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Abstract This paper introduces a new surrogate-based optimization algorithm to
optimize a deterministic objective function with non-computable constraint func-
tions (a.k.a. hidden constraints). Both the objective function and the feasible domain
are defined within a known rectangular domain. The objective function might be
nonconvex, computationally expensive, and without analytic expression. Moreover,
the feasible domain boundaries are not explicitly defined, but can be determined via
oracle calls (feasible or not) and learned as the algorithm proceeds. To solve this class
of optimization problems, the proposed algorithm, in each iteration, approximates
the feasible domain boundary by incorporating a Support Vector Machine (SVM)
classifier model as an approximation for the non-computable constraint function,
which characterizes the feasible domain. The uncertainty associated with this sur-
rogate is modeled using an artificially-generated uncertainty function built on the
framework of Delaunay triangulation. This work extends the Delaunay-based opti-
mization algorithm with nonconvex constraints, dubbed �-DOGS(�), and extends
this approach to estimate the feasible domain with binary oracle calls. Similarly, this
algorithm at each iteration determines aminimizer of the objective function surrogate
model with the highest probability of being feasible. We evaluate the performance of
the algorithm through the numerical experiments on a representative test problem.
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Introduction

This paper aims at solving the optimization problems of the form

minimize f (x) with x ∈ � := Lc ∩ Ls ⊆ R
n where

Lc = {x|c(x) ≤ 0 }, Ls = {x|a ≤ x ≤ b}, (1)

where f (x) : R
n → R, and � is defined with hidden constraint functions. The

only available measurements are of the sign{c(x)}. Then c(x) is treated as binary
measurement (e.g., ignoring information about the distance to the boundary feasible
region); therefore measurements indicate “feasible” and “infeasible” regions Lee
et al. (2011).

Motivation

Having a feasible domain that is not defined explicitly is common in some industrial
applications such as shape optimizationGramacy et al. (2016) and chemical reactions
Gelbart et al. (2018). In these situations, the optimums of the objective function must
be further evaluated, and the solutions can be acceptable or unacceptable. That is,
the feasible domain is only available through costly oracle calls. Nevertheless, in
working conditions, these applications need to be tuned via a limited set of adjustable
continuous parameters; for instance, in shape optimization, problems can be solved
using only a handful of adjustable parameters usually modeled with n < 10. Most of
the trial-and-error approaches (e.g) to do so could be both computationally expensive
and time consuming. Thus, there is an ever-increasing need to develop efficient
frameworks that could limit the number of adjustments needed and to automate the
work of these complex systems.

The objective of this work is to develop a new optimization method which is
designed for when the objective function is expensive to calculate. In addition, the
constraint violation comes from the same process as the objective function, but is
accessible through binary oracle calls (acceptable or unacceptable). In these settings,
the response of the simulator/system is whether a constraint is violated or not, and no
further information about the simulator is given Lee et al. (2011). Thus, the proposed
method needs to simultaneously estimate the feasible region (constraint region) and
solve the minimization problem.

Many modern optimization approaches for shape optimization of computer-aided
designs converge without derivative information and require only weak regular-
ity conditions Gramacy et al. (2016), Alimo et al. (2017), Marsden et al. (2004),
Moghadam et al. (2012). When the constraint function is hidden, a simulation dis-
plays a flag indicating whether a capacitor has been become full during the simula-
tion, but we know neither when this occurred nor the level of capacitor charge. Such
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problems are some of the most challenging optimization problems, and most of the
existing approaches rely on heuristic approaches Digabel and Wild (2015).

One of the first schemes for solving such a family of problems was introduced by
Conn et al. (1998), where they considered the trust-region subproblem. The authors
also described virtual constraints as non-computable constraints and recommend
using an extreme-barrier approach. This approach is based on restricting the solution
to inside the trust-region subproblem, and based on whether the point is feasible or
not, the trust region is adjusted. Further improvement is made by using an extreme-
barrier approach.

