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Reversible random number generation

THOMAS BEWLEY∗, UC San Diego, USA

The remarkable Permuted Congruential Generators (PCGs), Multiply With Carry (MWC) generators, and XOR/shift generators that

have emerged in the last decade effectively render all pseudorandom number generators (PRNGs) proposed before them obsolete.

They have small state size (2x to 4x the number of bits of each 32bit or 64bit integer output) and small code size (4 to 10 low-level C

commands), they are fast (taking 1ns to 2ns per integer of output on modern hardware), and they are statistically excellent, passing

every battery of statistical tests available today, including Big Crush in TestU01. This paper illustrates how the individual streams

of all three of these modern families of carefully-optimized PRNGs may be marched exactly in reverse with codes of nearly the

same simplicity (and, thus, speed, though certain cases require 128 bit arithmetic). This is valuable for many practical applications

of such PRNGs, such as the variational (adjoint-based) analysis and optimization (of various control, identification, and estimation

parameters) inMonte Carlo simulations, Ensemble Kalman Filters, and Particle Filters, in which statistically-good PRNGs are essential

for generating appropriately-perturbed trajectories in forward-in-time simulations, and the inexpensive exact reproduction of the

random excitations perturbing these trajectories in their retrospective (backward-in-time) analysis is required.
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1 INTRODUCTION

To provide cryptographic security, one can build a true random number generator (TRNG) that generates numbers

from a physical (e.g., thermodynamic) process with entropy. However, both large-scale microprocessors (MPUs) in

high-performance computing (HPC) servers and small-scale microcontrollers (MCUs) in embedded applications are

useful in part because their behavior is entirely predictable. It is thus not obvious at first how to use an MPU or MCU

appropriately to produce “adequately random” sequences for various 64-bit HPC and 32-bit embedded applications.

The development of deterministic pseudo random number generators (PRNGs) that produce sequences that are

“effectively random” in application requires significant care. PRNGs quickly generate long sequences of unsigned

integers ~8 ∈ [0, ~max] that eventually repeat, usually with ~max = 21 − 1 for 1 ∈ {24, 32, 53, 64}. Good PRNGs can
(i) be initialized randomly (e.g., by using the number of microseconds since some epoch on the system clock),

(ii) be used to generate many, very long, statistically independent streams of unsigned integers, and

(iii) be postprocessed appropriately to generate the following three useful types of sequences:

A) Real numbers G8 with uniform distribution on an open interval (!,* ) which, taking 1 = 24 or 53 for single or double

precision resp., may be generated via G8 = ! + (* − !)(B8/C) where B8 = ~8/2.0 + 0.5 and C = 21−1 + 0.5.
B) Real numbers I8 with gaussian distribution, generated (for ` = 0 and f = 1) by applying a Box Muller transform [4]

to a sequence G8 ∈ (0, 1) (see above) via I8 =
√
−2 lnG8 cos(2c G8+1) and I8+1 =

√
−2 lnG8 sin(2c G8+1) for odd 8 .
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2 Bewley

Fig. 1. (a) The (discrete) probability distribution generated by a model of the sum of three fair 6-sided dice. (b) The (discrete) expo-

nential probability distribution generated by a model of the minimum 9 > 0 for which G8 = G8+9 in the repeated rolling of a single

6-sided die. (c) A (discrete) histogram approximating the (continuous) gaussian probability distribution function (PDF) generated by

a model of the sum of 100 real numbers uniformly distributed between 0 and 1. (d) The (discrete) cumulative distribution generated

by a model of the birthday problem, indicating that in a random grouping of only 23 people, there is over a 50% chance that at

least two have the same birthday, and with 50 people, there is a 97% chance. In all four subfigures, the bars indicate the statistics of

millions of samples using a modern PRNG, and the solid curves represent the corresponding theoretical predictions.

C) Integers F8 with a discrete uniform distribution on a discrete interval F8 ∈ [!,* ], taking 1 = 32 or 64, which:

(a) for = = * −!+1 = 2B , may be generated viaF8 = !+ ⌊~8/# ⌋ with # = 21−B , or (b) for other =, may be generated via

F8 = !+⌊~̃8/# ⌋ with# = ⌊~max/=⌋ leveraging a PRNG sequence ~̃8 ∈ [0, ~̃max], where ~̃max = = ·#−1 < ~max = 21−1,
which itself may be generated from a standard ~8 ∈ [0, ~max] PRNG sequence simply by eliminating all integer draws

~8 with ~8 > ~̃max, thus ensuring the identical likelihood of each resulting integer F8 ∈ [!,* ].
Good PRNGs produce unsigned integer sequences that, primarily,

1) are characterized by good statistical properties (see, e.g., Figure 1), mimicking those of truly random processes,

2) have a large period, so in application they do not exhibit repeating patterns, and

3) are fast to compute, in a small memory footprint, when coded in a low-level language like C, C++, or Rust.

Note that, beyond property 1 above, the notion of difficulty to predict is sometimes also mentioned as a fourth desired

property of a PRNG. However, none of the PRNGs considered in this work should be considered as cryptographically

secure, and indeed most of them have already been “cracked”; that is, algorithms have been developed to determine

their full internal state (and, thus, all their future outputs) from a relatively small number of their integer outputs. For

the applications motivating this work (see the abstract), this potential fourth property is not of significant interest.

1.1 A brief survey of representative desired statistical properties of PRNGs

A fair 6-sided die (cf. loaded or shaved dice) rolls {1, 2, 3, 4, 5, 6} with equal probability. The sum of two such dice will

give a total of {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} with (discrete) probabilities {1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1}/36. Similarly, the sum

of three such dice will give a total of 3 through 18 with probabilities {1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1}/216
(see Figure 1a), etc; note that such probabilities are easily determined by the coefficients of the following polynomials

(listed here as executable code in Matlab or Octave):

c l e a r , syms z , f o r i = 2 : 5 , expand ( ( z+z ^2+ z ^3+ z ^4+ z ^5+ z ^6 )^ i ) , end

A good PRNG, adjusted to give integers on the interval [1, =] for each =-sided die (= = 6 in the above example) with

equal probability (type C above), should mimic such distributions over millions of trials.

When determining integers G8 by rolling a single fair =-sided die, the odds that the next number rolled, G8+1, is the

same as G8 is ? (1) = 1/=. Thus, defining 2 = (= − 1)/=, the odds that the minimum 9 > 0 for which G8 = G8+9 is equal

to 9̂ is ? ( 9̂) = 2 9̂−1/=, generating what is called the (discrete) exponential distribution (see Figure 1b). A good PRNG

(again, of type C above) measured in this manner should mimic this exponential distribution over millions of trials.
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Reversible random number generation 3

Consider a PRNG adjusted to give a real number G ∈ (!,* ) = (0, 1) (type A above); this uniform distribution

has mean ` , E {G} = (! +* )/2 = 1/2 and variance f2 , E {(G − `)2} = (* − !)2/12 = 1/12. Any sum of = = 100

consecutive real numbers G8 so generated, denoted~8 =
∑=−1

9=0 G8+9 , should total about~8 ≈ = ·` = 50, butwill sometimes

be a bit higher, and sometimes a bit lower. It is a remarkable consequence of the celebrated Central Limit Theorem that

a histogram of the computed values of this sum, normalized appropriately to approximate a (continuous) probability

distribution function (PDF), will tend towards a gaussian distribution, with a mean of = · ` = 50 and a variance of

= · f2 = 8.333 (see Figure 1c). A good PRNG measured in this manner should mimic this gaussian distribution over

millions of trials.

