustaining the oscillations; for example, taking C1 = C2 = 1µF, L3 = 1mH,
R4 = 1Ω, R5 = 1 kΩ, and R7 = 100Ω, it is found that R6 ≈ 1325Ω achieves this goal. Large negative values
of Ω are not desired, as they put proportionally more work on the op amp (which costs power) and less on the
passive components of the LC tank.

Note that, if R7 is taken as zero, it is not possible to satisfy the Barkhausen criterion, and thus sustain
oscillations with an op-amp reinforced Colpitts oscillator circuit. This is despite several (explicit or implied)
false claims to the contrary online (as of 2021, do a Google image search yourself), and even a couple of well-
meaning textbooks; Jakas & Llopis (2007) discuss this confusion in detail.

9.3.2 Constructing binary logic gates

9.3.3 Digital storage elements

9.4 Signal transmission
This section still under construction.
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Figure 9.37: Two equivalent models of a section, of length ∆x, of a pair of transmission wires.

9.4.1 Telegrapher’s equation and characteristic impedance
Consider the models for the electrical characteristics of a pair of transmission wires illustrated in Figure 9.37.
Note that, in this section (§9.4.1) only, we follow the dominant convention in the literature, and indicate by
{R,L,G,C} the resistance per unit length34 (along the pair of wires), the inductance per unit length (along the
pair of wires), the conductance35 per unit length (between the two wires), and the capacitance per unit length
(between the twowires). These quantitiesmightmore precisely be denoted as {dR/dx, dL/dx, dG/dx, dC/dx},
respectively, but that would be notationally too heavy in the derivation that follows.

The equations that govern the electrical signals that propagate down the pair of wires in this model (either
Figure 9.37a or, equivalently, Figure 9.37b) may be written simply by expressing, over a short length of wire∆x,
the change in voltage between the two wires, ∆V , and the change in current flowing within the wires, ∆I ,
using the basic “lumped parameter” component equations (9.2a)-(9.2c), which easily gives

∆V = −(R∆x)I − (L∆x)
dI

dt
, ∆I = −(G∆x)V − (C∆x)

dV

dt
. (9.23a)

Dividing both equations by ∆x, then taking the limit as ∆x→ 0, thus gives the telgrapher’s equations

dV

dx
= −

(
R + L

d

dt

)
I,

dI

dx
= −

(
G+ C

d

dt

)
V. (9.23b)

Taking d/dx of the first equation and inserting the second gives a scalar second-order form of this PDE,

d2V

dx2
=
(
R + L

d

dt

)(
G+ C

d

dt

)
V. (9.24)

Following a separation of variables (SOV) solution approach, we seek solution modes of the separable form

V m(x, t) = Xm(x)Tm(t). (9.25)

Inserting the assumed form of the solution (9.25), aka the solution ansatz, into the PDE (9.24), and isolating
the spatial dependence on one side of the equation and the time dependence on the other side, gives

X ′′ T = RGX T + (RC + LG)X T ′ + LC X T ′′ ⇒ X ′′

X
=
RGT + (RC + LG)T ′ + LC T ′′

T
= −k2,

34The resistance per unit length of a wire (measured in ohms per meter, Ω/m) can be found by dividing the resistivity ρ of its
conductive material (measured in ohm meters, Ωm) by its cross-sectional (measured in square meters, m2).

35Conductance is simply the reciprocal of the resistance, and is sometimes a useful characteristic to use in settings (like, between to
wires in a transmission line system) where the resistance between two points is either very large or essentially infinite. The siemens
(S) is the unit of electric conductance in SI; a siemens (also referred to as a mho) is thus equal to the reciprocal of an ohm, S = 1/Ω.
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where k is a constant (that is, neither a function of x, nor a function of t). Note that we have dropped the ()m

superscripts, and the (x) and (t) dependencies, for notational clarity. We thus have

X ′′ + k2X = 0 ⇒ X(x) = X+e
ikx +X−e

−ikx, (9.26a)

a T ′′ + b T ′ + c T = 0 ⇒ T (t) = T+e
iω+t + T−e

iω−x, (9.26b)

where a = LC , b = RC + LG, c = RG+ k2, and −aω2 + i b ω + c = 0, and thus

LC ω2 − i (RC + LG)ω −RG = k2 = ω2 LC
(
1− i (RC + LG)

ω LC
+

i2RG
ω2 LC

)
,

and therefore

k = ω
√
LC

√(
1− iR

ω L

)(
1− iG

ωC

)
⇔ i k =

√
(iω L+R)(iω C +G); (9.27)

this is known as a dispersion relation of the transmission line system. Note that,

if
R

ω L
≪ 1 and

G

ωC
≪ 1, it follows that k ≈ ω

√
LC; (9.28)

this common case, with low resistance per unit length, R, along the wire, and low conductance (the inverse
of resistance) per unit length, G, from one wire to the other, corresponds to modes [see (9.25) and (9.26)] of
the general form V m(x, t) = Aei(kx+ωt) = Aeik(x+ct), where the wave speed c = ω/k = 1/

√
LC is real (and,

less than the speed of light, which is the speed that electrons themselves move). In other words, this case is
characterized by waves that propagate without distortion in shape36. If one or both of the terms at left in (9.28)
is not small, then the dispersion relation is not a simple real, linear relationship between k and ω, and the wave
suffers some distortion (in shape) and attenuation (reduction in magnitude) as it travels down the wire.

We now put the voltage and corresponding current components of the solution back together. By (9.25),
(9.26), and (9.23b), one component of the voltage and current modal solutions [other modal components can be
written with different signs on k and ω] may be written

V m(x, t) = Vo e
ikxeiωt, Im(x, t) = −Io eikxeiωt, (9.29)

where, by both equations given in (9.23b) and the expression at right in (9.27), we may write

i k Vo = (iω L+R)Io ⇒ Vo
Io

=
(iω L+R)

i k

i k Io = (iω C +G)Vo ⇒ Vo
Io

=
i k

(iω C +G)





⇒ Vo
Io

=

√
iω L+R

iω C +G
= Zo; (9.30)

note that the characteristic impedance of the system, Zo, is measured in ohms. Note also that,

if
R

ω L
≪ 1 and

G

ωC
≪ 1, it follows that Zo =

Vo
Io
≈
√
L

C
. (9.31)

Again, this case, with low resistance per unit length, R, along the wires, and low conductance (the inverse
of resistance) per unit length, G, from one wire to the other, is quite common. Note that, in this case, the
characteristic impedance Zo (measured in ohms) arises primarily due to the L and C terms in the model [see
(9.23)] of the transmission line system.

Typical values (for Cat 5e ethernet cable; other cables are similar) are L = 525 nH/m and C = 52 pF/m, and
thus Zo =

√
L/C =

√
(525 · 10−9)/(52 · 10−12) = 100 ohm and c = 1/

√
LC = 1.9 · 108 m/s. Note that this

wave propagation speed c is about 2/3 of the speed of light in a vacuum, which is 2.99792 · 108 m/s.
36How much of each mode is present in the overall solution, which may be formed as a superposition of modes of the form given

in (9.25), is a function of the boundary conditions and initial conditions on the system, which we do not explore further here.
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Example 9.35 Termination, impedance matching, and signal distortion. Consider the transmission line
model illustrated in Figure 9.37a, with the voltage of the lower wire defined as ground, and with a specified
{R,L,G,C} (see §9.4.1). We now model the voltage V (x, t) and current I(x, t) propagating along the upper
wire by discretizing the linear PDE (9.23b), rearranged into the form

d

dt

(
V
I

)
= −

(
G/C (1/C) d/dx

(1/L) d/dx R/L

)(
V
I

)
, (9.32)

starting from the initial condition that the wire starts out with zero voltage and zero current everywhere, that is,
V (x, t= 0) = I(x, t= 0) = 0. We will apply a boundary condition on the voltage at the left end of the wire,
V (x=0, t), that transitions fairly smoothly from V = 0 to V = 2 after t = 0, according to

V (x = 0, t) =

{
1− cos(πt/t1) 0 ≤ t ≤ t1,

2 t1 ≤ t,
(9.33)

where t1 = 10−8 s. We will initially, in Case A below, consider a simple case with a zero boundary condition on
the current at the right end of the wire, I(x=X, t). [We will change this in Example 9.35.]

We first prepare to numerically simulate both wave components, V (x, t) and I(x, t), as they propagate down
the transmission line for 0 < x < X and t > 0. We do this by discretizing the PDE + BCs with simple numerical
methods (see §9), as described below, using sufficiently small grid spacing in time and space (that is, small ∆t
and ∆x) in the numerical discretization such that reducing ∆t and ∆x further does not substantially change
the numerical result. Other numerical methods would certainly be more efficient and better behaved for larger
∆x and ∆t, but the simple approach implemented here proves to be adequate.

We start by discretizing V (x, t) on a spatial grid with xi = i∆x, denoting Vi(t) = V (xi, t). Noting that (9.32)
is characterized by first-order derivatives in space, we discretize I on a grid that is staggered with respect to the
grid used to discretize V , denoting Ii+0.5(t) = I(xi+0.5, t) where xi+0.5 = (i+ 0.5)∆x for integer i.

The grid is defined by taking ∆x = X/(N + 0.5), so the rightmost gridpoint, at x = X , is the gridpoint
corresponding to IN+1/2(t); this will make implementing the BC I(x=X, t) particularly easy. Note that, using
this grid, there are N integer gridpoints on the interior, at which V1(t) to VN(t) are defined, and there are N
fractional gridpoints on the interior, at which I0.5(t) to IN−0.5(t) are defined.

We apply the BC on V0(t) as a forcing term on the RHS, and note that the BC I(x = X, t) = 0 may be
enforced simply by dropping this term from the discretized equations. We discretize the PDE in (9.32) with
second-order central discretizations of the dI/dx and dV/dx terms; the staggered grid implemented makes this
approach work particularly well. Defining d = 1/∆x, this is accomplished with a linear system of the general
form

dx/dt = Ax+BV0(t) (9.34)

x(t) =




I0.5(t)
V1(t)
I1.5(t)
V2(t)
...

IN−0.5(t)
VN(t)




, A =




−R/L −d/L 0
d/C −G/C −d/C

d/L −R/L −d/L
d/C −G/C −d/C

. . . . . . . . .
d/L −R/L −d/L

0 d/C −G/C




, B =




d/L
0
0
0
...
0
0




.

Denoting h = ∆t, tn = hn, xn = x(tn), and V0,n = V0(tn), a CN method is used to propagate (9.34):

xn − xn−1
h

=
A

2

[
xn + xn−1

]
+B V0,n−0.5 ⇒

[
I − Ah

2

]
xn =

[
I +

Ah

2

]
xn−1 +B hV0,n−0.5 = rn−0.5.
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The system [I−Ah/2]xn = rn−0.5 may be solved efficiently at each timestep using a reduced form of Gaussian
elimination that accounts for the fact that A is tridiagonal and, for sufficiently small h, diagonally dominant.
A simple code that performs the simulation described above, but quite inefficiently (but, good enough for the
present purposes, if you have a fast computer, and choose the number of gridpoints used, N , to be sufficiently
small), is given in Algorithm ??; this code simply calculates x=D\r at each timestep, where D = I − Ah/2
and r = [I + Ah/2]x + B hV0,n−0.5. Egregiously, the code stores D as a full matrix, which indeed is not at all
efficient. The implementation of a computationally efficient numerical method for this simulation, leveraging
the Thomas algorithm, is discussed in Example ??.

The simulations listed below take parameter values typical values for Cat 5e ethernet cable (R = G ≈ 0,
L = 525 ·10−9 H/m, andC = 52 ·10−12 F/m, and thus c = 1.9 ·108m/s and Z0 = 100Ω; see the last paragraph of
§9.4.1). We will consider a wire length ofX = 10m, and thus expect the wave traveling along the wire to begin
to reach the rightmost boundary at T = X/c = 5.22 · 10−8 s. We will use a timestep of h = ∆t = 4 · 10−11 s,
and a spatial grid spacing with N = 200, and thus ∆x = X/(N + 0.5) = 0.049875m.

Case A: No termination. In this case, the boundary condition at the right edge of the domain is taken as
I(x=L, t) = IN+1/2(t) = 0 [that is, no significant current into the downstream component, which accurately
models a connection to the input of an op amp]. In the representation (9.34), this term is simply set to zero,
so the last component of the x vector is VN(t), and the dependence of the evolution equation on IN+1/2(t) is
simply dropped.

The resulting wave propagation is illustrated in Figure 9.38. Note that the wave is reflected back and forth
across the domain indefinitely, causing spurious echos in the communication channel (akin to talking over a
phone line or PA system in the presence of undamped feedback).

Case B: Termination with a resistor. In this example, the boundary conditions at the right edge of the
domain is changed to model the effect of a single resistor, with resistance Z0, installed between the two wires
at x = X . We do this by taking IN+1/2(t) = (1/Z0)VN(t).

Again taking R = G = 0, L = 525 · 10−9, and C = 52 · 10−12, the resulting wave propagation is illustrated
in Figure 9.39. Note that the wave reflections have been eliminated. Problem solved. △

Example 9.36 Wire junction. In the... △
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Figure 9.38: Transmission of a signal down a wire as in Case A of Example 9.35, with no termination. Note
that, if R = G = 0, the signal reflects back and forth over the wire indefinitely.
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Figure 9.39: Transmission of a signal as in Example 9.35, implementing a terminating resistor of Z0 ohms. The
signal reflection is eliminated; after t/T = 1.2, V (x, t) ≈ 2 and I(x, t) ≈ 0.02 along the entire wire.
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Figure 9.40: Some dynamic filters considered in the exercises. (a) A passive second-order low-pass filter.
(b) An active second-order low-pass filter. (c) A general-purpose noninverting first-order filter. (d) A single
op-amp implementation of a PID filter combined with two first-order low-pass filters.

Exercises
[Note: Put all numerical codes you write to solve these exercises, with appropriate (succinct, clear) comments to make
them readable, in a private repository in your account on Github, share this repository with the course instructors,
and provide links to these codes in the pdfs of your homework writeups that you submit for the class.]

Exercise 9.1 Following an analogous derivation as that in Example 9.4, replace the six resistors in Figure 9.5a-
b with six capacitors {C1, C2, C3, Ca, Cb, Cc}, and write a code Wye_Delta_Capacitors.m that quantifies
{Ca, Cb, Cc} in terms of {C1, C2, C3}, and vice versa, so that the two circuits are equivalent. Then, replac-
ing the five resistors in Figure 9.6d with five capacitors {C1, C2, C3, C4, C5} and applying this result, compute
the equivalent capacitance C of this network. Note: Given the simple path to solution in this problem using sym-
bolic manipulation, the engineering student is encouraged to to crank through such tedious algebraic manipulations
symbolically whenever possible from now on!

Exercise 9.2 Following an analogous derivation as that in Example 9.6, given one inductor L2 of a precisely
known inductance, write a code Wheatstone_Inductors.m that quantifies how a Wheatstone bridge may be
used to measure the inductance of an unknown inductor L5.

Exercise 9.3 Following an analogous derivation as that in Example 9.8, compute the power provided or
absorbed by the voltage and current sources of Figure 9.8 without making the assumption that R1 = IL = 0.

Exercise 9.4 Much useful information can be gleaned from device datasheets. This exercise considers just three
examples for the TI LMR62014 discussed in Example 9.24:
• By the figure on page 2 of this datasheet, what values of R1 and R2 are recommended for the voltage divider
to implement feedback (into the device FB pin) that boosts the output to V mean

out ≈ 12V?
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• By the figure on page 1 of the datasheet, what power efficiency is anticipated for Vin = 5V, V mean
out = 12V, and

a load of R = 250 ohms?
• By page 9 of the datasheet: what is the purpose of the input capacitor C1 in the TI LMR62014 circuit?

Exercise 9.5 (a) Compute the transfer function Vout(s)/Vin(s) of the passive circuit shown in Figure 9.40a, mak-
ing the same two assumptions as in Example 9.2. Assuming LC = 1 and RC = 0.5, plot its Bode plot. What is
the corner frequency and damping of this filter?
(b) Compute the transfer function Vout(s)/Vin(s) of the active circuit shown in Figure 9.40b, again making the
same two assumptions as in Example 9.2. AssumingR1 = 10 kΩ and that the op amp is ideal with amplification
A → ∞, what values of {R2, C1, C2} result in the same frequency response as the passive filter considered in
part (a)? Assuming all of the components are readily available (they are!), what advantages does a circuit of the
type considered in part (b) have over the circuit considered in part (a)?
(c) Note that a fourth-order low-pass filter may be constructed simply by cascading together two second-order
active low-pass filters of the type considered in part (b). Following the development in §8.5.1, design an active
fourth-order low-pass Butterworth filter and an active fourth-order low-pass Bessel filter, both with ωc = 100
Hz. Specify the resistor and capacitor values used in each design.
(d) In the active circuit considered in part (b), replace the resistors with capacitors and the capacitors with
resistors. Compute the corresponding transfer function and discuss.

Exercise 9.6 Example 9.30 developed a flexible general-purpose inverting first-order filter. Sketch the Bode
plots of the nine filters that the circuit in Example 9.30 reduces to in the nine special cases enumerated. Then,
develop a similarly flexible noninverting first-order filter, which is a bit more involved. Start by performing a
careful analysis of the circuit in Figure 9.40c, and describe which of the nine cases itemized in the inverting
case (Example 9.30) are realizable with this noninverting circuit. Identify precisely what limitations (if any) are
present in each case. Reviewing the three special cases considered in Example 9.28, describe precisely how the
limitations of this circuit may be circumvented by reconnecting it appropriately.

Exercise 9.7 The circuit in Figure 9.40d (cf. Figure 9.32a) has a transfer function of

Vout(s)

Vin(s)
= −K (s/z1 + 1)(s/z2 + 1)

s
· 1

(s/p1 + 1)(s/p2 + 1)
,

and thus may be interpreted as an inverting PID filter combined with two first-order low-pass filters. Determine
how each of the variables {K, z1, z2, p1, p2} depend on {R1, R2, R3, C1, C2, C3} (show your work, or provide
the symbolic code you write to solve the problem for you). Then, solve for {R1, R2, C1, C2, C3} in terms of
{K, z1, z2, p1, p2, R3}.

Exercise 9.8 Replace {C1, C2, L3} with {L1, L2, C3}, respectively, in Example 9.34 (that is, replace the capaci-
tors with inductors, and replace the inductor with a capacitor, thereby forming aHartley oscillator), and repeat
the example in its entirety, following closely the same analysis.
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Chapter 10

Classical Control

10.1 Closing the loop: an introduction to feedback control design
As illustrated in Figure 10.1, the problem of feedback control design amounts to the design a controller
[denoted D(s) or D(z)] that coördinates the control input(s) u of the plant1 [denoted G(s) or G(z)] with
the measurement(s) y of the plant in such a way as to deliberately change the dynamics otherwise exhibited
by the system, optimizing some balance of the closed-loop system’s performance (that is, the ability of the
closed-loop system to track a desired reference input r with sufficient accuracy) and its robustness (that is,
the insensitivity of the closed-loop system response to state disturbances w, measurement noise v, and
modeling errors ∆ in the plant itself). The performance and robustness measures of interest, as well as the
balance between these two generally competing objectives, must be defined carefully in any given applica-
tion. The large variety of possible systems that one might consider (ODE, PDE, DAE, linear, nonlinear, etc.), the
wide range of performance and robustness measures of possible interest, the numerous balances between these
measures that one might attempt to achieve, and various practical restrictions on actuator authority (satura-
tion and bandwidth limits) and limitations in the controller design (sample time, decentralized communication
architecture, computational complexity, and varying degrees and types of uncertainty in the plant itself) give
rise to a rich variety of possible control strategies that have been and will continue to be developed. The brief
introduction to the feedback control problem presented in this chapter, which surveys some of the key issues
and foundational ideas, intends to serve as a prologue to a more in-depth study of this rich field.

A typical performance specification for a CT or DT LTI system is the prescription of the minimum rise
time and settling time, and the maximum overshoot and steady-state error, of the closed-loop system’s
step response (see Figure 8.3): that is, the response y to a step reference input r to the system depicted in Figure
10.1. A typical robustness specification for such a system is the minimization of the response of the system
to external state disturbances w and measurement noise v that might otherwise disrupt the system. A
balance between these simple performance and robustness specifications on the closed-loop behavior of a SISO
LTI system forms a starting point for the study of the feedback control problem to be presented in this chapter.
As a rule of thumb, intentionally a bit loosely stated, the following is a good starting point:

Guideline 10.1 Apply just enough control feedback to approximately achieve the performance specification.

Pushing a system harder than this with control excitation generally degrades robustness to a host of possible
unmodeled effects, as described in §10.1.1. Time delays are especially dangerous (see Examples 10.2 and 10.11).

1The ubiquitous use of the name plant for the system to be controlled is historical, reflecting the initial applications of linear
systems theory to chemical process control.
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Figure 10.1: Closed-loop (a.k.a. feedback) connections of (left) a continuous-time (CT) LTI plant G(s) =
Y (s)/U(s) and controller D(s) = U(s)/E(s), and (right) a discrete-time (DT) LTI plant G(z) = Y (z)/U(z)
and controller D(z) = U(z)/E(z). In such block diagrams, for clarity, we denote the signals in the time
domain and the systems in the transformed domain (that is, in transfer function form). The sign convention
chosen at the leftmost summing junction is such that the error signal e = r−y. For the (practical) closed-loop
connection of a DT controller with a CT plant, see Figures 10.34 and 10.35.

In the CT SISO case, the Laplace transform of the output, Y (s), is related to the Laplace transform of the
input, R(s), in the absence of state disturbances w and measurement noise v as follows:

Y (s) = G(s)U(s) = G(s)D(s)E(s) = G(s)D(s) [R(s)−Y (s)] ⇒ T (s) ≜ Y (s)

R(s)
=

G(s)D(s)

1 +G(s)D(s)
(10.1a)

The matrix T (s) [in some texts denoted H(s)] is often referred to as “the” closed-loop transfer function
of the system, and may be analyzed in order to ensure the desired performance specifications, such as those
mentioned above. Note that, if G(s) and D(s) are rational functions of s, then we may write, e.g.,

G(s) =
b(s)

a(s)
, D(s) =

y(s)

x(s)
⇒ T (s) =

b(s) y(s)

a(s)x(s) + b(s) y(s)
=
g(s)

f(s)
, (10.1b)

where {a(s), b(s), x(s), y(s), g(s), f(s)} are polynomials. That is, T (s) is a rational function of s as well. Thus,
once simplified appropriately, the closed-loop transfer function T (s) may be analyzed with the various tech-
niques described in §8.2. It is, therefore, the roots of the denominator of T (s) [that is, the poles of the closed-
loop transfer function] which dictate the nature (that is, the speed of oscillation and the rate of exponential
growth or decay) of each component of the response. The roots of the numerator of T (s) [that is, the zeros
of the closed-loop transfer function] dictate only the coefficients of each of these components. Via similar
derivations, the following additional transfer functions may also be identified:

E(s)

R(s)
=

1

1 +G(s)D(s)
= S(s),

U(s)

R(s)
=

D(s)

1 +G(s)D(s)
= Su(s),

Y (s)

V (s)
=

1

1 +G(s)D(s)
= S(s),

Y (s)

W (s)
=

G(s)

1 +G(s)D(s)
= Si(s),

U(s)

V (s)
=

−D(s)

1 +G(s)D(s)
= −Su(s),

U(s)

W (s)
=
−G(s)D(s)

1 +G(s)D(s)
= −T (s).

These transfer functionsmay be analyzed in order to ensure the desired robustness specifications. As amnemonic,
the closed-loop transfer function of any feedback loop is given by

transfer function =
forward gain
1− (loop gain)

. (10.2)

Note also that the poles of the closed-loop transfer function T (s) in (10.1) are given by the values of s for which

1 +G(s)D(s) = 0 ⇔ f(s) = a(s)x(s) + b(s) y(s) = 0. (10.3)

Once the transfer function of a CT controller,D(s) = U(s)/E(s), is designed, it is easy to compute the inverse
Laplace transform of D(s) to find the differential equation [relating u(t) to e(t)] that the controller must
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obey. It is also straightforward (see §9) to build an electric circuit that obeys this differential equation with
an inexpensive arrangement of resistors, capacitors, and operational amplifiers.

In the DT case, the closed-loop transfer functions are derived in an identical fashion as in the CT case, with
the role of z replacing that of s. Thus, the closed-loop transfer function considered to analyze performance is

T (z) ≜ Y (z)

R(z)
=

G(z)D(z)

1 +G(z)D(z)
=

b(z) y(z)

a(z)x(z) + b(z) y(z)
=
g(z)

f(z)
,

and the closed-loop transfer functions considered to characterize robustness again include all those identified
above, with z replacing s. As in the CT case, once simplified appropriately, these closed-loop transfer functions
are rational functions of z, and thus may be analyzed with the techniques described in §8.3. Furthermore, once
the transfer function of a DT controller, D(z), is designed, it is easy to compute the inverse Z transform of
D(z) to determine the difference equation [relating uk to ek] that the corresponding controller must obey.
It is also straightforward to implement this difference equation on an inexpensivemicrocontroller (see §1.5).

10.1.1 Fundamental limitations†

The four sensitivities derived above are closely related [i.e., you can’t change them independently via D(s)]:

S(s) =
1

1 +G(s)D(s)
=

a(s)x(s)

a(s)x(s) + b(s) y(s)
, Su(s) =

D(s)

1 +G(s)D(s)
=

a(s) y(s)

a(s)x(s) + b(s) y(s)
,

T (s) =
G(s)D(s)

1 +G(s)D(s)
=

b(s) y(s)

a(s)x(s) + b(s) y(s)
, Si(s) =

G(s)

1 +G(s)D(s)
=

b(s)x(s)

a(s)x(s) + b(s) y(s)
;

(10.4)

S(s) is called the sensitivity, T (s) is called (in this setting) the complementary sensitivity, Su(s) is called
the control sensitivity, and Si(s) is called the output sensitivity. Note that, in SISO systems,

• Y (s)/R(s) = −U(s)/W (s); thus, the response of the controlU(iω) to disturbancesW (iω) is suppressed
only at those frequencies ω for which the closed-loop tracking is poor (thus motivating Guideline 10.1).
• Su(s) = D(s)/[1 + G(s)D(s)] = T (s)/G(s); thus, at frequencies characterized by good tracking
(T (iω) ≈ 1) but low plant gain (|G(iω)| ≪ 1), large control gains D(iω)≫ 1 are needed.
• S(s) = 1− T (s); thus, the sensitivity Y (iω)/V (iω) is suppressed only at those frequencies ω for which
the complementary sensitivity U(iω)/W (iω) is not.

The sensitivities defined in (10.4) are related such that Si(s) = S(s)G(s) and T (s) = Su(s)G(s). Thus:

Fact 10.1 (Internal stability of closed-loop SISO systems) A closed-loop SISO system [see (10.1a) - (10.4)] is
said to be internally stable if the sensitivities {T (s), S(s), Su(s), Si(s)} are all stable; in such systems,

(a) the poles of G(s) appear either as zeros of S(s) or (if they are in the LHP) possibly as poles of Si(s);
(b) the zeros of G(s) appear either as zeros of Si(s) or (if they are in the LHP) possibly as poles of S(s);
(c) the poles of G(s) appear either as zeros of Su(s) or (if they are in the LHP) possibly as poles of T (s);
(d) the zeros of G(s) appear either as zeros of T (s) or (if they are in the LHP) possibly as poles of Su(s).

If a root of a(s) is also a root of y(s), it is a root of a(s)x(s) + b(s) y(s); internal stability thus requires:

(e) only poles of G(s) that are in the LHP can appear as zeros of D(s).

If a root of b(s) is also a root of x(s), it is a root of a(s)x(s) + b(s) y(s); internal stability thus requires:

(f) only zeros of G(s) that are in the LHP can appear as poles of D(s).

In other words, internal stability requires that all pole/zero cancellations betweenG(s) andD(s) be in the LHP.

10-3

https://www.youtube.com/watch?v=Ef9QnZVpVd8


Renaissance Robotics (v.2024-03-19) Chapter 10: Classical Control

Figure 10.2: Semilogy plot of the log of the sensitivity S(s) = 1/[1 +L(s)] for L(s) = K/[(s+1)(s+10)] with
K = 10, illustrating Bode’s Integral Theorem: that is, the (red) region below the ln |S(iω)| = 0 line has the
same area as the (blue) region above it, and thus

∫∞
0

ln|S(iω)| dω = 0, independent of K .

Taking a perturbed plant G∆(s) = G(s)[1 + ∆(s)] with (multiplicative) modeling errors ∆(s), and defining

δ(s) = 1/[1 + T (s)∆(s)], (10.5a)

it follows from their definitions in (10.4) that the sensitivities of the perturbed plant G∆(s) are given by

S∆(s) = S(s) δ(s), Su∆(s) = Su(s) δ(s),

T∆(s) = T (s) [1 + ∆(s)] δ(s) Si∆(s) = Si(s) [1 + ∆(s)] δ(s);
(10.5b)

Noting (10.5), it is seen that good tracking [T (i sω) ≈ 1] impliesO(1) susceptibility of all four of the sensitivity
functions to destabilizing multiplicative modeling errors, risking instability. Modeling errors ∆(iω) generally
increase in magnitude with rising frequency ω; thus, to decrease the risk of closed-loop instability due to such
modeling errors, the closed-loop bandwidth ωBW [that is, the frequency ω above which T (iω) drops off] should
be made as low as possible, again motivating Guideline 10.1.

Another class of fundamental limitations arises by integrating the log of the sensitivity over all frequencies.
An example limitation of this class is given in Fact 10.2 below [recall from §8 that a stable CT transfer function
has all of its poles in the LHP, that the relative degree nr of a transfer function is the degree of the polynomial
in its denominator minus the degree of the polynomial in its numerator, and that a CT transfer function is said
to be proper if nr ≥ 0, and strictly proper if nr > 0]:

Fact 10.2 (Bode’s Integral Theorem) Consider a stable strictly proper open-loop system L(s) = G(s)D(s)
with relative degree nr > 0 and (by Fact 8.5) κ = limt→0+ f(t) = lims→∞ sL(s) as the initial value of the impulse
response of L(s); note that κ is finite if nr = 1, and zero if nr > 1. It follows that

∫ ∞

0

ln|S(iω)| dω = −κπ/2.

Proof of Bode’s Integral Theorem, which involves contour integration, is given in Example B.1 of NR. As
shown in Figure 10.2, for a given value of κ [if nr > 1, then κ = 0, independent ofD(s)], Bode’s integral theorem
may be understood geometrically as the waterbed effect: if the magnitude of the sensitivity S(iω) is reduced
over some frequencies, it is increased over other frequencies in such a way that its integral over all frequencies
is −κπ/2, independent of how you adjust the controller D(s), thus illustrating another fundamental tradeoff.
Attempts to reduce the magnitude of the sensitivity S(iω) = Y (iω)/V (iω) constitute, in a sense, a zero-sum
game: if this sensitivity is reduced (improved) at some frequencies ω, it will be increased (worsened) at other
frequencies. This yet again, in a somewhat different sense, motivates Guideline 10.1: we should attempt to
reduce the system’s sensitivity to measurement noise V (iω) only at those frequencies for which the effect of
this noise is otherwise expected to be pronounced.
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Figure 10.3: (dots) Root loci of three systems with proportional feedback [D(s) = K] applied, with × marking
the open-loop poles, ◦ marking the open-loop zeros, and ∗ marking the closed-loop poles for K = 1. Systems
considered are: (left) G(s) = (s+ 2)2/(s2 + 1), (center) G(s) = (s+ 2)/s2, and (right) G(s) = 2/(s2 + 2s).

10.2 Primary analysis tools used in classical control design

We now consider the four essential tools of classical feedback control design: the root locus (§10.2.1), theBode
plot (§10.2.2), the Nyquist plot (§10.2.3), and the closed-loop Bode plot (§10.2.4); these four tools may be
used in a deliberate fashion2 along with the step response (see Example 8.1) for effective CT control design. To
introduce these tools, we consider first (in §10.2) the closing of feedback loops around various simple CT plants
with a proportional control strategy which sets the control input proportional to the error signal [that is,
u(t) = Ke(t), and thus D(s) = K]. In §10.2.5, we discuss how these tools may be extended to DT systems. In
§10.3, we show how these tools may be used to tune more sophisticated control designs which more precisely
target the dynamics of interest in the system under consideration.

10.2.1 The root locus with respect to K

Recall from (10.3) that, if L(s) = G(s)D(s) = K b(s)/a(s), then the poles of the closed-loop transfer function
T (s) are given by3 a(s) +Kb(s) = 0 ⇔ a(s)/K + b(s) = 0. Thus,

• for small K , the poles of T (s) are near the poles of L(s) (i.e., the values of s with a(s) = 0),
• for large K , the poles of T (s) are near the zeros of L(s) (i.e., the values of s with b(s) = 0), and
• for intermediate K , the poles are in-between, moving continuously as K is increased (see §B.2.5).

A plot reflecting the movement of the closed-loop poles of a system as a parameter in the controller (in this
case,K) is varied (in this case, from zero to infinity) is known as a root locus. A root locus with respect to the
gain K is by far the most common type of root locus encountered, and is often referred to as “the” root locus
of the system; root loci with respect to other controller parameters are considered in the Exercises.

Root loci with respect to K of some simple plants G(s) with proportional control D(s) = K applied are
illustrated in Figures 10.3 and 10.4. If L(s) = G(s)D(s) is strictly proper, with n poles and m finite zeros
where n > m, it may be argued (see Figure 10.4) that the “missing zeros” that (n −m) branches of the locus
approach for large K are at the “point at infinity” in the extended complex plane, a notion which is most
clearly understood when the extended complex plane is mapped onto the Riemann sphere (see Figure B.2).

2To ensure the controller excites the system as little as possible while meeting the control objectives (see Guideline 10.1), one is
highly discouraged from applying the random control design (RCD) strategies facilitated by root locus graphical user interfaces
(GUIs), which almost encourage one to plunk a controller pole here and zero there until, perhaps accidentally, stability is achieved.

3Thus, e.g., if a(s) = s2 + 1 and b(s) = (s+ 2)2 (see Figure 10.3a), then (s2 + 1) +K(s+ 2)2 = 0, and the closed-loop poles are
located at s = [−4K±

√
(4K)2 − 4(K + 1)(4K + 1)]/[2(K+1)]. For higher-order systems, the locations of the poles as a function

ofK must generally be found numerically.
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Root loci are valuable for understanding parametric dependencies during feedback control design. Though
easily plotted using a computer, it is sometimes useful to know how to quickly sketch a root locus with respect
to the overall gain K by hand in order to anticipate how the closed-loop poles of a system change when the
controller is modified, or (as discussed in §10.3 through §10.4) to understand how to modify a controller to
change a root locus in a desired manner, thereby moving the poles of a closed-loop system into the region
suggested by the approximate design guides illustrated for CT in Figure 8.4, and for DT in Figure 8.6. Some
simple rules for sketching root loci by hand are thus outlined below.

Drawing root loci of CT and DT systems numerically

Like the code for drawing a Bode plot, programming a computer to draw a root locus of a given closed-loop
system T (s) or T (z) is trivial, and is easily done in a few lines of code (see ): simply loop over several values of
K , from small to large, compute the roots of the denominator of T (s) or T (z) for each value of K , then plot
these roots in the complex plane. [Note that the code for drawing root loci of CT and DT systems is identical,
it is only the goal of where you want the closed-loop poles to wind up that changes.]

Sketching root loci with respect to K by hand

To proceed, assume L(s) = G(s)D(s) is a transfer function with m complex zeros zk and n complex poles pk,
wherem ≤ n (see §8.2.3.1), such that

L(s) = G(s)D(s) = K
b(s)

a(s)
= K

(s− z1)(s− z2) · · · (s− zm)
(s− p1)(s− p2) · · · (s− pn)

.

We also define the multiplicity of the k’th pole as qk and the multiplicity of the k’th zero as rk.

The 180◦ root locus with respect to K [i.e., noting (10.3), the locus of all points s such that 1 + L(s) = 0
when K > 0] may be sketched using the following handy rules (Evans 1950):
1. Mark the n poles pi (the roots of a(s) = 0) with an × and them zeros zi (the roots of b(s) = 0) with an ◦.
2. Draw the locus on the real axis to the left of an odd number of real poles plus zeros counted from the right.
3. The branches of the locus depart (start) from the open-loop poles and arrive (end) at the open-loop zeros.
If n > m, then n −m branches extend to infinity, approaching n −m asymptotes centered at α =

∑
pi−

∑
zi

n−m
and departing at angles θℓ =

180◦+(ℓ−1)360◦
n−m for ℓ = 1, . . . , n−m (see Figures 10.4d-f for n−m = 1, 2, and 3).

4. For any open-loop pole pk of multiplicity qk, or zero zk of multiplicity rk, define ψi as the angle from the i’th
pole to this point, and ϕi as the angle from the i’th zero to this point. Then one may calculate the
–a. departure angles ψk,ℓdep from the open-loop pole pk as ψ

k,ℓ
dep =

∑
ϕi−

∑
i ̸=k ψi+180◦+(ℓ−1)360◦

qk
for ℓ = 1, . . . , qk.

–b. arrival angles ϕk,ℓarr to the open-loop zero zk as ϕk,ℓarr =
∑

i̸=k ϕi−
∑
ψi+180◦+(ℓ−1)360◦
rk

for ℓ = 1, . . . , rk.

5. In the case that two (resp., three) branches of the locus touch at a point, the angle between the branches of
the locus at this junction is 90◦ (resp., 60◦), and the branches into and out of the junction alternate.

The 0◦ root locus with respect to K [i.e.„ the locus of all points s such that 1 + L(s) = 0 with K < 0] may
be sketched by modifying the above rules as follows:
2. Draw the locus on the real axis to the left of an even number of real poles plus zeros counted from the right.

3. The asymptotes depart at angles θℓ =
(ℓ−1)360◦
n−m for ℓ = 1, . . . , n−m.

4a. The departure angles from the open-loop pole pk are ψ
k,ℓ
dep =

∑
ϕi−

∑
i ̸=k ψi+(ℓ−1)360◦

qk
for ℓ = 1, . . . , qk.

4b. The arrival angles to the open-loop zero zk are ϕk,ℓarr =
∑

i̸=k ϕi−
∑
ψi+(ℓ−1)360◦
rk

for ℓ = 1, . . . , rk.
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Figure 10.4: Root loci of (left) L(s) = G(s)D(s) = K(s+ c)/(cs), (center) L(s) = K(s+ c)2/(cs)2, and (right)
L(s) = K(s+c)3/(cs)3, taking (top) c = 2 and (bottom) the limit as c→∞. As c is increased, the location of the
zero(s), towards which the closed-loop pole(s) converge for large K , moves off to the left towards infinity, and
the root locus in the vicinity of the origin is dominated by the pattern outlined by the small dashed box. Thus,
in the limit as c → ∞, the three root loci approach those of L(s) = K/s, L(s) = K/s2, and L(s) = K/s3,
respectively. This explanation helps one to visualize that the zeros at infinity are, in a sense, all at the same
place—a place which one may refer to as the north pole if the s plane is conformally mapped onto a Riemann
sphere, with the origin of the s plane mapped to the south pole (see Figure B.2).

Note that, for any K , the closed-loop poles are characterized by 1 +K b(s)/a(s) = 0, and thus

K = −a(s)/b(s); (10.6)

this useful formula gives the value ofK corresponding to any given point s on the locus4. Further, in the vicinity
of any breakaway point of the root locus (i.e., any point where multiple branches of the locus connect to the
real axis), the value of K given by (10.6) reaches a local maximum or local minimum with respect to the (real)
value of s as you move to the left or right on the axis. Considering −∞ < K < ∞, the set of all breakaway
points of the 180◦ and 0◦ root loci on the real axis are given by setting the derivative of (10.6) equal to zero:

dK

ds
= 0 ⇒ −a

′(s)

b(s)
+
a(s) b′(s)

[b(s)]2
= 0 ⇒ a′(s) b(s)− a(s) b′(s) = 0; (10.7a)

the breakaway points are given by taking the roots of the polynomial at right in (10.7a). Dividing this formula
by [a(s) b(s)] and taking b(s) = (s− z1) · · · (s− zm) and a(s) = (s− p1) · · · (s− pn) gives the alternative form

∑n
i=1 1/(s− pi)−

∑m
i=1 1/(s− zi) = 0. (10.7b)

With a little practice, one can usually sketch a root locus quite accurately and quickly by hand by following the
above several rules. Note that the connection of the various branches of a root locus sometimes change rather

4Note that K must be real; if a point s on the locus is only known approximately, application of (10.6) might result in a complex
value ofK ; taking the real part of this value results in a nearby point on the locus.
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rapidly (but smoothly! see §B.2.5) as the open loop poles and zeros are moved, as seen in Figure 10.6. Such
rapid reconnections of the root locus are somewhat difficult to anticipate when sketching the locus by hand;
computation of the breakaway points is often helpful. Note, however, that these reconnections of the locus in
fact have little impact on the closed-loop behavior of the system; the two systems depicted in Figure 10.6 have
essentially identical step responses for all values of K .

10.2.1.1 The full and simplified Routh and Bistritz tests†

The Routh test, developed in §B.2.6, is a procedure for counting how many roots of a polynomial p(s) are in
the LHP, on the imaginary axis, and in the RHP [often referred to as the inertia of p(s)], without requiring the
computation of the roots themselves, which can be computationally expensive.

The Bistritz test, developed in §B.2.7, is a procedure for counting how many roots of a polynomial p(z)
are inside the unit circle, on the unit circle, and outside the unit circle [often referred to as the stationarity of
p(z)], without requiring the computation of the roots themselves.

When applying the Routh or Bistritz test to the polynomial in the denominator of a CT or DT (open-loop
or closed-loop) transfer function, to determine whether or not this transfer function is stable, the simplified
Routh test or simplified Bistritz test may be used; these simplified tests are presented in §B.2.8 and §B.2.9.
A useful feature of these simplified tests is that one can easily carry one or more symbolic variables in a con-
trol design formulation, such as the controller gain K , all the way through the analysis, thereby determining
necessary and sufficient conditions on these variables for closed-loop stability.

10.2.1.2 Approximate pole-zero cancellations in the LHP

Consider a plant and controller given by

G(s) =
1

s(s+ 0.95)
, D(s) = 10

s+ 1

s+ 4
⇒ T (s) =

G(s)D(s)

1 +G(s)D(s)
=

10(s+ 1)

(s+ 1.0219)(s− p+)(s− p−)

where p± = −1.9641 ± 2.4348 i ≜ −σ ± iωd. Note the controller zero close to the plant pole in the LHP
near s = −1; as a result, the closed-loop system has both a pole and a zero near s = −1. Via partial fraction
expansion and inverse Laplace transform (see Example 8.1), the step response of this closed-loop system is

Y (s) = T (s)R(s) =
T (s)

s
=
−1.0314s− 4.0194

(s+ σ)2 + ω2
d

+
0.0314

s+ 1.0219
+

1

s

⇒ y(t) = −1.0314 e−σ t cos(ωdt)− 0.8188 e−σ t sin(ωdt) + 0.0314 e−1.0219 t + 1.

Note the third term of y(t), which is the result of the closed-loop pole near s = −1 arising from the inexact
pole/zero cancellation in between the plant and the controller. This contribution to the step response is a
decaying exponential with, due to the proximity of this pole and zero, a very small coefficient. This is essentially
negligible; had we simply cancelled the plant pole and the nearby controller zero during the analysis,

G(s)D(s) ≈ 10

s(s+ 4)
⇒ T (s) ≈ 10

s2 + 4s+ 10
=

10

(s− p+)(s− p−)

where p± = −2± 2.4495 i ≜ −σ ± iωd, the step response computed would have been

Y (s) ≈ T (s)

s
=

−1s− 4

(s+ σ)2 + ω2
d

+
1

s
⇒ y(t) ≈ −1 e−σ t cos(ωdt)− 0.8165 e−σ t sin(ωdt) + 1,
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which is essentially identical. Note, however, that had the approximate pole/zero cancellation taken place in
the RHP, then the step response y(t) would have had a component with a growing exponential and a very
small coefficient; in addition to this approach failing to provide internal stability [see parts (e) and (f) of Fact
10.1], this exponentially-growing component would eventually dominate the system response. All attempts
to cancel a plant pole (or zero) with a controller zero (or pole) must ultimately be considered as approximate
to some degree. The conclusion to be drawn is thus consistent with that of Fact 10.1: approximate pole/zero
cancellations arising during controller design may simply be neglected in the LHP, but must never be attempted in
the RHP. The design of a controller to achieve an approximate pole/zero cancellation on or near the imaginary
axis, called a notch filter, is delicate but doable, and is considered at length in §10.3.2.

10.2.2 The Bode plot, revisited
As seen in §8.4, an (open-loop) Bode plot summarizes the gain and phase of the response of the systemG(s)D(s),
in open loop, to sinusoidal inputs u(t). As seen in (10.3), the poles of the closed-loop transfer function T (s) are
given by the roots of the equation 1 +G(s)D(s) = 0 [i.e., G(s)D(s) = −1] and, the motion of these roots as
a parameter of the controller (usually, its gain) is varied is often plotted in a root locus.

A somewhat subtle connection between the open-loop and closed-loop problems makes the Bode plot es-
pecially useful for feedback control design. If for some s on the imaginary axis [that is, s = iωr for some
resonant frequency ωr] the open-loop system G(s)D(s) simultaneously has a gain of 1 and a phase of
−180◦ [that is, G(iωr)D(iωr) has the critical value of −1], then the closed-loop transfer function T (s) =
G(s)D(s)/[1 +G(s)D(s)] has a pole on the imaginary axis, and is on the verge of instability, meaning that:

• if the system is given an impulse input, it will oscillate at the resonant frequency ωr without decaying,
• if the system is excited sinusoidally at frequency ωr, the response will grow without bound, and
• any tiny unmodeled error in either the plant or the controller could lead to closed-loop instability.

