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Preface

Apple Computer once advertised with the succinct slogan

Think Different.

Ralph Waldo Emerson once said

The mind, once stretched by a new idea, never returns to its original dimensions.

And, Clifford Stoll once said
Data is not information,
Information is not knowledge,
Knowledge is not understanding,
Understanding is not wisdom.

These three mantras form the foundational perspectives of this text. At the highest level, guided by study of
the specific technical subjects presented (outlined below), this short text is really about restructuring how
one learns and thinks, as explored further in §1; thus the double meaning of the word Structure in the title.

The technical aspects of this text are designed to augment courses traditionally titled Structural Analysis,
Statics,Mechanics & Materials, and/orMechanical Design, which are often encountered in freshmen/sophomore
years1 at major US colleges, universities, and military academies, while students are still refining their choice of
major. The text succinctly introduces2 and inter-relates a range of technical topics from a modern perspective,
including Matrix/Vector Math (§2), Material Types and Properties (§3), Stresses in Loaded Beams (§4), and
analysis of three essential types of Structures (Frames in §5, Trusses in §6, and Tensegrities in §7).

Structural Renaissance (SR) is the first in a series, to be followed by Renaissance Robotics (RR) and Numerical
Renaissance (NR). The codes being developed for all three are designed to run in both Matlab and Octave (§A);
these codes are free3 and open source, as part of a GitHub codebase dubbed the Renaissance Repository. Please
help us improve this effort by submitting bug fixes, broken links, and suggestions/typos4 via this GitHub page.

Note finally that the zeitgeist of modern advances in science and engineering today is at the intersection
of traditional disciplines; an interdisciplinary perspective is thus foundational to the SR/RR/NR series of texts5.

1This text touches only briefly on second-order differential equations (when studying the problem of buckling, and observing the
resulting sinusoidal deformations before failure of slender members under compressive load), and otherwise does not leverage integral
or differential calculus; the material presented should thus also be readily accessible by motivated high school students.

2Introduces, but does not comprehensively cover, as it is designed to be digested in a single quarter, while motivating further study.
3All codes in the Renaissance Repository are copyright by the author, and are distributed under the BSD 3-Clause License.
4The two dots over the second vowel in common words like in naïve, Noël, and reëlect is called a diaeresis, which may be placed

over a vowel to indicate that it is sounded in a separate syllable in situations that might otherwise be ambiguous. For example, adding
“co” to “operative” gives a word which might easily be mispronounced if some form of diacritic is not used. One could suggest using
a hyphen, but then adding a second prefix (as is often done in scientific writing) becomes problematic: both nonco-operative and
non-co-operative are downright silly, but noncoöperative works fine. This series of texts, like the New Yorker, thus adopts a style that
makes extensive use of diaereses. This approach is hopefully well received by students named Anaïs, Brontë, Chloë, Eloïse, Gaëlle,
Joëlle, Maëlle, Zoë, Ismaël, Joël, Laocoön, Loïc, Maël, Noël, Raphaël, etc; to all others, please forgive this idiösyncrasy. :)

5The Renaissance was a creative and interdisciplinary scientific, artistic, and cultural movement, spanning from the 14th to the
17th centuries, which prioritized individual interests over those of the state, and was characterized by its emphasis on reason and
critical thinking. This word thus forms a focal point, or a “North Star” of sorts, for the present series of texts.
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Structural Renaissance (v.2025-04-12) Preface

It is perhaps useful to begin this (freshman/sophomore-level) study with a pointed question (not a joke...):

What is the difference between a Maker, a Mechanic, an AI, and an Engineer?

One possible answer that hits many of the essential points (see if you can state it better?) is:

An engineer does analysis-based deliberate design

to creatively, efficiently, safely, & aesthetically do useful new things while minimizing negative impact. That is:
• a Maker explores, inspirationally, what might be assembled and made functional,
• a Mechanic builds, largely applying his/her training in effective techniques for closely related problems,
• an AI matches patterns to tweak solutions (not necessarily correct or efficient) generated previously, while
• an Engineer analyzes and designs to generate new capabilities and efficiencies not previously attainable.

There are only 168 hours in a week, and 52 weeks in a year; how will you make maximum creative impact
with your time? In high school, we are conditioned (with a range of rewards and punishments, notably including
grades) that education largely involves training, repetition, short-term recall, and pattern matching, without
particular emphasis on the “stretching” of our brains to accommodate, and to creatively apply, new ideas.
Though our brief experiences as Makers and Mechanics are inspiring, training ourself to be memorizers of data
and matchers of patterns (especially in the age of constant connectivity and AI) is a fool’s errand.

For the purpose of seeing the world in new ways, identifying new opportunities, and analyzing / designing
new things as an engineer, the ability to synthesize and comprehensively summarize a diverse range of knowl-
edge across a broad range of disciplines is paramount, and requires a paradigm shift in how we learn, how we
think, and how we do; this shift (see §1) is a central aim of the present series of texts, starting here.

Tomake certainwe start off on the same page, we conclude this short prefacewith three overarching notions:

1. A key technical goal of this text is to help the reader to recognize and exploit linear relationships, which
are ubiquitous in engineering systems.

2. The approach we take to the subjects considered is to divide and conquer. That is, once we see how to
recognize sets of linear algebraic equations, how to standardize them into the form Ax = b, and how to solve
them (leading to zero, one, or infinite solutions x), we will codify (that is, automate) this solution process so that
we don’t solve linear equations by hand anymore, instead shifting our focus to larger problems, including:
- how various materials fail under load,
- how individual structural members made from such materials should be designed (leveraging linear analysis
tools) to minimize mass and cost while preventing failure under load, and
- how multiple structural members may be used together in three distinct design paradigms (frames, trusses,
and tensegrities, again leveraging linear analyses) to efficiently and robustly bear loads in engineering systems.

3. By intent, this text is concise, to the point of being terse. It can not be successfully be read diagonally (that
is, skimmed); the key topics it covers simply take time to digest, and such topics will at many points in this text
be stated only once. Don’t blink (especially in §2). Don’t pattern match. Instead, by synthesizing the concepts
you are learning, turn your creative energies to the much more rewarding problems of analysis and design. :)

If after all this you are still dialed in, plan your time accordingly (print this text, mark it up, ...). And, Welcome!
I look forward to assisting you on this exciting journey in these consequential times.

Tom Bewley
Colorado Springs

viii
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Chapter 1

The Art of Teaching & Learning

1.1 Data, Information, Knowledge, Understanding, and Wisdom
The English language is replete with words capable of nuanced expression. Paradoxically, modern use of this
rich language to discuss the Art of Teaching and Learning is inconsistent at best1. The purpose of this section is
simply to clarify the language to be used in the remainder of this chapter, not to impose the various semantic
distinctions made here upon others. We start by refining the language used in a working interpretation of the
“Stoll Spectrum” highlighted in the Preface:

Data - Facts, largely devoid of context. Often can be stated with a few words, numbers, dates, etc.
Information - Data with context, as well as algorithms and methods (both mental and physical).
Knowledge - Information with perspective, including the ability to discern both good methods, as well as
reliable/pertinent Information (in this age of rampant disinformation [11]), from those which are less so.
Understanding - Knowledge with judgement. Not just “what”, but “why”, and how other things relate.
Wisdom - Understanding with foresight. Ability to apply a balanced interpretation of things seen previously
to new (yet, different) situations. “Seeing both sides”, but still able to act decisively. Recognizing that the
consequences of decisions are often far reaching, and usually not “zero-sum”.

Many subjects (π, the U.S. Civil War, ...) can be framed at all five levels in this Spectrum; give it a try!

1.2 Education: Trainers, Instructors, Teachers, and Guides
In this work, I will use the word “educator” (and, “student”) in the general sense, as people who strive to impart
(and, to acquire) mastery of a given subject. Distinguishing the five levels articulated above is valuable when
considering what educators (and, students) strive to accomplish in various focused learning environments, such
as classrooms, homeschools, field trips, internships, apprenticeships, etc. An ancient proverb from Africa states

It takes a village to raise a child.

Education across all levels in the Stoll Spectrum is important. To borrow/modify a memorable quote by Yoda:

Data leads to Information, Information leads Knowledge,
Knowledge leads to Understanding, Understanding leads to Wisdom.

Without the lower levels in this succession, one does not have the foundation upon which to build to the higher
levels. Ultimately, as suggested by Kant’s A Critique of Pure Reason [7], Understanding and Wisdom must, in

1Many Conventional Texts on teaching (see, e.g., [2]) appear to miss the semantic distinctions of the type used herein, and the
inevitable conclusions to which they lead.
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Structural Renaissance (v.2025-04-12) Chapter 1: The Art of Teaching & Learning

fact, be based on Data and Information. When new Disruptive Data & Information2 is obtained, or new
Disruptive Technology3 is introduced, our understanding of things, and our approaches to solving problems,
must sometimes be modified fundamentally. That is, time spent experimenting and educating and learning at
the lower levels in this Spectrum is foundational, but without a deliberate effort/plan to reason towards the
higher levels, humanity in general, and students in particular, might never reach their full potential.

Furthering the Spectrum of semantic distinctions of §1.1, we also define the following types of educators:

Trainers enforce the memorization of Data, via a carrot (gold stars) or stick (demerits) approach,
Instructors model and drill to imprint Information, including physical Abilities and Skills, as well as standard
approaches to Project Management (establishing requirements, budgets, schedules, etc.),
Teachers conduct discussions and exercises resulting in the structured acquisition of Knowledge, as well as the
development of the critical thinking skills related to Logic and Reason, and
Guides ask deliberate, more open questions, leading students to refine an advanced Understanding of things,
and building upon that to help students develop their own approaches to Creative Ideation [10].

Most educators are, at once, working on at least two of the above four levels. In contrast, Wisdom is a trait that
can only flourish internally, over time; it is generally not a trait that can be taught by a Guru. Amongst other
online resources, web searches (∼10 seconds using Alexa/Siri devices), Wikipedia articles (∼5 to 30 minute
reads), and Operations Manuals (aka Dash Ones), provide terabytes upon terabytes of all sorts of Data and
Information, some (but not all) of which has been vetted to some degree, andmost of which (in small quantities)
can indeed be referenced and internalized, at least for a time, by a sufficiently-motivated student without much
assistance from an educator. Thus, the primary goals of Trainers and Instructors, as defined above, are simply
to select the Data and Information to be learnt, to model the desired behavior, and to provide said motivation4.

Since so much Data and Information is readily available online, and can reasonably be expected to remain
so, the committing of Data and Information to (fallible) human memory, and the performing of computations
using (fallible) human brains, is rapidly being supplanted by

a) the knowledge of how & where to access, reliably, significantly more such useful Data and Information, and
b) the formalization of both simple and complex algorithms as bug-free, easy-to-use computer codes.

Transferring yourmental effort fromyour fallible human brain to (a) and (b) is a significant paradigm shift as you
refine your engineering expertise. Note in particular that modern smartphones are at least 25x more powerful
than the Cray-2, the most powerful computer on the planet in the late 1980s, and run at just a few watts.
Calculators, like slide rules (and, the abacus that preceded them), simply no longer belong in a modern scientist

2Examples of Disruptive Data & Information include: (a) Galileo’s development of the telescope, the data from which led to
verification of the heliocentric theories of Copernicus, later refined by Kepler and Newton, in sharp contradiction to the dominant
“wisdom” of the time (geocentricity, as suggested by the Bible and enforced by the doctrine of the Catholic Church), (b) Eddington’s
1919 experimental observation of gravitational lensing (that is, the deflection of light rays by the mass of the sun, shifting the ap-
parent position of stars near the sun during a solar eclipse), and (c) Hulse and Taylor’s indirect verification of gravitational waves, by
measuring (in 1974, and the several years that followed) how the orbital period of a binary pulsar changed over time, together with the
2015 direct measurements of gravitational waves by the Caltech/MIT Laser Interferometer Gravitational-wave Observatory, which
measured truly minute undulations in spacetime caused by gravitational waves. Note that (b) and (c) validated parts of Einstein’s
Theory of General Relativity, which refined Newton’s Law of Universal Gravitation, which replaced religious edict.

3Examples of Disruptive Technology include: (a) the development of transistors, calculators, and computers, which radically
changed how calculations are performed, (b) the development of the internet and smartphones, and the persistent connectivity
which they provide, which radically changed how Data and Information are stored and recalled, and (c) the development of Artificial
Intelligence, which radically changed how large amounts of Data are processed and interpreted. These developments reduced the
need for (fallible) humans to calculate, to store/recall, and to process Data, while at the same time empowering (creative) humans to
address successively larger questions and problems.

4Think of the training “wax on, wax off”, by Mr. Miyagi in the movie Karate Kid. Repetitive training of this sort is indeed useful to
develop strength and to condition physical and mental reflexes (that is, to train Muscle Memory), but on its own does not contribute
directly to Knowledge and Understanding.
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or engineer’s arsenal of tools; rather, “smart devices” that can easily be programmed (including laptops, tablets,
and smartphones), with debugged and well-commented codes (including specifying units used, preferably SI),
and (when possible) connected to the internet, have rendered them obsolete. So also with certain types of
outdated Data-focused and Information-focused teaching and assessment methods5, as explored in §1.4.

1.3 Career paths: Operations, Development, and Creative Research
Furthering the use of semantic distinctions from §1.1 and §1.2 to clarify our discussion, we define the following
three broad types of career paths:

Operations leverages learnt Data and Information (see §1.1) to accomplish specific (oft, repetitive) tasks;
in many settings, such tasks are Dirty, Dull, & Dangerous, and are thus natural targets for automation.
Development is the combination of existing relevant Knowledge, Solutions, and Technologies, to generate
modified Solutions that meet somewhat different requirements than existing Solutions.
Research is the substantial creative extension of existing Knowledge, Solutions, and Technologies, to develop
revolutionary new Solutions, with capabilities that were previously only dreamt of6.

For career paths in Operations, all that is expected of a student’s formal education is Training and Instruction
(see §1.2). For example, at military academies and technical schools, students are trained how to shoot guns,
how to fly planes, how to service motorcycles, how to MIG & TIG weld, etc. Individuals Trained and Instructed
with such Data and Information are invaluable in their chosen craft, and to the corresponding military service,
without developing any substantially original ideas related to the Art of Shooting, the Art of Flying, the Art of
Motorcycle Maintenance, etc. At least, for now.

However, guns, planes, motorcycles, welding equipment, etc, are all changing rapidly with the advent of
new automation technologies: guns and welding equipment are increasingly being mounted to robots, fighter
jets are increasingly being remotely piloted, and/or accompanied by inexpensive Collaborative Combat Aircraft
(CCAs) as force multipliers, motorcycles are increasingly being made electric, etc. Positioning oneself not only
to Operate the dominant technologies of today, but also to help Develop and Research the technologies that will
replace them in the not-too-distant future, is, ultimately, significantly more valuable than simply Instruction
and Training on today’s technologies.

The perspectives associated with Knowledge, and the judgement associated with Understanding, are thus
inherently more valuable than Operations based just on Data and Information in the long run, as they facilitate:

• the Development of new solutions that build incrementally on existing solutions, and
• the Research (that is, the Creative Ideation) of “out-of-the-box” new solutions that will change the world.

Knowledge and Understanding are also progressively more delicate objectives for an educator to communicate
and inspire [13, 5, 9], and for a student to develop. In contrast to the imprinting of short-term Muscle Mem-
ory with rote memorization of Data and Information7, the Teaching and Guiding related to obtaining deeper
Knowledge and Understanding of topics8 that can be tied directly to various personal experiences and interests

5Examples of assessment methods that focus on the lower end of the Stoll Spectrum include multiple choice and fill-in-the-blanks,
which focus on learnt Data, and performing such-and-such computations by hand, for algorithms which in practice should rightly be
performed on a computer (like, most!). Assessment methods that focus on the upper end of this Spectrum are much more difficult to
develop, and inherently more subjective to grade, and focus, for example, on (a) the interpretation of the results of such computations,
(b) the consideration and development of algorithms that students in the class had not previously seen, etc.

6Examples (amongst many!) since 1900 include the development of: the radio, the Wright Flyer, the assembly line, penicillin, the
Salk vaccine, the ballpoint pen, plastic, synthetic rubber, atomic & hydrogen bombs, fission-based nuclear power, solar & wind power,
Sputnik, the SR-71, computers, the internet, smartphones, genetic engineering, the soft landing of Falcon 9 first-stage boosters, . . .

7For example, how to sketch a Bode plot by hand, if one doesn’t have a computer available.
8For example, how to use a Bode plot (drawn by a computer) to understand the frequency response of an open-loop system
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of students (e.g., how the dimmer switch in the classroom works, or how a cruise control in a car works, or how
a One-Wheel skateboard can be kept from falling over, or how an autonomous robotic system can map an area
and move within it without collisions, . . . ) has more lasting impact, as such examples fundamentally retructure
students’ perspectives. This is well summarized by the Ralph Waldo Emerson quote in the Preface.

