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Abstract

As traditional scienti"c disciplines individually grow towards their maturity, many new opportunities for signi"cant
advances lie at their intersection. For example, remarkable developments in control theory in the last few decades have
considerably expanded the selection of available tools which may be applied to regulate physical and electrical systems.
These techniques hold great promise for several applications in #uid mechanics, including the delay of transition and the
regulation of turbulence. Such applications of control theory require a very balanced perspective, in which one considers
the relevant #ow physics when designing the control algorithms and, conversely, takes into account the requirements and
limitations of control algorithms when designing both reduced-order #owmodels and the #uid}mechanical systems to be
controlled themselves. Such a balanced perspective is elusive, however, as both the research establishment in general and
universities in particular are accustomed only to the dissemination and teaching of component technologies in isolated
"elds. To advance, we must not toss substantial new interdisciplinary questions over the fence for fear of them being
`outside our areaa; rather, we must break down these very fences that limit us, and attack these challenging new questions
with a Renaissance approach. In this spirit, this paper surveys a few recent attempts at bridging the gaps between the
several scienti"c disciplines comprising the "eld of #ow control, in an attempt to clarify the author's perspective on how
recent advances in these constituent disciplines "t together in a manner that opens up signi"cant new research
opportunities. Published by Elsevier Science Ltd.
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Preface

The area of #ow control plainly resides at the intersec-
tion of disciplines, incorporating essential and nontrivial
elements from control theory, #uid mechanics, Navier}
Stokes mathematics, and numerical methods. Recent
developments in the integration of these disciplines, while
grounding us with appropriate techniques to address
some fundamental open questions, hint at the solution of
several new questions which are yet to be asked. To
follow up on these new directions, it is essential to have
a clear vision of how recent advances in these "elds "t
together, and to know where the signi"cant unresolved
issues at their intersection lie.
The present paper will attempt to elucidate the utility

of an interdisciplinary perspective to this type of problem
by focusing on the control of a prototypical and funda-
mental #uid system: plane channel #ow. The control of
the #ow in this simple geometry embodies a myriad of
complex issues and inter-relationships whose under-
standing requires us to draw from a variety of traditional
disciplines. Only when these issues and perspectives are
combined is a complete understanding of the state of the
art achieved, and a vision of where to proceed next
identi"ed.
Though plane channel #ow will be the focus problem

we will discuss here, the purpose of this work goes well
beyond simply controlling this particular #owwith a par-
ticular actuator/sensor con"guration. At its core, the
research e!ort we will describe is devoted to the develop-
ment of an integrated, interdisciplinary understanding
that will allow us to synthesize the necessary tools to
attack a variety of #ow control problems in the future.
The focus problem of control of channel #ow is chosen
not simply because of its technological relevance or fun-
damental character, but because it embodies many of the

important unsolved issues to be encountered in the
assortment of new #ow control problems that will inevi-
tably follow. The primary objective of the present work is
to lay a solid, integrated footing upon which these future
e!orts may be based.
To this end, this paper will describe mostly the e!orts

with which the author has been directly involved, in an
attempt to weave the story which threads these projects
together as part of the fabric of a substantial new area of
interdisciplinary research. Space does not permit the
complete development of these projects in the present
paper; rather, the paper will survey a selection of recent
results which bring the relevant issues to light. The reader
is referred to the appropriate full journal articles for all of
the relevant details and careful placement of these pro-
jects in context with the works of others. Space limita-
tions also do not allow this brief paper to adequately
review the various directions all my friends and col-
leagues are taking in this "eld. Rather than attempt such
a review and fail, the reader is referred to a host of other
recent review papers which, taken together, themselves
span only a fraction of the current work being done in
this active area of research. From the experimental per-
spective, the reader is referred speci"cally to recent
reviews of Ho and Tai [1,2], McMichael [3], Gad-El-
Hak [4], and LoK fdahl and Gad-El-Hak [5]. From the
mathematical perspective, the reader is referred to the
recent dedicated volumes compiled by Banks [6],
Banks et al. [7], Gunzburger [8], Lagnese et al. [9], and
Sritharan [10], for a sampling of recent results.

1. Linearization: life in a small neighborhood

As a starting point for the introduction of control
theory into the #uid}mechanical setting, we "rst consider
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Fig. 1. Geometry of plane channel #ow. The #ow is sustained by
an externally applied pressure gradient in the x direction. This
canonical problem provides an excellent testbed for the study of
both transition and turbulence in wall-bounded #ows. Note that
many of the important #ow phenomena in this geometry, in
both the linear and nonlinear setting, are fundamentally 3D.
A nonphysical assumption of periodicity of the #ow perturba-
tions in the x and z directions is often assumed for numerical
convenience, with the box size chosen to be large enough that
this nonphysical assumption has minimal e!ect on the observed
#ow statistics. It is important to evaluate critically the implica-
tions of such assumptions during the process of control design,
as discussed in detail in Sections 3 and 4.

the linearized system arising from the equation governing
small perturbations to a laminar #ow. From a physical
point of view, such perturbations are quite signi"cant, as
they represent the initial stages of the complex process of
transition to turbulence, and thus their mitigation or
enhancement has a substantial e!ect on the evolution of
the #ow.
To be concrete, an enlightening problem which cap-

tures the essential physics of many important features of
both transition and turbulence in wall-bounded #ows is
that of plane channel #ow, as illustrated in Fig. 1. With-
out loss of generality, we assume the walls are located at
y"$1. We begin our study by analyzing small per-
turbations �u, v,w, p� to the (parabolic) laminar #ow
pro"le ;(y) in this geometry, which are governed by the
linearized incompressible Navier}Stokes equation
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Eq. (1a), the continuity equation, constrains the solution
of (1b)}(1d), the momentum equations, to be divergence

free. This constraint is imposed through the �p terms in
the momentum equations, which act as Lagrange multi-
pliers to maintain the velocity "eld on a divergence-free
submanifold of the space of square-integrable vector
"elds. In the discretized setting, such systems are called
descriptor systems or di!erential}algebraic equations
and, de"ning a state vector x and a control vector u, may
be written in the generalized state-space form

Ex� "Ax#Bu. (2)

Note that if the Navier}Stokes equation (1) is put directly
into this form, E is singular. This is an essential feature of
the Navier}Stokes equation which necessitates careful
treatment in both simulation and control design in order
to avoid spurious numerical artifacts. A variety of tech-
niques exist to express system (1) with a reduced set of
variables or spatially distributed functions with only two
degrees of freedom per spatial location, referred to as
a divergence-free basis. In such a basis, the continuity
equation is applied implicitly, and the pressure is elimi-
nated from the set of governing equations. All three
velocity components and the pressure (up to an arbitrary
constant) may be determined from solutions represented
in such a basis. When discretized and represented in form
(2), the Navier}Stokes equation written in such a basis
leads to an expression for E which is nonsingular.
For the geometry indicated in Fig. 1, a suitable choice

for this reduced set of variables, which is convenient in
terms of the implementation of boundary conditions, is
the wall-normal velocity, v, and the wall normal vorticity,
�O�u/�z!�w/�x. Taking the Fourier transform of (1)
in the streamwise and spanwise directions and manipula-
ting these equations and their derivatives leads to the
classical Orr}Sommerfeld/Squire formulation of the
Navier}Stokes equation at each wavenumber pair
�k

�
, k

�
�:

� v(� "�!ik
�
;�#ik

�
;	#�(�/Re)�v( , (3a)

�(� "�!ik
�
;��v(#�!ik

�
;#�/Re��( , (3b)

where the hats ( K ) indicate Fourier coe$cients and the
Laplacian now takes the form �O��/�y�!k�

�
!k�

�
.

Note that particular care is needed when solving this
system; in order to invert the Laplacian on the LHS of
(3a), the boundary conditions on vmust be accounted for
properly. By manipulation of the governing equations
and casting them in a derivative form, we e!ectively trade
one numerical di$culty (singularity of E) for another
(a tricky boundary condition inclusion to make the
Laplacian on the LHS of (3a) invertible).
Note the spatially invariant structure of the present

geometry: every point on each wall is, statistically speak-
ing, identical to every other point on that wall. Canonical
problems with this sort of spatially invariant structure in
one or more directions form the backbone of much of the
literature on #ow transition and turbulence. It is this
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structure which facilitates the use of Fourier transforms
to completely decouple the system state �v( ,�( � at each
wavenumber pair �k

�
, k

�
� from the system state at every

other wavenumber pair, as indicated in (3). Such decoup-
ling of the Fourier modes of the unforced linear system in
the directions of spatial invariance is a classical result
upon which much of the available linear theory for the
stability of Navier}Stokes systems is based. As noted by
Bewley and Agarwal [11], taking the Fourier transform
of both the control variables and the measurement vari-
ables maintains this system decoupling in the control
formulation, greatly reducing the complexity of the con-
trol design problem to several smaller, completely de-
coupled control design problems at each wavenumber
pair �k

�
, k

�
�, each of which requires spatial discretization

in the y direction only.
Once a tractable form of the governing equation has

been selected, in order to pose the #ow control problem
completely, several steps remain:

� the state equation must be spatially discretized,
� boundary conditions must be chosen and enforced,
� the variables representing the controls and the avail-
able measurements must be identi"ed and extracted,

� the disturbances must be modeled, and
� the `control objectivea must be precisely de"ned.