We might thus label the imaginary axis in the s-plane as an axis of evil; it is imperative to check any stable
closed-loop system (that is, with its poles in the LHP) to ensure that its poles are in some sense “far” from
being on this axis. Two valuable measures that may be read directly off the Bode plot (see, e.g., Figure 10.7)
accomplish exactly this: the phasemargin (PM) quantifies the amount that the phase of the open-loop system
G(iω)D(iω) is away from −180◦ at the frequency ωg for which the open-loop system gain equals 1, whereas
the gain margin (GM) quantifies the factor by which the gain of the open-loop system G(iω)D(iω) is away
from 1 at the frequency ωp for which the open-loop system phase equals −180◦. If the PM is large, then
there may be correspondingly large errors in the modeling of the phase of the system (due, for example, to
unmodeled delays in the system) before risking closed-loop instability, whereas if the GM is large, then there
may be correspondingly large errors in the modeling of the gain of the system (due, for example, to uncertainty
in the actuator authority or sensor sensitivity) before risking closed-loop instability.

The Bode plot illustrated in Figure 10.7 also depicts the typical constraints considered during the design
of the controller D(s). A large open-loop gain |G(iω)D(iω)| is generally sought at low frequencies to ensure
adequate tracking of the reference input, and a small open-loop gain is generally sought at high frequencies to
ensure adequate attenuation of high-frequency disturbances5. Thus, at some intermediate frequency [dubbed
the (gain) crossover frequency ωg], |G(iωg)D(iωg)| = 1. As in (8.17), the following convenient approximate
design guides may be identified by examining a range of step responses6:

ωg ≈ ωn ≈ ωBW/1.4, ζ ≈ PM/100
{
ζ ≳ 0.5 for Mp ≤ 15%

ζ ≳ 0.7 for Mp ≤ 5%.
(10.8)

5I.e., for small ω, Y (iω)
R(iω) = G(iω)D(iω)

1+G(iω)D(iω) ≈ 1 if |G(iω)D(iω)| ≫ 1; for large ω, U(iω)
W (iω) =

−G(iω)D(iω)
1+G(iω)D(iω) ≈ 0 if |G(iω)D(iω)| ≪ 1.

6For clarity of presentation, the definition of ωBW is deferred to §10.2.4 and Figure 10.9b.
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Thus, a target value for the crossover frequency ωg may be determined from rise time or tracking constraints,
and a target value for the PM may be determined from the overshoot constraint. Noting Figure 10.7, when
performing controller design using a Bode plot, one typically first tunes the phase of the controller D(s) to
achieve the desired PM at the target ωg, then tunes the overall gain of the controller to achieve gain crossover
at this target frequency. Next, if needed, the controller is adjusted at both low and high frequencies to meet
the tracking and robustness constraints, in addition to ensuring an adequate GM, and the overall gain retuned
to maintain gain crossover at the target ωg. Finally, the step response of the closed-loop system is checked,
and further fine tuning is performed to meet the design constraints (e.g., increasing ωg to reduce the rise time,
increasing the PM to reduce the overshoot, etc.). As discussed in §10.3, this design process can usually be
performed via a methodical combination of lead compensation, lag compensation, and low-pass filtering.

As noted in Fact 8.15, a remarkable and useful feature of the Bode plot is that it is additive; that is,

log |G(iω)D(iω)| = log |G(iω)|+ log |D(iω)|, and ∠G(iω)D(iω) = ∠G(iω) + ∠D(iω). (10.9)

Thus, when examining the Bode plot of the plant G(s), it is usually clear what is needed in terms of the gain
and phase of the controllerD(s) such that the cascade of the controller and plant have the appropriate overall
behavior to meet the design guides discussed above (e.g., the rise time and overshoot constraints on the closed-
loop system). Control design leveraging the Bode plot of G(s)D(s) like this is referred to as loop shaping.

As noted at the end of §8.4, in systems with no RHP zeros or poles, the gain and phase curves are related in
a simple fashion: a gain slope of −2 over a particular range of frequencies corresponds to ∼ 1/(iω)2 behavior
of the transfer function, and thus a phase of about −180◦; similarly, a gain slope of −1 corresponds to a phase
of about −90◦, and a gain slope of 0 corresponds to a phase of about 0◦. Thus, a rule of thumb for achieving a
good PM (and, thus, good damping and low overshoot) in many systems is to attempt to achieve crossover at a
gain slope of approximately −1; if crossover is attempted at a gain slope of closer to −2, the PM will often be
unacceptably small (and, thus, the overshoot will be unacceptably high).

Example 10.1 The primary analysis tools of classical control design are: root loci [§10.2.1; see RR_rlocus], open-
loop and closed-loop Bode plots [§10.2.2 and §10.2.4; see RR_bode], Nyquist plots [§10.2.3; see RR_nyquist], and
closed-loop step responses [§10.2.4; see RR_step]. These tools, applied toG(s) = (s+ .3)/[s2(s+2)(s+10)] and
D(s) = K , are illustrated side by side in Figures 10.6-10.9. Use of these tools is discussed in §10.3. △

10.2.3 The Nyquist plot
As illustrated in Figure 10.8, a Nyquist plot is just an (open-loop) Bode plot drawn in polar coördinates, and may be
generated using RR_nyquist. DefiningL(s) = G(s)D(s), the Nyquist contour is a curve in theL-plane comprised
of points with modulus |L(s)| and phase ∠L(s), drawn for s = iω with the parameter ω varying from −∞ to
0 to∞. The PM and GM indicated in the Bode plot in Figure 10.7 are both readily identified in the Nyquist
plot in Figure 10.8; a third measure, the vector margin (VM), quantifies, in a sense, the minimum distance
over all ω to the critical condition indicating marginal stability of the closed-loop system [L(iω) = −1] via a
modification of both the gain and the phase of the open-loop system L(s).

The Nyquist stability criterion

Though it is easy to discern from a root locus whether or not a closed-loop system is stable [by checking that
all of the closed-loop poles are in the LHP], it is sometimes valuable7 to discern closed-loop system stablility by
looking at the corresponding Nyquist plot8. A method for doing this follows straightforwardly from Cauchy’s
argument principle (Fact B.1) a careful review of which is advised before continuing.

7Specifically, when the frequency response (that is, the Bode plot) of the open-loop system is available, but a system model is not.
8It is difficult to discern stability from a Bode plot though, as shown below, it is straightforward to discern it from a Nyquist plot.
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Figure 10.5: (a) Approximating contour Γs of the Nyquist contour in the s-plane, and (b) the corresponding
contour ΓL in the L-plane [for L(s) = G(s)D(s) defined as in Figures 10.6a through 10.9]. The actual Nyquist
contour is found by taking the limit as R→∞ and ϵ→ 0 of these approximating contours.

Fact 10.3 (Nyquist stability criterion) Define the Nyquist contour Γs as a D-shaped contour of radius R in
the RHP of the s-plane, as illustrated in Figures 10.5a and 10.22, where a half circle of radius ϵ is taken into the
RHP around every open-loop pole on the imaginary axis, in the limit that R → ∞ and ϵ → 0. Define also the
corresponing contour ΓL in the L-plane by applying the transform L(s) = G(s)D(s) to all points s on the contour
Γs in the s-plane (see, e.g., Figure 10.5b). It follows that, if the number of poles of L(s) with positive real part is P ,
then the closed-loop system T (s) = L(s)/[1 + L(s)] is stable if and only if the contour ΓL in the L-plane encicles
the L = −1 point counterclockwise exactly P times9.

Proof : As noted in (10.3), denoting the open-loop system L(s) = G(s)D(s), the poles of the closed-loop system
T (s) = L(s)/[1 + L(s)] are exactly the zeros of F (s) = 1 + L(s); thus, if T (s) has Z RHP poles, then F (s)
will have Z RHP zeros. Now assume that L(s) has P RHP poles; since F (s) = 1+L(s), F (s) has P RHP poles
as well. By design, as illustrated in Figure 10.5a, the Nyquist contour (that is, Γs in the limit that R →∞ and
ϵ→ 0) encloses the entire right half plane of s. It thus follows by Cauchy’s argument principle (Fact B.1) that
the contour ΓF in the F -plane makes (P − Z) counterclockwise encirclements of the origin, and thus (since
L(s) = F (s) − 1), ΓL in the L-plane makes (P − Z) counterclockwise encirclements of the point L = −1.
Thus, if Z = 0 (that is, if T (s) is stable), then the contour ΓL in the L-plane makes exactly P counterclockwise
encirclements of the point L = −1; if Z > 0 (that is, if T (s) is unstable), then the contour ΓL in the L-plane
makes less than P counterclockwise encirclements of the point L = −1. □

Note that the Nyquist contour ΓL and associated stability criterion (Fact 10.3) depend directly on the ex-
pression L(s) = G(s)D(s); this is particularly convenient, because a rational factored form of L(s), as well as
its Bode plot, follow immediately from those ofG(s) andD(s). In contrast, a formulation in terms of T (s) (like
the root locus) or in terms of F (s), is less convenient, because a rational factored form for these expressions is
not as easy to determine by hand. Note also that the contour Γs must take a curve of radius ϵ into the RHP
to avoid every pole of the open-loop system L(s) that happens to lie on the imaginary axis, as indicated in the
vicinity of the origin for the case depicted in Figure 10.5.

9In the case of Figure 10.5, with a stable L(s) with P = 0 unstable open-loop poles, one might say that the closed-loop system is
stable if the Pac-Man does not engulf the dot at L = −1, thus implying Z = 0 unstable closed-loop poles; in contrast, in the case of
Figure 10.10, with an unstable L(s) with P = 1 unstable open-loop poles, P − Z = 1 counterclockwise encirclements of L = −1 is
required for stability, thus implyingZ = 0 unstable closed-loop poles. Note also that, mapping onto their respective Riemann spheres
(see Figure B.2), a contour near the south (north) pole in the s plane maps to a contour near the north (south) pole in the L plane.
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G̃(s) =
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Figure 10.6: Root loci of (left) G(s) and (right) the slightly modified G̃(s), with proportional control D(s) = K
applied, and with ∗ marking the four closed-loop poles for K = 15. Though the locus makes a rather sudden
reconnection, the step response of each of these systems is quite similar (i.e., the locus reconnection is incon-
sequential). If a system is dominated by second-order behavior, the closed-loop pole locations should generally
lie in the region suggested by the approximate design guides specified by the rise time, settling time, and/or
overshoot constraints (see Figure 8.4) on the closed-loop system. Note that the present closed-loop system has
a pair of complex poles, plus two stable poles on the negative real axis. The pole near s = −10 is stable and
(comparatively) fast, and thus has little effect on the closed-loop dynamics. The other real pole is of about
the same speed as the dominant pair of complex poles; this generally results in significant extra overshoot of
the step response, thus motivating increased damping on the complex poles than otherwise indicated by the
approximate design guides (developed for second-order systems) to compensate appropriately.
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Figure 10.7: Open-loop Bode plot of G(s)D(s), with G(s) as in Figure 10.6a and D(s) = K , with K adjusted
to give crossover at ωg = 1. The PM is 180◦ + ∠G(iωg)D(iωg), whereas the GM is 1/|G(iωp)D(iωp)|, where
ωp is defined as that frequency where ∠G(iωp)D(iωp) = −180◦ (if it exists; otherwise, GM=∞).
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Figure 10.8: Nyquist plot of system considered in Figures 10.6a and 10.7, (a) big-picture view, with a represen-
tation of the outer contour, and (b) close up near the G(iω)D(iω) = −1 point. The GM and PM marked in
Figure 10.7 also appear in this Nyquist plot; another measure, the VM, quantifies the distance of the point on
the Nyquist contour closest (via a change in both gain and phase) to the critical G(iω)D(iω) = −1 condition.
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Figure 10.9: Final checks: (left) step response and (right) Bode plot of closed-loop system T (s) = L(s)/[1+L(s)]
for L(s) = G(s)D(s) considered in Figures 10.6a, 10.7, & 10.8. The rise time, settling time, and overshoot of
the step response are defined as in Figure 8.3; the rise time and overshoot are approximately related to the
values of ωg and PM in the corresponding Bode plot (Figure 10.7). The closed-loop Bode plot illustrates good
tracking at low frequencies (|T (iω)| ≈ 1 and ∠T (iω) ≈ 0) and good disturbance rejection at high frequencies
(|T (iω)| ≪ 1). Peaks of the gain curve of the closed-loop system, if present, occur at the resonant frequencies
ωr,i, at which the gain is given by the resonant peaksMr,i. The frequency at which the closed-loop gain falls
below 0.7, and thus the output ceases to track the reference input faithfully, is the bandwidth, ωBW .

Guideline 10.2 The figures on pages 10-12 and 10-13 typify how classical tools are used together for targeted
(see Guideline 10.1) feedback control design: a stabilizing controller is first found with the aid of a root locus
(Figure 10.6) if G(s) is known, or with the aid of a Nyquist plot (Figure 10.8) if G(s) is unknown. The controller
D(s) = Dlead(s) ·Dlag(s) ·DLPF(s) [see §10.3.2] is then tuned as a function of frequency (a design process known as
loop shaping) using a Bode plot (Figure 10.7). Finally, the closed-loop performance is checked by examining the
rise time, settling time, and overshoot of the step response, and the tracking accuracy, resonant peaks, and bandwidth
in the closed-loop Bode plot (Figure 10.9). Such a design process is usually iterative.
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Figure 10.10: Analysis for L(s) = G(s)D(s) = K/[(s− 1)(s+ 10)], with P = 1 open-loop pole: (a) Root locus
of L(s), with closed-loop poles for K = 20 marked, (b) Bode plot of L(s), (c) Nyquist plot of L(s) for K = 1
(with P − Z = 0 encirclements of L = −1, and thus Z = 1, and an unstable closed loop), (d) Nyquist plot of
L(s) for K = 20 (with P − Z = 1 encirclement of L = −1, and thus Z = 0, and a stable closed loop).

By the Nyquist stability criterion, Figure 10.5b indicates stability of the closed-loop system for the controller
gain K used, as the open-loop system L(s) = G(s)D(s) has P = 0 RHP poles, and the Nyquist contour does
not encircle L = −1. A detail view illustrating this Nyquist contour near the origin is given in Figure 10.8;
note that if the gain is increased by a factor larger than the GM, then the Nyquist contour would encircle the
L = −1 point, in which case the Nyquist stability criterion would indicate instability of the closed-loop system.
This is consistent with the corresponding root locus in Figure 10.6a, which indicates closed-loop stability for
small gain, and closed-loop instability (2 poles in the RHP) for sufficiently large gain.

A case in which the open-loop system L(s) = G(s)D(s) = K/[(s − 1)(s + 10)] has P = 1 RHP pole is
indicated in Figure 10.10. Note that, in this case, the root locus (Figure 10.10a) indicates closed-loop instability
(1 pole in the RHP) for small gain and closed-loop stability for sufficiently large gain. Transforming the Bode
plot of L(s) (see Figure 10.10b) into polar coördinates to get the Nyquist plot forK = 1 (see Figure 10.10c), it is
seen that the Nyquist contour in this case does not encircle the L = −1 point; that is, by the Nyquist stability
criterion, P − Z = 0, and thus Z = 1, which indicates instability of the closed-loop system. On the other
hand, plotting the Nyquist plot for K = 20 (see Figure 10.10d), it is seen that the Nyquist contour in this case
encircles the L = −1 point exactly P − Z = 1 time, which by the Nyquist stability criterion indicates Z = 0
closed-loop RHP poles, and thus stability of the closed-loop system. Thus, the conclusions drawn from the root
locus and the Nyquist stability criterion are again consistent.
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type impulse step ramp parabolic cubic
r = 0 0 finite ∞ ∞ ∞
r = 1 0 0 finite ∞ ∞
r = 2 0 0 0 finite ∞
r = 3 0 0 0 0 finite

Table 10.1: Steady-state error, limt→∞ e(t), of a closed-loop system as a function of the type r, where
G(s)D(s) = b(s)/[sra0(s)] with [a0(s)]s=0 ̸= 0 and [b(s)]s=0 ̸= 0.

10.2.4 Final checks: the closed-loop step response and the closed-loop Bode plot
Once a controller is designed using the classical (that is, root-locus or Nyquist, and Bode) control design tools,
final checks on its behavior may be performed by plotting the closed-loop system’s step response (see Figure
10.9a, generated using RR_step) and by plotting the closed-loop Bode plot (see Figure 10.9b, generated using
RR_bode), both applied to T (s) = G(s)D(s)/[1 + G(s)D(s)]. The former indicates directly if the rise time,
settling time, and overshoot constraints on the closed-loop system were indeed met, whereas the latter reveals
the frequencies at which the closed-loop system accurately tracks the reference input (as well as the precision
of this tracking), the peak magnitude of any resonances (that is, the possibly amplified response of the closed-
loop system at certain frequencies), and the bandwidth frequency ωBW above which the gain of the closed-
loop system rolls off and the system output no longer tracks the reference input. Based on these final checks,
some final tweaking of the control design is often required.

10.2.4.1 System type and loop prefactors

Returning to Figure 10.1a, note that we may write

E(s) = R(s)− Y (s) = R(s)−G(s)D(s)E(s) ⇒ E(s)

R(s)
=

1

1 +G(s)D(s)
.

Now assume that the controller D(s) is chosen, based on the plant G(s), such that the closed-loop system
is stable, and that we can write G(s)D(s) = b(s)/[sra0(s)], where [a0(s)]s=0 ̸= 0 and [b(s)]s=0 ̸= 0, for some
value of r (referred to as the type of the open-loop system). We may thus write

E(s) =
sra0(s)

sra0(s) + b(s)
R(s). (10.10)

Noting the CT final value theorem (Fact 8.4), we may write the steady state error limt→∞ e(t) = lims→0 sE(s).
Considering impulse, step, ramp, parabolic, and cubic reference inputs10, we may easily compute the behavior
of the steady-state error as a function of type using (10.10), as listed in Table 10.1.

Focusing specifically on the case with unit step input (i.e., forR(s) = 1/s), youmight notice in certain situa-
tions that, though you have designed a stabilizing controllerD(s) for a given plantG(s), the step response y(t)
of the closed-loop system T (s) does not approach unity as t→∞. By the above paragraph, if the systemG(s)
is not accurately known, the change required to fix this problem is to build a sufficient number of integrators
into D(s) to make the open-loop system G(s)D(s) type 1 [that is, |G(iω)D(iω)| → ∞ as ω → 0 in the Bode
plot] and thus, by the CT final value theorem,

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sT (s)R(s) = lim
s→0

T (s) = lim
s→0

G(s)D(s)

1 +G(s)D(s)
= 1,

regardless of any uncertainty in the overall gain or phase of G(s).

10That is, r(t) = δλ,m(t), h1(t), t h1(t), t2 h1(t), and t3 h1(t), with Laplace transforms R(s) = 1, 1/s, 1/s2, 2/s3, and 6/s4.
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D(s) G(s)

t)

Figure 10.11: Introduction of a loop prefactor P [see (10.11)] to correct for a closed-loop with nonzero steady-
state error in its unit step response [due to G(iω)D(iω) being finite as ω → 0 ].

If, on the other hand, |G(iω)D(iω)| is finite as ω → 0 and (importantly) the values of G(s) and D(s) are
known to be relatively accurate at low frequencies, then simply selecting a prefactor

P =
1

T (s)

∣∣∣∣∣
s=0

=
1 +G(s)D(s)

G(s)D(s)

∣∣∣∣∣
s=0

(10.11)

and incorporating as in Figure 10.11 fixes the problem, bringing the step response back to y(t)→ 1 as t→∞.

10.2.5 Extending the Bode, Nyquist, and root locus tools to DT systems
As suggested by (8.27), when plotting frequency response (i.e., a Bode or Nyquist plot) in discrete time, one
simply uses z = eiωh in lieu of s = iω; RR_bode and RR_nyquist thus easily generate DT Bode and Nyquist plots
when called appropriately. Examples of both are given by Figures 10.12a-b.

Further, as rational functions of s and z combine via identical rules when closing a feedback loop, a root
locus in z for a DT system may be drawn with exactly the same code (e.g., RR_rlocus) as is used to draw a root
locus in s for a CT system. It is only the target region, specified by the approximate design guides, that changes
(recall the mapping of the curves in Figure 8.4 into the z-plane, as indicated in Figure 8.6b).
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Figure 10.12: (a) Bode and (b) Nyquist plots of (solid) the DT systemG(z) given (see §8.3.3.1) by the cascade of a
DAC with a ZOH, the systemG(s) = (s+ .3)/[s2(s+2)(s+10)] considered in Figures 10.6a through 10.5, and
an ADC, with h = 1. The highest frequency that can be represented uniquely in discrete time (see Figure 8.6) is
the Nyquist frequency ωNyquist = π/h, indicated by the vertical dashed line in the Bode plot. The Bode plot of
the corresponding CT system G(s), (dot-dashed), is shown for comparison. The effect of an h/2 time delay on
the phase of this CT Bode plot [that is, an hω/2 phase delay at any frequency ω; see (10.31)] is also illustrated
(dashed), and accounts for the bulk of the discrepancy between the Bode plots of G(s) and G(z), as explained
by Figure 10.33; this phase loss gradually (over an order of magnitude in ω) approaches hωNyquist/2 = π/2 as
ω → ωNyquist, which is substantial (and, in closed loop, potentially detrimental!). Note also that the DT Nyquist
plot does not quite reach the origin in the L plane; the closest point to the origin is achieved for ω = ωNyquist.
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Figure 10.13: (a) Bode plot of the PID controller DPID(s) given in (10.12) with Kp = 1, TI = 10 (ωI = 0.1), and
TD = 0.01 (ωD = 100). (b) Bode plot of (in application) a nearly-equivalent lead-lag controllerDlead-lag(s), with
“roll-off” applied at low and high frequencies of the PID, thus applying the integral and derivative actions each
over only finite ranges of frequencies; this roll-off, which is built in (at prespecified frequencies) in commercial
“black-box” PID controllers, can be adjusted precisely using the lead/lag techniques presented in §10.3.2.

10.3 Primary techniques used for classical control design
As exemplified in Figures 10.6–10.9, the process of classical (i.e., transform-based) linear control design includes

• identifying an appropriate family of stabilizing controllers using root locus or Nyquist plotting tools,
• tuning the control design via the (open-loop) Bode plot, a process known as loop shaping, and
• checking the resulting closed-loop performance via the step response and closed-loop Bode plot,

noting Guideline 10.1. To accomplish this, as illustrated below, there are a number of prototype transfer func-
tions (e.g., lead, lag, notch, and low-pass filters) that may be effectively cascaded and tuned.

Regarding the second point above, it is seen that, to be maximally effective in classical control design,
you must think in frequency [that is, in terms of the frequency response reflected in the Bode plot of L(s)],
not simply in terms of the closed-loop step response or pole locations.

10.3.1 PID (Proportional-Integral-Derivative) controllers
The simple PID (Proportional-Integral-Derivative) controller is by far the most common controller imple-
mented in industry. It is the ultimate “black box” controller, and is characterized by three simple “knobs”:
• a constant of proportionality Kp (the gain of the controller at intermediate frequencies),
• a time constant TI for the integral term (below which the controller gain rises ∝ 1/ω as ω → 0), and
• a time constant TD for the derivative term (above which the controller gain rises ∝ ω as ω →∞).

The “ideal” PID controller may be written in transfer function form, for finite TI and TD, as

DPID(s) = Kp

(
1 +

1

TIs
+ TDs

)
= KpTD

s2 + s/TD + 1/(TITD)

s
= K

(s+ z+)(s+ z−)

s
, (10.12)

where, usually, TI > TD. Note thatK = KpTD and, if TI ≫ TD, it follows that

z± =
[
1±

√
1− 4TD/TI

]
/(2TD) ≈

[
1± (1− 2TD/TI)

]
/(2TD) =

{
1/TI , 1/TD

}
.

The Bode plot of an ideal PID controller DPID(s) is given in Figure 10.13a.
The reader is encouraged to understand the impact of PID control on the closed-loop system of interest by

examining the effect of the three knobs {Kp, TI , TD} on the corresponding Bode plot, to construct a controller of
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+
r(t) us(t)e(t) u(t) y(t)

D(s) G(s)

t)

Figure 10.14: Schematic representation of the saturation nonlinearity caused by an actuator being driven to its
limits. In this simple representation, the actuator response is modeled to be linear between the limits, but the
control signal u(t) is clipped to the min or max values outside these limits. Actuator saturation of this sort can
cause integrator windup when PID control is applied, with potentially harmful consequences.

this class that just meets the performance specification on the closed-loop system (see Guideline 10.1). Noting
(10.12), taking TI → ∞ and TD → 0 reduces the PID controller to the proportional (P) controller considered
throughout §10.2; taking TI → ∞ or TD → 0 alone reduces PID to PD or PI, respectively. Now recall the
typical Bode design constraints on G(iω)D(iω) listed in Figure 10.7, and examine the Bode plot of DPID(s) in
Figure 10.13a. Introducing the derivative term, by dialing TD up from zero so that ωD = 1/TD is near ωg, bumps
up the phase at crossover, thereby improving the PM and reducing the overshoot of the closed-loop system.
Introducing the integral term, by dialing TI down from∞ so that ωI = 1/TI is up to an order of magnitude
below ωg, bumps up the low-frequency gain of the open-loop system without diminishing substantially the
phase at ωg, thus improving low-frequency tracking.

Note from (10.12) that the PID controller is governed by the differential equation

U(s)

E(s)
= Kp

(
1 +

1

TIs
+ TDs

)
⇔ u(t) = Kp

(
e(t) +

1

TI

∫ T

0

e(t) dt+ TD
de(t)

dt

)
. (10.13)

Given the prevalence of PID control in industry, it is important to identify the two primary and potentially
catastrophic effects that simple PID control of this form can introduce in practice.

The first problem, associated with the derivative term of the PID, is its inherent amplification of high-
frequency noise. Note on page 10-2 that the control sensitivity is U(s)/V (s) = D(s)/[1 + G(s)D(s)]. Even
if the plant is characterized by a G(s) ∝ 1/s2 dependence at high frequencies (many are), a controller with a
D(s) ∝ s dependence is problematical if the noise v(t) has substantial high frequency components (it usually
does), as such a controller amplifies this noise and sends this amplified high frequency garbage in the control
signal u(t) to the actuators, which then waste energy doing unnecessary work, or simply burn out.

The second problem, associated with the integral term of the PID, is integrator windup in the presence
of actuator saturation (see Figure 10.14). Linear control theory is often found to be effective even on systems
which are only “mostly linear”. A nonlinearity that often arises when applying control to physical systems is
actuator saturation; that is, actuators used to apply a desired control input u(t) to a physical system typically
provide an actual control input us(t) to the physical system (a force, torque, displacement, velocity, etc.) that
varies between two bounds. In such a situation, proportional controllers usually suffer only a slight performance
loss, exhibiting, effectively, reduced values ofK = us(t)/e(t) when the actuator is saturated. However, a satu-
rated controller with an integrator accumulating a (potentially, nonzero) e(t) causes u(t) to grow linearly (over,
potentially, a long period of time), while the saturated value of us(t) applied to the plant remains at its bound.
This is generally not a problem until the controller needs to again reduce the control input applied to the plant.
With u(t) possibly driven to very high values (that is, “wound up”), it can possibly take a correspondingly very
long time for u(t) to decrease to the point that the actual control applied to the plant, us(t), finally decreases.
This delayed responsiveness of the actuation can easily lead to closed-loop instability.

Considered in terms of the frequency response of the PID controller (see Figure 10.13a), the first problem
is associated with the derivative part growing without bound as ω is increased, whereas the second issue is
associated with the integral part growing without bound as ω is decreased. The cure to both is to roll off
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the magnitude of the controller response at both ends of the spectrum, as illustrated in Figure 10.13b. In fact,
black box PID controllers implement such roll-off at both ends of the spectrum in order to alleviate the two issues
discussed above; however, they don’t give the control designer the ability to specify the break points at which
such roll-off sets in, or the degree of roll-off applied. The lead and lag controllers discussed in §10.3.2, together
with the low-pass filtering discussed in §10.3.3, provide precisely this capability. That is:

Guideline 10.3 Lead and lag controllers are the responsible way to apply derivative and integral control actions,
respectively, over finite ranges of frequencies (see, e.g., Figure 10.13b), thus adhering to Guideline 10.1.

There is thus actually no compelling reason to use the restrictive PID control paradigm once the coordinated
use of lead, lag, low-pass components is well understood. However, due to their prevalence in industry, it is
perhaps prudent to discuss the tuning of PID controllers a bit further below in order to familiarize the reader.

Ad hoc PID tuning

PID controllers may be tuned to be effective on a variety of simple plants. Despite the two problems mentioned
above, they are so simple and intuitive that many controls engineers hesitate to use anything else. PID con-
trollers are sometimes tuned to achieve essentially the highest rise time possible given the parameters of the
plant and the form of the PID controller while respecting the design constraints on the overshoot and tracking.
While there is not a unique way of acheiving this trade-off, one commonly strategy is to first apply propor-
tional feedback D(s) = K to the system G(s) of interest and dial up the gain until a critical value K = Ku

is reached at which the system oscillates at nearly constant amplitude, with a frequency which we denote
ωu = 1/Tu. Knowledge ofKu and Tu is, in many cases, enough to tune an effective PID control strategy, which
may be accomplished by setting Kp = αKu, TI = β Tu, and TD = γ Tu, for appropriate values of the param-
eters {α, β, γ}, various values for which have been suggested in the literature; some of the most popular are:
Ziegler-Nichols P: {0.5,∞, 0}, Ziegler-Nichols PI: {0.45, 0.83, 0}, Ziegler-Nichols PID: {0.6, 0.5, 0.125},
Pessen PID: {0.7, 0.4, 0.15}, Tyreus-Luyben PI: {0.31, 2.2, 0}, Tyreus-Luyben PID: {0.45, 2.2, 0.16}. These
suggestions are nothing more than rules of thumb that were found to be effective on the problems of interest
by the authors proposing them. An example of the effect they have in application is discussed below.

Example 10.2 Control of a first-order system with a delay (cruise control of an automobile) with PID
As derived in Example ??, the linearized equations of motion of an automobile at cruise may be written

(
d

dt
+ a

)
v′(t) = C u′(t− d); (10.14)

note that the model accounts for a slight delay d between the actuation of the throttle and its effect on the force
applied to accelerate the vehicle. Noting (8.8), we may approximate the transfer function of the vehicle as

V ′(s)

U ′(s)
= G(s) = C

e−ds

s+ a
≈ C

s+ a
· 1− (ds)/2 + (ds)2/12

1 + (ds)/2 + (ds)2/12
. (10.15)

For the vehicle considered in Example ?? cruising at v = 34m/s= 76mph, the constants in this transfer function
are C = 6.58× 10−4, a = 39.3, and d = 0.04; we use these values below.

The root locus of this systemwith proportional feedback applied is given in Figure 10.15a. Due to the delay11,
proportional feedback drives the system unstable at some critical gain K = Ku; the ad hoc tuning strategies

11Any Padé approximation of a delay [see (8.8)] has RHP poles; it is thus seen that any system with a delay will be destabilized by
high gain feedback, as in Figure 10.15a. System delays often go unmodeled, again motivating Guideline 10.1.
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Figure 10.15: Application of P and PD control to the cruise control problem (10.15). (a) Root locus with respect
toK when P control is applied. (b) Root locus with respect toKp when PD control is applied, taking TD = 0.01.
(c) Bode plot and (d) step response in the (solid) P and (dashed) PD cases, with gains as marked in (a) and (b).
In both cases, a loop prefactor P [see (10.11) and inset in (d)] has been used to achieve zero steady-state error
in the step response, assuming G(s) has been modeled accurately.

above suggest how one can back off from this critical value of K a bit, then dial in derivative compensation
to improve the phase lead at crossover, and integral compensation to improve the low-frequency tracking. A
controller designed using such rules is aggressive, as the K is selected to give a rise time that is essentially as
fast as possible given the modeled value of the delay d. Such an approach is sensitive to a unmodeled effects,
such as additional delays; a less aggressive approach (see Guideline 10.1) is thus generally preferred.

Figure 10.15 illustrates the effects of P and PD control applied to the automobile cruise control problem (10.15)
with the delay approximated by its n = m = 2 Padé approximation F2,2(s) [see (8.8)]. Note that adding bit of
derivative compensation to the proportional controller bumps up the phase at high frequencies, thus facilitating
a slightly faster rise time for the same overshoot (as shown) or, alternatively, a slightly reduced overshoot for
the same rise time. The low-frequency gain in both systems depicted in Figure 10.15c is finite (in fact, less
than one); in order to achieve a zero steady-state error in the step response, a loop prefactor is used [see inset
in Figure 10.15d], assuming G(s) is modeled accurately so that the appropriate value of P can be computed.
If instead there were significant modeling uncertainty (e.g., variable road grade), it would be beneficial to add
integral compensation (or at least some significant lag compensation) to increase the open-loop low-frequency
gain, G(iω)D(iω) for small ω, and thus reduce the steady-state error even in the presence of such modeling
error, as illustrated in Figure 10.16; note that applying such integral compensation slows down the response
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Figure 10.16: Application of PID control to the cruise control problem (10.15), taking TD = 0.005. (a) Root locus
with respect to Kp, taking TI = 0.1. (b) Root locus with respect to Kp, taking TI = 0.02. (c) Bode plot and
(d) step response taking (solid) TI = 0.1 and (dashed) TI = 0.02, with gains as marked in (a) and (b). In both
cases, the integral component of the controller D(s) ensures a zero steady-state error in the step response,
without a loop prefactor, even in the presence of significant uncertainty in the modeling of G(s).

time as compared with that achievable when using a loop prefactor to scale the step response (Figure 10.15).
Finally, note that “performance” is not just about rise time, settling time, and overshoot. There is also a less

quantifiable question of the response “quality”; a cruise control with the solid response curve depicted in Figure
10.16d would certainly lead to a very uncomfortable ride. Design engineers who tune the values of {Kp, TI , TD}
in the various PID loops in automobiles are thus to a large degree responsible for establishing the “feel” of a
vehicle when these control systems are engaged, and are thus the ones that get paid the big bucks. △

The transfer function G(s) in (10.15) is a good starting point for modeling systems of unknown structure.
This model has three parameters, {C, d, a}, that can be tuned to match three critical system features that
may be determined experimentally: the low-frequency gain C0 = C/a (including its sign), and both the gain
Cc = C/

√
ω2
g + a2 and phase ϕc = −d− atan (ωg/a) of this system at a desired crossover frequency ωg. If the

system being modeled is open-loop stable (and thus a > 0), the values of {C0, Cc, ϕc} of the open-loop system
may be measured directly, from which the parameters {C, d, a}may be determined immediately. If the system
is unstable (that is, a < 0 in the model), appropriate model parameters {C, d, a} may often be determined by
applying stabilizing proportional feedbackD(s) = K and measuring both the lower and upper bounds,Kl and
Ku, on the gain K for closed-loop stability, in addition to the frequency of oscillation, ωu = 1/Tu at K = Ku.
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Figure 10.17: Bode plots of (a) Dlag(s) = K(s + z)/(s + p) with p < z (taking K = 1, p = .01, z = .1),
for applying integral action over a targeted range of frequencies, and (b) Dlead(s) = K(s + z)/(s + p)
with z < p (taking K = p/z, z = 100, p = 1000), for applying derivative action over a targeted
range of frequencies. The cascade of these two of these controllers, Dlead-lag(s) = Dlag(s) · Dlead(s),
gives the Bode plot in Figure 10.13b. (c) The peak phase lag (for p/z < 1) or lead (for p/z > 1) of a lag
or lead controller, evaluated at ω =

√
p z and plotted versus α = p/z. (d) Bode plot of a notch controller

Dnotch(s) = K(s2 + z2)/(s + p)2 (with K = 1, z = 10, p = 10), which is an alternative to lead control for
oscillatory plants that are accurately modeled, effectively “knocking out” the oscillatory poles.

10.3.2 Lead, lag, and notch controllers

As illustrated in Figures 10.13b and 10.17a-b, lead and lag controllers provide the responsible way of adding
derivative and integral actions over targeted ranges of frequencies; as with the derivative and integral compo-
nents of a PID (Figures 10.13a), the lead and lag components are often used together; their cascade is referred to
as a lead-lag controller. As illustrated in Figure 10.17c (see RR_tf/RR_evaluate), the peak value of the phase lead
or lag provided by these controllers is about 55◦ for |p/z| = 10; this peak value approaches 90◦ for |p/z| → ∞.

A third type of controller for oscillatory open-loop systems which are accurately modeled, called a notch
controller (see Figure 10.17d), puts two complex controller zeros near the two oscillatory poles of the plant (in a
sense, knocking out the oscillatory plant dynamics), replacing these two oscillatory poles with two stable poles
on the negative real axis, far enough to the left to achieve a sufficiently fast settling time.

The effect of lead, lag, and notch controllers may be initially appreciated by considering their effects on the
root loci of appropriate plants, but are more precisely tuned by considering the corresponding Bode plots. The
tuning lead, lag, and notch controllers is best exemplified by considering the following examples.
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Figure 10.18: Comparison of (dashed) the best PID controller determined in Example 10.2 for the automobile
cruise control problem [see (10.16a)] with (solid) the corresponding lead-lag controller of Example 10.3 [see
(10.16b)] with z/p = 100 in the lag and p/z = 20 in the lead. (a) Bode plots, (b) step responses.

Example 10.3 Control of a first-order system with a delay, revisited using lead-lag control
Wenow revisit the PID controller design for the first-order systemwith a delay (a cruise control of an automobile)
as developed in Example 10.2. The final PID control design achieved there is of the form given in (10.12) with
TI = 0.02, TD = 0.005, and Kp = 12000, and thus

DPID(s) = Kp

(
1 +

1

TIs
+ TDs

)
= 60

(s+ 100)2

s
. (10.16a)

The closed-loop performance of the system considered with this controller applied is denoted by the dashed
curve in Figure 10.16d, and is actually quite good in many respects, with a fast rise time and settling time
(given the inherent limitations of the system imposed by the delay), low overshoot, zero steady-state error to a
step input, and a high “quality” step response (little oscillation). However, what is hidden in this figure is the
two problems associated with PID control discussed in §10.3.1: specifically, the amplification of high-frequency
measurement noise, and integrator wind-up in the presence of actuator saturation. To alleviate both of these
problems, as suggested in §10.3.1, we can instead apply lead-lag control of the form

Dlead-lag(s) = K · s+ 100

s+ 1
· s+ 100

s+ 2000
where K = 60 · 2000 · 0.95, (10.16b)

whereK has been selected (including the fudge factor 0.95) so thatDlead-lag(s) in (10.16b) andDPID(s) in (10.16a)
give about the same crossover frequency in Figure 10.18a. The (low-frequency) lag controller used here has
z/p = 100, the (high-frequency) lead controller has p/z = 20, and the zeros of the lead-lag controller (10.16b)
are in the same locations as the corresponding PID controller (10.16a). As seen in Figure 10.18b, the system
with PID implemented and the system with lead-lag implemented have nearly identical step responses, though the
lead-lag controller has reduced gain at both high frequencies and low frequencies, thereby alleviating the two key
problems with PID mentioned previously. Note that a prefactor P = 1.1 [see (10.11)] has again been used in the
case of the lead-lag controller; since the lead-lag controller’s finite low-frequency open-loop gain,G(iω)D(iω)
for small ω, is relatively large (about 10; see Figure 10.18a), the tracking of the system will still be quite good
even in the presence of minor modeling errors. △
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Example 10.4 Speeding up a (generic) first-order system with lag or lead control
The previous example highlighted the utility of lag compensation to boost the open-loop gain at frequencies
well below the crossover frequency, thereby reducing the steady-state error of a step response. This is, perhaps,
the primary use of lag control; however, lag control isn’t always used below crossover.

Consider now the generic form of a linear first-order system

dy(t)

dt
+ ay(t) = C

[du(t)
dt

+ bu(t)
]
⇔ Y (s)

U(s)
= G(s) = C

s+ b

s+ a
, (10.17)

where a and b are real, with a ̸= b. If this system is controlled with proportional feedback u = K y then, by the
discussion in the first paragraph of §10.2.1, the pole of the closed-loop system is given by

(s+ a)/K + C(s+ b) = 0 ⇒ s = −a+KCb

1 +KC
.

For small values ofK , the pole of the closed-loop system is near the pole of the open-loop system, s = −a, and
for large values of K , the pole of the closed-loop system is near the zero of the open-loop system, s = −b. For
intermediate values ofK , the pole of the closed-loop system is somewhere in between (on the real axis between
s = −a and s = −b). For some systems, this is adequate to move the closed-loop pole sufficiently far to the left
to achieve the specified rise time and settling time criteria. For other systems, however, none of these possible
closed-loop pole locations is acceptable. Rather than flip the sign of the gain and use a potentially high feedback
amplitude (following the 0◦ root locus rules to determine a K that achieves stability and an adequate rise time
and settling time), one can instead use (positive-gain) lag or lead control, as appropriate, and an approximate
pole-zero cancellation in the LHP (see §10.2.1.2).

To illustrate, if in (10.17) the plant zero is to the left of the plant pole (e.g., if the plant itself has the form of
a lag compensator) and the plant zero is stable (that is, b > 0), one may use a lag controller

Dlag(s) = K
s+ z

s+ p
with z > p ≈ b

to “replace” the slow stable plant zero with a faster stable controller zero; tuning K then provides the requisite
rise time and settling time in the closed-loop system, as well as providing low steady-state error in the step
response even in the presence of significant uncertainty in the modeling of G(s).

If, on the other hand, if in (10.17) the plant pole is to the left of the plant zero (e.g., if the plant itself has the
form of a lead compensator) and the plant pole is stable (that is, a > 0), one may use a lead controller

Dlead(s) = K
s+ z

s+ p
with p > z ≈ a

to replace the slow stable plant pole with a faster stable controller pole; tuning K then again provides the
requisite rise time and settling time in the closed-loop system.

In either case, to achieve sufficiently low steady-state error in the step response even in the presence of
significant uncertainty in the modeling of G(s), we might need to boost up the low-frequency gain of the
controllerD(s) beyond that provided by the controllers described above; thismay be accomplished via additional
lag compensation (e.g., applying Dlag(s), or [Dlag(s)]

2, from Figure 10.17) at low frequencies.
Additionally, in either case, to achieve sufficient robustness to external disurbances, we might need to dimin-

ish the high-frequency gain of the controller D(s); this may be accomplished via additional low-pass filtering
(again, see §8.5 and Figure 8.8) at high frequencies. △
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(a) (b) (c)

Figure 10.19: A second-order rolling cart system governed by (10.18) in: (a) an unstable configuration with
α < 0, (b) a neutrally-stable configuration with α = 0, and (c) an oscillatory configuration with α > 0.
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Figure 10.20: Control of the unstable second-order system of Figure 10.19a. (a) Root locus using proportional
control. (b) Root locus using lead control designed for simple pole/zero cancellation. (c) Root locus using lead
control designed (using the Bode plot) formaximumperformance. (d) Bode plot and (e) step response using (dot-
dashed) proportional control, (dashed) lead control designed (using root locus) for simple pole/zero cancellation,
taking p/z = 10, and (solid) lead control designed for maximum PM given p/z = 10 (by taking

√
p z = ωg),

with gains as marked in (a), (b), and (c).

Example 10.5 Stabilizing a second-order rolling cart system with lead or notch control
Consider now the problem of controlling the position of a simple rolling cart (see Figure 10.19) governed by

m
d2x

dt2
+ c

dx

dt
+mg sin

(dy
dx

)
= u, y = β x2 −−−−−−→

linearization

d2x

dt2
+
( c
m

)dx
dt

+ (2βg)x =
( 1

m

)
u

⇒ X(s)

U(s)
=

C

s2 + a1s+ a0
where a1 =

c

m
, a0 = 2βg, C =

1

m
. (10.18)

Case (a): β = −1, c = 0, m = 1. The plant in this case, G(s) = C/[(s + p)(s − p)] with p =
√

2|β|g, is
unstable. Lead control designed using the root locus with an approximate pole-zero cancellation in the LHP,
Dlead(s) = K (s+ z)/(s+ p) with p > z ≈ p and the controller pole s = −p taken sufficiently far into the LHP,
stabilizes this system, as illustrated in Figure 10.20b. However, lead control designed using the Bode plot, with
the pole/zero pair [and, thus, the boost in gain caused by Dlead(s)] centered at the desired crossover frequency
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Figure 10.21: Control of the oscillatory second-order system of Figure 10.19c using proportional control and lead
control. (a) Root locus using proportional control. (b) Root locus using lead control. (c) Step response, (d) open-
loop Bode plot, and (e) closed-loop Bode plot using (solid) proportional control and (dashed) lead control taking
p/z = 10, with gains as marked in (a) and (b). Note the peaks in the open-loop and (in the case of proportional
control) closed-loop Bode plots due to the open-loop and (in the case of proportional control) closed-loop poles
on the imaginary axis. Unfortunately, when using lead control in this case, there is significant overshoot in the
step response due to the third pole on the negative real axis.

as determined from the rise time specification (that is, with√pz = ωg, as shown in Figure 10.20d), improves the
response (see Figure 10.20e) for the same value of α = p/z in the lead controller (taking α = 10 in this case12,
as shown in Figure 10.20d), even though the root locus in this case is a bit more complicated (Figure 10.20c).
Note finally that a bit of damping in the plant (taking c > 0) changes the pole locations slightly, but leaves the
control problem essentially unchanged.

Case (b): β = 0, c = 0, m = 1. The plant in this case, G(s) = C/s2, is known as a double integrator, and the
lead control strategy using the Bode plot, as described in Case (a), works effectively.