Regarding other approaches, Gramacy et al. (2016) developed a statistical ap-
proach based on Gaussian processes and Bayesian learning to both approximate the
unknown function and estimate the probability of meeting the constraints. In another
approach, Lee et al. (2011) forced the problem (1) into an existing statistical frame-
work by using treed Gaussian processes for response surface prediction, and random
forests for constraint violation prediction. Finally, there are some recently introduced
algorithms Picheny et al. (2016), Gelbart et al. (2018) that are based on Augmented
Lagrange, and they try to improve the performance of such schemes. However, most
of these algorithms are statistical-based methods, and they usually consider the un-
derlying signal as a realization from a random process. Moreover, most of these
algorithms are not globally convergent, and they only have the potential to search
globally.

A Delaunay-based optimization algorithm, �-DOGS, was a recently developed
derivative-free optimization algorithm. This algorithmwas extended in�-DOGS(�)
in order to solve, with remarkable efficiency, optimization problems with nonconvex
and computationally expensive objective and constraint functionsAlimo et al. (2017),
Alimo et al. (2018). This new algorithm is provably convergent under the appropriate
assumptions. This algorithm can be classified as a response surface method which
iteratively solves a subproblem based on interpolations not only of the objective
and constraint functions over existing datapoints, but also a synthetic model of the
uncertainty of these interpolants, which itself is built on the framework of a Delaunay
triangulation over existing datapoints. Unlike other response surface methods, this
algorithm can employ any well-behaved interpolation strategy.

This paper introduces a new scheme based on �-DOGS(�) that solves problems
where the feasible domain is not known and can only be approximated using a number
of oracle calls within the parameter space. That is, this work solves problems where
the constraint functions are hidden functions as (2).

The remainder of the paper is organized as follows. Section2 briefly reviews the
optimization algorithm �-DOGS(�) that was proposed for solving problems with
nonconvex and computationally expensive constraint functions. Section 3 describes
the extension of this method to solve problems with hidden constraints. Section4
illustrates the behaviour of the new method on a representative test problem. Some
conclusions are made in Sect. 5.
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Review of �-DOGS(�)

Delaunay-based optimization is a generalizable family of practical, efficient, and
provably-convergent derivative-free algorithms designed for a range of nonconvex
optimization problems with expensive function evaluations Beyhaghi et al. (2015),
Beyhaghi and Bewley (2016). This framework, dubbed �-DOGS, was extended
by an algorithm �-DOGS(�) in order to solve optimization problems with both
nonconvex and computationally expensive objective and constraint functions Alimo
et al. (2017), Alimo et al. (2018). �-DOGS(�) solves problems in the form of:

minimize f (x) with x ∈ � := Lc ∩ Ls ⊆ R
n where

Lc = {x|c�(x) ≤ 0 }, Ls = {x|a ≤ x ≤ b}, (2)

where both f (x) and c�(x) for � = 1, . . . ,m are twice differentiable and possibly non-
convex functions whichmapRn → Rwithin the search domain Ls. The optimization
problem (2) has two sets of constraints:

(a) a set of 2 n bound constraints that characterize the n-dimensional box domain
Ls = {x|a ≤ x ≤ b}, dubbed the search domain, and

(b) a set of m possibly nonlinear inequality constraints c�(x) ≤ 0 that together
characterize the possibly nonconvex domain Lc, dubbed the constraint domain.

The feasible domain is the intersection of these two domains, � := Ls ∩ Lc.
In many application based problems, we are seeking a feasible point x ∈ �

such that f (x) ≤ f0, where f0 is a target value. In this work, we assume that there
is a known target value f0, which is achievable; i.e., ∃ x ∈ Ls such that f (x) ≤
f0 and c�(x) ≤ 0 for all � = 1, . . . ,m. The c�(x) are nonlinear, computationally
expensive constraint functions. However, it is worth noting that the present algorithm
can be easily extended to problems for which a target value and constraint violation
thresholds are not available, as in Algorithm 1 of Alimo et al. (2018).