To identify a fundamental yet physically relevant #ow
control problem, the decisions made at each of these
steps requires engineering judgment. Such judgment is
based on physical insight concerning the #ow system to
be controlled and how the essential features of such
a system may be accurately modeled. An example of how
to accomplish these steps is described in some detail by
Bewley and Liu [12]. In short, we may choose:

� a Chebyshev spatial discretization in y,
� no-slip boundary conditions (u"w"0 on the walls)
with the distribution of v on the walls (the blow-
ing/suction pro"le) prescribed as the control,

� skin friction measurements distributed on the walls,
� idealized disturbances exciting the system and
� an objective of minimizing #ow perturbation energy.

As we learn more about the physics of the system to be
controlled, there is signi"cant room for improvement in
this problem formulation, particularly in modeling the
structure of relevant system disturbances and in the pre-
cise statement of the control objective.
Once the above-mentioned steps are complete, the

present decoupled system at each wavenumber pair
�k

�
, k

�
� may "nally be manipulated into the standard

state-space form

x� "Ax#B
�
w#B

�
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y"C
�
x#D
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w (4)
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B
�
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�
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I), wO�

w
�

w
�
�,

where x denotes the state, u denotes the control, y de-
notes the available measurements (scaled as discussed
below), and w accounts for the external disturbances
(including the state disturbances w

�
and the measure-

ment noise w
�
, scaled as discussed below). Note that Cx

denotes the raw vector of measured variables, and
G

�
and 
G

�
represent the square root of any known or

expected covariance structure of the state disturbances
and measurement noise respectively. The scalar 
� is
identi"ed as an adjustable parameter which de"nes the
ratio of the maximum singular value of the covariance of
the measurement noise divided by the maximum singular
value of the covariance of the state disturbances; w.l.o.g.,
we take �� (G

�
)"�� (G

�
)"1. E!ectively, the matrix G

�
re#ects which state disturbances are strongest, and the
matrix G

�
re#ects which measurements are most corrup-

ted by noise. Small 
 implies relatively high overall
con"dence in the measurements, whereas large 
 implies
relatively low overall con"dence in the measurements.
Not surprisingly, there is a wide body of theory sur-

rounding how to control a linear system of the standard
form (4). The application of one popular technique (to
a related 2D problem), called proportional-integral (PI)
control and generally referred to as `classicala control
design, is presented in Joshi et al. [13]. The application of
another technique, called H

�
control and generally re-

ferred to as `moderna control design, is laid out in
Bewley and Liu [12], hereafter referred to as BL98. The
application of a related modern control strategy (to the
2D problem), called loop transfer recovery (LTR), is
presented in Cortelezzi and Speyer [14]. More recent
publications by these groups further extend these seminal
e!orts.
It is useful, to some extent, to understand the various

theoretical implications of the control design technique
chosen. Ultimately, however, #ow control boils down to
the design of a control that achieves the desired engineer-
ing objective (transition delay, drag reduction, mixing
enhancement, etc.) to the maximum extent possible. The
theoretical implications of the particular control tech-
nique chosen are useful only to the degree to which they
help attain this objective. Engineering judgment, based
both on an understanding of the merits of the various
control theories and on the suitability of such theories to
the structure of the #uid}mechanical problem of interest,
guides the selection of an appropriate control design
strategy. In the following section, we summarize the
H

�
control design approach, illustrate why this

approach is appropriate for the structure of the problem
at hand, and highlight an important distinguishing
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Fig. 2. Flow of information in a modern control realization. The
plant, forced by external disturbances, has an internal state
x which cannot be observed. Instead, a noisy measurement y is
made, with which a state estimate x( is determined. This state
estimate is then used to determine the control u to be applied to
the plant to regulate x to zero. Essentially, the full equation for
the plant (or a reduced model thereof) is used in the estimator as
a "lter to extract useful information about the state from the
available measurements.

characteristic of the present system when controls com-
puted via this approach are applied.

2. Linear stabilization: leveraging modern linear
control theory

As only a limited number of noisy measurements y of
the state x are available in any practical control imple-
mentation, it is bene"cial to develop a "lter which ex-
tracts as much useful information as possible from the
available #ow measurements before using this "ltered
information to compute a suitable control. In modern
control theory, a model of the system itself is used as this
"lter, and the "ltered information extracted from the
measurements is simply an estimate of the -1state of the
physical system. This intuitive framework is illustrated
schematically in Fig. 2. By modeling (or neglecting) the
in#uence of the unknown disturbances in (4), the system
model takes the form

x(� "Ax(#B
�
w( #B

�
u!v, (5a)

y("C
�
x(#D

��
w( , (5b)

where x( is the state estimate, w( is a disturbance estimate,
and v is a feedback term based on the di!erence between
the measurement of the state y and the corresponding
quantity in the model y( such that

v"¸(y!y( ). (5c)

The control u, in turn, is based on the state estimate
x( such that

u"Kx( . (6)

Eq. (4) is referred to as the `planta, (5) is referred to as the
`estimatora, and (6) is referred to as the `controllera. The
estimator (5) and the controller (6), taken together, will be
referred to as the `compensatora. The problem at hand is
to compute linear time-invariant (LTI) matrices K and
¸ and some estimate of the disturbance, w( , such that

(i) the estimator feedback v forces x( towards x, and
(ii) the controller feedback u forces x towards zero,

even as unknown disturbances w both disrupt the system
evolution and corrupt the available measurements of the
system state.

2.1. The H
�

approach to control design

Several textbooks describe in detail how the H
�
tech-

nique determines K, ¸, and w( for systems of form (4)}(6)
in the presence of structured and unstructured distur-
bances w. The reader is referred to the seminal paper by
Doyle et al. [15], the more accessible textbook by Green
and Limebeer [16], and the more advanced texts by
Zhou et al. [17] and Zhou and Doyle [18] for derivation
and further discussion of these control theories, and to
[12] for an extended discussion in the context of the
present problem. To summarize this approach brie#y,
a cost functionJ describing the control problem at hand
is de"ned that weighs together the state x, the control u,
and the disturbance w such that

JOE[xHQx#l�uHu!
�wHw]

OE[zHz!
�wHw], (7a)

where

zOC
�
x#D

��
u (7b)

and

C
�
O�

Q���

0 �, D
��
O�

0

lI�.
The matrix Q shaping the dependence on the state in the
cost function, xHQx, may be selected to numerically
approximate any of a variety of physical properties of the
#ow, such as the #ow perturbation energy, its entropy,
the mean square of the drag measurements, etc. The
matrix Q may also be biased to place extra penalty on
#ow perturbations in a speci"c region in space of particu-
lar physical signi"cance. The choice of Q has a profound
e!ect on the "nal closed-loop behavior, and must be
selected with care. Based on our numerical tests to date,
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�Further description of these important technical require-
ments for solvability of the control problem is deferred to the
above mentioned texts. These requirements are easily met in
many practical settings.