Case (c): β = 1, c = 0, m = 1. The plant in this case, G(s) = C/[(s + i p)(s − i p)] with p =
√
2βg, is

known as a second-order oscillator. Lead control can be designed for this system using the Bode plot as in
the previous two cases, leading to the step response illustrated in Figure 10.21. Note the increased overshoot in
this case due to the extra closed-loop pole on the negative real axis; this increased overshoot is generally the
weakness of using lead control on an oscillatory plant. The strength of this control design is that it generally
works adequately (but, not particularly well...) for a broad range of p; that is, the control design is robust to
uncertainty in the plant parameters.

12Note that a lead controller designed with
√
pz = ωg and p/z = α is given simply by taking z = ωg/

√
α and p = ωg

√
α.
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Figure 10.22: Control of the oscillatory second-order system of Figure 10.19c using notch control for two possible
values for the controller zeros. (a) Root locus. (b) Bode plot and (c) step response taking (solid) z < p and
(dashed) z > p, with gains as marked in (a). The inexact cancellation of the plant pole p by the controller zero
z leads to a stable closed-loop system, in this case, if z < p, and instability if z > p. This is seen in the root
locus very near the imaginary axis (see insets); it is seen in the step response only by looking over a long period
of time, as the (initially, small) oscillations grow or decay slowly. It is difficult to determine stability from the
Bode plot. Designing an appropriate Nyquist contour in the s plane, (d), and mapping via L(s) = G(s)D(s) to
obtain the corresponding Nyquist plots [see (e) for z > p, and (f) for z < p], it is seen in (e) that the contour
encircles the L = −1 point twice when z > p, thus [by Fact 10.3] indicating two unstable closed-loop poles,
whereas in (f) the contour does not encircle the L = −1 point when z < p, indicating a stable closed loop.
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Case (c): β = 1, c = 0, m = 1, revisited using notch control. If the plant is known accurately, a notch controller
Dnotch(s) = K(s2 + z2)/(s + p)2 (see Figure 10.17d) can be used instead in case (c), approximately “knocking
out” the neutrally-stable plant poles with nearby controller zeros, and supplanting these oscillatory poles with
a pair of stable controller poles sufficiently far into the LHP to achieve the desired rise time and settling time,
as illustrated in Figure 10.22. The strength of this control design is its performance: the closed-loop system
in this case doesn’t suffer from the increased overshoot experienced when using lead control. The weakness
of this control design is that it is sensitive to uncertainty in the plant parameters. Recall that cancellation of
plant poles/zeros with controller zeros/poles must always be considered as approximate, as plant parameters
are never known precisely. If a pole/zero cancellation is well into the LHP, the fact that the cancellation is only
approximate isn’t a problem, as discussed in §10.2.1.2. However, if the approximate pole/zero cancellation is on
or near the imaginary axis, then it is critical that the controller zero be placed on the appropriate side13 of the
plant pole, so that the small branch of the root locus that results from the inexact nature of the cancellation
swings into the LHP instead of the RHP. In other words, the controller zero should not be put at the expected
value of the plant pole, but must instead be put, conservatively, on the appropriate side of the expected range
of where the plant pole might lie. The smaller this range is (that is, the more certain you are about the plant
parameters), the better the performance that can be obtained, as this cancellation can be made more precise
without risking instability. If the range is too large, the more robust lead controller should be used instead. △

10.3.3 Sensor dynamics, and noise suppression via low-pass and notch filtering
All sensors have associated with them some level of noise, the intensity of which generally varies as a function
of frequency. This noise intensity often does not diminish very quickly with increasing frequency14, though
the strength of the signal of interest usually does; thus, sensors ultimately become essentially useless at high
frequencies, and feedback applied at such high frequencies is counterproductive. The typical Bode plot depicted
in Figure 10.7 therefore has the important constraint of reduced open-loop gain at high frequencies.

To suppress the high-frequency gain, a low-pass filter (see §8.5) is sometimes necessary. Recall the Bode
plots of the simple first-order and second-order low-pass filters given in Figure 8.8, and of the higher-order
Butterworth and Bessel filters given in Figure 8.10. Unfortunately, such filters generally bring with them signif-
icant phase delay, even well below the filter’s corner frequency ωc, as indicated in these Bode plots. Recall also
that one generally designs a feedback system with a certain minimum phase at the crossover frequency, given
by −180◦+ PM where, as suggested by (10.8), PM ≈ ζ · 100, and ζ is the desired damping selected to meet the
overshoot specification, as suggested by (8.17). If a low-pass filter is used with corner frequency ωc within an
order of magnitude or so of the crossover frequency ωg of the system, this phase loss should be accounted for
during the controller design.

Thus, the selection and tuning of a low-pass filter to suppress the response of a system to the high-frequency
noise picked up by the sensors is nontrivial, and reflects a compromise between the loss of phase and the rate
of roll-off of the gain near the corner frequency ωc of the low-pass filter. Many sensors already have low-
pass filters built in, or superciliously added by the experimentalist constructing the sensor. As the responsible
controls engineer, if one is designing for maximum performance, it is useful to identify exactly what kind of
filter is already implemented in such settings, so the phase loss associated with this filter at crossover can be
accounted for during the controller design.

13Note that which side (above or below) is the appropriate side that gives stability depends on the rest of G(s); you need to plot
the root locus for your problem to check!

14In many sensors (e.g., thermocouples) the noise intensity can actually be well approximated as white (that is, with intensity
nearly constant across a broad range of frequencies, like that of white light; for further discussion, see §5 of NR).
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r(t) e(t) u(t) ŷ(t)

y(t)ỹ(t)

D(s) G(s)

S(s)F (s)

w(t)

v(t)

physical system

Figure 10.23: Closed-loop system with a sensor dynamics block S(s) and a filter block F (s) in the return
portion of the feedback loop, where y(t) denotes the actual measurement, ŷ(t) denotes the ideal measurement
(that is, the quantity of interest), and ỹ(t) denotes the filtered measurement.

Some sensors have inherent dynamics that may be significant near the target crossover frequency. For
example, a MEMS15 accelerometer is essentially a small floating mass balanced by a spring, and therefore has
a response magnitude that is inherently a function of the forcing frequency16. Some COTS (commercial off-
the-shelf) sensors have appropriate compensation circuits already built in which attempt to counteract the
effects of such sensor dynamics, while others allow the controls engineer access to the raw measured signal,
allowing the appropriate compensation to be developed as a part of the closed-loop system design.

In order to maximize performance [that is, the fidelity of the system response to a reference input r(t)]
while minimizing sensitivity [that is, the response of the system to measurement noise v(t)], control in the
presence of sensor dynamics and/or low-pass filtering is often implemented in the manner indicated in Figure
10.23. In this case, again noting the mnemonic in (10.2), the closed-loop transfer function is

T (s) =
Ŷ (s)

R(s)
=

G(s)D(s)

1 +G(s)D(s)F (s)S(s)
, (10.19a)

whereas the sensitivity [of ŷ(t) to the measurement noise v(t)] is

Ŷ (s)

V (s)
=

G(s)D(s)F (s)S(s)

1 +G(s)D(s)F (s)S(s)
. (10.19b)

It is thus seen that low-pass filter F (s) [with |F (iω)| → 0 as ω →∞] in the return portion of the feedback loop
reduces the sensitivity of the quantity of interest ŷ(t) to the high-frequency components of the measurement
noise v(t), but not to the high-frequency components of the reference input r(t). Similarly, a notch filter
F (s) (see Figure 10.17c) reduces the response of the system to a dominant frequency in the spectrum of the
measurement noisev(t). Note finally thatmeasurement noise sometimes has a dominant frequency component
at a certain frequency (often, 50 or 60 Hz); this buzz can be mitigated with a notch filter in the return portion
of the feedback loop in a similar fashion (see Example 9.31).

15AMicro-Electro-Mechanical-System is a very small physical system made using the same mask/expose/etch technology used
to manufacture silicon chips. Today, this technology is very mature, and several types of MEMS sensors are mass produced on a
large scale. For example, MEMS accelerometers are used in airbag deployment systems in automobiles, video game controllers &
smartphones, and laptop hard disk drives (to park the read head, before impact, if the laptop is dropped, thus preventing damage to
the disk). MEMS gyros are also mass produced, albeit on a somewhat smaller scale, for use in video game controllers & smartphones.

16An expanded dynamic range of such devices may generally be obtained by active electrostatic force rebalancing; that is, by
closing a control loop around the sensor itself, applying an electrostatic force that is just sufficient to keep the floating mass from
moving, then measuring the electrostatic force required to “rebalance” the floating mass within the device in order to determine the
acceleration applied to the entire system. This essentially supplants the mechanical time constant of the device,

√
m/k, with the

electrical time constants of the sensor control circuit, RC and L/R, which are generally much faster.
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Figure 10.24: Successive loop closure of a SIMO plant G(s) designed with “fast” θ(t) dynamics and “slow”
x(t) dynamics: (a) block diagram of physical realization; (b) idealization for the purpose of control design, as
considered in Example 10.6 (see Figure 6.5a).

10.3.4 Successive loop closure (SLC) leveraging frequency separation
Classical control design techniques are used primarily for SISO systems. However, many systems are character-
ized by a substantial frequency separation of the modes of interest; that is, the system modes are character-
ized by natural frequencies which are an order of magnitude or so apart, or the frequencies of such modes can
at least be made this way with control feedback. In such systems, it is straightforward to nest a “fast” feedback
loop within one or more outer, “slower” feedback loops in order to string multiple SISO controllers together
to stabilize a SIMO system with multiple unstable modes, leveraging the observation that a slow outer loop
doesn’t significantly alter the dynamics of a fast inner loop. As with the other controls problems considered
previously, this control strategy is best introduced by example.

Example 10.6 Stabilization of an unstable fourth-order system (an inverted pendulum on a cart)
We now consider the control of the classic linearized inverted pendulum problem illustrated in Figure 6.5a and
depicted in block diagram form in Figure 10.24, taking typical laboratory values for the constants: mc = 2 kg
for the mass of the cart, mp = 1 kg for the mass of the pendulum (a uniform rod), ℓ = 1 m for the distance
from the cart to the center of mass of the pendulum (the half-length of the rod), Ip = mpℓ

2/3 for the moment of
inertia of the pendulum about its center of mass, g = 9.8m/s2 for the acceleration due to gravity, and c1 ≈ 0.01
and c2 ≈ 0.05 for the friction coefficients. As derived in Example 6.5, small perturbations of this system from
the inverted state are governed by the coupled equations

pendulum dynamics: (Ip +mpℓ
2)
d2θ

dt2
+ c1

dθ

dt
−mpgℓ θ = mpℓ

d2x

dt2
, (10.20a)

cart dynamics: (mc +mp)
d2x

dt2
+ c2

dx

dt
= mpℓ

d2θ

dt2
+ u, (10.20b)

Taking the Laplace transform of both (10.20a) and (10.20b) and combining appropriately, we may write

G1(s) =
Θ(s)

U(s)
=

b1s

a3s3 + a2s2 − a1s− a0
, G2(s) =

X(s)

Θ(s)
=
b2s

2 + b1s− b0
s2

(10.21)

where b1 = mpℓ, a3 = (mc+mp) Ip+mcmp ℓ
2, a2 = (mc+mp) c1+(I+mp ℓ

2) c2, a1 = (mc+mp)mp g ℓ+c1 c2,
a0 = mp g ℓ c2, b2 = (I +mp ℓ

2)/(mp ℓ), b1 = c1/(mp ℓ), and b0 = g, thereby facilitating interpretation of the
SIMO system (10.20) in the successive loop closure configuration depicted in Figure 10.24. The problem of
stabilizing the hanging pendulum, which is oscillatory (not unstable), is closely related.
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Figure 10.25: Classical control design techniques applied to the inner loop of the successive loop closure problem
considered in Example 10.6. (a) Root locus using proportional control. (b) Root locus using lead control. (c)
Step response, (d) Bode plot, and (e) closed-loop Bode plot using (solid) proportional control and (dashed) lead
control, with gains as marked in (a) and (b).

The key to extending the essentially SISO control techniques discussed thus far to this problem is to first
ignore the state x(t) associated with what we have assigned as the “slow” outer loop, and focus our attention at
first simply on designing an inner-loop controller D1(s) to stabilize (relatively quickly; say, with a rise time of
tr ≈ 0.1 sec) the variable θ(t) back to a reference state θr(t), nominally taken to be zero.

Taking c1 = c2 = 0 reduces the plant considered in the inner loop to G1(s) = b1/(a3s
2 − a1), and thus

the inner loop control problem reduces to the problem solved in Figure 10.20. In the problem considered now,
neither of these friction coefficients is zero; however, as shown in Figure 10.25, using lead control and the root
locus and Bode design techniques presented previously, stabilization of the high-speed dynamics of the inner
loop is again quite straightforward. The subsystem to be controlled in the inner loop, G1(s), has an open-loop
zero at s = 0 and open-loop poles at s ≈ −6.3, s ≈ −0.045, and s ≈ 5. Thus, proportional control results in
a pair of lightly damped, relatively fast closed-loop poles, and one very slow unstable closed-loop pole on the
positive real axis close to s = 0. As before, the dominant fast modes of the system are easily stabilized with lead
compensation. Due to the proximity of the open-loop zero at s = 0 to the open-loop pole at s ≈ −0.045, the
coefficient of the (exponentially growing) component of the response associated with the very slow unstable
closed-loop pole is nonzero but small, as illustrated in the (dashed) step response in Figure 10.25c. Again, it is
difficult to determine stability versus instability directly from a Bode plot, though this would be straightforward
to determine from a Nyquist plot. This is unnecessary in the present situation, as we already know that the
inner loop is unstable by looking at the root locus.

Note in Figure 10.25c that the step response of the controlled inner loop rises quickly to 1.4, and begins to drift
from there due to the slow unstable inner-loop pole. Thus, as suggested by Figure 10.11, we take P = 1/1.4
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Figure 10.26: Classical control design techniques applied to the idealized outer loop [taking T1(s) = 1] of the
successive loop closure problem considered in Example 10.6. (a) Root locus using proportional control. (b) Root
locus using proportional control with negative gain. (c) Root locus using lead control with negative gain. The
corresponding Bode plot and step response are given as the (dashed) curves of Figures 10.27b-c.

in Figure 10.24. For the time being, we simply ignore the unstable slow pole of the inner loop, as the outer-
loop control design, considered below, changes significantly the low-speed dynamics of the system. Doing the
calculation, the actual closed inner loop T1(s) = P G1(s)D1(s)/[1+G1(s)D1(s)] has poles at s ≈ 0.018 (which,
again, is unstable, as seen clearly in Figure 10.25b) and s ≈ −17.5 ± 14i (which are fast and stable), a zero at
s = 0, and an approximate (stable) pole/zero cancellation at s ≈ −6.3.

Assuming the closed inner loop has a transfer function of T1(s) ≈ 1 at the frequencies of interest (see dashed
curve in Figure 10.25e, scaled by P = 1/1.4), we next design an outer-loop controller D2(s) to stabilize Gs(s)
in (10.21), in the outer loop of Figure 10.24b, relatively slowly (say, with tr ≈ 1 sec). Noting G2(s), it is seen
in Figure 10.26 that a D2(s) with negative gain and some lead compensation effectively stabilizes the idealized
outer-loop system.

Finally, applying the outer-loop controller D2(s) to G2(s) and the actual closed inner loop, T1(s), results in
the root locus, Bode plot, and step response in Figure 10.27. The root locus of this full outer-loop system (Figure
10.27a) indicates essentially the same behavior at low frequencies (small |s|) as does the root locus of the idealized
outer-loop system (Figure 10.26c), as well as a pair of well-damped closed-loop poles near s ≈ −16.3 ± 3i, the
latter of which (in slightly modified positions) is also seen in the root locus of the inner-loop system (Figure
10.25b), as well as a couple of (stable) approximate pole/zero cancellations at s ≈ −6.3 and s ≈ −5.4. The
Bode plot of this full outer-loop system (solid curve in Figure 10.27b) is similar to that of the idealized outer-
loop system (dashed curve in Figure 10.27b), but exhibits a significant gain reduction and loss of phase at high
frequencies. It is thus clearly evident in this Bode plot why frequency separation is needed in order to apply
the SLC approach: the loss of phase due to the (fast) inner loop dynamics erodes the PM of the outer loop if the
crossover frequency ωg of the outer loop is too close to the bandwidth frequency ωBW of the closed inner loop,
as evident in the closed-loop Bode plot of the inner loop in Figure 10.25e. Due to the only slight loss of phase
from the inner loop dynamics for the rise times achieved in the present control solution (tr ≈ 0.08 sec for the
inner loop, and tr ≈ 0.8 sec for the outer loop), the step response of the full outer-loop system has only slightly
higher overshoot than the step response of the idealized outer-loop system, as indicated in Figure 10.27c.

We now reëxamine the slow outer-loop dynamics of the full system, revisiting the interplay between the
slow dynamics of the closed inner loop and the outer loop. As mentioned above, and illustrated clearly by the
root loci of Figure 10.26 and the Bode plot and step response given as the dashed curves of Figures 10.27b-c,
control of the idealized outer-loop system G2(s) [with two poles at the origin and two zeros at s ≈ ±5.4] is
straightforward using negative gain and lead compensation.
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Figure 10.27: (a) Root locus of the full outer loop, incorporating the actual closed inner loop T1(s) =
P G1(s)D1(s)/[1 + G1(s)D1(s)], of the SLC problem in Example 10.6. (b) Bode plot, and (c) step response
of (dashed) the idealized outer loop [taking the idealized closed inner loop T1(s) = 1] corresponding to the
root locus in Figure 10.26c, and (solid) the full outer loop, incorporating the actual closed inner loop T1(s),
corresponding to the root locus in (a).

When forming the product G2(s)T1(s), one of the poles at the origin of G2(s) cancels (exactly17) the zero at
the origin of T1(s), leaving two poles remaining in the vicinity of the origin (one at s = 0 from G2(s), and one
at s ≈ 0.018 from T1(s)), thus leading to a root locus in the vicinity of the origin in Figure 10.27a which is quite
similar to that seen in Figure 10.26c (again, the outer loop stabilizes those two inner-loop poles near the origin,
one of which was actually unstable). Finally, recall that the slope of the Bode plot of T1(s) in Figure 10.25e for
small ω is +1. As a result, the Bode plot of the full G2(s)T1(s)D2(s) system in Figure 10.27b for small ω is
−1 (see solid curve), instead of −2 as it is for the idealized G2(s)D2(s) (taking T (s) ≈ 1; see dashed curve).
Effectively, there is now only one pole at the origin in the full G2(s)T1(s)D2(s) system rather than two (as
when considering the idealized inner loop, taking T (s) ≈ 1); this detail presents no significant problems. △

17Recall from §10.2.1.2 that approximate cancellations of controller zeros/poles with plant poles/zeros are problematical in the RHP,
and must never be attempted; similarly, as seen in Figure 10.22, approximate pole/zero cancellations on the imaginary axis (including
near the origin) must be handled with care to ensure stability. However, the pole/zero cancellation when forming the G2(s)T1(s)
product in this case comes from our representation of the SIMO plant as the casecade of two separate SISO blocks, G1(s) and G2(s).
The pole/zero cancellation arising from this representation of a single plant as a two-block cascade is exact. Some software packages
(e.g., Matlab) must be used with care in order to realize this exact pole/zero cancellation in the simulation of the outer loop, as small
numerical errors in the calculation of T1(s) can sometimes conceal (numerically) an exact pole/zero cancellation of this sort.
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Figure 10.28: (a) Bode plot and (b) step response of three stable systems: (dot-dashed) T1(s), (dashed) T2(s),
and (solid) T3(s) [see (10.22)].

10.3.4.1 Nonminimum phase systems

We conclude this section with a brief discussion of a characteristic behavior exhibited by the overall response
(given by the solid curve in Figure 10.27c) to a step reference input, xr, to the inverted pendulum system,
for which the control feedback was determined using SLC in Example 10.6. In particular, note that this step
response goes the wrong way (negative) before it goes the right way (positive). This behavior is not a fluke,
and is characteristic of the step response in any stable (or stabilized) system with a single RHP zero. Any child
who has balanced a meterstick (or, in the United States, a yardstick...) on his hand is intuitively familiar with
the need to take a small step backward before walking forward with such a system.

To consider this effect in greater detail, consider the three stable systems

T1(s) = 2
(s+ 1)(s+ 4)

(s+ 2)3
, T2(s) = −2

(s+ 1)(s− 4)

(s+ 2)3
, T3(s) = 2

(s− 1)(s− 4)

(s+ 2)3
. (10.22)

All three of these systems have identical (stable) poles; it is only the sign of the zeros, and the sign of the
overall gain, which distinguishes them. The Bode plots and step responses of these three systems are given
in Figure 10.28. The magnitude of the Bode plot is identical in all three cases. The phase change between
the left end of the Bode plot and the right end of the Bode plot is minimized by T1(s) [with no RHP zeros,
called a minimum-phase system], and is maximized by T3(s) [with only RHP zeros, called a maximum-
phase system]; this phase change takes some intermediate value for T2(s) [with both LHP and RHP zeros,
sometimes called amixed-phase system]; note also that maximum-phase systems and mixed-phase systems
are commonly referred to simply as nonminimum phase systems18. Note in Figure 10.28b that the step
response in the presence of one RHP zero goes the wrong way before going the right way, and the step response
in the presence of two RHP zeros goes the right way, then the wrong way, then eventually the right way19.

The characterization given above—specifically, that a stable transfer function with stable zeros is charac-
terized by the minimum change in phase from the left side of the Bode plot to the right side of the Bode
plot—extends to any transfer function for which the degree of the denominator is greater than or equal to
the degree of the numerator [that is, for a proper CT transfer function (see §8.2.3.1), or a causal DT transfer
function (see §8.3.3.2)].

18The next time you are at a conference in an elevator that goes the wrong way before it goes the right way, say “oh! nonminimum
phase!” and see who gets the joke, thus identifying immediately those of your colleagues who know classical control theory. . .

19If your elevator does this, you should probably consider changing hotels.
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Figure 10.29: Block diagram of a Stability and Control Augmentation System (SCAS), in which the control
input u(t) from the pilot or autopilot is augmented by small amounts of both feedforwardmodificationC(s)
and feedback stabilization D(s) to improve the handling qualities of an aircraft (cf. Figures 10.1 and 10.24).

10.3.5 Stability and Control Augmentation Systems (SCAS)
As introduced in Figure 10.1, we’ve concentrated thus far mainly on the design of controllers to be implemented
in the forward part of a feedback loop in order to change substantially the input-output transfer function of a
dynamic system, focusing on one or both of the following design objectives:

• tracking a reference input, r(t), with the output of the plant, y(t), for the sinusoidal components sin(ω t)
of the reference input r(t) up to a given bandwidth frequency ωBW , and
• meeting specifications on rise time, settling time, and overshoot of the response y(t) to a step in r(t).

As emphasized by Guideline 10.1, one generally seeks to achieve these objectives with minimum excitation by
control feedback to reduce the sensitivity of the closed-loop system to both external disturbances and internal
modeling errors, especially unmodeled delays. We have also explored (in §10.3.3) the use of filters in the return
portion of a feedback loop to reduce the sensitivity of the system to measurement noise.

There are certain situations, especially in the control of aircraft, in which the control objective is a bit more
modest: in such situations, we don’t want to change the input-output transfer function completely, but rather
simply nudge the controls gently to dampen the unfavorable, oscillatory, or unstable modes of the vehicle to
make it more easily or “naturally” controllable by its operator (e.g., a pilot or autopilot). Note that the various
aircraft handling characteristics deemed “natural” are subjective, and have evolved over the years from the
“feel” of revered classic (stable) transport and fighter aircraft, such as the DC-3 Gooney Bird and the Super-
marine Spitfire. Preferred handling characteristics for military aircraft are described in detail in a number of
military regulations, such as MIL-STD 1797 and MIL-SPEC 8785C (both exciting reads!); to achieve such han-
dling qualities throughout the entire flight envelope, stability and control augmentation systems are almost
always necessary in modern aircraft designs, most of which sacrifice the inherent aerodynamic stability of vin-
tage aircraft (achieved via large horizontal and vertical stabilizers, and in some cases significant wing dihedral)
for greatly improved agility, efficiency, or stealth, and are thus characterized by “poor” stability characteristics
(from a handling perspective), at least in a portion of the flight envelope, before feedback is applied20.

This section follows that on SLC, because the problem here is similar: based on an external objective or
“reference input” on the system (e.g., maintain straight-and-level flight, initiate a climbing unaccelerated turn,
etc.), the “outer-loop” controller (a pilot or an autopilot) gives appropriate control inputs u(t) to an inner loop,
akin to the signal denoted θr(t) in the SLC paradigm as implemented in Figure 10.24. This control input from
the pilot or autopilot is then augmented and applied to the system, as depicted in Figure 10.29; such a strategy
is referred to as a Stability and Control Augmentation System (SCAS21). The use of an SCAS is, again, best
illustrated by a few examples; the examples below are based on the linearized dynamic models of aircraft developed
in Example 6.11, a review of which is suggested before proceeding.

20The handling characteristics of early prototypes of the F-117 stealth fighter were so poor, it earned the nickname Wobblin
Goblin; these characteristics were largely cured by appropriately-implemented SCAS systems in the production version of the aircraft.

21Some authors distinguish between a Stability Augmentation System (SAS) and a Control Augmentation System (CAS), though
this distinction is, perhaps, a bit superfluous.

10-35

https://en.wikipedia.org/wiki/Douglas_DC-3
https://en.wikipedia.org/wiki/Supermarine_Spitfire
https://en.wikipedia.org/wiki/Supermarine_Spitfire
https://www.scribd.com/document/49403406/MIL-STD-1797
https://www.abbottaerospace.com/downloads/mil-f-8785c-flying-qualities-of-piloted-airplanes/


Renaissance Robotics (v.2024-03-19) Chapter 10: Classical Control

0 5 10 15
0

0.1

0.2

0 5 10 15

0

0.1

0.2

0.3

0 5 10 15

−0.02

0

0.02

0.04

0.06

0.08

0 5 10 15

−0.2

0

0.2

0 5 10 15

−0.02

0

0.02

0.04

0.06

x

yaw:

roll:

yaw rate:

roll rate:

sideslip:

Figure 10.30: A turn with (solid) and without (dashed) opposite rudder applied to counteract adverse yaw.

Example 10.7 Counteracting adverse yaw
Normally, an aircraft turns by banking left or right, pitching up, then banking back to straight-and-level flight.
When banked, a component of the lift force generated by the wings counters gravity, and another component
of the lift force acts to turn the aircraft. The primary use of the aircraft rudder in non-emergency situations
is simply to counteract the undesired sideslip (a.k.a. adverse yaw) generated when banking: when entering
and exiting a bank, one wing produces more lift than the other, thus causing the aircraft to roll—the wing that
generates more lift unfortunately also generates more drag, thus causing the aircraft to yaw towards the side
generating the extra lift. In some aircraft, this effect is so strong that the pilot actually has to step on the rudder
pedal every time a bank is initiated in order to maintain coördinated flight.

To illustrate, the linearized lateral/directional dynamics of a large transport aircraft on approach (at sea level,
137 knots, a flap angle of 1 degree, and a nominal cg location) may be modeled [see (6.33)] as

yaw:
roll:

yaw rate:
roll rate:
sideslip:

d

dt




ψ
ϕ
p
r
β




=




0 0 1 0 0
0 0 .199 1 0
0 −.002 −.194 −.167 .748
0 −.003 .636 −2.020 −5.374
0 .136 −.970 .198 −.148







ψ
ϕ
p
r
β




+




0 0
0 0
.053 −.74
.865 .904
.002 .047




(
δa
δr

)
.

We now perform a numerical simulation of this system with δr(t) = 0 and δa(t) executing a doublet:

δa(t) =





1 t0 < t < t1,

−1 t2 < t < t3,

0 otherwise,

thus entering a roll from t0 = 0 s to t1 = 1 s, and leaving the roll from t2 = 5 s to t3 = 6 s. The resulting system
behaves as shown (dashed) in Figure 10.30; note the significant sideslip that accompanies the roll.

Adverse yaw is a predictable dynamic effect. One can thus implement a compensatorC(s) [see Figure 10.29]
to apply an appropriate feedforward rudder correction every time the pilot commands an aileron deflection,
thus improving the qualitative handling quality of the aircraft. To illustrate, taking δ̃r(t) = δr(t)− 0.1δa(t) to
add a small rudder correction with each application of the ailerons mitigates the adverse yaw in this system, as
shown (solid) in Figure 10.30, reducing the peak sideslip by a factor of five, and reducing the oscillation in all of
the state variables, thereby improving handling quality (see also Example 10.2 and Figure 10.16d). This relieves
the busy seasoned pilot, or the n00b cadet, from having to perform such feedforward corrections. △
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Example 10.8 Yaw damping of a stable “dutch roll” lateral/directional mode
Physically, the dutch roll mode corresponds to an oscillatory perturbation involving first a bit of roll, which
creates adverse yaw towards the upwardmovingwing, which in turn causes a loss of lift on the upward perturbed
wing, which then causes roll in the other direction, etc.; looking aft out the top of the cockpit using a periscopic
sextant (which you could do in most long-haul vintage transport aircraft, like the C124 Old Shaky, in order to
perform celestial navigation), the tail of the aircraft repeatedly draws an infinity sign on the horizon when in a
dutch roll limit cycle. The roll subsidence mode is an exponentially stable (and usually relatively fast) mode
that quantifies howmuch the aircraft continues to roll once a slight roll is initiated then the ailerons neutralized.
The spiral mode is an exponentially stable (and usually relatively slow) mode coupling the yaw rate and the
roll (but not necessarily involving sideslip, it is often a nearly coördinated motion).

Using NR_SS2TF, the state-space form of a large transport aircraft on approach [see (6.34)] may be converted
to transfer function form, from rudder deflection δr(t) [taking the second column ofB in (6.34)] to yaw rate p(t)
[taking C =

(
0 0 0 1 0

)
and D = 0], as

p(s)

δr(s)
=

1.20(s− .0528)(s− 2.18)(s+ 1.94)

(s+ .0679)(s+ .696)(s+ .403 + 2.01i)(s+ .403− 2.01i)
where p(s) is the Laplace transform of p(t) [the yaw rate of the vehicle, in deg/s] and δr(s) is the Laplace
transform of δr(t) [the rudder deflection, in deg]. At these flight conditions, two of the zeros of this open-loop
system are in the RHP, and thus its dynamics are nonminimum phase (see §10.3.4.1). Recalling Figure 8.2, it is
seen that the oscillatory poles, corresponding to the so-called dutch roll mode, have a natural frequency of
ωn =

√
.4032 + 2.012 = 2.05 rad/sec, a period of 2π/ωn = 3.1 sec, and a damping ratio of ζ = .403/ωn = .20.

The fast exponentially stable mode, corresponding to the so-called roll subsidence mode, has a time constant
of 2π/.696 = 9.0 sec. The slow exponentially stable mode, corresponding to the so-called spiral mode, has a
time constant of 2π/.0679 = 93 sec.

The dutch roll mode is destabilized at cruise speed and altitude in swept-wing commercial aircraft, and
without a functioning SCAS is nearly impossible for the pilot to stabilize manually at this flight condition. As a
result, all such aircraft (e.g., the Boeing 727) now have redundant SCAS systems implemented. △
Example 10.9 Damping of the “short-period” longitudinal mode
The linearized longitudinal dynamics of an F-16 Fighting Falcon in straight-and-level flight at 300 knots at sea
level, when the center of mass is22 0.3c ahead of the center of pressure (a stable configuration), is given in (6.35),
and may be written in transfer function form, from elevator deflection to pitch rate, as

q(s)

δe(s)
=

−10.5s(s+ .987)(s+ .0218)

(s+ .00765 + .0781i)(s+ .00765− .0781i)(s+ 1.20 + 1.49i)(s+ 1.20− 1.49i) ,

where q(s) is the Laplace transform of q(t) [the pitch rate of the vehicle, in deg/s] and δe(s) is the Laplace
transform of δe(t) [the elevator deflection, in deg]. Note that, at these flight conditions, all the poles and zeros of
this open-loop system are in the LHP. It is seen that the slow oscillatory poles, corresponding to the oscillatory
phugoid mode, have a natural frequency of ωn =

√
.007652 + .07812 = .0785 rad/sec, a period of 2π/ωn = 80

sec, and a damping ratio of ζ = .00765/ωn = .097. The fast oscillatory poles, corresponding to the so-called
short periodmode, have a natural frequency of ωn =

√
1.202 + 1.492 = 1.91 rad/sec, a period of 2π/ωn = 3.3

sec, and a damping ratio of ζ = 1.20/ωn = .63. That is, at this flight condition, the phugoid mode is relatively
slow and lightly damped, whereas the short periodmode is relatively fast andwell damped23; neither necessitates

22The mean aerodynamic chord c is the average distance from the leading edge to the trailing edge of the wing.
23Physically, the phugoid mode corresponds to a slow oscillatory exchange between potential and kinetic energy (climbing and

slowing followed by diving and accelerating). The short period mode corresponds to a fast oscillation of the pitch θ and the angle
of attack α (at almost constant airspeed and altitude).
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modification in order to be easily controllable by the pilot at this flight condition. However, as flight conditions
change (specifically, as the speed of the aircraft decreases, and/or the center of mass is shifted further aft), the
short-period mode is destabilized. In such situations (for example, when a modern fighter aircraft performs a
carrier landing), substantial lead compensation implemented in theD(s) block in Figure 10.29 is often essential
to stabilize the short period mode (via feedback-controlled substantial movement of the horizontal stabilator),
thus resulting in an outer-loop system that is much more easily controlled by the pilot. △

The above three examples illustrate how classical control theory may be applied to counteract adverse yaw
using feedforward control, and to dampen the dutch roll lateral mode and the short-period longitudinal mode
(two common undesiredmodes of high-speed aircraft) using feedback control. Sincemodern aircraft havemany
redundant control surfaces andmany states of interest, state-space control design tools, as developed in NR, are
often preferred in such applications over the simple transfer-function based (aka classical) control approaches
discussed here, as state-space control design techniques are inherently developed for multiple-input, multiple
output (MIMO) systems, whereas transfer-function based control design techniques are primarily developed
for single-input, single-output (SISO) systems. Nonetheless, the simple and robust SISO approaches discussed
here are sometimes still used for these cutting-edge applications.

10.3.6 Unstable controllers for pathological SISO systems; pole placement
Up to now, we have developed just a few fundamental types of classical control components for SISO systems:

• lead and lag: D(s) = K(s+ z)/(s+ p) with p > z > 0 (lead) or z > p > 0 (lag),
• low-pass: e.g., D(s) = ω2

c/(s
2 + 2 ζ s ωc + ω2

c ) for some damping ζ and corner frequency ωc, and
• notch: D(s) = K(s2 + z2)/(s+ p)2 for z > 0 and p > 0.

Note that all of these components have their poles and zeros in the LHP. Such components may be replicated
and cascaded as appropriate, with the overall gain magnitude and sign selected as necessary to construct a
controller with the desired closed-loop characteristics. In particular,

• a lead/lag controller is a cascade of lead and lag components,
• a PD controller is a special case of a lead with no rolloff of the derivative action at high frequencies,
• a PI controller is a special case of a lag with no rolloff of the integral action at low frequencies, and
• a PID controller is a cascade of PD and PI controllers.

The SLC control design paradigm extends classical control tools developed in the basic SISO setting to the SIMO
case by wrapping slower SISO outer loops around faster SISO inner loops. The SCAS setting illustrates how
classical control concepts may be used to improve the stability of a system while still leaving the steering of
the system up to the user. The venerable lead, lag, notch, and low-pass filtering techniques summarized above
may be used together to stabilize most simple systems of practical interest, shifting their closed-loop poles into
the LHP. Such stabilizing controllers may then be tuned using the Bode plot via the process of loop shaping
described previously. In certain pathological problems, however, a controller with RHP poles and/or zeros is
required24. This situation is best illustrated by example, as done below.

24A controller with RHP poles is sometimes referred to as an unstable controller. This name, however, is something of amisnomer;
a controller is designed to be used together with a plant in closed loop, so whether or not the controller itself has poles in the RHP is
actually a matter of reduced practical consequence. It is, rather, the location of the closed-loop poles that ultimately matter.
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Figure 10.31: Root locus of the plant (10.23) with (a) the “lucky guess” controller design (10.24) applied, and
(b) the minimal-order MESC design (10.25b) applied, denoting: (×, ◦) plant poles and zeros; (×, ◦) controller
poles and zeros; (∗) closed-loop poles. For clarity, the pole/zero cancellations in the LHP are not marked.

Example 10.10 Pathological pendula
Consider the SISO linear system

G(s) =
(s+ 2)(s− 2)

(s+ 1)(s− 1)(s+ 3)(s− 3)
=

s2 − 4

s4 − 10s2 + 9
. (10.23)

Following the rules in §10.2.1 for plotting 180◦ and 0◦ root loci, it is clear that, if all of the poles and zeros of
D(s) are in the LHP, then, regardless of the precise form ofD(s), there will be a closed-loop pole on the positive
real axis, either somewhere in the range 1 < s < 2, or somewhere in the range 2 < s < 3. Further, as illustrated
in §10.2.1.2, we must never attempt to cancel unstable plant poles/zeros with controller zeros/poles. It is thus
difficult to identify a stabilizing controller D(s) for the plant in (10.23) using the techniques presented thus far.
A “lucky guess”. To identify a stabilizing controller D(s) for the plant G(s) given in (10.23), we first note that
designing a controller that cancels all of the plant poles and zeros in the LHP is not a problem (it is pole/zero
cancellations in the RHP that are problematic). If the controller additionally has a zero z3 somewhere in the
range 1 < z3 < 3, and a negative gain is used, then, following the rules for plotting the 0◦ root locus in §10.2.1,
the root locus depicting the possible closed-loop pole locations will start at the (uncancelled) open-loop poles at
s = 1 and s = 3 and move out towards infinity on the positive and negative real axes. Depending on the precise
value of z3, these two branches of the locus will meet on the real axis somewhere in the LHP (see Figure 10.31a),
at the point at infinity, or on the real axis somewhere in the RHP. Wherever these two branches meet, the locus
breaks off of the real axis and loops through the complex plane back to the pair of zeros on the positive real axis.
It turns out that taking 1 < z3 < 2 leads to the two branches of the 0◦ root locus meeting in the LHP, and thus
the possibility of achieving a stabilizing controller if the appropriate gain is used. Taking, for example,

D(s) = −1.08(s+ 1)(s+ 3)(s− 1.5)

s+ 2
(10.24)

leads to closed-loop stability, as illustrated by the corresponding root locus in Figure 10.31a; note that, in addition
to two LHP pole/zero cancellations, the remaining two closed-loop poles are also in the LHP.

The approach of requiring an “lucky guess” to achieve stability in feedback control design borders on the
RCD approach mentioned previously (see Footnote 2 on Page 10-5), and is entirely unsatisfactory (like PID, one
might even be inclined disparage it to the point of calling it ad hoc...). In similar pathological problems, sufficient
inspiration to achieve stability is likely unavailable. Further, theD(s) suggested above is improper, with infinite
high-frequency gain, and is thus not implementable, and simply cascading a low-pass filter of sufficient order
in series with this controller likely forfeits stability of the closed-loop system. A more systematic approach of
designing a stabilizing controller is thus required.
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Figure 10.32: Root locus of the modified (strictly proper) MESC design (10.26) applied to (10.23): (left) complete
locus, (right) close up around the origin. (×, ◦) plant poles and zeros; (×, ◦) controller poles and zeros; (∗)
closed-loop poles. For clarity, the pole/zero cancellations at s = −3 and s = −1 are not marked.

Systematic computation of the Minimum Energy Stabilizing Controller (MESC) via Pole Placement.
In NR, after some considerable mathematical development, we establish the following fact:

Fact 10.4 A linear stabilizing feedback controller D(s) with minimum total control energy E =
∫∞
0
[u(t)]2 dt

places the poles of a closed-loop linear system, T (s) = G(s)D(s)/[1 +G(s)D(s)], at the union of the stable open-
loop poles of G(s), and the reflection of the unstable open-loop poles of G(s) into the LHP.

We might thus follow a so-called pole-placement strategy, guided by Fact 10.4, to develop an initial stabilizing
controller which can be further tuned (see Fact 10.6) if necessary. For the example system in (10.23), we have

G(s) =
b(s)

a(s)
=

s2 − 4

s4 − 10 s2 + 9
, D(s) =

y(s)

x(s)
, T (s) =

g(s)

f(s)
=

b(s) y(s)

a(s)x(s) + b(s) y(s)
.

Given the plant G(s) = b(s)/a(s), the problem at hand is simply the selection of x(s) and y(s) to solve the
polynomial Diophantine equation25 f(s) = a(s)x(s) + b(s) y(s) for the target f(s) suggested by Fact 10.4,

f(s) = (s+ 1)2(s+ 3)2. (10.25a)

An efficient general code for solving the polynomial Diophantine equation is discussed in detail in §A.7.1, and
is implemented in RR_diophantine. Using this solver26, the “best” [lowest-order y(s)] solution in this case, which
we dub the MESC (following Fact 10.4), is

D(s) =
56s3 + 128s2 − 216s− 288

−56s− 113
= −(s+ 1)(s+ 3)(s− 1.714)

s+ 2.018
, (10.25b)

which is remarkably close to the “lucky guess” controller proposed in (10.24). The corresponding root locus is
shown in Figure 10.31b; in addition to the (stable) pole/zero cancellations, the remaining four closed-loop poles
are placed at precisely s = −1 and s = −3, as specified by (10.25a).

25Placing the poles of a closed-loop system in certain desirable stable locations is a special case of the approach discussed in §10.3.7.
26You might be tempted to simply multiply out both sides of f(s) = a(s)x(s) + b(s) y(s), for assumed polynomial forms of a(s)

and b(s), and match the coefficients of like powers of s on the LHS and RHS, leading to a system of n linear equations in n unknowns,
which then must be solved (typically, using a computer) for the coefficients of the polynomials a(s) and b(s). This approach is
algebraically cumbersome, and highly prone to error; the author thus strongly advises against it. Instead, please use the convenient
and easy-to-use solver provided in §A.7.1. It’s FREE!
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Modifying the MESC design to achieve a strictly-proper form. A systematic procedure may be followed
to determine a proper or strictly-proper controller with performance that is in some sense close to that achieved
by the (improper) MESC determined in (10.25b). To accomplish this, we may simply add k stable, relatively
fast poles to the target f(s) for the closed-loop system (it doesn’t really matter exactly where we put them;
effectively, they just apply some low-pass filtering to the MESC response). Note that every time we add a pole
to f(s) on the LHS of f(s) = a(s)x(s) + b(s) y(s), we add two degrees of freedom to the RHS [one in x(s) and
one in y(s)]; these added degrees of freedom (i.e., for sufficiently large k) can ultimately be leveraged to reduce
the relative degree nr in the “best” solution returned by the Diophantine solver.

In the present case, we simply add k = 4 stable, relatively fast real poles to our target f(s):

f(s) = (s+ 1)2(s+ 3)2(s+ 30)4. (10.26a)

Solving as before (using RR_diophantine) gives a modified controller that is strictly proper, but is otherwise quite
similar in closed-loop behavior to the Minimum Energy Stabilizing Controller:

D(s) = K
(s+ 1)(s+ 3)(s− 1.604)

(s+ 2.0104)(s− 115.6)(s2 + 2ζωc + ω2
c )
. (10.26b)

where K = 4.08e6, ωc = 185, and ζ = 0.654. The corresponding root locus is shown in Figure 10.32; near the
origin, this root locus is quite similar to that of the MESC in Figure 10.31b, with the appearance of four more
stable, relatively fast poles out at s = −30. In addition to the (stable) pole/zero cancellations, the remaining
eight closed-loop poles are placed as specified in (10.26a). Without such a systematic procedure, it would be
nearly impossible to make the “lucky guess” that would lead to such a stabilizing strictly proper controller. △

10.3.7 Simple parameterizations of all stabilizing controllers†

We focus in most of §10 on the tuning of stabilizing controllers for stable and unstable plants G(s). In certain
cases (see, e.g., Example 10.10 above), identifying a controller D(s) that results in an internally stable system
(see Fact 10.1) can itself be a difficult problem, and (starting from that) having a simple parameterization of all
stabilizing controllers is handy. The difficulty is related to the fact that the relationship betweenD(s) and T (s)
in (10.1) is nonlinear:

T (s) =
G(s)D(s)

1 +G(s)D(s)
⇔ D(s) =

1

G(s)
· T (s)

1− T (s) . (10.27a)

If we instead write T (s) = Q(s)G(s) and design Q(s) corresponding to a stable T (s), the control design
problem is easier.

