
Journal of Global Optimization (2021) 79:567–591
https://doi.org/10.1007/s10898-019-00855-1

Design of IMEXRK time integration schemes via
Delaunay-based derivative-free optimization with
nonconvex constraints and grid-based acceleration

Ryan Alimo1,2 · Daniele Cavaglieri1 · Pooriya Beyhaghi1 · Thomas R. Bewley1

Received: 17 June 2018 / Accepted: 30 October 2019 / Published online: 18 January 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This paper develops a powerful new variant, dubbed Δ-DOGS(ΩZ), of our Delaunay-based
Derivative-free Optimization via Global Surrogates family of algorithms, and uses it to
identify a new, low-storage, high-accuracy, Implicit/Explicit Runge–Kutta (IMEXRK) time
integration scheme for the stiff ODEs arising in high performance computing applications,
like the simulation of turbulence. The Δ-DOGS(ΩZ) algorithm, which we prove to be glob-
ally convergent under the appropriate assumptions, combines (a) the essential ideas of our
Δ-DOGS(Ω) algorithm, which is designed to efficiently optimize a nonconvex objective
function f (x) within a nonconvex feasible domain Ω defined by a number of constraint
functions cκ (x), with (b) our Δ-DOGS(Z) algorithm, which reduces the number of function
evaluations on the boundary of the search domain via the restriction that all function eval-
uations lie on a Cartesian grid, which is successively refined as the iterations proceed. The
optimization of the parameters of low-storage IMEXRK schemes involves a complicated
set of nonconvex constraints, which leads to a challenging disconnected feasible domain,
and a highly nonconvex objective function; our simulations indicate significantly faster con-
vergence using Δ-DOGS(ΩZ) as compared with the original Δ-DOGS(Ω) optimization
algorithm on the problem of tuning the parameters of such schemes. A low-storage third-
order IMEXRK scheme with remarkably good stability and accuracy properties is ultimately
identified using this approach, and is briefly tested on Burgers’ equation.

Keywords Derivative-free global optimization · Nonconvex constraints · IMEXRK time
marching schemes · Computational fluid dynamics

B Ryan Alimo
shahrouz.ryan.alimo@gmail.com

Daniele Cavaglieri
daniele.cavaglieri85@gmail.com

Pooriya Beyhaghi
p.beyhaghi@gmail.com

Thomas R. Bewley
bewley@eng.ucsd.edu

1 Flow Control and Coordinated Robotics Labs,UC San Diego, San Diego, USA

2 Jet Propulsion Laboratory, California Institute of Technology, Pasadensa, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-019-00855-1&domain=pdf
http://orcid.org/0000-0001-7957-6755

568 Journal of Global Optimization (2021) 79:567–591

1 Introduction

Over the past 30 years, the Direct Numerical Simulation (DNS) and Large Eddy Simulation
(LES) of turbulent flows have utilized a wide variety of different strategies for discretization
of the spatial derivatives of the governing Navier–Stokes equations, including pseudospec-
tral representations, finite differences, Padé methods, finite elements, spectral elements,
and wavelet-based approaches. Surprisingly, however, much less attention has been given
to the exploration of suitable time-marching approaches for such problems. Early work,
in [18,19], combined an implicit second-order Crank–Nicolson (CN) scheme for the time
integration of the stiff terms with an explicit second-order Adams–Bashforth (AB2) scheme
for the time integration of the non-stiff terms; this implicit/explicit (IMEX) combination
is commonly called a CNAB scheme. This approach was later refined in [21], in which the
explicit componentwas replaced by the third-order low-storageRunge–Kutta–Wray (RKW3)
scheme [24]. This IMEX combination, dubbed CN/RKW3, is an example of a broad class of
time-marching schemes commonly known as IMEXRK schemes. The CN/RKW3 scheme is
only second-order accurate overall, and has an implicit component which is only A-stable.
The CN/RKW3 scheme was improved somewhat in [23], in which a scheme dubbed here
as IMEXRKSMR2 was introduced. This scheme applies the same three-step incremental
formulation of CN/RKW3, with a modified implicit component which improves its accuracy
and stability properties. Though the implicit component of the resulting method was made
strongly A-stable by this effort, it is not possible, as noted by [23], to achieve full third-order
accuracy with a scheme of this specific form.

The A-stable CN/RKW3 and strongly A-stable IMEXRKSMR2 schemes mentioned
above, both of which are second-order accurate, facilitate low-storage implementations in
which only two or three “registers” per system state in the spatially-discretized system need
to be stored in memory in order to march the system considered in time. These schemes have
thus dominated the turbulence simulation literature since their introduction long ago.

Recently, in [12], it was shown that much can be gained by either relaxing the low-storage
requirement, allowing an additional register to be used by the time-marching algorithm, or
increasing the number of stages used to perform the time advancement over each timestep.
In particular, by generalizing and extending the incremental formulation used by CN/RKW3
and IMEXRKSMR2 to a four-step scheme, it was possible to achieve full third-order accuracy
and better stability properties for both the implicit and the explicit parts of the scheme. The
resulting schemewas obtained by imposing the accuracy constraints in amanner that reduced
the parameter space to be searched to a three-dimensional bounded domain. An extensive
and time-consuming brute-force search was then performed over this bounded 3D domain
in order to optimize the scheme’s fourth-order truncation error and stability properties.

As mentioned in the abstract, the optimization of the parameters of IMEXRK schemes
involves:

1. a complicated set of nonconvex constraints, which are imposed to achieve the desired
order of accuracy and a handful of important stability properties, and which leads to a
challenging disconnected feasible domain, and

2. a highly nonconvex objective function, which represents a compromise between a few
different measures characterizing the leading-order error and the potential stability short-
comings of the resulting scheme.

This structure makes the computation of new IMEXRK schemes a challenging practical
test problem for global optimization algorithms. Indeed, most available optimization algo-

123

Journal of Global Optimization (2021) 79:567–591 569

rithms are ill-suited for problems of this structure. As a result, these problems are generally
approached with expensive direct search methods [20].

The present work shows that such tedious and time-consuming manual searches can
be automated and remarkably accelerated by leveraging appropriately-designed, globally-
convergent optimization algorithms.

Formulating the challenge of finding appropriate coefficients for a four-step low-storage
incremental Runge–Kutta scheme as an optimization problem leads to a difficult nonlin-
ear programming problem with multiple local minima and several nonlinear constraints.
Derivative-based optimization methods applied to such problems often get stalled at local
minima, failing to explore the parameter space thoroughly enough to locate the global mini-
mum [13].

Derivative-free optimizationmethods on the other hand, are often designed from the outset
to achieve global convergence. Unfortunately, it is difficult with many such methods to han-
dle general nonlinear constraints. Although several efforts have appeared in the literature to
handle linear and convex constraints within the surrogate-based [9] [8] and pattern-search [6]
frameworks, to the best of our knowledge, only the algorithm in [4] guarantees global con-
vergence under the assumptions of smooth nonconvex constraints and a smooth nonconvex
cost function. For this reason, the algorithm in [4] is the starting point for the present paper.

Delaunay-based optimization algorithms [4,5,8,9] represent a new, computationally effi-
cient, highly extensible class of derivative-free optimization methods. They have been
developed to address a range of practical nonconvex optimization problems whose func-
tion evaluations are computationally (or, experimentally) expensive. These new algorithms,
which are provably globally convergent under the appropriate assumptions, are response
surface methods which iteratively minimize metrics based on an interpolation of existing
datapoints and a synthetic model of the uncertainty of this interpolant, which itself is built on
the framework of aDelaunay triangulation over the existing datapoints. Unlike other response
surface methods, these algorithms are designed to leverage any well-behaved interpolation
strategy.

There are four main algorithms developed in this class thus far, which address a wide
range of practical optimization problems. The first [9], dubbed Δ-DOGS, efficiently min-
imizes expensive objective functions inside linearly constrained feasible domains. The
second [8] extends Δ-DOGS to efficiently handle more general convex search domains. The
third [4] extends Δ-DOGS to nonconvex and numerically expensive constraint functions.
The fourth [7] incorporates a grid into Δ-DOGS to achieve faster convergence, primarily by
performing fewer function evaluations along the boundary of feasibility.

A key limitation of the algorithm developed in [4], dubbedΔ-DOGS(Ω), is the overexplo-
ration of the boundary of the search domain, Ωs , that might otherwise be unnecessary. This
characteristic is caused in [4] by the poor behavior of the generated uncertainty function near
the boundary of search domain. This behaviour is exacerbated when the objective function
itself has irregular behavior close to the boundary of Ωs , which is especially common in
situations in which the objective function value on the boundary is close to the minimum.

To address this limitation, we introduce in this paper a new variant of Δ-DOGS that
significantly accelerates the algorithm developed in [4], which optimizes nonconvex and
computationally expensive functions within nonconvex feasible domains, by incorporating a
Cartesian grid, as motivated by [7], to significantly reduce the number of function evaluations
performed on the boundary of the search domain.