Note also that Guiding amounts to Leadership in learning environments. Effective Leadership in such
environments requires a light touch. The essence of this notion is best captured in a quote by Lao Tzu:

A leader is best when people barely know he exists;
when his work is done, his aim fulfilled, they will say: we did it ourselves.

Finally, for Guiding to be effective, a Socratic method is ultimately needed, in which pointed questions are
asked by the Guide, and the students find themselves regaining (see §1.4) their (lifelong) individual respon-
sibility to build Knowledge and Understanding themselves, both within the classroom and beyond. [This shift
of responsibility needs to be clearly articulated; far too often, it goes unsaid.] To accomplish this, Guides need
to meet, connect, respond, and engage with the students, wherever they are in the maturity of their thinking.
In short, to be effective as a Guide, one additional mantra is essential:

Be agile.

1.4 On the pitfalls of Assessment, and the restoration of Curiosity

John F Kennedy once inspired a nation with the immortal words

We choose to go to the Moon in this decade, and do the other things,
not because they are easy, but because they are hard.

In fact, young children are endowed with an innate curiosity and internal drive that naturally rise to such
grand challenges. This is readily seen, e.g., in Montessori classrooms, in which, during quiet focused indepen-
dent work periods, students will, without being prompted by a Guide, often challenge themselves with, e.g.,
massive by-hand calculations (long division, square roots, etc). In such settings, students fluidly progress from
initial sensorial interactions with a wide range of inspiring physical materials9, to (as they develop and inter-
nalize the appropriate mathematical abstractions) readily generalizable understandings of the key concepts
that characterize them. Quite unfortunately, in most Conventional School systems, this innate curiosity and
internal (virtually unlimited) drive to explore, characterize, and understand the world around us, and to build
efficiently within it, is rapidly and exhaustively driven out of most young students. This represents a failure, in
the highest degree, of meeting our objectives as educators, and demands our close scrutiny.

The blame for this failure rests squarely on educators who supposedly should know better, and the Conven-
tional School systems within which most of us work. We are rewarded and punished (with awards, promotions,
and funding, or the lack thereof) by these systems, and we pass this demoralizing framework of rewards and
punishments (aka “Skinnerian conditioning”; see [8]) on to our students. The rewards and punishments that
educators receive are often based on the outcomes of standardized tests by our students, which primarily mea-
sure the Data and Information10 learnt (notably, not the time scale with which it will be retained), as well as

G(s) and, when corresponding feedback D(s) is used to fundamentally change the unfavorable dynamics of G(s), to characterize
accurately many important aspects of the step response of the corresponding closed-loop system T (s) = G(s)D(s)/[1+G(s)D(s)].
And, ultimately, how to design a controller D(s) appropriately to robustly achieve the desired system objectives.

9For example, the Binomial and Trinomial Cubes are wooden cubes orthogonally cut into, respectively, 23 = 8 and 33 = 27 pieces
of various sizes, which (ultimately) illustrate, tactilely, the 8 terms of (x+ y)3 and the 27 terms of (x+ y+ z)3, as well as the 4 terms
of (x+ y)2 and the 9 terms of (x+ y + z)2, making initial investigations of algebra significantly more concrete.

10In the language of this chapter, Data and Information are the quantities learnt that are most easily measured in an assessment
(see footnote 5), though are most likely not the primary objectives of an advanced course.
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student surveys, which measure the short-term satisfaction that students feel from the class11.
This leads many educators to keep students in their “comfort zones”, rather than guiding them into their

“growth zones” (see [6] and [3]), and to “teach to the test” (i.e., the assessments that supposedly measure
what has been accomplished in the classroom). And, it leads many students to “study / learn for the test”
(i.e., to program their short-term memory accordingly, to strive for an “A” in the class, not to master a longer-
term understanding of its underlying principles). This reduces many educators to act primarily as Trainers
and Instructors (see §1.2), conveying predominantly premasticated Data and Information, and it reduces many
students to act as short-term reservoirs for such premasticated content, as it is largely that which will be tested.

Evidence that, as educators in Conventional School systems, we have largely failed our central job, to inspire
students towards Creative Ideation informed by advanced Knowledge and Understanding, is evident every time
a student asks one of the following common questions:

1) What do I need to know to pass this class?
2) Will this be on the exam?
3) How can I maximize my GPA at this school, so I can get into my next school / job? [4]

The narrowing perspective represented by such questions is a direct result of the Conventional School sys-
tems to which our students have been subjected, which consistently focus them on getting an “A”. That is, the
primary blame for this limiting perspective does not actually fall to the students themselves, and it is highly
detrimental towards the larger objective of gaining a generalizable understanding of the Key Mathematical
Tools in college-level engineering, notably including:

Linear Algebra; Analysis of Structural Systems; Fourier, Laplace, & Z Transforms;
3D Dynamics; Programming; Numerical Methods; Linear Circuits; and Control Theory.

Zen and the Art of Motorcycle Maintenance [12] suggests

When you want to hurry something, that means you no longer care about it and want to get on to other things.

As educators, we need to strive to broaden the initially narrowing perspectives reflected by the above three
questions. Our task is not to answer these limiting questions, which exacerbate the Target Fixation of students
on getting an “A”, but to change the conversation. Too often, we take shortcuts that validate such narrowing
perspectives by, e.g., communicating correspondingly narrow Learning Objectives for each lecture or class.
Such limiting Learning Objectives, in the process of making the course “easier” on the students (by limiting
the scope of the Data and Information, and matchable patterns, that they “need” to pass the exams), serve to
invalidate the importance of acquiring a broader Understanding of the subjects being studied.

It is critical that educators organize well the subjects being studied, presenting their essence with an ele-
gantly clarifying notation (discussed further below), making relationships visual where possible, and tying the
subjects presented together, and to specific applications (see §1.3) that motivate the students.

However, educators are often rewarded in student surveys, much more simply, by the degree to which they
have premasticated the material presented, via identifying, through narrow Learning Objectives, specific Data
and Information, andmatchable patterns, thatwill be needed to pass the exams, thusmaking the course “easier”,
rather than challenging students to learn, more individually, how to chew and internalize big important subjects,
one bite at a time. This challenge itself has significant value, which often goes unrecognized; in particular, it
prepares students to digest the (evenmore difficult) KeyMathematical Tools (see above) that theywill inevitably
encounter next (either in a formal learning environment, or on their own).

The first essential step in broadening this initially narrowing perspective is thus:

Trust.

11Many student surveys reflect the students’ immediate feeling of mastery of the Data & Information, and matchable patterns,
presented in a course, as measured by their ability, in the short term, to recall this Data & Information, and to follow such patterns,
on exams; they usually do not focus on the degree to which the educator has inspired them, in the long term, to Think Different.
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By this, it is meant that care needs to be taken, with appropriate new mechanisms in place, such that:

• The students build trust in the educator, that the several foundational pieces being provided in class will
coherently build towards a supporting framework (one might say, a “scaffold”) upon which the students will
ultimately be able to accomplish great and original things in engineering.
• The educator builds trust in the students, that their interest and perspectives are sufficiently broadened to
focus on the “how” and the “why” of the subjects covered by the course, not just the narrow question of “what
is the minimum Data and Information, and set of patterns, that will get me through the exam”.
• The administration builds trust in the entire class (both the educator and the students), that they are working
together to move beyond the Data and Information captured in most standardized tests, to generate longer-
term generalizable Knowledge and Understanding of the essential course subjects.

As laid out in §1.2, in the present age of ready access to Data and Information online, and ready access to smart
devices that can easily be programmed to execute both simple and complex algorithms as bug-free, easy-to-
use (and, easy-to-verify) computer codes, the real-world significance of memorized Data and Information is
substantially diminished, and the importance of Knowledge and Understanding, to accomplish substantially
new things with Data and Information, and to build new Algorithms (solving bigger problems) upon existing,
debugged Algorithms (solving smaller problems), is heightened.

As educators, our assessment methods, and to a large degree our teaching methods, which are often closely
linked, have (for the most part) not yet undergone this same fundamental paradigm shift. Gottfried Leibniz,
who lived long before machines12 that could do substantial computations were invented, once said

It is unworthy of excellent men to lose hours like slaves in the labor of calculation
which could be relegated to anyone else if machines were used.

This quote gets directly at the question of how students can proceed to progressively deeper and deeper levels
in their understanding, given the remarkable Technologies available today. It is not by repeatedly showing
that students can do what machines should rightly be used for at that level. Rather students need to develop
an Understanding of algorithms well enough to: (a) direct machines to do these (repetitive) tasks for them,
(b) confirm that the answers produced by these machines are correct (trust, but verify), (c) know how and why
such algorithms may fail, as well how and when they may be substantially accelerated, and, subsequently,
(d) use the capabilities provided by these machines and algorithms to solve bigger problems.

Stated differently, as most educators and parents would now agree, it is important for primary students to
first do arithmetic, until they thoroughly understand the process of doing arithmetic; once that is mastered,
they should really not do arithmetic any longer. Rather, they should then upgrade to using calculators to do
arithmetic, so they can begin to focus their mental efforts on bigger problems.

To proceed far in one’s engineering studies, and fully realize one’s potential, it is necessary to continue
this trend to successively higher and higher levels of abstractions: it is similarly important for middle-school
students to do algebra (first single-variable, then multi-variable), until they thoroughly understand the process
of doing algebra; once that is mastered, they should not do algebra any longer. Rather, they should then use
symbolic tools on computers to do algebra13, as required frequently in engineering, so they can focus their
mental efforts on even bigger problems.

Continuing this trend: it is similarly vital for high-school students to do differential and integral calculus
and infinite sums and partial fraction expansions, until they thoroughly understand the process of doing these

12Indeed, the word “computer” in English, today, describes machines that do computations. Before such machines (first me-
chanical, then electromechanical, then solid state) were developed, “computers” were in fact humans, who performed often tedious
computations, by hand, for others.

13Once the use of computers is adopted to do algebra (and, to execute other algorithms that are easily automated), one’s calculator
should be passed along to a younger sibling, or a neighbor’s kid. As discussed in the last paragraph of §1.2, calculators are difficult to
program, and the use of them is highly prone to typos; they thus have no place in a modern college student’s backpack.
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things; once they are mastered, they should no longer do these things by hand. Rather, they should then use
computational tools to compute integrals and infinite sums (or, where appropriate, use tables of Laplace and Z
transforms) as well as partial fraction expansions, so they can begin to focus their efforts on still bigger problems
(e.g., in designing effective single-input-single-output transfer-function-based controllers).

Continuing even further: it is important for college students to do linear algebra, until they thoroughly
understand the problem of linear equations (Ax = b) and how to solve them (x = A−1b or x = A\b or
x = A+b, where A+ = V Σ−1UH ), and how to use the related fundamental matrix decompositions (A = LU ,
A = QR, A = SΛS−1, A = UTUH , A = UΣV H = UΣV H ); once these relationships are well understood,
students should first check, then trust, computer programs that perform these useful linear algebraic compu-
tations, so they can then confidently use such linear algebraic tools (there are many) when solving even bigger
problems (e.g., in designing effective multiple-input-multiple-output state-space controllers).

And so on. That is, once a core underlying subject (arithmetic, algebra, integral calculus, infinite sums,
partial fraction expansions, linear algebra, . . . ) is well understood (but, not a moment before!), machines should
then be employed (once the correctness of the results generated by the machine is verified) to solve that class
of problems in the future, so students can move to successively bigger problems.

Two additional relevant quotes by Gottfried Leibniz14 relate to the central importance of notation:
It is worth noting that the notation facilitates discovery.
This, in a most wonderful way, reduces the mind’s labour.

In symbols one observes an advantage in discovery which is greatest when they express the exact nature
of a thing briefly and, as it were, picture it; then indeed the labor of thought is wonderfully diminished.

At the outset of their studies, the following advice for engineering students helps them to focus appropriately:

• Mathematical abstractions (negative, irrational, & imaginary numbers; sines & cosines; polynomial roots;
frequency; latitude & longitude; yaw/pitch/roll; potential & kinetic energy; etc) empower clear engineering
thinking, and help us understand and solve important new problems; be prepared to embrace several new ones
(quaternions; filters; Fourier, Laplace, & Z transforms; eigen decompositions; etc) as the needs for them arise.
• Think beyond the numbers; understand new relationships with symbols.
• Once you master a new relationship, immortalize this new understanding with a clear, generalizable code.

1.5 Synopsis
To encourage students to think for themselves, the following advice is warranted:

Don’t follow instructions15.

It is useful for educators to provide personal real-life examples of when they followed less-than-clever published
instructions themselves, and “disaster” ensued. Students resonate well with such stories, of learning from one’s
own mistakes. Students also engage intently with stories of various more famous mistakes in engineering (for
example: the Tacoma Narrows Bridge, Francis Scott Key Bridge, Challenger, Mars Climate Orbiter, United
Airlines 232, Air France 447, AeroVironment Helios, . . . ), and the role that engineers play in properly designing
and analyzing, and loudly calling out all possible failure modes, of such systems, so that such disasters do not
occur. To encourage students to transition to constructive interrogations, rather than questions reflecting a
narrowing perspective (see §1.4), a Guide can illustrate by example [1], and students quickly pick it up:

14Of course, the following quote from the time he lived about Gottfried Leibniz helps put his contributions in perspective: It is rare
to find learned men who are clean, do not stink, and have a sense of humor. I am not clear whether this anonymous quote implies that
Leibniz never bathed, or that he was humorless (if you know, please contact me). Given his enlightened contributions to both calculus
as well as the binary number system that underlies all modern computers, amongst other things, I suspect the former. . .

15That is, when those instructions are unlawful, dangerous, or less than clever.
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• How can we understand this problem differently?
•How canwe change this system’s dynamics favorably? That is, how canwemake this system: lighter, stronger,
faster, cheaper, more reliable, more efficient, more stable, more agile, . . .
• How can I help you to benefit most from your remaining time at this school/college/university/academy?

Maria Montessori suggested that, to teach primary students effectively, one must Follow the Child. Recalling
the comment from §1.3, about tying examples in class to the personal experiences and interests of students in
their everyday world, this general notion can be applied across all levels of education: one should follow the
students’ interests to capture their attention, but then adroitly guide the students with leading questions that
they might not at first anticipate (regarding automation, agility, efficiency, failure, robustness, fault tolerance,
material selection, durability, manufacturing cost, operating cost, environmental impact, etc).

It is important to remain cognizant of the fact that, at the more advanced levels (in college and beyond,
in the “real world”), technology plays an increasingly important role in the everyday work of engineers (doing
arithmetic, algebra, integrals, sums, partial fraction expansions, linear algebra, root locus plots, Bode plots,
etc, on smart devices, thus disengaging these lower-level math problems from the work that engineers need
to do). Our classroom assessment methods must begin to de-emphasize both Data & Information, as well as
computations that are better left to computers, to best mimic such “real engineering scenarios”.

Returning to §1.1, note also that one does not proceed linearly from Data, to Information, to Knowledge,
to Understanding (and, eventually, to Wisdom) as one gets older. Quite the contrary, we repeatedly Spiral over
all of these levels in different subjects. Maria Montessori’s teachings focus on developing student-connected
Guides to lead Agile teams of primary children. Educators in freshman-level college classes and beyond would
do well to take a cue from that simpler time, before the innate curiosity and internal drive of students were
driven out by an imperfect educational system, punishing and rewarding with unilluminating Data-focused and
“human computer” educational assessments, and to explore every connection that can be made with students
to restore their natural human mindset towards characterizing and understanding the world around us, and
creatively designing advanced engineering systems to robustly perform useful tasks within it.
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Chapter 2

Matrix/Vector Math

2.1 Introduction to linear algebraic equations and their solution(s)
Solution of the following system of 3 linear equations (i.e., finding {x, y, z}) is trivial, as they are decoupled:

2x = 3
3 y = 9

4 z = 8
⇔

2 0 0
0 3 0
0 0 4

x
y
z

 =

3
9
8

 ⇒
x = 3/2
y = 3
z = 2

(2.1)

The matrix/vector form of these equations, often denotedAx = b, is given at center;A in this case is diagonal.
Now consider the solution (i.e., finding {x1, x2, x3}) of the following system of linear equations:

2x1 + 3x2 + 4x3 = 25

2x2 + 5x3 = 16

4x3 = 8

⇔

2 3 4
0 2 5
0 0 4

x1

x2

x3

 =

25
16
8

 ⇒
x1 = 4
x2 = 3
x3 = 2

(2.2)

Note the standard notation used in this example, in which the unknowns {x1, x2, x3} in the Ax = b form are
numbered as the n = 3 elements of the vector of unknowns, x. The matrix A in this case is triangular, with
zeros in the lower-triangular elements. This 3× 3 system is almost as easy to solve as (2.1). The process, called
backsubstitution, proceeds as follows: solve the last eqn for x3, substitute the result for x3 into the previous
eqn and solve for x2, and substitute the results for {x2, x3} into the first eqn and solve for x1. Larger (n × n)
systems, with symbolic, real (floating point), or complex elements, follow the same solution process, starting
from the n’th element and working back up to the first, and the process is trivial to automate (at least, if the
diagonal elements of A are nonzero, a challenge called singularity which is addressed further below).