For a G(s) = b(s)/a(s) with only LHP poles and zeros (that is, stable and minimum phase), once Q(s) is
specified, D(s) is given by

Q(s) =
D(s)

1 +G(s)D(s)
=
p(s)

q(s)
⇒ D(s) =

Q(s)

1−G(s)Q(s) =
a(s) p(s)

a(s) q(s) + b(s) p(s)
. (10.27b)

Further, S(s) = 1−Q(s)G(s), Su(s) = Q(s), and Si(s) = [1−Q(s)G(s)]G(s). It follows (see Fact 10.1) that

Fact 10.5 (Youla-Kučera parametrization 1) If G(s) is proper with all LHP poles and zeros (i.e., stable and
minimum phase), then the set of all proper controllers D(s) that give an internally-stable closed loop may be
written in the form given in (10.27b) for all rational Q(s) that are stable and proper.
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However, if G(s) possibly has RHP poles or RHP zeros, the construction of D(s) in (10.27b), which as seen
in (10.27a) simply “cancels” the entire plant G(s) with the controller D(s), is [by parts (e) and (f) of Fact 10.1]
insufficient to ensure an internally-stable closed loop. In this case, we instead consider a controller of the form:

D(s) =
y(s) + a(s)Q(s)

x(s)− b(s)Q(s) (10.28a)

where the polynomials {x(s), y(s)} solve an associated Diophantine equation, as done in Example 10.10 above:

a(s)x(s) + b(s) y(s) = f(s), (10.28b)

where {a(s), x(s), b(s), y(s), f(s)} are polynomials,Q(s) is a rational transfer function that is stable and proper
but otherwise arbitrary, and f(s) has all of its roots in the LHP and is of sufficiently high order that a proper
D(s) = y(s)/x(s) solving (10.28b) exists, but is otherwise arbitrary. The four sensitivities may now be written

T (s) = G(s)D(s)/[1 +G(s)D(s)] = Q(s)G(s) = b(s) [y(s) +Q(s) a(s)]/f(s), (10.29a)

S(s) = 1/[1 +G(s)D(s)] = 1−Q(s)G(s) = a(s) [x(s)−Q(s) b(s)]/f(s), (10.29b)

Su(s) = D(s)/[1 +G(s)D(s)] = Q(s) = a(s) [y(s) +Q(s) a(s)]/f(s), (10.29c)

Si(s) = G(s)/[1 +G(s)D(s)] = [1−Q(s)G(s)]G(s) = b(s) [x(s)−Q(s) b(s)]/f(s); (10.29d)

all four of these forms are stable as long as Q(s) is stable and f(s) has its roots in the LHP. Note the simple
relationship between Q(s) and Q(s) in (10.29c), that Si(s) = G(s)S(s), that T (s) = G(s)Su(s), and that

• the factor of a(s) is in the numerator of the expressions for S(s) and Su(s), which implies that the poles
of G(s) appear as zeros of S(s) and Su(s), thus satisfying parts (a) and (c) of Fact 10.1, and
• the factor of b(s) is in the numerator of the expressions for T (s) and Si(s), which implies that the zeros
of G(s) appear as zeros of T (s) and Si(s), thus satisfying parts (b) and (d) of Fact 10.1.

It follows that:

Fact 10.6 (Youla-Kučera parametrization 2) IfG(s) is proper but possibly has RHP poles and/or zeros, the set
of all proper controllersD(s) that give an internally-stable closed loop may be written in the form given in (10.28a)
for some {x(s), y(s)} that solves (10.28b) [for some f(s) with all of its roots in the LHP, and of sufficiently high
order that (10.28b) is solvable with a properD(s) = y(s)/x(s)] and for all rationalQ(s) that are stable and proper.

Note that the expression for D(s) in (10.27b) is a special case of that in (10.28a) that is applicable for G(s)
with only LHP poles and zeros; indeed, taking f(s) = a(s) in this case results in x(s) = 1 and y(s) = 0 and
Q(s) = Q(s) a(s), thus reducing (10.28a) to (10.27b).

The entire discussion above extends immediately to DT problems simply by replacing s with z, replacing
the phrase “LHP” with “inside the unit circle”, and replacing the phrase “RHP” with “outside the unit circle”.
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10.3.8 Implementation of CT linear controllers in analog electronics†

In order to achieve the loop shaping described previously (see §10.2.2 and Figure 10.7), it is straightforward to
implement a CT controller D(s) that cascades together a number of the individual filters discussed above and
developed as simple analog circuits with low output impedance27 in §9.2. In most cases28, this involves

• lag filter(s) [see Figure 10.17a] to improve tracking, implemented at frequencies well below the crossover
frequency ωg so as to not substantially erode the PM,
• lead filter(s) [see Figure 10.17b] to increase the PM and thus reduce overshoot, centered at the crossover
frequency ωg (that is, taking

√
p/z = ωg) so as to maximize their beneficial effect,

• low-pass filter(s) [see Figures 8.8a, 8.8b, 8.10a, and 8.10b] to improve robustness, implemented at frequen-
cies well above the crossover frequency ωg so as to not substantially erode the PM, and/or
• notch filter(s) [see Figures 10.17c and 10.21] to knock-out characteristic system oscillations, implemented
carefully near the frequencies of the oscillatory plant poles to avoid closed-loop instability.

[Note that one of the more delicate matters to attend to in classical control design is effectively “squeezing” the
lag and low-pass filtering of D(s) (situated on the Bode plot below and above ωg, respectively) in as close as
possible to ωg while still achieving the required PM, in order to maximize the ranges of frequencies over which
these filters have their beneficial effects.] The following results from §9.2 are of particular importance:

• a general adder/subtractor circuit is developed in Example 9.28 and illustrated in Figure 9.31c,
• lead, lag, P, I, D, PI, PD, and first-order low-pass filters are all special cases of the single op-amp circuit
developed in Example 9.30 and illustrated in Figure 9.32a,
• second-order and fourth-order low-pass filter circuits are developed in Exercise 9.5, and
• a notch filter circuit is developed in Example 9.31 and illustrated in Figures 9.32b and 9.33.

Due to the issue of aliasing (see Figures 8.6-8.7), low-pass filters used to reject disturbances generally need
to be implemented in CT using analog electronics. [That is, after you sample a signal with high-frequency
noise, it is too late to distinguish the low-frequency signal from the (sampled, aliased) high-frequency noise.]
However, due to their low cost and ease of programming (and reprogramming when the system changes),
DT microcontrollers are, today, often best suited for implementing the rest of the controller (as DT difference
equations) even when controlling CT plants, as discussed at length in §10.4.

10.3.9 Extending the PID, lag, lead, low-pass, and notch techniques to DT systems
As discussed in §10.2.5, the root locus, Bode, and Nyquist techniques extend immediately to DT systems. These
tools may thus be used to tune DT linear controllersD(z) formed as a cascade of lag, lead, low-pass, and notch
filters in an essentially identical manner.

10.3.10 Implementation of DT linear controllers in microcontrollers
Via inverse Z transform of D(z) and writing the resulting difference equation, such as (8.24a), in a convenient
form, such as (8.24c), it is easy to see how the resulting difference equation may be implemented in DT in a
microcontroller. As discussed in §8.3.3.2, for its corresponding difference equation to be implementable, the DT
controller D(z) must be causal (that is, n ≥ m, where n is the order of the denominator andm is the order of
the numerator). Strictly causal D(z), with n > m, are somewhat easier to implement in practice than those
arising from semi-causal D(z), with n = m, as they give a full timestep to compute the next value of uk.

27The low output impedance of each op amp circuit mentioned here (cf. the passive circuits of Example 9.2) simplifies the circuit
design process significantly, as it effectively decouples each individual stage of the cascade, allowing them to be designed separately.

28Notable pathological exceptions requiring something different are discussed in §10.3.6-10.3.7.
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Figure 10.33: The principal effect of a zero-order hold (ZOH) of a DAC applied to a sampled sinusoid is the
introduction of an h/2 delay in the signal. This is indicated here by (solid) the ZOH reconstruction of the
(dashed) CT sinusoidal input from the samples (denoted by the× symbols). The dot-dashed curve indicates this
ZOH reconstruction after the removal of, effectively, a small “sawtooth” wave at twice the Nyquist frequency
ωNyquist = π/h, which is relatively unimportant, illustrating clearly this (detrimental) h/2 delay.

10.4 Classical control design of DT controllers for CT plants

When controlling a CT physical system G(s) with a DT controller D(z) implemented in the digital logic of a
microcontroller, an interesting mix of CT and DT components arises. Such mixed systems may be analyzed
using one of two methods, as discussed in §10.4.1 and §10.4.2.

Note that the interconnection of CT plants with DT controllers requires both digital-to-analog converters
(DACs) to convert the DT output from the digital electronics D(z) [that is, from the microcontroller] into a
CT input to the plant G(s), and analog-to-digital converters (ADCs) to convert the CT output from the
plant G(s) into a DT input to the controllerD(z). To keep production costs down, nearly all commercial DACs
incorporate a zero-order hold (ZOH): that is, the output u(t) of the DAC at any time t is taken simply as the
input uk to the DAC at the most recent timestep tk. We thus assume that all DACs incorporate a ZOH strategy
in the remainder of this text. The influence of the ZOH of the DAC is significant (see Figures 10.33 and 10.12a)
and detrimental, as it can significantly reduce the PM (and, thus, increase overshoot) of a closed-loop system
if ωNyquist = π/h is not taken sufficiently high (that is, if h is not taken sufficiently small).

Nearly all ADCs incorporate an analog circuit implementing some kind of CT low-pass filter, to substantially
reduce components of the input signal above ωNyquist, to prevent aliasing when sampling (see Figure 8.7a);
depending on the intensity of the noise in your problem, you may actually want to filter even more. Recall
that low pass filters typically erode the phase of the output well below their corner frequency (see §8.5). If the
sample period h is sufficiently small, the influence of this low-pass filter on the phase of the open-loop system
will be relatively small (but should still be accounted for - see §10.3.3). At the same time, we should not make h
too small, as that would make the tap delays of the signal too close together, amplifying error in the calculation
of DT difference equations. The choice of h thus reflects a delicate compromise.

In addition to discretizing CT signals in time, using a timestep h, ADCs convert real values (usually, voltages)
to finite-precision representations in the microcontroller (MCU). If fixed-point arithmetic is being used
(which is often required when implementing on an inexpensive PIC, AVR, or ARMmicrocontroller), the resulting
discretization errors are well modeled as a bit of additive measurement noise29.

29If floating-point arithmetic is being used, the discretization errors are better represented by a (more cumbersome)multiplicative
noise model. However, as cheap 32-bit MCUs have largely eclipsed vintage 8-bit MCUs, modern microcontrollers implementing
floating-point arithmetic mostly use half precision arithmetic or better (see §1.1.4), in which case discretization errors are negligible.
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Figure 10.34: (a) A closed-loop configuration of a DT controller D(z) and a CT plant G(s) interpreted as a
discrete equivalent design. When designing the CT transfer function D(s) corresponding to the cascade of
the ADC, the DT controller D(z), and the DAC, the primary effect of the ADC & DAC is an h/2 delay due to
the ZOH, as illustrated in Figure 10.33. (b) An equivalent circuit used for the design ofD(s), incorporating the
d = h/2 delay using an appropriate Padé approximation [see (8.8)]; once D(s) is designed in this manner, it
may be converted into a DT transfer function with similar dynamics, D(z), using Tusin’s approximation with
prewarping, then inverse transformed into a difference equation and implemented in a microcontroller.

10.4.1 Discrete equivalent design
In the discrete equivalent design approach, we consider the inputs and outputs of the closed-loop system in
continuous time, and represent the cascade of the ADC (with sample period h), the DT controllerD(z), and the
DAC (with a ZOH) as a single CT system, which we denote D(s), as highlighted by the dashed box in Figure
10.34a. To proceed following this approach, we first design an appropriate CT controller D(s) directly for the
CT system G(s) using the techniques introduced in §10.2 and explored at length in §10.3, then approximate
the dynamics of this CT controller D(s) with a rational expression in DT, D(z). This discrete approximation is
best computed via Tustin’s approximation with prewarping (see §8.3.4), determining D(z) from D(s) via the
following simple substitution:

D(z) = D(s)
∣∣∣
s= 2

fh
z−1
z+1

where f =
2[1− cos(ωh)]

ωh sin(ωh)
, (10.30)

where ω denotes the frequency of primary interest in the controller for which an accurate mapping is desired—
that is, the notch frequency if D(s) has a notch (see §10.3.2), or the crossover frequency (see §10.2.2) of the
closed-loop system if D(s) does not have a notch. Once D(z) is obtained via this approach, the correspond-
ing difference equation is easily determined via the inverse Z transform techniques presented in §8.3. This
difference equation may then be implemented in digital electronics.

The most significant detrimental effect encountered when implementing a CT controller, D(s), in a DT
fashion on a microcontroller, as illustrated by the dashed box in Figure 10.34a, is the effective h/2 delay resulting
from the ZOH of the DAC, where h is the sample period, as illustrated in Figure 10.33. This delay is not accounted
for in (10.30). At frequencies well below the Nyquist frequency, the effect of this delay is negligible. At input
frequencies within about an order of magnitude of the Nyquist frequency, however, the effect of this delay is a
significant phase loss:

phase loss = 2π
time delay
wave period = 2π

h/2

2π/ω
= hω/2 rad, (10.31)

as illustrated in Figure 10.12a. A corresponding amount of extra phase lead at the crossover frequency ωg should
thus be built in to the CT control design D(s) to compensate. Alternatively, the effect of this d = h/2 delay in
the ultimate DT implementation of the controller may be accounted for during the design of D(s) simply by
including a Padé approximation of the delay in series with G(s), as illustrated in Figure 10.34b.
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Figure 10.35: A closed-loop configuration of a DT controller D(z) and a CT plant G(s) interpreted as a direct
digital design. The DT transfer function G(z), given by the cascade of a DAC, a CT plant G(s), and an ADC,
is computed exactly in (8.26).

10.4.2 Direct digital design
In the direct digital design approach, we consider the inputs and outputs of the closed-loop system in DT,
and represent the cascade of the DAC (with a ZOH), the CT plant G(s), and the ADC (with sample period h)
as a single DT system, which we denoteG(z), as highlighted by the dashed box in Figure 10.35, using the exact
expression provided in (8.26); note that, as opposed to (10.30), this expression does account for the ZOH of the
DAC. We then determine the DT controller D(z) directly for this DT system G(z), as introduced in §10.2.5
and discussed further in §10.3.9. If a CT controller D(s) is known that is good for the CT plant G(s), this
controller may be approximated as an initial DTD(z)with similar dynamics using Tustin’s approximation with
prewarping [see (8.3.4.2)], then tuned further directly in DT.

The primary benefit of the direct digital design approach is that it is exact. The primary drawback of this
design approach is that it only considers the values of the output yk at the timesteps, and thus doesn’t detect
whether or not there are actually significant oscillations in y(t) between the timesteps, referred to as intersam-
ple ripple. To avoid such intersample ripple, one should generally avoid placing the poles of the DT closed-loop
system anywhere near the z = −1 point during the DT controller design.

Example 10.11 Evidence of time delay from the ZOH when designing a DT controller for a CT plant
To illustrate that an h/2 time delay is in fact the leading-order (and detrimental) effect of the ZOH in the DAC
when, following the discrete equivalent design paradigm in which a CT controller D(s) is converted to DT
with sample period h, consider the following unstable CT plant and corresponding CT lead controller acting in
closed loop:

G(s) =
1

(s+ 10)(s− 10)
, D(s) = K

s+ z

s+ p
.

Taking z = 10 (for a stable pole/zero cancellation) and p = 20 (for a little bit of phase lead) leads to a root locus
for the CT problem as shown in Figure 10.36a; further, taking K = 380 leads to the (stable) closed-loop poles
indicated by C in the root locus, gives crossover near the peak of the phase lead in the corresponding Bode
plot, and gives about a 28% overshoot and a 0.1 second rise time in the corresponding step response. Looking at
this root locus plot, it appears that turning up the control gainK to larger values would lead to lightly damped
poles, but would apparently not lead to closed-loop instability.

Now consider the implementation of this controller in DT taking h = .02 seconds (that is, taking a sample
frequency of 50 Hz), using a ZOH in the DAC. We will approximate our well-behaved CT control designD(s) as
a DT difference equation with similar dynamics using Tustin’s approximation with prewarping, as reviewed in
(10.30). To analyze in discrete time how well this controller works (see Figure 10.35), we may convert the DAC
– G(s) – ADC cascade to the exact expression for the corresponding G(z) via (8.26) and consider the problem
in the direct digital design setting; the corresponding DT root locus plot is shown in Figure 10.36b. Note that
the DT closed-loop system goes unstable if the gain K exceeds a critical value.
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Figure 10.36: The root locus plots discussed in Example 10.11, illustrating the high-gain instability caused by
the effective h/2 time delay caused by the ZOH of the DAC.

The reason why the DT root locus in Figure 10.36b goes unstable for largeK , but the CT root locus in Figure
10.36a does not, is well explained by the effective h/2 delay caused by the ZOH in the DAC. Indeed, if we again
analyze the system in CT, but now approximate the CT plant as G(s) · F2,2(s), incorporating an n = m = 2
rational approximation [see (8.8)] of the Laplace transform of a delay e−ds, with d = h/2, the corresponding root
locus is shown in Figure 10.36c, a closeup of which (near the origin) is given in Figure 10.36d. It is seen that the
delay is approximated by n poles in the LHP andm zeros in the RHP, and that the speed of these LHP poles and
RHP zeros is inversely proportional to the delay d [that is, for small d, these LHP poles and RHP zeros are fast
(i.e., far from the origin)]. The CT root locus ultimately connects to the fast RHP zeros, so the CT closed-loop
system now goes unstable if the gainK exceeds a certain critical value. The value ofK for which this CT model
of the problem goes unstable coincides accurately with the value of K for which the corresponding DT case
goes unstable. △
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10.4.3 Deadbeat control: pole placement at the origin for DT settling in finite time
Deadbeat control is a special DT control technique that has no direct analog in CT. Recall from Figure 8.4 that
the CT design guide for exponential settling of a step response with characteristic timescale ts is given by placing
all closed-loop poles in the s-plane such that their real parts are to the left of s = −σ = −4.6/ts. Recall from
Figure 8.7 that the corresponding DT design guide is given by placing all closed-loop poles in the z-plane inside
a circle centered at the origin with radius r = e−σ h = e−4.6h/ts . For rapid settling, then, we want closed-loop
poles with large negative real parts in CT, and with radius much less than one in DT.

It is thus reasonable to consider a DT control design strategy that uses pole placement to design a causal
D(z) = y(z)/x(z) for a causal plant G(z) = b(z)/a(z) that puts all of the closed-loop poles at the origin. This
results in a DT closed-loop system for which the output settles completely after a finite number of timesteps; in
the language of §8.3.3, the entire DT closed-loop system becomes an FIR filter instead of an IIR filter. Following
this approach, the closed-loop transfer function must be

T (z) =
G(z)D(z)

1 +G(z)D(z)
=

b(z) y(z)

a(z)x(z) + b(z) y(z)
=
g(z)

zℓ
. (10.32)

There is flexibility both in the choice of ℓ [i.e., how many steps are taken until the closed-loop system output
settles completely; ℓmust be large enough that the resulting controllerD(z) is causal] and in the choice of g(z)
[i.e., the (finite-time) dynamics expressed by the output of the closed-loop system as it settles].

Denote deg {p(z)} the order of p(z). For D(z) to be causal, deg {x(z)} ≥ deg {y(z)}, and thus, by (10.32),

ℓ ≥ deg {g(z)}+ deg {a(z)} − deg {b(z)}. (10.33a)

For D(z) to be strictly causal [which is perhaps easier to implement in a microcontroller running at a modest
clock speed, as seen in (8.24c)], deg {x(z)} > deg {y(z)}, strict inequality is required in the above expression.
Further, if T (z) = Y (z)/R(z) has zero steady-state error to a unit step [that is, if for rk = 1 for k = 0, 1, 2, . . .
and thus R(z) = z/(z − 1) it follows that limk→∞ yk = 1], then by the DT final value theorem (Fact 8.4)

lim
k→∞

yk = lim
z→1

(z − 1)Y (z) = lim
z→1

(z − 1)T (z)
z

z − 1
= T (1) = 1 ⇒ g(1) = 1. (10.33b)

It is thus clear from (10.32) that either D(z) or G(z) has a pole at z = 1.

Minimal-time deadbeat controllers for stable, minimum-phase systems
If G(z) = b(z)/a(z) is strictly causal and both stable and minimum phase [that is, if all of the poles and zeros
ofG(z) are inside the unit circle], we may simply take g(z) = 1 and ℓ = deg {a(z)}− deg {b(z)} in (10.32); this
choice is referred to as the minimal-time deadbeat controller, as it results in the fastest-possible complete
settling of the output of the DT system. In this case, we may implement the parameterization in (10.27a):

T (z) =
1

zℓ
⇔ D(z) =

1

G(z)

T (z)

1− T (z) =
a(z)

b(z)

1

zℓ − 1
=
y(z)

x(z)
. (10.34a)

Note that D(z) in this case cancels both the poles and zeros of G(z); this strategy provides internal stability
only if G(z) has all its poles and zeros inside the unit circle (see also the discussion in §10.2.1.2, noting that
the plant G(z) is generally only known approximately). As discussed in §10.1, the transfer function from the
reference rk to the control uk, referred to as the control sensitivity, is given in this case by

Su(z) =
U(z)

R(z)
=

D(z)

1 +G(z)D(z)
=

y(z) a(z)

a(z)x(z) + b(z) y(z)
=

a(z) a(z)

a(z) b(z) (zℓ − 1) + b(z) a(z)
=

a(z)

b(z) zℓ
.

(10.34b)
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Due to the pole/zero cancellations in [G(z)D(z)], the poles of Su(z) are different than the poles of T (z). [This is
not normally the case; when pole/zero cancellations in [G(z)D(z)] do not occur, the denominator of both T (z)
and Su(z) is simply f(z) = a(z)x(z) + b(z) y(z).] As a result, even though the output yk settles completely after
a finite number of timesteps, the control uk does not. This presents a significant problem: when the DT system
considered arises as a result of the application of DT microcontroller to a CT system, the control oscillations
in uk caused by this approach often lead to a significant intersample ripple in the CT output y(t), even well
after the DT samples of the output, yk, settle completely (see Example 10.12). This largely defeats the entire
purpose of implementing the deadbeat control design methodology in the first place.

Ripple-free deadbeat controllers for stable, possibly nonminimum-phase systems
Designing a D(z) that cancels the entire dynamics of the plant, as suggested in (10.34), is a heavy-handed
approach. A much better approach, called a ripple-free deadbeat controller, strives to make both yk and uk
settle after a finite number of timesteps. To see how to do this, assuming that G(z) = b(z)/a(z) is stable but
not necessarily minimum-phase (so, all poles of G(z) must be inside the unit circle, but its zeros need not be),
we may take g(z) = b(z)/b(1) and ℓ = deg {a(z)} in (10.32), and thus [cf. (10.34)]

T (z) =
b(z)/b(1)

zℓ
⇔ D(z) =

1

G(z)

T (z)

1− T (z) =
a(z)/b(1)

zℓ − b(z)/b(1) =
y(z)

x(z)
, (10.35a)

from which it follows that

Su(z) =
U(z)

R(z)
=

D(z)

1 +G(z)D(z)
=

a(z)/b(1)

[zℓ − b(z)/b(1)] + b(z)/b(1)
=
a(z)/b(1)

zℓ
. (10.35b)

In contrast with the minimal-time deadbeat controller (10.34), the ripple-free deadbeat controller (10.35) allows
the zeros of G(z) to appear in the numerator of T (z), and by so doing they do not appear in the denominator
of Su(z). Thus, the output yk and the control uk both settle completely ℓ timesteps after a step input in rk, and
the intersample ripple problem mentioned previously is eliminated (see Example 10.13). As the timestep h is
made small, deadbeat controllers demand large control inputs; one must thus be careful when following this
approach. Guideline 10.1 still applies; to follow it, just don’t let the timestep h get too small.

Ripple-free deadbeat controllers for general (possibly unstable and/or nonminimum-phase) systems
For general (possibly unstable and nonminimum-phase) causal DT systems, we may implement the parameter-
ization given (10.28) [see Fact 10.6] which as involves developing D(z) according to the solution {x(z), y(z)}
of an associated Diophantine equation (see §A.7.1)

D(z) =
y(z) + a(z)Q(z)

x(z)− b(z)Q(z) where a(z)x(z) + b(z) y(z) = zℓ, (10.36a)

where in the present deadbeat setting we take f(z) = zℓ and30 Q(z) = q(z)/zk where k ≥ 0 and deg {q(z)} ≤ k
[q(z) is otherwise arbitrary]. Assuming no pole/zero cancellations31 in [G(z)D(z)], ℓ ≥ 2n− 1. Amongst these,
the case with q(z) = 0 (and thus Q(z) = 0) and ℓ = 2n − 1 is particularly simple (see Example 10.14), and
results in

T (z) =
G(z)D(z)

1 +G(z)D(z)
=
b(z) y(z)

zℓ
and Su(z) =

D(z)

1 +G(z)D(z)
=
a(z) y(z)

zℓ
. (10.36b)

30To see clearly why this form for Q(z) works, see (10.29).
31Note that (10.36b) has a minimum of ℓ+1 powers of z whose coefficients must be matched between the LHS and the RHS. Take

n = deg {a(z)} and m = deg {b(z)}; since G(z) = b(z)/a(z) is causal, n ≥ m. Take i = deg {x(z)} and j = deg {y(z)}; since
D(z) = y(z)/x(z) is causal, i ≥ j. It follows from (10.36b), assuming no pole/zero cancellations in [G(z)D(z)], that n+ i = ℓ. There
are at most 2(i+1) free coefficients inD(z). Setting 2(i+1) ≥ ℓ+1 for the resulting system to be solvable, it follows that ℓ ≥ 2n−1.
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Example 10.12 Minimal-time deadbeat control of a stable plant
Consider the direct digital design setting (Figure 10.35) applied to the stable minimum-phase CT system

G(s) =
b(s)

a(s)
=

1

(s+ 1)(s+ 5)
. (10.37a)

Taking h = 0.2 and (exactly) converting the DAC –G(s) – ADC cascade to DT [see (8.26)] gives the correspond-
ing stable minimum-phase (with all poles and zeros inside the unit circle) DT transfer function

G(z) =
b(z)

a(z)
=

0.0137 z + 0.0092

z2 − 1.1866 z + 0.3012
, with n = deg {a(z)} = 2 and m = deg {b(z)} = 1. (10.37b)

Applying (10.34) for minimal-time deadbeat control of the stable minimum-phase system (10.37) results in
ℓ = n−m = 1 and

D(z) =
a(z)

b(z)
· 1

zℓ − 1
=
z2 − 1.1866 z + 0.3012

0.0137 z + 0.0092
· 1

z − 1
; (10.38)

the DT and CT responses uk, u(t), yk, and y(t) resulting from a unit step input are illustrated in Figure 10.37a;
note the significant intersample ripple. △

Example 10.13 Ripple-free deadbeat control of a stable plant
Applying (10.35) for ripple-free deadbeat control of the system (10.37) results in ℓ = n = 2 and

D(z) =
a(z)

zℓ − b(z) = 43.6361
z2 − 1.1866 z + 0.3012

z2 − 0.5983 z − 0.4017
; (10.39)

the DT and CT responses uk, u(t), yk, and y(t) resulting from a unit step input in this case are illustrated in Figure
10.37b; note that yk takes one more timestep to settle than the minimal-time deadbeat controller considered in
Example 10.12, but the significant intersample ripple is eliminated. △

Example 10.14 Ripple-free deadbeat control of an unstable plant
Consider the direct digital design setting applied to the unstable CT system [cf. (10.37)]

G(s) =
b(s)

a(s)
=

1

(s− 1)(s− 5)
. (10.40a)

Taking h = 0.2 and converting the DAC – G(s) – ADC cascade to DT [see (8.26)] gives the corresponding
unstable nonminimum-phase (with two poles and one zero outside the unit circle) DT transfer function

G(z) =
b(z)

a(z)
=

0.0306 z + 0.0455

z2 − 3.9397 z + 3.3201
, with n = deg {a(z)} = 2 and m = deg {b(z)} = 1. (10.40b)

Though the system considered in (10.40) has the same order as that considered in (10.37), neither (10.34) nor
(10.35) may be applied in this case, as these approaches are based on pole-zero cancellations between the con-
troller and the plant; since the DT plant, which is only known approximately, has both poles and zeros outside
the unit circle, these approaches would certainly fail (see §10.2.1.2).
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Figure 10.37: (a) Step response of the stable system (10.37) when the minimal-time deadbeat controller
(10.34) is applied (see Example 10.12). Though the output of the DT system settles completely after ℓ = n−m =
1 timestep, the output of the underlying CT system exhibits significant intersample ripples well after that,
due to the control oscillations shown in the bottom subfigure. (b) Step response of the same system with the
ripple-free deadbeat controller (10.35) applied (see Example 10.13). The output of both the DT and the
underlying CT system settle completely after ℓ = n = 2 timesteps, eliminating the intersample ripple seen
previously.
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Figure 10.38: Step response of the unstable system (10.40) with the general ripple-free deadbeat controller (10.36)
applied, taking Q(z) = 0 (see Example 10.14). The output of both the DT and the underlying CT system settle
completely after ℓ = 2n− 1 = 3 timesteps.

Instead, applying (10.36) for ripple-free deadbeat control of the unstable nonminimum-phase system (10.40),
solving a(z)x(z) + b(z) y(z) = zℓ with ℓ = 2n− 1 = 3 using RR_diophantine results in

D(z) =
y(z) + a(z)Q(z)

x(z)− b(z)Q(z) where
y(z) = 89.589 z − 87.437,

x(z) = z + 1.1983.
(10.41)

Again, all causal ripple-free deadbeat controllers in this case are given by takingQ(z) = q(z)/zk with k ≥ 0 and
deg {q(z)} ≤ k [q(z) is otherwise arbitrary]. The DT and CT responses uk, u(t), yk, and y(t) resulting from a
unit step input in this case, takingQ(z) = 0, are illustrated in Figure 10.38; note that yk takes one more timestep
to settle than the ripple-free deadbeat controller considered in Example 10.13, but the deadbeat control strategy
used in this case may be applied safely to general (unstable, nonminimum-phase) systems.

The controller derived above has closed-loop transfer function of T (z) = g(z)/zℓ where g(z) = b(z) y(z).
Note that g(1) ̸= 1, and thus the closed-loop system has nonzero steady-state error [see (10.33b)]. The easiest
way to fix this is with a prefactor of P = 1/g(1) [see Figure 10.11], as used in Figure 10.38. △
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10.5 Describing functions
Another way to approximate nonlinear systems for analysis using transfer functions, useful when characterizing
finite-amplitude limit-cycle oscillations of certain nonlinear systems, is describing functions (DFs).

Recall that an input vi = A sin(ω t) to a linear system L(·) gives an output vo = A1 sin(ω t + ϕ). As
discussed in §8.4, the gain in amplitude of the response is A1/A = |L(iω)|, and the shift in phase of the
response is ϕ = ∠L(iω); in the linear setting, neither is a function of the magnitude vo of the sinusoidal input.

Describing functions extend such analyses to certain nonlinear systems by considering a sinusoidal input

vi = A sin(ω t)

to a nonlinear system N(·), and characterizing the component of the output vo at the frequency ω of this
input. To proceed with this analysis, we generally assume that the nonlinear system N(·) does not “rectify”
[see Example 9.13; meaning that a sinusoidal input to N(·) generates a zero-mean output], and also that N(·)
does not introduce any subharmonics (at frequencies some fraction of ω); both assumptions are valid for many
nonlinear functions of interest. Subject to these assumptions, we may write the resulting output of N(·) as

vo = N(vi) = A1 sin(ω t+ ϕ1) + A2 sin(2ω t+ ϕ2) + . . .

The describing function ND(A, ω) characterizes the component of the response vo of the nonlinear system N(·) at
the oscillation frequency ω of the sinusoidal input vi = A sin(ω t). In general, the DF can depend on both the
amplitude A and the frequency ω of this input. The DF is a complex function that characterizes the gain and
phase shift of the component of the response vo at the frequency ω of the input vi; i.e., |ND(A, ω)| = A1/A and
∠ND(A, ω) = ϕ1, and thus ND = (A1/A) e

iϕ1 .
To appreciate the value of describing functions in the closed-loop setting, consider the loop illustrated in

Figure 10.39a. We will for the moment assume that the signal z in this loop, at a persistent oscillation condition,
is essentially a sinusoidal oscillation, with

vi = A sin(ω t) + “small” harmonics. (10.42)

For this oscillation condition to be persistent, the gain at the oscillation frequency ω when tracing all the way
around the loop in Figure 10.39a must be unity, and thus [cf. the corresponding linear expression in (10.3)]

L(iω)ND(A, ω) (−1) = 1 ⇔ L(iω)ND(A, ω) = −1 ⇔ L(iω) = −1/ND(A, ω). (10.43)

A common special class of nonlinear systemsN(·) for which characterization with DFs is particularly conve-
nient is those for which the amplitude and phase of the fundamental component of their response to sinusoidal
inputs are independent of the input frequency ω; for such nonlinear systems, we denote the corresponding DF
as simply ND(A). Figure 10.39b shows how to find graphically the solution of (10.43) in this convenient case,
which establishes the conditions for which a persistent oscillation is possible in the closed-loop setting. Note
that the LHS and RHS of (10.43) are complex numbers, each with a magnitude and phase. As shown in Figure
10.39b, we may thus look at (10.43), and plot the magnitude versus the phase of both the LHS (which is just a
function of ω) and the RHS (which is just a function of A), then look for the point(s) at which these two curves
intersect. The value(s) of ω in L(iω), and corresponding value(s) of A in [−1/ND(A)], at such intersection
point(s) then establish the frequency ω and (finite) amplitude A of potential persistent oscillations.
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+
0

N(·) L(·)
vi(t) vo(t) y(t)

Figure 10.39: Closed loop connection of a nonlinear systemN(·) and a linear systemL(s). Finite-amplitude limit
cycles of such systems may be characterized using the describing function approach of §10.5, representing the
response ofN(·) to inputs vi(t) = A sin(ω t), at the frequency of oscillation ω, as vo(t) = |ND| sin(ω t+∠ND).

Example 10.15 DF of an ideal relay
An ideal relay is a nonlinear function N(·) which outputs +1 for positive inputs and −1 for negative inputs.
A sinusoidal input vi = A sin(ω t) to such a function, for any ω and A, outputs a square wave of amplitude 1 at
frequency ω; this response can be decomposed via its sine decomposition (see NR §5) as

vo =
4

π

(
sinω t+

1

3
sin 3ω t+

1

5
sin 5ω t+ . . .

)

The DF in this case is independent of ω, and is written |ND(A)| = (4/π)/A and ∠ND(A) = 0; the first nonzero
harmonic is at frequency 3ω, with amplitude 1/3 that of the fundamental. △

Example 10.16 DF of a limiter with dead zone
Defining C = m(δ2 − δ1), a limiter with dead zone is a nonlinear function N(·) with output

vo =





0 for |vi| ≤ δ1,

m · sgn(vi) (|vi| − δ1) for δ1 < |vi| < δ2,

C · sgn(vi) for |vi| ≥ δ2,

The DF in this case32 is again independent of ω, and is written

|ND(A)| = m
[
f
(δ2
A

)
− f

(δ1
A

)]
and ∠ND(A) = 0, where f =

{
2
π

(
sin−1 γ + γ

√
1− γ2

)
for 0 ≤ γ ≤ 1,

1 for γ > 1,

For δ2/A > 1 and δ1/A≪ 1, this results in |ND(A)| ≈ m[1−0] = mwith negligible harmonics. For significantly
smaller δ2/A and/or larger δ1/A, |ND(A)| < m, and the harmonics become more significant; a representative
case with δ2/A = 0.8 and δ2/A = 0.2 is shown in Figure ?c. △

Example 10.17 DF analysis of an ideal relay in closed loop with L(s) = 1/(s+ 1)3

We now consider an ideal relay, as characterized by its DF in Example 10.15, in a closed loop with a linear system
L(s) = 1/(s+ 1)3, as illustrated in Figure 10.39. △

32For complete derivation and tabulation of this and many other useful describing functions, see Gelb & Vander Velde (1968).
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Error-Correcting Codes
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As introduced in §1.1.5 and §1.5.3.3, the subject of linear error-correcting codes (ECCs), a.k.a. linear codes
(LCs), is at once elegant, intricate, and practical. Efficient LCs may be devised for vectors in Fn

q , with each of
their n elements defined over a set of symbols in a finite field Fq of order q, where q = pa with p prime; cases
of particular interest include the binary field F2 = {0, 1}, the ternary field F3 = {0, 1, 2}, and the quaternary
field F4 = {0, 1, ω, ω̄}, where ω = (−1 + i

√
3)/2. Codes with q = 2, 3, and 4 are called, respectively, linear

binary codes (LBCs), linear ternary codes (LTCs), and linear quaternary codes (LQCs). An LC is defined by two
matrices, a basis matrix V and a parity-check matrix H . The use of an LC to communicate data over a noisy
channel is straightforward:

• group the data into vectors (blocks) of length k, with each element defined over an alphabet of q symbols;
• code each resulting data vector a ∈ Fk

q into a longer codeword w ∈ Fn
q , with n > k, via w = V[n,k]qa;

• transmit the corresponding codeword w over the noisy channel;
• receive the (possibly corrupted) message ŵ ∈ Fn

q on the other end, and
• decode the received message ŵ leveragingH[n,k]q ; that is, find the most likely codewordw corresponding to
the received message ŵ, and the data vector a that generated it.

The identification of matrices {V[n,k]q , H[n,k]q} that define efficient LCs, and streamlined algorithms that can
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quickly code and decode messages using such LCs, have a rich history and many remarkable solutions.
On a finite field Fq, addition (+) and multiplication (·) are closed (that is, they map to elements within

the field) and satisfy the usual rules: they are associative, commutative, and distributive, there is a 0 element
such that a + 0 = a, there is a 1 element such that a · 1 = a, for each a there is an element (−a) such that
a + (−a) = 0, and for each a ̸= 0 there is an element a−1 such that a · a−1 = 1. For example, addition and
multiplication on F2, F2, and F4 are defined as follows:

F2:
+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

F3:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

(12.1)

F4:

+ 0 1 ω ω̄

0 0 1 ω ω̄
1 1 0 ω̄ ω
ω ω ω̄ 0 1
ω̄ ω̄ ω 1 0

· 0 1 ω ω̄

0 0 0 0 0
1 0 1 ω ω̄
ω 0 ω ω̄ 1
ω̄ 0 ω̄ 1 ω

The Hamming distance between two vectors in Fn
q is simply the number of elements that differ between

them. An [n, k]q LC is defined via a set of k < n independent basis vectors vi ∈ Fn
q ; the q

k distinct valid
codewords wj ∈ Fn

q of this LC are given by all q-ary linear combinations of the basis vectors vi (that is, by all
linear combinations with coefficients selected from Fq, with addition and multiplication defined elementwise
on Fq). The basis vectors vi are generally selected such the minimum Hamming distance d of the resulting
LC (that is, the minimum distance between any two resulting codewords) is maximized. An LC is often denoted
[n, k, d]q, with the minimum distance d of the code specified explicitly.

We denote by V[n,k]q the n × k basis matrix with the k basis vectors vi as columns, and by W[n,k]q the
n × qk codeword matrix with the qk codewords wj as columns. Without loss of generality, we write V[n,k]q
and a companion (n− k)× n parity-check matrix H[n,k]q in the systematic form1

H[n,k]q =
[
−P(n−k)×k I(n−k)×(n−k)

]
, V[n,k]q =

[
Ik×k

P(n−k)×k

]
, wj =

[
aj

bj

]
= V[n,k]qa

j. (12.2)

When written in systematic form, each of the codewordswj block decomposes into its k data symbols2 aj and
its r = n− k parity symbols bj ; r is sometimes called the redundancy of the code. Note thatH[n,k]qV[n,k]q = 0
(onFq)3, which establishes that each of the basis vectors vi so constructed satisfies the parity-check equation
H[n,k]qv

i = 0 (on Fq), and thus each of the resulting codewords wj also satisfies the parity-check equation
H[n,k]qw

j = 0 (on Fq). Note further that, for LBCs and LQCs, P = −P .
Any [n, k]q LC C has associated with it an [n, n− k]q dual code C⊥ defined such that4

C⊥ =
{
w ∈ Fn

q : w · ū = 0 for all u ∈ C
}
; (12.3a)

the k×n parity-check matrixH⊥ and n× (n− k) basis matrix V ⊥ of C⊥ may be written in systematic form as

H⊥[n,n−k]q =
[
P̄ T Ik×k

]
, V ⊥[n,n−k]q =

[
I(n−k)×(n−k)
−P̄ T

]
. (12.3b)

1In the literature on this subject, it is more common to use a “generator matrix” G to describe the construction of linear codes;
the “basis matrix” convention V used here is related simply to the corresponding generator matrix such that V = GT . We find the
basis matrix convention to be a bit more natural in terms of its linear algebraic interpretation.

2The word “bit”, a portmanteau of “binary digit”, is reserved for the case with q = 2; for q ≥ 2, we use the word “symbol” instead.
3The qualifier “on Fq” is used to reinforce the fact that each individual multiplication and addition specified is performed on the

finite field Fq , following the rules specified explicitly in (12.1).
4Overbar simply denotes (elementwise) complex conjugate; for LBCs and LTCs, ū = u and P̄ = P .
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Note that P̄ T is of order k × (n− k), and, of course, that H⊥[n,n−k]qV ⊥[n,n−k]q = 0 (on Fq).
If H and V are the parity-check and basis matrices of an [n, k, d]q LC, with HV = 0 (on Fq), then an

equivalent LC (with the same n, k, and d) may be generated5 by taking

H̃ = RTHQ, Ṽ = QTV S, w̃ = QTw (on Fq), (12.4)

where Qn×n is a permutation matrix, and each column of R(n−k)×(n−k) and Sk×k is nonzero and independent
(on Fq) from the other columns of R and S, respectively6. The permutation matrix Q reorders the rows of V
and the corresponding columns of H (i.e., it reorders the data symbols and parity symbols in the LC). Each
column of S performs a linear combination of the columns of (QTV ) to form the corresponding column of Ṽ ,
while each column ofR (that is, each row ofRT ) performs a linear combination of the rows of (HQ) to form the
corresponding row of H̃ ; these modifications by S andR leave the set of valid codewords in the LC unchanged.

A self-dual code C is an LC for which the dual code C⊥ [see (12.3)] is equivalent to C [see (12.4)].

12.1 Characterizing the Hamming distance d of linear codes
Graphically, the codewords of an [n, k, d]2 LBC amount to a carefully chosen subset of 2k of the 2n corners on a
single n-dimensional unit hypercube, as illustrated for n = {3, 4, 7, 8} in Figures {12.1, 12.2, 12.4, 12.5}, where
d quantifies the minimum number of edges (i.e., bits) that differ between any two valid codewords. Further:

• An LC with d = 2 is single error detecting (SED) [see, e.g., Figures 12.1a and 12.2a]. In this case, the sum
(on Fq) of the symbols in each transmitted codeword is zero, so if it is assumed that at most one symbol error
occurred and this sum is nonzero, then a symbol error in transmission occurred, whereas if this sum is zero,
then a symbol error did not occur. However, if a symbol error in transmission occurred, the received (invalid)
message is generally equidistant from multiple codewords, so it is not possible to correct the error. Two or
more symbol errors generally cause the codeword to be misinterpreted.
• An LC with d = 3 is single error correcting (SEC) [see, e.g., Figures 12.1b and 12.4]. In this case, if it is
again assumed that at most one symbol error in transmission occured, then if the received codeword is not a
codeword, there is only one codeword that is unit Hamming distance away, so the single symbol error may
in fact be corrected. Again, two or more symbol errors generally cause the codeword to be misinterpreted.
• An LCwith d = 4 is single error correcting and double error detecting (SECDED) [see, e.g., Figures 12.2b
and 12.5]. In this case, if a single symbol error occurs, the received codeword will be unit Hamming distance
away from a single codeword, and thus single symbol errors can be corrected. On the other hand, if two
symbol errors occur, the received codeword is generally Hamming distance 2 away from multiple codewords,
so double symbol errors can be detected but not corrected. In this case, three or more symbol errors cause
the codeword to be misinterpreted.

Such labels and their natural extensions (DEC for d = 5, DECTED for d = 6, TEC for d = 7, TECQED for d = 8,
4EC for d = 9, 4EC5ED for d = 10, 5EC for d = 11, 5EC6ED for d = 12, etc) may be used to quantify the error
correction capability of an LC. Alternatively, if error correction is not attempted, then:

• an LC with d = 2 is single error detecting, with 2 or more symbol errors generally causing misinterpretation,
• an LC with d = 3 is double error detecting, with 3 or more symbol errors generally causing misinterpretation,
• an LC with d = 4 is triple error detecting, with 4 or more symbol errors generally causing misinterpretation,

etc. Error correcting codes are useful for a broad range of data transmission and data storage applications in
which it is difficult or impossible to request that a corrupted codeword be retransmitted; algorithms which

5Thoughmany equivalent codes can be transformed between their various representations via (12.4) [see, e.g., conversions between
the systematic, cyclic, and syndrome forms of the [2m−1, 2m−1−m, 3] binary Hamming codes discussed in §12.4], not all [n, k, d]q
codes that are equivalent may be transformed between their various forms via (12.4), as their parity bits may be defined differently.

6For a permutation matrix, QQT = 0. (In general, matrix inversion on a finite field Fq can be performed using Cramer’s rule.)
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Figure 12.1: Codewords of (left) the (SED) [3, 2, 2] LBC; (right) its dual, the (perfect, SEC) [3, 1, 3] LBC.

Figure 12.2: Codewords of (left) the (SED) [4, 3, 2] LBC; (right) its dual, the (quasi-perfect, SECDED) [4, 1, 4] LBC.

use such codes for error detection only may be useful when efficient handshaking is incorporated in a manner
which makes it easy to request and resend any messages that might be corrupted during transmission.

An [n, k, d]q LC is said to beperfect if, for some integer t > 0, each possiblen-dimensional q-ary codeword is
of Hamming distance t or less from a single codeword (that is, there are no “wasted” vectors that are Hamming
distance t+ 1 or more from the valid codewords, and thus may not be corrected under the assumption that at
most t symbol errors have occured). A perfect code has odd d = 2t+1 > 1. A remarkable proof by Tietäväinen
(1973) establishes that the only nontrivial perfect LCs are the [(qr − 1)/(q − 1), (qr − 1)/(q − 1)− r, 3]q q-ary
Hamming codes [§12.4], the [23, 12, 7]2 binary Golay code [§12.5] and the [11, 6, 5]3 ternary Golay code.