We assume that f (x) and c�(x) are computable everywhere in Ls computationally
expensive, and possibly nonconvex. For the purpose of the scheme development, we
assume that f (x) and c�(x)e twice differentiable. Also, the gradient information for
f (x), or its estimate, is usually not available. Moreover, we consider the optimization
problems with few adjustable parameters n ≤ 10. Before presenting the algorithm,
we introduce some preliminary concepts:

Definition 1 Given Sk as a set of points that includes the vertices of domain Ls at
iteration k of �-DOGS(�), we define pk(x) and gk1(x), . . . , g

k
m(x) as a set of succes-

sive interpolations for the objective and constraint functions f (x)andc1(x) . . . , cm(x),
respectively, at iteration k. Consider

Tk(x) = max
[
pk(x) − f0, g

k
1(x), . . . , g

k
m(x)

]
, (3)
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then the continuous search function is defined as

skc(x) =
{
Tk(x)/ek(x), if Tk(x) ≥ 0,

Tk(x), otherwise.
(4)

�-DOGS(�) estimates (2) with a set of surrogates, and in the situation where
there exists a target value for the objective function such that f0 ≤ f (x) and there
are m different nonconvex constraint functions defining the feasible domain, then
the algorithm iteratively evaluates the minimizer of (4). This method is an iterative
algorithm, and at each iteration, it generates a set of points to estimate the objective
functions and the feasible domain. Using the set of available datapoints, the objective
functions are approximatedwith interpolation/regressionmodels, and the uncertainty
of the interpolants is quantified using an artificially generated uncertainty model
based on the Delaunay triangulation framework. The most expensive part in this
calculation is the function evaluation process.

Algorithm1�-DOGS (�) for accurate objective and constraint function evaluations
Alimo et al. (2018).
1. Set k = 0. Take the set of initialization points S0 as all vertices of the feasible domain �

2. Calculate (or, for k > 0, update) an appropriate interpolating functions p(x), g�(x) through all
points in Sk

3. Calculate (or, for k > 0, update) a Delaunay triangulation �k over all of the points in Sk
4. Find xk ∈ � as a global minimizer of s(x) subject to CS�(x) ≤ 0, for � = 1, 2, · · · ,m.
5. Calculate f (x), c�(x) at xk , and take Sk+1 = Sk ∪ xk .

In convergence analyses for �-DOGS(�), the objective and constraint functions
were assumed to be twice differentiable with the search domain Ls.

Furthermore, we can observe for �-DOGS(�), Algorithm 1, that

• if f0 ≥ f (x∗), �-DOGS (�) generates an infinite sequence of points whose limit
points are characterized by objective function values less or equal to f0, or

• if f0 < f (x∗),�-DOGS (�) generates an infinite sequence of points which is dense
everywhere in the feasible domain.

Remark 1 With existence of a target value f0 for the objective function, Algorithm
can find a point x ∈ � which is feasible and f (x) ≤ f0, if such point exists. In fact,
any limit point of S is feasible, and its objective function is less than f0. If there is
no point in which f (x) ≤ f0 and x is feasible, Algorithm will go dense everywhere
in the feasible domain �.

In the following sectionwe extend�-DOGS (�) for the caseswhere the evaluation
of the constraint function c(x) is only limited to its sign as shown in Fig. 1.

Unlike the previous work Alimo et al. (2018) for�-DOGS(�) where the function
evaluation was computable, in the next section, the constraint violation is considered
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(a) Solver outputs. (b) Hidden constraints.

Fig. 1 Function evaluation process for the problems in form of (1). a Each constraint violation is
measured only with feasible or infeasible as yi = sign{c(x(i))}. b The feasible domain is modeled
using a surrogate model g

non-computable and is only limited to anoracle call or a binarymeasurement (feasible
or unfeasible). In this problem, we are not able to measure the constraint function,
and we are limited to finding the sign of c� for � = 1, . . . ,m, and the point x(i) is
either feasible or unfeasible.

Quantifying Constraint Violation Using SVM

In this section, we extend the�-DOGS(�) algorithm to solve the optimization prob-
lem with the feasible domain that is characterized with binary oracle calls (feasible
or not). For each set of parameters the constraint violation is determined by

y(xi) =
{

−1, if xi is feasible or c(x) ≤ 0

+1, if xi is infeasible or c(x) > 0.
(5)

We assume that the information about the feasible domain boundaries are only avail-
able through function (5). In other words, since the constrains are not defined ex-
plicitly, we only can determine if a point of interest is within the feasible domain or
not. This situation is similar to the binary classification problems where the training
points (data) are divided into two classes. The final goal of a classification problem
is to predict the class of a new candidate point. In this work, we borrow that idea
and extend it to use in the optimization problem (2) to estimate the boundary of
feasibility as the algorithm proceeds.