Finally, the odds that 2 people selected at random do not have the same birthday is 364/365. By the same logic, the

odds that, in a random grouping of = people, none have the same birthday is ?not(=) =
∏=−1

:=1
(365 − :)/365. The odds

this is false (that is, in a random group of = people, at least 2 do have the same birthday) is ?do(=) = 1 − ?not(=). This
(discrete) distribution, known as the birthday problem, approximates the (continuous) cumulative distribution function

(CDF) of the gamma distribution (see Figure 1d). A good PRNG measured in this manner should mimic this type of

distribution over millions of trials.

Unfortunately, theoretical analyses of PRNGs are only useful up to a point; most useful “randomness” tests are, like

those surveyed above (and, many others), only statistical in nature, and require extensive computational testing to

quantify the long-term statistical behavior of a PRNG, to verify that it is as expected. In particular, the PractRand [7]

and TestU01 [15] suites of statistical tests for PRNGs evolved from substantial original analysis of the subject by Knuth

[12]. Note that, for a given size PRNG state, such statistical tests will all eventually fail; the question is only how big a

PRNG integer stream needs to be generated before undesired statistical correlations begin to become apparent; today,

passing the Big Crush test suite (part of TestU01) is generally accepted as the “gold standard”.

1.2 A brief review of LCGs and reversibility

Linear congruential generators (LCGs) [26] are the essential starting point. LCGs are PRNGs defined by a simple

recurrance of the form

forward march: G ← (0 · G + 2) mod<, (1a)

where the multiplier 0, increment 2 , and modulus< are fixed unsigned integers, and the state G is updated at each

iteration. An LCG with 2 = 0 is often called a Lehmer generator or multiplicative congruential generator (MCG) [16].

Two types of LCGs are of particular interest: (a) those with prime<, which (when taken on their own, for a given

size of<) have the best statistics, and (b) those with< = 21 and odd 2 , where 1 is the total number of bits in the binary

representation of the unsigned integers being used, which are generally much faster to compute (for a given size of

<) when implemented in a language that wraps on integer overflow, and thus form our focus here (with 1 = 32, 64, or

128). When using either type of LCG, the trick is to select 0 well for a given<. Most choices of this parameter result

in “bad” PRNGs, with short periods and/or bad statistics. Some choices, though, give fairly “good” PRNGs (in terms

of properties 1, 2, and 3 itemized previously) given the simplicity of (1a). A starting point to find a good value for 0

in the < = 21 case, known as the Hull-Dobell Theorem [10], is to take mod(0, 8) = 5 [i.e., 0 = 8: + 5 for some :];

though this choice (together with odd 2) generates PRNG sequences with full period (i.e., which repeat only after<

elements, including G = 0), most values of 0 so generated in fact still do not have good statistics. Parameters leading to

statistically good LCGs must be searched for exhaustively, and are well tabulated in the literature [13, 25]. Note that,

for a given 0, replacing 2 with any other odd integer produces a different PRNG sequence that is qualitatively similar.
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4 Bewley

As a (very small) example, take 0 = 8 · 19 + 5 = 157, 2 = 47, and< = 28 = 256 in (1a). Starting from G = 0, this LCG

generates every integer from 0 to< − 1 = 255, once, then repeats, as can be seen by executing the following simple

line of code in Matlab or Octave:

a =157 , c =47 ; m=256 ; x ( 1 ) = 0 ; f o r i =2 :m+5 , x ( i )=mod ( a ∗ x ( i −1)+ c ,m) ; end

The first 9 integers G generated by this code, {0, 47, 2, 105, 148, 243, 54, 77, 104, . . . }, are written in binary as

00000000 00101111 00000010 01101001 10010100 11110011 00110110 01001101 01101000

Note that the least significant bits (LSBs) alternate1 between 0 and 1. The next significant bit follows the sequence

0,1,1,0,0,1,1,0,0,1,1, ... That is, the statistics of the lower-order bits in an< = 21 LCG follow very noticeable patterns,

as the lower-order bits of such an LCG affect the evolution of the higher-order bits, but the higher-order bits do not

affect the evolution of the lower-order bits. However, when< is large, several of these lower-order bits can easily be

suppressed, or somehow “scrambled” or “permuted” or “filtered” with the higher-order bits, when outputting the result

of the PRNG subroutine; it is effectively the “mod<” part of a (deterministic) LCG that, when 0 is a substantial fraction

of<, makes the higher-order bits of the LCG appear to be “more random”.

Now consider the following slight modification to the above code:

a s t a r =181 , c =47 ; m=256 ; y ( 1 ) = 0 ; f o r i =2 :m+5 , y ( i )=mod ( a s t a r ∗ ( y ( i −1) − c ) ,m ) ; end

This modified code generates exactly the same sequence of integers in ~, but in reverse order. This reversibility of

LCGs is easily seen mathematically by writing (1a) more plainly2, subtracting 2 from both sides, and multiplying the

resulting equation by 0∗:

G=4F = 0 · G>;3 + 2 ⇒ 0∗ · (G=4F − 2) = (0∗ · 0) · G>;3 ;

thus, if <>3 (0∗ · 0,<) = 1 [that is, if 0∗ is the “modular inverse” of 0, the existence and computation of which are

discussed further in §2.1], we can reverse the order of the march in (1a), determining G>;3 from G=4F , with

backward march: G ← 0∗ · (G − 2), (1b)

where mod< arithmetic (i.e., wrap on overflow) is now (and, henceforth) implicitly assumed in the notation used.

1.3 Improving PRNGs beyond LCGs

Good PRNGs are hard to find. A candidate PRNGmay be relatively (a) fast to calculate, with (b) small memory footprint

and (c) small code size and (d) long period, and may (e) satisfy many statistical randomness tests (see, e.g., Figure 1),

only to fail some other randomness test (see, e.g., [3]). Though increasing the size of the internal state is certainly

valuable (albeit, at increased computational cost), when restricted to using 32-bit, 64-bit, or 128-bit arithmetic, LCGs

alone have proven to be insufficient for most applications.

Over the years, many PRNGs have been developed. Some are statistically adequate but unnecessarily complex in

terms of both space usage and code size, including the Mersenne Twister and stream ciphers like RC4 and its modern

successor ChaCha20. Some are simpler, but with inferior statistical properties, including IBM’s once pervasive yet

“truly horrible” [12] RANDU, Numerical Recipe’s RanQ1, and unix’s drand48, rand, and random implementations.

1That is, odd entries in the sequence are even integers, and even entries in the sequence are odd integers, and thus the sum of any two consecutive
integers in the sequence is odd, thereby failing the first test discussed in §1.1.
2That is, we rename the old and new values of G as G>;3 and G=4F, and implicitly assume (as we do in the remainder of this paper) that all math is

performed mod< where< = 21 , which in code means “wrapping on integer overflow” in a 1-bit representation (again, taking 1 = 32, 64, or 128).
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Reversible random number generation 5

In the following, we survey three modern families of PRNGs with 23-bit to 64-bit output, summarized in Figure 2

and briefly compared in Table 1, which effectively supersede all of the PRNGs mentioned above:

• Permuted Congruential Generators (PCGs) [21, 22, 24] propagate an internal LCG (1a) with< = 21 , fixed odd 2 ,

and a carefully chosen multiplier 0 satisfying the Hull-Dobell Theorem, typically taking 1 = 64 or 1 = 128, and output

integers of size 1/2 bits at each iteration, generated with clever bit permutations on the internal LCG state G .