An [n, k, d]q LC is said to be quasi-perfect if, for some integer t > 1, each possible n-dimensional q-ary
codeword is either (a) of Hamming distance t− 1 or less from a single codeword, and thus up to t− 1 symbol
errors may be corrected, or (b) of Hamming distance t from at least one codeword, and thus codewords with
t symbol errors may be detected but not necessarily corrected (that is, there are no “wasted” vectors that are
Hamming distance t+1 or more from a valid codeword, and thus may not be reconciled under the assumption
that at most t symbol errors have occured). A quasi-perfect code has even d = 2t > 2; examples include the
[(qr−1)/(q−1)+1, (qr−1)/(q−1)−r, 4]q extended q-ary Hamming codes [§12.4.1], the [24, 12, 8]2 extended
binary Golay code [§12.5], and the [12, 6, 6]3 extended ternary Golay code.

For a high-level view of this general subject, the “best” (largest d) available [n, k, d]2 LBCs, for a range of k
data bits and r = n− k parity bits, are illustrated in Figure 12.3, which plots the best available data rate k/n
versus k for various values of d, from d = 2 (SED) to d = 12 (5EC6ED), as highlighted by the broken diagonal
lines and the color schmeme implemented. The [3, 1, 3], [4, 1, 4], [3, 2, 2], and [4, 3, 2] LBCs depicted visually in
Figures 12.1 and 12.2, and the [7, 4, 3] and [8, 4, 4] LBCs depicted visually in Figures 12.4 and 12.5, are indicated
near the left of Figure 12.3 (in the k = {1, 2, 3, 4} columns). It is seen that, as the number of data bits in the
packet, k, is increased, codes with improved data rates k/n generally become available for a given degree of
error correction capability d. Many of the most notable codes indicted in this figure (before each break in the
diagonal lines) are discussed in §12.3-12.5; codes connected by vertical lines are related by puncturing the code
below; codes connected by diagonal lines are related by shortening the code to the upper-right (see §12.6).

The selection of the “best” code for a given purpose involves a number of tradeoffs. In addition tomaximizing
the data rate k/n for a given number of data bits k and a given degree of error correction capability d, the
existence of fast algorithms to code the message (determining its parity bits), and to decode the message
(checking for errors, and determining the nearest valid codeword) is also quite important. In this regard, LCs
with cyclic forms (see §12.2) and syndrome decoding strategies (see §12.4.0.1) are especially valuable.
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Figure 12.4: The 2k = 16 valid codewords (in red) of the (perfect, SEC) [7, 4, 3] LBC (see §12.4 and Figure 1.5a),
amongst the 2n = 128 possible received messages. Each of the 16 · 7 = 112 invalid messages is unit Hamming
distance from a single valid codeword, thus facilitating single error correction. Note that each valid codeword in
the above figure is indeed 3 edges from the nearest valid codeword; in this 2-dimensional orthogonal projection
(called a hepteract) of the corners of a 7-dimensional hypercube, some edges overlap. The data rate is k/n =
4/7 = 0.571 (that is, 4 data bits out of every 7message bits), which compares favorably to the data rate of 1/3 for
the (perfect, SEC) [3, 1, 3] LBC in Figure 12.1b. The (perfect, SEC) [15, 11, 3], [31, 26, 3], [63, 57, 3], [127, 120, 3]
binary Hamming codes (see §12.4) have increasingly higher data rates (see Figure 12.3).
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Figure 12.5: The 2k = 16 valid codewords (in red) of the (quasi-perfect, SECDED, self-dual) [8, 4, 4] LBC (see
§12.4.1), amongst the 2n = 256 possible received messages. Of the 240 invalid messages, 16 · 8 = 128messages
are each unit Hamming distance from a single valid codeword, thus facilitating single error correction, and the
remaining 240− 128 = 112 messages (in green) are each Hamming distance 2 from multiple valid codewords,
thus facilitating double error detection. Each valid codeword in the above figure is 4 edges from the nearest
valid codeword; in this 2-dimensional orthogonal projection (called a octeract) of the corners of a 8-dimensional
hypercube, some edges overlap. The data rate is k/n = 4/8 = 1/2, which compares favorably to the data rate of
1/4 for the (quasi-perfect, SECDED) [4, 1, 4] LBC in Figure 12.2b (see Figure 12.3). The (quasi-perfect, SECDED)
[16, 11, 4], [32, 26, 4], [64, 57, 4], [128, 120, 4] binary Hamming codes (see §12.4.1) have increasingly higher data
rates (see Figure 12.3).
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12.2 Cyclic form
A cyclic code is an LC that may be written in a cyclic form in which the n × k basis matrix V c

[n,k]q
and the

r × n parity-check matrix Hc
[n,k]q

, with n = r + k, have the form

Hc
[n,k]q

=




hk hk−1 . . . h0 0
hk hk−1 . . . h0

. . .
. . .

. . .
. . .

0 hk hk−1 . . . h0


 , V c

[n,k]q
=




v0 0
v1 v0
... v1

. . .

vr
...

. . . v0

vr
. . . v1
. . .

...
0 vr




, (12.5a)

where {hk, h0, vr, v0} are nonzero with
hk vr + h0 v0 = 0 (on Fq), (12.5b)

and where [as with the systematic form (12.2)], of course,

Hc
[n,k]q V

c
[n,k]q = 0 (on Fq). (12.5c)

A convenient construction which simplifies the math of cyclic LCs is the cyclic shift operator z, which is used in
a manner akin to the Z-transform analysis of discrete-time linear systems (see §8), with the major difference
being that polynomials in z are manipulated here in a cyclic context onFn

q . That is, arithmetic with polynomials
in z and coefficients in Fq is performed as usual, except that the coefficients of each power of z are combined
via the arithmetic rules on Fq [see (12.1)], and higher powers of zk are simplified via the cyclic condition

zn = 1. (12.6)

In the analysis and use of an [n, k]q cyclic LC, the operator z appears in

the data polynomials a(z) = ak−1z
k−1 + ak−2z

k−2 + . . .+ a1z + a0 (12.7a)

the basis polynomial v(z) = vrz
r + vr−1z

r−1 + . . .+ v1z + v0 (12.7b)

the codeword polynomials w(z) = wn−1z
n−1 + wn−2z

n−2 + . . .+ w1z + w0 (12.7c)

the received-message polynomials ŵ(z) = ŵn−1z
n−1 + ŵn−2z

n−2 + . . .+ ŵ1z + ŵ0, and (12.7d)

the parity-check polynomial h(z) = hkz
k + hk−1z

k−1 + . . .+ h1z + h0. (12.7e)

The use of a cyclic LC to communicate data over a noisy channel is again straightforward:

• group the data into vectors a ∈ Fk
q , and express as polynomials a(z) with the k elements of a as coefficients;

• code each a(z) as a polynomial w(z) with h(z)w(z) = 07, and express w(z) as a vector w ∈ Fn
q ;

• transmit the corresponding codeword vector w over the noisy channel;
• receive the (possibly corrupted) message ŵ ∈ Fn

q on the other end, and express as a polynomial ŵ(z);
• decode ŵ(z) leveraging the parity-check polynomial h(z); i.e., find the most likely codeword polynomial
w(z) corresponding to ŵ(z), and the data polynomial a(z) [and, thus, the data vector a] that generated it.

7One way of accomplishing this is simply by defining w(z) = a(z) v(z). In practical implementations, a different convention
(which is faster to decode), called the systematic cyclic form, is commonly used. With this approach, the codeword polynomial
w(z) is defined by taking the first k coefficients of w(z) as the coefficients the data polynomial a(z) [see (12.11)]. The remaining
coefficients of w(z), which make up the parity polynomial b(z), are then defined such that h(z)w(z) = 0; (12.12) and (12.13)
present two equivalent constructions to compute the required b(z) = br−1z

r−1 + . . .+ b1z + b0 when using this form.
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The basis and parity-check polynomials, v(z) and h(z), are constructed by factorization of (zn − 1) as follows:

h(z) v(z) = [hkz
k + . . .+ h1z + h0] [vrz

r + . . .+ v1z + v0] = zn − 1 = 0 (on Fq). (12.8)

Note that:

(i) the scalar product of the first row of Hc and the first column of V c in (12.5a) is precisely the coefficient of
zk in (12.8), once multiplied out, which by construction [see the RHS of (12.8)] is zero;
(ii) the scalar product of the first row of Hc and the last column of V c is the coefficient of z1 in (12.8) [that is,
h1 v0 + h0 v1 (on Fq)], which by construction is also zero;
(iii) . . . analogously, the scalar product of any row ofHc with any column of V c is simply the coefficient of zj in
(12.8), for 1 ≤ j ≤ k, which by construction is zero.

Thus, the condition (12.8) enforces (12.5c) [that is, Hc V c = 0]. Applying the cyclic condition (12.6), the coef-
ficient of z0 in (12.8), hk vr + h0 v0, is also zero, and thus (12.5b) is enforced. Indeed, it follows from (12.8) and
(12.6) that

[zi h(z)] [zj v(z)] = zi+j [h(z) v(z)] = zi+j [zn − 1] = 0 (on Fq) (12.9)

for any integer i and j and thus, performing arithmetic on Fq and computing in the cyclic setting with zn = 1,
interpreting z as a shift operator, it follows that any cyclic shift of the parity check polynomial h(z) is orthogonal
(on Fn

q ) to any cyclic shift of the basis polynomial v(z). Since it follows that all cyclic shifts of the basis vectors
are themselves valid codewords, and noting that all codewords are formed by linear combinations of the basis
vectors, it follows that any cyclic shift of a valid codeword is itself also a valid codeword, which is indeed how the
class of cyclic codes gets its name.

12.2.1 Constructing cyclic codes
Cyclic codes are thus constructed via factorizations of the form (12.8). One factorization of (zn − 1) on Fq,
which exists for any n and q, is

zn − 1 = (z − 1)(zn−1 + zn−2 + . . .+ z + 1); (12.10)

this leads to the single parity check code [n, n− 1, 2]q (see §12.3) if one takes v(z) = (z − 1) and h(z) equal to
the rest, and to the repetition code [n, 1, n]q (see §12.3.1) if one takes h(z) = (z− 1) and v(z) equal to the rest.

If q is not prime, developing other factorizations of (zn − 1) over Fq is a bit delicate, as (zn − 1) does not,
in general, factor into the product of unique irreducible forms in this case. As an example, two irreducible
factorizations of (z5 − 1) over F4 are listed in Table 12.1.

For prime q, however, the development of other factorizations of (zn − 1) over Fq is significantly more
straightforward, as (zn − 1) may be factored into the product of unique irreducible forms in this case. A few
such factorizations for various values of n are listed in Table 12.2 for q = 3 (in which “− 1” = 2), and in Table
12.3 for q = 2 (in which “− 1” = 1); others are easily found using Matlab or Mathematica. Noting (12.8), these
unique irreducible factors of (zn − 1) may be grouped in different ways to form v(z) and h(z). Most cyclic
codes may be constructed via such an approach, only some of which have a favorable minimum distance d and
an available simple error correction scheme. A few such codes, with q = 2, are listed in Table 12.4.

z5 − 1 = (z + 1)(z4 + z3 + z2 + z + 1)

z5 − 1 = (z2 + ωz + 1)(z3 + ωz2 + ωz + 1)

Table 12.1: Two (nonunique!) irreducible factorizations of (z5− 1) over F4 [see (12.1)], with ω = (−1+ i
√
3)/2.
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z4 − 1 = (z + 2)(z + 1)(z2 + 1)

z11 − 1 = (z + 2)(z5 + 2z3 + z2 + 2z + 2)(z5 + z4 + 2z3 + z2 + 2)

z13 − 1 = (z + 2)(z3 + 2z + 2)(z3 + z2 + 2)(z3 + z2 + z + 2)(z3 + 2z2 + 2z + 2)

Table 12.2: Some unique irreducible factors of (zn − 1) over F3 [see (12.1)] for various values of n.

z5 − 1 = (z + 1)(z4 + z3 + z2 + z + 1)

z7 − 1 = (z + 1)(z3 + z + 1)(z3 + z2 + 1)

z15 − 1 = (z + 1)(z2 + z + 1)(z4 + z + 1)(z4 + z3 + 1)(z4 + z3 + z2 + z + 1)

z23 − 1 = (z + 1)(z11 + z9 + z7 + z6 + z5 + z + 1)(z11 + z10 + z6 + z5 + z4 + z2 + 1)

Table 12.3: Some unique irreducible factors of (zn − 1) over F2 [see (12.1)] for various values of n.

[n, k, d]q code r v(z) h(z)

[n, n− 1, 2]2 1 z + 1 zn−1 + zn−2 + . . .+ z + 1

[7, 4, 3]2 3 z3 + z + 1 z4 + z2 + z + 1

[15, 11, 3]2 4 z4 + z + 1 z11 + z8 + z7 + z5 + z3 + z2 + z + 1

[31, 26, 3]2 5 z5 + z2 + 1 z26 + z23 + z21 + z20 + z17 + z16 + z15 + z14 + z13 + z9 + z8 + z6 + z5 + z4 + z2 + 1

[63, 57, 3]2 6 z6 + z + 1 Matlab: mod(deconv([1 zeros(1,62) 1],[1 0 0 0 0 1 1]),2)

[127, 120, 3]2 7 z7 + z3 + 1 mod(deconv([1 zeros(1,126) 1],[1 0 0 0 1 0 0 1]),2)

Table 12.4: Some small binary cyclic codes, defined such that v(z)h(z) = (zn − 1) over F2, with r = n− k.

12.2.2 Cyclic coding
As mentioned in Footnote 7 a couple of pages back, by convention, practical implementations of cyclic codes
usually shift the k data symbols of a(z) to one end of the codeword w(z), for example

w(z) = zra(z) + b(z)

= ak−1z
n−1 + . . .+ a1z

r+1 + a0z
r + br−1z

r−1 + . . .+ b1z + b0 (12.11)

= wn−1z
n−1 + . . .+ w1z

n−k+1 + wn−kz
n−k + wn−k−1z

n−k−1 + . . .+ b1z + b0,

and then determine the parity polynomial b(z) within w(z) in a manner such that h(z)w(z) = 0.

For k ≲ r [that is, short h(z) and long v(z)], a recursive approach may be used to determine the parity
symbols b(z) from h(z) and a(z). By (12.8), (12.9), and (12.6), and the fact that each valid codeword polynomial
w(z) is itself a linear combination of the basis polynomials v(z), we have

h(z)w(z) ≜ un−1z
n−1 + un−2z

n−2 + . . .+ u1z + u0 = 0.

Initializing the first k symbols of w(z) as ak−1 through a0 as in (12.11), noting that hk ̸= 0, the remaining
symbols of w(z), in b(z), may be determined from the resulting convolution formulae for un−1 through uk as
follows:

un−1 = h0wn−1 + . . .+ hkwn−k−1 = 0 ⇒
un−2 = h0wn−2 + . . .+ hkwn−k−2 = 0 ⇒

...

uk = h0wk + . . .+ hkw0 = 0 ⇒

br−1 = wn−k−1 = −[h0wn−1 + . . .+ hk−1wn−k ]/hk,

br−2 = wn−k−2 = −[h0wn−2 + . . .+ hk−1wn−k−1]/hk,
...

b0 = w0 = −[h0wk + . . .+ hk−1w1 ]/hk.

(12.12)
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For r < k [that is, short v(z) and long h(z)], a direct polynomial division approach to determine the parity
symbols from v(z) and a(z) is more efficient. This may by achieved by writing the shift of the data symbols as
some multiple of the basis polynomial v(z) plus a remainder t(z):

zra(z) = q(z)v(z) + t(z) ⇔ [zra(z)] mod v(z) = t(z).

Note that vr ̸= 0. Calculating t(z) as shown above, taking b(z) = −t(z) and moving this term to the LHS in
the above expression, it is seen [cf. (12.11)] that

zra(z) + b(z) = q(z)v(z) ≜ w(z),

verifying that the w(z) so generated is a valid codeword polynomial, as it is a multiple of v(z), and thus
h(z)w(z) = [h(z) v(z)] q(z) = 0. Computation of t(z) via polynomial division is straightforward8:

t(z) = zra(z) % Initialize t(z) as the (n− 1)’th order polynomial zra(z)
for i = n : −1 : r + 1 % Zero the i’th coefficient in t(z) by subtracting multiples of v(z)
t(z) = t(z)− zi−r−1 v(z) [ti/vr] % Note: arithmetic must be performed on Fq!

end % Returns remainder t(z) when v(z) is divided into zra(z)

(12.13)

A binary (q = 2) implementation of (12.13) is given in Algorithm 12.1. Defining the (r − 1)’th order parity
polynomial b(z) = −t(z) computed via this approach, the remaining symbols ofw(z) in (12.11) are determined.

12.2.3 Cyclic decoding
Using cyclic codes (12.5) constructed in the form (12.11) [leveraging (12.12) or (12.13) to compute b(z)], received
codewords are easy to check for errors, and trivial to decode. To check for errors, two approaches are possible:

a) multiply each of the r = n − k rows of H [which by (12.5a) are each simple shifts of the k symbols of
the parity check polynomial h(z), padded with zeros] times each received message ŵ [corresponding to the n
symbols of the polynomial ŵ(z)], noting that the received message is error free [i.e., ŵ(z) = w(z)] if each of
these scalar products is zero; or
b) recompute the check bits from the data bits in the received message ŵ(z) using (12.13), and compare with
the check bits in ŵ(z); the received message is error-free if they match.

To decode, note by (12.11) that the k symbols of the data polynomial a(z) are just the first k symbols of w(z).
The polynomial multiplications and divisions involved in the cyclic coding and decoding algorithms de-

scribed above may be calculated efficiently in either an application-specific integrated circuit (ASIC) or field-
programmable gate array (FPGA), as discussed in §1.5.3, in which repeated computations with shifted data may
be performed, in parallel, remarkably quickly. The reduced storage associated with the vector representation
of the basis matrix and the parity-check matrix in cyclic form help to facilitate such implementations.

An extended summary of the subject of linear binary (q = 2), ternary (q = 3), and quaternary (q = 4) codes
with a broad range of k and d (including a summary of the longer turbo codes), and the connection between
these codes and n-dimensional lattice packings, is provided in RP, and the references therein. The remainder
of this chapter focuses on a few families of linear binary codes (LBCs) with q = 2 and rather small k and
d (see Figure 12.3), usually denoted simply as [n, k] or [n, k, d] (dropping the q subscript), which are useful in
embedded applications. We also, in §12.7, discuss the use of binary cyclic redundancy check (CRC) codes,
defined again by a basis polynomial v(z) as laid out above, but for which, in application, the number of data
bits k to be transmitted is variable, based on the communication needs of the system and the noise on the
transmission line, and is determined on the fly.

8Note that the quotient q(z) of this polynomial division is not actually needed, just the remainder t(z).
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12.3 Binary single parity check codes and their dual forms
The [n, n − 1, 2] binary9 single parity-check codes are SED, and include [2, 1, 2] (self-dual), [3, 2, 2], [4, 3, 2], etc.
Using such a code, for each k = n− 1 data bits to be sent, a single (r = 1) parity bit is generated such that the
sum (on F2) of the data bits and parity bit is 0; when decoding, an error is flagged if this sum (on F2) is 1. The
[3, 2, 2] code illustrated in Figure 12.1a, with P =

(
1 1

)
[see (12.2)] and 2k = 4 valid codewords, is given by

H[3,2,2] =
(
︸︷︷︸
P

1 1 1
)
, V[3,2,2] =



1 0
0 1
1 1


 , W[3,2,2] =



0 1 0 1
0 0 1 1
0 1 1 0


 . (12.14)

The [4, 3, 2] code illustrated in Figure 12.2a, with P =
(
1 1 1

)
and 2k = 8 valid codewords, is given by

H[4,3,2] =
(
︸ ︷︷ ︸

P

1 1 1 1
)
, V[4,3,2] =




1 0 0
0 1 0
0 0 1
1 1 1


 , W[4,3,2] =




0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 1 1 0 1 0 0 1


 . (12.15)

Other binary single parity-check codes have a partity submatrix P [see (12.2)] of similar form (a row of 1’s).
In cyclic form [see (12.5)], binary single parity-check codes are generated by h(z) = zn−1+zn−2+ . . .+z+1

and v(z) = z + 1. For example, for n = 4, the H and V matrices for a binary single parity check code in cyclic
form is given below left; these two matrices may be transformed back to the systematic form in (12.15) via (12.4)
by taking R = I , Q = I , and (for any n) S as defined below right:

Hc
[4,3,2] =

(
1 1 1 1

)
, V c

[4,3,2] =




1 0 0
1 1 0
0 1 1
0 0 1


 ; S =



1 0
...

. . .
1 . . . 1


 . (12.16)

A single parity-check code (binary or otherwise), with d = 2, can detect but not correct an error in an
unknown position. However, it can correct an erasure (i.e., the loss of data from a known position). A common
application of this capability is in a RAID 5 system (i.e., Redundant Array of Independent Disks) for data storage.
In such a system, data is striped across n hard disk drives using a single parity check code; if any single drive
fails (which is unfortunately fairly common, relative to the expected shelf life of certain data), the failed drive
can be swapped out, and data on it can be recovered simply by achieving parity with the other disks.

12.3.1 Binary repetition codes
The dual [see (12.3b)] of the binary single parity-check codes are the [n, 1, n] binary repetition codes, which
include [2, 1, 2] (SED, self-dual), [3, 1, 3] (SEC, perfect), [4, 1, 4] (SECDED, quasi-perfect), [5, 1, 5] (DEC, perfect),
etc. This family of codes repeats a single (k = 1) data bit n times (i.e., r = n− 1); when decoding, if an error is
detected (i.e., if Hŵ ̸= 0), one may find which of the two valid codewords that the received message is closest
to simply by majority vote. The [3, 1, 3] code illustrated in Figure 12.1b, with P =

(
1 1

)T
, is given by

H[3,1,3] =

(
1 1 0

︸︷︷︸
P

1 0 1

)
, V[3,1,3] =



1
1
1


 , W[3,1,3] =



0 1
0 1
0 1


 . (12.17)

The [4, 1, 4] code illustrated in Figure 12.2b, with P =
(
1 1 1

)T
, is given by

H[4,1,4] =




1 1 0 0
1 0 1 0

︸︷︷︸
P

1 0 0 1


 , V[4,1,4] =




1
1
1
1


 , W[4,1,4] =




0 1
0 1
0 1
0 1


 . (12.18)

9As suggested previously, for the remainder of §12, the q subscript is suppressed for notational clarity when q = 2.
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Other repetition codes have a partity submatrixP of similar form (a column of 1’s); note thatP[n,1,n] = P T
[n,n−1,2].

In cyclic form, binary repetition codes are generated by h(z) = z+1 and v(z) = zn−1 + zn−2 + . . .+ z+1.
For example, for n = 4, theH and V matrices for a binary single parity check code in cyclic form is given below
left; these two matrices may be transformed back to the systematic form in (12.18) via (12.4) by taking Q = I ,
S = I , and (for any n) R as defined below right:

Hc
[4,1,4] =



1 1 0 0
0 1 1 0
0 0 1 1


 , V c

[4,1,4] =




1
1
1
1


 ; R =



1 . . . 1

. . .
...

0 1


 . (12.19)

12.4 Binary Hamming codes and their extended and dual forms
The [2r − 1, 2r − (r+ 1), 3] binary Hamming codes are perfect and SEC, and include [3, 1, 3], [7, 4, 3], [15, 11, 3],
[31, 26, 3], [63, 57, 3], [127, 120, 3], [255, 247, 3], etc. For a given k = 2r−(r+1) data bits to be transmitted, each
of the r parity bits is generated such that the sum (on F2) of a particular subset of the data bits plus that parity
bit is 0. The parity-check matrix H of a binary Hamming code has as columns all nonzero binary vectors of
length r = n− k; when expressed in systematic form, the r columns ofH corresponding to the identity matrix
are shifted to the end, and the remaining k columns ofH , in arbitrary order (often, binary order is used10), make
up the parity submatrix P . For example, the [7, 4, 3] code (see Figure 12.4), with four data bits {a1, a2, a3, a4},
three parity bits {b1, b2, b3}, and 2k = 16 valid codewords wi, is given in systematic form by

H[7,4,3] =




0 1 1 1 1 0 0
1 0 1 1 0 1 0

︸ ︷︷ ︸
P

1 1 0 1 0 0 1


 , V[7,4,3] =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1




, w =




a1
a2
a3
a4
b1
b2
b3




. (12.20a)

W[7,4,3] =




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1




.

Other binary Hamming codes are built in the same manner.
In cyclic form, [2r−1, 2r−(r+1), 3] binary Hamming codes are generated by selecting v(z) as an r’th-order

polynomial that is a root of (zn − 1), where n = 2r − 1, and by taking h(z) = (zn − 1)/v(z) on F2; for r = 3
through 7, v(z) and h(z) are listed in Table 12.4. For example, the [7, 4, 3] code may be written in cyclic form
(12.5) by taking v(z) = z3 + z + 1 and h(z) = z4 + z2 + z + 1, and thus H and V take the form given below:

Hc
[7,4,3] =



1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


 , V c

[7,4,3] =




1 0 0 0
1 1 0 0
0 1 1 0
1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 1




. (12.20b)

10In (12.20a), binary order using big endian convention on the individual bits is used on the columns of the parity submatrix P , with
the msb in the top row and the lsb in the bottom row; little endian convention may also be used [see §1.1.3 for further discussion].
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By defining Q, R, and S in (12.4) such that

Qc =




0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




, Rc =



1 1 0
0 1 1
0 0 1


 , Sc =




0 0 1 0
1 0 1 0
1 0 1 1
1 1 0 1


 ,

it is seen that H[7,4,3] = (Rc)THc
[7,4,3]Q

c and V[7,4,3] = (Qc)TV c
[7,4,3]S

c, thus demonstrating the equivalence of
these two LBCs. In fact, it may be shown (see [Hill, 1986]) thatQ, R, and S may always be found such that the
cyclic and systematic forms of any [2r − 1, 2r − (r + 1), 3] LBC may be related by (12.4).

A binary Hamming code, with d = 3, can correct a single error in an unknown position (see §12.4.0.1).
However, it can correct up to two erasures (cf. §12.3). A common application of this capability is in a RAID 6
system for storage of large amounts of critical data. In such a system, data may be striped across n hard
disk drives using a binary Hamming code; if any single drive fails, the data on it can be recovered using an
appropriate parity check equation (that is, one of the parity check equations that takes that bit into account).
If (while rebuilding the information on that disk, which might take a while) a second drive fails, then two useful
equations may be derived (by linear combination on Fn

q ) from the r parity check equations: one that takes
failed disk A into account but not failed disk B, and one that takes failed disk B into account but not failed disk
A. By restoring parity in these two derived equations, the information on both drives may be rebuilt.

12.4.0.1 Syndrome based error correction of binary Hamming codes

The r = n − k parity bits of a [2r − 1, 2r − (r + 1), 3] binary Hamming code may be used in a remarkably
simple fashion to determine not only whether or not a received message ŵ has a single bit error (which is true,
as usual, if Hŵ ̸= 0) but if it does, which bit contains the error. To see this, consider a code equivalent to a
binary Hamming code in systematic form, but permuted such that the columns of the modified parity check
matrix Hs appear in binary order. For example, the [7, 4, 3] binary Hamming code (12.20a) may be permuted
into this non-systematic order (where superscript s denotes syndrome form) as

Hs
[7,4,3] =



0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 , V s

[7,4,3] =




1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1




, ws =




b3
b2
d1
b1
d2
d3
d4




. (12.20c)

By examining the relation w = Qsws, it is seen immediately that the [7, 4, 3] code defined in systematic form
in (12.20a) may be transformed into syndrome form in (12.20c) using (12.4) with a permutation matrix of

Qs =




0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0




⇒ Hs
[7,4,3] = H[7,4,3]Q

s, V s
[7,4,3] = (Qs)TV[7,4,3], ws = (Qs)Tw, (12.21)

thus demonstrating its equivalence. Note that each row of Hs so constructed adds to 0 (on F2), and of course
that each row ofHs is orthogonal (on F2) to each column of V s. Now define the product (on F2) of the matrix
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Hs times any (possibly corrupted) received message ŵs, arranged in the corresponding order (see above), as
the syndrome vector

s = Hsŵs = Hs(Qs)T ŵ = Hŵ. (12.22)

If s = 0, the message ŵs is interpreted as being error free (i.e., ŵs = ws). If s ̸= 0, we may interpret s
as an r-bit binary representation of a number called the syndrome, denoted s, of the received message ŵs.
Remarkably, as a direct result of the structure ofHs used in this construction [see, e.g., (12.20c)], the syndrome s
identifies preciselywhich bit of then-bit receivedmessage, ŵs, must be flipped in order to determine the nearest
codeword, thereby performing single error correction (SEC). This correction may be written as a correction
vector es, which is taken as 1 in the s element and zero in all others.

In practice, the systematic form [see, e.g., (12.20a)] of a binary Hamming code may still be preferred to code
and check each data vector d, due to its simplicity in decoding, thus transmitting a message w = V d and
receiving a corresponding (possibly corrupted) message ŵ. In this case, by (12.22), the syndrome s is calculated
from the received message ŵ using the original systematic form [in (12.2)] of the parity check matrix, H . The
interpretation of the corresponding syndrome s, however, remains the same: that is, as identifying, with es,
which bit of received message ŵs, written in syndrome form [see, e.g., (12.20c)], must be flipped to perform
single error correction. This interpretation must thus be permuted (via e = Pes) to determine a correction
vector e for the corresponding received message ŵ written in systematic form.

Alternatively, (and, in many cases, faster, as discussed in the second paragraph of §12.2.3) the cyclic form
(12.5a) of a binary Hamming code may be preferred to code and check each data vector d. If the received
message is found to have an error (that is, if Hcŵc ̸= 0), one may simply permute the received message (in
cyclic form) to syndrome form form via ŵs = Qscŵc, where Qsc = (Qs)T (Qc)T is built from the permutation
matrices Qs and Qc discussed above, compute the syndrome s = Hsŵs and the corresponding correction
vector es in syndrome form as discussed above, then permute this correction vector back to cyclic form via
ec = (Qsc)Tes. In fact, these vector permutations can be hard wired into the implementation of the error
correction code itself, and thus may be performed at essentially zero computational cost.

12.4.1 Extended binary Hamming codes
The [2r−1, 2r−1 − r, 4] extended binary Hamming codes are quasi-perfect and SECDED, and include [4, 1, 4],
[8, 4, 4] (self-dual), [16, 11, 4], [32, 26, 4], [64, 57, 4], [128, 120, 4], [256, 247, 4], etc. These codes may be formed
simply as binary Hamming codes (see §12.4) with an additional overall parity bit bp; that is, with an extra row in
V such that each column of V adds to zero, and an extra row inH that checks the overall parity of the received
message. To illustrate, the [8, 4, 4] code (see Figure 12.5) is given in syndrome form by

Hs
[8,4,4] =




0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


 , V s

[8,4,4] =




1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1
1 1 1 0




, ws =




b3
b2
d1
b1
d2
d3
d4
bp




. (12.23a)

Other extended binary Hamming codes may be constructed similarly, by extending a [2r − 1, 2r − (r + 1), 3]
binary Hamming code in syndrome form with an extra row in V such that each column of V adds to zero, and
an extra row in H that checks the overall parity of the received message.
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The parity check of each received message is block decomposed into the syndrome s, defined exactly as in
(12.22) [neglecting the new parity bit bp], and the overall parity calculation p such that

[
s
p

]
= Hsŵs (on Fq).

Assuming no more than two bit errors, the syndrome s and overall parity p are interpreted as follows:

- If s = 0 and p = 0, the received message is error free.
- If s ̸= 0 and p = 0, the received message has two bit errors, which can not be uniquely corrected.
- If p = 1, the received message has a single bit error, which if s = 0 is simply in the parity bit, and if s ̸= 0 can
be located within the rest of the message using s, precisely as laid out in §12.4.0.1.

This algorithm thus efficiently performs single error correction and double error detection (SECDED).
Note that the syndrome form (with additional overall parity) of an extended binary Hamming code, as in

(12.23a), can be converted back to systematic form by replacing the last row of Hs with the sum (on Fq) of all
of the rows of Hs, then permuting the first (n− 1) columns of Hs and the first (n− 1) rows of V s consistent
with §12.4.0.1. For example, using Qs as defined in (12.21), the [8, 4, 4] extended binary Hamming code given
in (12.23a) may be transformed back to systematic form via (12.4) as follows

Q̄ =

(
(Qs)T 0

0 1

)
, R̄ =




1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1


 ⇒ H[8,4,4] = R̄THs

[8,4,4]Q̄, V[8,4,4] = Q̄TV s
[8,4,4], w = Q̄Tws,

which gives

H[8,4,4] =




0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0

︸ ︷︷ ︸
P

1 1 1 0 0 0 0 1


 , V[8,4,4] =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




. (12.23b)

12.4.2 Binary simplex codes

The dual of the binary Hamming codes are the [2k − 1, k, 2k−1] binary simplex codes, which include [3, 2, 2]
(SED), [7, 3, 4] (SECDED), [15, 4, 8] (TECQED), [31, 5, 16] (5EC6ED), etc. The codewords of these LCs form a
simplex with 2k vertices in 2k − 1 dimensions; this simplex is regular in the [3, 2, 2] case, but irregular in the
other cases. The [3, 2, 2] code is illustrated in Figure 12.1a; the [7, 3, 4] code is given by

H[7,3,4] =




0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0

︸ ︷︷ ︸
P

1 1 1 0 0 0 1


 , V[7,3,4] =




1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0
1 1 1




. (12.24)

Other binary simplex codes have a partity submatrix given similarly by the transpose of the corresponding
binary Hamming code.
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12.4.3 Binary biorthogonal codes
The dual of the extended binary Hamming codes are the [2m,m + 1, 2m−1] binary biorthogonal codes (a.k.a.
Hadamard codes), and include [4, 3, 2] (SED; see §12.3), [8, 4, 4] (SECDED, quasi-perfect, self-dual; see §12.4.1),
[16, 5, 8] (TECQED), [32, 6, 16] (5EC6ED), etc. The [32, 6, 16] code was used on the Mariner 9 spacecraft. The
codewords of these LCs are mutually orthogonal [that is,wi ·wj = 0 (onF2) for i ̸= j]. The binary biorthogonal
codes each have a partity submatrix that is simply the transpose of the parity submatrix of the corresponding
extended binary Hamming code.

12.5 Binary quadratic residue codes
The [n, (n+ 1)/2, d] binary quadratic residue codes are defined for all prime n for which there exists an integer
1 < x < n such that x2 = 2 (mod n) [equivalently, for all prime n of the form n = 8m ± 1 where m is an
integer], and include [7, 4, 3] (SEC, perfect; see §12.4), [17, 9, 5] (DEC), [23, 12, 7] (TEC, perfect, a.k.a. the binary
Golay code), [31, 16, 7] (TEC), [41, 21, 9] (4EC), [47, 24, 11], etc. Adding an overall parity bit to these codes, the
[n0 +1, (n0 +1)/2, d+1] extended binary quadratic residue codes include [8, 4, 4] (SECDED, quasi-perfect, self-
dual; see §12.4.1), [18, 9, 6] (DECTED), [24, 12, 8] (TECQED, quasi-perfect, self-dual, a.k.a. the extended binary
Golay code), [32, 16, 8] (TECQED), [42, 21, 10] (4EC5ED), [48, 24, 12] (5EC6ED, self-dual), etc. The [24, 12, 8]
extended binary Golay code, used by the Voyager 1 & 2 spacecraft, is given by

H[24,12,8] =
[
P12×12 I12×12

]
, V[24,12,8] =

[
I12×12

P12×12

]
, P12×12 =




0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 0 0 0 1




. (12.25)

Note that P is symmetric. The [23, 12, 7] binary Golay code may be obtained by puncturing the [24, 12, 8] code
listed above; that is, by eliminating any row of P (typically, the last).
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12.6 Puncturing/extending, augmenting/expurgating, and
shortening/lengthening

For a given alphabet q, there are six essential operations that may be applied to any [n, k, d]q LC, with r = n−k:

Puncturing: fix k, reduce r, reduce n (eliminate check symbols)
Extending: fix k, increase r, increase n (add check symbols)
Augmenting: fix n, reduce r, increase k (eliminate check symbols and add data symbols)
Expurgating: fix n, reduce k, increase r (eliminate data symbols and add check symbols)
Shortening: fix r, reduce k, reduce n (eliminate data symbols)
Lengthening: fix r, increase k, increase n (add data symbols)

A code obtained by eliminating a check symbol, and thus reducing both r and n by 1, is said to be a punctured
code, and (conversely) a code obtained by adding a check symbol is said to be an extended (a.k.a. expanded)
code. If starting from a perfect (or, nearly perfect) LC, puncturing it by 1 symbol will typically also reduce d
by 1. For example, as seen in §12.4-12.4.1 and §12.5, the (perfect) binary Hamming and binary Golay codes may
be extended to quasi-perfect codes by adding an overall parity bit, thereby increasing n by 1 (and, in the case
of these specific codes, increasing d by 1 as well); conversely, the corresponding quasi-perfect codes may be
punctured to create the corresponding perfect codes by removing the overall parity bit.

In contrast, a code obtained by simultaneously eliminating a check symbol and adding a data symbol is said
to be an augmented code, and (conversely) a code obtained by simultaneously eliminating a data symbol and
adding a check symbol is said to be an expurgated code. An example of this is the [7,3,4] code, which may be
augmented to form the [7,4,3] code; conversely, the [7,4,3] code may be expurgated to form the [7,3,4] code.

Finally, a code obtained by eliminating a data symbol, and thus reducing both k and n by 1, is said to be a
shortened code, and (conversely) a code obtained by adding a data symbol, and thus increasing k and n by 1,
is said to be a lengthened code. Shortening an LC leaves both r = n − k and d unchanged, but reduces the
data rate k/n. Shortening is useful for developing LBCs for error-correcting memory systems, in which the
data comes naturally in blocks of 8, 16, 32, 64, 128, or 256 bits (see §1.2). In particular,

• starting from [15, 11, 3] or [16, 11, 4], eliminating 3 data bits creates the shortened [12, 8, 3] or [13, 8, 4] LBCs,
• starting from [31, 26, 3] or [32, 26, 4], eliminating 10 data bits creates the [21, 16, 3] or [22, 16, 4] LBCs,
• starting from [63, 57, 3] or [64, 57, 4], eliminating 25 data bits creates the [38, 32, 3] or [39, 32, 4] LBCs,
• starting from [127, 120, 3] or [128, 120, 4], eliminating 56 data bits creates the [71, 64, 3] or [72, 64, 4] LBCs,
• starting from [255, 247, 3] or [256, 247, 4], eliminating 119 data bits creates the [136, 128, 3] or [137, 128, 4] LBCs,
• starting from [511, 502, 3] or [512, 502, 4], eliminating 246 data bits creates the [265, 256, 3] or [266, 256, 4] LBCs.

Most ECC memory and RAID 6 storage systems are based on one of these shortened LBCs11, which are SEC (if
d = 3) or SECDED (if d = 4), and are both simple and fast to use.

The operations of shortening and puncturing are perhaps themost important of the six operations discussed
above; as highlighted in Figure 12.3 for 1 ≤ d ≤ 12 and 1 ≤ k ≤ 64, the densest LBCs available may be obtained
simply by shortening and/or puncturing a few exemplary LBCs, many of which are defined in §12.3-12.5.

A shortened LC can be coded, decoded, and (if necessary) corrected using essentially the same algorithms
available to code, decode, and correct the LC before it was shortened, with the unused data symbols simply set
to zero (and, thus, not actually transmitted over the channel), and the corresponding symbols on the other end
of the channel asserted to be zero (and, error-free).

11Note that the perhaps peculiar name “shortened extended binary Hamming code” means precisely a binary Hamming code that
has been extended by adding an overall parity bit, and then shortened by removing some data bits.
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Algorithm 12.1: Main loop of a binary CRC code implementing (12.13); full code available at RR_CRC_encode.m.
t = b i t s h i f t ( a , r ) ; % i n i t i a l i z e t c o r r e spond ing to t ( z ) = z^ r ∗ a ( z )
for i =n : − 1 : r +1 % ze ro c o e f f i c i e n t i i n t ( z ) by s u b t r a c t i n g s h i f t o f v ( z )

i f b i t g e t ( t , i ) , t = b i t x o r ( t , b i t s h i f t ( v , i − r − 1 ) ) ; end
end
b= dec2b in ( t , r ) ; whos

12.7 Binary Cyclic Redundancy Check (CRC) codes
As laid out in §12.2, LCs in systematic cyclic form are defined by basis polynomials v(z) = vrz

r+ . . .+v1z+v0,
and/or corresponding parity check polynomials h(z) = hkz

k + . . . + h1z + h0, defined mutually such that
h(z) v(z) = zn − 1 = 0, for a given r, k, and n such that r + k = n.

Binary cyclic codes are also commonly implemented in a cyclic redundancy check (CRC) setting, in which
the number of data bits k to be transmitted is actually variable. In standardized applications (USB, bluetooth,
ethernet, etc), r and v(z) are predefined by the particular version of the standard being used (see §4), and k is
restricted to particular values within a certain range (e.g., from 1B to 16 KiB). Binary cyclic redundancy check
codes are commonly denoted CRC-rA, where r = n − k is the number of parity bits used (typically, r = 4 to
32), and A is a set of letters and numbers used to identify that CRC code.

A CRC code is defined by its basis polynomial v(z). For example, the CRC-32 code used by ethernet is

v(z) = z32 + z26 + z23 + z22 + z16 + z12 + z11 + z10 + z8 + z7 + z5 + z4 + z2 + z + 1.

It is helpful to use a shorthand12 to define the polynomial v(z). Treating the coefficients of all but the constant
[z0] term as a binary number, we can write these coefficients as 1000 0010 0110 0000 1000 1110 1101 10112 in this
case, or in hexadecimal as 0x82608edb, as listed in the corresponding (802.3) entry in Table 12.5. Additional
shorthand examples and their corresponding basis polynomials are given in the first 8 rows of Table 12.5.

The CRC approach takes a block of data a(z) [with k bits], and applies a binary version of (12.13), leveraging
the basis polynomial v(z) implemented, to determine the b(z) [with r bits] of the corresponding codewordw(z)
[with n = k+ r bits] to be transmitted [see (12.11)]. The r bits of b(z)may be determined by the (easy-to-read)
code illustrated in Algorithm 12.1; in practice, this algorithm should be implemented either in an ASIC (§1.5.3.3),
or with a carefully-tuned (but more difficult to read) low-level (C or assembly) code. For example, applying this
approach to the data vector 1101 1010 0011 11012 = 0xda3d using the CRC-5-USB [aka HAM(31,26,3)] code,
v(z) = z5 + z2 + 1 [aka 0x12], each nontrivial step of the binary XOR in this calculation is:

t = 110110100011110100000
v = 100101000000000000000
t = 010011100011110100000
v = 010010100000000000000
t = 000001000011110100000
v = 000001001010000000000
t = 000000001001110100000
v = 000000001001010000000
t = 000000000000100100000
v = 000000000000100101000
t = 000000000000000001000

The r = 5 parity bits to be transmitted [i.e., the binary coefficients of b(z)] in this case are thus 01000.