There are a wide variety of classifiers in the machine learning literature such as
Perceptron, Artificial Neural Network (ANN), and Support Vector Machine (SVM).

Perceptron is a linear classifier that tries to find a hyperplane that separates the
labeled training data points into two classes so that points with the same label stays in
one side of the hyperplane. The Perceptron algorithm startswith an initial hyperplane.
At each iteration of the algorithm it processes a point from the training set and
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update the weight of parameters to characterize the optimal hyperplane calssifier.
The algorithm is suitable for online learning problems where the training data points
are given sequentially. In addition, computationally it is very appealing. However, it
requires a relatively large training set and the final hyperplane is not necessarily the
best hyperplane that separates the two classes Cortes and Vapnik (1995). Moreover,
since this problem is not linearly separable using Perceptron is not practical.

ANN Goodfellow et al. (2016) impose multiple-layer linear classifiers that can
classify data points using only a handful of features, but they include many unde-
termined and hidden layers. The drawback for this approach is that there are many
tuning parameters to characterize these hidden layers correctly. These tuning param-
eters are problem specific, and they require a large amount of data to train the hidden
layers of the network Bengio et al. (2015).

SVM Cortes and Vapnik (1995), Cherkassky and Ma (2004) is a linear classi-
fier, which aims at determining the maximum margin hyperplane. SVM classifier
transfers features into a higher dimensional space using appropriate kernels and then
fits a linear classifier. As a result it can also separate the data points that are not
linearly separable. Overall, the SVM classifier is computed by solving a quadratic
programming optimization problem.

At each iteration, the �-DOGS(�H ) search for a minimizer of the optimization
problem which has the highest probability of being inside the feasible domain. The
oracle calls are assumed to be computationally expensive therefor the adapted clas-
sifier should be able to estimate the boundaries using fewer samples. In this paper,
we propose a SVM-based approach to approximate the feasible domain of solutions
at each iteration of the optimization algorithm.

We assume that the boundaries of the feasible domain are twice differentiable
with a bounded Lipschitz norm. In other words, there exists an unknown underlying
function in which sign{c(x)} = sign{g(x)} for all x ∈ Ls. To be able to approximate
a wide variety of boundary functions, we consider the Radial Basis Functions (RBF)
as the kernel of the SVM. That is

g(x) =
d∑
i=1

wi φi(x) + b, (6)

where we consider b as a bias term and φ(x) as radial basis kernel functions that
denote the feature space transformation. Let yi = sign{g(xi)}, then the distance of a
point xi to the decision surface g(xi) is given by

yi g(xi)

‖w‖ = yi (wT φ(x) + b)

‖w‖ > 0.

Note that xi for i = 1, . . . ,N are evaluated points in the feature (parametric) space
at the Nth iteration. In this way, every point xi can be transformed into a d -D space
such that Xi = [φ1(xi), φ2(xi), . . . , φd (xi)].
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The optimal hyperplane is determined by solving a quadratic programming (QP)
as follows:

min
z∈Rd+1

zTL z, subject to Y . (A z) ≥ 1, where

L =
[
I 0
0 0

]
, A =

[
F 1T

1 0

]
,

Y =

⎡
⎢⎢⎢⎣

sign{c(x1)}
...

sign{c(xN )}
0

⎤
⎥⎥⎥⎦ , z =

⎡
⎢⎢⎢⎣

w1
...

wd

b

⎤
⎥⎥⎥⎦ .

where Fi,j = φi(xj) = ϕ(|xi − xj|) and 1 = ([1, . . . , 1]T )N×1. Performance depends
on the choice of basis functions φ(x) used to leverage the evaluated dataset, and the
choice of SVM kernels are problem-dependent. We set

φi(x) = ϕ(r) , where r = |xi − x|

The most well-known RBF models are the Gaussian kernel model ϕ(r) = e−r2/σ 2
,

the polynomial model ϕ(r) = r3, and the inverse multi-quadratic kernel model
ϕ(r) = 1/

√
σ 2 + r2.