•MultiplyWithCarry (MWC) generators [11, 18, 28] propagate an internal state with A +1 integers {G1, G2, . . . , GA , 2}
each with 1 bits, typically taking A = 1 to 3 and 1 = 64, using essentially the same LCG formula, taking 0with 1 bits and

generating an intermediate result C with 21 bits, with A − 1 intermediate “lags”, updating the full state at each iteration

(including 2 , unlike LCGs/PCGs) such that, for example (see Figure 4 for the notation used throughout this discussion),

t←x1 ∗ a+c , x1←x2 , x2←x3 , [ c ; x3 ]← t ,

and output 1-bit integers at each iteration by implementing clever bit permutations on G1.

• XOR/shift generators [2, 19] propagate by taking cascaded XORs of bit-shifted versions of : state variables

{B1, B2, . . . , B: } each with 1 bits, typically with : = 2 to 4 and 1 = 32 or 64, such that, for example,

t = s1≪A, s2←s2 ^s0 , s3←s3 ^s1 , s1←s1 ^s2 , s0←s0 ^s3 , s2←s2 ^ t , s3←s3≪B ,

and then output some combination of these state variables at each iteration with additional clever bit permutations.

After some further introduction below, this paper shows how all three of these modern families of high-quality (fast,

small, statistically excellent) PRNGs are inexpensively reversible, as summarized in Figure 3 and derived in §2. Note

in particular that the relative pros and cons of these three classes of schemes have been debated vigorously online

(see, in particular, [23, 27], and elsewhere on reddit). This debate is worth a read, but does not form a significant focus

here. (In short, amongst other things, the statistical correlation of separate PCG streams is one stated concern, and the

behavior of MWC and XOR/shift generators when the state happens to reach a condition in which many of the state

bits are zero, and how quickly these linear PRNGs can move away from such a condition, commonly referred to as

the “escape from zeroland” problem, is another stated concern.) From a practical perspective, suffice it to say here that

such stated concerns are likely of relatively minor significance when compared to the substantial improvements made

by these PRNGs over all other PRNGs that came before them.

1.4 Multiple independent streams and jump functions

As mentioned in the abstract, many HPC applications of PRNGs (Monte Carlo simulations, Particle Filters, Ensemble

Kalman filters, etc) involve the random excitation of many parallel numerical simulations in a statistically-appropriate

manner. The statistical forcing in such applications accounts, in a sense, for the undersampling of the uncertainty

distribution of the problem under consideration. In such applications, significant care is required to ensure that the

random excitations of these parallel simulations are in fact statistically independent.

The PCG32 and PCG64 Permuted Congruential Generators support independent streams simply by selecting a

different (odd, 64bit or 128bit) constant increment 2 (and, a different initialization; see §1.5) for each stream. Thus,

PCG32 supports up to 263 streams, each with period 264, and PCG64 supports up to 2127 streams, each with period 2128.

If far fewer streams than this are needed, which is typical, care should be taken that the values of the increment 2 are

substantially different for each stream, which can be accomplished by determining these increment values themselves

with a simple LCG (see §1.2) of the appropriate size, and with statistically good coefficients (see [13, 25]).
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6 Bewley

MultiplyWith Carry and XOR/shift generators, on the other hand, each support only 1 very long stream of length 2I ,

with (a) I = 128 for the MWC128, xoshiro128, and xoroshiro128 generators, (b) I = 192 for the MWC192 generator, and

(c) I = 256 for the MWC256 and xoshiro256 generators. However, with some effort, straightforward algorithms may

be determined for “jumping” forward a pre-defined amount in each such stream, leveraging convenient precomputed

“jump functions” for jumps of particular sizes of interest, as discussed further in [9, 20]. Thus, in each case, one can

develop 2G independent streams each of length 2~ , where G + ~ = I. Typical examples are illustrated in Table 1.

1.5 Seeding

All of the PRNGs discussed here need to be initialized. This can either be handled deterministically, in order to generate

the same sequence of integers after initialization every time, for testing purposes, or in some sense randomly, for

production runs. A single random nonzero “seed” may be generated in many different ways; one of the simplest is

by determining, from the CPU’s system clock, a 64-bit unsigned integer representing the number of microseconds

since some system “epoch” (that is, from some reference date and time in the past). As there are almost as many 64-bit

unsigned integers as there are microseconds in a million years, the seed so generated is guaranteed to be different

every time the random number generator is initialized, which is sufficient.

The size of the internal state of the 14 modern PRNGs considered in this work is specified (immediately after the

name of each PRNG) in Figure 2. Each of these internal states is a set of one to four 32-bit, 64-bit, or 128-bit integers. In

the case of 64-bit and 128-bit state variables, a simple approach to PRNG initialization is to set the first of these large

integers defining the initial PRNG state as the 64-bit seed described in the previous paragraph, and to set the remaining

integers defining the initial PRNG state using a simple LCG of the appropriate size (see §1.2), with statistically good

coefficients (see [13, 25]), itself initialized by this seed. Note that, in the case of the MWC schemes, 2 must always

be smaller than 0; one approach that satisfies this for the cases considered is to initialize 2 using the LCG approach

described above, then setting to zero the MSB of this preliminary value of 2 , which is sufficient to ensure that 2 < 0

regardless of the state of the LCG (recall that, in the MWC schemes, 2 changes to a different large 64-bit integer, with

2 < 0, every iteration thereafter). In the case of XOR/shift PRNGs with 32-bit state variables, a reasonable approach

is to set the first state variable equal to the upper 32-bits of the 64-bit seed mentioned in the previous paragraph, to

set the second state variable equal to the lower 32-bits of this 64-bit seed, and to set the remaining integers defining

the initial PRNG state using a simple LCG as before. After appropriate initialization as described here, which quickly

generates a random initial state well away from the origin (also known, in the PRNG literature, as “zeroland” - see the

last paragraph in §1.3), a modern PRNG is ready to be used immediately; no “warm-up” period is required.

When generating many (say, # ) statistically-independent streams in an HPC setting following the PCG approach,

with each stream having a different increment 2 as discussed in §1.4, a (different) initialization is needed for each stream.