�Note that, for the control problem to be soluble, 
 must be
su$ciently large so that: (a) X and > may be found that are
positive de"nite, and (b) �(X>)(
�, where �( ) ) denotes the
spectral radius. An approximate lower bound on 
 which meets
these conditions, denoted 


�
, may be determined by trial and

error.

cost functions related to the energy of the #ow perturba-
tions have been the most successful for the purpose of
transition delay. To simplify the algebra that follows, we
have set the matrices R and S shaping the uHRu and
wHSw terms in the cost function equal to I. It is straight-
forward to generalize this result to other positive-de"nite
choices for R and S; this alternative scaling of the
H

�
control problem is presented in Appendix A. As

discussed in Lange and Bewley [19], such a generaliz-
ation is particularly useful when designing controls for
a discretization of a PDE in a consistent manner such
that the feedback kernels will converge to continuous
functions as the computational grid is re"ned.
Given the structure of the system de"ned in (4)}(6) and

the control objective de"ned in (7), theH
�
compensator

is determined by simultaneously minimizing the cost
functionJ with respect to the control u and maximizing
J with respect to the disturbance w. In such a way,
a control u is found which maximally attains the control
objective even in the presence of a disturbance w which
maximally disrupts this objective. For suzciently large

 and a system which is both stabilizable and detectable
via the controls and measurements chosen,� this results
in "nite values for u, v and w, the magnitudes of which
may be adjusted by variation of the three scalar para-
meters l, 
 and 
 respectively. Reducing l, modeling the
`price of the controla in the engineering design, generally
results in increased levels of control feedback u. Reducing

, modeling the `relative level of corruptiona of the
measurements by noise, generally results in increased
levels of estimator feedback v. Reducing 
, modeling the
`pricea of the disturbance to Nature (in the spirit of
a noncooperative game), generally results in increased
levels of disturbances w of maximally disruptive structure
to be accounted for during the design of the compensator.
The H

�
control solution [15] may be described as

follows: a compensator which minimizes J in the pres-
ence of that disturbance which simultaneously maximizes
J is given by
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where Ric( ) ) denotes the positive-de"nite solution of the
associated Riccati equation [20].� The simple structure
of the above solution, and its profound implications in
terms of the performance and robustness of the resulting
closed-loop system, is one of the most elegant results of
linear control theory. We comment below on a few of the
more salient features of this result.
Algebraic manipulation of (4)}(8) leads to the closed-

loop form

x�� "AI x� #BI w,

z"CI x� ,
(9)

where

AI "�
A#B

�
K !B

�
K

!
��B
�
BH
�
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�
#
��B

�
BH
�
�,

x� "�
x

x!x( �, BI "�
B
�

B
�
#¸D

��
�,

CI "(C
�
#D

��
K!D

��
K).

Taking the Laplace transform of (9), it is easy to de"ne
the transfer function ¹zw (s) from w(s) to z(s) (the Laplace
transforms of w and z) such that

z(s)"CI (sI!AI )��BI w(s)O¹zw(s)w(s).

Norms of the system transfer function ¹zw(s) quantify
how the system output of interest, z, responds to distur-
bances w exciting the closed-loop system.
The expected value of the rms of the output z over the

rms of the input w for disturbances w of maximally
disruptive structure is denoted by the R-norm of the
system transfer function,

��¹zw ��
�
Osup

�
�� [¹zw ( j�)].

H
�

control is often referred to as `robusta control, as
��¹zw ��

�
, re#ecting the worst-case ampli"cation of distur-

bances by the system from the input w to the output z, is
in fact bounded from above by the value of 
 used in the
problem formulation. Subject to this R-norm bound,

26 T.R. Bewley / Progress in Aerospace Sciences 37 (2001) 21}58



H
�

control minimizes the expected value of the rms of
the output z over the rms of the input w for white
Gaussian disturbances w with identity covariance,
denoted by the 2-norm of the system transfer function

��¹zw ��
�
O�

1

2��
�

��

trace[¹zw( j�)H¹zw( j�)] d��
���
.

Note that ��¹zw ��
�
is often cited as a measure of per-

formance of the closed-loop system, whereas ��¹zw��� is
often cited as a measure of its robustness. Further
motivation for consideration of control theories related
to these particular norms is elucidated by Skogestad and
Postlethwaite [21]. E$cient numerical algorithms to
solve the Riccati equations for X and > in the compen-
sator design and to compute the transfer function norms
��¹zw ��

�
and ��¹zw ��

�
quantifying the closed-loop system

behavior are well developed, and are discussed further in
the standard texts.
Note that, for high-dimensional discretizations of in"-

nite dimensional systems, it is not feasible to perform
a parametric variation on the individual elements of the
matrices de"ning the control problem. The control
design approach taken here represents a balance of
engineering judgment in the construction of the matrices
de"ning in the structure of the control problem,
�B

�
,B

�
,C

�
,C

�
�, and parametric variation of the three

scalar parameters involved, �l, 
, 
�, in order to achieve
the desired tradeo!s between performance, robustness,
and the control e!ort required. This approach retains
a su$cient but not excessive degree of #exibility in the
control design process. In general, intermediate values of
the three parameters �l, 
, 
� are found to lead to the
most suitable control designs.
H

�
control (also known as linear quadratic Gaussian

control, or LQG) is an important limiting case of
H

�
control. It is obtained in the present formulation by

relaxing the bound 
 on the in"nity norm of the closed-
loop system, taking the limit as 
PR in the controller
formulation. Such a control formulation focuses solely
on performance, i.e., minimizing ��¹zw ��

�
. As LQG does

not provide any guarantees about system behavior
for disturbances of particularly disruptive structure
(��¹zw ��

�
), it is often referred to as `optimala control.

Though one might con"rm a posteriori that a particular
LQG design has favorable robustness properties, such
properties are not guaranteed by the LQG control design
process.When designing a large number of compensators
for an entire array of wavenumber pairs �k

�
, k

�
� via an

automated algorithm, as is necessary in the present prob-
lem, it is useful to have a control design tool which
inherently builds in system robustness, such as H

�
. For

isolated low-dimensional systems, as often encoun-
tered in many industrial processes, a posteriori
robustness checks on hand-tuned LQG designs are often
su$cient.

It is also interesting to note that certain favorable
robustness properties may be assured by the LQG ap-
proach by strategies involving either:

(a) setting B
�
"(B

�
0) and taking 
P0, or

(b) setting C
�
"�

C
�
0 � and taking lP0.

These two approaches are referred to as loop transfer
recovery (LQG/LTR), and are further explained in Stein
and Athans [22]. Such a strategy is explored by
Cortelezzi and Speyer [14] in the 2D setting of the
present problem. In the present system, both B

�
and

C
�
are very low rank, as there is only a single control

variable and a single measurement variable at each wall
in the Fourier-space representation of the physical sys-
tem at each wavenumber pair �k

�
, k

�
�. However, the state

itself is a high-dimensional approximation of an in"nite-
dimensional system. It is bene"cial in such a problem to
allow the modeled state disturbances w

�
to input the

system, via the matrix B
�
, at more than just the actuator

inputs, and to allow the response of the system x to be
weighted in the cost function, via the matrix C

�
, at more

than just the sensor outputs. The LQG/LTR approach of
assuring closed-loop system robustness, however, requires
us to sacri"ce one of these features in the control formula-
tion, in addition to taking 
P0 or lP0, in order to apply
one of the two strategies listed above. It is noted here that
the H

�
approach, when soluble, allows for the design of

compensators with inherent robustness guarantees with-
out such sacri"ces of #exibility in the de"nition of the
control problem of interest, thereby giving signi"cantly
more latitude in the design of a `robusta compensator.
The names H

�
and H

�
are derived from the system

norms ��¹zw ��
�
and ��¹zw ��

�
which these control theories

address, with the symbol H denoting the particular
`Hardy spacea in which these transfer functions norms
are well de"ned. It deserves mention that the di!erence
between ��¹zw ��

�
and ��¹zw ��

�
might be expected to be

increasingly signi"cant as the dimension of the system is
increased. Neglecting, for the moment, the dependence
on � in the de"nition of the system norms, the matrix
Frobenius norm, (trace[¹H¹])���, and the matrix 2-
norm, �� [¹], are `equivalenta up to a constant. Indeed,
for scalar systems, these two matrix norms are identical,
and for low-dimensional systems, their ratio is bounded
by a constant related to the dimension of the system. For
high-dimensional discretizations of in"nite-dimensional
systems, however, this norm equivalence is relaxed, and
the di!erences between these two matrix norms may be
substantial. The temporal dependence of the two system
norms ��¹zw ��

�
and ��¹zw ��

�
distinguishes them even for

low-dimensional systems; the point here is only that, for
high-dimensional systems, the important di!erences be-
tween these two system norms is even more pronounced,
and control techniques, such as H

�
, which account

for both such norms might prove to be bene"cial.

T.R. Bewley / Progress in Aerospace Sciences 37 (2001) 21}58 27



�Though this de"nition is dependent on the coordinate sys-
tem and norm chosen to de"ne the orthogonality of the eigen-
vectors, the physical systems we will consider lend themselves
naturally to preferred norm de"nitions motivated by the ener-
getics of the system. In particular, the nonlinear terms of the
Navier}Stokes equation (which are neglected in the present
linear analysis) are orthogonal only under certain norms related
to the kinetic energy of the system at hand, suggesting a natural,
physically motivated choice of norm for the systems we will
consider.

Techniques (likeH
�
) which bound ��¹zw ��

�
are especially

appropriate for the present problem, as transition is often
associated with the triggering of a `worst-casea phenom-
enon, which is well characterized by this measure.