Now consider a problem of the same size, but in which A has no readily exploitable sparsity structure:

1x1 + 2x2 + 3x3 = 10

4x1 + 5x2 + 6x3 = 28

7x1 + 8x2 = 37

⇔

1 2 3
4 5 6
7 8 0

x1

x2

x3

 =

10
28
37

 ⇔

[ 1 2 3
4 5 6
7 8 0

∣∣∣∣∣
10
28
37

]
(2.3a)

Note the augmented matrix notation introduced in this example above right; by definition, this represen-
tation is equivalent to the two forms at left, summarizing all of the essential elements defining this system of
equations, but consuming less space. The matrix A in this case is full. The (disorderly) “high-school” solution
approach, of “plugging one equation into another” ad nauseam, is error-prone. Better is the (orderly) “row-wise”
solution process called Gaussian Elimination, which we demonstrate by example below.

The goal of the Gaussian Elimination procedure, after a series of simple row combinations, is to transform
the set of equations to an (equivalent, but modified) upper triangular matrix form, which as seen in (2.2) is then
simple to solve with backsubstitution.
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To proceed in the (2.3a) example above, simply

• add −4 times the 1st equation to the 2nd equation, replacing the 2nd equation in the set with the result:

−4·{1x1 + 2x2 + 3x3 = 10}
+{4x1 + 5x2 + 6x3 = 28}

−−−−−−−−−−−−−
{0x1 − 3x2 − 6x3 = −12}

and thus

[ 1 2 3
4 5 6
7 8 0

∣∣∣∣∣
10
28
37

]
⇒

[ 1 2 3
0 −3 −6
7 8 0

∣∣∣∣∣
10
−12
37

]
(2.3b)

The resulting set of equations, as shown above right with the modified values in red, is completely equivalent
to the original set of equations, as the modified second equation is simply the original second equation with
something true (specifically, −4 times the first equation) added. To continue,

• add −7 times the 1st equation to the 3rd equation, replacing the 3rd equation in the set with the result, and
• add −2 times the new 2nd equation to the new 3rd equation, replacing the 3rd equation with the result:[ 1 2 3

0 −3 −6
7 8 0

∣∣∣∣∣
10
−12
37

]
⇒

[ 1 2 3
0 −3 −6
0 −6 −21

∣∣∣∣∣
10
−12
−33

]
⇒

[ 1 2 3
0 −3 −6
0 0 −9

∣∣∣∣∣
10
−12
−9

]
⇒

x1 = 3
x2 = 2
x3 = 1

(2.3c)

As the last augemented matrix form above has a triangular A, we just use backsubstitution to solve, as in (2.2).
The solution of larger full (n× n) systems, with symbolic, real (floating point), or complex elements, follow the
same Gaussian Elimination process, which is again straightforward to automate.

There are two remaining challenges. The first is that, during the Gaussian Elimination process, which
modifiesA to a triangular form while still representing a relationship between the unknowns that is equivalent
to the original set of eqns, theremay be a zero element in an inconvenient place. In particular, when attempting
at a certain step in this process to add a multiple α of row i to row j > i, in order drive the i’th element of row j
to zero, there might already be a zero in the i’th element of row i, and thus no value of α will do the necessary
job. The solution is simply to first swap row iwith one of the rows below it which is nonzero in the i’th element.
This is again best illustrated by example, the notation of which should by now be self evident (the challenge in
this particular example, and the row swapping solution implemented, is at the outset, when i = 1 and j = 2):

4x2 + 5x3 = 6

2x1 + 1x2 = 0

8x1 + 8x2 + 7x3 = 8

⇔

[ 0 4 5
2 1 0
8 8 7

∣∣∣∣∣
6
0
8

]
⇔

[2 1 0
0 4 5
8 8 7

∣∣∣∣∣
0
6
8

]
⇔

[2 1 0
0 4 5
0 4 7

∣∣∣∣∣
0
6
8

]
⇔

[2 1 0
0 4 5
0 0 2

∣∣∣∣∣
0
6
2

]
(2.4)

and thus x1 = −1/8, x2 = 1/4, x3 = 1. This row swapping process is referred to as partial pivoting.
BTW, you might be wondering at this point how much of this process you should be able to do by hand.

The practical answer may surprise you, if you haven’t yet read §1: none of it! You will always have a computer
available when you do engineering. Solutions to (2.1) to (2.4), and larger problems with similar structure, are
easily generated using carefully-written numerical codes. For instance, copy/paste the following lines inMatlab:

>> A=[2 0 0; 0 3 0; 0 0 4], b=[ 3; 9; 8], x=A\b, A∗x % problem (2.1)
>> A=[2 3 4; 0 2 5; 0 0 4], b=[25; 16; 8], x=A\b, A∗x % problem (2.2)
>> A=[1 2 3; 4 5 6; 7 8 0], b=[10; 28; 37], x=A\b, A∗x % problem (2.3)
>> A=[0 4 5; 2 1 0; 8 8 7], b=[ 6; 0; 8], x=A\b, A∗x % problem (2.4)

To see exactly how fast your computer can solve a very large problem of this sort, try the following in Matlab:
>> A=rand(10000,10000); b=rand (10000,1); tic , x=A\b; toc , norm(A∗x−b)

For example, on a 2024 Mac M3 laptop, this 10000 × 10000 problem is solved, without the possibility of
human error, in about 1.8 seconds (as measured by the tic and toc commands shown), with a total error norm
of about 10−9. You would never be able to solve a problem even a fraction of that size by hand without error.
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On the previous two pages, you learned (by example) how to write a set of n linear equations in n unknowns
as Ax = b, and how the full Gaussian Elimination process with partial pivoting, together with backsubstition,
enables you to solve for the unknowns {x1, x2, . . . , xn} quite easily, using a computer1, even for large n and
complicated (but, known) entries inA andb, as long asA is nonsingular. We noted that, in engineering practice,
you should never compute that algorithm by hand, which is a process that, though well structured, is still prone
to human error, even for relatively small n. Instead, simply set up A and b on a computer, and calculate A\b.

The second remaining challenge is the possible singularity of A. This is illustrated via example below.

1x1 + 2x2 + 3x3 = 11

4x1 + 5x2 + 6x3 = 29

7x1 + 8x2 + 9x3 = 47

⇔

[ 1 2 3
4 5 6
7 8 9

∣∣∣∣∣
11
29
47

]
⇔ . . . ⇔

[ 1 2 3
0 −3 −6
0 0 0

∣∣∣∣∣
11
−15
0

]
⇔

[ 1 2 3
0 1 2
0 0 0

∣∣∣∣∣
11
5
0

]
(2.5a)

You should by now be able to fill in the intermediate steps yourself (though, again, in actual engineering practice
you will always use a computer). Note first that, in the form at right, the second row was simply divided by its
nonzero diagonal element, somewhat simplifying the (equivalent) final form. Note also the trivial final row. The
implication of this is that x3 may be selected arbitrarily. It then follows from the second line that x2 = 5− 2x3,
and from the first line that x1 = 11− 2x2 − 3x3 = 1 + x3. Thus, {x1, x2, x3} = {1, 5, 0} and {2, 3, 1} are two
(of the infinite) possible solutions

Another system of equations, with the same matrix A but slightly different RHS, dubbed b̃, is

1x1 + 2x2 + 3x3 = 11

4x1 + 5x2 + 6x3 = 29

7x1 + 8x2 + 9x3 = 48

⇔

[ 1 2 3
4 5 6
7 8 9

∣∣∣∣∣
11
29
48

]
⇔ . . . ⇔

[ 1 2 3
0 −3 −6
0 0 0

∣∣∣∣∣
11
−15
1

]
⇔

[ 1 2 3
0 1 2
0 0 0

∣∣∣∣∣
11
5
1

]
(2.5b)

Looking at the last row now, it is seen that there are zero sets of {x1, x2, x3} that solve this set of equations.
A zero on the main diagonal may appear earlier during the Gaussian Elimination process, before getting to

the final row. A minor tweak on this process converts the augmented matrix [A|b] (that is, the matrix A with
the column b tacked on to the right) to what is called row echelon form, where (a) all rows consisting only of
zeros are at the bottom, and (b) the “leading” nonzero entry of each non-zero row, dubbed the “pivot”, is a “1”,
and is to the right of the pivot in the row immediately above it. We can further simplify a matrix in row echelon
form by subtracting the appropriate multiples of each nonzero row from the rows above it, resulting in what
is known as a reduced row echelon form where, additionally, (c) each pivot is the only nonzero entry in its
column. Given this, it is straightforward to parameterize all solutions of any singular Ax = b problem: simply
select the elements of x corresponding to each nonpivot column of the modified [A|b] (in reduced row echelon
form) arbitrarily, then solve the nonzero rows of the modified [A|b] for the elements of x corresponding to the
pivot columns of A. However, this method of parameterizing all solutions of an Ax = b problem is not nearly
as illuminating as that discussed next, so you can/should mostly ignore this paragraph (apologies. . . ).

To summarize §2.1, we have seen that, in general, there may be zero, one, or infinite vectors x that solve
a given Ax = b problem. Gaussian elimination (x=A\b) is the go-to tool to determine x in the case that there is
one solution, and may be extended to address the cases with zero or infinite solutions. However, to understand
better the latter two cases, a different viewpoint is suggested, as laid out in §2.3.

1The process of automating Gaussian Elimination with partial pivoting in computer code is developed from scratch in §2 ofNR, and
is beyond the scope of the present introduction, as Matlab’s built-in \ routine works just fine. In addition to generating the x that
solves Ax = b for a given {A,b}, assuming A is square and nonsingular, the full algorithm generates three matrices {P,L, U} such
thatA = PTLU , whereU is upper triangular,L is unit lower triangular (that is, lower triangular, with ones on themain diagonal), and
P is a permutation matrix (that is, an identity matrix with several row swaps applied); this is referred to as a fundamental matrix
decomposition, and is sometimes useful. If partial pivoting is not used, the P matrix in this decomposition is just the identity, and
may be dropped. To demonstrate, try the following in Matlab: >> format short, A=randi (10,10), [L,U,P]=lu(A), norm(A−P'∗L∗U)
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2.2 Vector spaces, subspaces, and orthogonal complements
A brief review of vector calculus is now useful. A vector is a directed line segment; it has both a magnitude
and a direction. An nD real or complex vector (in 2D, 3D, 4D, . . . ) has n = 2, n = 3, or n > 3 real or complex
elements; the set of all real or complex nD vectors is referred to as Rn or Cn, respectively. Vectors can have
numeric or symbolic elements. A matrix can be thought of as a collection of vectors in its columns.

With the appropriate addition and scalar multiplication operations defined, a vector space is the set of all
vectors that may be reached by linear combination of 0, 1, 2, 3, or more spanning vectors (i.e., the space is
said to be spanned by those vectors), where the scalars (denoted αi below) in the linear combinations are taken
as the same type (e.g., real or complex) as the elements of the vectors in the vector space itself; for example,

if C = span


1 2
4 5
7 8

, then all y ∈ C may be written as y =

0
0
0

+ α1

1
4
7

+ α2

2
5
8

 (2.6a)

where αi parameters are real and arbitrary. A vector space is closed; that is, any linear combination of vectors
in a vector space is also in that vector space. All vector spaces contain at least the zero vector (a vector with all
elements equal to zero). The set of all real or complex nD vectors, defined above as Rn or Cn, are vector spaces.

A subspace is a subset of a vector space that itself is also a vector space. Noting (2.6a), the expression
C ⊂ R3 may be used to indicate that the vector space C is a subspace of R3; geometrically, it may be visualized
as the plane in 3D that contains the origin and the two column vectors in the curly brackets in (2.6a).

Any set of r vectors forming a basis that spans a vector space is independent (that is, none in the basis
may be expressed as a linear combination of the others). An orthogonal basis is a basis such that all basis
vectors are mutually orthogonal (that is, such that the dot product between any two vectors forming the
basis is zero). An orthonormal basis is an orthogonal basis such that the length of each basis vector is 1.

The orthogonal complement C⊥ of a vector space C is the set of all vectors y such that each yC⊥ ∈ C⊥ is
orthogonal to all yC ∈ C, and thus each yC ∈ C is orthogonal to all yC⊥ ∈ C⊥. If C and C⊥ contain vectors in
Rm (or Cm), than any y ∈ Rm (or Cm) may be uniquely orthogonally decomposed such that y = yC + yC⊥

for some yC ∈ C and some yC⊥ ∈ C⊥.
For the example given in (2.6a), an orthogonal basis and an orthonormal basis of C, and a basis of C⊥, are

C = span


1 3
4 1
7 −1

 = span


1/
√
66 3/

√
11

4/
√
66 1/

√
11

7/
√
66 −1/

√
11

 , C⊥ = span


1
−2
1

 . (2.6b)

Note (confirm yourself!) that the vectors that span C are perpendicular to the vector that spans C⊥. Also:3
6
9

 = −1

1
4
7

+ 2

2
5
8

 =
15

11

1
4
7

+
6

11

 3
1
−1

 and b =

11
29
47

 =
76

11

1
4
7

+
15

11

 3
1
−1

 (2.6c)

(confirm yourself). The relations above show that, in (2.5a), the third column ofA and the vector b are spanned
by the first two columns of A (and we thus say that the rank of A is 2). In contrast,

b̃ =

11
29
48

 = yC + yC⊥ where yC =
463

66

1
4
7

+
14

11

 3
1
−1

 and yC⊥ =
1

6

 1
−2
1

 (2.6d)

(confirm yourself). That is, in (2.5b), the vector b̃ can not be written simply as linear combination of the columns
of A, but also contains a component from C⊥. In §2.3, we illustrate graphically the subspaces that arise from
such Ax = b problems, and summarize how they relate to the solvability (and, to the uniqueness of solutions)
of Ax = b, and identify a simple way to calculate their orthogonal bases.
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2.3 The four fundamental subspaces defined by A

At this point, for any rectangular2 Am×n, it is useful to reviewmore concretely whatmatrix/vectormultiplication
actually achieves. Viewed one way (with a row-wise interpretation of A), the i’th element of b is simply the
dot product of row i of A with the vector x; viewed the other way (with a column-wise interpretation of A),
the vector b is seen to be a linear combination of the columns of A with the elements of x as weights:

Ax = b ⇔
n∑

j=1

aijxj = bi for i = 1, . . . ,m ⇔

a11
...

am1

x1+

a12
...

am2

x2+. . .+

a1n
...

amn

xn =

 b1
...
bm

 (2.7a)

Note that aij refers to the element in the i’th row and j’th column of A. For the 3× 3 example in (2.5a):

Ax = b ⇔
1 · x1 + 2 · x2 + 3 · x3 = 11

4 · x1 + 5 · x2 + 6 · x3 = 29

7 · x1 + 8 · x2 + 9 · x3 = 47

⇔

1
4
7

x1 +

2
5
8

x2 +

3
6
9

x3 =

11
29
47

 (2.7b)

Following the column-wise interpretation of A, it is seen that the vector bmust be a linear combination of the
columns of A (that is, b must be in the column space of A, denoted b ∈ C) for there to be a vector x that
solves Ax = b. If some other b̃ has any nonzero component in the orthogonal complement of C, called the
left nullspace and denoted L = C⊥, (that is, if b̃ /∈ C) then there is no vector x that solves Ax = b̃.

We similarly call the row space of A, denoted R, as the subspace containing all vectors that can be reached
by linear combination of the columns of AT (that is, by the rows of A). The orthogonal complement of R is
called the nullspace and is denoted N = R⊥. Any vector xN ∈ N is orthogonal to all rows of A, so AxN = 0.
The significance of this to theAx = b problem is that, for any xN ∈ N, we haveAxN = 0, and thus, if x1 solves
Ax1 = b for some b, then x2 = x1 + xN also solves; that is, Ax2 = A(x1 + xN) = Ax1 + AxN = b+ 0.

Note similarly that any vector yL ∈ L is orthogonal to all columns of A, so ATyL = 0.
For the 3×3 example in 2.7b, the subspaces C and L = C⊥ are defined in (2.6a) and (2.6b), and the subspaces

R and N = R⊥ are defined analogously (but based on AT instead of A), leading to

C = span


1 2
4 5
7 8

 , L = span


1
−2
1

 , R = span


1 4
2 5
3 6

 = span


1 4
2 1
3 −2

 , N = span


1
−2
1

 , (2.8)

noting (confirm yourself) that the vectors that span R are perpendicular to the vector that spans N, and that
the third column of AT (that is, the third row of A) is spanned by the first two columns of AT (that is, the first
two rows of A); in other words, only 2 of the 3 rows of A are linearly independent [consistent with the fact,
seen in (2.6c), that only 2 of the 3 columns of A are linearly independent; again, the rank of A is said to be 2].