All such streams might be generated at around the same time, and thus the approach described in the first paragraph

of this section might unfortunately produce an identical initialization in multiple streams. In this case, one possible

approach is to also incorporate the process ID (getpid in C) and/or the host ID (gethostid in C) in the generation of the

seed for each of the # streams. An alternative initialization approach, which helps to ensure that each of the streams

is initialized with substantially different values, is to use just one seed, for the first stream, and then to generate initial

values for the states of the (# − 1) other streams by applying a statistically good LCG to this single seed. Sharing the

(single) seed with each (individually numbered) stream and leveraging the LCG “jumping” approach discussed in §2.6,

this initialization approach (of both the state G and the increment 2) can be efficiently run in parallel for each stream.
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Reversible random number generation 7

PCG32 XSH RR [21, 22] : 64 b i t s t a t e x ( a=0 x5851F42D4C957F2D , c=odd ) , 32 b i t ou tpu t z

t← ( ( x≫18 )^ x )≫27 , r←x≫ 59 , z← ( t≫ r ) | ( ( t≪− r )& 3 1 ) , x←x ∗ a+c

PCG64 DXSM [8, 24] : 128 b i t s t a t e x ( a=0xDA942042E4DD58B5 , c=odd ) , 64 b i t ou tpu t h i

[ h i ; l o ]←x , h i← ( h i ^ ( h i≫ 3 2 ) ) ∗ a , h i← ( h i ^ ( h i≫ 4 8 ) ) ∗ lo , x←x ∗ a+c

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MWC128 [18, 28] : 2 x 6 4 b i t s t a t e { x , c } ( a=0xFFEBB71D94FCDAF9 ) , 64 b i t ou tpu t z

z←x ^ ( x≪ 3 2 ) , t←x ∗ a+c , [ c ; x ]← t

MWC192 [18, 28] : 3 x 6 4 b i t s t a t e { x , y , c } ( a=0xFFA04E67B3C95D86 ) , 64 b i t ou tpu t y

t←x ∗ a+c , x←y , [ c ; y ]← t

MWC256 [18, 28] : 4 x 6 4 b i t s t a t e { x , y , z , c } ( a=0xFFF62CF2CCC0CDAF ) , 64 b i t ou tpu t z

t←x ∗ a+c , x←y , y←z , [ c ; z ]← t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xoshiro128++ [2, 28] : 4 x 3 2 b i t s t a t e { s0 , s1 , s2 , s3 } , 32 b i t ou tpu t z← ( ( s0+ s3 )≪ 7 )+ s0

t←s1≪9 , s2←s2 ^s0 , s3←s3 ^s1 , s1←s1 ^s2 , s0←s0 ^s3 , s2←s2 ^ t , s3←s3≪11

xoshiro128 ∗ ∗ [2, 28] : 4 x 3 2 b i t s t a t e { s0 , s1 , s2 , s3 } , 32 b i t ou tpu t z← ( ( s1 ∗ 5 )≪ 7 ) ∗ 9

t←s1≪9 , s2←s2 ^s0 , s3←s3 ^s1 , s1←s1 ^s2 , s0←s0 ^s3 , s2←s2 ^ t , s3←s3≪11

xoshiro128+ [2, 28] : 4 x 3 2 b i t s t a t e { s0 , s1 , s2 , s3 } , 24 b i t ou tpu t z← ( s0+ s3 )≫8

t←s1≪9 , s2←s2 ^s0 , s3←s3 ^s1 , s1←s1 ^s2 , s0←s0 ^s3 , s2←s2 ^ t , s3←s3≪11

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xoshiro256++ [2, 28] : 4 x 6 4 b i t s t a t e { s0 , s1 , s2 , s3 } , 64 b i t ou tpu t z← ( ( s0+ s3 )≪ 23 )+ s0

t←s1≪ 17 , s2←s2 ^s0 , s3←s3 ^s1 , s1←s1 ^s2 , s0←s0 ^s3 , s2←s2 ^ t , s3←s3≪45

xoshiro256 ∗ ∗ [2, 28] : 4 x 6 4 b i t s t a t e { s0 , s1 , s2 , s3 } , 64 b i t ou tpu t z← ( ( s1 ∗ 5 )≪ 7 ) ∗ 9

t←s1≪ 17 , s2←s2 ^s0 , s3←s3 ^s1 , s1←s1 ^s2 , s0←s0 ^s3 , s2←s2 ^ t , s3←s3≪45

xoshiro256+ [2, 28] : 4 x 6 4 b i t s t a t e { s0 , s1 , s2 , s3 } , 53 b i t ou tpu t z← ( s0+ s3 )≫11

t←s1≪ 17 , s2←s2 ^s0 , s3←s3 ^s1 , s1←s1 ^s2 , s0←s0 ^s3 , s2←s2 ^ t , s3←s3≪45

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xoroshiro128++ [2, 28] : 2 x 6 4 b i t s t a t e { s0 , s1 } , 64 b i t ou tpu t z← ( ( s0+ s1 )≪ 17 )+ s0

s1←s1 ^s0 , s0← ( s0≪ 49 )^ s1 ^ ( s1≪ 2 1 ) , s1←s1≪28

xoroshiro128 ∗ ∗ [2, 28] : 2 x 6 4 b i t s t a t e { s0 , s1 } , 64 b i t ou tpu t z← ( ( s0 ∗ 5 )≪ 7 ) ∗ 9

s1←s1 ^s0 , s0← ( s0≪ 24 )^ s1 ^ ( s1≪ 1 6 ) , s1←s1≪37

xoroshiro128+ [2, 28] : 2 x 6 4 b i t s t a t e { s0 , s1 } , 53 b i t ou tpu t z← ( s0+ s1 )≫11

s1←s1 ^s0 , s0← ( s0≪ 24 )^ s1 ^ ( s1≪ 1 6 ) , s1←s1≪37

Fig. 2. Complete specification of 14 modern (fast, small, statistically excellent) PRNGs; see Figure 4 for pseudocode notation.
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8 Bewley

PCG32_rev : s t a t e x ( a∗=0 xC097EF87329E28A5 ) , ou tpu t z

x←a∗ ∗ ( x−c ) , t← ( ( x≫ 18 )^ x )≫ 27 , r←x≫59 , z← ( t≫ r ) | ( ( t≪− r )&31 )

PCG64_rev : s t a t e x ( a∗={0x0CD365D2CB1A6A6C , 0x8B838D0354EAD59D} ) , ou tpu t h i

x←a∗ ∗ ( x−c ) , [ h i ; l o ]←x , h i← ( h i ^ ( h i≫ 3 2 ) ) ∗ a , h i← ( h i ^ ( h i≫ 4 8 ) ) ∗ l o

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

MWC128_rev : s t a t e { x , c } ( a=0xFFEBB71D94FCDAF9 ) , ou tpu t z

t← [ c ; x ] , [ x , c ]← t / a , z←x ^ ( x≪ 3 2 )

MWC192_rev : s t a t e { x , y , c } ( a=0xFFA04E67B3C95D86 ) , ou tpu t y

t← [ c ; y ] , y←x , [ x , c ]← t / a ,

MWC256_rev : s t a t e { x , y , z , c } ( a =0xFFF62CF2CCC0CDAF ) , ou tpu t z

t← [ c ; z ] , z←y , y←x , [ x , c ]← t / a ,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xoshiro128_rev ++ : s t a t e { s0 , s1 , s2 , s3 } , ou tpu t z← ( ( s0+ s3 )≪ 7 )+ s0

s3←s3≫ 11 , q←s1 , r←s1 ^s2 , s0←s0 ^s3 , s1←Shif t32 ( r ) , s2←q^ s1 ^s0 , s3←s3 ^ s1

xoshiro128_rev ∗ ∗ : s t a t e { s0 , s1 , s2 , s3 } , ou tpu t z← ( ( s1 ∗ 5 )≪ 7 ) ∗ 9

s3←s3≫ 11 , q←s1 , r←s1 ^s2 , s0←s0 ^s3 , s1←Shif t32 ( r ) , s2←q^ s1 ^s0 , s3←s3 ^ s1

xoshiro128_rev + : s t a t e { s0 , s1 , s2 , s3 } , ou tpu t z← ( s0+ s3 )≫8

s3←s3≫ 11 , q←s1 , r←s1 ^s2 , s0←s0 ^s3 , s1←Shif t32 ( r ) , s2←q^ s1 ^s0 , s3←s3 ^ s1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xoshiro256_rev ++ : s t a t e { s0 , s1 , s2 , s3 } , ou tpu t z← ( ( s0+ s3 )≪ 23 )+ s0