The main challenge in optimization with virtual constraints is that there are many
models of g that could successfully classify the two classes from each other, and these
approximated constraint functions could have a very different range of values from
one another. The variety in appropriate g models stems from the fact that we only
have access to the sign of c(x). As a result, the inclusion of more data points from
specific regions can sometimes lead to estimated g models deviating from the true
hidden function. To control this deviation, we scale the estimated constraint function
using the initial training data points in order to have the same range of variations as
the objective function f (x).

�-DOGS(�H)

The new algorithm is designed based on the �-DOGS(�). Since the constraints
are hidden, an approximation (6) based on the SVM is considered for the model of
constraints. The search function is defined as

sc(x) = max{p(x) − f0
rf e(x)

,
g(x)

rg e(x)
} (7)

where g(x) is modeled as (6) and rf and rg are constants tomake the constraint search
function model in the same range of variation as the objective search function.
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�-DOGS(�H ) algorithm depends upon a handful of adjustable parameters, the
selection of which affects its rate of convergence. The remainder of this section dis-
cusses heuristic strategies to tune these algorithm parameters, noting that this tuning
is an application-specific problem, and alternative strategies (based on experiment
or intuition) might lead to more rapid convergence for certain problems.

The first task encountered during the setup of the optimization problem is the
definition of the design parameters and search domain Ls. Note that the feasible
domain considered during the optimization process is characterized by simple upper
and lower bounds for each design parameter; normalizing all design parameters to
lie between 0 and 1 is often beneficial Alimo et al. (2018), Beyhaghi and Bewley
(2018).

The second challenge is to scale the objective function f (x) and the hidden con-
straint function g(x) themselves, such that the range of the normalized functions f (x)
and g(x) over the search domain Ls are the same and about unity.

If an estimate of the actual range of c(x) (the same as g(x)) is not available a prior,
we may estimate it at any given iteration using the available measurements.

Results

The test function is considered as a quadratic objective function, given by the dis-
tance from a point in the search domain Ls, and is defined over an n-dimensional
space, subject to a nonlinear inequality constraint. The feasible domain is gener-
ated using the sign of a Rastrigin function, defining a disconnected feasible domain
characterized by 2n distinct “islands” within the search domain:

min
x∈Ls

f (x) = ‖x − x0‖2 − 0.024 n, (8a)

subject to sign{c(x)} < 0, (8b)

c(x) = n

12
+ 1

10

n∑
i=1

{
4 (xi − 0.7)2 − 2 cos

(
4π (xi − 0.7)

)}
,

0 ≤ x1, x2, . . . , xn ≤ 1. (8c)

This problem has 2n local minima, including the unique global minimum where
x0 = [0.19, 0.29]T for n = 2 with f (x∗) = f (x0) = 0.

The results show that �-DOGS(�H ), the newly introduced method, has the po-
tential to identify the global minimizer of the objective function under the feasible
region. It is observed that the choice of kernel function acts as a crucial factor in
enabling the global convergence of the optimization method. Figures2 and 3 show
the results using a piece-wise linear kernel. This is an appropriate choice since the
underlying model of constraint function range will not change exponentially when
the algorithm detects a feasible region, as was the case when a cubic kernel was used.
In addition, use of a cubic kernel did not lead to global convergence.
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Fig. 2 Nonconvex problem for n = 2 with vertices as initial points. The gray region is the feasible
domain. The objective function is the distance function from the global minimizer showed by red
star x∗ = [0.19, 0.29]T
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Fig. 3 Nonconvex problem for n = 2 with {x0,i = 0.35, x0,i + 0.1 ei} where ei is the ith main
coordinate direction. The gray region is the feasible domain and the objective function is the distance
function from x∗ = [0.19, 0.29]T

Conclusions

In this work, we presented a new derivative-free algorithm for the optimization of
expensive cost functions subject to box constraints and hidden type of constraints,
in which a design point can be labeled as feasible or not feasible. We modeled
the hidden constraints with the popular classification techniques that is from the
machine learning literature. The well known techniques of SVMs are applied in a
global optimization framework.
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As a future work, we compare the results from Artificial Neural Network and
leverage deep learning techniques to quantify g(x). Furthermore, the presented opti-
mization method will be applied to an application-based problem, and we will study
the behaviour of g(x) in different problems.
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