This paper is organized as follows. Section 2 describes our new (accelerated) optimization
algorithm for solving nonconvex, computationally expensive optimization problems within
nonconvex feasible domains. Section 3 analyzes the convergence of this algorithm. Section 4

123

570 Journal of Global Optimization (2021) 79:567–591

outlines the accuracy constraints that need to be satisfied for an incremental IMEXRKscheme
to be third-order accurate; stability properties and other metrics are also introduced. Section 5
provides a detailed description of how the new optimization algorithm is used to design
the new IMEXRK scheme. Section 6 presents numerical results, demonstrating the third-
order accuracy of the IMEXRK scheme determined. Conclusions and future directions are
discussed in Sect. 7.

2 Optimization algorithm

In this section, we modify our original Delaunay-based Derivative-free Optimization algo-
rithm via Global Surrogates with nonconvex constraints, dubbed Δ-DOGS(Ω), to obtain
faster convergence. The algorithm developed is a globally-convergent derivative-free opti-
mization method designed to solve the following problem:

minimize f (x) with x ∈ Ω := Ωc ∩ Ωs ⊆ R
n where

Ωc = {x |cκ (x) ≤ 0 , for κ = 1, · · · ,m}, Ωs = {x |a ≤ x ≤ b}, (1)

where both f (x) and cκ (x) for κ = 1, · · · ,m are twice differentiable and possibly nonconvex
functions which map R

n → R within the search domain Ωs .
The optimization problem (1) has two sets of constraints:

a. a set of 2 n bound constraints that characterize the n-dimensional box domain Ωs =
{x |a ≤ x ≤ b}, dubbed the search domain, and

b. a set of m possibly nonlinear inequality constraints cκ (x) ≤ 0 that together characterize
the possibly nonconvex domain Ωc = {x |cκ (x) ≤ 0 , for κ = 1, · · · ,m}, designated
the constraint domain.

The feasible domain, Ω , is the intersection of these two domains, Ω := Ωs ∩ Ωc.

2.1 Preliminary definitions

Let us first present some preliminary definitions before presenting the optimization algorithm.

Definition 1 Given S as a set of points that includes the vertices of domain Ωs , and Δ as a
Delaunay triangulation of S, we define the local uncertainty function, ei (x), for each simplex
Δi ∈ Δ

ei (x) = r2i − ‖x − Zi‖2, (2)

where ri and Zi are the circumradius and circumcenter ofΔi . The global uncertainty function,
e(x), is

e(x) = ei (x), for all x ∈ Δi . (3)

The uncertainty function (3) has the following properties1:

1. For all x ∈ Ωs , e(x) ≥ 0. For all x ∈ S, e(x) = 0.
2. The piecewise quadratic uncertainty function (3) is continuous and Lipschitz.
3. For any x ∈ Ωs , the uncertainty function e(x) is equal to the maximum of the local

uncertainty functions ei (x):

e(x) = max
i

ei (x) for all x ∈ Ωs . (4)

1 Proofs of these properties are provided in §3 of [9].

123

Journal of Global Optimization (2021) 79:567–591 571

In this work, we assume that there is a known target value f0 that is achievable (that is,
∃ x ∈ Ωs such that f (x) ≤ f0 and cκ (x) ≤ 0 for all κ = 1, . . . ,m). The cκ (x) are nonlinear,
computationally expensive constraint functions. Note that the present algorithm can easily
be extended to problems for which a target value and constraint violation thresholds are not
available, as in Algorithm 1 of [4].

Definition 2 Take SkE as the set of evaluated points at iteration k, which includes the vertices
of domain Ωs , at which the objective and constraint functions f (x), c1(x), . . . , cm(x) have
been evaluated. Define pk(x), gk1(x), . . . , g

k
m(x) as smooth interpolations of the objective

and constraint functions, respectively, through all points in SkE . Define

Fk(x) = max
[
pk(x) − f0, g

k
1(x), . . . , g

k
m(x)

]
. (5)

The continuous search function is defined, ∀x ∈ Ωs such that x /∈ SE , as

skc (x) =
{
Fk(x)/ek(x), if Fk(x) ≥ 0,

Fk(x), otherwise.
(6)

The discrete search function is defined, ∀x ∈ Ωs such that x /∈ SE , as

skd (x) =
{
Fk(x)/Dist{x, SkE }, if Fk(x) ≥ 0,

Fk(x), otherwise,
(7)

where Dist{x, SkE } is defined as the minimum distance between the point x and the set of
points in SkE :

Dis{x, SkE } = min {‖x − z‖ | z ∈ SkE }.

2.2 Summary of the original1-DOGS(Ä) algorithm

Delaunay-based Derivative-free Optimization via Global Surrogates (Δ-DOGS) is a gen-
eralizable family of practical, efficient, and provably-convergent derivative-free algorithms
designed for a range of nonconvex optimization problems with expensive function evalua-
tions [8,9]. A new variant in this family of algorithms, dubbed Δ-DOGS(Ω), was developed
in [4] to solve optimization problems with both nonconvex and computationally expensive
objective functions and nonconvex and computationally expensive constraint functions, of
the form (1). The feasible domain Ω defined in such a problem may be nonconvex; indeed,
it may even be disconnected.

In the original Δ-DOGS(Ω) algorithm, approximations pk(x) and gkκ (x) of, respectively,
the objective function f (x) and the constraint functions cκ (x) are developed at each iteration
k, basedon thedata obtained thus far, and refined as the iterations proceed.Noprior knowledge
of the constraint functions is assumed. The solution of (1) [that is, minimization of f (x)
subject to cκ (x) ≤ 0 and x ∈ Ωs] is found iteratively, leveraging at each iteration k the
continuous search function skc (x) defined in (6), which is based upon these approximations,
the uncertainty function ek(x) defined in (3) [which for any x and k quantifies our confidence
in these approximations], and a target value f0 for the objective function f (x). The Δ-
DOGS(Ω) algorithm is initialized by evaluating f (x) and cκ (x) at all vertices of the search
domain Ωs . The essential steps of Δ-DOGS(Ω) are summarized in Algorithm 1.

Note that any smooth interpolation strategy can be used in Algorithm 1; a common choice
for the surrogate models gkκ (x) and p(x) is polyharmonic-spline interpolation [1,2,9]. The
uncertainty model for these interpolation functions are defined based on the location of

123

572 Journal of Global Optimization (2021) 79:567–591

Algorithm 1 Δ-DOGS(Ω), designed for minimization of (1), from [4].

1: Set k = 0. Take S0 as the initial set of datapoints, which are the vertices of the search domainΩs . Evaluate
f (x) and cκ (x) for all κ ∈ {1, . . . ,m} at S0.

2: Calculate interpolating functions gkκ (x) for the evaluations of cκ (x), and p(x) for the evaluations of f (x),
over all points in Sk (see §4 of [4] for details).

3: Perform a Delaunay triangulation, Δk , over all points in Sk .
4: For each simplex Δk

j of the triangulation Δk , calculate zkj and r
k
j as the circumcenter and circumradius of

Δk
j .

5: Noting the definitions of ek (x) in (3) and skc (x) in (6), determine xk as a global minimizer as follows

xk = minx∈Ωs s
k
c (x) subject to x ∈ Ω. (8)

6: Evaluate f (xk) and cκ (xk), set Sk+1 = Sk ∪ {xk }, and repeat from step 2 until convergence.

the datapoints in the feasible domain as Definition 1. This artificially generated uncertainty
model is a key factor in the Δ-DOGS family of schemes, which enables them to guarantee
the convergence to a global solution and escape from local solutions.

It was observed that Algorithm 1, the artificially generated error function, e(x), has poor
behaviour near the boundary of search domain which results in overexploration over the
boundary of the search domain, Ωs , that might otherwise be unnecessary. In the following,
we present a modification toΔDOGS(Ω) to improve its performance and reduce the number
of unnecessary function evaluations over the boundary of the search domain.

2.3 1-DOGS(ÄZ): implementation of Cartesian grids to accelerate1-DOGS(Ä)

We now present the modified optimization algorithm proposed in the present work. One
of the drawbacks of Δ-DOGS(Ω), as summarized in Algorithm 1, is its overexploration of
the boundaries of feasibility. To alleviate this problem we incorporate a grid to improve its
convergence properties. The new algorithm, dubbed Δ-DOGS(ΩZ), does not require the
cumbersome feasible boundary constraint projections of [4,7], and results in significantly
fewer function evaluations at the boundary of the search domain than Δ-DOGS(Ω).

Moreover, note that the initialization cost ofΔ-DOGS(Ω) is function evaluations at all 2n

vertices ofΩs . This initialization cost grows rapidly as dimension n of the problem increases.
The new algorithm, Δ-DOGS(ΩZ), only requires initial function evaluations at n+1 points.

The following three key modifications to Δ-DOGS(Ω), summarized in Algorithm 1, are
performed to obtain Δ-DOGS(ΩZ), as summarized in Algorithm 2:

1. All the datapoints in Algorithm 2 are restricted to lie on a Cartesian grid, which is
occasionally refined as the algorithm proceeds.