s3←s3≫ 45 , q←s1 , r←s1 ^s2 , s0←s0 ^s3 , s1←Shif t64 ( r ) , s2←q^ s1 ^s0 , s3←s3 ^ s1

xoshiro256_rev ∗ ∗ : s t a t e { s0 , s1 , s2 , s3 } , ou tpu t z← ( ( s1 ∗ 5 )≪ 7 ) ∗ 9

s3←s3≫ 45 , q←s1 , r←s1 ^s2 , s0←s0 ^s3 , s1←Shif t64 ( r ) , s2←q^ s1 ^s0 , s3←s3 ^ s1

xoshiro256_rev + : s t a t e { s0 , s1 , s2 , s3 } , ou tpu t z← ( s0+ s3 )≫11

s3←s3≫ 45 , q←s1 , r←s1 ^s2 , s0←s0 ^s3 , s1←Shif t64 ( r ) , s2←q^ s1 ^s0 , s3←s3 ^ s1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

xoroshiro128_rev ++ : s t a t e { s0 , s1 } , ou tpu t z← ( ( s0+ s1 )≪ 17 )+ s0

s1←s1≫ 28 , s0← ( s0 ^ s1 ^ ( s1≪ 2 1 ) )≫ 49 , s1←s1 ^ s0

xoroshiro128_rev ∗ ∗ : s t a t e { s0 , s1 } , ou tpu t z← ( ( s0 ∗ 5 )≪ 7 ) ∗ 9

s1←s1≫ 37 , s0← ( s0 ^ s1 ^ ( s1≪ 1 6 ) )≫ 24 , s1←s1 ^ s0

xoroshiro128_rev + : s t a t e { s0 , s1 } , ou tpu t z← ( s0+ s1 )≫11

s1←s1≫ 37 , s0← ( s0 ^ s1 ^ ( s1≪ 1 6 ) )≫ 24 , s1←s1 ^ s0

Fig. 3. The (new) efficient and exact reversal of the 14 modern PRNGs summarized in Figure 2, as derived in §2 and verified in [1].
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Reversible random number generation 9

(1) a≪k and a≫k denote, resp., the leftshift and rightshift of the bitwise representation of a by k bits; the bit

positions vacated by≫ and≪ are filled with zeros.

(2) a≪k and a≫k denote, resp., the periodic leftshift and rightshift of the bitwise representation of a by k bits,

where a ≪ k scoots the k bits moved off the left in the bitwise representation of a into the k vacated positions

on the right, and may be implemented in C, for unsigned integers represented with b=32 or b=64 bits, as

(x<<k) | (x>>(b−k)); ditto for a ≫ k, which may be implemented in C as (x>>k) | (x<<(b−k)).

(3) a&b, a^b, and a | b denote, resp., the logical AND, XOR, and OR of the bitwise representations of a and b.

(4) ~a and −a=~a+1 denote, resp., bitwise negation, and the two’s complement representation of negative a.

(5) [hi ; lo]← x denotes the splitting of an unsigned integer x, represented with b bits, into its high-order

and low-order parts, hi and lo, each represented with b/2 bits; this may be implemented in C as

hi=x>>32, lo=x&0xFFFFFFFF for b=32, and as hi=x>>64, lo=x&0xFFFFFFFFFFFFFFFF for b=64.

(6) x←[hi; lo] denotes the joining of hi and lo, each represented with b/2 bits, into x, represented with b bits.

(7) [q, r]=a/b denotes the computation of the quotient q and remainder r such that a=b∗q+r where r<b; see §2.2.

Fig. 4. Pseudocode notation of the bitwise operations on unsigned integers used in Figures 2 and 3 (mostly in C; note that ≪ is

wri�en in ASCII as <<).

generator
useful bits
of output state size independent streams

recommended
default use [1, 28]

other
properties

PCG32 32 bits 64 bits 263 streams of period 264 }

jumps easy for
any : (see §2.6)PCG64 64 bits 128 bits 2127 streams of period 2128

MWC128 64 bits 2x64 bits 232 streams of length 296 }

fast, iff 128bit
math available
(see §2.2)

MWC192 64 bits 3x64 bits 248 streams of length 2144

MWC256 64 bits 4x64 bits 264 streams of length 2192

xoshiro128++ 32 bits 4x32 bits 232 streams of length 296
}

32-bit integers
xoshiro128∗∗ 32 bits 4x32 bits 232 streams of length 296

xoshiro128+ 24 bits 4x32 bits 232 streams of length 296 single-precision reals

xoshiro256++ 64 bits 4x64 bits 264 streams of length 2192
}

64-bit integers
xoshiro256∗∗ 64 bits 4x64 bits 264 streams of length 2192

xoshiro256+ 53 bits 4x64 bits 264 streams of length 2192 double-precision reals

xoroshiro128++ 64 bits 2x64 bits 232 streams of length 296 }

reduced
memory
footprint

xoroshiro128∗∗ 64 bits 2x64 bits 232 streams of length 296

xoroshiro128+ 53 bits 2x64 bits 232 streams of length 296

Table 1. Some properties of the modern PRNGs given in Figure 2. Each of them: (a) execute in 1ns to 2ns per integer output when

implemented efficiently in C on a modern CPU, (b) have zero failures when tested in PractRand and TestU01, including Big Crush,

and (c) are efficiently reversible (as derived in §2, summarized in Figure 3, and implemented in [1]).

1.6 Rare events, and “Smart Shuffling”

“Rare” events in random sequences happen with perhaps surprising frequency. For example, c is conjectured, but not

proven, to be a “normal” number (that is, its decimal digits, discretely distributed on [0, 9], have statistics like those
generated by a good PRNG, as discussed in §1.1); however, within the first 1000 decimal digits of c , the subsequence

999999 appears. When using a PRNG to randomly “shuffle” a list of songs or jokes, such occasional repeats might be

unwanted. In such situations, it is a straightforward matter to keep a running list of the last " integers produced by

the PRNG, and to reject any new integer produced by the PRNG that repeats one of these recent values. Such post-

processing, actually, substantially reduces the “randomness” of the resulting integer sequence, as quantified in §1.1

(with dice, eliminating the possibility of rolling “snake eyes”, etc), but in certain applications can make such sequences

“seem” more random to a human user [17].
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10 Bewley

2 REVERSIBILITY OF THE MODERN CLASSES OF PRNGS

As mentioned in the abstract and introduced in §1.4, Monte Carlo simulations, Particle Filters, Ensemble Kalman filters,

and the like use the random excitation of many parallel numerical simulations to account, in a sense, for the under-

sampling of the uncertainty distribution in large-scale simulation problems. In such applications, it is often desired to

perform retrospective (backward-in-time) analyses, to see how the spread of a set of perturbed simulations changes

when (a) initial conditions, (b) system parameters, and/or (c) control variables are changed. In order to decouple the

(numerical) effects of the random forcing from the (physically interesting) effects that (a), (b), and/or (c) have on this

spread of the set of perturbed simulations, it is sometimes needed [6] to reproduce the (many) random excitations used

on the forward (state) marches when revisiting these simulations in the corresponding reverse (adjoint/costate/dual/

Lagrange multiplier) calculations. The results of the present paper make this task inexpensive to accomplish.