2.2. Advantages of modern control design for
nonnormal systems

MatricesA arising from the discretization of systems in
#uid mechanics are often highly `nonnormala, which
means that the eigenvectors of A are highly nonortho-
gonal. This is especially true for transition in a plane
channel. Important characteristics of this system, such as
O(1000) transient energy growth and large ampli"cation
of external disturbance energy in stable #ows at subcri-
tical Reynolds numbers, cannot be explained by exam-
ination of its eigenvalues alone. Discretizations of (3),
when put into the state-space form (4), lead to system
matrices of the form

A"�
¸ 0

C S�. (10)

For certain wavenumber pairs (speci"cally, those with
k
�
+0 and k

�
"O(1)), the eigenvalues of A are real and

stable, the matrices ¸ and S are quite similar in structure,
and �� (C) is disproportionately large.
In order to illustrate the behavior of a system matrix

with such structure, consider a reduced system matrix of
the above form but where ¸, C, and S are scalars. Speci"-
cally, compare the two stable closed-loop system ma-
trices

A
�
"�

!0.01 0

0 !0.011�, A
�
"�

!0.01 0

1 !0.011�.
Both matrices have the same eigenvalues. However, the
eigenvectors of A

�
are orthogonal, whereas the eigenvec-

tors of A
�
are

�
�
"�

0.001

1.000� and �
�
"�

0

1.000�.
Even though its eigenvalues di!er by 10%, the eigenvec-
tors of A

�
are less than 0.063 from being exactly parallel.

It is in this sense that we de"ne this system as being
`nonnormala or `nearly defectivea.� This severe non-

orthogonality of the system eigenvectors is a direct result
of the disproportionately large coupling term C. Com-
pensators which reduce C will make the eigenvectors of
A

�
closer to orthogonal without necessarily changing the

system eigenvalues.
The consequences of nonorthogonality of the system

eigenvectors are signi"cant. Though the `energya (the
¸�-norm) of the state of the system x� "A

�
x uniformly

decreases in time from all initial conditions, the `energya
of the state of the system x� "A

�
x from the initial condi-

tion x(0)"�
�
!�

�
grows by a factor of over a thousand

before eventually decaying due to the stability of the
system. This is referred to as the transient energy growth
of the stable nonnormal system, and is a result of the
reduced destructive interference exhibited by the two
modes of the solution as they decay at di!erent rates. In
#uid mechanics, transient energy growth is thought to be
an important linear mechanism leading to transition in
subcritical #ows, which are linearly stable but nonlin-
early unstable [23].
The excitation of such systems by external distur-

bances is well described in terms of the system norms
��¹zw ��

�
and ��¹zw��� , which (as described previously)

quantify the rms ampli"cation of Gaussian and worst-
case disturbances by the system. For example, consider
a closed-loop system of form (9) with BI "CI "I. Taking
the system matrix AI "A

�
, the norms of the system

transfer function are ��¹zw ��
�
"9.8 and ��¹zw ��

�
"100.

On the other hand, taking the system matrix AI "A
�
, the

2-norm of the system transfer function is 48 times larger
and the R-norm is 91 times larger, though the two
systems have identical closed-loop eigenvalues. Large
system transfer function norms and large values of max-
imum transient energy growth are often highly corre-
lated, as they both come about due to nonnormality in
a stable system.
Graphical interpretations of ��¹zw ��

�
and ��¹zw ��

�
for the

present channel #ow system are given in Figs. 3 and 4
by examining contour plots of the appropriate matrix
norms of ¹zw(s) in the complex plane s. Recall that
¹zw (s)OCI (sI!AI )��BI , so these contours approach in"n-
ity in the neighborhood of each eigenvalue of AI . Contour
plots of this type have recently become known as the
pseudospectra of an input/output system, and have be-
come a popular generalization of plots of the eigenvalues
of AI in recent e!orts to study nonnormality in uncontrol-
led #uid systems [24]. For the open-loop systems depic-
ted in these "gures, we de"ne AI "A, BI "B

�
, and

CI "C
�
. The severe nonnormality of the present #uid

system for Fourier modes with k
�
+0 is re#ected by the

elliptical isolines surrounding each pair of eigenvalues
with nearly parallel eigenvectors in these pseudospectra,
a feature which is much more pronounced in the system
depicted in Fig. 3 than in that depicted in Fig. 4. The
severe nonnormality of the system depicted in Fig. 3 is
also re#ected by its much larger value of ��¹zw ��

�
. As
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Fig. 3. Graphical interpretations (a.k.a. `pseudospectraa) of the transfer function norms ��¹zw ��� (top) and ��¹zw ��� (bottom) for the
present system in open loop, obtained at k

�
"0, k

�
"2 and Re"5000. The eigenvalues of the system matrix A are marked with an �.

All isoline values are separated by a factor of 2, and the isolines with the largest value are those nearest to the eigenvalues. For this
system, ��¹zw���"2.6�10�.

�AI ,BI ,CI � may be de"ned for either the open-loop or the
closed-loop case, this technique for analysis of nonnor-
mality extends directly to the characterization of control-
led #uid systems.
TheH

�
control technique is in fact based on minimiz-

ing the 2-norm of the system transfer function while
simultaneously bounding the R-norm of the system
transfer function. In the present transition problem, our

control objective is to inhibit the (linear) formation of
energetic #ow perturbations that can lead to nonlinear
instability and transition to turbulence. It is natural that
control techniques such asH

�
, which are designed upon

the very transfer function norms which quantify the exci-
tation of such #ow perturbations by external distur-
bances, will have a distinct advantage for achieving this
objective over control techniques which account for the
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Fig. 4. Pseudospectra interpretations of ��¹zw ��� (left) and ��¹zw ��
�
(right) for the open loop system at k

�
"!1, k

�
"0 and Re"5000.

For plotting details, see Fig. 3. For this system, ��¹zw ��
�

"1.9�10	.

eigenvalues only, such as those based on the analysis of
root-locus plots.

2.3. Ewectiveness of control feedback at particular
wavenumber pairs

The application of the modern control design
approach described in Section 2.1 to the Orr}Sommer-
feld/Squire problem laid out in Section 1 was explored
extensively in [12] for two particular wavenumber pairs
and Reynolds numbers. The control e!ectiveness was
quanti"ed using several di!erent techniques, including
eigenmode analysis, transient energy growth, and trans-
fer function norms. The control was remarkably e!ective
and the trends with �l, 
, 
� were all as expected; the
reader is referred to the journal article for complete
tabulation of the results. One of the most notable features
of this paper is that the application of the control resulted
in the closed-loop eigenvectors becoming signi"cantly
closer to orthogonal, as illustrated in Fig. 5; note espe-
cially the high degree of correlation between the second
and third eigenvectors of Fig. 5a, and how this correla-
tion is disrupted in Fig. 5b. This was accompanied by
concomitant reductions in both transient energy growth

and the system transfer function norms in the controlled
system. Note that the nearly parallel nature of the pairs
of eigenvectors ��

�
, �

�
�, ��

	
, �

�
�, ��



,�

�
� and ��

�
, �



� in

the uncontrolled case (Fig. 5a) is also re#ected by the
elliptical isolines surrounding the corresponding eigen-
values illustrated by the pseudospectra of Fig. 3.
Note the nonzero value of v( at the walls in Fig. 5b; this

re#ects the wall blowing/suction applied as the control.
Note also that half of the eigenvectors in Fig. 5a have
zero v( component. These are commonly referred to as the
Squire modes of the system, and are decoupled from the
perturbations in v( because of the block of zeros in the
upper-right corner of A. Such decoupling is not seen in
Fig. 5b, because the closed-loop system matrix A#B

�
K

is full.

3. Decentralization: designing for massive arrays

As illustrated in Figs. 6 and 7, there are two possible
approaches for experimental implementation of linear
compensators for this problem:

(1) a centralized approach, applied in Fourier space, or
(2) a decentralized approach, applied in physical space.
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Fig. 5. The nine least stable eigenmodes of the closed-loop system matrix A#B
�
K for k

�
"0, k

�
"2 and Re"5000. Plotted are the

nonzero part of the �( component of the eigenvectors (solid) and the nonzero part of the v( component of the eigenvectors (dashed) as
a function of y from the lower wall (bottom) to the upper wall (top). In (a), the dashed line is magni"ed by a factor of 1000 with respect to
the solid line; in (b), the dashed line is magni"ed by a factor of 300. Note that the eigenvectors become signi"cantly closer to orthogonal
by the application of the control [12].