12The version of the shorthand notation used in this text is referred as implicit+1 or reversed reciprocal notation.
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maximum k for a given d
r nickname shorthand basis polynomial v(z) d=3 (SEC), 4 (SECDED), 5 (DEC), 6, 7
4 HAM(15, 11, 3) 0x9 z4 + z + 1 11
5 HAM(31, 26, 3) 0x12 z5 + z2 + 1 26

CRC-5-ITU 0x15 z5 + z3 + z + 1 → 10
8 HAM(255, 247, 3) 0x8e z8 + z4 + z3 + z2 + 1 247 13 6

CRC-8F/3 0xe7 z8 + z7 + z6 + z3 + z2 + z + 1 247 19 → → 1
CRC-8P 0x83 z8 + z2 + z + 1 → 119
CRC-8F/5 0xeb z8 + z7 + z6 + z4 + z2 + z + 1 → → 9 2 1

BCH(15, 7, 5) 0xe8 z8 + z7 + z6 + z4 + 1 → → 7

maximum k for a given Hamming distance d
r nickname shorthand d=3 (SEC), 4 (SECDED), 5 (DEC), 6, 7, 8, 9, 10
16 HAM(65535, 65519, 3) 0x8016 65519 551 40

CRC-16F/3 0x8d95 65519 1149 62 19 9 → 5
CRC-16K/5 0x9627 65519 390 119 15 11 → 4
CRC-16K/6 0x86f2 65519 83 53 40 → 6 5
CRC-16K/7.2 0xb82d 65519 221 22 → 18 → 2

C5 0xd175 → 32751 → 93 → 11 → 2
C3 0xac9a → → 241 35 10 8 3

BCH(255, 239, 5) 0xb7b1 → → 239 14 13 → → 2
C1 0x9eb2 → → → 135 → 6 → 4
C4 0x808d → 28642 → 99

24 HAM(224–1, 224–25, 3) 0x80000d 16777191 5815 509
CRC-24K/3.2 0x8f90e3 16777191 22868 599 47 37 33 12 10
CRC-24K/3.3 0x93cb4f 16777191 8880 1060 52 39 19 → 9
CRC-24K/3.4 0xa2e4ce 16777191 2562 457 248 70 30 11 9
CRC-24K/4 0x9945b1 → 8388583 → 822 → 37 → 12
CRC-24K/5.1 0x98ff8c → → 4073 228 13 → → 9

BCH(4095, 4071, 5) 0xa0efce → → 4071 121 54 → 24 9
CRC-24K/6.2 0xbd80de → 4074 → 2026 → 59 → 12

BCH(255, 231, 7) 0xddd0da → → → → 231 9 8 2
CRC-24K/6sub8 0x80009a → 8388583 → 667

32 HAM(232 – 1, 232 – 33, 3) 0x8C000001 4294967263 76947 2210
CRC-32 (802.3) 0x82608edb 4294967263 91607 2974 268 171 91 57 34
CRC-32K/3.1 0xad0424f3 4294967263 427053 817 522 149 63 27 19
CRC-32K/3.2 0x9d9947fd 4294967263 146826 8162 361 145 60 56 33
CRC-32K/3.3 0x8e2371ef 4294967263 118103 2438 1199 201 66 45 38
CRC-32K/4.2 0xc9d204f5 → 2147483615 → 6167 → 148 → 44
CRC-32/5.1 0xd419cc15 → → 65505 1060 81 58 → 27

BCH(65535, 65503, 5) 0x80af10a3 → → 65503 501 157 62 55 26
CRC-32K/6.4 0x9960034c → 65506 → 32738 → 193 → 31

CRC-32K/6sub8 0x80000072 → 1761607438 → 4113
36 HAM(236 – 1, 236 – 37, 3) 0x800000400 68719476699

BCH(262143, 262107, 5) 0x820843820 → → 262107 1114 → 36 6
BCH(4095, 4059, 7) 0xa21e33520 → → → → 4059 191 78 29
BCH(511, 475, 9) 0xe615cc4d0 → → → → → → 475 46

Table 12.5: Performance of various cyclic codes. Entries indicated with ‘→’ represent no improvement over the
entry for next larger value of d. Additional columns, for d > 10 and reduced k, are (to save space) not shown.
Tabulated data and related software (used for calculating d for HAM and BCH codes) courtesy of Koopman.
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Algorithm 12.2: Binary code for computing h(z) from v(z); full code available at RR_CRC_h_from_v.m.
t = b i t s h i f t ( 1 , n )+0 b1u64 ; h=0 b0u64 ; % i n i t i a l i z e t = 1 0 0 . . . 0 0 1 co r r e spond ing to t ( z )= z^n−1
for i =n + 1 : − 1 : r +1 % c a l c u l a t e h= t / v on F2

i f b i t g e t ( t , i )
h=h+ b i t s h i f t ( 1 , i − r − 1 ) ; t = b i t x o r ( t , b i t s h i f t ( v , i − r − 1 ) ) ;

end
end

Table 12.5 quantifies the performance (that is, the maximum number of data bits k for a given Hamming
distance d, up to13 d = 10) of various cyclic codes. Maximum values of k highlighted in red in the Table are
optimal amongst all CRC codes for that value of r and d; amongst all CRC codes with the indicated (in red)
optimal k values for that r and d, tuned secondary k values (for different d) are highlighted in blue. Note that
k values highlighted in green are optimal, for d = 6 and that value of r, amongst all 6sub8 CRC codes (that
is, cyclic codes with a basis polynomial v(z) that is zero except for its leading bit and its last 8 bits, which
significantly streamlines certain numerical implementations).

Noting Table 12.5 and Koopman, for a given r ≤ 32, the highest data-rate (largest k) CRC codes are given,

in the d = 3 (SEC) case for r ≥ 4, by [2r − 1, 2r − (r + 1), 3] binary Hamming codes [see §12.4],
in the d = 4 (SECDED) case for r ≥ 4, by [2r−1 − 1, 2r−1 − (r + 1), 4] LBCs [cf. §12.4.1],
in the d = 5 (DEC) case for even r ≥ 8, by [2r/2 + 1, 2r/2 − (r − 1), 5] LBCs, and
in the d = 6 (DECTED) case for r ≥ 17, by [2r2 − 2 r2 + r, 2r2 − 2 r2, 6] LBCs where r2 = ⌊(r − 1)/2⌋.

Remarkably, as seen in Table 12.5, there is sufficient freedom in the ordering of a CRC LBC design in cases
that are optimal in the SEC setting (as highlighted in red in the d = 3 column), which are equivalent to binary
Hamming codes14, to simultaneously tune its performance at some higher d (as highlighted in blue), for situ-
ations in which data packets with substantially shorter k, but using the same v(z), are also to be encountered
in practice.

Often, CRC codes are used for error detection only; the same ASIC or low-level code may be used on the
receiving end of the transmission to recalculate the r parity bits from the k data bits received, and an error
is flagged (and, retransmission of that particular packet requested) if the received and recalculated parity bits
don’t match15; this approach can detect up to d − 1 random bit errors. Alternatively, error correction may be
performed by determining the closest valid codeword to the received transmission. As discussed in §12.1, for
odd d, an error correcting code can correct up to (d− 1)/2 bit errors, and, for even d, an error correcting code
can both correct up to d/2− 1 bit errors and (simultaneously) detect but not correct d/2 bit errors.

Error correction in the CRC setting can be performed using the cyclic form of the parity check matrix H
[see (12.5a)] as before, which is built on the coefficients of h(z), which is determined from v(z) such that
h(z) v(z) = zn − 1, as shown in Algorithm 12.2.

13Additional columns are less important when selecting a CRC scheme for practical use with r ≥ 16, which typically use k > r.
14Note that binary Hamming codes are perfect, which implies that they really can’t be tweaked very much without reducing the

value of d (from d = 3) for a given r and a given optimal value of k. However, they can still be modified according to (12.4), which
can have a significant effect on the maximum k for a given d > 3 when a reduced number of bits are to be transmitted.

15Equivalently, the (possibly corrupted) received message ŵ(z), with the parity bits b(z) (instead of r zeros) appended [see (12.11)]
may be fed directly into this ASIC or low-level code, with an error being flagged if a zero is not returned.
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12.8 Binary BCH Codes
The Bose, Chaudhuri, Hocquenghem (BCH) family of cyclic LCs have n = 2m − 1, r ≤ mt, and d ≥ 2t + 1,
wherem ≥ 3 and 1 ≤ t < 2m−1. We focus on binary (q = 2) BCH codes in the discussion that follows, though
the BCH family generalizes to other q. The SEC (t = 1, d = 3, r = m) binary BCH codes are equivalent to the
cyclic [2r − 1, 2r − (r + 1), 3] binary Hamming codes discussed previously.

Binary BCH codes generalize binary Hamming codes to higher d [see (12.27)] while maintaining a cyclic
form. Their construction is presented in §12.8.1. The 32 smallest redundancy [r ≤ 36, perhaps the “most
useful”] (n, k, d) binary BCH codes with t > 1, which do not correspond to codes discussed previously in this
chapter, are listed below in the same implicit+1 shorthand format introduced in §12.7:

• the DEC (t = 2) BCH codes, (2m − 1, 2m − 1− 2m, 5) form = {4, 5, . . . , 18}, r = {8, 10, . . . , 36}:
(15,7,5)=0xe8, (31,21,5)=0x3b4, (63,51,5)=0xa9c, (127,113,5)=0x2a3e, (255,239,5)=0xb7b1, (511,493,5)=0x24ae4,
(1023,1003,5)=0x80c3b, (2047,2025,5)=0x2482d8, (4095,4071,5)=0xa0efce, (8191,8165,5)=0x26a8aa5,
(16383,16355,5)=0x92dfcf5, (32767,32737,5)=0x21080632, (65535,65503,5)=0x80af10a3,
(131071,131037,5)=0x20006003b, (262143,262107,5)=0x820843820;

• the TEC (t = 3) BCH codes form = {4, 5, 6, 7, 8, 9, 10, 11, 12}, r = {10, 15, 18, 21, 24, 27, 30, 33, 36}:
(15,5,7)=0x29b, (31,16,7)=0x47d7, (63,45,7)=0x3c167, (127,106,7)=0x14980d, (255,231,7)=0xddd0da,
(511,484,7)=0x6b095bc, (1023,993,7)=0x28548889, (2047,2014,7)=0x137c5373e, (4095,4059,7)=0xa21e33520;

• the 4EC (t = 4) BCH codes form = {6, 7, 8, 9}, r = {24, 28, 32, 36}:
(63,39,9)=0xed93bb, (127,99,9)=0xc52bc9f, (255,223,9)=0xf72da17e, (511,475,9)=0xe615cc4d0;

• the 5EC (t = 5) BCH codes form = {5, 6, 7}, r = {20, 27, 35}:
(31,11,11)=0xb136a, (63,36,11)=0x4374089, (127,92,11)=0x708e54dab;

• the 6EC (t = 6) BCH code form = {6}, r = {33}:
(63,30,13)=0x1be6875b3.

Note that the maximum data rate k/n of these codes increases quickly as m (and thus both r and k = n − r)
are increased for a given t, but the maximum data rate k/n decreases as t (and thus the Hamming distance d)
is increased for a givenm. Following the constructive process in §12.8.1, efficient binary BCH codes with large
n and t may easily be generated; for example,

• them = 10 BCH codes for t = {3, 4, 5, 6, 12, 26, 57, 106}, r = {30, 40, 50, 60, 120, 255, 510, 765}:
(1023,993,7)=0x28548889, (1023,983,9), (1023,973,11), (1023,963,13),
(1023,903,25), (1023,768,53), (1023,573,101), (1023,258,213).

Note also that the performance (that is, the maximum k for a given Hamming distance d) for the 8 codes
highlighted above in magenta is provided in full in Table 12.5. Many other BCH codes with large n and t may
also be generated (see, e.g., Table 6.1 of Lin & Costello 1983).

The reason binary BCH codes are interesting is that, as generalizations of Hamming codes, fast error cor-
rection algorithms may be constructed for them.

As seen in Table 12.5 and comparing with the corresponding entries highlighted in red, the performance of
BCH codes are seen to be nearly optimal at the Hamming distances for which they were designed. This fact is
quite remarkable, given the convenient structure of BCH codes from the perspective of error correction.

In summary, at d = 3, cyclic binary Hamming codes are perfect, and error correction may be performed
easily if desired (see §12.4.0.1). For higher d using a cyclic LBC, if performing error detection only, one of the
optimal entries highlighted in red in Table 12.5 should be selected, whereas if performing error correction, a
BCH code, such as one of those listed above, should generally be selected instead.
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12.8.1 Construction of binary BCH codes†

As described in §12.8, a binary BCH code has n = 2m − 1, r ≤ mt, and d ≥ 2t + 1, where m and t are small
positive integers. In this section, we describe the framework used to identify the binary BCH codes.

12.8.1.1 Primitive polynomials

To begin, we first define an irreducible polynomial as a polynomial that can not be factored as the product of
other (lower-order) polynomials with coefficients of the same type (in this case, binary).

We then define a primitive polynomial f(z) as an irreducible polynomial of degree m such that, for any
root α of f(z), the first n = 2m − 1 powers of α (namely, β0 = α0 to βn−1 = αn−1) generate all n of the n’th
roots of unity (that is, this process generates all of the distinct β such that βn − 1 = 0).

The test for whether or not an irreducible polynomial is primitive is perhaps best illustrated by two examples.
In each example, we denote α as a zero of the polynomial considered, and simplify the expressions of the first
n powers of α using the polynomial itself. For primitive polynomials like f(z) = z4 + z + 1 (restricting our
attention here, for simplicity, to the case with binary coefficients, with m = 4 and thus n = 15), all n’th roots
of unity are reached via this process; for non-primitive polynomials like g(z) = z4+ z2+1, this fails to be true:

primitive example: f(z) = z4 + z + 1 non-primitive example: g(z) = z4 + z2 + 1
αp mod f(α) binary representation αp mod g(α) binary representation

α0 → 1 0001 α0 → 1 0001
α1 → α 0010 α1 → α 0010
α2 → α2 0100 α2 → α2 0100
α3 → α3 1000 α3 → α3 1000
α4 → α+ 1 0011 α4 → α2 + 1 0101
α5 → α(α4) = α2 + α 0110 α5 → α(α4) = α3 + α 1010
α6 → α(α5) = α3 + α2 1100 α6 → α4 + α2 = 1 0001
α7 → α4 + α3 = α3 + α+ 1 1011 α7 → α · α6 = α 0010
α8 → α4 + α2 + α = α2 + 1 0101 α8 → α2 0100
α9 → α3 + α 1010 α9 → α3 1000
α10 → α4 + α2 = α2 + α+ 1 0111 α10 → α4 = α2 + 1 0101
α11 → α3 + α2 + α 1110 α11 → α5 = α3 + α 1010
α12 → α4 + α3 + α2 = α3 + α2 + α+ 1 1111 α12 → α6 = 1 0001
α13 → α4 + α3 + α2 + α = α3 + α2 + 1 1101 α13 → α · α12 = α 0010
α14 → α4 + α3 + α = α3 + 1 1001 α14 → α2 0100
α15 → α4 + α = 1 0001 α15 → α3 1000

(12.26)

The process of computing αp mod f(α) is automated in RR_Binary_Field_Mod.m.
Note next that, for example, the polynomial zn+1 (recall that “-1” is 1 in binary) form = 6 and thus n = 63

may be expressed as the product [on GF(2m)] of the following 13 irreducible polynomial factors (calculated
using the Cantor-Zassenhaus algorithm):

z63 + 1 = (z + 1)(z2 + z + 1)(z3 + z + 1)(z3 + z2 + 1)(z6 + z3 + 1)(z6 + z4 + z2 + z + 1)(z6 + z5 + z4 + z2 + 1)·
(z6 + z + 1)(z6 + z4 + z3 + z + 1)(z6 + z5 + 1)(z6 + z5 + z2 + z + 1)(z6 + z5 + z3 + z2 + 1)(z6 + z5 + z4 + z + 1).The last 6 terms in this factorization, highlighted in red and blue, are the m = 6 primitive polynomials. The

other 3 polynomials of order 6 in this factorization are not primitive, as they fail the test illustrated in (12.26).
For m = {1, 2, 3, 4, 5, 6, 7, . . .}, the number of primitive polynomials follows the OEIS A011260 sequence:
{1, 1, 2, 2, 6, 6, 18, 16, 48, 60, 176, 144, 630, 756, 1800, 2048, . . .}. For BCH code generation, at any m, it is cus-
tomary to use a primitive polynomial with the smallest number of terms and, amongst these, that polynomial
with the smallest powers in the terms after the first, as highlighted in red above. Such a primitive polynomial
is said to be minimal, and may be found by exhaustive search. The first 50 minimal primitive polynomials for
binary fields GF(2m) are listed in Table 12.6; for practical BCH code development, these should be all you need.
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z + 1 z2 + z + 1 z3 + z + 1 z4 + z + 1 z5 + z2 + 1
z6 + z + 1 z7 + z + 1 z8 + z4 + z3 + z2 + 1 z9 + z4 + 1 z10 + z3 + 1
z11 + z2 + 1 z12 + z6 + z4 + z + 1 z13 + z4 + z3 + z + 1 z14 + z5 + z3 + z + 1 z15 + z + 1

z16 + z5 + z3 + z2 + 1 z17 + z3 + 1 z18 + z7 + 1 z19 + z6 + z5 + z + 1 z20 + z3 + 1
z21 + z2 + 1 z22 + z + 1 z23 + z5 + 1 z24 + z4 + z3 + z + 1 z25 + z3 + 1

z26 + z8 + z7 + z + 1 z27 + z8 + z7 + z + 1 z28 + z3 + 1 z29 + z2 + 1 z30 + z16 + z15 + z + 1
z31 + z3 + 1 z32 + z28 + z27 + z + 1 z33 + z13 + 1 z34 + z15 + z14 + z + 1 z35 + z2 + 1
z36 + z11 + 1 z37 + z12 + z10 + z2 + 1 z38 + z6 + z5 + z + 1 z39 + z4 + 1 z40 + z21 + z19 + z2 + 1
z41 + z3 + 1 z42 + z23 + z22 + z + 1 z43 + z6 + z5 + z + 1 z44 + z27 + z26 + z + 1 z45 + z4 + z3 + z + 1

z46 + z21 + z20 + z + 1 z47 + z5 + 1 z48 + z28 + z27 + z + 1 z49 + z9 + 1 z50 + z27 + z26 + z + 1

Table 12.6: Minimal primitive polynomials for binary fields GF(2m) for ordersm = 1 through 50.

12.8.1.2 Minimal polynomials with βp = αp as a root

Given a primitive polynomial f(z) of orderm, and denoting α as a root of this polynomial, we next seek to find
the polynomial of lowest order with βp = αp as a root, dubbed the minimal polynomial ϕp(z), for various
powers p between 0 and n − 1. Of course, since f(z) is irreducible, the minimal polynomial for p = 1 is just
the primitive polynomial itself, ϕ1(z) = f(z). For larger p, the corresponding minimal polynomial may be
found by expressing β qp , for q = 1 to m, in terms of the αi for i = 0 to m − 1, following the general approach
demonstrated in (12.26) [using, e.g., RR_Binary_Field_Mod.m], then using the results to rewrite the equation

c0 + c1βp + c2β
2
p + . . .+ cm−1β

m−1
p + cmβ

m
p = 0

in terms of the αi (for i = 0 tom− 1). Setting the coefficients of like powers of α equal to zero in the resulting
equation leads to a homogeneous set of m linear equations in the m + 1 unknowns x = {c0, c1, . . . , cm},
which may be written in the form Ax = 0. This underdetermined binary system has one or more nontrivial
solutions, the smallest of which may be found by transformingA to reduced echelon formR [see NR §2.6] using
binary arithmetic, then setting the coefficient ci corresponding to the first non-pivot column of equal to 1, and
the coefficients corresponding to all other non-pivot columns (if any) equal to 0, and solving the remaining
nonsingular system for the remaining coefficients ci. The resulting minimal polynomial may then be written as

ϕp(z) = c0 + c1z + c2z
2 + . . .+ cm−1z

m−1 + cmz
m,

and has βp as a root by construction. This process is automated in RR_Binary_Field_Mod.m.

12.8.1.3 Putting it all together

Given a primitive polynomial f(z) of order m [see §12.8.1.1; often, the minimal primitive polynomial from
Table 12.6 is used], denoting α as a root of f(z), and given the minimal polynomials ϕp(z) with βp = αp as
roots [see §12.8.1.2] for p = 3, 5, 7, . . ., denoting LCM [·, ·, . . .] as the least commonmultiple of the polynomials
indicated, a binary BCH code with n = 2m − 1 and r = n− k ≤ mt may then be constructed as follows:

for t = 1, d ≥ 3 (i.e., binary Hamming), take v(z) = f(z),

for t = 2, d ≥ 5 (form ≥ 4), take v(z) = LCM [f(z), ϕ3(z)],

for t = 3, d ≥ 7 (form ≥ 4), take v(z) = LCM [f(z), ϕ3(z), ϕ5(z)],

for t = 4, d ≥ 9 (form ≥ 6), take v(z) = LCM [f(z), ϕ3(z), ϕ5(z), ϕ7(z)],

for t = 5, d ≥ 11 (form ≥ 5), take v(z) = LCM [f(z), ϕ3(z), ϕ5(z), ϕ7(z), ϕ9(z)],

for t = 6, d ≥ 13 (form ≥ 6), take v(z) = LCM [f(z), ϕ3(z), ϕ5(z), ϕ7(z), ϕ9(z), ϕ11(z)],

(12.27)

etc. All of the BCH codes summarized in the introduction to §12.8 were generated in this manner; the process
is automated in RR_BCH_Constructor.m.
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12.9 Soft decision decoding
The type of decoding discussed thus far, in which the received vector ŵ is assumed to be in Fn

q [see (12.1)], is
known as hard decision decoding.

Another formulation of the decoding problem, which we describe here in the binary case q = 2, assumes
again that w ∈ Fn

2 (that is, that the symbols being transmitted are binary, and in this formulation are usually
rescaled to be±1), but that ŵ ∈ ℜn (that is, that the received data is real). In this setting, missing bits in known
positions (aka erasures) are assigned a value of zero, and bits received only “weakly” are assigned numeric values
closer to zero than to ±1. The decoding problem in this case, called soft decision decoding, is similar to that
considered before (again, to find the most likely valid codewordw corresponding to the received vector ŵ, and
the original data vector a that generated it), but is now based on finding the valid codewordw that minimizes
the Euclidian distance to ŵ, rather than that which minimizes the Hamming distance.

Implementation of soft decision decoding is somewhat difficult in many applications, as it requires some
sort of ADC (analog-to-digital converter) in order to quantify the (real) value associated with the “certainty”
of each received bit. This approach is thus not often used in embedded computing today. However, when
the data is difficult to obtain but easy to process (e.g., signals received from an interplanetary space probe by
NASA’s Deep Space Network, or signals received by a wall-powered server from an ultra-low-power embedded
IoT device), a soft decision decoding approach may indeed be warranted.
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System Design, Development, and Integration





Chapter 13

Open vs Proprietary Development Models

13.1 Patent protection
Article I, Section 8, Clause 8 of the United States Constitution, often referred to as the Patent and Copyright
Clause, grants congress the specific power “to promote the progress of science and useful arts, by securing for
limited times to authors and inventors the exclusive right to their respective writings and discoveries.”

Patent protection is thus an essential aspect of mechanical and electrical engineering and associated fields
in the U.S., specifically in the design of creative new products leveraging ideas developed in such fields. Title
35 of the United States Code (a.k.a. 35 U.S.C.) establishes and governs manners related to the operation of the
United States Patent and Trademark Office (USPTO) regarding U.S. patents, including even clear stipulations
(in §105) about patentable ideas that are developed in outer space (sorry Elon!). Aspects of U.S. patent law that
are not spelled out explicitly in 35 U.S.C. are established via various federal court precedents.

Most other countries with large economies have closely related patent laws, and the Patent Cooperation
Treaty (PCT) coordinates patent protections between over 150 member countries. Inventions can be protected
in the Europe Union (EU) either by individual national patents, or by European patents granted centrally by the
European Patent Office. The discussion below is focused on the relevant US laws, upon which the associated
frameworks of patent laws in many other countries, the EU, and eventually Mars (?) are based.

13.1.1 Writing and filing a patent on your invention
As a developer of mechatronic and cyber-physical systems, you will likely be motivated at some point to protect
your clever idea(s) with a patent. There are several steps to go through in the patenting process, including:

• evaluating the commercial potential of your idea (is it even worth attempting to patent?),
• determining whether or not the key components of your idea are patentable, including a thorough patent
search, as well as a close examination of existing prior art, for related ideas1,
• understanding the applicable patent law and due process in the countries/planets youwant to file your patent,
• (optional) filing a provisional patent application, in order to set an official USPTO date stamp on the original
date of your key invention ideas,
• preparing an official patent application, complete with all figures in the required format,
• responding promptly to questions posed by USPTO patent examiners, amending the application as necessary,
• enforcing and maintaining the patent once issued, and

1Attempting to patent ideas the essence of which are already covered by existing patents, are previously described in the published
literature, or are already available as commercial products is at best a foolish waste of money. At worst, a bogus patent (if granted) is
a legal liability, and will make your startup look especially dubious when considered by a larger company as a target for acquisition.
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• (optional) marketing and licensing the patent to other companies.

Most people and organizations work with attorneys that specialize in patent law, to make certain that these
several important steps are properly followed. However, if on a tight budget, it is entirely possible to Patent
It Yourself; the several steps highlighted above are covered in detail in, e.g., Pressman & Blau (2020) and Lo &
Pressman (2019), to which the reader is referred for step-by-step instructions and extensive helpful, practical
guidance2. We thus only provide a brief overview of this intricate subject below.

13.1.2 Patent structure
First and foremost, a patent is formed around a set of claims, generally written to be as broad as possible in order
to cover as many possible variations and implementations of the essential ideas of the patent that one could
possibly imagine/foretell, together with a specification section that contains a detailed description of one or
more preferred embodiments that illustrate how the key ideas claimed by the patent may be successfully
applied, as you currently envision it.

Some of the claims in a patent are independent (stand on their own), and others are dependent (building
on earlier independent claims). There is an important role for each type of claim;

The goal of a set of patent claims is generally to cast as broad a net as possible over the application of the
key ideas of the patent. Thus, for example, if the preferred embodiment of the claimed idea builds on a stable
frame with 4 legs, instead of stating explicitly “a frame with 4 legs”, the phrase “a frame with 3 or more legs”
should generally be used in the claims instead. If the preferred embodiment of the claimed idea uses a 100:1
gearbox, instead of stating “a set of four gears providing a 100:1 gear reduction”, the phrase “a gearbox with a
plurality of gears providing an appropriate gear reduction” should be used, and this provision might further be
placed in a dependent claim, leaving the possibility in the main claim for a direct drive arrangement with no
gearbox.

That said, the phrasing of claims in a patent should, to the maximum extent possible, use the ordinary and
customary meaning (to a POSITA in the relevant field) of the words used, thus leaving no ambiguity of both
the structure and function of the various components in the invention when read carefully. In application, the
patent stands„ based on the phrasing of the claims alone, and if the claims are written well the specification
section of the patent is essentially irrelevant.

13.1.3 Patent litigation
Two key sections of 35 U.S.C., which lay out the requirements for an invention to be patentable, are

• §102, which states that the key ideas of the patent must be “not anticipated” (that is, “novel”), and
• §103, which states that the key ideas of the patent must be “not obvious”.

For an idea to be patentable, it needs to be established to the USPTO, based on the state of the related prior
art, that both of these characterizations apply to a POSITA (that is, to a “Person of Ordinary Skill In The Art”)
in the associated field at the effective filing date (that is, the date that the key ideas of the patent application
were originally filed by the inventor), not at the time the patent is litigated, which is often several years later
(most good ideas, it may be argued, are “obvious”, or at least “natural”, with the benefit hindsight).

Two U.S. supreme court cases3, Graham and KSR, set important precedents clarifying the modern standards
upon which §103 is now applied. The Graham framework establishes three specific things that need to be
examined in order to establish nonobviousness:

2Even if you plan to file your patent with the help of an attorney, ...
3These two U.S. Supreme Court decisions may be cited formally as Graham v. John Deere Co., 383 U.S. 1 (1966), and KSR Int’l

Co. v. Teleflex Inc, 550 U.S. 398 (2007).
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• the scope and content of the prior art,
• the differences between the claimed invention and the prior art’s disclosures, and
• the requisite skill in the art that would have been required to derive the invention at the effective filing date.

The Graham framework also recognizes the pertinence of various “secondary” objective considerations, a nexus
(that is, a preponderance) of which can be used to establish further prevailing evidence of nonobviousness at
the relevant time. Such secondary considerations might include:

• long recognized but previously unsolved needs in the general area,
• failure of other approaches to address the same problem that is solved by the patent,
• commercial success of products leveraging the patent by the inventor,
• licenses granted on the patent to others,
• copycat (possibly infringing) products made by others using the key ideas of the patent, etc.

The KSR precedent further establishes that a rational and logical basis needs to be articulated for arguing
obviousness via a combination of references in disparate application areas.

Petitions by patent ownersmay be filedwith theUSPTO to assertpatent infringement (that is, that certain
competing products incorporate key ideas protected by a patent owner), and petitions may be filed by others
to challenge the validity and scope of a patent (often based on arguments of lack of novelty and obviousness,
based on the state of the prior art on . Such patent litigations are thus based on the various criteria outlined
above, and often conclude with substantial financial settlements (payable from the losers to the winners) to
compensate for related damages.

In the process of patent litigation, it is the claims of the patent that matter most; in the filing of a petition
challenging a patent’s validity, it is the articulated grounds for dismissal that matter most.

In such litigations, claim construction (that is, the interpretation of the scope of meaning of each claim,
based on careful dissection and analysis of the words used) is the key issue to be resolved.

In the case that words in the patent
if disputed, the preferred embodiments described in the specification are sometimes valuable to resolve

various ambiguities.
means for
§112(f)
As a successful developer of mechatronic and cyber-physical systems, the reader of this text might in due

course be called upon as an expert witness in the litigation of patents in related fields. This opportunity is
akin to jury duty. Besides an opportunity for being well renumerated for such efforts, you can learn a lot about
patent law, and how it is practically applied, by pursuing such opportunities.

As an expert witness, you will generally be required to write (with the assistance of counsel) and submit
a written declaration of your opinions, including a brief introduction to your understanding of the relevant
patent law (paraphrasing some of the background material provided above might help). At a

Objections to opposing counsel’s question that your counsel might file during your deposition as an expert
witness include the following:

• Objection - mischaracterizes testimony. The question formulated effectively puts words in your mouth.
• Objection - compound question. Multiple questions were asked at once.
• Objection - assumes facts not in evidence. Implies there may be a false premise in the question.
• Objection - cause for improper hypothetical. .
• Objection - hearsay. .
• Objection - cause for speculation. Causes you to guess at someone else’s intentions.

To get accustomed to such objections, so they don’t trip you up during your own deposition, you might find
it fun to practice these objections around the house with young children (in the author’s experience, ample
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opportunities often arise to use all of them).

13.2 Open hardware designs
Out innovate the competition

13.3 Community-supported open software design

13.4 Repo maintenance
LibreOffice

13.4.1 Case study: RR library
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Chapter 15

Computer Aided Design & Manufacturing
(CAD/CAM)

15.1 Mechanical CAD (MCAD)

15.1.1 Case study: Onshape

15.2 Electrical CAD (ECAD)

15.2.1 Case study: Altium

15.3 Hybrid CAD programs
As of 2021, attempts to fuse mechanical and electrical CAD programs are still in their infancy...

15.4 Additive vs subtractive manufacturing

15.4.1 3D printers

15.4.2 Mills and lathes

15.4.3 Injection molding
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Chapter 16

Design Paradigms

16.1 Wheeled designs
elder care, concierge, toys, . . .

16.1.1 Case study: eduRover

16.1.2 Case study: SCR (Stair Climbing Robot)

16.2 Reaction-wheel and CMG-based designs

16.2.1 Case study: iceCube

16.3 Legged walking, running, and hopping

16.3.1 Case study: iHop

16.4 Drones

16.4.1 Case study: eduMAV

16.5 Tensegrity structures

16.5.1 Case study: control of a 3D stage

16.5.2 Case study: control of a multiply tethered balloon

16.6 Origami and kiragami

16.7 Biomimetic and bioinspired designs

16.8 Soft robotics
fruit picking, surgery
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16.9 Industrial robotics

16.9.1 Assembly lines
Paolo’s conveyer belt.

16.9.2 Case study: Creator burger machine in SF

16.9.3 Robot arms

16.9.4 Case study: Flippy at LA Caliburger

16.10 Pick and place machines
Delta mechanism
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Appendix A

Matlab programming

A useful definition of a small-scale numerical problem is a calculation that takes longer to code and debug
than it does to run. By this definition, many calculations that you will perform in science, engineering, and
other disciplines, both as a student and in industry, are indeed small-scale numerical problems.

Matlab (a portmanteau word1 formed from matrix laboratory) is a powerful high-level programming
language marketed by MathWorks. Though expensive2, Matlab has become something of a de facto industry
standard for many classes of small-scale numerical problems, in areas such as linear algebra, data analysis &
visualization, control design, system identification, and optimization.

GNU Octave is a powerful, free, community-developed alternative to Matlab that is almost entirely com-
patible with the (well-established and documented) Matlab syntax. You are assured free access to a legal copy
of Octave for any computer platform that you might use in the future, so it is a good idea to test all of the major
codes that you develop in Matlab syntax in both Matlab and Octave, as we have attempted to do in this text3,
so that you can be assured that you will be able to run them without difficulty in the future.

Both Matlab & Octave4 provide an interactive, user-friendly environment in which the plotting of simula-
tion results is especially simple. These programming environments are thus quite useful as intuitive testing
grounds in which one can experiment with small-scale numerical problems on a laptop or desktop computer.
There are two main directions one can go from there:

(1) embedding numerical algorithms efficiently into inexpensive low-power microcontrollers (see §1.5) for con-
trolling robotic systems, a class of problems that we focus on in particular throughout this text, RR, and
(2) designing numerical algorithms that efficiently scale to much larger numerical problems which tax the capa-
bilities of the largest and most modern computational platforms that you can afford to use, a class of problems
that we focus on in the companion text, NR.

In both cases, low-level compiler-based languages [such as C, Fortran, and many others; see §2] are strongly
preferred, as they give the programmer much more precise control over both the memory usage and the par-
allelization of the numerical algorithm. Conversion of numerical algorithms from Matlab syntax to the syntax
of such lower-level languages is generally straightfoward, as discussed further in, e.g., §11.4 of NR.

1A portmanteau word is formed out of parts of other words, which is common in the naming of computer hardware and software.
For example, Fortran is a portmanteau word formed from formula translation, codec from coder/decoder, voxel from volumetric
pixel, etc. Such words are often formed informally as new technology is developed, then become established through usage.

2Note that special Matlab For Students deals are available on many college and university campuses.
3Please contact the author if you encounter errors running any of the algorithms presented in this text, and the associated code-

base, in recent versions of either Matlab or Octave.
4A few popular alternatives to Matlab & Octave well suited for both small-scale numerical problems (working with floating-point

numbers) as well as symbolic computations (that is, software-based manipulation of mathematical expressions for solving algebra
and calculus problems) include Python/NumPy/SciPy/SymPy, R, Julia, Scilab, Maxima, Mathematica/Alpha, and CPL.
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A.1 Fundamentals of both Matlab and Octave
Once you get Matlab or Octave up and running, you will likely find that no manual or formal classroom in-
struction on either language itself is even necessary. Most of the basic constructs available in such languages
[primarily, basic arithmetic on floating-point numbers, for loops, if statements, and function calls] can generally
be understood easily simply by examining sample codes, such as those developed throughout RR and NR.

It is helpful to recognize that complex problems are solved efficiently on modern computers simply by
sequencing appropriately basic arithmetic, for loops, if statements, function calls, and data storage and retrieval
together, using logic which is admittedly sometimes subtle. It is generally the logic itself, and the judgement
and reasoning involved in organizing it, that makes The Art of Computer Programming a skill that takes years to
master; the syntax of the language best suited for the job (Matlab, C, or something else) is generally something
that is quite easy to pick up, or convert to, by examining a handful of well-written example codes.

Convenient built-in command names in Matlab/Octave are all intuitive (sin for computing the sine, eig
for computing eigenvalues/eigenvectors, etc.), and extensive help for all commands is readily available in both
Matlab and Octave, at the >> prompt in the command window, simply by typing, for example,
>> help eig

Even more information is available online. These help pages also point you to several related commands, which
can be used to learn what you need to know about any given aspect of Matlab or Octave very quickly.

To help get you off to a fast start, we now introduce some of the fundamental constructs used in Matlab
and Octave, then explain some of their more subtle features. To begin, Matlab or Octave can function as an
ordinary calculator. At the command prompt, try typing5

>> 1+1

Matlab or Octave should reassure you that the universe is still in good order. Note that you can always scroll
back to see the preliminary definitions and calculations that led to a particular result using the up arrow on
your keyboard. To enter a matrix, type
>> A=[1 2 3 ; 4 5 6 ; 7 8 0 ]

Note that matrix elements are separated by commas or (where it can be done without ambiguity) spaces, and
a semicolon indicates the end of each row of the matrix. Matlab/Octave responds with
A =

1 2 3
4 5 6
7 8 0

By default, Matlab/Octave operates in a verbose mode6 in which the results generated by any given com-
mand will be printed on the screen as soon as they are calculated. Once a code segment is debugged, such a
verbose behavior quickly becomes tedious, and slows the computer down. To suppress this behavior, simply
type a semicolon after any command that would otherwise dump output to the screen; the use of semicolons
after calculations or function calls also allows several commands to be included on a single line, such as
>> A=[1 2 3 ; 4 5 6 ; 7 8 0 ] ; x = 5 ;

To put multiple commands on a single line without suppressing echo mode, separate the commands by commas
(try it!). Three periods in a row means that the present command is continued on the following line, as in:
>> A=[1 2 3 ; . . .

4 5 6 ; . . .
7 8 0 ] ;

5To get maximum value from this appendix, we recommend copying/pasting (or, retyping) the commands following the >> prompts
in the text into your own Matlab/Octave window, modifying it a bit, and checking that the output generated makes sense.

6This verbose behavior can be further augmented by toggling on the echo command, which displays the actual statements en-
countered during execution of a script (see §A.2.1). This command, which apparently evolved from the TRON command of the 1980s
vintage BASIC programming language, prints so much information to the screen that its practical utility is actually somewhat limited.
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The legibility of your code can be substantially improved by aligning long expressions in a natural fashion using
spaces or tabs, as illustrated above. Elements of a matrix can also be arithmetic expressions, such as 3∗pi, etc.;
when doing this, it often necessary to separate matrix elements by commas to remove any possible ambiguity.

Matlab syntax has control flow statements, such as for loops, similar to other programming languages. Note
that each for must be matched by an end. To illustrate, the commands
>> for j = 1 : 1 0 , a ( j ) = j ^ 2 ; end , a , b = [ 0 : 2 : 1 0 ]

build row vectors (try it!), whereas the commands
>> for j = 1 : 1 0 , c ( j , 1 ) = j ^ 2 ; end , c , d = [ 0 : 2 : 1 0 ] '

build column vectors. In most cases, you want the latter, not the former. The most common mistake made in
Matlab syntax is to build a row vector when you intend to build a column vector, as their use in Matlab/Octave is
usually not interchangeable; thus, pay especially close attention to this issue if your code is misbehaving.

The format of a while statement is similar to that of for, but exits at the control of a logical condition:
>> m=0 ; while m<7 , m=m+2 ; end , m

An if statement may be used as follows7:
>> n =7 ; i f n >0 , sgn =1 , e l s e i f n <0 , sgn=-1 , e l s e i f n==0 , sgn =0 , e l se disp ( ' unde f ined ' ) , end

The (related) switch/case construction allow one to check a single variable against several possible conditions
>> switch n , case - 1 , c= 'N ' , case 0 , c= 'Z ' , case 1 , c= 'P ' , otherwise , c= ' ? ' , end

A column vector y can be premultiplied by a matrix A and the result stored in a column vector z with, e.g.,
>> A=[1 2 3 ; 4 5 6 ; 7 8 0 ] , y =[1 2 3 ] ' , z =A*y

Subsequent multiplication of the vector z by a scalar, like the predefined constant pi, may be accomplished with
>> w=pi*z

A 3 × 3 matrix A with complex random entries, each with real and imaginary parts uniformly distributed
between 0 and 18, its conjugate B = A, its transpose C = AT , and its conjugate transposeD = AH = AT (see
§1 of NR), may be generated as follows
>> A=rand ( 3 , 3 ) + sqr t ( - 1 ) *rand ( 3 , 3 ) , B=conj (A ) , C=A . ' , D=A '

The inverse of a square matrix (that is, the matrix B such that BA = I , if it exists) may be obtained by typing
>> B= inv (A ) , check=B*A

For pedagogical purposes, this inverse command is rewritten in §2 of NR. As mentioned there, you should never
actually compute a matrix inverse9 in a production code (that is, in a code designed to run at the maximum
possible speed, without failure), though it is sometimes convenient to compute a matrix inverse in a test code
(that is, in a code used for demonstration purposes only, on small-scale numerical problems).

A 5× 5 identity matrix may be constructed with
>> E=eye ( 5 )

Tridiagonal matrices (see §1.2.7 and §2.2.5 of NR) may be constructed by, e.g., the following command:
>> m=5 , x=randn (m - 1 , 1 ) , T=1*diag ( ones (m - 1 , 1 ) , - 1 ) -2*diag ( ones (m, 1 ) , 0 ) + diag ( x , 1 )

7When in the Matlab command window, using the up and down arrows allows you to scroll back and forth through recently
executed commands. For example, after copy/pasting/running the commands shown here, scroll back to it using the up arrow, walk
to the left of the line with the left arrow, change n=7 to n=NaN or Inf, hit enter, and see if the new answer makes sense (see §1.1.4).

8Note that the command A=randn(2,3) generates a 2× 3matrix A with real, random, independent, normally-distributed entries,
each sampled from a Gaussian probability distribution with zero mean and standard deviation 1 (see §6 of NR), and the command
A=randi (13,2,3) generates a 2× 3 matrix with positive integer entries uniformly distributed between 1 and 13.

9The algorithm to compute a matrix inverse is computationally very expensive, as discussed in §2 of NR, and destroys any known
sparsity structure (that is, sets of elements known to be zero) in the original matrix, as discussed in §1 of NR.
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There are two “matrix division” commands in Matlab/Octave, mldivide, also written as \, and mrdivide, also
written as /; if A is a nonsingular square matrix, then A\B and B/A correspond formally to left and right mul-
tiplication of B (which must be of the appropriate size that the product is well defined) by the inverse of A
[i.e., inv(A)∗B and B∗inv(A), respectively]. However, the commands A\B and B/A obtain these answers directly via
Gaussian elimination with pivoting, as developed from scratch (again, for pedagogical reasons) in §2 of NR,
while leaving the matrix A intact, without computing inv(A) along the way (which, as mentioned in Footnote 9
above, is prohibitively expensive for large matrices). Thus, to solve a system A∗x=b for the unknown vector x,
one may simply type, for example,
>> A=[1 2 3 ; 4 5 6 ; 7 8 0 ] ; b =[5 8 - 7 ] ' ; x=A \ b

which results in
x =

−1
0
2

To check this result, just type
>> A ∗ x

which verifies, as expected, that
ans =

5
8

−7

Starting with the innermost group(s) of operations nested in parentheses and working outward, the usual
precedence rules are observed by Matlab/Octave. First, all the exponentials are calculated. Then, all the mul-
tiplications and divisions are calculated. Finally, all the additions and subtractions are calculated. In each of
these three catagories, the calculation proceeds from left to right through the expression. Thus
>> a = 5 / 5 ∗ 3 , b = 5 / ( 5 ∗ 3 )

gives a=3 and b=0.3333. If in doubt, use parentheses to ensure the order of operations is as you intend.
Matrix sizes must be such that the requested linear algebra operation is well defined (see §1 of NR), or

an error will be thrown. For example, suppose we have two column vectors x and y and wish to perform the
component-wise product of each element of x with the corresponding element of y. Such a component-wise
multiplication may be accomplished in Matlab syntax as, for example,
>> x = [ 1 : 5 ] ' ; y = [ 6 : 1 0 ] ' ; z =x . ∗ y

Note that z=x∗y throws an error, since this implies a linear algebra operation that is undefined (that is, a column
vector times a column vector). In contrast, a row vector times a column vector is well defined, so z=x '∗y is
successful, generating the inner product of x and y (try it!).

The period generally distinguishes matrix operations from component-wise operations, for example (try it!)
>> A=[1 2 ; 3 4 ] , B=[5 6 ; 7 8 ]
>> C1=A^2 , D1=A ∗B , E1=A/B % Matr ix o p e r a t i o n s !
>> C2=A . ^ 2 , D2=A . ∗ B , E2=A . / B % Component−wise o p e r a t i o n s !

Typing whos lists all variables you have created up to that point, and typing clear removes these variables
from your workspace. Typing clc clears the command window.

The format command toggles the number of significant figures printed to the screen, for example,
>> format long , pi , format shor t , pi

Various self-explanatory Matlab/Octave functions include: factorial , abs, conj, real, imag, sin, cos, tan, asin,
acos, atan, atan2, sinh, cosh, tanh, asinh, acosh, atanh, exp, log, log10; some predefined constants10 include pi, i , j ,

10Note that Inf is actually signed in Matlab (see §1.1.4); try typing, e.g., 10^310 and -10^310.
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eps, Inf, NaN. Your code can actually change such constants11 (it is particularly common to use i and j as
indexing variables); be careful if you do this, and later need to use these constants as originally defined!

Matlab and Octave are distributed with many special additional functions to aid in linear problem-solving,
control design, etc. Many of these advanced built-in functions are themselves just prewrittenm-files (see below)
that can be opened and accessed by the user for examination with, for example, a command such as open bode.
In most cases, RR and NR avoid most of these convenient black-box functions, instead working up the core of
many of them from scratch, to remove the mystery that might otherwise be associated with their use.

Sometimes, Matlab or Octave will suspend the printing of text to the command window, or the drawing of a
plot to a figure window, until later computations are finished or a pause statement is reached. The fflush (stdout)
command in Octave, and the drawnow('update') command in Matlab, can be used to force this output to be
printed or drawn. This is one of the few little (yet, annoying) differences between Matlab and Octave.

All of Matlab’s “random” number functions, including the rand, randi, and randn commands mentioned
above, draw values from a shared pseudorandom number generator (PRNG; see §2.7). Matlab actually has sev-
eral deterministic algorithms implemented for pseudorandom number generation with good statistical proper-
ties implemented; it uses the Mersenne Twister by default. Matlab’s PRNG algorithm has a “seed” that is reset
every time Matlab is restarted (thereby generating the exact same sequence of pseudorandom numbers every
time Matlab is restarted). This seed can be manually reset to the default initial state with the rng( ' default ' )
command, or can be manually set to a “random” initial state, based on the current time, using the rng( ' shuffle ' )
command.

A.2 Matlab programming procedures: stay organized!

As an alternative to interactive mode, you can also save a series of Matlab/Octave commands in m-files, which
are just ASCII (aka plain text) files with descriptive filenames, ending in .m, containing a sequence of commands
listed exactly as you would enter them if running interactively. When working onMatlab/Octave problems that
take more than one line to express (that is, essentially, all the time, even when using Matlab/Octave as a simple
calculator!), it is imperative to write and run m-files rather than working in interactive mode. By so doing, it is self
evident which calculation follows fromwhich. Further, following this approach, the several commands typically
required to perform a given calculation do not need to be retyped when the calculation or simulation needs to
be modified and rerun, which is generally much more often than one would care to admit. Staying organized
with different versions of your m-files as a project evolves (even a fairly simple project!) is essential. Create new
directories and subdirectories as appropriate for each problem you work on to stay organized, and to keep from
accidentally overwriting previously written and debugged codes.