The discussion below focuses on the efficient reversal of the 14 specific PRNGs listed in Figure 2, the (simple) results

of which are listed in Figure 3. The approaches taken to reverse these 14 schemes should extend immediately to any

new PRNGs in these three general classes (e.g., in [11]) that are inevitably developed.

2.1 PCG32 and PCG64

Using mod< arithmetic, PCG32 (with< = 264) and PCG64 (with< = 2128) both propagate via G ← G · 0 + 2 , where
0 = 0x5851F42D4C957F2D for PCG32 and 0 = 0xDA942042E4DD58B5 for PCG64, and, in any given stream, 2 is taken

as an odd constant [21]. As discussed in §1.2, the trick to reversing this propagation, in either case, is to determine an

0∗ such that, using mod< arithmetic, 0∗ · 0 = 1 (that is, where 0∗ is the “modular inverse” of 0, which is guaranteed

to exist if < is a power of 2 and 0 satisfies the Hull-Dobell Theorem, and is therefore odd), from which it follows

that the reverse propagation is given by G ← 0∗ · (G − 2). The calculation of 0∗ such that mod(0∗ · 0,<) = 1 can be

accomplished by solving Bezout’s equation : ·< + 0∗ · 0 = 1 for the integers : and 0∗ using the extended Euclidean

algorithm. Denoting the Euclidean division of</0 as< = @ ·0 +A (that is, as giving a quotient @ and remainder A , both

nonnegative integers), this computation proceeds by first solving for the GCD 6 of< and 0 (which is 6 = 1, since <

and 0 are coprime) using the standard Euclidean algorithm over the integers:

< = @1 0 + A1, 0 = @2 A1 + A2, A1 = @3 A2 + A3 → A=−4 = @=−2 A=−3 + A=−2, A=−3 = @=−1 A=−2 + 6, (2a)

where A=−2 = @= 6 + 0. The extended Euclidean algorithm then work backwards through the relations in (2a), solving

each relation for its last term:

6 = A=−3 − @=−1 A=−2, A=−2 = A=−4 − @=−2 A=−3 → A3 = A1 − @3 A2, A2 = 0 − @2 A1, A1 =< − @1 0. (2b)

Starting with the first expression in (2b), substituting in the second to eliminate A=−2, substituting in the next to

eliminate A=−3, etc., ultimately leads to 6 = :< + 0∗ 0, where : and 0∗ are linear combinations of the integers @8

appearing in (2a). This can all be implemented in executable code, called as [k, astar ]=Bezout(m,a), as follows:

f u n c t i o n [ g , q , n ]=GCD( a , b )

n=0 , rm=a , r =b

whi l e r ~=0

n=n+1 , [ q { n } , rn ]=rm / r , rm=r , r =rn

end , g=rm

func t i o n [ x , y ]=Bezout ( a , b )

[ g , q , n ] = GCD( a , b )

x =0 , y =1 , f o r j =n −1 : −1 : 1

t =x , x=y , y=t −q { j } ∗ y

end
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Reversible random number generation 11

A challenge arises when implementing theGCD algorithmusing unsigned integers represented using only1 bits, where

< = 21 , as in this case < exceeds (that is, is exactly one larger than) the maximum unsigned integer representable

with 1 bits. This challenge may be circumvented by replacing the first step of (2a) with (< − 0) = @̃1 0 + A1, where
@1 = @̃1+1, noting that, as opposed to the integer< = 21 , the integer (<−0) [that is, the integer −0 represented in twos
complement notation] is representable with 1 bits. Determining @1 from @̃1 in this manner, the rest of the standard

Euclidean algorithm (2a) [in code, GCD], to compute the @8 , followed by the extended Euclidean algorithm (2b) [in

code, Bezout], to compute 0∗, then proceeds as before.

Following this process, it is readily determined that 0∗ for PCG32_rev, which is representable using 1 = 64 bits, and

0∗ for PCG64_rev, which requires 1 = 128 bits to represent, are both as indicated in Figure 3.

2.2 128 bit arithmetic and integer division

Note that full hardware implementations of arithmetic on 128-bit unsigned integers (and, on combinations of 128-bit

and 64-bit unsigned integers) are not broadly available today, especially onMCUs, and in many situations must be built

up in software from several smaller (64-bit or 32-bit) arithmetic operations {+,−,×}. This is entirely straightforward

for unsigned integer addition, subtraction, and multiplication. However, it is difficult to implement, in software, general

128-bit unsigned integer division from (hardware) arithmetic operations on smaller integers; it generally turns out to

be more efficient (though, still quite slow) to perform integer division following a bitwise approach in software, like

the nonrestoring division algorithm outlined below.

The nonrestoring division algorithm [12, 29] is a simple and convenient approach for performing unsigned integer

division from scratch when necessary (e.g., on unsigned integers of size 128 bits or larger). This algorithm computes

the quotient @ = 0/1 and the remainder A from the dividend 0 and the divisor 1 such that, as is standard3,4, 0 = 1 ·@ +A ,
where A < 1. For completeness, this algorithm is listed in (Matlab-like, for clarity) pseudocode below.

f u n c t i o n [ q , r ]= div128 ( a , b )

i f b>a , r =a , q =0 , r e t u r n % <−− s o l v e the t r i v i a l c a s e s d i r e c t l y

e l s e i f b>a−b , r=a−b , q =1 , r e t u r n

e l s e

q=a , r =0

f o r n =128 : −1 : 1

s= b i t g e t ( r , 1 2 8 ) , r = b i t s l l ( r , 1 ) , r = b i t s e t ( r , 1 , b i t g e t ( q , 1 2 8 ) ) , q= b i t s l l ( q , 1 )

i f s , r = r+b , e l s e , r =r −b , end

i f b i t g e t ( r , 1 2 8 ) , q= b i t s e t ( q , 1 , 0 ) ; e l s e , q= b i t s e t ( q , 1 , 1 ) , end

end

i f b i t g e t ( r , 1 2 8 ) , r = r+b , end

end

For convenience, in [1], we provide (amongst other things) both efficient stand-alone functions and convenient new

class definitions for the simple arithmetic operations {+,−,×, /}, relationals {<,>,==, ...}, and bitwise operations

3This is the modern definition for unsigned integer division, as used by Ada, C/C++, Fortran, Go, Mathematica, Python, R, Ruby, Rust, SQL, Swift, and
many other computer languages. Unfortunately, as of this writing, the / operator for unsigned integer division in Matlab rounds to the nearest integer,
instead of rounding towards zero (a.k.a. truncated division) or (equivalently, for unsigned integers) towards −∞ (a.k.a. floored division [12]), and thus
does not behave in this standard manner; in most applications using Matlab’s built-in integer data types, be certain to use idivide instead.
4Note also that Matlab’s built-in integer data types saturate instead of wrap upon integer overflow, rendering them inconveient for testing PRNGs.
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12 Bewley

{≪,≫,≪,≫,&,∧, | ,∼,−, ...} on unsigned integer data types, from 8-bit to 1024-bit, that both wrap on integer over-

flow, and (unlike Matlab’s builtin / operator) implement the standard definition of unsigned integer division and

remainder [@, A ] = 0/1 as discussed above (that is, 0 = 1 · @ + A where A < 1), thus facilitating the easy derivation

and testing of PRNGs, like those discussed herein, in Matlab.