Fig. 6. Centralized approach to the control of plane channel #ow in Fourier space.

Fig. 7. Decentralized approach to the control of plane channel #ow in physical space.
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Both of these approaches may be used to apply boundary
control (such as distributions of blowing/suction) based
on wall information (such as distributions of skin friction
measurements). Both approaches may be used to imple-
ment the H

�
compensators developed in Section 2,

LQG/LTR compensators, PID feedback, or a host of
other types of control designs. However, there are impor-
tant di!erences in terms of the applicability of these two
approaches to physical systems. The pros and cons of
these approaches are now presented.

3.1. Centralized approach

The centralized approach is simplest in terms of its
derivation, as most linear compensators in this geometry
are designed in Fourier space, leveraging the spatially
invariant structure of this system mentioned previously
and the complete decoupling into Fourier modes which
this structure provides [11]. As indicated in Fig. 6,
implementation of this approach is straightforward. This
type of experimental realization was recommended by
Cortelezzi and Speyer [14] in related work. There are
two major shortcomings of this approach:

(A) the approach requires an on-line 2D FFT of the
entire measurement vector and an on-line 2D iFFT
of the entire control vector, and

(B) the approach assumes spatial periodicity of the #ow
perturbations.

With regard to point A, it is important to note that the
expense of centralized computations of 2D FFTs and
iFFTs will grow rapidly with the size of the array of
sensors and actuators; to be speci"c, the computational
expense is proportional to N

�
N

�
log(N

�
N

�
). This will

rapidly decrease the bandwidth possible as the array size
(and the number of Fourier modes) is increased for
a "xed speed of the central processing unit (CPU). Com-
munication of signals to and from the CPU is also an
important limiting factor as the array size grows. Thus,
this approach does not extend well to massive arrays of
sensors and actuators.
With regard to point B, it is important to note that

transition phenomena in physical systems, such as
boundary layers and plane channels, are not spatially
periodic, though it is often useful to characterize the
solutions of such systems with Fourier modes. The ap-
plication of Fourier-space controllers which assume spa-
tial periodicity in their formulation to physical systems
which are not spatially periodic will be corrupted by
Gibbs phenomenon, the well-known e!ect in which
a Fourier transform is spoiled across all frequencies when
the data one is transforming is not itself spatially peri-
odic. In order to correct for this phenomenon in formula-
tions which are based on Fourier-space computations of
the control, windowing functions such as the Hanning
window are appropriate. Windowing functions "lter the

signals coming into the compensator such that they are
driven to zero near the edges of the physical domain under
consideration, thus arti"cially imposing spatial periodicity
on the non-spatially-periodic measurement vector.

3.2. Decentralized approach

The decentralized approach, applied in physical space,
is not as convenient to derive. Riccati equations of the
size of the entire discretized 3D system pictured in Fig. 1
and governed by (1), represented in physical space,
appear to be numerically intractable.
However, if such a problem could be solved, one would

expect that the controller feedback kernels relating the
state estimate x( inside the domain to the control forcing
u at some point on the wall should decay quickly as a
function of distance from the control point, as the control
authority of any blowing/suction hole drilled into the wall
on the surrounding #ow decays rapidly with distance in
a distributed viscous system.
Similarly, the estimator feedback kernels relating

measurement errors (y!y( ) at some point on the wall to
the estimator forcing terms v on the system model inside
the domain should decay as a function of distance from
the measurement point, as the correlation of any two
#ow perturbation variables are known to decay with
distance in a distributed viscous system.
Finally, due to the spatially invariant structure of the

problem at hand, the control and estimation kernels for
each sensor and actuator on the wall should be identical,
though spatially shifted.
In other words, the physical-space kernels sought to

determine the control and estimator feedback are spa-
tially localized convolution kernels. If their spatial decay
rate is rapid enough (e.g., exponential), then we will be
able to truncate them at a "nite distance from each
actuator and sensor while maintaining a prescribed degree
of accuracy in the feedback computation, resulting in
spatially compact convolution kernels with "nite support.
With such spatially compact convolution kernels,

decentralized control of the present system becomes
possible, as illustrated in Fig. 7. In such an approach,
several tiles are fabricated, each with sensors, actuators,
and an identical logic circuit. The computations on each
tile are limited in spatial extent, with the individual logic
circuit on each tile responsible for the (physical-space)
computation of the state estimate only in the volume
immediately above that tile. Each tile communicates its
local measurements and state estimates with its immedi-
ate neighbors, with the number of tiles over which such
information propagates in each direction depending on
the tile size and spatial extent of the truncated convolu-
tion kernels. By replication, we can extend such an
approach to arbitrarily large arrays of sensors and
actuators. Though additional truncation of the kernels
will disrupt the e!ectiveness of this control strategy near
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Fig. 8. Localized controller gains relating the state estimate x( inside the domain to the control forcing u at the point
�x"0, y"!1, z"0� on the wall: visualized are a positive and negative isosurface of the convolution kernels for (left) the wall-normal
component of velocity and (right) the wall-normal component of vorticity [27].

Fig. 9. Localized estimator gains relating the measurement error (y!y( ) at the point �x"0, y"!1, z"0� on the wall to the estimator
forcing terms v inside the domain: visualized are a positive and negative isosurface of the convolution kernels for (left) the wall-normal
component of velocity and (right) the wall-normal component of vorticity [27].

the edges of the array, such edge e!ects are limited to
the edges in this case (unlike Gibbs phenomenon),
and should become insigni"cant as the array size is
increased.

4. Localization: relaxing nonphysical assumptions

As discussed previously, though the physical-space
representation of the 3D linear system is intractable in
the controls setting, the (completely decoupled) 1D sys-
tems at each wavenumber pair �k

�
, k

�
� in the Fourier-

space representation of this problem are easily managed.
Remarkably, these two representations are completely
equivalent. Performing a Fourier transform (which is
simply a linear change of variables) of the entire 3D
system (including the state, the controls, the measure-
ments, and the disturbances) block diagonalizes all of the
matrices involved in the 3D physical-space control prob-
lem. With such block diagonal structure, the constituent
H

�
control problems at each wavenumber pair �k

�
, k

�
�

may be solved independently and, once solved, reassem-
bled in physical space with an inverse Fourier transform.
If the numerics are handled properly, this approach is
equivalent to solving the 3D physical-space control prob-
lem directly.
Recent theoretical work on this problem by Bamieh et

al. [25], and related work by D'Andrea and Dullerud
[26], further support the notion that an array of
H

�
compensators developed at each wavenumber pair,

when inverse-transformed back to the physical domain,
should in fact result in spatially localized convolution
kernels with exponential decay. This exponential decay,
in turn, allows truncation of the kernels to any prescribed
degree of accuracy. Thus, if the truncated kernels are
allowed to be su$ciently large in streamwise and span-
wise extent, favorable closed-loop system properties,
such as robust stability and reduced system transfer
function norms, may be retained. Until very recently,
however, it has not been possible to obtain such kernels
for Navier}Stokes systems, due to an assortment of nu-
merical challenges.
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In HoK gberg and Bewley [27], spatially localized con-
volution kernels for both the control and estimation of
plane channel #ow have "nally been obtained. The tech-
nique used was based on that described previously, deriv-
ing (in our initial e!orts)H

�
compensation at an array of

wavenumber pairs �k
�
, k

�
� and then inverse transforming

the lot, with special attention paid to the details of the
control formulation and the numerical method. In par-
ticular, a numerical discretization technique which was
not plagued by spurious eigenvalues was chosen, and the
control formulation was slightly modi"ed such that the
time derivative of the blowing/suction velocities is penal-
ized in the cost function. The resulting localized kernels
are illustrated in Figs. 8 and 9. Such kernels facilitate the
decentralized control implementation discussed in Sec-
tion 3.2 and depicted in Fig. 7, paving the way for
experimental implementation with massive arrays of tiles
integrating sensing, actuating, and the control logic.
Note that the control convolution kernels shown in

Fig. 8 angle away from the wall in the upstream direction.
Coupled with the mean #ow pro"le indicated in Fig. 1,
this accounts for the convective delay which requires us
to anticipate #ow perturbations on the interior of the
domain with actuation on the wall somewhere down-
stream. The estimation convolution kernels shown in
Fig. 9, on the other hand, extend well downstream of the
measurement point. This accounts for the delay between
the motions of the convecting #ow structures on the
interior of the domain and the eventual in#uence of these
motions on the local drag pro"le on the wall; during
this time delay, the #ow structures responsible for
these motions convect downstream. Note that the
upstream bias of the control kernels and the downstream
bias of the estimation kernels, though physically
tenable, were not prescribed in the problem formulation.
A posteriori study of the streamwise, spanwise, and
wall-normal extent, the symmetry, and the shape of
such control and estimation kernels provides us with
a powerful new tool with which the fundamental physics
of this distributed #uid}mechanical system may be
characterized.
The localized convolution kernels illustrated in Figs. 8

and 9 are approximately independent of computational
box size in which they were computed, so long as this box
is su$ciently large. Thus, when implementing these ker-
nels, we may e!ectively assume that they were derived in
an inxnite-sized box, relaxing the nonphysical assump-
tion of spatial periodicity used in the problem formula-
tion and modeling the physical situation of spatially
evolving #ow perturbations in a spatially invariant ge-
ometry and mean #ow.
The localized convolution kernels illustrated in Figs. 8

and 9 are also approximately independent of the com-
putational mesh resolution with which they were
computed, so long as this computational mesh is su$-
ciently "ne. Indeed, a computational mesh which is

su$cient to resolve the #ow under consideration also
adequately resolves these convolution kernels.