2. At each iteration, two different sets of points are considered, SE and SU . Function eval-
uations are available only for the points in SE ; the points in SU , dubbed support points,
are used only to regularize the triangulation of the domain, and the uncertainty function
which is built upon this triangulation.

3. Two different search functions, sc(x) and sd(x), are considered at each iteration. The
continuous search function, sc(x), is designed and is minimized over the entire search
domainΩs . The discrete search function, sd(x), is minimized only over the points in SU .

It is shown in [4,7,8] that the irregular behavior of the uncertainty function e(x) close to
the boundary of feasibility in many problems causes many additional function evaluations
on the boundaries, which can significantly reduce the convergence rate ofΔ-DOGS(Ω). The

123

Journal of Global Optimization (2021) 79:567–591 573

Algorithm 2 Δ-DOGS(ΩZ), designed for (grid-based) accelerated minimization of (1).

1: Set k = 0 and initialize � = 3. Take the initial set of support points S0U as all 2n vertices of the feasible
domain Ω . Choose at least n + 1 points on the initial grid, n + 1 of which are affinely independent, put
them in S0E , and calculate f (x) at each of these n + 1 points.

2: Calculate (or, for k > 0, update) interpolating functions pk (x) and gkκ (x) for f (x) and cκ (x) over the set
of points in SkE .

3: Calculate (or, for k > 0, update) a Delaunay triangulation Δk over all of the points in Sk = SkU ∪ SkE , and

generate the ek (x).
4: Find xk as the minimizer of skc (x) (see Definition (6)) in Ωs , and take yk as its quantization onto the grid

L�.
5: Find wk as the minimizer of skd (x) (see Definition (7)) in SkU .

6: If the pair (xk , Sk) is not activated, then take Sk+1
U = SkU ∪ {yk }, increment k, and repeat from 2.

7: If skd (xk) ≥ skd (wk) [called the evaluating step], then take Sk+1
U = SkU − {wk }, Sk+1

E = SkE ∪ {wk },
calculate f (wk) and cκ (wk), and increment k; if f (wk) > f0 or cκ (yk) > 0, repeat from 2, otherwise
halt.

8: If yk /∈ SkE [and, skd (xk) < skd (wk), called the identifying step], then take Sk+1
E = SkE ∪ {yk }, calculate

f (yk), and increment k; if f (yk) > f0 or cκ (yk) > 0, repeat from 2, otherwise halt.
9: Increment both � and k, and repeat from 2.

new Δ-DOGS(ΩZ) algorithm aims to have far fewer datapoints accumulate on the boundary
of the search domain. To achieve this, as mentioned above, Algorithm 2makes use of support
points, which are used to eliminate function evaluations at points where they are not truly
needed. The set of datapoints at each iteration, Sk , is thus divided into evaluated points SkE
and support points SkU .

Definition 3 The Cartesian grid of level � for the search domain Ωs = {x |a ≤ x ≤ b},
denoted as L�, is:

L� =
{
x |x = a + 1

N
(b − a) ⊗ z, z ∈ {0, 1, . . . , N }

}
, where N = 2�.

A quantization of any point x ∈ Ωs on L� is a point xq with the minimum distance to x from
the L� grid. See [7] for a review of essential elements of the Cartesian grid as used in this
work.

Algorithm 2 aims to have fewer datapoints accumulate on the boundary of the search
domain. It is shown in [4,7,8] that the irregular behavior of the uncertainty function e(x) close
to the boundary of feasibility causes many additional function evaluations on the boundaries
which can ultimately result in slow convergence.

To address this issue Algorithm 2, Δ-DOGS(ΩZ), introduces the notion of “support
points”, which are points defined and used to eliminate constraint and objective function
evaluations on the boundary of the search domain, where these functions are sometimes ill-
behaved, while restricting all datapoints to lie on a Cartesian grid that is successively refined
as convergence is approached.

As a result, the datapoints Sk are divided into evaluated points SkE and support points SkU .
That way,Δ-DOGS(ΩZ) explores the interior of the feasible domain more extensively using
both continuous and discrete search functions, and the convergence is achieved with fewer
function evaluations. It is of note that this issue is more visible when the objective functions
themselves have irregular behavior on the boundaries, such as the application of interest in
this work.

123

574 Journal of Global Optimization (2021) 79:567–591

(a) (b)

Fig. 1 Illustration of activated and inactivated step for different situations. The points in SkE and SkU are

illustrated by open square and star, respectively. a Activated steps: the nearest points to x1:4 to the set of
available points, SkU ∪ SkE , arew1:4, respectively; note that the constraints binding at xi are also binding atwi ,

i.e. Aa(xi) ⊆ Aa(wi). b Inactivated steps: the nearest points to x5:6 to the set of available points are w5:6,
respectively; note that the constraints binding at xi are not necessarily binding at wi , Aa(xi) � Aa(wi)

Definition 4 Consider x as a point in Ωs , Sk as a nonempty set of points in Ωs , and w ∈ Sk

as the point in Sk that is closest to x . The pair (x, S) is called activated if and only if
Aa(x) ⊆ Aa(w), where Aa(x) is the set of active constraints at x . If multiple points in Sk

are equidistant from x and at least one of those points w is such that Aa(x) ⊆ Aa(w), then
the pair (x, S) is called activated. See Fig. 1 for illustration.

Consider xk as the minimizer of the continuous search function skc (x) in Ωs , yk as the
quantization of xk onto the grid L�, and wk as the minimizer of the discrete search func-
tion skd (x) in SkU . There are four possible cases at each iteration of Algorithm 2, that are
corresponding to four of the numbered steps of this algorithm:

(6) The pair (xk, Sk) is not activated. This is called the inactivated step: yk is simply added
to SkU , and no function evaluation is performed. (Note that the other three steps below, in
contrast, are said to be activated.)

(7) The pair (xk, Sk) is activated and skd (wk) < skd (xk). This is called the replacing step: wk

is removed from SkU , added to SkE , and f (wk) calculated.
(8) The pair (xk, Sk) is activated, skd (xk) ≤ skd (wk), and yk /∈ SkE . This is called the improving

step: the new point yk is added to SkE , and f (yk) is calculated.
(9) The pair (xk, Sk) is activated, skd (xk) ≤ skd (wk), and yk ∈ SkE . This is called the refinement

step: L� is refined, and the sets SkE and SkU are unchanged.

As the algorithm proceeds at a given iteration k of Algorithm 2, only one of the above four
cases applies, and the corresponding step is taken. Replacing and improving iterations (in
which the replacing and improving steps are taken, respectively) are represented in Fig. 1
(note that in 1D all iterations are activated).

We presented a new algorithm derived from Δ-DOGS(Ω) which, by using Cartesian
grids and support points, performs fewer function evaluations at the boundaries of the search
domain, and thus has a lower computational cost. The question of whether or not it converges
efficiently remains, and will be tackled in the next section.

123

Journal of Global Optimization (2021) 79:567–591 575

As the algorithm proceeds at a given iteration k of Algorithm 2, only one of the above
four cases applies, and the corresponding step is taken. Replacing and improving iterations
(in which the replacing and improving steps are taken, respectively) are illustrated in Fig. 2;
note that, in 1D, all iterations are activated, as the vertices of the domain are included in SkU .

3 Convergence analysis of Algorithm 2

We analyze the convergence of Algorithm 2 under the following assumptions:

Assumption 1 The objective function f (x), the constraint functions cκ (x), and the interpo-
lating functions pk(x) and gkκ (x) are all Lipschitz, with Lipschitz constant L̂ .

Assumption 2 The objective function f (x) and constraint functions cκ (x) are twice differ-
entiable. There is a constant K̂ such that, for all x ∈ Ωs , ∀κ ∈ {1, . . . ,m}, and ∀k > 0,
then

∇2{pk(x) − f (x)} + 2 K̂ I ≥ 0, ∇2{gkκ (x) − cκ (x)} + 2 K̂ I ≥ 0,

∇2 p(x) − 2 K̂ I ≤ 0, ∇2gκ (x) − 2 K̂ I ≤ 0,

∇2 f (x) − 2 K̂ I ≤ 0, ∇2cκ (x) − 2 K̂ I ≤ 0.

Assumption 3 A point x ∈ Ωs exists such that both f (x) ≤ f0 and cκ (x) ≤ 0. This means
that the target value f0 is achievable within the feasible domain Ω , though a location x that
achieves this target value is, at least initially, unknown.

Before analyzing the convergence properties of the optimization algorithm, some elements
of the Cartesian grid must be introduced.

Definition 5 The Cartesian grid of level � over the search domain Ωs = {x |a ≤ x ≤ b},
denoted L�, is defined as follows:

L� =
{
x |xi = ai + bi − ai

N�

· z, z ∈ {0, 1, . . . , N�}, i ∈ {0, 1, . . . , n}
}
.

where N� = 2� is the number of grid points at each direction on the grid level of �.
We can define the quantization of a point x onto the grid L� as x�

q , which is a point on
the grid that has the minimum distance to x . The solution of the quantization process is not
unique, but any of those quantization solutions are acceptable.