2.3 MWC128, MWC192, MWC256

As stated previously, MWC128, MWC192, MWC256 all propagate (using mod< arithmetic, where< = 21 ) via

C ← G1 · 0 + 2, G1 ← G2, . . . GA−1 ← GA , [GA ; 2] ← C . (3a)

To reverse the direction of this propagation, we effectively need to invert each relation in (3a) and compute them in the

opposite order. Note in particular that the inversion of the multiply/add operation in the first step above (to determine

C ) is the quotient/remainder operation in the last step below (to determine the quotient G1 and remainder 2).

C ← [2;GA ], GA ← GA−1, . . . , G2 ← G1, [G1, 2] ← C/0. (3b)

2.4 The xoshiro128 and xoshiro256 families

Xoshiro128++, xoshiro128**, xoshiro128+, xoshiro256++, xoshiro256**, and xoshiro256+ all propagate via

t = s1≪A, s2←s2 ^s0 , s3←s3 ^s1 , s1←s1 ^s2 , s0←s0 ^s3 , s2←s2 ^ t , s3←s3≪B , (4a)

with the output z=f( ·) of the ++, **, and + variants of these schemes computed, respectively, according to

f 1 = ( ( s0+ s3 )≪D)+ s0 , f 2 = ( ( s1 ∗D)≪E ) ∗ F , or f 3 = s0+s3 , (4b)

where the constants {A,B,D,E,F} have been optimized for each of the schemes in [2] (see Figure 2). We focus here

specifically on the propagation relations in (4a), which may equivalently be reordered into the form:

s2←s2 ^s0 , s3←s3 ^s1 , t = s1≪A, s1←s1 ^s2 , s2←s2 ^ t , s0←s0 ^s3 , s3←s3≪B . (4c)

We again seek to reverse the direction of this propagation, inverting each relation in (4c) and computing them in the

opposite order. The first two and last two relations in (4c) are easily inverted, to find the value of the variable on the

LHS before each update from the value of that variable after the update. For example, writing the last relation in (4c)

as (s3new=s3old≪B)≫B, it follows immediately that s3old=s3new≫B. Similarly, writing the first relation in (4c) as

(s2new=s2old^s0)^s0, and noting the associativity and commutativity of the XOR (^) operation, and that s0^s0=0, it

follows that s2old=s2new^s0. We thus focus on the three relations in the middle of (4c), which can not be individually

inverted, by first writing them in the form

t = s 1 o l d≪A, s1new= s 1 o l d ^ s2o ld , s2new= s 2 o l d ^ t . (5a)

To proceed, we first write the middle relation in (5a) as (s1new=s1old^s2old)^t, from which it follows that

s1new ^ ( s 1 o l d≪A)= s 1 o l d ^s2new ⇒ r ^ ( s 1 o l d≪A)= s 1 o l d where r =s1new^s2new . (5b)

The relation at right in (5b), for r, is easily computed from s1new and s2new. The relation in the middle of (5b) then

needs to be solved for s1old, given r and A. Once s1old is determined, the value of s2old is easily calculated from the

relation in the middle of (5a), written in the form s2old=s1new^s1old.

Manuscript submitted to ACM



625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Reversible random number generation 13

Simplifying the notation a bit, what remains is to develop an efficient algorithm to solve s1=r^(s1≪A) for s1, given

r and A. Since the last A bits of (s1≪A) are zero, it is seen that the first A bits of s1 are just

s1 ( 1 :A)= r ( 1 :A) (6a)

where r (1) denote the MSB of r. Given this initialization, and denoting as b the number of bits in the discretization,

we can then loop through to compute the remaining bits of s as follows:

f o r i =A+1 : b , s1 ( i )= r ( i ) ^ s1 ( i −A) , end (6b)

To accelerate its execution, the loop in (6b) can be manually unrolled in chunks of size A. In particular, for the

xoshiro128 schemes, we have 1 = 32 and � = 9, whereas for the xoshiro256 schemes, we have 1 = 64 and � = 17; we

thus define the following two simple functions to compute (6a)-(6b) in these two cases:

f u n c t i o n s1=Shif t32 ( r )

s1 ( 1 : 9 ) = r ( 1 : 9 )

s1 ( 1 0 : 1 8 ) = r ( 1 0 : 1 8 ) ^ r ( 1 : 9 )

s1 ( 1 9 : 2 7 ) = r ( 1 9 : 2 7 ) ^ s1 ( 1 0 : 1 8 )

s1 ( 2 8 : 3 2 ) = r ( 2 8 : 3 2 ) ^ s1 ( 1 9 : 2 3 )

f u n c t i o n s1=Shif t64 ( r )

s1 ( 1 : 1 7 ) = r ( 1 : 1 7 )

s1 ( 1 8 : 3 4 ) = r ( 1 8 : 3 4 ) ^ r ( 1 : 1 7 )

s1 ( 3 5 : 5 1 ) = r ( 3 5 : 5 1 ) ^ s1 ( 1 8 : 3 4 )

s1 ( 5 2 : 6 4 ) = r ( 5 2 : 6 4 ) ^ s1 ( 3 5 : 4 7 )

To summarize, applying a minor bit of additional reordering to improve instruction-level parallelism, the six variants

of xoshiro128 and xoshiro256 mentioned previously may all be marched in reverse via the equations shown in the

corresponding rows of Figure 3.

2.5 The xoroshiro128 family

Similarly, but much more simply, xoroshiro128++, xoroshiro128**, and xoroshiro128+ all propagate via

z= f ( · ) , s 1←s1 ^s0 , s0← ( s0≪A)^ s1 ^ ( s1≪B ) , s1←s1≪C , (7)

with the output z=f ( ·) of the ++, **, and + variants of these schemes computed according to (4b) as before, where again

the constants have been optimized for each of the schemes in [2] (see Figure 2).

Applying similar logic as before, reverse propagation of these three variants of xoroshiro128 may be achieved via

s1←s1≫C , s0← ( s0 ^ s1 ^ ( s1≪B ) )≫A, s1←s1 ^s0 ,

with z=f( ·) computed after each step as before.

2.6 An accelerated approach for jumping LCGs (and, thus, PCGs) in reverse

As noted in (1a), LCGs (and, thus, PCGs) propagate any individual stream (that is, for a given value of 2) according to

G=+1 = 0 · G= + 2 . Thus, as in [5], writing : in binary as : =

∑8<0G

8=1 :̄8 2
8−1 where the individual :̄8 are bits (zero or one),

LCGs and PCGs can easily be jumped forward : steps, for any : , by calculating, using mod< = 21 arithmetic,

G=+: = � · G= +� where
� = 0: = 0

[

∑8<0G
8=1 :̄8 2

8−1
]

=

∏8<0G
8=1 0 (2

8−1 ):̄8 ,

� = 2 [0:−1 + 0:−2 + . . . + 0 + 1] = 2 [0: − 1]/[0 − 1] .
(8a)

Thus, streamlining the algorithm proposed in [5], � and � above can be computed quickly as follows:
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14 Bewley

f u n c t i o n [A , C]=Function_A_C ( a , c , k )

A=1 , kbar = dec2b in ( k ) , imax= l eng t h ( kbar ) , h=a

f o r i =imax : − 1 : 1 , i f kbar ( i ) , A=A∗h , end , h=h ∗h , end

C=c ∗ ( A− 1 ) / ( a −1 )

where, as in Matlab, the command kbar=dec2bin(k) converts the integer k into a minimal-length vector of bits kbar,

where kbar (1) is the MSB and kbar(imax) is the LSB, where imax=length(kbar).