To execute the commands in a script named12 foo.m, type foo at the >> prompt. Any text editor (see §2.4.1.2)
may be used to edit m-files. A % symbol in such a file indicates that the rest of that line is a comment. Typing
help foo prints the first set of commented lines of foo.m to the screen; type foo prints the entire foo.m code to the
screen. Comment all m-files clearly, sufficiently, and succinctly, focusing specifically on its inputs and outputs,
so that you can come back to the code later and understand how it works. You can also print nicely to the
screen (using, e.g., the disp or fprintf commands) to update the user on the code’s progress as it runs; several
codes discussed in this text use a RR_VERBOSE flag to turn such updates on or off. It also helps to use descriptive
variable names within any code. There is an important tradeoff between succinctness and readability; this
tradeoff should be made deliberately, don’t go overboard on one side or the other.

11If you’re bored, try redefining pi=3.2 and see how much it messes things up; be glad this wasn’t established by legislative fiat!
12Almost all texts describing computer programming, dating back to the 1978 classic by Kernighan and Ritchie, make reference to

expository codes named foo and bar. Following this convention is a small way one can pay respect to those greats in the field of
computing who came before us.
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A.2.1 The distinction between scripts and functions
There are two distinct types of m-files: scripts and functions.

A script is a set of Matlab/Octave commands that run just as if you had typed in each command interac-
tively. A script has access to all previously-defined variables (that is, if called from the interactive window, it in-
herits the baseworkspace), and all variables that it defines are available for later inspection in that workspace,
which is sometimes useful when debugging. In order tomake a test script run the sameway every time (repeata-
bility is usually strongly desired in numerical calculations!), it is generally a good idea to put a clear command
at the beginning of all of your scripts, so they always run “from scratch”13.

A function, on the other hand, is a set of commands that begins with a function declaration that defines
that function’s inputs and outputs; for example,
function [ output1 , output2 ] = bar ( input1 , input2 , i npu t3 )

A function so defined may then be called (as in a compiler-based programming language) with the command
[ c , d ] = bar ( a , b , c )

Note that some variables (in the above example, c) may be used as both inputs and outputs.
When a function is running, it can only reference those external variables that are transferred in via the

input list with which it was called; in the present example, the function is only “aware” of the external variables
{a,b,c}, which this function refers to internally as {input1 , input2 , input3}. A notable exception to this rule is those
variables that are declared as global in multiple functions and (usually) the base workspace; in this case, a
single copy of the variable so declared is shared, but only to those functions that include its global declaration.
Global variables are usually denoted with both all capital letters and especially descriptive variable names (e.g.,
global FUNCTION_EVALUATION_COUNTER), to keep these special variables from being accidentally overwritten in
the several different places that they might be used. Global variables should be used only sparingly.

The special variables nargin and nargout identify the number of input and output arguments, respectively,
that are actually used when any given function is called. Input and output arguments are assigned from the
left to the right, so any missing arguments in this call are necessarily those at the right end of each list. If some
of the input arguments, often tagged as “optional”, are omitted in the function call, logic may be implemented
in the function to set these variables to certain default values; if this logic is not implemented properly, the
function will crash when these variables (if left undefined by the function call) are first referenced. If some
of the output arguments are omitted in the function call, logic may be implemented in the function to avoid
explicit computation of these omitted output variables in order to reduce execution time.

After a function finishes running, the only variables that are modified in the workspace that called the
function, as compared to before the function was run, are those (nargout) variables in the function’s output list
that are paired with corresponding variables in the command that called the function, in addition (possibly) to
some of the variables declared as global. In the above example, if called as c2=bar(a,b,c1), the function bar only
modifies14 the single (that is, nargout=1) variable c2, which bar refers to internally as {output1}.

Functions are much more easily embedded as smaller parts of larger programs than scripts, as functions
make crystal clear, via their input/output argument list, what information used in, and returned by, the called
function. In complicated codes, unintentionally assigning a minor variables (like the index i or k) with different
meanings in different scripts that call each other can lead to a bug that is nearly impossible to find. The proper
use of functions, and the associated passing of only the relevant data back and forth (known as handshaking),
goes a long way towards preventing such insidious bugs from appearing in your production codes.

On the other hand, short test codes, such as those provided with many of the functions developed in RR
and NR, are often convenient to write as scripts, so that the variables defined by the test script may be checked
(for debugging purposes) after the test script is run.

13See also the discussion at the end of in §A.1 about resetting the PRNG seed, which is also sometimes useful in test scripts.
14That is, in addition to those variables defined as global, as mentioned above.
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A.2.2 Pass by value versus pass by reference†

There is extra overhead associated with function calls, as they usually allocate (that is, assign) new memory
locations to receive the variables passed in when called, then deallocate (release) this memory upon exit. This
general approach is referred to as pass by value. In addition to the allocation and deallocation of memory for
each function call, the pass by value approach must also copy the values from the input array(s) into the new
memory location(s) allocated by the function call, then pass the resulting values from the output array(s) back
into the appropriate array(s) in the global workspace. For scalars and short vectors, this overhead is minimal;
it is actually beneficial in certain settings, especially when using a compiler, as it identifies which variables are
about to be heavily referenced next, and should thus be stored in a high-speed memory cache (see §1.3).

For large arrays, however the overhead associated with the pass by value approach can be unacceptable.
There are generally two approaches to avoid this overhead. The first approach is simply to use arrays declared
with the global identifier (see previous page). Though computer scientists generally frown upon this approach,
as it can lead to confusing functions that do not clearly identify their inputs and outputs up front, and can thus
be somewhat difficult to reuse in a black box fashion on other problems, engineers who write very-large scale,
special-purpose numerical codes often find this approach to be the fastest15.

The second approach is pass by reference. This is often the best compromise between the overhead associ-
atedwith the pass by value approach, and the raw speed of the approach leveraging globally-defined arrays. The
pass by reference approach involves, during the function call, simply the passing of a pointer to the starting-
point location of an array in memory [in addition, somehow, to the dimensions of the array in question], rather
than the cumbersome allocation/copying/deallocation process associated with the pass by value approach. The
pass by reference approach is the default for array passing in Fortran, and is also quite common in C.

Matlab’s default is, usually, a pass-by-value approach, with (quite cleverly) the memory allocation and
copying of data associated with the pass-by-value approach actually deferred until the first time a given array
is modified within the function itself (and, thus, a new memory location for that array is actually warranted).

However, a pass-by-reference mode is initiated in Matlab (automatically, without any intervention by the
user, which is also rather clever) whenever a code calls a function with an identical argument in both its input
and output lists (in both the code that makes the call, as well as the function that is called). This subtle feature
should not be ignored, as it can lead to significant performance improvements in the execution speed of
Matlab codes applied to large problems. As an example, if a Matlab function defined as
function [ a r ray1 , a r ray2 , a r r ay4 ] = foo ( a r ray1 , a r ray2 , a r r ay3 )

is called with the command
[ a , e , c ] = foo ( a , b , c )

then the a array (referred to inside foo as array1) is handled with a pass-by-reference approach, but all other
arrays are handled with a pass by value approach (as the corresponding array names don’t match in both the
input and output lists, in either the code that makes the call, or the function that is called). Passing very large
arrays back and forth to functions in the manner that a is passed into array1, and then back out to a, in this
example can substantially improve the execution speed of your code.

It is sometimes convenient to group related parameters together into a structure array, aka struct [such as
p. linestyle1 = 'k−', p. linestyle2 = 'b−. ' , p.omega_min=0.01, p.omega_max=0.10, p.K=20, . . . ], then simply passing the name
of the variable assigned to this structure array [in this example, p], which conveniently contains all of the
(appropriately grouped) optional parameters, thus avoiding the use of global variables, while also avoiding the
listing of each and every minor parameter in the list of input arguments of your functions.

15Also, for functions that you plan to call a lot (like, every timestep in a long simulation), declaring “scratch” arrays that are only
used internally in certain functions with the persistent identifier prevents those arrays from being allocated and deallocated every
time that function is called, which can substantially accelerate code execution. As opposed to using the global identifier, variables
tagged with the persistent identifier can not be accidentally overwrite in other functions.
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Figure A.1: Sample 2D and 3D plots: (left) the step responses 2nd-order continuous-time (CT) and discrete-time
(DT), as developed in Examples 8.1 and 8.2, and (right) sinc(r) = sin(r)/r where r =

√
x2 + y2.

A.3 Plotting
Both 2D and 3D plots are easy to generate in Matlab and Octave, as shown below:

A sample 2D plot
>> t = [ 0 : . 2 : 8 ] ; z = [ . 5 ; . 7 ] ;
>> s=z ; o= sqr t (1 − z . ^ 2 ) ; d=z . / o ;
>> y=exp ( − s ∗ t ) . ∗ ( − cos ( o ∗ t )+ d . ∗ s in ( o ∗ t ) ) + 1 ;
>> plot ( t , y ( 1 , : ) , ' b− ' , t , y ( 2 , : ) , ' r x ' )

A sample 3D plot
>> [ x , y ]=meshgrid ( - 8 : . 5 : 8 , - 8 : . 5 : 8 ) ;
>> R= sqr t ( x . ^ 2 + y . ^ 2 ) + eps ;
>> Z= s in ( R ) . / R ;
>> mesh ( x , y , Z )

The code segments listed above produce the figures shown in Figure A.1. Linear versus log axes, titles, axis
labels, etc, can be controlled with loglog, semilogx, semilogy, title , xlabel, ylabel, and related commands (see
the corresponding help pages); axis ([0 5 −1.1 1.1]) zooms a 2D plot (like that above left) to the region [0, 5] on
the horizontal axis and [−1.1, 1.1] on the vertical axis, axis equal sets the aspect ratio so that equal tick mark
increments on the various axes are equal in size, and axis square makes the current axis box square. Try it!

Commands like those above produce plots in figure windows. Once a plot is as you like it, you will often
want to save it, so you can email it, include it in a talk, post it on social media (you are, after all, an engineer!),
make printouts of it, and/or include it in a paper or textbook you are writing. For scientific writing, LATEX in-
variably produces the best results, though you may find thatwhat-you-see-is-what-you-get (wysiwyg) word
processors like Microsoft Word or Apple Pages are, at least initially, somewhat easier to use16. The recom-
mended format to save your figures for such purposes is encapsulated postscript (denoted with a .eps suffix).
Encapsulated postscript is a robust, platform-independent standard for both vector graphics files (representing
lines as lines) and bitmaps (collections of pixels); vector graphics look especially sharp when printed out or
zoomed in. All major typesetting programs, including LATEX, Word, and Pages, can import .eps bfiles.

To produce a color .eps file, execute the print command after setting up the plot as you like it17:
print -vector -depsc s i n c .eps

Once you have created an .eps file, you may view it with any (free) eps viewer, such as ghostscript and gv.
Adobe Illustrator is a good commercial software package for making edits to .eps files (changing line types,
font sizes, etc.), which is often necessary when preparing scientific documents. The psfrag package is especially
powerful for replacing tags (characters) in .eps files with mathematical expressions generated by LATEX, thus
seamlessly integratings complex figures and equations into your documents (see, e.g., Figure 10.7).

16That is, until you begin to care about how well the equations are typeset, at which point your best option is to switch to LATEX.
17Above a certain number of elements in a given figure, Matlab automatically switches from the (highest-quality) –vector renderer

to the (bitmapped) –image renderer. Manually forcing the former, as done here, ensures the (higher-quality) vector output. Note
that, prior to fall 2021, the –vector and –image options to the print command were called –painters and –opengl, respectively.
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In Matlab, the contents of a figure window may also be saved with the command saveas(1, ' foo . fig ' ), and
later reopened and edited further with open foo.fig. The author does not typically recommend this approach,
however, as it substantially limits further modification. Instead, to send a figure via email or to include it in a
paper, use the .eps format discussed previously, and manually downgrade it to a . jpeg, if necessary, to reduce
file size. If you want the option (you usually will!) to edit the figure later in Matlab or Octave, your flexibility
is maximized by saving, in an m-file, the entire list of commands that generated the figure, thus allowing you
to tweak these commands in the future, and regenerate the figure of interest from scratch.

Printouts of the text appearing in theMatlab or Octave commandwindow after a code is run is best achieved
simply by copy/pasting this text into the editor of your choosing, then printing (or generating a pdf) from there.

A.4 Source code repositories: Github and its alternatives
Source code repositories (aka repos) are like Google Docs, but for numerical codes. They:

• provide a backup of all of your most important coding work,
• sync codebases between different computers that you might use during the week,
• provide version control, allowing you to revert to a previous version of a code if a new edit breaks things,
• allow developers to fork a codebase from its mainline into a private branch for code development, and
• allow repo owners to merge new code, once debugged, from private branches back to the mainline,
• thus facilitating the simultaneous collaboration of many developers on a large set of interacting codes, while
• enabling repo owners to distribute (and, keep updated) the mainline of a big codebase to a large set of users.

Note that forking is easy, and happens at the push of a button; merging (that is, reconciling possibly conflict-
ing code updates in different branches) is where substantial care is sometimes required. As of this writing,
Github is the dominant standard for source code repositories; alternatives to Github include:

GitLab, Bitbucket, GitBucket, Sourceforge, AWS CodeCommit, and Google Cloud Source Repositories.
The many codes developed in both Renaissance Robotics and Numerical Renaissance are maintained at the Re-
naissance Repository (https://github.com/tbewley/RR).

You may not realize it now, but as an engineering student interested in robotics and numerical methods,
you will both use large codebases and, ultimately, write lots of codes yourself (in Matlab, C, Python, Fortran,
and many other languages). To become successful in this endeavor, you should thus become familiar with the
proper use of source code repositories early on. Further, one of the most valuable things you can include in
your resume, when looking for academic or industry jobs in the fields of robotics and numerical methods, is a
link to your Github page. Even if it just has codes from various classes and small projects that you have worked
on thus far, a well organized Github page demonstrates clearly to a potential employer your coding style and
clarity of thought, and well showcases the major engineering skills that you have developed thus far.

After opening an account at Github18, it is also convenient to download Github Desktop18 onto the (Mac or
Windows) computers that you plan to use to write code, which provides a convenient graphical interface to:

• clone a repo (like the Renaissance Repository) that you want to use,
• update your local clone of a repo with recent improvements from the mainline version of the repository,
• sync/merge your own daily local code developments back into your own repositories online,
• fork someone else’s repo into a private branch that you can work on yourself, as a developer, and, ultimately,
• submit a pull request to suggest to a repo owner that they merge your new codes into their mainline.

To get started, (a) open a Github account, (b) download Github Desktop, (c) use Github Desktop to clone the
Renaissance Repository to your computer, and (d) create and use your own repos for your current classes and

18Complete instructions for using Github and Github Desktop are available at the corresponding websites. Choose your Gihub
username carefully, because you will most likely want to use this account for the rest of your life!
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projects.
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A.5 Navigating your path
Akin to both unix/Linux/Mac shells (see Table 2.1) and the Windows command prompt, the cd command
changes directory (that is, the current Matlab working directory, for saving new files), the command dir lists
the files in that working directory, and the command pwd prints the working directory to the screen. If the
necessary m-files to run your code are stored in more than the current working directory, which is generally the
case if you are staying well organized (please do!), the command path can be used to view the set of directories
that Matlab will look within to find the additional m-files that it may need, and the command addpath(dir1,dir2 ),
where dir1 and dir2 are strings containing complete path names (e.g., dir1= ' /Users/bewley/ classes /MAE144', etc.),
may be used to add directories to this path.

In particular, once you have cloned (using Github Desktop, as discussed in the previous section) the Renais-
sance Repository to your computer, you will want to add all of the directories containing your local copy of the
codes it contains to your path. This is best done automatically, when firing up Matlab. A convenient script,
RR_path_init.m, is provided to help with this.

To use this path initialization code, you should set up your computer to call it automatically when firing
up Matlab. This may be done by appending a call to RR_path_init in the startup .m file of your default Matlab
userpath directory.

In short, fire upMatlab, and type the command userpath, which will return the name of the default directory
that Matlab starts up in on your machine. Within that directory (important!), edit the file startup .m (or, create
a new file of this name if one doesn’t already exist); this file should contain, at least, the following lines:
RRbase= ' / Users / bewley /RR ' ; cd ( RRbase ) ; RR_pa th_ in i t

Note: replace the directory name in single quotes above with the full path to the location that you have installed
the Renaissance Repository on your computer. Note that forward slashes, /, as shown above, are used on Macs,
whereas backslashes, \, are used in Windows; on a Windows machine, the full path to this directory might
look something like C:\Users\bewley\RR. Note you can also put other commonly needed Matlab initialization
commands in your startup .m file; in particular, you will probably want to add the paths to your personal Matlab
project directories that you use often (see the last sentence of the first paragraph of this section), and perhaps
also (at the end of the startup .m file) a cd to the directory that you plan to be working in most in the foreseeable
future. You may also include a host of other actions, such as calling a routine like RR_physical_constants, to define
some of the physical constants that you might often need in your line of work.

Many other getting-started functions are available in the Renaissance Robotics Appendix A section of the
repository. Rather than listing those simple functions here, the reader is asked to, well, cd( strcat (RRbase,'/chapAA' ))
in your Matlab command window at the >> prompt, then dir, then type RR_double_factorial , type RR_swap,
type RR_permute, etc, for each command that you find. By studying these sample codes, and running the test
commands embedded in their comments, I reckon you’ll digest them quite quickly, and find your own way
forward from there.

A.6 Advanced prepackaged numerical routines
Matlab and Octave have a ton of very useful advanced prepackaged numerical routines built in, including
inv, lu, qr, cond, eig, schur, svd, norm, rank, pinv, tf ,minreal, bode, rlocus, impulse, step, c2d, lyap, dlyap, icare, idare,
etc. As you progress through the RR and NR texts, these routines will quickly become useful for you, as you
learn what they compute. However, the purpose of the RR and NR texts is actually not simply to catalog these
prepackaged routines, but rather to flush out when and where you might use them, why they are the tools of
choice for certain problems, and how they actually work. With this knowledge, the reader will be able to select
and use such routines with much greater understanding and forethought. We thus avoid using almost all such
prepackaged routines in these texts, opting instead to rewrite many of them from scratch.
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x
r−1 = a = b+ r1 = 50

r0 = b = 2r1 + r2 = 35
r1 = 3r2 + 0 = 15 (r3 = 0)

r2 = gcd(a, b) = 5

Figure A.2: Euclid’s algorithm: Take r−1 = a and r0 = b < a. For k ≥ 1, subtract the largest integer multiple of
rk−1 from rk−2 that leaves a remainder rk ≥ 0, until some k = n for which rn = 0; then, gcd(a, b) = rn−1.

A.7 Keeping it classy with object-oriented programming
The modern notion of object-oriented programming (OOP), which defines classes of objects, and valid oper-
ations on objects that are members of these classes, can be valuable19 for the development of reusable code.
The RR codebase illustrates the practical use of OOP by example, by defining and using three object classes:

• integers (see RR_int.m), with Euclidean division giving an integer quotient and remainder,
• polynomials (see RR_poly.m), with Euclidean division giving a polynomial quotient and remainder, and
• transfer functions (see RR_tf.m), represented by rational functions of s (see §8.2.3) or z (see §8.3.3).

We focus specifically, in §A.7.1, on the use of the RR_int and RR_poly classes on the Diophantine problem, which
highlights well the versatility of the OOP approach. The codes defining these classes, as well as the fundamen-
tal operations (+,−,×,÷, . . . ) on objects in these classes, should at this point be mostly self explanatory; some
special syntax used in these definitions is described in detail at the related Matlab help pages.

A.7.1 Euclid’s algorithm and the Diophantine equation
The greatest common divisor (GCD, aka greatest common factor, GCF) of two20 positive integers a and b,
denoted gcd(a, b), is the largest positive integer g such that a/g and b/g are both integers. The GCD may be
computed using the Euclidean algorithm (aka Euclid’s algorithm): define r−1 = a and r0 = b < a, and
perform integer division of rk−2/rk−1 to determine the quotient and remainder {qk, rk} [i.e., find the largest
positive integer qk and associated positive integer rk that solve rk−2 = qk rk−1 + rk] for k = 1, 2, . . . until some
k = n for which rn = 0; then, rn−1 = g. Graphical interpretation is given in Figure A.2. Note also the following:

Fact A.1 (Bézout’s identity) If g = gcd(a, b), then g = a x0 + b y0 for two integers {x0, y0}.

Proof : The extended Euclidean algorithm determines {x, y} in Bézout’s identity (thus providing a construc-
tive proof of its validity) by running through the quotients qk computed in Euclid’s algorithm in reverse order:
defining zn+1 = 0, zn = 1 and computing zk = zk+2− qk zk+1 for k = n−1, n−2, . . . , 1, it follows that x0 = z2
and y0 = z1. This fact may be verified by writing out the Euclidean algorithm with g = rn−1:

a = q1 b+ r1, b = q2 r1 + r2, r1 = q3 r2 + r3 → rn−4 = qn−2 rn−3 + rn−2, rn−3 = qn−1 rn−2 + g,

(note that rn−2 = qn g+0), then working backwards through this algorithm, solving each step for its last term:

g = rn−3 − qn−1 rn−2, rn−2 = rn−4 − qn−2 rn−3 → r3 = r1 − q3 r2, r2 = b− q2 r1, r1 = a− q1 b.

Starting with the first expression above, substituting in the second to eliminate rn−2, substituting in the next
to eliminate rn−3, etc., ultimately leads to g = x0 a + y0 b, where x0 = z2 and y0 = z1 are linear combinations
(as formulated previously) of the integers qi appearing in Euclid’s algorithm. □

19The OOP paradigm also has certain weaknesses for which it is sometimes criticized. Principal among these criticisms is the
substantial code overhead associated with its implementation, which tends to prevent self-optimizing compilers from generating
maximally fast executable code for narrowly targeted applications, like cryptography and high-performance computing.

20Note that gcd(a, b, c) = gcd(a, gcd(b, c)) = gcd(b, gcd(c, a)) = gcd(c, gcd(a, b)).
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The above two algorithms extend easily,

• from integer rings, endowed with Euclidean division giving an integer quotient and remainder,
• to polynomial rings, endowed with Euclidean division giving an polynomial quotient and remainder.

The code RR_gcd.m implements Euclid’s algorithm, working over integer or polynomial objects using the same
object-oriented code, to find the GCD g of {a, b} [this code also returns the qi and n generated in the process].
Using these results, the code RR_bezout.m then implements the extended Euclidean algorithm [again, working
over integer or polynomial objects] to find an {x0, y0} pair solving Bézout’s identity g = a x0 + b y0.

The general solution of the Diophantine equation [again, working over integer or polynomial objects],

f = a x+ b y, (A.1a)

as implemented in RR_diophantine.m, is then given, assuming f is evenly divisible by g, as follows:

Define: c = f/g, r = b/g, t = a/g. Then: x = c x0 + k r and y = c y0 − k t for any k. (A.1b)

Note that the solution {x, y} for k = 0 above is just the scaling (by c) of {x0, y0} in Bézout’s identity in Fact A.1,
as determined by the extended Euclidean algorithm derived above. Taking k ̸= 0 in the solution for {x, y} both
adds and subtracts the term k a b/g to the RHS of (A.1a). The “best” solution with the smallest y (that is, with
the smallest integer y, or the polynomial y of smallest degree if applying this entire algorithm to polynomials)
is then given by taking k = c y0/t, which effectively makes y as small as possible in (A.1b).

A.7.2 Operator overloading for easy manipulation of transfer functions
The definition of basic arithmetic operations (+, −, ×, ÷, . . . ) for objects that are not simple integer, real, or
complex numbers (e.g., row vectors representing the coefficients of polynomials, as implemented in RR_poly.m) is
referred to as operator overloading. Leveraging classes that define various basic operations on such objects,
writing bug-free code for higher-level problems becomes significantly easier.

The definition of the transfer function class in RR_tf.m, formed as a rational function of numerator and
denominator polynomial objects from the polynomial class RR_poly.m, allows one to perform basic arithmetic
operations on objects in this class on the computer. Thus, defining a CT plant G(s) and controller D(s) (see
§8.2.3 and §8.3.3), important equations like

G(s) =
b(s)

a(s)
, D(s) =

y(s)

x(s)
, T (s) =

G(s)D(s)

1 +G(s)D(s)
=

b(s) y(s)

a(s)x(s) + b(s) y(s)
=
g(s)

f(s)
. (A.2)

can be computed quite simply in code. For example, takingG(s) = 1/(s+1) andD(s) = (s+z)/(s+p)where
z and p are not yet specified, we can simply write
>> syms z p , G=RR_tf ( 1 , [ 1 1 ] ) , D=RR_tf ( [ 1 z ] , [ 1 p ] ) , T=G∗D/ ( 1 +G∗D)

rather than writing out several complicated function calls or computing by hand, reducing the chance of error.
Further, given some plantG(s) and some desired target f(s) specifying the poles of the closed-loop transfer

function T (s) in (A.2), the derivation in §A.7.1 gives the denominator x(s) and numerator y(s) of the controller
D(s) such that, when used in closed loop, we achieve this desired target, which is accomplished simply by
solving the polynomial Diophantine equation a(s)x(s)+b(s) y(s) = f(s) for the unknowns x(s) and y(s), and
selecting from all possible solutions of this problem that solution with the lowest order y(s).

Becoming skilled at implementing and extending such class definitions yourself, rather than relying on
existing implementations, allows you to include features you deem important. For example, the implementation
of the polynomial and transfer function classes given in RR_poly.m and RR_tf.m facilitate the use of symbolics in
the definition of polynomials and transfer functions, which as illustrated in the example above is convenient;
this valuable feature is currently lacking in Matlab’s built-in tf class.
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Appendix B

Assorted mathematical foundations

B.1 Complex arithmetic

Complex arithmetic is based on the mathematical construct1 i ≜
√
−1. A complex number2 z = a + b i

is a number with both a real part, a = ℜ(z), and an imaginary part, b = ℑ(z). If b = 0, z is said to
be real; if a = 0, z is said to be imaginary (aka pure imaginary). Complex numbers may also be written
in polar form z = Reiθ, where R = |z| =

√
a2 + b2 ≥ 0 is referred to as the magnitude or modulus

of z and3 θ = ∡z = atan2(b, a) ∈ (−π, π] is referred to as the phase of z. Note that, for any integer k,
eiθ = ei(θ+2πk) = cos θ + i sin θ (Euler’s formula); thus, eiπ + 1 = 0 (Euler’s identity). Complex numbers
near the origin are best understood in the complex plane, as illustrated in Figure B.1a. Note that complex
numbers are added, subtracted, multiplied, and divided as if i were a normal algebraic variable, then simplified
by leveraging the fact that i2 = −1. For example, (a+ b i)(c+ d i) = (ac− bd) + (ad+ bc)i.

The n’th roots of a complex number z (written as z = Reiθ for real R and θ) are given analytically by:

λn = z ⇒ λj = R1/nei(θ+2πj)/n for j ∈ [0, . . . , n− 1].

This formula is illustrated graphically by example in Figure B.1b. The principal n’th root of a real number z,
denoted n

√
z, is defined here as the (positive) real root with j = 0 in the above formula if z > 0, and as the

(negative) real root with j = n−1
2

in the above formula if both z < 0 and n is odd.

Note that, if zk+1 = σzk, then zk = σkz0 and thus |z| −−−→
k→∞

∞ if |σ| > 1, whereas z −−−→
k→∞

0 if |σ| < 1.

If dz(t)/dt = λz(t), then z(t) = eλtz(0) and thus |z| −−−→
t→∞

∞ if ℜ(λ) > 0, whereas z −−−→
t→∞

0 if ℜ(λ) < 0.

1Half of the scientific literature refers to this construct as i, the other half calls it j. We call it i.
2Complex numbers are generalized by quaternions, which are discussed in detail in §6.3.2.2.
3Noting that atanx ∈ [0, π/2) if x ≥ 0, the following definition is useful to remove ambiguity (see Figure B.1a):

atan2(b, a) ≜





atan |b/a| · sgn b if b ̸= 0, a > 0,

π/2 · sgn b if b ̸= 0, a = 0,

(π − atan |b/a|) · sgn b if b ̸= 0, a < 0,

0 if b = 0, a ≥ 0,

π if b = 0, a < 0,

where sgn b =





−1 if b < 0,

0 if b = 0,

1 if b > 0;

(B.1)

note that atan2(b, a) ∈ (−π, π].
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Figure B.1: (a) The relationship between the real part a and imaginary part b of the complex number z = a+ b i
and its polar componentsR and θ in the complex plane. (b) The fifth roots of z = −32: λ0 = 2eiπ/5, λ1 = 2ei3π/5,
λ2 = 2eiπ = −2, λ3 = 2ei7π/5, λ4 = 2ei9π/5; λ2 ≜ 5

√
−32 is referred to as the principal root.
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ζ plane ξ = 1/ζ ξ plane Riemann sphere in x− y − z coordinates

Figure B.2: (left) Two related complex planes which together introduce the concept of the extended complex
plane (that is, the complex plane ζ together with a point at infinity, which maps to the origin in the ξ plane).
(right) The Riemann sphere obtained by mapping the complex plane ζ (illustrated by a “web” in the plane
z = −1) onto the unit sphere; note that, with the origin of the ζ plane mapping to the south pole, the point
at infinity maps to the north pole, and the “web” maps to corresponding longitude and latitude lines on the
sphere. Alternatively, the Riemann sphere may be constructed by mapping from the complex plane ξ, with the
origin of the ξ plane mapping to the north pole and its “point at infinity” mapping to the south pole.

The relationship between complex numbers far from the origin in the complex plane ζ = ζr + i ζi = Reiθ is
best understood by considering a related complex plane ξ = ξr + i ξi = reiϕ, where all points except the origin
in the two planes are related by the transition map ζ = 1/ξ, and thus r = 1/R and ϕ = −θ. Taking R→∞
for any θ in the ζ plane is equivalent to taking r → 0 for ϕ = −θ in the ξ plane. This introduces the notion of
the extended complex plane: that is, the complex plane ζ together with the point at infinity (referred to in
the singular), identified as the origin in the ξ plane, to which ζ maps as R → ∞ for any θ (a point which one
might humorously identify as the location of the restaurant at the end of the universe).

A geometric interpretation of the entire extended complex plane (Figure B.2) is given by mapping the ζ and
ξ planes to and from the Riemann sphere, with x2 + y2 + z2 = 1, via the stereographic projections4

ζ = (x+ iy)/(1− z) ⇔ z = (|ζ|2 − 1)/(|ζ|2 + 1), with x = ζr(1− z) and y = ζi(1− z), (B.2a)

ξ = (x− iy)/(1 + z) ⇔ z = (1− |ξ|2)/(1 + |ξ|2), with x = ξr(1 + z) and y = −ξi(1 + z). (B.2b)

Approaching the origin in the ζ plane (that is, approaching the south pole of the Riemann sphere by taking
x→ 0, y → 0, and z → −1) corresponds to moving toward infinity in the ξ plane, whereas
approaching the origin in the ξ plane (that is, approaching the north pole of the Riemann sphere by taking
x→ 0, y → 0, and z → 1) corresponds to moving toward infinity in the ζ plane.

4From the formulas at left, together with x2 + y2 + z2 = 1, it may be shown that |ζ|2 = ζ2r + ζ2i = (1 + z)/(1 − z), and that
|ξ|2 = ξ2r + ξ2i = (1− z)/(1 + z), from which the formulas at the right follow easily.
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Points with |ζ|2 < 1 and thus |ξ|2 > 1 correspond to the southern hemisphere of the Riemann sphere, whereas
points with |ζ|2 > 1 and thus |ξ|2 < 1 correspond to the northern hemisphere of the Riemann sphere.
The injective forward and inverse mappings in (B.2a), relating any finite complex ζ to a distinct {x, y, z} on
the unit sphere excluding the north pole (z = 1), reveal that this stereographic projection is bijective, with
a one-to-one correspondence between the complex plane ζ and the unit sphere excluding the north pole.
The injective forward and inverse mappings in (B.2b), relating any finite complex ξ to a distinct {x, y, z} on
the unit sphere excluding the south pole (z = −1), reveal that this stereographic projection is also bijective, with
a one-to-one correspondence between the complex plane ξ and the unit sphere excluding the south pole.

Example B.1 To infinity, and beyond. Consider a curve (actually, a line segment) s in the complex plane ζ ,
starting from ζ = −1 and proceeding to the right along the negative real axis, through the origin, and further
along the positive real axis, ending at the point ζ = 1.

Now define t = 1/s. The corresponding curve t proceeds from ζ = −1, along the negative real axis to the
left, all the way out to “ζ = −∞”, then suddenly jumps all the way over to “ζ = +∞”, and continues to proceed
along the positive real axis, to the left, finally ending at the point ζ = 1.

Without the helpful interpretations, above, of the transition map ζ = 1/ξ and the stereographic projection
ζ = (x + iy)/(1 − z), the above-described behavior of what should be (?) the simple curve t might, at first,
seem somewhat bizarre. With these helpful interpretations, however, this behavior is much easier to visualize
and explain. In the complex plane ξ, the curve t proceeds from ξ = −1 to the right, through the origin, ending
at ξ = 1 [identical to the behavior of the curve s in the complex plane ζ].

Even more revealing, on the Riemann sphere, the curve s proceeds:
• from a starting point on the 0◦ latitude line (aka the equator) and the 180◦ longitude line,
• down the 180◦ longitude line and through the −90◦ latitude point (aka the south pole), and finally
• back up the 0◦ longitude line (aka the prime meridian) to a terminal point on the equator.
Analogously, the curve t proceeds:
• from the same starting point on the equator and the 180◦ longitude line,
• up the 180◦ longitude line and through the +90◦ latitude point (aka the north pole), and finally
• back down the prime meridian to the same terminal point on the equator.
The symmetry of this interpretation is self evident. In the setting of the Riemann sphere, it is seen that the
point at the north pole is “just another point” representing a complex number; on the Riemann sphere, a curve
passes through the north pole just as smoothly as a curve passes through the south pole, or any other point. The
interpretation that there is really just only one “point at infinity” (that is, the point corresponding to the north
pole on the Riemann sphere) is thus entirely reasonable, and reconciling of your intuition about the behavior of
(what should be) simple curves as they move far from the origin in the complex plane. △

Further interpretation of the behavior of complex numbers far from the origin given in the discussion of
zeros at the infinity point in root locus plots (see §11).

B.1.1 Counting zeros minus poles inside a contour: Cauchy’s argument principle
Another result relating to complex arithmetic that we use in this book is Cauchy’s argument principle, which
is now stated and proved.
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Figure B.3: Cauchy’s argument principle (Fact B.1). Each point F on the contour ΓF in the F -plane is found by
applying the transform F (s) to the corresponding point s on the contour Γs in the s-plane.

Fact B.1 (Cauchy’s argument principle) If a clockwise, closed contour Γs in the s-plane encircles Z zeros and
P poles of a rational function F (s), then the corresponding contour ΓF in the F -plane [related to the s-plane by the
mapping F (s)] makes N = Z − P clockwise encirclements of the origin. Defining L = F − 1, the corresponding
contour ΓL in the L-plane makes N = Z − P clockwise encirclements of the point L = −1.

Proof : Consider first the change in the phase of F (s) as s traverses the contour Γs (in the s-plane) one full
circuit in the clockwise direction. Writing F (s) [a conformal mapping from the s-plane to the F -plane] as

F (s) = K
(s− z1)(s− z2) · · · (s− zm)
(s− p1)(s− p2) · · · (s− pn)

,

the phase of F (s) at any given point s on the contour Γs is given by the sum of the phases of the vectors5 from
them zeros to the point s minus the sum of the phases from the n poles to the point s:

∠F (s) = [∠(s− z1) + ∠(s− z2) + . . .+ ∠(s− zm)]− [∠(s− p1) + ∠(s− p2) + . . .+ ∠(s− pn)].

As s traverses the contour Γs one full circuit in the clockwise direction, the contribution to ∠F (s) from each
zero and pole which are outside the closed contour Γs returns to its original value (before the circuit was begun).
However, as s traverses the contour Γs one full circuit in the clockwise direction, the contribution to∠F (s) from
each of the Z zeroes inside the closed contour Γs decreases by 360◦, whereas the contribution to ∠F (s) from
each of the P poles inside the closed contour Γs increases by 360◦. Thus, ∠F (s) after the circuit is (P −Z) ·360◦
larger than ∠F (s) before the circuit.

Now consider the change in the phase of F = F (s) as F traverses the contour ΓF (in the F -plane) one full
circuit as s traverses Γs one full circuit in the clockwise direction. The phase of the point F (in the F -plane) is
measured simply by the angle of the vector from the origin of the F -plane to the point F . This angle decreases
[resp., increases] by 360◦ for every clockwise [resp., counterclockwise] encirclement of the origin executed by
the contour ΓF . Thus, ∠F after the circuit is −N · 360◦ larger than ∠F before the circuit, where N is the
number of clockwise encirclements of the origin executed by the contour ΓF .

Thus, for the phase of F (s) as s traverses the clockwise, closed contour Γs in the s-plane to change by
the same amount as does the phase of F as F traverses the closed contour ΓF in the F -plane, it follows that
the contour ΓF makes N = Z − P clockwise encirclements of the origin in the F -plane, which corresponds
immediately to N = Z − P clockwise encirclements of the point L(s) = −1 in the plane L(s) = F (s)− 1. □

5The phase of each vector is measured counterclockwise from horizontal, and is assumed to vary smoothly as the contour is
traversed (that is, no mod 360◦ command is used to keep the angles in a prespecified range).
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B.2 Polynomials and their roots

B.2.1 Roots of a quadratic polynomial
Complex arithmetic facilitates the determination of the roots of a quadratic polynomial analytically. That is,

λ2 +Qλ+R = 0 ⇒ λ± =
−Q±

√
−D

2
where D = 4R−Q2,

as may be verified by substitution. The quantity D, referred to as the discriminant, characterizes the nature
of the solution. For real Q and R: if D > 0, there are two complex-conjugate roots, if D = 0, there are two
identical, real roots, and if D < 0, there are two distinct, real roots.

B.2.2 Roots of a cubic polynomial
Similarly, we may also determine the roots of a cubic polynomial analytically. Starting with the normal form

λ3 + Pλ2 +Qλ+R = 0,

we first define λ = x− P/3 and substitute, giving

x3 + qx+ r = 0,

where q = Q − P 2/3 and r = R + 2P 3/27 − PQ/3. This reduced form is solved first for its roots xj for
j ∈ [1, 2, 3], after which the roots λj = xj − P/3 solving the corresponding equation in normal form may be
determined immediately. The discriminant in this case, d = r2/4 + q3/27, again characterizes the nature of
the solution. For real q and r,
• if d > 0, there is one real and two complex-conjugate roots,
• if d = 0, there are three real roots, at least two of which are identical, and
• if d < 0, there are three distinct, real roots.

As may be verified by substitution, in the first two of these cases (with d ≥ 0), the roots are given byCardano’s
formula (note that the imaginary part of the complex roots goes to zero as d→ 0)

x1 = u+ + u−, x2,3 = −
u+ + u−

2
± i
√
3 · u+ − u−

2
where u± =

3

√
−r/2±

√
d.

In the third case (with d < 0), the so-called casus irreducibilis, the three distinct, real roots are given by

xj = v cos(θ/3 + 2πj/3) where v = 2
√
−q/3, θ = acos

( −r/2√
−q3/27

)
.

B.2.3 Roots of higher-order polynomials
A closed-form solution of the roots of a quartic polynomial, due originally to Ferrari, also exists, though it is
complicated. Unfortunately, a general closed-form solution for quintic and higher-order polynomials does not
exist, and must instead be found iteratively [for example, by finding the eigenvalues of a corresponding matrix
in companion form, as discussed in §4.4 of NR.] In fact, the lack of a closed-form expression for solving the roots
of the characteristic polynomial of a matrix (for n ≥ 5) is the reason that the matrix eigenvalue problem must,
in general, be solved iteratively.
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B.2.4 Factoring polynomials: the fundamental theorem of algebra
Proofs of the fundamental theorem of algebra have a long and rich history. The first complete proof is often
attributed to Gauss, though this is a matter of some debate (for a historical summary, see Fine & Rosenberger
1997). The proof provided below, summarized in Santos (2007), is particularly elementary.

Fact B.2 (The fundamental theorem of algebra) Any n’th-order monic polynomial p(s) with complex coeffi-
cients ck has exactly n complex roots (including multiplicities), and thus may be written

p(s) = sn + cn−1s
n−1 + . . .+ c1s+ c0 = (s− p1)(s− p2) · · · (s− pn−1)(s− pn).

Proof : LetPm(s) = sm+am,m−1sm−1+. . .+am,1s+am,0, wherem ≥ 2, be anm’th-ordermonic polynomial with
m complex coefficients am,k for k = 0, . . . ,m−1. We first prove that Pm(s) has at least one root, which we call
pm, and thusmay bewrittenPm(s) = (s−pm)(sm−1+am−1,m−1sm−2+. . .+am−1,1s+am−1,0) = (s−sm)Pm−1(s).
Starting with the n’th-order monic polynomial Pn(s) = sn+an,n−1sn−1+. . .+an,1s+an,0, repeated application
of this fact n− 1 times, on the successively lower-order monic polynomials Pn−1(s), Pn−2(s), etc., thus proves
Fact B.2.

To prove that Pm(s) = sm + am,m−1sm−1 + . . . + am,1s + am,0 has a root pm, we simply assume that it
doesn’t (that is, that Pm(s) ̸= 0 for all s ∈ C) and show that this assumption leads to a contradiction, thereby
establishing that Pm(s) in fact has at least one complex root pm. To accomplish this, for real r and ϕ, define

fm(r, ϕ) =
1

Pm(s)

∣∣∣
s=reiϕ

=
1

rmeimϕ + am,m−1rm−1ei(m−1)ϕ + . . .+ am,1reiϕ + am,0
. (B.3)

Note that the denominator is continuously differentiable in both r and ϕ, and by assumption is never zero.
Thus, fm(r, ϕ) is also continuously differentiable in r and ϕ. Now define

Fm(r) =

∫ 2π

0

fm(r, ϕ) dϕ. (B.4)

By Leibniz’s integration rule6, Fm(r) is continuously differentiable in r, and

dFm(r)

dr
=

∫ 2π

0

∂fm(r, ϕ)

∂r
dϕ.

Noting that

∂fm(r, ϕ)

∂r
= −mr

m−1eimϕ + (m− 1)am,m−1rm−2ei(m−1)ϕ + . . .+ am,1e
iϕ

(rmeimϕ + am,m−1rm−1ei(m−1)ϕ + . . .+ am,1reiϕ + am,0)2
,

∂fm(r, ϕ)

∂ϕ
= − imrmeimϕ + i(m− 1)am,m−1rm−1ei(m−1)ϕ + . . .+ iam,1reiϕ

(rmeimϕ + am,m−1rm−1ei(m−1)ϕ + . . .+ am,1reiϕ + am,0)2
= ir∂fm(r, ϕ)

∂r
,

it follows that

dFm(r)

dr
=

1

ir

∫ 2π

0

∂fm(r, ϕ)

∂ϕ
dϕ =

1

irfm(r, ϕ)
∣∣∣
ϕ=2π

ϕ=0
=

1

ir

[ 1

Pm(rei2π)
− 1

Pm(rei0)

]
= 0.

Thus, Fm(r) is constant, and thus Fm(r) = Fm(0) =
∫ 2π

0
f(0, ϕ) dϕ = 2π/Pm(0); that is, Fm(r) is a nonzero

constant. However, (B.3)-(B.4) imply that Fm(r)→ 0 as r →∞. This is a contradiction, which means that the
assumption that Pm(s) does not have a root pm is false. □

6Leibniz’s integration rule states simply that, if f(r, s) and ∂f(r, s)/∂r are continuous, then F (r) =
∫ b

a
f(r, s) ds is differ-

entiable with respect to r, with dF (r)/dr =
∫ b

a
∂f(r,s)

∂r ds; that is, that the derivative with respect to r may be pulled outside the
integral.
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B.2.5 Continuity of a polynomial’s roots as a function of its coefficients
Fact B.2 established that any polynomial can be factored via its roots. We now establish that these roots vary
continuously as the coefficients of the polynomial are varied. We begin with a significant preliminary result.

Fact B.3 (Rouchés theorem) Let p(s) and d(s) be complex polynomial functions7 on the simply-connected do-
main Ω in the complex plane s. Let Γ be a Jordan curve (that is, a closed curve that has only a single multiple
point where it closes upon itself) within Ω. Define P as the number of zeros of p(s) on the interior of Γ, and Z as
the number of zeros of z(s) = p(s) + d(s) on the interior of Γ. If |d(s)| < |p(s)| for all s on Γ, then P = Z .

Proof : Define F (s) = z(s)/p(s), and note that |F (s) − 1| = |d(s)/p(s)| < 1, and thus the real part of F (s)
is positive, for all s on Γ. By the same logic as in the proof of Cauchy’s argument principle (Fact B.1), ∠F (s)
after a circuit over Γ is (P − Z) · 360◦ larger than ∠F (s) before the circuit. As the real part of F (s) is positive
everywhere on Γ, ∠F (s) does not change by more that 180◦ as s traverses Γ; thus, P − Z = 0. □

Fact B.4 (Continuity of polynomial roots) Let p(s) be an n’th-order polynomial which may be factored (Fact
B.2) such that

p(s) = sn + an−1s
n−1 + . . .+ a0 = (s− p1)q1(s− p2)q2 · · · (s− pP )qP . (B.5a)

Let ρ = min
i ̸=j
|pi − pj|. For any ϵ with 0 < ϵ < ρ/2, there exists a δ > 0 such that any n’th-order polynomial

z(s) = sn + bn−1s
n−1 + . . .+ b0 = (s− z1)r1(s− z2)r2 · · · (s− zZ)rZ (B.5b)

with |bj − aj| < δ for j = 0, 1, . . . , n − 1 has exactly qi zeros in each disk |s − pi| < ϵ for i = 1, 2, . . . , P .
That is, each individual root moves in the complex plane s an amount less than ϵ, for any sufficiently small ϵ, if the
coefficients of the polynomial ai each changes by an amount less than a correspondingly small δ.