The entire discussion above is summarized compactly in the Strang Cartoons shown in Figures 2.1-2.3;
orthogonal bases of {C, L,R,N} for several more small example matrices are listed in Figure 2.4.

The best way to determine the rank of a matrix, in addition to generating orthonormal bases of {C, L,R,N},
is to use the singular value decomposition3 (SVD), which may be written A = UΣV H = UΣV H , where

U =
[
U U

]
, Σ =

[
Σ 0
0 0

]
, V =

[
V V

]
, and where Σ = Σ r×r is diagonal, with positive entries in decreasing

order along the main diagonal, and where {U,U, V , V } form orthonormal bases for {C, L,R,N}, respectively.
2The notation Am×n is used to indicate that the matrix A has m rows and n columns, where m may or may not equal n.
3The computation of the SVD is developed from scratch in §4 of NR, and is beyond the scope of the present introduction, as

Matlab’s built-in svd routine works just fine. To demonstrate, try the following: >> A=[2 −2 −4;−1 3 4;1 −2 −3], [U,S,V]=svd(A).
For integer matrices, the RR_Subspaces command (click for link) generates integer orthogonal (but, not normalized) bases of the four
fundamental subspaces, as reported in Figure 2.4, which are somewhat simpler.
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Figure 2.1: Version 1 of the Strang cartoon [4] for any square or rectangular matrixAm×n, depicting stylistically
the vector space Rn on the left half (where x ∈ Rn), and the vector space Rm on the right half (where y ∈ Rm).
The nullspace N is all x such thatAx = 0, and the left nullspace L is all y such thatATy = 0. Note also that:
the row space R = N⊥ is the orthogonal complement of the nullspace (each xR is orthogonal to all xN), and
the column space C = L⊥ is the orthogonal complement of the left nullspace (each yC is orthogonal to all yL).
If N has more than the 0 element, then Ax = b is underdetermined.

Figure 2.2: Version 2 of the Strang cartoon, illustrating the mapping from x to y due to A (that is, Ax = y).
Any xR ∈ R maps uniquely to some yC ∈ C via AxR = yC. More generally, any x ∈ Rn may be orthogonally
decomposed such that x = xR+xN; thus, for any x ∈ Rn, it follows immediately thatAx = A(xR+xN) = yC.
Note that the column space C includes everywhere reachable via linear combinations of the columns of A.
If L has more than the 0 element, then Ax = b is potentially inconsistent.
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Figure 2.3: Version 3 of the Strang cartoon, illustrating the mapping from y back to x due to AT . Any yC ∈ C
maps uniquely to some x′

R ∈ R viaATyC = x′
R; however, in general, x

′
R is not the same as the xR from which yC

originated in Figure 2.2. More generally, any y ∈ Rm may be orthogonally decomposed such that y = yC+yL.
In the special case that AT = A−1 (that is, if AT A = I , and thus A is said to be orthogonal), then x′

R = xR.
Note that the row space R includes everywhere reachable via linear combinations of the columns ofAT (or,A−1).
IfA is invertible, thenx = A−1y for anyy; if N and/or L havemore than just the zero element,A is not invertible.

matrix A C = im(A) L = C⊥ R = im(AT ) N = R⊥ (pseudo)-inverse1 2 3

4 5 6

7 8 0

 R3 {0} R3 {0} 1

9

−16 8 −1

14 −7 2

−1 2 −1


 2 −2 −4

−1 3 4

1 −2 −3

 span


2 2

−1 3

1 −1

 span


1

−2

−4

 span


1 1

−1 1

−2 0

 span


−1

1

−1


1

63

 38 29 −5

28 28 −7

−10 −1 −2


2 2 −2

5 1 −3

1 5 −3

 span


2 4

5 −5

1 17

 span


3

−1

−1

 span


1 −1

1 1

−1 0

 span


1

1

2


1

264

 8 45 −21

8 −21 45

−8 −12 −12


1 2

3 4

0 0

 span


1 0

0 1

0 0

 span


0

0

1

 R2 {0} 1

2

(
−4 2 0

3 −1 0

)
(
1 2 0

3 4 0

)
R2 {0} span


1 0

0 1

0 0

 span


0

0

1


1

2

−4 2

3 −1

0 0


Figure 2.4: Orthogonal bases of {C, L,R,N}, and the inverse (if it exists, as in the first row, with rank 3) or the
pseudoinverse (if the inverse does not exist, as in the remaining rows, with rank 2) of a few small matrices. The
A matrix in the fifth row is underdetermined, with∞ solutions to Ax = b (x3 can be anything). The A matrix
in the fourth row is potentially inconsistent, with 0 or 1 solutions to Ax = b depending on b3. The A matrices
in the second and third rows are both underdetermined and potentially inconsistent, with 0 or ∞ solutions to
Ax = b depending on b. The A matrix in the first row is nonsingular, with 1 unique solution x = A\b.
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There is one remaining (profound) piece of the puzzle: how to compute the “best” solution to Ax = y when
the inverse A−1 doesn’t exist, because either

a) there may be no solutions at all (i.e., when A is potentially inconsistent, with nonzero elements in L),
a) multiple solutions may exist (i.e., when A is underdetermined, with nonzero elements in N), or
c) both (a) and (b).

The answer [2] to this question is just to compute x = A+y whereA+ is theMoore-Penrose pseudoinverse,
which follows easily from the SVD discussed above such that A+ = V Σ−1UH . As illustrated graphically in
Figure 2.3, denoting y = yC +yL, the result of this simple computation is to map (uniquely) the component yC

of y, which is in the column space, back to xR in the row space (where it originated via the forward mapping
yC = AxR), and just to map the component yL of y, which is in the left nullspace, back to the origin in x, as it
is impossible to arrive at any y with a component in the left nullspace via the forward mapping.

2.4 Full solution of any Ax = b problem
We are now ready to put it all together.

In §2.1, we showed how Gaussian Elimination (a relatively simple “row-wise” approach) could be used
to solve Ax = b for linear systems of equations for which the corresponding A matrix is square (n × n) and
nonsingular; that is, such that each row can not be written as a linear combination of the other rows, and thus
each column can not be written as a linear combination of the other columns, and thus r = rank(A) = n.
It was mentioned that a straightforward generalization of the Gaussian Elimination approach can be used to
establish that there are no solutions, and/or to parameterize the set all solutions, to the Ax = b problem in the
case of a singular or nonsquare A.

However, these two later cases are much better handled by the (“column-wise”) approach discussed in §2.3,
the heart of which is the Singular Value Decomposition (SVD). Stable algorithms [5] and codes [in Matlab,
using [U,S,V]=svd(A)] for computing the SVD are readily available, and:

• computing the SVD is the best available way to compute the rank r of A (in Matlab, with r=rank(A)),
• the SVD determines directly orthonormal bases for {C, L,R,N} (summarized in the Strang cartoons), and
• the Moore-Penrose pseudoinverse A+ follows directly from the SVD (in Matlab, with Aplus=pinv(A)).

To sum it all up, any linear system of algebraic equations, once rewritten as Ax = b, may be solved on a
computer (that is, quickly, and without the possibility of human error) by following the flowchart in Figure 2.6,
which simply combines all the various results developed earlier in this chapter in a convenient order.
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Figure 2.5: Version 4 of the Strang cartoon, illustrating the forward and best available inverse mapping from x
to y (due to A) and y back to x (due to A+). Note that A+ is the “best” available substitute for A−1 when A−1

does not exist, in that it minimizes both ∥ϵ∥, and (secondarily) ∥x∥, in the solution of Ax = b + ϵ. Note also
that both R and C are spanned by r vectors, where r is the rank of A (in Matlab, r=rank(A)), N is spanned by
(n− r) vectors, and L is spanned by (m− r) vectors.

Figure 2.6: Complete flowchart for solving Ax = b for any Am×n, with m < n, m = n, orm > n.
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Chapter 3

Structural Material Types & Properties

We aspire in this text to analyze and, ultimately, design robust structural systems that are, to varying degrees:
strong, lightweight, inexpensive, corrosion resistant, long lasting (minimizing life cycle fatigue, dampening
vibrations), thermally stable (minimizing buckling due to thermal expansion, brittleness at low temperatures,
creep at high temperatures), deployable, controllable, fault tolerant, maintainable, and forgiving to overstress
(bending before breaking in emergency landings and earthquakes), with minimal environmental impact.

It’s a long list of needs, and involves a lot more than just computing internal member forces when the
structural system under consideration is subjected to various nominal and emergency loading conditions,
and selecting the structural members accordingly (though that is certainly an essential part of it). Structural
systems are made from individual structural members, and in turn individual structural members are made
from materials. Thus, any study of the analysis and design of structural systems must start with a survey of
the available materials with which the structural members may be built, and how these materials react to load.

3.1 Structural materials: a brief survey

The 4 classes of structural materials are metals (with metallic bonds), ceramics (with covalent and/or ionic
bonds), polymers (with covalent bonds of hydrocarbons), and composites thereof. In short:

• Metals are primarily composed of metallic elements (the 6 most common being iron, aluminum, copper,
titanium, magnesium, and cobalt) mixed with lesser amounts of other elements (aka alloyants) to form
alloys that improve the several properties summarized above, as highlighted in Figure 3.1. Examples:

- Steel (aka plain carbon steel) is the structural material against which all others are compared. Steel is iron
plus 0.05% to 2% carbon by weight (increased carbon generally makes it harder). Steel is high strength and low
cost; different manners of processing and heat treating lead to a wide range of different properties (see §3.2).
- Alloy steel, which is steel with any of a large number of different alloyants (see Figure 3.1), achieve different
balances of strength, hardness, toughness, wear resistance, corrosion resistance, and temperature stability.
- Stainless steel is an alloy steel with∼11% chromium and other alloyants. When exposed to oxygen, a passive
film of chromium oxide forms that protects the material from rust (iron oxide) and other types of corrosion.
- Cast iron, which is iron plus > 2% carbon and 1% to 3% silicon, is harder and much more brittle than steel.
Cast iron is commonly used in cookware due to its health benefits; most other uses of cast iron in engineering
applications in the past have been replaced by other materials on this list with better mechanical properties.
- Aluminum alloys, with copper, magnesium, manganese, silicon, tin, nickel, zinc, and/or other alloyants, are
lightweight, relatively inexpensive structural materials common in many modern engineering applications.
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- Bronze is a copper alloy with∼12% tin and other alloyants, providing relatively high ductility and strength.
- Brass is a copper alloy with ∼ 30% zinc, offering high corrosion resistance and malleability, and low friction.
- Gun metal (aka red brass) is a copper alloy with ∼ 9% tin and ∼ 3% zinc, which casts and machines well,
and is resistant to corrosion by steam and salt water.
- Titanium alloys, with ∼ 6% aluminum, ∼ 4% vanadium, and other alloyants, offer very high toughness,
corrosion resistance, and strength-to-weight ratio valuable in aerospace applications, but they are expensive.
- Magnesium alloys, with aluminium, manganese, zinc, zirconium, silicon, yttrium, and other alloyants, offer
the very best strength-to-weight ratio available, but are also expensive.
- Cobalt-chrome is mostly cobalt, 25% to 32% chromium, and small amounts of molybdenum, manganese,
silicon, iron, nickel, carbon, and other alloyants, which provides good resistance to wear and corrosion.

Metal materials may formed into shape with some combination of 3 general techniques; they may be:

wrought [shaped via deformation, like extrusion/drawing (pushing/pulling through a die), rolling (squeezing
between pairs of roller), upsetting (squeezing in a machine press, decreasing length & increasing area), die
stamping, cutting, raising/sinking/planishing (hammering with a backing), roll forming/bending, and forging1],
machined [shaped via subtractive manufacturing, the 3 important modes of which are drilling (moving a
rotating bit in its longitudinal direction against a stationary workpiece, to cut a circular hole),milling (moving
a rotating bit in its lateral directions against a stationary workpiece, cutting with the edge of the bit), and turn-
ing with a lathe (rotating the workpiece, slowly moving a cutting bit up against it; cf. drilling and milling)], or
cast [shaped via pouring molten metal into a mold].

Various types of metals, with different alloyants, respond to these distinct methods of forming quite differently.
Some metals (notably stainless steel, aluminum, titanium, and cobalt-chrome) may be formed with additive
manufacturing (aka 3D printing) via a Direct Metal Laser Sintering (DMLS) processes.

• Ceramics are made of inorganic, non-metallic compounds like oxides, nitrides, or carbides. Ceramics are
typically hard, brittle, electrically insulating, and highly resistant to corrosion and extreme temperatures.
Examples include porcelain, glass, and diamond. An important use of brittle ceramics in structural systems
is as sacrificial shear pins acting as mechanical safegaurds, designed to fail at a predictable level of stress
before other parts in the system are damaged. Common uses include the connection between a lawnmower
blade and the lawnmower engine, or between a pushback tractor and a large aircraft at an airport gate. In
such applications, the shear pin acts akin to an electrical fuse designed to fail at a predictable level of current,
protecting the rest of the system. Shear pins can also be used as conditional operators, preventing a device
(like a fire extinguisher, or the explosive charge in an air-to-air missile) from operating until a specified force
(on the handle, or from the launch of the missile) breaks the pin, thus allowing the device to function.

• Polymers are organic compounds (containing carbon-hydrogen and carbon-carbon covalent bonds) that are
lightweight, often relatively flexible, and can easily be formed into complex shapes. Examples include nylon,
rubber, natural fibers (wood, . . . ), and plastics (ABS, PLA, PETG, TPU, PVA, Polypropylene, ...). Nylon and
plastics are often used in 3D printing, the three major types of which are FDM (Fused Deposition Mold-
ing), SLA (Stereolithography), and SLS (Selective Laser Sintering). PMMA (polymethyl methacrylate) is a
hard plastic commonly known as acrylic and marketed under brand names like plexiglass, lucite, or perspex.
PVC (polyvinyl chloride) and CPVC (chlorinated PVC) are commonly used for pipes. Some polymers, like
kevlar (an aromatic polyamide characterized by long rigid crystalline polymer chains), are extremely strong.

1Forged metal is a special case of wrought metal that has been worked at elevated temperatures using localized compressive
forces, typically with a hammer & anvil or a closed die.
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Figure 3.2: The 2 primary crystal structures of low-carbon and medium-carbon steel, shown as sphere packings:
(left) Body Centered Cubic (BCC) aka ferrite, and (right) Face Centered Cubic (FCC) aka austenite. Iron atoms
are depicted in green, and a small interstitial carbon atom is depicted, at right, in black.

• Structural composites generally incorporate a matrix, which is the structural material (polymer, metal or
ceramic) that binds together the other components, with embedded reinforcement, which provides additional
strength and stiffness (gravel, steel bars, carbon or glass or natural fibers, . . . ), and include the following:
- concrete consists of an inexpensive construction aggregate (e.g., sand, gravel), which acts as the reinforce-
ment, bonded together with a fluid cement that, once set, forms the matrix;
- reinforced concrete consists of concrete (itself a composite) with embedded steel reinforcement bars;
- fiberglass is formed by taking flexible cloths made of thin strands of glass, which act as reinforcement when
laid in layers over a mold (e.g., of a boat hull) and coated with an epoxy resin that, once set, forms the matrix;
- plywood is composed of thin layers of wood reinforcement that are stacked and glued;
- a wood-plastic composite (WPC) is a blend of wood fibers, acting as reinforcement, set in a plastic matrix;
- a carbon-fiber reinforced polymer (CFRP) incorporates a set of carbon fibers set in a hard plastic matrix;
- ametal matrix composite (MMC) consists of a metal matrix with reinforcing elements embedded within;
- a ceramicmatrix composite (CMC) consists of a ceramicmatrix with reinforcing elements embeddedwithin;
- a polymer matrix composite (PMC) consists of a polymer matrix with reinforcing elements within.
Structural composites are often much stronger in some directions (those that have been reinforced) than the
others, which must be accounted for properly during design and construction of a structure that uses them.

Steel is, by far, the most important structural material for land-based and heavy seagoing applications. For
land-based structures, reinforced concrete and wood are common inexpensive alternatives. For lightweight
seagoing applications, WPC, fiberglass, and CFRPs are common. For aerospace applications, lightweight alu-
minum, titanium, and magnesium alloys are common, with CFRPs playing an increasing role.

3.2 Crystal structure of structural metals
This section surveys the crystal structure and plastic deformation of the metals commonly used in structural
applications; for a more in depth discussion, see Callister & Rethwisch [1]. We must look over many different
length scales in such a study; we start (in §3.2.1) from the smallest length scales, and work our way up.

3.2.1 FCC&BCC: the crystal structures of low-carbon steel, aluminum, and copper
Plain carbon steel is characterized by its percent carbon content by weight, according to the following ranges:
low carbon: 0.05% - 0.3%, medium carbon: 0.3% - 0.6%, high carbon: 0.6% - 1.2%, ultra-high carbon: 1.2% - 2.0%.