As noted in (1b), LCGs and PCGs propagate in reverse according to G=−1 = 0∗ · (G= − 2). Thus, LCGs and PCGs can
be jumped in reverse : steps by calculating, using mod< = 21 arithmetic,

G=−: = �∗ · G= −�∗ where �∗ = (0∗): , �∗ = 2 0∗ [(0∗): − 1]/[0∗ − 1] . (8b)

Thus, for reverse shifts, �∗ and �∗ can be computed quickly via simple modification of Function_A_C:

f u n c t i o n [ Astar , C s t a r ]= Function_Astar_Cstar ( a s t a r , c , k )

As t a r =1 , kbar = dec2b in ( k ) , imax= l eng t h ( kbar ) , h= a s t a r

f o r i =imax : − 1 : 1 , i f kbar ( i ) , A s t a r=As t a r ∗h , end , h=h ∗h , end

C=c ∗ a s t a r ∗ ( Astar − 1 ) / ( a s t a r −1 )

To illustrate, consider the PCG32 algorithm, using b=64 bit arithmetic. Applying Function_Astar_Cstar to develop

a scheme to back up the PRNG stream k=200 steps results in imax=8, with 3 nonzero values of kbar, whereas ap-

plying Function_A_C with, as suggested in [5], a two’s complement form of −k, given by 0xFFFFFFFFFFFFFF38 =

18446744073709551416, results in imax=64, with 59 nonzero values of kbar. It is seen that the new approach, lever-

aging Function_Astar_Cstar whenever k is negative, is much more computationally efficient. This difference is even

more pronounced when considering the PCG64 algorithm, in which the minimal-length binary form of k is unchanged,

but the two’s complement form of −k for k=200 results in imax=128, with 123 nonzero values of kbar.

3 COMPARISONS OF COMPLEXITY, AND CONCLUSIONS

The 14 PRNG schemes summarized in Figure 2, and the reverse of each of these 14 schemes in Figure 3, are each

provided in executable Matlab code in the PRNG section of our Renaissance Repository [1], verifying numerically that

the latter exactly reverse the former.

Despite their name, LCGs [G ← (0 ·G+2)mod<; see (1a)] are affine, not linear, in the state. The fact that LCGs/PCGs

with< = 21 and odd 2 and odd 0 = 8: + 5 for some : are periodic and jumpable (and, thus, reversible), as reviewed in

§1.2 and §1.4, is well known [5]. MWC generators with A − 1 intermediate “lags” [see (3a), with multiplier 0 and using

mod< arithmetic where< = 21] are equivalent to Lehmer generators (i.e., LCGs that are actually linear, with 2 = 0)

of the form G ← (1 · G) mod ? where ? = 01A − 1 [18], and are thus, by similar reasoning5 , also reversible. Further, the

fact that F2-linear transformations, such as those used by the XOR/shift generators reviewed here, are periodic and

jumpable (and, thus, reversible) is also well known [9, 14]. The focus of this paper is thus not on whether or not the

inverses of these underlying transformations exist, but rather on how to calculate these inverses efficiently. We thus

now compare the complexity of the forward and reverse schemes considered in this paper.

5Note that, when 1 = 64, ? is odd, and thus their GCD is 1, and the modular inverse 1∗ exists, and can be computed via the machinery laid out in §2.1.
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Reversible random number generation 15

The XSH RR variant of the PCG32 scheme propagates forward with one 64-bit multiplication followed by one 64-bit

addition, whereas the PCG32_rev scheme propagates this PRNG in reverse with one 64-bit subtraction followed by

one 64-bit multiplication. These two schemes thus have identical computational cost.

The DXSM variant of the PCG64 scheme propagates forward with one 128-bit by 64-bit multiplication followed by

one 128-bit addition, whereas the PCG64_rev scheme propagates this PRNG in reverse with one 128-bit subtraction

followed by one 128-bit by 128-bit multiplication. If the CPU being used fully implements 128 bit unsigned integer

multiplication, which today is uncommon, both of these schemes likely execute in about the same amount of time.

However, if these 128 bit integer operations are being emulated in software using smaller 64-bit integer operations

(addition and multiplication), the 128-bit by 128-bit multiplication step in the (reverse) PCG64_rev scheme will be

about twice as expensive as the corresponding 128-bit by 64-bit multiplication step in the (forward) PCG64 scheme,

and both PCG64 and PCG64_rev will be relatively slow as compared with the PCG32 and XOR/shift schemes listed in

Figures 2 and 3.

The MWC schemes propagate forward with one 64-bit by 64-bit multiplication (generating both a 64-bit product

and a 64-bit carry) followed by one 128-bit by 64-bit addition, plus : − 1 lag operations (for : = 1, 2, or 3), whereas the

MWC_rev schemes propagate these PRNGs in reverse with one 128-bit by 128-bit division (generating both a 64-bit

quotient x and a 64-bit remainder c), plus : −1 lag operations. If the CPU being used fully implements 128 bit unsigned

integer multiplication and division, which today is uncommon, both of these schemes likely execute in about the same

amount of time. However, if these 128 bit integer operations are being emulated in software (in particular, if 128-bit

integer division needs to be emulated in software using something like the nonrestoring division algorithm reviewed

in §2.2), the division operation in the (reverse) MWC_rev schemes will be substantially slower than the corresponding

multiplication operation in the (forward) MWC schemes, and both the MWC and MWC_rev schemes will be relatively

slow as compared with the PCG32 and XOR/shift schemes listed in Figures 2 and 3.

The (forward) xoshiro128, xoshiro256, and xoroshiro128 families of schemes are all very similar in computational

complexity to their (reverse) xoshiro128_rev, xoshiro256_rev, and xoroshiro128_rev counterparts, and should thus

execute in nearly the same amount of time. The only substantial difference is that the bitshift operations required to

deduce s1 from r in the (reverse) xoshiro128_rev and xoshiro256_rev families of schemes need to be calculated in four

distinct chunks, as shown in the Shift32 and Shift64 algorithms developed in §2.4, and thus these reverse schemes

will be slightly slower than their corresponding (forward) xoshiro128 and xoshiro256 counterparts.

Finally, leveraging knowledge of 0∗, a new algorithm for jumping LCGs and PCGs in reverse was proposed in §2.6.

As discussed further there, this revised algorithm reduces the number of computations required for small reverse jumps,

as compared to the algorithm proposed in [5], by an order of magnitude or more.

As an aside, also recall the “escape from zeroland” discussion in §1.3. The question of how many steps it takes for

the state of a (linear) MWC or XOR/shift generator to move from some particular near-zero condition to a specified

distance away from the origin may be addressed by forward PRNG marches. However, the questions of whether and

how that particular problematical near-zero condition can actually be reached (given that good PRNG initialization

schemes take specific steps to avoid zeroland, as suggested in §1.5) is best addressed by reverse PRNG marches. The

latter significant question is distinct from the former, and is facilitated by the present work.

Overall, it is seen that the reverse PRNG schemes summarized in Figure 3 are structurally similar to the correspond-

ing PCG, MWC, and XOR/shift families of modern PRNGs themselves, as summarized in Figure 2, and thus should

execute at similar speeds (in certain cases, requiring 128-bit arithmetic for efficiency) when implemented appropri-

ately at a low level. This should be valuable for the applications of interest in this paper, as described in the abstract.
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