For every grid level of L�, the maximum quantization error (a.k.a the “covering radius”,
in the language of sphere packing theory) of the grid, δL�

, is defined as follows:

δL�
= max

xq∈L�

‖x − xq‖ = ‖b − a‖
2N�

. (9)

There are three important properties of the Cartesian grid which are used in the convergence
analysis.

a. The grid of level � covering the search domain Ωc in an n dimensional space has (N� +
1)n grid points. Such a grid is best suited for an approximately square domain Ω; for
rectangular domains with high aspect ratios, this grid is easily generalized, as discussed
in Remark 1.

b. lim�→∞ δL�
= 0.

123

576 Journal of Global Optimization (2021) 79:567–591

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Illustration of (first column) evaluating and (second column) identifying iterations of Algorithm 2,
using different sets of evaluated points. The first row shows the two functions (solid) c1(x), (dashed) c2(x),
and (blue) max{c1(x), c2(x)}. The second row shows the approximation of these quantities, denoted (solid)
g1(x), (dashed) g2(x), (blue) max{g1(x), g2(x)}, (stars) support points SU , and (open circles and squares)
evaluated points SE ; also indicated, as solid lines near the bottom of these figures, is the uncertainty function
e(x). The third row, in the top subfigures, shows (solid line) the continuous search function skc (x), and (closed
red circles) the global minimizer xk of skc (x); the third row, in the bottom subfigures, shows the discrete search
function skd (x), evaluated at (closed black squares) the support points SkU , and (closed red circles) the point xk

that is the minimizer of the continuous search function. Denoting the minimizer of skd (x) in SkU as wk , note

that skd (xk) ≥ skd (wk) in the figure at left (an evaluating iteration), and skd (xk) < skd (wk) in the figure at right
(an identifying iteration). (Color figure onilne)

123

Journal of Global Optimization (2021) 79:567–591 577

c. If xq is a quantization of x onto L�, then Aa(x) ⊆ Aa(xq), where Aa(x) is the set of
active constraints at x0.

Remark 1 The square Cartesian grid proposed in Definition 5 is easily generalized to a rect-
angular Cartesian grid by defining

L� =
{
x |xi = ai + bi − ai

N�,i
· zi , zi ∈ {0, 1, . . . , N�,i }, i ∈ {0, 1, . . . , n}

}
,

where N�,i = ci 2� for small integers ci , which are selected such that the grid spacings
of the initial grid, Δx0,i � (bi − ai)/N0,i , are approximately equal in each direction i . For
rectangular domainsΩs with high aspect ratios, a grid defined in such amanner is significantly
better suited [7].

Now, we have all essential elements for the convergence analysis.

Lemma 1 Consider xk as the solution of the following optimization subproblem:

minimizex∈Ωc T
k(x) = pk(x) − K ek(x), subject to CT k

κ (x) = gkκ (x) − K ek(x) ≤ 0,
(10)

where K is a real positive real number. Then, for any point x, such that Aa(xk) ⊂ Aa(x),
we have:

|T k(xk)−T k(x)| ≤ L̂‖x−xk‖, |CT k
κ

(
xk

)−CT k
κ (x)| ≤ 1

2

[
2 K+K̂

]‖x−xk‖2+L̂‖x−xk‖.
(11)

Proof Define L1 as the set of points that Aa(xk) ⊂ Aa(x).
Consider Δk

i as the simplex which includes xk , and corresponding define T k
i (x), and

CT k
l,i (x) as follow:

T k
i (x) = pk(x) − Keki (x), CT k

i,l(x) = gkκ (x) − K eki (x) (12)

According to property of e(x) = maxi ei (x), we have:

T k(x) ≤ T k
i (x), CT k(x) ≤ CT k

i,l(x), (13)

T k(xk) = T k
i (x), CT k(xk) = CT k

i,l(x
k). (14)

Since xk is the globalminimizer ofΩ , it is a KKT [15] point in L1; thus, it is a localminimizer
point of the following function with respect to x .

Gk
i (x) = T k

i (x) + ∑m
l=1 λCT k

l,i (x)

1 + λ
, (15)

where λκ > 0 are the Lagrange multipliers. According to Assumption 2, ∇2Gk
i (x)+[2 K +

K̂]I ≥ 0. Therefore, the function Gk
i (x) − 1

2 [2 K + K̂](x − xk)2 is concave; therefore,

Gk
i (x) − 1

2
[2 K + K̂](x − xk)2 ≤ Gk

i (x
k)

+(∇Gk
i (x

k))T (x − xk) = Gk
i (x

k) = Gk
i (x

k), (16)

Gk(x) ≤ Gk(xk) + 1

2
[2 K + K̂]‖x − xk‖2. (17)

123

578 Journal of Global Optimization (2021) 79:567–591

Define Fk(x) = Gk(x) − T k(x). Using Assumption 1, It is easy to observe that Fk(x) is
Lipchitz with constant L̂; therefore,

|T (x) − T (xk)| ≤ L̂‖x − xk‖, |T k(xk) − T k(x)| ≤ K1‖x − xk‖2 + L1‖x − xk‖. (18)

The verification of (11) for CT k(x) is similar. ��
Lemma 2 There are infinite number of mesh decreasing steps as Algorithm 2 proceeds.

Proof Similar to Theorem 1 of [7], this lemma is established by contradiction. One can
assume that Lemma 2 is not valid and there are finite number of mesh decreasing iterations
as Algorithm 2 proceeds. As a result, all datapoints are on a certain grid level �, and the
number of datapoints on the grid level � is finite. In the next iteration of Algorithm 2, the
iteration is either inactivated, evaluating, or identifying iteration. By construction, one can
see that in all the scenarios the value of |SK | + |SkE | at least is incremented by one. The
number of datapoints on the grid is finite; therefore, there are finite number of iterations
that are not mesh decreasing. This is in contrast with the fact that the Algorithm 2 proceeds
infinite iterations. Thus, Lemma 2 is valid. ��
Lemma 3 Consider x∗ as a globalminimizer of f (x) inΩ . Then, for each step ofAlgorithm2,

min
{ skc (x∗)

K̂
, min
z∈SkU

{ s
k
d (z)

L̂
}
}

≤ 2. (19)

Proof Lemma 3 is analogous to Lemma 6 of [7]. ��
Another result which is required to establish convergence, which is an extension of Lemma
2 in [7], is now presented.

Theorem 1 Consider J (x) and Gκ (x), for 1 ≤ κ ≤ m, as twice differentiable such that, for
some constant K1, ∇2 J (x) − 2 K1 I ≤ 0 and ∇2Gκ (x) − 2 K1 I ≤ 0. Also, J (x) − Gκ (x)
and Gi (x) −G j (x) are Lipschitz functions with Lipschitz constant L1. Moreover, x∗ ∈ Ω is
a KKT point of the following optimization problem:

min
x∈Ωs

J (x) subject to Gκ (x) ≤ 0 κ = {1, . . . ,m}. (20)

Then, for each x ∈ Ωs such that Aa(x∗) ⊆ Aa(x), we have:

max
{
J (x) − J (x∗),max

κ
{Gκ (x)}

}
≤ K1‖x − x∗‖2 + L1 ‖x − x∗‖. (21)

Proof Since x∗ is a KKT point in Ω , it is a stationary point of the following function with
respect to x :

T (x) = J (x) + ∑m
κ=1 λκ Gκ (x)

1 + ∑m
κ=1 λκ

, (22)

whereλκ > 0 are the Lagrangemultipliers. By construction,∇2T (x)−2 K1 I ≤ 0; therefore,
according to Lemma 2 in [7], the T (x) can be expressed as:

T (x) − T (x∗) ≤ K1‖x − x∗‖2. (23)

On the other hand, define F(x) as follows:

F(x) = J (x) − T (x) = J (x) − ∑m
κ=1 λκGκ (x)

1 + ∑m
κ=1 λκ

123

Journal of Global Optimization (2021) 79:567–591 579

It is easy to observe that F(x) is Lipschitz with constant L1; therefore,

|F(x) − F(x∗)| ≤ L1‖x − x∗‖, (24)

|J (x) − J (x∗)| ≤ K1 ‖x − x∗‖2 + L1 ‖x − x∗‖. (25)

Similarly, we can show above equation for Gκ (x) for 1 ≤ κ ≤ m. ��
Lemma 4 Consider k as a mesh decreasing iteration of Algorithm 2. Then,

min
z∈SkE

{
max{ f (z) − f0, max

1≤κ≤m
cκ (z)}

}
≤ max{3 L̂ δk, 6 K̂ δ2k }, (26)

Recall that z is the quantization xk on a grid of level �k , and δk is the maximum quantization
error on a grid of level �k (see Definition 3).