In the packing of atoms in a metallic structure, individual atoms may be visualized as spheres, each with an
effective radius from the center of the nucleus to the effective edge of the outermost electron shell. Defining an
angstrom as 1Å = 10−10 m, the effective radius of an iron atom is about 1.27Å. As depicted in Figure 3.2, the 2
primary structures that low- and medium-carbon steel can form can be visualized as sphere packings, namely:
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Figure 3.3: The Body Centered Tetragonal (BCT, aka martensite) metastable intermediate states between
(top left) BCC and (bottom right) FCC, with the two intermediate states shown having 1 < w/h <

√
2. The

same 23 iron atoms are shown in all 4 frames, the dimensions in the different directions is just changed slightly.
The spheres are depicted here at a smaller size than in Figure 3.2 simply to clarify the visualization.

• Body Centered Cubic (BCC, aka ferrite), with each unit cell (2 iron atoms) being 2.9Å per side, and
• Face Centered Cubic (FCC, aka austenite), with each unit cell (4 iron atoms) being 3.6Å per side.
In particular, BCC and FCC are called lattice packings, as they look identical when any sphere is shifted to the
origin. Defining the coordination number of a sphere packing as the number of nearest neighboring spheres
to each individual sphere, and the defining the packing density of a sphere packing as the proportion of each
unit cell that is inside one of the spheres, it follows that
- BCC has a coordination number of 8 and a packing density of 0.68, whereas
- FCC has a coordination number of 12 and a packing density of 0.74.

Note that ferrite (the BCC form) can absorb up to 0.02% carbon by weight, whereas austenite (the FCC
form) can absorb up to 0.83% carbon by weight. The carbon atoms in both cases sit in interstitial locations,
between the larger green spheres in the BCC or FCC configurations depicted in Figure 3.2. In both cases, the
carbon atoms don’t quite fit in the available voids, thus requiring a slight deformation of the crystal structure
to accommodate them. This deformation is slightly reduced in the case of FCC (as compared to BCC), even
though its packing density is somewhat higher, and thus the FCC form can accommodate more carbon. As
discussed in §3.2.4, the presence of such interstitial atoms, and the deformation to the crystal structure that
they cause, inhibit the slip of one plane of the crystal with respect to the next, thus making the steel harder.

There is a related family of metastable crystal structures between BCC and FCC, as depicted in Figure 3.3.
Starting with BCC, if the crystal is just stretched a bit in one direction while it is simultaneously compressed a
bit in the other two directions, the crystal structure can be smoothly transformed from BCC to FCC and back.
This is called amartensitic transformation; the family of intermediate metastable crystal structures is called

• Body Centered Tetragonal (BCT, akamartensite).
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Figure 3.4: (a) The structure of iron carbide (Fe3C aka cementite), which is a hard, brittle ceramic in which
the atoms are bound by covalent (shown as lines) and ionic bonds (cf. the metallic bonds binding ferrite and
austenite). (b) The phase diagram for carbon steel, illustrating the phases present at thermodynamic equi-
librium. Steel with essentially no carbon (to the left of point P) is ferrite (BCC) for T< 911◦C, and austenite
(FCC) for T>911◦C. The distribution of these two crystal phases together with iron carbide (Fe3C) at thermal
equilibrium is shown for up to 2% carbon. Note that there is no appreciable diffusion of carbon below 200◦C.

3.2.2 Iron carbide (Fe3C aka cementite) and its role in high-carbon steel
High carbon and ultra-high carbon steel have more carbon than can be absorbed into the BCC and FCC crystal
structures, and thus a third (hard, brittle) structure of iron+ carbon comes into play, namely:

• iron carbide (Fe3C, aka cementite) with each unit cell (12 iron+ 4 carbon atoms) being 4.5Å× 5Å× 6.7Å.

The unit cell of iron carbide (see Figure 3.4a) is known as orthorhombic Primitive oP16, and is 6.67% carbon
by weight. Given the classifications stated earlier, it is a ceramic, bound with covalent and ionic bonds.

Note that high-carbon and ultra-high-carbon steel generally have an overall percentage of carbon which is
somewhere between the maximum that austenite can absorb (0.83%) and that which iron carbide has (6.67%).
Steel is in fact composed of tiny, crystalline regions called grains, each of which may be ferrite, austenite,
martensite, or iron carbide, as depicted in the phase diagram shown in Figure 3.4b. High-carbon and ultra-high-
carbon steel are thus a metal matrix composite (MMC); more precisely, a metal matrix ceramic composite
(MMCC). [Other notable MMCCs include silicon carbide, alumina, and boron carbide.] The size and shape of
the grains in this composition, and the distribution of the different crystal structures, significantly impact the
properties of thematerial (see §3.2.5). In such composites, the ceramic phase provides hardness and resistance to
wear (but, often, at the cost of significant brittleness), while the metal matrix provides ductility and toughness.

3.2.3 HCP: the crystal structure of titanium, magnesium, and cobalt
Note that §3.2.1 and §3.2.2 highlighted the crystal structure of plain carbon steel (iron+carbon) in particular.
Aluminum and Copper are similar, with FCC being the dominant crystal structure at room temperature.

Titanium, magnesium, and cobalt, on the other hand, form a different crystal structure:

• Hexagonal Close Packed (HCP), with the same coordination and packing density as FCC.
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?

Figure 3.5: ?

The difference between FCC and HCP is subtle, but profound. FCC may be visualized as stacks of 2D
hexagonal packings. The first layer is called A. The second layer is called B, and sits in the valleys between the
circles of the first layer (there ABABAB... versus ABCABC...

3.2.4 Shearing of crystals: distribution and movement of defects and interstitials
Within each ferrite, austenite, or martensite crystal grain (that is, on a length scale about 10−8 m to 10−7 m),
defects in the crystal structure (that is, voids and dislocations; see Figure 3.5) and the distribution of interstitial
atoms play a substantial role in determining the strength of a material.

HCP metals have only 3 slip systems with one slip plane and 3 slip directions while BCC metals have at
least 12 slip systems with 6 slip planes and 2 slip directions up to 24 slip planes and FCC metals have 12 slip
systems with 4 slip planes and 3 slip directions [2]

However, as the material is subsequently worked, the distribution and movement of these interstitials and
defects play a critical role in the plastic deformation of the material.

As mentioned previously, interstitial carbon
The effects of various alloyants

3.2.5 Microstructure (grain size/shape, grain crystal phases and their distribution)
working the material affects the microstructure

10−7 to 10−4 m
pearlite

3-7



Structural Renaissance (v.2025-04-12) Chapter 3: Structural Material Types & Properties

Steel with very low carbon (to the left of point P in Figure 3.4) is BCC (Ferrite) at T < 911 C, and FCC
(Austenite) at T > 911 C. The distribution of these two crystal phases, together with a third phase (Fe3C), for
up to 2% carbon, is also shown. Note that there is no appreciable diffusion of carbon below 200 C.

The effect of heat treatment on microstructure
The effect of processing on microstructure

3.2.6 Macrostructure (fillets, chamfers, roughness)
10−4 m and up

The most common use of zinc in engineering is the application of a protective zinc coating to steel, a process
known as galvanization.
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3.3 Properties of structural materials
This section outlines the six main classes of properties of materials, Mechanical, Deteriorative, Thermal,
Electrical/Electronic, Magnetic, and Electromagnetic. There is much that may be said; as we are focused
in this text on building structures, we focus primarily (in §3.3.1) on the several relevant and distinct mechanical
properties of materials, many of which were mentioned informally in the introduction to this chapter.

3.3.1 Mechanical properties
Figure of tension, compression, bending, torsion, shear, ...

3.3.1.1 Tensile & compressive strength, stiffness v. flexibility, elasticity v. plasticity

3.3.1.2 Brittle v. ductile failure

3.3.1.3 Shear and torsional strength

3.3.1.4 Fatigue strength and high-temperature creep

3.3.1.5 Resilience, toughness, and low-temperature ductile→ brittle transition

Fracture toughness
Ductile→ Brittle transition in cold environments

3.3.1.6 Hardness

3.3.1.7 Malleability, ductility, and machinability

3.3.2 Deteriorative (chemical) properties: corrosion and biocompatibility

3.3.3 Thermal and thermo-mechanical properties

3.3.4 Electrical/Electronic and electro-mechanical properties
piezoelectric effect

3.3.5 Magnetic and magneto-mechanical properties
Note also that ferrite and cementite are ferromagnetic, meaning that they is attracted by magnetic fields and
can be magnetized to become a permanent magnet, whereas austenite is nonmagnetic.

3.3.6 Electromagnetic (optical/RF) properties

References

[1] Callister Jr, WD, Rethwisch, DG (2018)Materials Science and Engineering: An Introduction 10th Edition, Wiley. 3-4

[2] Afolaranmi, GA, Tettey, Meek, RMD, & Grant, MH (2008) Release of Chromium from Orthopaedic Arthroplasties
Open Orthop J. 2, 10-18.

[3] Kovochich, M, Monnot, A, et al. (2021) Carcinogenic hazard assessment of cobalt-containing alloys in medical
devices: Review of in vivo studies. Regulatory Toxicology and Pharmocology 122, 104910.

3-9

https://www.wiley.com/en-us/Materials+Science+and+Engineering%3A+An+Introduction%2C+10th+Edition-p-9781119405498
https://pmc.ncbi.nlm.nih.gov/articles/PMC2685051/
https://www.sciencedirect.com/science/article/pii/S0273230021000507
https://www.sciencedirect.com/science/article/pii/S0273230021000507


Structural Renaissance (v.2025-04-12) Chapter 3: Structural Material Types & Properties

3-10



Chapter 4

Stresses and Failures in Loaded Beams

4.1 Backstory: dynamics of single 3D solid body
The two most consequential equations in classical mechanics are

f = M a (4.1a)

m = IBα (4.1b)

where {f ,m} are the total applied forces and moments, and {a,α} are the linear and angular accelerations.
Note that (4.1b) is simplified using a body-fitted coordinate system, moving with the body, with origin at

its center of mass (CM), and coordinate directions {e1, e2, e3} aligned along its special ?principle axes? (e.g.
axes of symmetry). Taking ?? as the density of the material, ? = mass of body, ? inertial tensor of body, with
?principle moments? ?, ?, ?, and ?. Can accommodate both spinning 3D bodies and aerodynamic loads, both
of which are beyond the scope of the present class; these are rich follow-up subjects that you will like study
closely in later undergraduate coursework if/when you stick with engineering.
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Chapter 5

Frame Structures
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Chapter 6

Truss Structures

6.1 Static equilibria of 2D and 3D truss structures
We now summarize an elegant “force” (as opposed to “displacement”) method (Timoshenko [1], Likins [2],
Skelton [1]) for determining the static equilibria of (pin-jointed) 2D and (ball-jointed) 3D truss structures, with
•m members {m⃗1, . . . , m⃗m}, each in either pure tension or pure compression (aka “two-force” members), and
• q free nodes {q⃗1, . . . , q⃗q} and p fixed nodes {p⃗1, . . . , p⃗p}, collectively called the n = q + p nodes {n⃗1, . . . , n⃗n}.
The n nodal locations n⃗i are each vectors from the origin of the reference frame used in Rd, where d = 2 or 3
is the dimension of the problem considered, and are assembled as follows1:

Q =
[
q⃗1 · · · q⃗q

]
, P =

[
p⃗1 · · · p⃗p

]
⇒ N =

[
n⃗1 · · · n⃗n

]
=

[
Q P

]
=

[
q⃗1 · · · q⃗q p⃗1 · · · p⃗p

]
;

(6.1a)

Q, which defines the locations of the free nodes, is called the configuration matrix of the structure. Eachmember
m⃗k = n⃗k,1 − n⃗k,2 connects two nodes, n⃗k,1 and n⃗k,2, at least one of which is free, and are assembled as follows:

M =
[
m⃗1 · · · m⃗m

]
. (6.1b)

It is useful to define a vector of member lengths ℓ, and a matrix of normalized member directionsD, such that

ℓk = ∥m⃗k∥, d⃗k = m⃗k/ℓk, D =
[
d⃗1 · · · d⃗m

]
; (6.1c)

note that ∥d⃗k∥ = 1 for all k. The connectivity of a structure, relating the n nodesN in (6.1a) to themmembers
M in (6.1b), is described via its connectivity matrix C , defined and partitioned such that

M = N CT , C =
[
CQ CP

]
⇒ M =

[
Q P

] [CT
Q

CT
P

]
, (6.1d)

where, denoting ej as the vector in the j’th column of the identity matrix, each column of CT is given by
(ek,1 − ek,2), indicating the two nodes n⃗k,1 and n⃗k,2 that member m⃗k of the structure connects, with one entry
equal to 1, one entry equal to −1, and all other entries equal to zero.

Consider also external forces {u⃗1, . . . , u⃗q}, including the net effects of the weights of the members them-
selves, applied to each of the q free nodes, as well as the reaction forces {v⃗1, . . . , v⃗p} at each of the p fixed nodes,
and similarly assemble

U =
[
u⃗1 · · · u⃗q

]
, V =

[
v⃗1 · · · v⃗p

]
, W =

[
U V

]
. (6.1e)

1All vectors in Rd are denoted with an arrow (e.g., q⃗i). All other vectors [see, e.g., (7.4b)] are denoted in bold (e.g., x).
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Internally, denote by (d⃗k xk) and −(d⃗k xk) the forces that member m⃗k applies at nodes n⃗k,2 and n⃗k,1,
respectively, where xk denotes the tension force (if positive) or compression force (if negative) in member
m⃗k. Thus, the matrix of directed internal member forces may be written simply as DX , where X = diag(x).
The cumulative force f⃗k at each node n⃗k, due to the sum of all of the directed internal forces applied by each
connected member m⃗j , is then given simply by applying the connectivity matrix C such that[

f⃗1 · · · f⃗n

]
= F = −DXC, (6.2a)

with the minus sign because positive xk denotes tension forces in the member direction d⃗k. Note that no trig
is involved! Static equilibrium is reached simply when sum of the internal forces at each node, F , is in balance
with (that is, equal and opposite to) the external forcesW applied at each node such that

F = −DXC = −W ⇒ DXC =
[
U V

]
. (6.2b)

For any truss structure, as defined in (6.1), with m members M connecting q free nodes Q and p fixed nodes
P via the connectivity matrix C , and with external forces U applied at each free node, static equilibrium thus
gives the linear system of equations (6.2b) in the m unknown internal forces {x1, . . . , xm} and the p unknown
reaction forces V . As discussed further in §7.1.1, this linear system of equations may have 0, 1, or∞ solutions,
depending on the setup of the problem. The problem of determining the static equilibrium may be simplified
by leveraging the partitioning C =

[
CQ CP

]
, and first solving for the internal forces at static equilibrium via

DXCQ = U. (6.3a)

These conditions of static equilibrium, which are linear in the unknowns xk on the main diagonal of X , may
easily be rewritten (automatically, in software) in terms of these unknownmember forces rearranged as a vector
x, and represented in the standard matrix/vector form

Ax = b, (6.3b)

and subsequently solved for x, after which the reaction forces may be computed directly via V = DXCP .

6.1.1 Brief review of the Singular Value Decomposition (SVD)

Consider now an arbitrary m̂× n̂ matrix Â, and define the four fundamental subspaces [4]:
(a) the column space of Â is the space of all y such that Âx = y for some x,
(b) the row space of Â is the space of all x such that ÂH y = x for some y,
(c) the left nullspace of Â is the space of all y such that ÂH y = 0, and
(d) the nullspace of Â is the space of all x such that Âx = 0.

The left nullspace is the orthogonal complement of the column space, and the nullspace is the orthogonal
complement of the row space. That is, the vectors in the left nullspace and those in the column space are
mutually orthogonal, and the vectors in the nullspace and those in the row space are mutually orthogonal;
further, any x may be written as the sum of one vector from the row space and one vector from the nullspace,
and any ymay be written as the sum of one vector from the column space and one vector from the left nullspace.
The mappings from the row space to the column space via Â, and from the column space back to the row space
via ÂH (or, via Â+, defined below), are unique.

It is also useful to refer to the components of the block decomposition of the SVD [5], which is defined as

Âm̂×n̂ = Ûm̂×m̂ Σ̂m̂×n̂ V̂
H
n̂×n̂ =

[
U m̂×r U m̂×(m̂−r)

] [Σ r×r 0
0 0

] [
V n̂×r V n̂×(n̂−r)

]H
,

where Σ is diagonal with real, non-negative elements σi on the main diagonal, arranged in descending order,
U and V are unitary, and r is the rank of the matrix A. Note also that Â = UΣV .
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⃗u 2
⃗p 1 ⃗p 2

⃗q 1 ⃗q 2 ⃗q 3

⃗q 4 ⃗q 5 ⃗q 6 ⃗q 7

⃗m 1 ⃗m 2 ⃗m 3 ⃗m 4

⃗m 5 ⃗m 6 ⃗m 7

⃗m 8
⃗m 9

⃗m10
⃗m11

⃗m12
⃗m13

⃗m14
⃗m15 x1:7 =



−0.250
0.250
0.250

−0.250
−0.500
−1.000
−0.500


, x8:15 =



−0.559
0.559

−0.559
0.559
0.559

−0.559
0.559

−0.559


Figure 6.1: A Warren truss structure with a centrally-applied load, indicating the notation used in the analysis.
In this text, red members (positive force) are in tension, blue members (negative force) are in compression.