Proof (Henrici 1974): Note first that qi is the multiplicity of the i’th root, pi, of the polynomial p(s), that ri is
the multiplicity of the i’th root, zi, of the polynomial z(s), and that

∑P
i=1 qi =

∑Z
i=1 ri = n. Note also that

both p(s) and z(s) are taken above to be monic polynomials without loss of generality. Consider the contour
Γi given by the circle in the s plane, around the root pi, satisfying |s− pi| = ϵ. Defining d(s) = p(s)− z(s) and
cj = aj − bj , noting the assumption that |cj| = |aj − bj| < δ for all j, we may write

d(s) = cn−1s
n−1 + cn−2s

n−2 + . . .+ c0 ⇒ |d(s)| ≤ δ|s|n−1 + δ|s|n−2 + . . .+ δ;

it thus follows for all s on Γi that

|d(s)| ≤ δ µi(ϵ) where µi(ϵ) ≜
n−1∑

j=0

(|pi|+ ϵ)j.

Further, for all s on Γi, it follows directly from the factored form of (B.5a) that

|p(s)| ≥ ϵqi(ρ− ϵ)n−qi for i = 1, . . . , P .

Thus, taking δ < ϵqi(ρ − ϵ)n−qi/µi(ϵ) for each i = 1, . . . , P , it follows that |d(s)| < |p(s)| for all s on each
Γi, and thus Fact B.3 applies. That is, both p(s) and z(s) have exactly qi roots inside the disk centered at pi of
radius ϵ, for each i = 1, . . . , P , for any sufficiently small ϵ so long as δ is also made sufficiently small. □

7An analytic function is a function that is equal to its own Taylor series in some neighborhood of every point, as discussed
further in §B of NR. We mention analytic functions here only because Rouchés theorem (Fact B.3) may easily be extended from
complex polynomial functions to complex analytic functions, though this extension is beyond the scope of the present discussion.
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B.2.6 Location of a polynomial’s roots with respect to the imaginary axis
Assume f(s) = fns

n+fn−1sn−1+ . . .+f1s+f0 is a real polynomial (that is, a polynomial with real coefficients)
of degree n (that is, fn ̸= 0); f(s) is said to be singular if fn−1 = 0 and nonsingular otherwise. We will
sometimes write f(s) = [f(s)]even + [f(s)]odd where [f(s)]even and [f(s)]odd contain the terms of f(s) with
even and odd powers of s, respectively.

The Routh test, implemented as the routh function in RR_poly, counts howmany roots of f(s) are in the LHP,
on the imaginary axis, and in the RHP [denoted {N−(f), N0(f), N+(f)}, respectively, and often referred to
as the inertia of f(s)], without requiring the computation of the roots themselves, which is computationally
expensive for large n. FollowingMeinsma (1995), we derive this test by first proving three preliminary lemmata.

Fact B.5 Consider an n’th-degree, nonsingular, real polynomial f(s) = fn s
n + fn−1 sn−1 + . . . + f1 s + f0.

Defining η∗ = fn/fn−1, f(s) has the same imaginary roots as the (n− 1)’th-degree polynomial

q(s) = fn−1 s
n−1 + (fn−2 − η∗fn−3) sn−2 + fn−3 s

n−3 + (fn−4 − η∗fn−5) sn−4 + fn−5 s
n−5 + . . . (B.6)

Further, f(s) has the same inertia as q(s), plus one additional root in the LHP if fn/fn−1 > 0, and in the RHP if
fn/fn−1 < 0.

Proof : Note that fn−1 ̸= 0 because f(s) is nonsingular. Define

qη(s) = f(s)− η s (fn−1 sn−1 + fn−3 s
n−3 + . . .) =

{
([f(s)]even − η s [f(s)]odd) + [f(s)]odd even n,

([f(s)]odd − η s [f(s)]even) + [f(s)]even odd n.
(B.7)

Then qη(iω) = [qη(iω)]even + [qη(iω)]odd = 0 iff [qη(iω)]even = 0 and [qη(iω)]odd = 0, as [qη(iω)]even is real,
and [qη(iω)]odd is imaginary. It follows from the expressions for both even and odd n at right in (B.7) that,
for all η, qη(iω) = 0 iff both feven(iω) = 0 and fodd(iω) = 0; thus, q(iω) = qη∗(iω) = 0 iff f(iω) = 0.

Thus, f(s) = q0(s) and q(s) = qη∗(s) have the same imaginary roots. Further, by Fact B.4, the roots of qη(s)
vary smoothly as η is varied from 0 up to (or, down to) η∗; that is, roots do not “jump” between the LHP and
the RHP as η is varied over this range. As η → η∗, qη(s) in (B.7) approaches the (n− 1)’th-degree polynomial
q(s) in (B.6); to see what happens in this limit, we may write

qη(s) = (fn − η fn−1) sn + fn−1 s
n−1 + (fn−2 − η fn−3) sn−2 + fn−3 s

n−3 + (fn−4 − η fn−5) sn−4 + . . .

=
(fn − η fn−1

fn−1
s+ 1

)
rη(s) (B.8)

where rη(s) → q(s) [see (B.6)] as η → η∗. It is seen in (B.8) that exactly one root of qη(s) approaches infinity
as η → η∗; this root “starts out” [for η = 0, that is, for q0(s) = f(s)] in the LHP if fn/fn−1 > 0, and in the
RHP if fn/fn−1 < 0. Of the remaining roots of the n’th-degree polynomial f(s), the number in the LHS, on the
imaginary axis, and in the RHS are precisely the same as for the (n− 1)’th-degree polynomial q(s). □

Fact B.6 Let f(s) be an n’th-degree, singular, real polynomial that is neither odd nor even, and let a(s) be a real
even polynomial with a(iω) > 0. Define fa(s) and fb(s) such that

f(s) = fa(s) + fb(s) where

{
fa(s) = [f(s)]even, fb(s) = [f(s)]odd even n,

fa(s) = [f(s)]odd, fb(s) = [f(s)]even odd n.
(B.9)

If a(s) is chosen such that the degree of {a(s) fb(s)} is n − 1, then the n’th-degree polynomials f(s) and
q(s) = fa(s) + a(s) fb(s) have the same inertia, and q(s) is nonsingular (i.e., qn−1 ̸= 0).
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Proof : If fa(s) is even (resp., odd), then {(1− λ) + λ a(s)} fb(s) is odd (resp., even). For 0 ≤ λ ≤ 1, define the
n’th-degree polynomial

qλ(s) = fa(s) + {(1− λ) + λ a(s)} fb(s).
Noting that a(iω) > 0, it follows as in the proof of Fact B.5 that qλ(iω) = 0 iff fa(iω) = 0 and fb(iω) = 0
[that is, iff f(iω) = 0], independent of λ. Thus, f(s) and qλ(s) have the same imaginary roots, independent of
λ. Further, by Fact B.4, the n roots of qλ(s) vary smoothly as λ is varied; i.e., roots do not “jump” between the
LHP and the RHP as λ is varied. Thus, f(s) = q0(s) and q(s) = q1(s) have the same inertia. □
Fact B.7 Let f(s) be a real n’th-degree odd or even polynomial. Defining r(s) = f(s) + f ′(s), it follows that
N+(f) = N−(f) = N+(r), and r(s) is nonsingular (i.e., rn−1 ̸= 0).

Proof : It follows from the fact that f(s) is either odd or even that rn−1 ̸= 0, and that f(s) has the same number
of RHP roots as LHP roots [that is, N+(f) = N−(f)]. Define qϵ(s) = f(s) + ϵf ′(s); it follows from Fact B.6
[with a(s) = ϵ] that, for any ϵ > 0, r(s) and qϵ(s) have the same inertia. We thus focus on qϵ(s) in the limit that
ϵ→ 0. If s = iω is a root of multiplicity k of the polynomial f(s) = q0(s), then s = iω is a root of multiplicity
k − 1 of the polynomial qϵ(s) for ϵ > 0, and exactly one root of qϵ(s) moves, continuously, away from s = iω
as ϵ is increased from zero. To quantify what direction this root moves as ϵ is increased from zero, denoting
f (k) = dkf(s)/dsk and s = iω+δ as the modified root, write the Taylor series expansion of qϵ(s) about s = iω:

qϵ(iω + δ) =
δk−1

(k − 1)!

[
q(k−1)ϵ (s)

]
s=iω

+
δk

k!

[
q(k)ϵ (s)

]
s=iω

+ . . .

=
δk−1

(k − 1)!

[
������:0
f (k−1)(iω) + ϵf (k)(iω)

]
+
δk

k!

[
f (k)(iω) + ϵf (k+1)(iω)

]
+ . . .

=
δk−1

k!
f (k)(iω)

[
ϵ k + δ + ϵ δ

f (k+1)(iω)
f (k)(iω) + . . .

]
(B.10)

where the “. . .” terms are higher order in ϵ, and thus negligible for small ϵ. By Fact B.4, δ is proportional to ϵ
for small ϵ; the third term in brackets in (B.10) is thus also negligible compared to the first two terms. Solving
for qϵ(iω+ δ) = 0 thus shows that, in addition to the k− 1 roots fixed (with δ = 0), the remaining root is given
by s = iω + δ with δ ≈ −k ϵ < 0 for sufficiently small ϵ > 0 (that is, the remaining root moves into the LHP
as ϵ is increased from zero). Since f(s) = q0(s) and r(s) = q1(s), it follows that N+(f) = N+(r). □
Fact B.8 (The Routh Test) The inertia {N−(f), N0(f), N+(f)} of ann’th-degree polynomial f(s)may be found
via application of the following three cases to polynomials successively smaller and smaller degree:

Case 1: If f(s) is nonsingular (that is, if fn−1 ̸= 0), then define q(s) as in (B.6). It follows that

{N−(f), N0(f), N+(f)} =
{
{N−(q) + 1, N0(q), N+(q)} if fn/fn−1 > 0,

{N−(q), N0(q), N+(q) + 1} if fn/fn−1 < 0;

{N−(q), N0(q), N+(q)} may then be found by applying Fact B.8 to the (n− 1)’th-degree polynomial q(s).

Case 2: If f(s) is singular (that is, if fn−1 = 0) but neither even nor odd, then define fa(s) and fb(s) as in (B.9). Since
fn−1 = 0, fb(s) has degree n−1−2k for some k > 0; define a(s) = 1+(−s2)k. Defining q(s) = fa(s)+a(s) fb(s),
it follows that {N−(f), N0(f), N+(f)} = {N−(q), N0(q), N+(q)}, which may be found by applying Case 1 of
Fact B.8 to the nonsingular n’th-degree polynomial q(s).

Case 3: If f(s) is either even or odd, then define r(s) = f(s) + f ′(s). It follows that N+(f) = N−(f) = N+(r),
where N+(r) may be found by applying Case 1 of Fact B.8 to the nonsingular n’th-degree polynomial r(s).

Proof : Case 1 follows immediately from Fact B.5. Case 2 follows from Fact B.6, noting that a(iω) > 0 for real
ω, and that the degree of {a(s) fb(s)} is n− 1. Case 3 follows immediately from Fact B.7. □
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B.2.7 Location of a polynomial’s roots with respect to the unit circle
Assume f(z) = fnz

n + fn−1zn−1 + . . . + f1z + f0 is a real polynomial of degree n; f(z) is said to be regular
if f0 ̸= 0 (and, thus, f(z) does not have any roots at the origin) and irregular otherwise. A polynomial f(z) is
said to be symmetric if fn−j = fj for j = 0, . . . , n, and antisymmetric if fn−j = −fj for j = 0, . . . , n.

The Bistritz test, implemented as the bistritz function in RR_poly, counts how many roots of f(z) are inside
the unit circle, on the unit circle, and outside the unit circle [denoted {Ni(f), Nu(f), No(f)}, respectively,
and which we will refer to as the stationarity of f(z)], without requiring the computation of the roots them-
selves. The Bistritz test is thus useful for determining the stability of discrete-time systems, much as the Routh
test (§B.2.6) is useful for determining the stability of continuous-time systems. Following loosely the related
derivation for the Routh test, we derive this test by first proving four preliminary lemmata.

Fact B.9 Consider an n’th-degree real polynomial f(z) = fn z
n + fn−1 zn−1 + . . . + f1 z + f0 with fn(1) ̸= 0.

Defining f r(z) ≜ zn fn(1/z) = f0 z
n + f1 z

n−1 + . . . + fn−1 z + fn, fn(z) and fn−1(z) have the same roots on
the unit circle as the symmetric n’th-degree and (n− 1)’th-degree polynomials

Tn(z) = fn(z) + f rn (z) and Tn−1(z) =
fn(z)− f rn (z)

z − 1
.

Proof : It follows immediately that Tn is symmetric; note also that fn ̸= 0 because fn(z) is of degree n, and that
fn(z) has no roots at z = 1, because fn(1) ̸= 0. Writing

fn(z)− f rn (z) = (fn − f0)zn + (fn−1 − f1)zn−1 + . . .+ (f1 − fn−1)z + (f0 − fn)
= (z − 1)

[
qn−1z

n−1 + . . .+ qn−2z
n−2 + . . .+ q1z + q0

]
,

it follows that the qi may be determined by solving



1
−1 1

. . . . . .
−1 1

−1







qn−1
qn−2
...
q1
q0




=




fn − f0
fn−1 − f1

...
f1 − fn−1
f0 − fn




By the first and last rows of this matrix equation, it follows that qn−1 = q0 = fn − f0; by the second and
next-to-last rows, it follows that qn−2 = q1, etc.; thus, Tn−1 is also symmetric.

Since f(z) is a real polynomial, z+ = eiϕ is a root [on the unit circle] of fn(z) iff e−iϕ = 1/z+ is also root of
fn(z), that is, iff z+ = eiϕ is a root of f rn (z) ≜ zn fn(1/z) = f0 z

n + f1 z
n−1 + . . . + fn−1 z + fn. Thus, fn(z)

and f rn (z), and thus also Tn(z) and Tn−1(z), have the same roots on the unit circle. □

Fact B.10 Consider an n’th-degree real polynomial f(z) = {(z−1)Tn−1(z)+Tn(z)}/2, with fn(1) ̸= 0 and either
Tn−1(z) ̸= 0 or Tn(0) = 0 (or both), such that Tn(z) and Tn−1(z) are symmetric, and fn(z), Tn(z), and Tn−1(z)
have the same roots on the unit circle. Denote Tn(z) = tn,nz

n+ . . .+ tn,0 and Tn−1(z) = tn−1,n−1zn+ . . .+ tn−1,0.
Define λ as the smallest non-negative integer such that tn−1,λ ̸= 0. Consider the (n − 2)’th-degree polynomial
Tn−2(z) defined such that

zTn−2(z) = δ(zλ+1 + z−λ)Tn−1(z)− Tn(z) where δ =

{
tn,0/tn−1,λ if Tn−1(z) ̸= 0,

0 if tn,0 = 0.

It follows that f(z) has the same stationarity as fn−1(z) ≜ {(z − 1)Tn−2 + Tn−1(z)}/2, plus one additional root
inside the unit circle if Tn(1)/Tn−1(1) > 0, and outside the unit circle if Tn(1)/Tn−1(1) < 0.
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Proof :
fn(z) = {−z Tn−2(z) + [z − 1 + δ(zλ+1 + z−λ)]Tn−1(z)}/2.

Now define

qη(z) = f(z)− η f r(z) = (fn − η f0) zn + (fn−1 − η f1) zn−1 + . . .+ (f1 − η fn−1) z + (f0 − η fn), (B.11)

q̂λ(z) = f r(z)− λ f(z) = (f0 − λ fn) zn + (f1 − λ fn−1) zn−1 + . . .+ (fn−1 − λ f1) z + (fn − λ f0). (B.12)

If |f0/fn| < 1 [and thus the leading coefficient of qη(z) is nonzero for η = 0 through η = η∗ = f0/fn],
then, by Fact B.4, the n roots of qη(z) vary smoothly as η is varied from 0 up to (or down to) η∗; that is,
roots do not “jump” between inside the unit circle and outside the unit circle as η is varied over this range.
Since qη∗(z) = z q(z), it is seen that exactly one root of qη(z) goes to zero as η → η∗. Of the remaining
roots of the n’th-degree polynomial f(z), the number inside the unit circle, on the unit circle, and outside the
unit circle are precisely the same as for the (n− 1)’th-degree polynomial q(z).

If |f0/fn| > 1 [and thus the leading coefficient of q̂λ(z) is nonzero for λ = 0 through λ = λ∗ = fn/f0],
then, by Fact B.4, the n roots of q̂λ(z) vary smoothly as λ is varied from 0 up to (or down to) λ∗; that is, roots
do not “jump” between inside the unit circle and outside the unit circle as λ is varied over this range. Since
q̂λ∗(z)/λ

∗ = qη∗(z) = z q(z), it is seen that exactly one root of q̂λ(z) goes to zero as λ→ λ∗. Of the remaining
roots of the n’th-degree polynomial f(z), the number inside the unit circle, on the unit circle, and outside the
unit circle are precisely the same as for the (n− 1)’th-degree polynomial q(z). □

Fact B.11 Let f(z) be an n’th-degree, irregular, real polynomial that is neither odd nor even, and let a(z) be a real
even polynomial with a(iω) > 0. Define fa(z) and fb(z) such that

f(z) = fa(z) + fb(z) where

{
fa(z) = [f(z)]even, fb(z) = [f(z)]odd even n,

fa(z) = [f(z)]odd, fb(z) = [f(z)]even odd n.
(B.13)

If a(z) is chosen such that the degree of {a(z) fb(z)} is n − 1, then the n’th-degree polynomials f(z) and
q(z) = fa(z) + a(z) fb(z) have the same stationarity, and q(z) is regular (i.e., qn−1 ̸= 0).

Proof : If fa(z) is even (resp., odd), {(1 − λ) + λ a(z)} fb(z) is odd (resp., even). For 0 ≤ λ ≤ 1, define the
n’th-degree polynomial

qλ(z) = fa(z) + {(1− λ) + λ a(z)} fb(z).
Noting that a(iω) > 0, it follows as in the proof of Fact B.9 that qλ(iω) = 0 iff fa(iω) = 0 and fb(iω) = 0
[that is, iff f(iω) = 0], independent of λ. Thus, f(z) and qλ(z) have the same imaginary roots, independent of
λ. Further, by Fact B.4, the n roots of qλ(z) vary smoothly as λ is varied; i.e., roots do not “jump” between the
LHP and the RHP as λ is varied. Thus, f(z) = q0(z) and q(z) = q1(z) have the same stationarity. □

Fact B.12 Let f(z) be a real n’th-degree odd or even polynomial. Defining r(z) = f(z) + f ′(z), it follows that
No(f) = Ni(f) = No(r), and r(z) is regular (i.e., rn−1 ̸= 0).

Proof : It follows from the fact that f(z) is either odd or even that rn−1 ̸= 0, and that f(z) has the same number
of RHP roots as LHP roots [that is, N+(f) = N−(f)]. Define qϵ(z) = f(z) + ϵf ′(z); it follows from Fact B.10
[with a(z) = ϵ] that, for any ϵ > 0, r(z) and qϵ(z) have the same stationarity. We thus focus on qϵ(z) in
the limit that ϵ → 0. If z = iω is a root of multiplicity k of the polynomial f(z) = q0(z), then z = iω is a
root of multiplicity k − 1 of the polynomial qϵ(z) for ϵ > 0, and exactly one root of qϵ(z) moves (by Fact B.4,
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continuously) away from z = iω as ϵ is increased from zero. To quantify what direction this root moves as ϵ is
increased from zero, denoting f (k) = dkf(z)/dzk, we write the Taylor series expansion of qϵ(z) around z = iω:

qϵ(iω + δ) =
δk−1

(k − 1)!

[
q(k−1)ϵ (z)

]
z=iω

+
δk

k!

[
q(k)ϵ (z)

]
z=iω

+ . . .

=
δk−1

(k − 1)!

[
������:0
f (k−1)(iω) + ϵf (k)(iω)

]
+
δk

k!

[
f (k)(iω) + ϵf (k+1)(iω)

]
+ . . .

=
δk−1

k!
f (k)(iω)

[
ϵ k + δ + ϵ δ

f (k+1)(iω)
f (k)(iω) + . . .

]
(B.14)

where the “. . .” terms are higher order in ϵ, and thus negligible for small ϵ. By Fact B.4, δ is nearly proportional
to ϵ for sufficiently small ϵ; the third term in brackets in (B.14) is thus also negligible compared to the first two
terms. Solving for qϵ(iω + δ) = 0 thus shows that, in addition to the k − 1 roots fixed at δ = 0, the remaining
root is given by δ ≈ −k ϵ < 0 for sufficiently small ϵ > 0 (that is, the remaining root moves into the LHP as ϵ
is increased from zero). Since f(z) = q0(z) and r(z) = q1(z), it follows that N+(f) = N+(r). □
Fact B.13 (The Bistritz Test) The stationarity {Ni(f), Nu(f), No(f)} of an n’th-degree polynomial f(z) may
be found via application of the following three cases to polynomials successively smaller and smaller degree:

Case 1: If f(z) is regular (that is, if f0 ̸= 0), then define q(z) as in (B.11). It follows that

{Ni(f), Nu(f), No(f)} =
{
{Ni(q) + 1, Nu(q), No(q)} if |f0/fn| > 1,

{Ni(q), Nu(q), No(q) + 1} if |f0/fn| < 1;

{Ni(q), Nu(q), No(q)} may then be found by applying Fact B.13 to the (n− 1)’th-degree polynomial q(z).

Case 2: If f(z) is irregular (that is, if fn−1 = 0) but neither even nor odd, then define fa(z) and fb(z) as in
(B.13). Since fn−1 = 0, fb(z) has degree n − 1 − 2k for some k > 0; define a(z) = 1 + (−z2)k. Defining
q(z) = fa(z)+a(z) fb(z), it follows that {Ni(f), Nu(f), No(f)} = {Ni(q), Nu(q), No(q)}, which may be found
by applying Fact B.13 to the regular n’th-degree polynomial q(z).

Case 3: If f(z) is either even or odd, then define r(z) = f(z) + f ′(z). It follows that Ni(f) = No(f) = No(r),
where No(r) may be found by applying Fact B.13 to the regular n’th-degree polynomial r(z).

Proof : Case 1 follows immediately from Fact B.9. Case 2 follows from Fact B.10, noting that a(iω) > 0 for real
ω, and that the degree of {a(z) fb(z)} is n− 1. Case 3 follows immediately from Fact B.11. □

B.2.8 The simplified Routh test
The Routh test (§B.2.6) counts how many roots of a polynomial f(s) are in the open LHP, on the imaginary
axis, and in the open RHP [referred to as the inertia of f(s)], without requiring the computation of the roots
themselves.

When analyzing a polynomial f(s) in the denominator of a CT transfer function T (s) = g(s)/f(s) simply
to determine whether or not all of the roots of f(s) are in the open LHP [and thus f(s) is a Hurwitz stable
polynomial, and T (s) is stable], the simplified Routh test, implemented as the routh_simplified function in
RR_poly, may be used instead, as defined by the following three-term recurrence:

un(s) = un,n s
n + un,n−2 s

n−2 + . . . = fn s
n + fn−2 s

n−2 + . . . , (B.15a)

un−1(s) = un−1,n−1 s
n−1 + un−1,n−3 s

n−3 + . . . = fn−1 s
n−1 + fn−3 s

n−3 + . . . , (B.15b)

ui(s) = ui+2(s)− αi s ui+1(s) where αi = ui+2,i+2/ui+1,i+1 for i = n− 2, n− 3, . . . , 0; (B.15c)

all of the roots of f(s) are in the open LHP iff {un,n, un−1,n−1, . . . , u1,1, u0,0} are all nonzero and the same sign.
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A useful feature of the simplified Routh test is that one can carry one or more variables in a control design
formulation, such as a controller gain K , all the way through the test, thereby determining necessary and
sufficient conditions on these variables for stability.

The simplified Routh test described above determines whether or not all of the poles of a transfer function
T (s) are in the open LHP, a condition sometimes referred to as absolute stability. A stricter condition that is
sometimes useful to determine is whether or not all of the poles of a transfer function T (s) have a real part to
the left of s = −σ for some σ > 0, a condition referred to as relative stability. This is easy to determine by
applying the simplified Routh test discussed above to the modified transfer function T (s+ σ).

B.2.9 The simplified Bistritz test
The Bistritz test8 (§B.2.7) counts how many roots of a polynomial f(z) are inside the unit circle, on the unit
circle, and outside the unit circle [referred to as the stationarity of f(z)], without requiring the computation
of the roots themselves.

When analyzing a polynomial f(z) in the denominator of a DT transfer function T (z) = g(z)/f(z) simply
to determine whether or not all of the roots of f(z) are inside the unit circle [and thus f(z) is a Schur stable
polynomial, and T (z) is stable], the simplified Bistritz test, implemented as the bistritz_simplified function
in RR_poly, may be used instead, as defined by the following three-term recurrence [cf. (B.15)]:

un(z) = f(z) + f r(z) where f r(z) = zn f(1/z) = f0 z
n + f1 z

n−1 + . . .+ fn, (B.16a)

un−1(z) = [f(z)− f r(z)]/(z − 1) polynomial division (note: can easily do by hand), (B.16b)

ui(z) = [αi (z + 1)ui+1(z)− ui+2(z)]/z where αi = ui+2(0)/ui+1(0) for i = n− 2, n− 3, . . . , 0; (B.16c)

all of the roots of f(z) are inside the unit circle iff {un(0), un−1(0), . . . , u1(0), u0(0)} are all nonzero and the
same sign. Note in this test that each of the ui(z) are symmetric (that is, ui,i−j = ui,j for i = 0, . . . , n and
j = 1, . . . , i), so the work associated with this test, if programmed efficiently, is similar to that associated with
the simplified Routh test described previously, in which each of the ui(s) considered is either even or odd.

As with the simplified Routh test, a useful feature of the simplified Bistritz test, is that one can carry one
or more variables in the control design formulation, such as a controller gain K , all the way through the test,
thereby determining necessary and sufficient conditions on such variables for stability.

The simplified Bistritz test described above determines whether or not all of the poles of a transfer function
T (z) are inside the unit circle, a condition sometimes referred to as absolute stability. A stricter condition
that is sometimes useful to determine is whether or not all of the poles of a transfer function T (z) are inside a
circle of some radius r < 1, a condition referred to as relative stability. This is easy to determine by applying
the simplified Bistritz test discussed above to the modified transfer function T (z/r).

Example B.2 Testing the (full and simplified) Routh and Bistritz codes. Embedded in comments in the
header of the RR_poly class definition (easily read by typing help RR_poly at the Matlab prompt) are several short,
self-explanatory examples that illustrate the (full and simplified) Routh and Bistritz tests working on various
polynomials. Note that the full Routh and Bistritz tests must be applied to polynomials defined by numerical
values in their coefficients, and reveal the entire inertia and stationarity, respectively, of the associated poly-
nomial f(s) or f(z) [that is, how many stable, marginally stable, and unstable poles that the transfer function
T (s) = g(s)/f(s) or T (z) = g(z)/f(z) has]. As mentioned previously, the simplified Routh and Bistritz tests,
which only indicate the stability of the associated transfer functions, may be applied to polynomials with sym-
bolic variables, like K , included in their coefficients. Used in this fashion, necessary and sufficient constraints
on these coefficients for stability of T (s) or T (z) may easily be determined. △

8The Schur-Cohn test and Jury test are alternatives to the Bistritz test for determining whether or not f(z) is Schur. We focus
on the Bistritz test in this discussion, due to its strong similarity to the Routh test.
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B.3 Vector calculus: div, grad, curl, and Gauss, Stokes, Helmholtz
Vector calculus is the study of scalar and vector fields that vary in space. We focus on three dimensional
(3D) problems. Define the dot product a⃗ · b⃗ = a1b1 + a2b2 + a3b3 = ∥a⃗∥ ∥⃗b∥ cos(θ) and the cross product
a⃗ × b⃗ = ∥a⃗∥ ∥⃗b∥ sin(θ) n⃗, where θ = ∡(⃗a, b⃗) is the angle between a⃗ and b⃗ [see §1.3.1 in NR], and n⃗ is a unit
vector perpendicular to the plane containing a⃗ and b⃗, oriented via the right-hand rule. It follows that

a⃗× b⃗ = −b⃗× a⃗ =

∣∣∣∣∣∣

e1 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
= (a2b3 − a3b2) e1 + (a3b1 − a1b3) e2 + (a1b2 − a2b1) e3 (B.17)

a⃗× b⃗ =
[
a⃗
]
× b⃗,

[
a⃗
]
× ≜




0 −a3 a2
a3 0 −a1
−a2 a1 0


 (B.18)

(⃗a× b⃗) · (c⃗× d⃗) = (⃗a · c⃗)(⃗b · d⃗)− (⃗a · d⃗)(⃗b · c⃗) (B.19)

a⃗ · (⃗b× c⃗) = b⃗ · (c⃗× a⃗) = c⃗ · (⃗a× b⃗) (B.20)

a⃗× (⃗b× c⃗) = b⃗(⃗a · c⃗)− c⃗(⃗a · b⃗) (B.21)

∥a⃗× b⃗∥2 = ∥a⃗∥2 ∥⃗b∥2 − (⃗a · b⃗)2 (B.22)

Note that a⃗× a⃗ =
[
a⃗
]
× a⃗ = 0, and that

[
a⃗
]
× = −

[
a⃗
]T
× . The study of vector calculus is facilitated by the del

operator (denoted by the nabla symbol∇), which is defined using summation notation such that

∇ = ej
∂

∂xj
; thus, in 3D, ∇ = e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
. (B.23)

With this operator, the divergence∇ · v⃗, the gradient ∇ϕ, and the curl ∇× v⃗, are respectively

∇ · v⃗ =
∂v1
∂x1

+
∂v2
∂x2

+
∂v3
∂x3

, (B.24a)

∇ϕ = e1
∂ϕ

∂x1
+ e2

∂ϕ

∂x2
+ e3

∂ϕ

∂x3
, (B.24b)

∇× v⃗ =

∣∣∣∣∣∣

e1 e2 e3
∂
∂x1

∂
∂x2

∂
∂x3

v1 v2 v3

∣∣∣∣∣∣
=
(∂v3
∂x2
− ∂v2
∂x3

)
e1 +

(∂v1
∂x3
− ∂v3
∂x1

)
e2 +

(∂v2
∂x1
− ∂v1
∂x2

)
e3. (B.24c)

The Laplacian, ∆ϕ, is defined using summation notation such that

∆ϕ = ∇ · ∇ϕ =
∂2ϕ

∂x2j
; thus, in 3D, ∆ϕ =

( ∂2
∂x21

+
∂2

∂x22
+

∂2

∂x23

)
ϕ. (B.25)

The bilaplacian (a.k.a. biharmonic) is defined as the Laplacian of the Laplacian, ∆∆ϕ; thus, in 3D,

∆∆ϕ =
( ∂2
∂x21

+
∂2

∂x22
+

∂2

∂x23

)( ∂2
∂x21

+
∂2

∂x22
+

∂2

∂x23

)
ϕ

=
( ∂4
∂x41

+
∂4

∂x42
+

∂4

∂x43
+ 2

∂4

∂x21 ∂x
2
2

+ 2
∂4

∂x21 ∂x
2
3

+ 2
∂4

∂x22 ∂x
2
3

)
ϕ.

(B.26)

Identities related to the gradient, divergence, curl, and Laplacian [all easily verified via substitution] include:

∇(ϕψ) = ϕ∇ψ + ψ∇ϕ (B.27)

∇ · (ϕ∇ψ) = ϕ∆ψ +∇ϕ · ∇ψ (B.28)

∇ · (ϕ v⃗) = ϕ∇ · v⃗ + v⃗ · ∇ϕ (B.29)

∇× (∇ϕ) = 0 (B.30)

∇ · (∇× v⃗) = 0 (B.31)

∇(u⃗ · v⃗) = (u⃗ · ∇)v⃗ + (v⃗ · ∇)u⃗+ u⃗× (∇× v⃗) + v⃗ × (∇× u⃗) (B.32)

∇ · (u⃗× v⃗) = v⃗ · (∇× u⃗)− u⃗ · (∇× v⃗) (B.33)

∇× (ϕv⃗) = (∇ϕ)× v⃗ + ϕ∇× v⃗ (B.34)

∇× (u⃗× v⃗) = u⃗(∇ · v⃗)− v⃗(∇ · u⃗) + (v⃗ · ∇)u⃗− (u⃗ · ∇)v⃗ (B.35)

∇× (∇× v⃗) = ∇(∇ · v⃗)−∆v⃗ (B.36)
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Gauss’s theorem (a.k.a. the divergence theorem) relates the integral over a (3D or 2D) volume V of
the divergence of a vector field v⃗ to the integral over the (2D or 1D) surface of the volume, ∂V , of the normal
component of the vector field (note that dA⃗ is oriented as an outward-facing normal vector):

∫

V

(∇ · v⃗) dV =

∫

∂V

v⃗ · dA⃗. (B.37)

Stokes theorem relates the integral over a (2D) area A [which itself may be defined in R3] of the curl of a
vector field v⃗ to the integral over the boundary of the area, ∂A, of the tangential component of the vector field
(following the right-hand rule, ds⃗ is a counterclockwise-facing tangential vector when dA⃗ faces the viewer):

∫

A

(∇× v⃗) · dA⃗ =

∮

∂A

v⃗ · ds⃗. (B.38)

An important special case of Stoke’s theorem, known asGreen’s theorem, is developed by taking v⃗ = {ψ, ϕ, 0}
and the (2D) area A as lying in the x− y plane, in which case (B.38) reduces immediately to

∫

A

(∂ϕ
∂x
− ∂ψ

∂y

)
dx dy =

∮

∂A

(ψ dx+ ϕ dy). (B.39)

TheHelmholtz decomposition (a.k.a. the fundamental theorem of vector calculus), states that any vector
field v⃗ whose curl and divergence vanish at infinity may be decomposed into an irrotational part, −∇ϕ, and
a solenoidal part, ∇× ψ⃗:

v⃗ = −∇ϕ+∇× ψ⃗, (B.40)

where ϕ is called a scalar potential and ψ⃗ is called a vector potential; by the identities summarized above,
the irrotational part is curl free and the solenoidal part is divergence free.

In (3D) cylindrical coordinates, the gradient, divergence, curl, and Laplacian may be written

∇f = er
∂f

∂r
+ eϕ

1

r

∂f

∂ϕ
+ ez

∂f

∂z
, (B.41a)

∇ · v⃗ =
1

r

∂(r vr)

∂r
+

1

r

∂vϕ
∂ϕ

+
∂vz
∂z

, (B.41b)

∇× v⃗ = er

(1
r

∂vz
∂ϕ
− ∂vϕ

∂z

)
+ eϕ

(∂vr
∂z
− ∂vz

∂r

)
+ ez

(1
r

∂(r vϕ)

∂r
− 1

r

∂vr
∂ϕ

)
, (B.41c)

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂ϕ2
+
∂2f

∂z2
. (B.41d)

In (3D) spherical coordinates, the gradient, divergence, curl, and Laplacian may be written

∇f = er
∂f

∂r
+ eθ

1

r

∂f

∂θ
+ eϕ

1

r sin θ

∂f

∂ϕ
, (B.42a)

∇ · v⃗ =
1

r2
∂(r2 vr)

∂r
+

1

r sin θ

∂(vθ sin θ)

∂θ
+

1

r sin θ

∂vϕ
∂ϕ

, (B.42b)

∇× v⃗ = er
1

r sin θ

(∂(vθ sin θ)
∂θ

− ∂vθ
∂ϕ

)
+ eθ

1

r

( 1

sin θ

∂vr
∂ϕ
− ∂(rvϕ)

∂r

)
+ eϕ

1

r

(∂(r vθ)
∂r

− ∂vr
∂θ

)
, (B.42c)

∆f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂ϕ2
. (B.42d)
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In (2D) polar coordinates, the bilaplacian may be written

∆∆f =
[1
r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂ϕ2

][1
r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂ϕ2

]
f

=
∂4f

∂r4
+

2

r2
∂4f

∂r2 ∂ϕ2
+

1

r4
∂4f

∂ϕ4
+

2

r

∂3f

∂r3
− 2

r3
∂3f

∂r ∂ϕ2
− 1

r2
∂2f

∂r2
+

4

r4
∂2f

∂ϕ2
+

1

r3
∂f

∂r
.

(B.43)

B.4 Some useful expansions, sums, identities, and definitions
The following identities, derivatives, and sums are often useful9:

eix =cosx+ i sinx ⇒ eiπ + 1 = 0 (B.44)

eixe−ix = 1 ⇒ cos2 x+ sin2 x = 1 (B.45)

sinx = (eix − e−ix)/(2i) (B.46)

cosx = (eix + e−ix)/2 (B.47)

sinhx = (ex − e−x)/2 (B.48)

coshx = (ex + e−x)/2 (B.49)

tanx = sin(x)/ cos(x) (B.50)

tanhx = sinh(x)/ cosh(x) (B.51)

sin(x+ y) = sinx cos y + cosx sin y (B.52)

cos(x+ y) = cosx cos y − sinx sin y (B.53)

cosx =2 cos2(x/2)− 1 = 1− 2 sin2(x/2)

= cos2(x/2)− sin2(x/2) (B.54)

tan(x+ y) =
tanx+ tan y

1− tanx tan y
(B.55)

2 sin(x) cos(y) = sin(x+ y) + sin(x− y) (B.56)

2 cos(x) cos(y) = cos(x+ y) + cos(x− y) (B.57)

2 sin(x) sin(y) = cos(x− y)− cos(x+ y) (B.58)
M∑

m=1

cos mx =
cos[(M + 1)x/2] sin(Mx/2)

sin(x/2)
(B.59)

a sinx+ b cosx = r sin(x+ α) (B.60)

a cosx+ b sinx = r cos(x− α) (B.61)

acosx =
π

2
− asinx (B.62)

d(sinx)/dx = cosx; d(cosx)/dx = − sinx (B.63)

d(tanx)/dx = 1/ cos2 x (B.64)

d(sinhx)/dx = coshx; d(coshx)/dx = sinhx (B.65)

d(tanhx)/dx = 1− tanh2 x = 1/ cosh2(x) = sech2(x) (B.66)

d(asinx)/dx = 1/
√

1− x2 (B.67)

d(acosx)/dx = −1/
√
1− x2 (B.68)

d(atanx)/dx = 1/(1 + x2) (B.69)

d(lnx)/dx = 1/x (B.70)
∑n

k=1
k =

n(n+ 1)

2
≜ Tn

Triangular
numbers (B.71)

∑n

k=1
k2 =

n(n+ 1)(2n+ 1)

6
(B.72)

∑n

k=1
k3 =

n2(n+ 1)2

4
(B.73)

∑n

k=1
k4 =

n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
(B.74)

∑n

k=1
Tk =

n(n+ 1)(n+ 2)

6
≜ Ten

Tetrahedral
numbers (B.75)

n∑

k=1

Tek =
n(n+ 1)(n+ 2)(n+ 3)

24
≜ Pn

Pentatope
numbers (B.76)

where, in (B.60) and (B.61), r =
√
a2 + b2 and α = atan (b/a). The binomial coefficients nCk are the numer-

ical coefficients in both the expansion of an n’th-degree binomial and the expansion of the n’th derivative of
the product of two functions (known as the general Leibniz rule),

(x+ y)n =
n∑

k=0

nCk x
n−kyk = nC0 x

n + nC1 x
n−1y1 + . . .+ nCn y

n, (uv)(n) =
n∑

k=0

nCk u
(n−k)v(k), (B.77a)

9Pythagoras (Greece, b. 572 BC) is credited with determining (B.71) [known as the triangular numbers Tn, as it gives the number of
objects (e.g., rocks or coins) in a triangular pack; the Pythagoreans placed a particular mystic significance on the triangular pack with
four objects on a side, corresponding to T4 = 10], Archimedes (Greece, b. 287 BC) with (B.72), Aryabhata (India, b. 476) with (B.73)
and (B.75) [which gives the number of spheres (e.g., cannonballs) in a stack of spheres with a trangular base], and Abu Ali al-Hasan
ibn al-Hasan ibn al-Haytham (Egypt, b. 965) with (B.74).
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where u(n) denotes the n’th derivative of u with respect to its argument. nCk may be calculated as follows:

nCk ≜
(
n

k

)
≜ n!

k! (n− k)! for n ≥ k ≥ 0; (B.77b)

nCk is pronounced n choose k (implemented as nchoosek in Matlab), as it represents the number of unordered
collections of k objects that can be chosen from a set of n distinct objects. The binomial coefficients nCk for
k = 0 through k = n appear on the n’th row (counting from zero) of what is referred to as Pascal’s triangle10:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

Note that the triangular numbers B.71, tetrahedral numbers B.75, and pentatope numbers B.76 are enumerated
on, respectively, the third, fourth, and fifth diagonals of Pascal’s triangle. Implemented as pascal in Matlab.

The polylogarithm is defined for |z| < 1 and any complex s by an infinite sum, and for integer nonpositive
s = −n (with n ≥ 0) by a finite sum, as follows:

Lis(z) =
∞∑

k=1

zk/ks, (B.78a) Li−n(z) =

(
z
d

dz

)n
z

1− z =
n∑

k=0

k! S(n+ 1, k + 1)

(
z

1− z

)k+1

(B.78b)

where the S(n, k), known as the Stirling numbers of the second kind, are defined such that

S(n, k) =
1

k!

k∑

j=0

(−1)k−jj kCj jn. (B.79)

Define the Kronecker delta, δdi, and two finite approximations of Dirac delta, δσ(t) [see Figure 8.1a, noting
its σ → 0 limit] and δλ,m(t) form ≥ 2 [see Figures 8.1b and 8.1c, noting their λ→∞ limit], such that

δdi =

{
1 d = i,

o otherwise,
δσ(t) = e−x

2/(2σ2)/(σ
√
2π), δλ,m(t) = λm xm−1 e−λx/(m−1)!. (B.80)

The continuous-timeHeaviside step function, ha(t)with a = 0, 1/2, or 1, and the discrete-timeHeaviside
step function, hdk, are then defined as

ha(t− d) =





0 t < d,

a t = d,

1 t > d,

⇒





h1/2(t− d) = lim
σ→0

∫ t

−∞
δσ(t′ − d) dt′

h0(t− d) = lim
λ→∞

∫ t

−∞
δλ,m(t′ − d) dt′

(B.81a)

hdk =

{
0 k < d,

1 k ≥ d.
⇒ hdk =

k∑

i=−∞
δdi; (B.81b)

10The triangular table of binomial coefficients is often incorrectly attributed, via this name, to Blaise Pascal (b. 1623), though it
dates back to several earlier sources, the earliest being Pingala’s Sanskrit work Chandas Shastra, written in the fifth century BC.

B-17

https://www.mathworks.com/help/matlab/ref/nchoosek.html
https://en.wikipedia.org/wiki/Pascal%27s_triangle
https://www.mathworks.com/help/matlab/ref/pascal.html


Renaissance Robotics (v.2024-03-19) Appendix B: Assorted mathematical foundations

h0(t) is left-continuous at t = 0, as h0(−ϵ)→ h0(0) as ϵ→ 0 with ϵ > 0, whereas h1(t) is right-continuous
at t = 0, as h1(ϵ)→ h1(0) as ϵ→ 0 with ϵ > 0. Note also that h0k is often denoted as simply hk.

Finally, the following Taylor-series expansions, each valid for sufficiently small ϵ, are often useful:

eϵ = 1 + ϵ+
ϵ2

2!
+
ϵ3

3!
+
ϵ4

4!
+ . . . (B.82)

ln(1 + ϵ) = ϵ− ϵ2

2
+
ϵ3

3
− ϵ4

4
+ . . . (B.83)

ln
(1 + ϵ

1− ϵ
)
= 2
(
ϵ+ ϵ3/3 + ϵ5/5 + . . .

)
(B.84)

sin(ϵ) = ϵ− ϵ3

3!
+
ϵ5

5!
− ϵ7

7!
+ . . . (B.85)

cos(ϵ) = 1− ϵ2

2!
+
ϵ4

4!
− ϵ6

6!
+ . . . (B.86)

tan(ϵ) = ϵ+
ϵ3

3
+

2ϵ5

15
+

17ϵ7

315
+ . . . (B.87)

tanh(ϵ) = ϵ− ϵ3

3
+

2ϵ5

15
− 17ϵ7

315
+ . . . (B.88)

atan (ϵ) = ϵ− ϵ3

3
+
ϵ5

5
− ϵ7

7
+ . . . (B.89)

1

1− ϵ = 1 + ϵ+ ϵ2 + ϵ3 + ϵ4 . . . (B.90)

1

(1− ϵ)2 = 1 + 2ϵ+ 3ϵ2 + 4ϵ3 + 5ϵ4 + . . . (B.91)

1

(1− ϵ)3 = 1 + 3ϵ+ 6ϵ2 + 10ϵ3 + 15ϵ4 + . . . (B.92)

1

(1− ϵ)n = nCn + n+1Cn ϵ+ n+2Cn ϵ
2 + . . . (B.93)

√
1 + ϵ = 1 +

ϵ

2
− ϵ2

8
+
ϵ3

16
− 5ϵ4

128
+ . . . (B.94)

1√
1− ϵ = 1 +

1

2
· ϵ+ 1 · 3

2 · 4 · ϵ
2 +

1 · 3 · 5
2 · 4 · 6 · ϵ

3 + . . . (B.95)

asin (ϵ) = ϵ+
1

2
· ϵ

3

3
+

1 · 3
2 · 4 ·

ϵ5

5
+

1 · 3 · 5
2 · 4 · 6 ·

ϵ7

7
+ . . . (B.96)
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