Proof Theorem 4 is analogous to Theorem 1 of [7] which is established similarly using
Lemma 1 above (instead of Lemma 2 in [7]). ��

We may conclude from the above analysis that given the assumptions mentioned at the
beginning of this section, Algorithm 2 converges quadratically as the global minimizer of
the optimization problem is approached. Note that Algorithm 2 may be applied effectively
to many nonconvex optimization problems even when the assumptions of smoothness of
the objective and constraint functions do not hold, though the above analysis on the rate of
convergence will no longer apply.

3.1 Comparison of Algorithms 1 and 2 on representative problems

This section examines the performance of optimization Algorithm 2 and compares its results
to Algorithm 1 on a test problem (27), for n={2, 3, 4}-dimensional problems.

min
x∈Ωs

f (x) = xT x − 0.024 n, subject to cκ (x) ≤ 0, (27a)

cκ (x) = n

12
+ 1

6

n∑
i=1

{
4 (xi − 0.7)2 − 2 cos

(
4π (xi − 0.7)

)}
(27b)

0 ≤ x1, x2, . . . , xn ≤ 1. (27c)

The performance results are summarized in Table 1. Similar to [3,5,25], the initial data-
points for the Algorithm 2, S0E , are constructed with n + 1 points as below:

S0E =
{
x0, x0 + bi − ai

2�0
ei ,∀i ∈ {1, 2, . . . , n}

}
,

where for each direction i , ei is the i th main coordinate direction, x0 is an initial point on
the grid of level �0, and ai = 0, bi = 1. Also, ei = 0.15 for all initial points. Note that
since performance of Algorithm 2 depends on the location of the initial point, the algorithm
is simulated with 5 different initialization and the average run time is reported.

The results are summarized inTable 1. Somenotable comments about these results include:

a. The number of function evaluations in Algorithm 2 compared to Algorithm 1 grows as
the dimension of the problem increases.

b. The number of required function evaluations on the boundary of the search domain
reduces in Algorithm 2 (see Table 1 for n = 2, 3, 4 and Fig. 3 for 2D visualization).

123

580 Journal of Global Optimization (2021) 79:567–591

(a) (b)

(c) (d) (e)

Fig. 3 Top figures: illustration of objective function, f (x), (left) and the constraint function, cκ (x), in (27).
Also, the top right plot shows the contour values of cκ (x) = 0. In the bottom plots, for simplicity the feasible
region, i.e., cκ (x) ≤ 0, is illustrated as solid black region. Bottom figures: illustration of the performance of
the Algorithm 1 in subfigure c, Algorithm 2 with initial points x0 = [0.5, 0.5] with ei = 0.15 in subfigure d,
and with initial points x0 = [0.3, 0.3] with ei = 0.15 in subfigure e

Table 1 The summary of number of function evaluations for the Algorithm 2,Δ-DOGS(ΩZ), Algorithm 1,Δ-
DOGS(Ω), and percentage of reduction on number of evaluations using Algorithm 2 compared to Algorithm 1
on optimization problem (27) in 2, 3, and 4 dimensions

n Num. of total eval. Num. of eval. on boundary
Alg. 1 Alg. 2 % Reduction Alg. 1 Alg. 2 % Reduction

2 23 21 −9 10 9 −10

3 87 72 −17 52 34 −35

4 154 142 −8 109 62 −43

The left part of table shows the number of function evaluations during optimization process. The left part of
the table shows the number of function evaluations perform on the boundary of the search domain. The initial
conditions are considered for Δ-DOGS(ΩZ) are n + 1 points in the neighborhood of xi with distance of 0.15

Table 1 shows that while the reduction in function evaluation is noticeable but limited, the
reduction on the number of points on the boundary is much more noticeable.

The implementation of Algorithm 2 is available in https://github.com/deltadogs/OmegaZ.

4 Runge–Kutta scheme derivation

In this section, we develop the constraints which need to be solved in order for us to identify
a new mixed implicit/explicit incremental Runge–Kutta (IMEXRK) scheme with low trun-

123

https://github.com/deltadogs/OmegaZ

Journal of Global Optimization (2021) 79:567–591 581

cation error and third order accuracy. We consider an ordinary differential equation (ODE)
with a separable right-hand side:

du
dt

= L u + N (u) (28)

where L is a linear operator and N is a nonlinear operator. This ODE structure is of par-
ticular interest since it often arises in the field of Computational Fluid Dynamics (CFD).
The incompressible Navier–Stokes Equations (NSE), after appropriate spatial discretization,
are an example of the form (28). For incompressible NSE, the linear operator accounts for
discretization of the diffusive terms, while the nonlinear operator deals with the convective
terms. Since the diffusive terms are stiff generally, while the convective terms are usually
nonstiff, time discretization for DNS and LES simulations in the past three decades has relied
principally on mixed implicit/explicit approaches, in which the integration of the diffusive
term is carried out implicitly, while the convective term is marched explicitly.

Our goal is to derive a mixed implicit/explicit (IMEX) Runge–Kutta (RK) algorithm to
integrate the equation in (28) over time with third order accuracy, while keeping memory
storage to a minimum. In this framework, the linear term is treated implicitly, so that the
stability of the implicit part is not affected, while the nonlinear term is treated explicitly.
Since the linear operator is general stiff, while the nonlinear operator is usually nonstiff, this
approach allows us to significantly relax the stability constraints for the time step, with which
the simulation is marched.

Recently, [12] showed that is possible to extend the three-step incremental formulation
presented in [23] to a four-step scheme, in order to achieve third order accuracy. Such scheme
marches the solution un at time tn over the interval [tn, tn+1] of size Δt as follows

u(1) = un + Δt
(
α I
1 Lu(1) + β I

1 L un + βE
1 N (un)

)

u(2) = u(1) + Δt
(
α I
2 Lu(2) + β I

2 L u(1) + βE
2 N (u(1)) + γ E

2 N (un)
)

u(3) = u(2) + Δt
(
α I
3 Lu(3) + β I

3 L u(2) + βE
3 N (u(2)) + γ E

3 N (u(1))
)

un+1 = u(3) + Δt
(
α I
4 Lun+1 + β I

4 L u(3) + βE
4 N (u(3)) + γ E

4 N (u(2))
)

(29)

where un+1 is the solution at time tn+1. Recasting the coefficients in Butcher tableaux
from [10] for explicit and implicit gives

0 0
c2 bI1 aI

2,2
c3 bI1 bI2 aI

3,3
c4 bI1 bI2 bI3 aI

4,4
1 bI1 bI2 bI3 bI4 bI5

bI1 bI2 bI3 bI4 bI5

0 0
c2 aE

2,1 0
c3 bE1 aE

3,2 0
c4 bE1 bI2 aE

4,3 0
1 bE1 bE2 bE3 bE4 0

bE1 bE2 bE3 bE4 0

(30)

This alternative formulation allows us to easily impose the nine constraints needed in
order for the scheme to achieve full third order accuracy during the integration of (28). Such
constraints are listed below:

123

582 Journal of Global Optimization (2021) 79:567–591

τ
(1)I
1 =

s∑
i=1

bIi − 1 τ
(1)E
1 =

s∑
i=1

bEi − 1

τ
(2)I
1 =

s∑
i=1

bIi ci − 1

2
τ

(2)E
1 =

s∑
i=1

bEi ci − 1

2

τ
(3)E
1 = 1

2

s∑
i=1

bEi c2i − 1

6

τ
(3)I I
2 =

s∑
i, j=1

bIi a
I
i, j ci − 1

6
τ

(3)I E
2 =

s∑
i, j=1

bIi a
E
i, j c j − 1

6

τ
(3)E I
2 =

s∑
i, j=1

bEi a I
i, j ci − 1

6
τ

(3)EE
2 =

s∑
i, j=1

bEi aE
i, j c j − 1

6

(31)

Furthermore, we impose stage-order one constraints at each stage of the Butcher tableaux
in (30), i.e.

∑5
j=1 a

I
i, j = ∑5

j=1 aE
i, j = ci . This leaves three free design parameters for

optimization. All in all, after third order accuracy is imposed, we should minimize the fourth
order truncation error. This is accomplished in [12,14,17] by minimizing the norm of the
residuals of the fourth order accuracy constraints, denoted as A(4).

For the ODE in (28), such constraints are

τ
(4)E I
2 =

s∑
i, j=1

bEi ci a
I
i, j c j − 3

24
τ

(4)EE
2 =

s∑
i, j=1

bEi ci a
E
i, j c j − 3

24

τ
(4)I E
3 = 1

2

s∑
i, j=1

bIi a
E
i, j c

2
j − 1

24
τ

(4)EE
3 = 1

2

s∑
i, j=1

bEi aE
i, j c

2
j − 1

24

τ
(4)I I I
4 =

s∑
i, j,k=1

bIi a
I
i, j a

I
j,k ck − 1

24
τ

(4)I I E
4 =

s∑
i, j,k=1

bIi a
I
i, j a

E
j,k ck − 1

24

τ
(4)I E I
4 =

s∑
i, j,k=1

bIi a
E
i, j a

I
j,k ck − 1

24
τ

(4)I EE
4 =

s∑
i, j,k=1

bIi a
E
i, j a

E
j,k ck − 1

24

τ
(4)E I I
4 =

s∑
i, j,k=1

bEi a I
i, j a

I
j,k ck − 1

24
τ

(4)E I E
4 =

s∑
i, j,k=1

bEi a I
i, j a

E
j,k ck − 1

24

τ
(4)EE I
4 =

s∑
i, j,k=1

bEi aE
i, j a

I
j,k ck − 1

24
τ

(4)EEE
4 =

s∑
i, j,k=1

bEi aE
i, j a

E
j,k ck − 1

24
.