% s c r i p t RR_Truss_Warren4 .m
% Set up a Warren t r u s s with 4 s e c t i o n s , s o l v e f o r i t s i n t e r n a l f o r c e s , and p l o t
P=[ 0 1 ; % Columns denote ( x , y ) l o c a t i o n s o f each o f the p=2 f i x e d nodes ( no rma l i z ed )

0 0 ] ;
Q=[ 2 4 6 1 3 5 7 ; % Lo c a t i o n s o f each o f the n=7 f r e e nodes ( no rma l i z ed )

0 0 0 2 2 2 2 ] / 8 ;
U=[ 0 0 0 0 0 0 0 ; % E x t e r n a l f o r c e s on the n f r e e nodes o f the t r u s s ( no rma l i z ed )

0 −1 0 0 0 0 0 ] ;
CT=[ 1 −1 0 0 0 0 0 0 1 1 0 0 0 0 0 ; % Conne c t i v i t y o f the t r u s s

0 1 −1 0 0 0 0 0 0 0 1 1 0 0 0 ; % Note : each o f the m=15 columns o f C^T
0 0 1 −1 0 0 0 0 0 0 0 0 1 1 0 ; % ( tha t i s , each o f the m=15 rows o f C)
0 0 0 0 −1 0 0 −1 −1 0 0 0 0 0 0 ; % has e x a c t l y one en t r y equa l to +1
0 0 0 0 1 −1 0 0 0 −1 −1 0 0 0 0 ; % and one en t r y equa l to −1 , i n d i c a t i n g
0 0 0 0 0 1 −1 0 0 0 0 −1 −1 0 0 ; % which two nodes tha t tha t member
0 0 0 0 0 0 1 0 0 0 0 0 0 −1 −1 ; % connec t s . I t doesn ' t mat te r which i s

−1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ; % taken p o s i t i v e and which n eg a t i v e .
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 ] ; C=CT ' ;

% Now , c onve r t the D∗X ∗CQ=U problem in ( 6 . 3 a ) to the s tanda rd A∗ x=u form in ( 6 . 3 b )
[A , b ]= RR_Convert_DXCQ_eq_U_to_Ax_eq_b (Q, P , C ,U ) ;
% Then , j u s t s o l v e f o r the t e n s i o n and compress ion in the members , and p l o t .
x=pinv (A ) ∗ b % Th i s j u s t implements ( 6 . 4 b ) , Assumes z e ro p r e t e n s i o n !
RR_P lo t_Trus s (Q, P , C , U , x ) ; % P l o t t r u s s ( red = p o s i t i v e = t ens i on , b lue = n eg a t i v e = compress ion )

Figure 6.2: A simple code that calculates the equilibrium forces in a Warren truss (see Figure 7.1). To change the
load, modify U; to change the configuration of the truss (see Figure 6.5), modify {P,Q,C}. The (provided) code
RR_convert_DXCQ_eq_U_to_Ax_eq_u, which converts theDXCQ = U problem in (7.4a), which is linear in the diag-
onal elements ofX , to the standard Ax = b form in (7.4b) using equationsToMatrix in Matlab, is straightforward.
The (provided) code RR_Plot_Truss that plots the truss is trivial.

It follows that:
(i) r is both the number of independent rows of Â, and the number of independent columns of Â,
(ii) the r columns of U form an orthogonal basis of the column space of Â,
(iii) the r columns of V form an orthogonal basis of the row space of Â,
(iv) the m̂−r columns of U form an orthogonal basis of the left nullspace of Â, and
(v) the n̂− r columns of V form an orthogonal basis of the nullspace of Â.

Using the Moore-Penrose pseudoinverse Â+ = V Σ−1UH , least-squares problems may be solved as follows:

Âx = b+ ϵ (6.4a)

⇒ x = Â+b, (6.4b)

this x minimizes ∥ϵ∥ and, amongst all x that satisfy (6.4a) for that minimal value of ∥ϵ∥, also minimizes ∥x∥.
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6.1.2 SVD analysis of the conditions of static equilibrium of a truss structure
The linear system of equations (7.4b) governing the member forces x at static equilibrium of a proposed truss
may have 0, 1, or an infinite number of solutions. Stated differently, performing an SVD of the m̂× n̂matrix A,
with m̂ = dq and n̂ = m in the analysis of §6.1.1, where d is the dimension of the problem considered,
q is the number of free nodes, andm is the number of members, the problem in (7.4b) is said to be:

(a) potentially inconsistent if r < m̂, and thus A has some rows which are linearly dependent on the other
rows [in this case, (7.4b) will either have 0 solutions or at least one solution, depending upon whether or not
the external force vector u is spanned by the columns of U], and/or

(b) underdetermined if r < n̂, and thus there are fewer independent equations than there are unknowns [in
this case, if (7.4b) has a solution x, then x plus any linear combination of the columns of V is also a solution].

The equations of static equilibrium of a truss structure in (7.4b), Ax = u, may thus be:

• potentially inconsistent only (m̂ > r = n̂), with 0 or 1 solution depending on u,
• underdetermined only (n̂ > r = m̂), with∞ solutions,
• potentially inconsistent and underdetermined (n̂ > r, m̂ > r), with 0 or ∞ solutions depending on u, or
• neither potentially inconsistent nor underdetermined (n̂ = m̂ = r), with exactly 1 solution.

The last condition above is called static determinance; notwithstanding its overemphasis in undergraduate-level
pedagogical texts, this last condition is the exception, not the norm, in practical applications.

An example application of the above analysis framework to the Warren truss depicted in Figure 7.1 is given
in Figure 6.2. If a solution to the problem of static equilibrium in (7.4b) exists (that is, if r = dq, or r < dq but
U

T
b = 0), then the solution with zero pretension is given by x = Â+b [see (6.4b)], as implemented in this

code; if such a solution exists, then all solutions to this static equilibrium problem are given by the value of x
returned by this code plus any linear combination of the columns of V .

6.1.3 Elimination of infinitesimal modes from a potentially inconsistent structure
IfA in (7.4b) is potentially inconsistent, with r < dq, then the corresponding truss has infinitesimal mechanisms
associated with zero deformation energy. Such configurations can be either unstable or soft. The first case
(instability) is, clearly, catastrophic, with small disturbances acting on the structure leading rapidly to failure;
visualize, e.g., two opposing members under compression meeting at a node (i.e., a pin joint in 2D, or a ball joint
in 3D) where external disturbance forces may be applied, with no additional members attached to stabilize.

The second case (soft or “wobbly” modes), though not catastrophic, is also an undesirable feature for a truss;
visualize, e.g., two opposing member under tension meeting at a node where external forces may be applied,
again with no additional members attached to stabilize. In this case, there are no finite force distributions in the
members that can sustain a range of disturbances on the nodes (specifically, any disturbance forcesU generated
with components in the directions of the columns of U ) for this free node configurationQ. However, assuming
that the members are somewhat elastic, a significant deformation of the free node configuration vector Q may
well lead to a deformed configuration that can sustain the problematic disturbance profile. Unfortunately, a
different disturbance profile will generally lead to a different deformation of the structure, so this approach
leads to “wobbly” structures in the presence of unsteady external loads. Soft modes are thus also undesirable
in a truss, as they lead to relatively large deformations of Q in response to small disturbances U .

Fortunately, as discussed further in [2], the condition of potential inconsistency in (7.4b), with r < dq
(and, the corresponding presence of unstable or soft modes), can often be removed entirely from a truss with
a given configuration of members simply by judiciously adding more members, under tension, attached to the
problematical nodes, thereby increasing r if the new members are well positioned.

6-4



Structural Renaissance (v.2025-04-12) Chapter 6: Truss Structures

?

Figure 6.3: Some other 2D bridge trusses
?

Figure 6.4: Some 2D roof trusses
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Figure 6.5: Some 3D trusses
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Chapter 7

Tensegrity Structures

7.1 Static equilibria of 2D and 3D tensegrity structures
We now make a minor adjustment1 (see [1]) to the analysis in §6.1, to characterize tensegrity structures, with
• b bars {⃗b1, . . . , b⃗b}, each in pure compression, and s strings {s⃗1, . . . , s⃗s}, each in pure tension,
•m = b+ s total members {m⃗1, . . . , m⃗m} (that is, the b bars and s strings, taken together), and
• q free nodes {q⃗1, . . . , q⃗q} and p fixed nodes {p⃗1, . . . , p⃗p}, collectively called the n = q + p nodes {n⃗1, . . . , n⃗n}.
The n nodal locations n⃗i are each vectors from the origin of the reference frame used in Rd, where d = 2 or 3
is the dimension of the problem considered, and are assembled as follows:

Q =
[
q⃗1 · · · q⃗q

]
, P =

[
p⃗1 · · · p⃗p

]
⇒ N =

[
n⃗1 · · · n⃗n

]
=

[
Q P

]
=

[
q⃗1 · · · q⃗q p⃗1 · · · p⃗p

]
;

(7.1a)

Q, which defines the locations of the free nodes, is called the configuration matrix of the structure. Eachmember
m⃗k = n⃗k,1 − n⃗k,2 connects two nodes, n⃗k,1 and n⃗k,2, at least one of which is free, and are organized as follows:

B =
[⃗
b1 · · · b⃗b

]
, S =

[
s⃗1 · · · s⃗s

]
, M =

[
m⃗1 · · · m⃗m

]
=

[
B S

]
=

[⃗
b1 · · · b⃗b s⃗1 · · · s⃗s

]
; (7.1b)

it is useful to define a vector of member lengths ℓ, and a matrix of normalized member directionsD, such that

ℓk = ∥m⃗k∥, d⃗k = m⃗k/ℓk, D =
[
d⃗1 · · · d⃗m

]
=

[
Db Ds

]
, (7.1c)

where ∥d⃗k∥ = 1 for all k. Note that the first b columns of M and D correspond to the bars, and the last s
columns ofM andD correspond to the strings. The connectivity of a structure, relating the n nodesN in (7.1a)
to the m membersM in (7.1b), is described via its connectivity matrix C , defined and partitioned such that

M = N CT , C =
[
CQ CP

]
=

[
CB

CS

]
⇒ M =

[
Q P

] [CT
Q

CT
P

]
= N

[
CT

B CT
S

]
=

[
B S

]
, (7.1d)

where, denoting ej as the vector in the j’th column of the identity matrix, each column2 of CT is given by
(ek,1 − ek,2), indicating the two nodes n⃗k,1 and n⃗k,2 that member m⃗k of the structure connects, with one entry
equal to 1, one entry equal to −1, and all other entries equal to zero.

Consider the external forces {u⃗1, . . . , u⃗q}, including the net effect of the weights of themembers themselves,
applied to each of the q free nodes, and the reaction forces {v⃗1, . . . , v⃗p} at each of the p fixed nodes, and assemble

U =
[
u⃗1 · · · u⃗q

]
, V =

[
v⃗1 · · · v⃗p

]
, W =

[
U V

]
. (7.1e)

1The very minor differences between the intro to §6.1 and intro to §7.1 are highlighted here in red.
2By (7.1d), note that the first b columns of CT define the bars, and the last s columns of CT define the strings.
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Internally, denote3 by (d⃗k xk) and −(d⃗k xk) the forces that member m⃗k applies at nodes n⃗k,2 and n⃗k,1,
respectively, where xk denotes the tension force (if positive, as required in the strings) or compression force
(if negative, as we are looking for in the bars) in member m⃗k; for further discussion, see §7.1.1. That is, the bars
can carry compressive or tensile forces, but strings can only carry tensile forces; i.e., xs

j ≥ 0 for j = 1, . . . , s.
The internal member forces may be written

DX =
[
Db Ds

] [Xb 0
0 X s

]
=

[
DbXb DsX s

]
,

where X = diag(x), x =

[
xb

xs

]
, Xb = diag(xb), X s = diag(xs).

(7.2)

As before, the cumulative force f⃗k at each node n⃗k, due to the sum of all of the directed internal forces applied
by each connected member m⃗j , is then given simply by applying the connectivity matrix C such that[

f⃗1 · · · f⃗n

]
= F = −DXC, (7.3a)

with the minus sign because positive xk denotes tension forces in the member direction d⃗k. Static equilibrium is
reached simply when sum of the internal forces at each node, F , is in balance with (that is, equal and opposite
to) the external forces W applied at each node such that

F = −DXC = −W ⇒ DXC =
[
U V

]
. (7.3b)

For any structure as defined in (7.1), with m members M connecting q free nodes Q and p fixed nodes P
via the connectivity matrix C , and with external forces U applied at each free node, static equilibrium thus
gives the linear system of equations (7.3b) in the m unknown internal forces {x1, . . . , xm} and the p unknown
reaction forces V . As discussed in §7.1.1, tensegrity system are pretensionable, so we are specifically looking for
system configurations in which this linear system of equations has ∞ solutions. The problem of determining
the static equilibrium may be simplified by leveraging the partitioning C =

[
CQ CP

]
, and first solving for the

internal forces at static equilibrium via
DXCQ = U. (7.4a)

These conditions of static equilibrium, which are linear in the unknowns xk on the main diagonal of X , may
easily be rewritten (automatically, in software) in terms of these unknownmember forces rearranged as a vector
x, with the external forces in U rearranged as a vector b, and thus this linear system may be represented in the
standard matrix/vector form

Ax = b, (7.4b)

and subsequently solved for x, after which the reaction forces may be computed directly via V = DXCP .

3Note that [1] defines and solves for the force density σk = xk/ℓk in each member, rather than solving for the forces xk themselves
(where, again positive σk denotes tension and negative σk denotes compression). They further denote the force density in string s⃗j
by γj (with, again, γj > 0 denoting tension), and the force density in bar b⃗i by λi (with, in contrast, λi > 0 denoting compression).
Using that (slightly more complicated) notation, the present derivation is expressed by applying the relations

DX = M Σ =
[
B S

] [
−Λ 0
0 Γ

]
=

[
−B Λ S Γ

]
where Σ = diag(σ1, . . . , σm), Λ = diag(λ1, . . . , λb), Γ = diag(γ1, . . . , γs).
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?
Figure 7.1: A 3D tensegrity structure with an applied compressive load, indicating the notation used in the
analysis. Note that, to the same structural configuration, pretension is applied one way to the solution at left,
and the other way to the solution at right, providing “dual” arrangments of the bars (blue) and the strings (red).

7.1.1 SVD analysis of the conditions of static equilibrium of tensegrity structures
If a tensegrity structure is designed and pretensioned correctly, the force in each of the strings will be positive
(indicating tension), and the force in each of the bars will be negative (indicating compression). The art of
tensegrity systems design, is to determine for what practically useful system configurations (and, with what
applied pretensions) that this can be achieved. A few examples are given in this chapter; a much more compre-
hensive list is provided in [1].

The linear system of equations (7.4b) governing the member forces x at static equilibrium of a valid tenseg-
rity structure has an infinite number of solutions. Stated differently, performing an SVD of the m̂× n̂matrixA,
with m̂ = dq and n̂ = m in the analysis of §6.1.1, where d is the dimension of the problem considered,
q is the number of free nodes, andm is the number of members, the problem in (7.4b) is said to be:

(a) potentially inconsistent if r < m̂, and thus A has some rows which are linearly dependent on the other
rows [in this case, (7.4b) will either have 0 solutions or at least one solution, depending upon whether or not
the external force vector u is spanned by the columns of U], and/or

(b) underdetermined if r < n̂, and thus there are fewer independent equations than there are unknowns [in
this case, if (7.4b) has a solution x, then x plus any linear combination of the columns of V is also a solution].

The equations of static equilibrium of a truss structure in (7.4b), Ax = u, may thus be:

• potentially inconsistent only (m̂ > r = n̂), with 0 or 1 solution depending on u,
• underdetermined only (n̂ > r = m̂), with∞ solutions,
• potentially inconsistent and underdetermined (n̂ > r, m̂ > r), with 0 or ∞ solutions depending on u, or
• neither potentially inconsistent nor underdetermined (n̂ = m̂ = r), with exactly 1 solution.

The last condition above is called static determinance; notwithstanding its overemphasis in undergraduate-level
pedagogical texts, this last condition is the exception, not the norm, in practical applications.

An example application of the above analysis framework to the Warren truss depicted in Figure 7.1 is given
in Figure 6.2. If a solution to the problem of static equilibrium in (7.4b) exists (that is, if r = dq, or r < dq but
U

T
b = 0), then the solution with zero pretension is given by x = Â+b [see (6.4b)], as implemented in this

code; if such a solution exists, then all solutions to this static equilibrium problem are given by the value of x
returned by this code plus any linear combination of the columns of V .