4.1. Open questions

As we have shown, the framework for decentralized
H

�
control of the fully resolved transition problem in

the geometry depicted in Fig. 1 is now established.
Obtaining spatial localization of the convolution kernels
in physical space was the "nal remaining conceptual/
numerical hurdle to be overcome. This work paves the
way for decentralized application of such compensation
with massive arrays of identical control tiles integrating
sensing, actuation, and the control logic (Fig. 7). Though
in some sense `completea, this e!ort has also exposed
several fundamental open questions, which will now be
brie#y discussed.
For a given choice of the matrices �B

�
,B

�
,C

�
,C

�
� and

design parameters �l, 
, 
'

�
� selected, decentralized

H
�
compensators may be determined using the proced-

ure described above, and performance and robustness
benchmarks may be obtained via simulation. As a "nal
step in the control design process, it is of interest to
explore how much the computational e!ort required by
the logic on each tile may be reduced without signi"cant
degradation in the closed-loop system behavior. This can
lead to a signi"cant reduction in the number of #oating
point operations per second required by the logic circuit
on each tile. However, as will be discussed in Section 5,
compensator reduction in the decentralized setting re-
mains a signi"cant unsolved problem; standard reduction
strategies which have been developed for "nite, closed
systems are not applicable and new research is motivated.
With the decentralized linear control framework estab-

lished and prototypical numerical examples solved, we
are now in a position to explore the e!ectiveness of
compensators computed via this framework to the
"nite-amplitude perturbations that actually lead to
transition, and to the `largea-amplitude perturbations of
fully developed turbulence, in the nonlinear equations of
#uid motion. An extensive analytical and numerical
study within this framework is underway. Issues regard-
ing our preliminary e!orts in this direction are brie#y
reviewed in Section 6. As emphasized in the preface, such
a study should be guided by an interdisciplinary per-
spective in order to be maximally successful. Speci"cally,
such a study should fully incorporate the known or
postulated linear mechanisms leading to transition or, in
the case of turbulence, the linear mechanisms thought to
be at least partially responsible for sustaining the turbu-
lent cascade of energy. In addition, this e!ort motivates
the development of new analytical tools which might
help clarify the types of state disturbances and #ow
perturbations which are particularly important in such
phenomena. Armed with such an understanding, large
bene"ts might be realized in the compensator design, as
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the modeling of the structure of the state disturbances
exciting the system, G

�
, and the weighting on the #ow

perturbations of interest in the cost function, Q, are
important design criteria. In fact, we fully expect that the
transfer of information between our physical understand-
ing of fundamental #ow phenomena and our knowledge
of how to control such phenomena will be a two-way
transfer. Such a strategy promises to provide powerful
new tools for obtaining fundamental physical under-
standing of classical problems in #uid mechanics as we
gain new insight in how to modify these phenomena by
the action of control feedback.
A host of other canonical #ow control problems, in-

cluding the control of spatially developing boundary
layers, blu! body #ows, and free shear layers, should also
be amenable to linear control application using the
framework outlined here. A few such extensions are dis-
cussed brie#y in Section 7.

5. Compensator reduction: eliminating unnecessary
complexity

Strategies for the development of reduced-order decen-
tralized compensators of the present form remain a key
unsolved issue. With the present approach, as described
previously, a physical-space state estimate in the volume
immediately above each tile must be updated online by
the logic circuit on each tile as the #ow evolves. However,
it is not at all necessary for the compensator to compute
an accurate state estimate as an intermediate variable;
indeed, our only requirement is that, based on whatever
"ltered information the dynamic compensator does
extract from the noisy system measurements, suitable
controls may be determined to achieve the desired
closed-loop system behavior. It should be possible to
reduce substantially the complexity of the dynamic com-
pensator and still achieve this more modest objective.
There are two possible representations in which the

complexity of the compensator can be reduced: in
Fourier space (where the compensator is designed), or in
physical space (where the decentralized compensation is
applied).

5.1. Fourier-space compensator reduction

At any particular wavenumber pair �k
�
,k

�
�, there is

one actuator variable at each wall, one sensor variable at
each wall, and a spatial discretization in y of the state
variables across the domain stretching between these
walls. Due to the complete decoupling of the control
problem into separate Fourier modes, the system model
used in the estimator at each particular wavenumber pair
is not referenced by the compensator at any other
wavenumber pair. Thus, the compensators at each
wavenumber pair are completely decoupled and may be

reduced independently. At certain wavenumber pairs, it
might be important to retain several degrees of freedom
in the dynamic compensator, while at other wavenumber
pairs, it might be possible to retain signi"cantly fewer
degrees of freedom without signi"cant degradation in the
closed-loop system behavior. Several existing compen-
sator reduction strategies are well suited to this problem,
and their application in this setting is straightforward.
Cortelezzi and Speyer [14] successfully applied the
balanced truncation technique of open-loop model
reduction in this Fourier-space framework in order to
facilitate the design of a reduced-complexity dynamic
compensator.
As mentioned earlier, it is the nonorthogonality of the

entire set of system eigenvectors which leads to the pecu-
liar (and important) possibilities for energy ampli"cation
in these systems, so compensator reduction techniques
which are mindful of the relevant transfer function norms
are necessary. In addition, as eloquently described by
Obinata and Anderson [28], it is most appropriate when
designing low-order compensators for high-order plants
to reduce the compensator while accounting for how it
performs in the closed loop. An assortment of closed-
loop compensator reduction techniques are now avail-
able, and should be tested in future work.
In the setting of designing a decentralized compen-

sator, there is an important shortcoming to performing
standard compensator reductions in Fourier space. As
the compensator reduction problem is independent at
each wavenumber pair, we might be left with a di!erent
number of degrees of freedom in the reduced-order com-
pensator at each wavenumber pair, leaving us with a
dynamical system model which is impossible to inverse
transform back into the physical domain. Even if we
restrict the compensator reduction algorithm to reduce
to the same number of degrees of freedom at each
wavenumber pair (a restrictive assumption which should
be unnecessary), there appears to be no appropriate
strategy currently available to coordinate this reduction
process across all wavenumbers in a consistent manner
such that the inverse transform of the reduced dynamic
model is spatially localized. Without such coordination,
it seems inevitable that the ordering and representation
of the various modes of this dynamic model will be
scrambled during the process of compensator reduction
at each wavenumber pair, resulting in an inverse trans-
form back in physical space that does not exhibit the
spatial localization which is essential to facilitate decen-
tralized control.

5.2. Physical-space compensator reduction

As an alternative to Fourier-space compensator
reduction, one might consider instead the reduction of
the physical-space model and its associated localized
convolution kernels. This has several advantages linked
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to the fact that this is the actual compensation to
be computed on each tile. The "rst advantage is that
spatial localization will be retained, as compensator re-
duction is applied after the localized kernels are obtained.
Another important advantage is that this setting allows
us to keep more degrees of freedom in the dynamical
system model to represent streamwise and spanwise #uc-
tuations of the state near the wall than we retain to
represent the behavior of the state on the interior of the
domain. This e!ectively relaxes the restrictive assump-
tion referred to in the previous paragraph. Such an em-
phasis on resolving the state near the wall is motivated by
inspection of the convolution kernels plotted in Figs. 8
and 9, in which it is clear that the details of the #ow near
the wall are of increased importance when computing the
feedback.
However, note that the system model simulated on

each individual tile is not self-contained, due to the inter-
connections with neighboring tiles indicated in Fig. 7.
Thus, if one reduces the system model above a single tile,
all neighboring tiles which reference this state estimate
will be a!ected. As the systemmodel is not self-contained,
as it was in the Fourier-space case, existing compensator
reduction approaches are not applicable.
An important observation, however, is that the struc-

ture of the system model carried by each tile is identical.
Due to the repeated structure of the model represented
on the array, it is su$cient to optimize the system model
carried by a single tile. The repeated structure of the
distributed physical-space model should make the com-
pensator reduction problem tractable. This fundamental
problem of reducing distributed, interconnected dynamic
compensators in the decentralized closed-loop setting
remains, as yet, unsolved.