(32)

In practice, the IMEXRK scheme should have an implicit component, which is L-stable2.
This guarantees proper damping of the largest eigenvalues of L. Based on linear stability
analysis [11,16], the stability function for the implicit component of (30) can be defined as

2 A time marching scheme is said to be L-stable if its stability region contains the entire left-half plane (LHP),
and σ(∞) = limz→∞ σ(z) = 0.

123

Journal of Global Optimization (2021) 79:567–591 583

σ I (z I) =
∑3

i=0
pIi [z I]i + pI4 [z I]4

∑3

i=1
q I
i [z I]i + q I

4 [z I]4
, (33)

where pI4 , q
I
4 , p

I
i , and q I

i are functions of the Butcher coefficients aI
i, j , b

I
i , and ci , while

z I = λΔt , where λ is an eigenvalue of L. L-stability is achieved when the stability region
|σ I (z I)| ≤ 1 covers the entire left-half plane and σ I (z I) goes to zero as z I approaches
infinity. Algebraically, this is equivalent to imposing pI4 = 0, provided that q I

4 does
not vanish (exists and does not approach infinity) so that |pI4/q I

4 | approaches zero. If L-
stability cannot be achieved, a strong A-stability should be sought. This is equivalent to
satisfying

σ∞ = lim
z I→∞

|σ(z I)| = |pI4/q I
4 | < 1. (34)

Another important property for IMEXRK schemes is the extension of the stability region
for the explicit component. For fluid dynamics applications, the extension along the imaginary
axis is of primary interest, since it directly relates to the Courant-Friedrichs-Lewy (CFL)
condition. For the scheme in (30), the stability function for the explicit component σ E (zE)

reads
σ E (zE) = 1 +

∑
i

bEi zE +
∑
i

bEi ci [zE]2

+
∑
i, j

bEi aE
i, j c j [zE]3 +

∑
i, j,k

bEi aE
i, j a

E
j,k ck[zE]4,

(35)

where zE = μΔt , where μ is the eigenvalue of the linearization of the operatorN at a given
instant tn . After imposing third order accuracy constraints τ

(1)E
1 = τ

(2)E
1 = τ

(3)EE
2 = 0, the

expression for σ E (zE) now reads

σ E (zE) = 1 + zE + [zE]2/2 + [zE]3/6 + δ [zE]4, (36)

where δ = ∑
i, j,k b

E
i aE

i, j a
E
j,k ck . In [12] δ = 1/24was found to give themaximum extension

of the stability region |σ E | ≤ 1 along the imaginary value, achieving the value 2
√
2. We also

found in [12] that a value δ > 1/24 produces a stability region, which does not include the
entire imaginary axis between the origin of the complex plane and the farthest intersection
point between the imaginary axis and the stability region. For this reason, only those schemes
with a set of coefficients for which

δ ≤ 1

24
(37)

will be considered during the optimization stage.
Most importantly, these properties must be achieved while ensuring that the coefficients

are all real-valued and reasonably small. This is a practical aspect that simplifies the imple-
mentation and reduces the impact of algebraic error during the time integration. Another
condition that is generally imposed is that all the ci coefficients must be in the interval [0, 1].
This ensures that all the function evaluations needed for the time integration over [tn, tn+1]
are performed using points within [tn, tn+1].

123

584 Journal of Global Optimization (2021) 79:567–591

5 Formulation of the optimization problem

In this section, using the analysiswedeveloped inSect. 4,wedesign the optimization problem.
Let us consider c = [c2, c3, c4], the free parameters for our optimization algorithm. Based

on the considerations in Sect 4, a box domain [0, 1]3 was chosen to perform optimization
over the parameter space.

At each iteration of the optimization algorithm, the nine constraints needed to achieve
third order accuracy are imposed as follows. First, equations τ

(1,2,3)E
1 = 0, and τ

(1,2)I
1 = 0

are solved together with stage-order one condition. Notice that once the c coefficients have
numerical values, these equations are linear in the bEi coefficients and are easily solvable.
Provided the solution c at the current iteration does not cause the linear system to become
singular, the coefficients bE1,2,3 and bI1,2 are determined at this stage as a function of the

remaining coefficients. Afterward, the resulting expressions are replaced into τ
(3)EE
2 = 0.

The arising second order equation is then solved for bE4 . Provided the radicand ΔE of

τ
(3)EE
2 = 0 is non-negative, two choices for bE4 are obtained. Replacing the values for

bE4 back into τ
(1,2,3)E
1 = 0 allows to completely determine the set of coefficients bEi . Such

values and the expressions for bI1,2 are then replaced into τ
(3)E I
2 = 0 and τ

(3)I E
2 = 0. These

two equations, together with stage-order one condition for the implicit part, are linear in
the bIi parameters and are used to determine bI3,4. Substitution of the resulting expressions

into τ
(3)I I
2 = 0 gives a second order equation in bI5 . Notice that since two values of bE4

have been found, we have two quadratic equations to be solved for bI5 , this means that,
provided the radicands ΔI (1,2) are positive, we obtain four solutions for bI5 . Replacing the
values obtained in the previous expressions allows to completely determine the coefficient
set.

This subroutine can be implemented within the optimization algorithm. However, such
an automatized approach breaks down whenever the initial linear system is singular.
The singularity can be avoided by two constraints: (a) by tightening the bounds of the
search domain to avoid the boundary points, 0 and 1. This is achieved by restricting
the search domain to the interval [tolc, 1 − tolc]3. b) by imposing additional constraints
in the optimization, i.e. |ci − c j | ≥ tolc, for i �= j to avoid equality between ci
coefficients.

Notice that this approach prevents from exploring among those schemes (regions) asso-
ciated to these particular solutions and an ad hoc optimization problem should be set up
for each of these choices. Furthermore, it is necessary to ensure that the solution found is
acceptable, i.e. the the coefficients are all real-valued. This is achieved by enforcing the extra
constraints ΔE , ΔI (1,2) ≥ 0 during the optimization.

These constraints have a nonlinear behavior with respect to the ci parameters and become
discontinuous in the parameter space of the solutions. In order to reduce the discontinuity
and bound the objective function and the constraint functions the hyperbolic tangent function
is used as a saturation function.

The optimization problem can be cast as follows:

123

Journal of Global Optimization (2021) 79:567–591 585

min
c

A(4)

subject to σ∞ = pI4
q I
4

= 0

1/24 − δ = 0

ΔE ≥ 0

ΔI (1,2) ≥ 0

|ci − c j | − tolc ≥ 0, for i �= j

tolc ≤ c2, c3, c4 ≤ 1 − tolc

(38)

Using the new derivative-free optimization method presented in this paper, we were able
to design a new IMEXRunge Kutta scheme which is third-order accurate. This Runge–Kutta
scheme is useful for solving the stiff ODEs resulting from high performance computing
works, such as turbulence simulations. We will now present numerical results we get from
the application of these new schemes.

6 Results

In this work, we first developed an efficient derivative-free scheme that handles problems
withmultiple nonconvex constraints.We compared the newly developed optimizationmethod
with the method developed in [4] on the application-based problem to design a new IMEX
Runge Kutta scheme, as explained in Sect. 4.

In this section, the discovered IMEXRK scheme is compared to the most commonly
available scheme that is being used in the Turbulent community. Finally, the properties of
our new scheme are illustrated on a representative example: the Burger equation.

6.1 Comparison between the basic andmodified optimizationmethods

In this part, we compare the performance of Algorithm 2 with the original Δ-DOGS(Ω)
algorithm as summarized in [4] on optimization problem (38). Both these schemes are applied
on the (38) problem, which is a relatively computationally expensive, nonlinear optimization
problem with non-analytical constraint and objective functions that is well suited for the use
of Δ-DOGS(Ω) algorithms.

Using the Δ-DOGS(Ω) algorithms, several new mixed Implicit/Explicit Runge Kutta
schemes have been discovered which are appropriate for the simulation of incompressible
turbulence flow.

Note that the constrained optimization problem (38) is nonlinear and most of the commer-
cial off-the-shelf (COTS) available optimization method not only fail to solve this problem
but also are unable to find an acceptable solution. For example, we have tested the active-set
method implemented in Matlab’s built-in function fmincon [22] with 100 different initial
points, and in all cases the algorithm failed to find an acceptable solution for this problem.
For this study, we used an Intel Core i7 CPU on a Linux machine in Matlab 2015b. Our
original Algorithm 1 took approximately 16 minutes while our modified algorithm took 8
minutes, which reduces the optimization process to half.