7.1.2 Elimination of infinitesimal modes from a potentially inconsistent structure
IfA in (7.4b) is potentially inconsistent, with r < dq, then the corresponding truss has infinitesimal mechanisms
associated with zero deformation energy. Such configurations can be either unstable or soft. The first case
(instability) is, clearly, catastrophic, with small disturbances acting on the structure leading rapidly to failure;
visualize, e.g., two opposing members under compression meeting at a node (i.e., a pin joint in 2D, or a ball joint
in 3D) where external disturbance forces may be applied, with no additional members attached to stabilize.

The second case (soft or “wobbly” modes), though not catastrophic, is also an undesirable feature for a truss;
visualize, e.g., two opposing member under tension meeting at a node where external forces may be applied,
again with no additional members attached to stabilize. In this case, there are no finite force distributions in the
members that can sustain a range of disturbances on the nodes (specifically, any disturbance forcesU generated
with components in the directions of the columns of U ) for this free node configurationQ. However, assuming
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that the members are somewhat elastic, a significant deformation of the free node configuration vector Q may
well lead to a deformed configuration that can sustain the problematic disturbance profile. Unfortunately, a
different disturbance profile will generally lead to a different deformation of the structure, so this approach
leads to “wobbly” structures in the presence of unsteady external loads. Soft modes are thus also undesirable
in a truss, as they lead to relatively large deformations of Q in response to small disturbances U .

Fortunately, as discussed further in [2], the condition of potential inconsistency in (7.4b), with r < dq
(and, the corresponding presence of unstable or soft modes), can often be removed entirely from a truss with
a given configuration of members simply by judiciously adding more members, under tension, attached to the
problematical nodes, thereby increasing r if the new members are well positioned.
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Appendix A

Matlab programming

A useful definition of a small-scale numerical problem is a calculation that takes longer to code and debug
than it does to run. By this definition, many calculations that you will perform in science, engineering, and
other disciplines, both as a student and in industry, are indeed small-scale numerical problems.

Matlab (a portmanteau word1 formed from matrix laboratory) is a powerful high-level programming
language marketed by MathWorks. Though expensive2, Matlab has become something of a de facto industry
standard for many classes of small-scale numerical problems, in areas such as linear algebra, data analysis &
visualization, control design, system identification, and optimization.

GNU Octave is a powerful, free, community-developed alternative to Matlab that is almost entirely com-
patible with the (well-established and documented) Matlab syntax. You are assured free access to a legal copy
of Octave for any computer platform that you might use in the future, so it is a good idea to test all of the major
codes that you develop in Matlab syntax in both Matlab and Octave, as we have attempted to do in this series
of texts3, so that you can be assured that you will be able to run them without difficulty in the future.

Both Matlab & Octave4 provide an interactive, user-friendly environment in which the plotting of simula-
tion results is especially simple. These programming environments are thus quite useful as intuitive testing
grounds in which one can experiment with small-scale numerical problems on a laptop or desktop computer.
There are two main directions one can go from there:

(1) embedding numerical algorithms efficiently into inexpensive low-power microcontrollers for controlling
robotic systems, a class of problems that we focus on in particular throughout RR, and
(2) designing numerical algorithms that efficiently scale to much larger numerical problems which tax the capa-
bilities of the largest and most modern computational platforms that you can afford to use, a class of problems
that we focus on in NR.

In both cases, low-level compiler-based languages [such as C, Fortran, and many others] are strongly preferred,
as they give the programmer much more precise control over both the memory usage and the parallelization
of the numerical algorithm. Conversion of numerical algorithms from Matlab syntax to the syntax of such
lower-level languages is generally straightforward, as discussed further in, e.g., §11.4 of NR.

1A portmanteau word is formed out of parts of other words, which is common in the naming of computer hardware and software.
For example, Fortran is a portmanteau word formed from formula translation, codec from coder/decoder, voxel from volumetric
pixel, etc. Such words are often formed informally as new technology is developed, then become established through usage.

2Note that special Matlab For Students deals are available on many college and university campuses.
3Please contact the author if you encounter errors running any of the algorithms in this series of texts, including Renaissance

Robotics and Numerical Renaissance, and the associated Renaissance Repository, in recent versions of either Matlab or Octave.
4A few popular alternatives to Matlab & Octave well suited for both small-scale numerical problems (working with floating-point

numbers) as well as symbolic computations (that is, software-based manipulation of mathematical expressions for solving algebra
and calculus problems) include Python/NumPy/SciPy/SymPy, R, Julia, Scilab, Maxima, Mathematica/Alpha, and CPL.
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A.1 Fundamentals of both Matlab and Octave
Once you get Matlab or Octave up and running, you will likely find that no manual or formal classroom in-
struction on either language itself is even necessary. Most of the basic constructs available in such languages
[primarily, basic arithmetic on floating-point numbers, for loops, if statements, and function calls] can generally
be understood easily simply by examining sample codes, such as those developed throughout RR and NR.

It is helpful to recognize that complex problems are solved efficiently on modern computers simply by
sequencing appropriately basic arithmetic, for loops, if statements, function calls, and data storage and retrieval
together, using logic which is admittedly sometimes subtle. It is generally the logic itself, and the judgement
and reasoning involved in organizing it, that makes The Art of Computer Programming a skill that takes years to
master; the syntax of the language best suited for the job (Matlab, C, or something else) is generally something
that is quite easy to pick up, or convert to, by examining a handful of well-written example codes.

Convenient built-in command names in Matlab/Octave are all intuitive (sin for computing the sine, eig
for computing eigenvalues/eigenvectors, etc.), and extensive help for all commands is readily available in both
Matlab and Octave, at the >> prompt in the command window, simply by typing, for example,
>> help eig

Even more information is available online. These help pages also point you to several related commands, which
can be used to learn what you need to know about any given aspect of Matlab or Octave very quickly.

To help get you off to a fast start, we now introduce some of the fundamental constructs used in Matlab
and Octave, then explain some of their more subtle features. To begin, Matlab or Octave can function as an
ordinary calculator. At the command prompt, try typing5

>> 1+1

Matlab or Octave should reassure you that the universe is still in good order. Note that you can always scroll
back to see the preliminary definitions and calculations that led to a particular result using the up arrow on
your keyboard. To enter a matrix, type
>> A=[1 2 3 ; 4 5 6 ; 7 8 0 ]

Note that matrix elements are separated by commas or (where it can be done without ambiguity) spaces, and
a semicolon indicates the end of each row of the matrix. Matlab/Octave responds with
A =

1 2 3
4 5 6
7 8 0

By default, Matlab/Octave operates in a verbose mode6 in which the results generated by any given com-
mand will be printed on the screen as soon as they are calculated. Once a code segment is debugged, such a
verbose behavior quickly becomes tedious, and slows the computer down. To suppress this behavior, simply
type a semicolon after any command that would otherwise dump output to the screen; the use of semicolons
after calculations or function calls also allows several commands to be included on a single line, such as
>> A=[1 2 3 ; 4 5 6 ; 7 8 0 ] ; x = 5 ;

To put multiple commands on a single line without suppressing echo mode, separate the commands by commas
(try it!). Three periods in a row means that the present command is continued on the following line, as in:
>> A=[1 2 3 ; . . .

4 5 6 ; . . .
7 8 0 ] ;

5To get maximum value from this appendix, we recommend copying/pasting (or, retyping) the commands following the >> prompts
in the text into your own Matlab/Octave window, modifying it a bit, and checking that the output generated makes sense.

6This verbose behavior can be further augmented by toggling on the echo command, which displays the actual statements en-
countered during execution of a script (see §A.2.1). This command, which apparently evolved from the TRON command of the 1980s
vintage BASIC programming language, prints so much information to the screen that its practical utility is actually somewhat limited.
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The legibility of your code can be substantially improved by aligning long expressions in a natural fashion using
spaces or tabs, as illustrated above. Elements of a matrix can also be arithmetic expressions, such as 3∗pi, etc.;
when doing this, it often necessary to separate matrix elements by commas to remove any possible ambiguity.

Matlab syntax has control flow statements, such as for loops, similar to other programming languages. Note
that each for must be matched by an end. To illustrate, the commands
>> for j = 1 : 1 0 , a ( j ) = j ^ 2 ; end , a , b = [ 0 : 2 : 1 0 ]

build row vectors (try it!), whereas the commands
>> for j = 1 : 1 0 , c ( j , 1 ) = j ^ 2 ; end , c , d = [ 0 : 2 : 1 0 ] '

build column vectors. In most cases, you want the latter, not the former. The most common mistake made in
Matlab syntax is to build a row vector when you intend to build a column vector, as their use in Matlab/Octave is
usually not interchangeable; thus, pay especially close attention to this issue if your code is misbehaving.

The format of a while statement is similar to that of for, but exits at the control of a logical condition:
>> m=0 ; while m<7 , m=m+2 ; end , m

An if statement may be used as follows7:
>> n =7 ; i f n >0 , sgn =1 , e l s e i f n <0 , sgn=-1 , e l s e i f n==0 , sgn =0 , e l se disp ( ' unde f ined ' ) , end

The (related) switch/case construction allow one to check a single variable against several possible conditions
>> switch n , case - 1 , c= 'N ' , case 0 , c= 'Z ' , case 1 , c= ' P ' , otherwise , c= ' ? ' , end

A column vector y can be premultiplied by a matrix A and the result stored in a column vector z with, e.g.,
>> A=[1 2 3 ; 4 5 6 ; 7 8 0 ] , y =[1 2 3 ] ' , z=A*y

Subsequent multiplication of the vector z by a scalar, like the predefined constant pi, may be accomplished with
>> w=pi*z

A 3 × 3 matrix A with complex random entries, each with real and imaginary parts uniformly distributed
between 0 and 18, its conjugate B = A, its transpose C = AT , and its conjugate transposeD = AH = AT (see
§1 of NR), may be generated as follows
>> A=rand ( 3 , 3 ) + sqr t ( - 1 ) *rand ( 3 , 3 ) , B=conj (A ) , C=A . ' , D=A '

The inverse of a square matrix (that is, the matrix B such that BA = I , if it exists) may be obtained by typing
>> B= inv (A ) , check=B*A

For pedagogical purposes, this inverse command is rewritten in §2 of NR. As mentioned there, you should never
actually compute a matrix inverse9 in a production code (that is, in a code designed to run at the maximum
possible speed, without failure), though it is sometimes convenient to compute a matrix inverse in a test code
(that is, in a code used for demonstration purposes only, on small-scale numerical problems).

A 5× 5 identity matrix may be constructed with
>> E=eye ( 5 )

Tridiagonal matrices (see §1.2.7 and §2.2.5 of NR) may be constructed by, e.g., the following command:
>> m=5 , x=randn (m - 1 , 1 ) , T=1*diag ( ones (m - 1 , 1 ) , - 1 ) -2*diag ( ones (m, 1 ) , 0 ) + diag ( x , 1 )

7When in the Matlab command window, using the up and down arrows allows you to scroll back and forth through recently
executed commands. For example, after copy/pasting/running the commands shown here, scroll back to it using the up arrow, walk
to the left of the line with the left arrow, change n=7 to n=NaN or Inf, hit enter, and see if the new answer makes sense (see §??).

8Note that the command A=randn(2,3) generates a 2× 3matrix A with real, random, independent, normally-distributed entries,
each sampled from a Gaussian probability distribution with zero mean and standard deviation 1 (see §6 of NR), and the command
A=randi (13,2,3) generates a 2× 3 matrix with positive integer entries uniformly distributed between 1 and 13.

9The algorithm to compute a matrix inverse is computationally very expensive, as discussed in §2 of NR, and destroys any known
sparsity structure (that is, sets of elements known to be zero) in the original matrix, as discussed in §1 of NR.
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There are two “matrix division” commands in Matlab/Octave, mldivide, also written as \, and mrdivide, also
written as /; if A is a nonsingular square matrix, then A\B and B/A correspond formally to left and right mul-
tiplication of B (which must be of the appropriate size that the product is well defined) by the inverse of A
[i.e., inv(A)∗B and B∗inv(A), respectively]. However, the commands A\B and B/A obtain these answers directly via
Gaussian elimination with pivoting, as developed from scratch (again, for pedagogical reasons) in §2 of NR,
while leaving the matrix A intact, without computing inv(A) along the way (which, as mentioned in Footnote 9
above, is prohibitively expensive for large matrices). Thus, to solve a system A∗x=b for the unknown vector x,
one may simply type, for example,
>> A=[1 2 3 ; 4 5 6 ; 7 8 0 ] ; b =[5 8 - 7 ] ' ; x=A \ b

which results in
x =

−1
0
2

To check this result, just type
>> A∗ x

which verifies, as expected, that
ans =

5
8

−7

Starting with the innermost group(s) of operations nested in parentheses and working outward, the usual
precedence rules are observed by Matlab/Octave. First, all the exponentials are calculated. Then, all the mul-
tiplications and divisions are calculated. Finally, all the additions and subtractions are calculated. In each of
these three catagories, the calculation proceeds from left to right through the expression. Thus
>> a = 5 / 5 ∗ 3 , b = 5 / ( 5 ∗ 3 )

gives a=3 and b=0.3333. If in doubt, use parentheses to ensure the order of operations is as you intend.
Matrix sizes must be such that the requested linear algebra operation is well defined (see §1 of NR), or

an error will be thrown. For example, suppose we have two column vectors x and y and wish to perform the
component-wise product of each element of x with the corresponding element of y. Such a component-wise
multiplication may be accomplished in Matlab syntax as, for example,
>> x = [ 1 : 5 ] ' ; y = [ 6 : 1 0 ] ' ; z=x . ∗ y

Note that z=x∗y throws an error, since this implies a linear algebra operation that is undefined (that is, a column
vector times a column vector). In contrast, a row vector times a column vector is well defined, so z=x '∗ y is
successful, generating the inner product of x and y (try it!).

The period generally distinguishes matrix operations from component-wise operations, for example (try it!)
>> A=[1 2 ; 3 4 ] , B=[5 6 ; 7 8 ]
>> C1=A^2 , D1=A∗B , E1=A/B % Matr ix o p e r a t i o n s !
>> C2=A . ^ 2 , D2=A . ∗ B , E2=A . / B % Component−wise o p e r a t i o n s !

Typing whos lists all variables you have created up to that point, and typing clear removes these variables
from your workspace. Typing clc clears the command window.

The format command toggles the number of significant figures printed to the screen, for example,
>> format long , pi , format shor t , pi

Various self-explanatory Matlab/Octave functions include: factorial , abs, conj, real, imag, sin, cos, tan, asin,
acos, atan, atan2, sinh, cosh, tanh, asinh, acosh, atanh, exp, log, log10; some predefined constants10 include pi, i , j ,

10Note that Inf is actually signed in Matlab (see §??); try typing, e.g., 10^310 and -10^310.

A-4

https://www.mathworks.com/help/matlab/ref/mldivide.html
https://www.mathworks.com/help/fixedpoint/ref/embedded.fi.mrdivide.html
http://robotics.ucsd.edu/nr
http://robotics.ucsd.edu/nr
https://www.mathworks.com/help/matlab/ref/whos.html
https://www.mathworks.com/help/matlab/ref/clear.html
https://www.mathworks.com/help/matlab/ref/clc.html
https://www.mathworks.com/help/matlab/ref/format.html
https://www.mathworks.com/help/matlab/ref/factorial.html
https://www.mathworks.com/help/matlab/ref/abs.html
https://www.mathworks.com/help/matlab/ref/conj.html
https://www.mathworks.com/help/matlab/ref/real.html
https://www.mathworks.com/help/matlab/ref/imag.html
https://www.mathworks.com/help/matlab/ref/sin.html
https://www.mathworks.com/help/matlab/ref/cos.html
https://www.mathworks.com/help/matlab/ref/tan.html
https://www.mathworks.com/help/matlab/ref/asin.html
https://www.mathworks.com/help/matlab/ref/acos.html
https://www.mathworks.com/help/matlab/ref/atan.html
https://www.mathworks.com/help/matlab/ref/atan2.html
https://www.mathworks.com/help/matlab/ref/sinh.html
https://www.mathworks.com/help/matlab/ref/cosh.html
https://www.mathworks.com/help/matlab/ref/tanh.html
https://www.mathworks.com/help/matlab/ref/asinh.html
https://www.mathworks.com/help/matlab/ref/acosh.html
https://www.mathworks.com/help/matlab/ref/atanh.html
https://www.mathworks.com/help/matlab/ref/exp.html
https://www.mathworks.com/help/matlab/ref/log.html
https://www.mathworks.com/help/matlab/ref/log10.html
https://www.mathworks.com/help/matlab/constants-and-test-matrices.html
https://www.mathworks.com/help/matlab/ref/pi.html
https://www.mathworks.com/help/matlab/ref/i.html
https://www.mathworks.com/help/matlab/ref/j.html


Structural Renaissance (v.2025-04-12) Appendix A: Matlab programming

eps, Inf, NaN. Your code can actually change such constants11 (it is particularly common to use i and j as
indexing variables); be careful if you do this, and later need to use these constants as originally defined!