5.3. Non-spatially-invariant systems

Finally, it should be stated that the Fourier-space
decoupling leveraged at the outset of this problem formu-
lation has been one of the key ingredients which has
permitted accurate solution of well-resolved canonical
#ow control problems to date. The linear control tech-
nique we have used to solve these control problems
involves the solution of matrix Riccati equations, which
are accurately soluble for state dimensions only up to
O(10�). As we move to more applied #ow control prob-
lems in which such Fourier-space decoupling is either
more restrictive or not available, if we continue to use
Riccati-based control approaches, creative new compen-
sator reduction strategies will be required. We might
need to apply `open-loopamodel reduction strategies (in
advance of computing the control feedback and closing
the loop) in order to make manageable the dimension of
the Riccati equations to be solved in the compensator
design. As mentioned earlier, it is most appropriate when
designing low-order compensators for high-order plants

to reduce the compensator while accounting for how it
performs in the closed loop. Unfortunately, extremely
high-order discretizations of non-spatially-invariant
PDE systems will not likely a!ord us this luxury, as such
systems do not decouple (via Fourier transforms) into
constituent lower-order control problems amenable to
matrix-based compensator design strategies.

6. Extrapolation: linear control of nonlinear systems

Once a decentralized linear compensator of the present
form is developed, a veri"cation of its utility for the
transition problemmay be obtained by applying it to the
laminar #ow depicted in Fig. 1 with either "nite-ampli-
tude (but su$ciently small) initial #ow perturbations
and/or "nite-amplitude (but su$ciently small) applied
external disturbances. The resulting "nite-amplitude #ow
perturbations are governed by the fully nonlinear
Navier}Stokes equation, and have been simulated in well
resolved direct numerical simulations (DNS) with the
code benchmarked in Bewley et al. [30]. Representative
simulations are indicated in Fig. 10, indicating that linear
compensators can indeed relaminarize perturbed #ows
that would otherwise proceed rapidly towards transition
to turbulence.With the framework presented here, exten-
sive numerical studies promise to signi"cantly extend our
fundamental understanding of the process of transition
and how this process may be inhibited by control
feedback.
It is also of interest to consider the application of

decentralized linear compensation to the fully nonlinear
problem of a turbulent #ow, such as that shown in
Fig. 11. The "rst reason to try such an approach is simply
because we can: linear control theory leads to implemen-
table control algorithms and grants a lot of #exibility in
the compensator design. Nonlinear turbulence control
strategies, though currently under active development
(see Sections 8}11), are much more di$cult to design and
implement, and require substantial further research be-
fore they will provide implementable control strategies as
#exible and powerful as those which we currently have at
our disposal in the linear setting.
There is at least some evidence in the #uids literature

that applying linear control feedback to turbulence might
be at least partially e!ective. Though the signi"cance of
this result has been debated in the #uid mechanics com-
munity, Farrell and Ioannou [31] have clearly shown
that linearized Navier}Stokes systems in plane channel
#ows, when excited with the appropriate stochastic forc-
ing, exhibit behavior which is reminiscent of the stream-
wise vortices and streamwise streaks which characterize
actual near-wall turbulence. Whatever information the
linearized Navier}Stokes equation actually contains
about the mechanisms sustaining these turbulence
structures, the present linear control framework (perhaps
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Fig. 10. Evolution of oblique waves (left) and an initially random #ow perturbation (right) added to a laminar #ow at Re"2000, with
and without decentralized linear control feedback. The magnitude of the initial #ow perturbations in these simulations greatly exceed
the thresholds reported by Reddy et al. [29] that lead to transition to turbulence in an uncontrolled #ow (by a factor of 225 for the
oblique waves and by a factor of 15 for the random initial perturbation). Solid lines indicate the energy evolution in the controlled case,
dashed lines indicate the energy evolution in the uncontrolled case. Both of the uncontrolled systems lead quickly to transition to
turbulence whereas, both of the controlled systems relaminarize. For the controlled cases, initial perturbations with greater energy fail to
relaminarize, whereas initial perturbations with less energy relaminarize earlier [27].

Fig. 11. Visualization of the coherent structures of uncontrolled near-wall turbulence at Re�"180. Despite the geometric simplicity of
this #ow (see Fig. 1), it is phenomenologically rich, and is characterized by a large range of length scales and time scales over which
energy transport and scalar mixing occur. The relevant spectra characterizing these complex nonlinear phenomena are continuous over
this large range of scales, and thus such #ows have largely eluded accurate description via dynamic models of low state dimension. The
nonlinearity, the distributed nature, and the inherent complexity of its dynamics make turbulent #ow systems particularly challenging
for successful application of control theory. (Simulation by Bewley et al. [30].)
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Fig. 12. Example of the spectacular failure of linear control theory to stabilize a simple nonlinear chaotic convection system governed by
the Lorenz equation. Plotted are the regions of attraction to the desired stationary point (blue) and to an undesired stationary point (red)
in the linearly controlled nonlinear system, and typical trajectories in each region (black and green, respectively). The cubical domain
illustrated is �"(!25, 25)� in all sub"gures; for clarity, di!erent viewpoints are used in each sub"gure [34].

restricted to a "nite horizon) should be able to exploit.
Though the life cycle of the near-wall coherent structures
of turbulence appears to involve important nonlinear
phenomena (see, e.g. [32]), that in itself does not disqual-
ify the utility of linear control strategies to e!ectively
disrupt critical linear terms of this nonlinear process.
Indeed, recent numerical experiments by Kim and Lim
[33] support this idea by conclusively demonstrating the
importance of the coupling term C in the linearized
system matrix A (see Eq. (10)) for maintaining near-wall
turbulence in nonlinear simulations.
In order to understand the possible pitfalls of applying

linear feedback to nonlinear systems, a low-order nonlin-
ear convection problem governed by the Lorenz
equation was studied by Bewley [34]. As with the prob-
lem of turbulent channel #ow, but in a low-order system
easily amenable to analysis, control feedback was deter-
mined with linear control theory by linearizing the gov-
erning equation about a desired "xed point. Once
a linear controller was determined by such an approach,
it was then applied directly to the fully nonlinear system.
The result is depicted in Fig. 12.
For control feedback determined by linear control

theory with a large weighting l on the control
e!ort, direct application of linear feedback to the
full nonlinear system stabilizes both the desired state and
an undesired state, indicated by the two trajectories
marked in Fig. 12(a). An unstable manifold exists be-
tween these two states, indicated by the contorted surface
shown. Any initial state on one side of this manifold will
converge to the desired state, and any initial state on the
other of this manifold will converge to the undesired
state.

As seen in Figs. 12(b) and (c), as the weighting on the
control e!ort, l, is turned down and the desired station-
ary state is stabilized more aggressively, the domain of
convergence to the undesired stabilized state remains
large. This undesired state is `aggravateda by the
enhanced control feedback, moving farther from the ori-
gin. The undesired state eventually escapes to in"nity for
su$ciently small l, indicating instability of the nonlinear
system from a wide range of initial conditions even
though the desired stationary point is endowed with
a high degree of linear stability. Implication: strong linear
stabilization of a desired system state (such as laminar
#ow) will not necessarily eliminate undesired nonlinear
system behavior (such as turbulence) in a chaotic system.
Some form of nonlinearity in the feedback rule was

required to eliminate this undesired behavior. One e!ec-
tive technique is to apply a switch such that the linear
control feedback is turned on only when the state x(t) is
within some su$ciently small neighborhood of the
desired stabilized state x� in the linearly-controlled
system. The chaotic dynamics of the uncontrolled Lorenz
system will bring the system into this neighborhood in
"nite time, after which control may be applied to `catcha
the system at the desired equilibrium state.
Thus, even in this simple model problem, linear feed-

back can have a destabilizing in#uence if applied outside
the neighborhood for which it was designed. For the full
Navier}Stokes problem, though a certain set of linear
feedback gains might stabilize the laminar state, on the
`other side of the manifolda might lie a turbulent state
which is aggravated be the same linear controls. Applica-
tion of linear control to nonlinear chaotic systems must
therefore be done with vigilance, lest nonlinearities