The alternative solution, i.e. a brute-force search over a fine grid, is prohibitively expensive,
since, it would require more than 106 function evaluations, if we consider a uniform grid with
100 points along each dimension. Furthermore, since the computation time of each function

123

586 Journal of Global Optimization (2021) 79:567–591

(a) (b)

(c) (d)

Fig. 4 Convergence of the Δ-DOGS(Ω) scheme (top subfigures), and the Δ-DOGS(ΩZ) scheme (bottom
subfigures) to design a low-storage third-order IMEXRK scheme by solving (38). The left subfigures a and c
show the convergence history of the maximum violation of constraints and the difference between the target
value f0 as a function number of function evaluations for Δ-DOGS(Ω) and Δ-DOGS(ΩZ), respectively.
The right subfigures b and d show the parameter convergence history of the best solution of c1, c2, and c3,
each with a specific color, blue, red, and yellow, as a function of function evaluation for Δ-DOGS(Ω) and
Δ-DOGS(ΩZ), respectively

evaluation is approximately 5 s, the total required time for optimization is 1389 h, or ≈ 57
days.

Figure 4 shows the results from the basic vs modified algorithm. The left plots show
the maximum violation or the search function trajectory in log-log scale. In Fig. 4c, we
can observe that the modified algorithm requires fewer function evaluations compared with
the basic algorithm as shown in Fig. 4a. The right plots show the trajectory of the best
design parameters using both optimization algorithms. The trajectory of best optimization
parameters c1, c2, and c3 are plotted each with a specific color, blue, red, and yellow. In
Fig. 4b, we can observe that most of the function evaluations are performed on the boundaries
rather than inside the search domain using the basic algorithm. On the other hand, Fig. 4d
shows us that the modified algorithm evaluates a limited number of points on the boundary
of search domain and more samples are evaluated inside the search domain to find an optimal
solution.

This search function in fact represents the maximum violation of constraints and the
difference between the target value f0 and the best available point, i.e.,

J (xk) = min{ f (xk) − f0,max
κ

cκ (xk)}. (39)

The target value f0 that the algorithms are seeking is set to zero.

123

Journal of Global Optimization (2021) 79:567–591 587

It is shown in Fig. 4 that to find an acceptable solution, the Δ-DOGS(ΩZ) uses half the
computational cost of the Δ-DOGS(Ω). Most of the extra function evaluations (70 out of
103) are performed close to the boundary of the solutions which in advance we knew that is
not the case. Δ-DOGS(ΩZ) generates the support points defined to regularize the irregular
behaviour of the objective function on the boundaries.

The target value for both optimization algorithms for the objective function A(4) ≤ 0.08
and for the constraint violation the limits of−0.05 ≤ σ∞ ≤ 0.05 and−0.0001 ≤ δ−1/24 ≤
0, ΔE ≥ 0.001 and ΔI (1,2) ≥ 0.001. Also, considering tolc = 0.1 then |ci − c j | − 0.1 ≥ 0.

Thus, we can conclude that our new algorithm shows improved performance and has a
lower computational cost when compared with the original algorithm it is derived from.

6.2 Evaluation of the scheme on the 1D Burgers Equation

In order to verify the full third-order accuracy for the new schemes, they were tested on the
time integration of the 1D Burgers equation

∂u

∂t
= − ∂

∂x

(
u2

2

)
+ ν

∂2u

∂x2
(40)

The spatial domain considered is x ∈ [0, 400m] with 1024 equally-spaced grid points and
pseudo-spectral approach is adopted for the discretization of all spatial derivatives, with 2/3-
dealiasing rule for the computation of the convective term. Furthermore, the integration of
the diffusive component is carried out implicitly, assuming ν = 1, while the convective term
is integrated explicitly. The equation in (40) is integrated over a time interval of 10 seconds

10−3 10−2 10−110−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

Δt

R
el
at
iv
e
E
rr
or

3

Fig. 5 Relative error as a function of the step size for the IMEXRKiACBB3b(4s) scheme when applied to
the integration of (40). The horizontal axis is Δt and the vertical axis is the Relative Error. Result for the
IMEXRKiACBB3a(4s) scheme is similar

123

588 Journal of Global Optimization (2021) 79:567–591

from the initial condition
u(x, 0) = e−(x−200)2 (41)

Error convergence is determined by comparing the solutions obtained with different time
steps, ranging from 10−3 to 10−1, with the reference solution obtained using the fourth-order
IMEXRK schemeARK4(3)6L[2]SA from [17] with a constant time stepΔt = 10−5. Results
are presented in Fig. 5 and show good agreement with theoretical expectation.

6.3 Summary of the comparison performance for the new IMEXRK scheme

The coefficients obtained are listed in Table 2 in both Butcher tableaux and incremental form,
while stability and accuracy properties are shown in Table 3. Stability regions for the implicit
and explicit part are shown in Fig. 6.

Our new scheme shows enhanced computational performance when compared to the
original algorithm it has been derived from. Moreover, it has been successfully applied to
the one-dimensional Burgers equation, giving results which are in good agreement with the
theoretical expectation. These numerical results allow us to conclude that our innovative
scheme performs well and is an improvement of existing solutions.

7 Conclusions

Thiswork introduced and applied a powerful new variant, dubbedΔ-DOGS(ΩZ), of our lab’s
Delaunay-based Derivative-free Optimization via Global Surrogates family of algorithms to
the practical problem of identifying a new, low-storage, high-accuracy, Implicit/Explicit
Runge–Kutta (IMEXRK) time integration scheme for high performance computing (HPC)
applications, like the simulation of turbulence. The optimization scheme developed and used
in this work, which is provably globally convergent under the appropriate assumptions,
combined the essential ideas of (a) our Δ-DOGS(Ω) algorithm, which is designed to effi-
ciently optimize a nonconvex objective function f (x) within a nonconvex feasible domain
Ω described by a number of constraint functions c�(x), with (b) our Δ-DOGS(Z) algorithm,
which aims to reduce the number of function evaluations on the boundary of the feasible
domain that would otherwise be called for via the restriction that all function evaluations
lie on a Cartesian grid, which is subsequently refined as the iterations proceed, over the
rectangular search domain Ωs considered. The identification of the optimal parameters of
IMEXRKschemes involved (1) a complicated set of nonlinear constraints, which are imposed
in order to achieve the desired order of accuracy in addition to a handful of important sta-
bility properties, which leads to a highly nonconvex, disconnected feasible domain, and (2)
a highly nonconvex objective function, which represents a compromise between a few dif-
ferent measures characterizing the leading-order error and potential stability shortcomings
of the resulting scheme. This structure makes the computation of new IMEXRK schemes
a challenging and well-suited practical test problem for global optimization algorithms to
solve. In this work, the new optimization algorithm developed, Δ-DOGS(ΩZ), introduced
the notion of “support points”, which are points defined and used to eliminate constraint
and objective function evaluations on the boundary of the search domain, where these func-
tions are sometimes ill-behaved, while restricting all datapoints to like on a Cartesian grid
that is successively refined as convergence is approached. For validation, the convergence
of Δ-DOGS(ΩZ) and Δ-DOGS(Ω) are compared on a challenging problem of optimizing a
low-storage IMEXRK formulation. Results indicate a notably accelerated convergence rate

123

Journal of Global Optimization (2021) 79:567–591 589

Table 2 Optimal parameters for
the new IMEXRK scheme
derived in this chapter

Parameter Value

Butcher coefficients

bI1 35, 965, 327, 958/140, 127, 563, 663

bI2 353, 083, 323, 889/1, 136, 747, 549, 899

bI3 −360, 566, 052, 281/1, 494, 955, 198, 897

bI4 756, 596, 001, 291/1, 512, 335, 944, 289

bI5 189, 462, 239, 225/1, 091, 147, 436, 423

aI2,2 343, 038, 331, 393/1, 130, 875, 731, 271

aI3,3 288, 176, 579, 239/1, 140, 253, 497, 719

aI4,4 253, 330, 171, 251/677, 500, 478, 386

bE1 829, 462, 852, 521/3, 426, 433, 096, 921

bE2 103, 183, 819, 801/448, 156, 083, 531

bE3 9, 976, 429, 300/709, 197, 748, 683

bE4 113, 091, 689, 455/220, 187, 950, 967

aI2,1 14/25

aI3,2 777, 974, 228, 744/1, 346, 157, 007, 247

aI4,3 251, 277, 807, 242/1, 103, 637, 129, 625

c2 14/25

c3 41/50

c4 7/10

Incremental-form coefficients

α I
1 343, 038, 331, 393/1, 130, 875, 731, 271

β I
1 35, 965, 327, 958/140, 127, 563, 663

α I
2 288, 176, 579, 239/1, 140, 253, 497, 719

β I
2 19, 632, 212, 512/2, 700, 543, 775, 099

α I
3 253, 330, 171, 251/677, 500, 478, 386

β I
3 −173, 747, 147, 147/351, 772, 688, 865

α I
4 189, 462, 239, 225/1, 091, 147, 436, 423

β I
4 91, 958, 533, 623/727, 726, 057, 489

βE
1 14/25

γ E
1 0

βE
2 777, 974, 228, 744/1, 346, 157, 007, 247

γ E
2 −251, 352, 885, 992/790, 610, 919, 619

βE
3 251, 277, 807, 242/1, 103, 637, 129, 625

γ E
3 −383, 714, 262, 797/1, 103, 637, 129, 625

βE
4 113, 091, 689, 455/220, 187, 950, 967

γ E
4 −403, 360, 439, 203/1, 888, 264, 787, 188

123

590 Journal of Global Optimization (2021) 79:567–591

Table 3 Optimized coefficients and error measures for the IMEXRKiCB3(4s) scheme reported in [12], and
the two new schemes developed in this paper. The IMEXRKiACBB3a(4s) scheme was found using the Δ-
DOGS(Ω) algorithm in 187 iterations, and the IMEXRKiACBB3a(4s) scheme was found using the new
Δ-DOGS(ΩZ) algorithm, taking N = 160, in just 88 iterations