Matlab and Octave are distributed with many special additional functions to aid in linear problem-solving,
control design, etc. Many of these advanced built-in functions are themselves just prewrittenm-files (see below)
that can be opened and accessed by the user for examination with, for example, a command such as open bode.
In most cases, RR and NR avoid most of these convenient black-box functions, instead working up the core of
many of them from scratch, to remove the mystery that might otherwise be associated with their use.

Sometimes, Matlab or Octave will suspend the printing of text to the command window, or the drawing of a
plot to a figure window, until later computations are finished or a pause statement is reached. The fflush (stdout)
command in Octave, and the drawnow('update') command in Matlab, can be used to force this output to be
printed or drawn. This is one of the few little (yet, annoying) differences between Matlab and Octave.

All of Matlab’s “random” number functions, including the rand, randi, and randn commands mentioned
above, draw values from a shared pseudorandom number generator (PRNG). Matlab actually has several deter-
ministic algorithms implemented for pseudorandom number generation with good statistical properties imple-
mented; it uses theMersenne Twister by default. Matlab’s PRNG algorithm has a “seed” that is reset every time
Matlab is restarted (thereby generating the exact same sequence of pseudorandom numbers every time Matlab
is restarted). This seed can be manually reset to the default initial state with the rng( ' default ' ) command, or
can be manually set to a “random” initial state, based on the current time, using the rng( ' shuffle ' ) command.

A.2 Matlab programming procedures: stay organized!

As an alternative to interactive mode, you can also save a series of Matlab/Octave commands in m-files, which
are just ASCII (aka plain text) files with descriptive filenames, ending in .m, containing a sequence of commands
listed exactly as you would enter them if running interactively. When working onMatlab/Octave problems that
take more than one line to express (that is, essentially, all the time, even when using Matlab/Octave as a simple
calculator!), it is imperative to write and run m-files rather than working in interactive mode. By so doing, it is self
evident which calculation follows fromwhich. Further, following this approach, the several commands typically
required to perform a given calculation do not need to be retyped when the calculation or simulation needs to
be modified and rerun, which is generally much more often than one would care to admit. Staying organized
with different versions of your m-files as a project evolves (even a fairly simple project!) is essential. Create new
directories and subdirectories as appropriate for each problem you work on to stay organized, and to keep from
accidentally overwriting previously written and debugged codes.

To execute the commands in a script named12 foo.m, type foo at the >> prompt. Any good text editor may be
used to edit m-files. A % symbol in such a file indicates that the rest of that line is a comment. Typing help foo
prints the first set of commented lines of foo.m to the screen; type foo prints the entire foo.m code to the screen.
Comment all m-files clearly, sufficiently, and succinctly, focusing specifically on its inputs and outputs, so that
you can come back to the code later and understand how it works. You can also print nicely to the screen (using,
e.g., the disp or fprintf commands) to update the user on the code’s progress as it runs; several codes discussed
in this text use a RR_VERBOSE flag to turn such updates on or off. It also helps to use descriptive variable names
within any code. There is an important tradeoff between succinctness and readability; this tradeoff should be
made deliberately, don’t go overboard on one side or the other.

11If you’re bored, try redefining pi=3.2 and see how much it messes things up; be glad this wasn’t established by legislative fiat!
12Almost all texts describing computer programming, dating back to the 1978 classic by Kernighan and Ritchie, make reference to

expository codes named foo and bar. Following this convention is a small way one can pay respect to those greats in the field of
computing who came before us.
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A.2.1 The distinction between scripts and functions
There are two distinct types of m-files: scripts and functions.

A script is a set of Matlab/Octave commands that run just as if you had typed in each command interac-
tively. A script has access to all previously-defined variables (that is, if called from the interactive window, it in-
herits the baseworkspace), and all variables that it defines are available for later inspection in that workspace,
which is sometimes useful when debugging. In order tomake a test script run the sameway every time (repeata-
bility is usually strongly desired in numerical calculations!), it is generally a good idea to put a clear command
at the beginning of all of your scripts, so they always run “from scratch”.

A function, on the other hand, is a set of commands that begins with a function declaration that defines
that function’s inputs and outputs; for example,
function [ output1 , output2 ] = bar ( input1 , input2 , i npu t3 )

A function so defined may then be called (as in a compiler-based programming language) with the command
[ c , d ] = bar ( a , b , c )

Note that some variables (in the above example, c) may be used as both inputs and outputs.
When a function is running, it can only reference those external variables that are transferred in via the

input list with which it was called; in the present example, the function is only “aware” of the external variables
{a,b,c}, which this function refers to internally as {input1 , input2 , input3}. A notable exception to this rule is those
variables that are declared as global in multiple functions and (usually) the base workspace; in this case, a
single copy of the variable so declared is shared, but only to those functions that include its global declaration.
Global variables are usually denoted with both all capital letters and especially descriptive variable names (e.g.,
global FUNCTION_EVALUATION_COUNTER), to keep these special variables from being accidentally overwritten in
the several different places that they might be used. Global variables should be used only sparingly.

The special variables nargin and nargout identify the number of input and output arguments, respectively,
that are actually used when any given function is called. Input and output arguments are assigned from the
left to the right, so any missing arguments in this call are necessarily those at the right end of each list. If some
of the input arguments, often tagged as “optional”, are omitted in the function call, logic may be implemented
in the function to set these variables to certain default values; if this logic is not implemented properly, the
function will crash when these variables (if left undefined by the function call) are first referenced. If some
of the output arguments are omitted in the function call, logic may be implemented in the function to avoid
explicit computation of these omitted output variables in order to reduce execution time.

After a function finishes running, the only variables that are modified in the workspace that called the
function, as compared to before the function was run, are those (nargout) variables in the function’s output list
that are paired with corresponding variables in the command that called the function, in addition (possibly) to
some of the variables declared as global. In the above example, if called as c2=bar(a,b,c1), the function bar only
modifies13 the single (that is, nargout=1) variable c2, which bar refers to internally as {output1}.

Functions are much more easily embedded as smaller parts of larger programs than scripts, as functions
make crystal clear, via their input/output argument list, what information used in, and returned by, the called
function. In complicated codes, unintentionally assigning a minor variables (like the index i or k) with different
meanings in different scripts that call each other can lead to a bug that is nearly impossible to find. The proper
use of functions, and the associated passing of only the relevant data back and forth (known as handshaking),
goes a long way towards preventing such insidious bugs from appearing in your production codes.

On the other hand, short test codes, such as those provided with many of the functions developed in RR
and NR, are often convenient to write as scripts, so that the variables defined by the test script may be checked
(for debugging purposes) after the test script is run.

13That is, in addition to those variables defined as global, as mentioned above.
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Figure A.1: Sample 2D and 3D plots: (left) the step responses 2nd-order continuous-time (CT) and discrete-time
(DT) systems, as developed in RR, and (right) sinc(r) = sin(r)/r where r =

√
x2 + y2.

A.3 Plotting
Both 2D and 3D plots are easy to generate in Matlab and Octave, as shown below:

A sample 2D plot
>> t = [ 0 : . 2 : 8 ] ; z = [ . 5 ; . 7 ] ;
>> s=z ; o= sqr t (1 − z . ^ 2 ) ; d=z . / o ;
>> y=exp ( − s ∗ t ) . ∗ ( − cos ( o ∗ t )+ d . ∗ s in ( o ∗ t ) ) + 1 ;
>> plot ( t , y ( 1 , : ) , ' b− ' , t , y ( 2 , : ) , ' r x ' )

A sample 3D plot
>> [ x , y ]=meshgrid ( - 8 : . 5 : 8 , - 8 : . 5 : 8 ) ;
>> R= sqr t ( x . ^ 2 + y . ^ 2 ) + eps ;
>> Z= s in ( R ) . / R ;
>> mesh ( x , y , Z )

The code segments listed above produce the figures shown in Figure A.1. Linear versus log axes, titles, axis
labels, etc, can be controlled with loglog, semilogx, semilogy, title , xlabel, ylabel, and related commands (see
the corresponding help pages); axis ([0 5 −1.1 1.1]) zooms a 2D plot (like that above left) to the region [0, 5] on
the horizontal axis and [−1.1, 1.1] on the vertical axis, axis equal sets the aspect ratio so that equal tick mark
increments on the various axes are equal in size, and axis square makes the current axis box square. Try it!

Commands like those above produce plots in figure windows. Once a plot is as you like it, you will often
want to save it, so you can email it, include it in a talk, post it on social media (you are, after all, an engineer!),
make printouts of it, and/or include it in a paper or textbook you are writing. For scientific writing, LATEX in-
variably produces the best results, though you may find thatwhat-you-see-is-what-you-get (wysiwyg) word
processors like Microsoft Word or Apple Pages are, at least initially, somewhat easier to use14. The recom-
mended format to save your figures for such purposes is encapsulated postscript (denoted with a .eps suffix).
Encapsulated postscript is a robust, platform-independent standard for both vector graphics files (representing
lines as lines) and bitmaps (collections of pixels); vector graphics look especially sharp when printed out or
zoomed in. All major typesetting programs, including LATEX, Word, and Pages, can import .eps bfiles.

To produce a color .eps file, execute the print command after setting up the plot as you like it15:
print -vector -depsc s i n c .eps

Once you have created an .eps file, you may view it with any (free) eps viewer, such as ghostscript and gv.
Adobe Illustrator is a good commercial software package for making edits to .eps files (changing line types,
font sizes, etc.), which is often necessary when preparing scientific documents. The psfrag package is especially
powerful for replacing tags (characters) in .eps files with mathematical expressions generated by LATEX, thus
seamlessly integratings complex figures and equations into your documents.

14That is, until you begin to care about how well the equations are typeset, at which point your best option is to switch to LATEX.
15Above a certain number of elements in a given figure, Matlab automatically switches from the (highest-quality) –vector renderer

to the (bitmapped) –image renderer. Manually forcing the former, as done here, ensures the (higher-quality) vector output. Note
that, prior to fall 2021, the –vector and –image options to the print command were called –painters and –opengl, respectively.
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In Matlab, the contents of a figure window may also be saved with the command saveas(1, ' foo . fig ' ), and
later reopened and edited further with open foo.fig. The author does not typically recommend this approach,
however, as it substantially limits further modification. Instead, to send a figure via email or to include it in a
paper, use the .eps format discussed previously, and manually downgrade it to a . jpeg, if necessary, to reduce
file size. If you want the option (you usually will!) to edit the figure later in Matlab or Octave, your flexibility
is maximized by saving, in an m-file, the entire list of commands that generated the figure, thus allowing you
to tweak these commands in the future, and regenerate the figure of interest from scratch.

Printouts of the text appearing in theMatlab or Octave commandwindow after a code is run is best achieved
simply by copy/pasting this text into the editor of your choosing, then printing (or generating a pdf) from there.

A.4 Source code repositories: Github and its alternatives
Source code repositories (aka repos) are like Google Docs, but for numerical codes. They:

• provide a backup of all of your most important coding work,
• sync codebases between different computers that you might use during the week,
• provide version control, allowing you to revert to a previous version of a code if a new edit breaks things,
• allow developers to fork a codebase from its mainline into a private branch for code development, and
• allow repo owners to merge new code, once debugged, from private branches back to the mainline,
• thus facilitating the simultaneous collaboration of many developers on a large set of interacting codes, while
• enabling repo owners to distribute (and, keep updated) the mainline of a big codebase to a large set of users.

Note that forking is easy, and happens at the push of a button; merging (that is, reconciling possibly conflict-
ing code updates in different branches) is where substantial care is sometimes required. As of this writing,
Github is the dominant standard for source code repositories; alternatives to Github include:

GitLab, Bitbucket, GitBucket, Sourceforge, AWS CodeCommit, and Google Cloud Source Repositories.
The many codes developed in both Renaissance Robotics and Numerical Renaissance are maintained at the Re-
naissance Repository (https://github.com/tbewley/RR).

You may not realize it now, but as an engineering student interested in robotics and numerical methods,
you will both use large codebases and, ultimately, write lots of codes yourself (in Matlab, C, Python, Fortran,
and many other languages). To become successful in this endeavor, you should thus become familiar with the
proper use of source code repositories early on. Further, one of the most valuable things you can include in
your resume, when looking for academic or industry jobs in the fields of robotics and numerical methods, is a
link to your Github page. Even if it just has codes from various classes and small projects that you have worked
on thus far, a well organized Github page demonstrates clearly to a potential employer your coding style and
clarity of thought, and well showcases the major engineering skills that you have developed thus far.

After opening an account at Github16, it is also convenient to download Github Desktop16 onto the (Mac or
Windows) computers that you plan to use to write code, which provides a convenient graphical interface to:

• clone a repo (like the Renaissance Repository) that you want to use,
• update your local clone of a repo with recent improvements from the mainline version of the repository,
• sync/merge your own daily local code developments back into your own repos online,
• fork someone else’s repo into a private branch that you can work on yourself, as a developer, and, ultimately,
• submit a pull request to suggest to a repo owner that they merge your new codes into their mainline.

To get started, (a) open a Github account, (b) download Github Desktop, (c) use Github Desktop to clone the
Renaissance Repository to your computer, and (d) create/use your own repos for your classes and projects.

16Complete instructions for using Github and Github Desktop are available at the corresponding websites. Choose your Gihub
username carefully, because you will most likely want to use this account for the rest of your life!
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A.5 Navigating your path
Akin to both unix/Linux/Mac shells and the Windows command prompt, the cd command changes directory
(that is, the current Matlab working directory, for saving new files), the command dir lists the files in that
working directory, and the command pwd prints the working directory to the screen. If the necessary m-files
to run your code are stored in more than the current working directory, which is generally the case if you are
staying well organized (please do!), the command path can be used to view the set of directories that Matlab
will look within to find the additional m-files that it may need, and the command addpath(dir1,dir2 ), where dir1
and dir2 are strings containing complete path names (e.g., dir1=' /Users/bewley/ classes /MAE144', etc.), may be used
to add directories to this path.

In particular, once you have cloned (using Github Desktop, as discussed in the previous section) the Renais-
sance Repository to your computer, you will want to add all of the directories containing your local copy of the
codes it contains to your path. This is best done automatically, when firing up Matlab. A convenient script,
RR_path_init.m, is provided to help with this.

To use this path initialization code, you should set up your computer to call it automatically when firing
up Matlab. This may be done by appending a call to RR_path_init in the startup .m file of your default Matlab
userpath directory.

In short, fire upMatlab, and type the command userpath, which will return the name of the default directory
that Matlab starts up in on your machine. Within that directory (important!), edit the file startup .m (or, create
a new file of this name if one doesn’t already exist); this file should contain, at least, the following lines:
RRbase= ' / Users / bewley /RR ' ; cd ( RRbase ) ; RR_pa th_ in i t

Note: replace the directory name in single quotes above with the full path to the location that you have installed
the Renaissance Repository on your computer. Note that forward slashes, /, as shown above, are used on Macs,
whereas backslashes, \, are used in Windows; on a Windows machine, the full path to this directory might
look something like C:\Users\bewley\RR. Note you can also put other commonly needed Matlab initialization
commands in your startup .m file; in particular, you will probably want to add the paths to your personal Matlab
project directories that you use often (see the last sentence of the first paragraph of this section), and perhaps
also (at the end of the startup .m file) a cd to the directory that you plan to be working in most in the foreseeable
future. You may also include a host of other actions, such as calling a routine like RR_physical_constants, to define
some of the physical constants that you might often need in your line of work.

Many other getting-started functions are available in the Renaissance Repository. Rather than listing such
functions here, the reader is asked to fire up Matlab and, e.g., cd( strcat (RRbase,'Renaissance_Robotics/chapAA' )) in
the command window at the >> prompt, then dir, then type RR_double_factorial , type RR_swap, type RR_permute, etc,
for each command that you find. By studying such sample codes, and running the test commands embedded
in their initial comments, I reckon you’ll digest them quickly, and find your own way forward from there.

A.6 Advanced prepackaged numerical routines
Matlab and Octave have a ton of very useful advanced prepackaged numerical routines built in, including
inv, lu, qr, cond, eig, schur, svd, norm, rank, pinv, tf ,minreal, bode, rlocus, impulse, step, c2d, lyap, dlyap, icare, idare,
etc. As you progress through the RR and NR texts, these routines will quickly become useful for you, as you
learn what they compute. However, the purpose of the RR and NR texts is actually not simply to catalog these
prepackaged routines, but rather to flush out when and where you might use them, why they are the tools of
choice for certain problems, and how they actually work. With this knowledge, the reader will be able to select
and use such routines with much greater understanding and forethought. We thus avoid using almost all such
prepackaged routines in these texts, opting instead to rewrite many of them from scratch.
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