IMEXRK c2 c3 c4 A(4) σ∞ 1/24 − δ

IMEXRKiCB3(4s) [12] 0.5600 0.8000 0.7000 0.0592 0.0325 −0.0035

IMEXRKiACBB3a(4s) 0.5601 0.8200 0.7002 0.0578 0.0242 −0.0034

IMEXRKiACBB3b(4s) 0.5700 0.8950 0.7250 0.0633 −0.0083 −0.000070

−20 −10 0 10 20 30 40
−30

−20

−10

0

10

20

30

(a) Implicit component.
−7 −6 −5 −4 −3 −2 −1 0 1

−4

−3

−2

−1

0

1

2

3

4

(b)Explicit component.

Fig. 6 Stability regions for the scheme derived from IMEXRKiACBB3b(4s). Note that the difference in the
stability region for IMEXRKiACBB3a(4s) and I.epsBB3b(4s) visually is indistinguishable

using Δ-DOGS(ΩZ). In the end, a low-storage third-order accurate IMEXRK algorithm for
the time integration of stiff ODEs was identified which exhibited remarkably good stability
and accuracy properties as compared with existing IMEXRK schemes.

Using more intelligent function evaluations in the control domain can cause a signifi-
cant reduction in time and computation. The number of function evaluations is significantly
reduced, if compared to a brute-force approach.

As future work, this algorithm can be applied to solve other optimization problems with
complicated constraint functions. Also, the new IMEXRK scheme is applied to the turbulence
flow simulation.

Acknowledgements The authors gratefully acknowledge Fred Y. Hadaegh, Rebecca Castano, David Hanks,
Navid Dehghani, and Firouz M. Naderi for their support, and Sebastien Le Digabel for for his constructive
feedback. The authors gratefully acknowledge funding from AFOSR FA 9550-12-1-0046, from the Cymer
Center for Control Systems & Dynamics, from the Leidos corporation in support of this work. Also, the
research was supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract
with the National Aeronautics and Space Administration.

References

1. Alimo, S., Beyhaghi, P., Meneghello, G., Bewley, T.: Delaunay-based optimization in cfd leveraging mul-
tivariate adaptive polyharmonic splines (maps). In: 58th AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, p. 0129 (2017)

123

Journal of Global Optimization (2021) 79:567–591 591

2. Alimo, S., He, D.: Multi-stage algorithm for uncertainty analysis of solar power forecasting. In: Power
and Energy Society General Meeting (PESGM), pp. 1–5. IEEE (2016)

3. Alimo, S.R., Beyhaghi, P., Bewley, T.R.: Optimization combining derivative-free global exploration with
derivative-based local refinement. In: Decision and Control (CDC), 2017 IEEE 56th Annual Conference
on, pp. 2531–2538. IEEE(2017)

4. Alimo, S.R., Beyhaghi, P., Bewley, T.R.: Delaunay-based derivative-free optimization via global surro-
gates. Part III: nonconvex constraints J. Glob. Optim. (2019). https://doi.org/10.1007/s10898-019-00854-
2

5. Alimo, S.R., Beyhaghi, P., Bewley, T.R.: Delaunay-based global optimization in nonconvex domains
defined by hidden constraints. In: Andrés-Pérez, E., González, L., Periaux, J., Gauger, N., Quagliarella,
D.,Giannakoglou,K. (eds.) Evolutionary andDeterministicMethods forDesignOptimization andControl
With Applications to Industrial and Societal Problems, pp. 261–271. Springer, Cham (2019)

6. Audet, C., Dennis, J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J.
Optim. 17(1), 188–217 (2006)

7. Beyhaghi, P., Bewley, T.: Implementation of cartesian grids to accelerate delaunay-based derivative-free
optimization. J. Glob. Optim. 69(4), 927–949 (2017)

8. Beyhaghi, P., Bewley, T.R.: Delaunay-based derivative-free optimization via global surrogates, part ii:
convex constraints. J. Glob. Optim. 66(3), 383–415 (2016)

9. Beyhaghi, P., Cavaglieri, D., Bewley, T.: Delaunay-based derivative-free optimization via global surro-
gates, part I: linear constraints. J. Glob. Optim. 66(3), 331–382 (2016)

10. Butcher, J.: Numerical Methods for Ordinary Differential Equations. Wiley, Hoboken (2008)
11. Calvo, M., de Frutos, J., Novo, J.: Linearly implicit Runge-Kutta methods for advection–reaction–

diffusion equations. Appl. Num. Math. 37(4), 535–549 (2001)
12. Cavaglieri, D., Bewley, T.: Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff

high-dimensional ODE systems. J. Comput. Phys. 286, 172–193 (2015)
13. Cavaglieri, D., Beyhaghi, P., Bewley, T.: Low-storage imex runge-kutta schemes for the simulation of

navier-stokes systems. In: 21st AIAA Computational Fluid Dynamics Conference, p. 3094 (2013)
14. Dormand, J., Prince, P.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6(1),

19–26 (1980)
15. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Inertia-controlling methods for general quadratic

programming. SIAM Rev. 33(1), 1–36 (1991)
16. Kennedy, C., Carpenter, M.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations.

Technical report, NASA Tech. Rep. (2001)
17. Kennedy, C., Carpenter, M., Lewis, R.: Additive Runge-Kutta schemes for convection-diffusion-reaction

equations. Appl. Num. Math. 44, 139–181 (2003)
18. Kim, J., Moin, P.: Application of a fractional-step method to incompressible Navier–stokes Equations. J.

Comput. Phys. 59, 308–323 (1985)
19. Kim, J.,Moin, P.,Moser, B.: Turbulence statistics in fully developed channel flow at lowReynolds number.

J. Fluid Mech. 177, 133–166 (1987)
20. Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving runge-kutta time dis-

cretizations for discontinuous galerkin methods. J. Sci. Comput. 60(2), 313–344 (2014)
21. Le, H., Moin, P.: An improvement of fractional step methods for the incompressible Navier–Stokes

equations. J. Comput. Phys. 92, 369–379 (1991)
22. MATLAB. version 8.6.0 (R2015b). The MathWorks Inc., Natick, Massachusetts (2015)
23. Spalart, P., Moser, R., Rogers, M.: Spectral methods for the Navier–Stokes equations with one infinite

and two periodic directions. J. Comput. Phys. 96(2), 297–324 (1991)
24. Wray, A.A.: Minimal storage time advancement schemes for spectral methods. NASA Ames Research

Center, California, Report No. MS 202 (1990)
25. Zhao,M.,Alimo,S.R.,Bewley,T.R.:Anactive subspacemethod for accelerating convergence in delaunay-

based optimization via dimension reduction. In: 2018 IEEE 57th Annual Conference on Decision and
Control (CDC). IEEE (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s10898-019-00854-2
https://doi.org/10.1007/s10898-019-00854-2

	Design of IMEXRK time integration schemes via Delaunay-based derivative-free optimization with nonconvex constraints and grid-based acceleration
	Abstract
	1 Introduction
	2 Optimization algorithm
	2.1 Preliminary definitions
	2.2 Summary of the original Δ-DOGS(Ω) algorithm
	2.3 Δ-DOGS(ΩZ): implementation of Cartesian grids to accelerate Δ-DOGS(Ω)

	3 Convergence analysis of Algorithm 2
	3.1 Comparison of Algorithms 1 and 2 on representative problems

	4 Runge–Kutta scheme derivation
	5 Formulation of the optimization problem
	6 Results
	6.1 Comparison between the basic and modified optimization methods
	6.2 Evaluation of the scheme on the 1D Burgers Equation
	6.3 Summary of the comparison performance for the new IMEXRK scheme

	7 Conclusions
	Acknowledgements
	References