38 T.R. Bewley / Progress in Aerospace Sciences 37 (2001) 21}58



Fig. 13. Evolution of fully developed turbulence at Re�"100 with and without decentralized linear control feedback. Note that this
#ow has approximately the same mass #ux as the laminar #ow at Re"2000. Top: energy of #ow perturbation. Middle: drag (note
approximately 25% reduction in the controlled cases). Bottom: control e!ort used. The uncontrolled energy and drag are the (upper)
solid lines in the top and middle "gures. A gain scheduling approach is used to tune the control feedback gains to the instantaneous
mean #ow pro"le [27].

destabilize the closed-loop system, as shown here. The
easy "x found for this low-order model problem (that is,
simply turn o! the control until the chaotic dynamics
bring the state into a neighborhood of the desired state)
might not be available for the (high-dimensional) prob-
lem of turbulence, as fully turbulent #ows appear to
remain at all times far from the laminar state.
In our preliminary attempts at applying the decentra-

lized compensators developed above to turbulence, we
have succeeded in reducing the drag of a fully developed
turbulent #ow by 25%with state-feedback controllers, as
shown in Fig. 13. Interestingly, for the choice of control
parameters selected here, there is no evidence of an ag-
gravated turbulent state. A 25% drag reduction, though
signi"cant, is comparable to the drag reductions ob-
tained with a variety of other ad hoc control approaches
in this #ow. We are actively pursuing modi"cation of this
linear control feedback to improve upon this result. In-
terdisciplinary considerations, such as those involved in
the design of linear compensation for the problem of
transition, are essential in this e!ort. Speci"cally, the
(unmodeled) nonlinear terms in the Navier}Stokes equa-
tion provide insight as to structure of the disturbances,

G
�
, to be accounted for in the linear control formulation

in order to best compensate for their unmodeled e!ects.
Additionally, the coherent structures of fully developed
near-wall turbulence, believed to be a major player in the
self-sustaining nonlinear process of turbulence genera-
tion near the wall, provide a phenomenological target
which may be exploited in the selection of the weighting
on the #ow perturbations, Q, in the cost function.

7. Generalization: extending to spatially developing
6ows

Extension of the decentralized linear control frame-
work developed here to a large class of slightly nonparal-
lel #ows is heuristic but straightforward. To accomplish
this, the parabolic mean #ow pro"le ;(y) indicated in
Fig. 1 is replaced with an appropriate `quasi-1Da pro"le,
such as the Blasius boundary layer pro"le. As long as
the mean #ow pro"le evolves slowly enough in space
(as compared to the wavelengths of the signi"cant
instabilities in the problem), it may be assumed
to be constant in space for the purpose of developing
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the linear control feedback. Such an assumption of slow
spatial divergence forms the foundation of the study of
local and global modes used in the characterization of
absolute and convective instabilities [35], and has
proven to be a quite powerful concept. For the appropri-
ate #ows, we believe this concept is also appropriate in
the context of the development of control feedback.
Implementation of the decentralized control concept

in this setting is a heuristic extension of the approach
presented in Fig. 7: gradual variations in the mean #ow
are accounted for by local extension of the mean #ow
pro"le in the compensator derivation for each tile, grad-
ually scaling the compensation rules from one tile to the
next as the #ow develops downstream. For example, we
may consider developing this strategy for the laminar
boundary layer (LBL) solutions of the Falkner}
Skan}Cooke family, found by solving the ODE:

f 	�#f f 	#�(1!f ��)"0

with f (0)"f � (0)"0 and f � (R)P1 and de"ning

;";
�
f � (�) and <"�

�;
�

2x �� f � (�)!f (�)�.
Cases of interest include the Blasius pro"le, modeling
a zero-pressure-gradient #at-plate LBL with

;
�
";

�
, �"0, �"y�

;
�

2�x
,

the Falkner}Skan pro"le, modeling a nonzero-pressure-
gradient LBL or wedge #ow by taking

;
�
"Kx�, �"

2m

1#m
, �"y�

(m#1);
�

2�x
,

and Falkner}Skan}Cooke pro"le, which models the
addition of sweep to the leading edge by solving the
supplemental ODE

g	#fg�"0

with g(0)"0 and g(R)P1 and de"ning ="=
�
g(�).

Note that the self-similarity of the LBL pro"les might
lead to simpli"ed parameterizations of the convolution
kernels for the control and estimation problems. Exten-
sion of this approach to a variety of other spatially
developing #ows (self-similar or otherwise) should also
be straightforward.

8. Nonlinear optimization: local solutions for full
Navier}Stokes

Given an idealized setting of full state information, no
disturbances, and extensive computational resources,
signi"cant "nite-horizon optimization problems may be
formulated and (locally) solved for complex nonlinear
systems using iterative, adjoint-based, gradient optimiza-

tion strategies. Such optimization problems can now be
solved for high-dimensional discretizations of turbulent
#ow systems, incorporating the full nonlinear Navier}
Stokes equation, locally minimizing cost functionals
representing a variety of control problems of physical
interest within a given space of feasible control variables.
The mathematical framework for such optimizations will
be reviewed brie#y in Section 8.1, and is described in
greater detail by Bewley et al. [30].
The optimizations obtained via this approach are,

strictly speaking, only `locala over the domain of feasible
controls (that is, unless restrictive assumptions are made
in the formulation of the control problem). Thus, the
performance obtained via this approach can usually not
be guaranteed to be `globally optimala. However, the
performance obtained with such nonlinear optimizations
often far exceeds that possible with other control design
approaches (see, e.g. Fig. 14). In addition, this approach is
quite #exible, as it can be used to iteratively improve
high-dimensional control distributions directly, as will be
illustrated below, or, alternatively, to optimize open-loop
forcing schedules, shape functions, or the coe$cients
of practical, implementable, and possibly nonlinear
feedback control rules. Thus, interest in adjoint-based
optimization strategies for turbulent #ow systems goes
far beyond that of establishing performance benchmarks
via predictive optimizations of the control distribution
itself. Establishing such benchmarks is only a "rst step
towards a much wider range of applications for adjoint-
based tools in turbulent #ow systems.
The general idea of this approach, often referred to as

model predictive control, is well motivated by comparing
and contrasting it to massively parallel brute-force algo-
rithms recently developed to play the game of chess. The
goal when playing chess is to capture the other player's
king through an alternating series of discrete moves with
the opponent: at any particular turn, a player has to
select one move out of at most 20 or 30 legal alternatives.
To accomplish its optimization, a computer program

designed to play the comparatively `simplea game of
chess, such as Deep Blue [36], must, in the worst case,
plan ahead by iteratively examining a tree of possible
evolutions of the game several moves into the future [37],
a strategy based on `function evaluationsa alone. At each
step, the program selects that move which leads to its
best expected outcome, given that the opponent is doing
the same in a truly noncooperative competition. The
version of Deep Blue that defeated Garry Kasparov in
1997 was able to calculate up to 200 billion moves in the
3 min it was allowed to conduct each turn. Even with this
extreme number of function evaluations at its disposal on
this relatively simple problem, the algorithm was only
about an even match with Kasparov's human intuition.
An improved algorithm to those based on function

evaluations alone, suitable for optimizing the present
problem in a reasonable amount of time, is available
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Fig. 14. Performance of optimized blowing/suction controls for formulations based on minimizing J
�
(�), case c (see Section 8.1.2), as

a function of the optimization horizon ¹�. The direct numerical simulations of turbulent channel #ow reported here were conducted at
Re�"100. For small optimization horizons (¹�"O(1), sometimes called the `suboptimal approximationa), approximately 20% drag
reduction is obtained, a result which can be obtained with a variety of other approaches. For su$ciently large optimization horizons
(¹��25), the #ow is returned to the region of stability of the laminar #ow, and the #ow relaminarizes with no further control e!ort
required. No other control algorithm tested in this #ow to date has achieved this result with this type of #ow actuation [30].

Fig. 15. Channel #ow geometry. The interior of the domain is
denoted � and the boundaries of the domain in the x

�
direction

are denoted ��
�
. Unsteady wall-normal velocity boundary con-

ditions are applied on the walls ��
�
as the control, with periodic

boundary conditions applied in the streamwise direction x
�
and

spanwise direction x
�
. An external pressure gradient is applied

to induce a mean #ow in the x
�
direction.

because (i) we know the equation governing the evolution
of the present system, and (ii) we can state the problem of
interest as a functional to be minimized. Taking these
two facts together, we may devise an iterative procedure
based on gradient information, derived from an adjoint
xeld, to optimize the controls for the desired purpose on
the prediction horizon of interest in an e$cient manner.
Only by exploiting such gradient information can the
high-dimensional optimization problem at hand (up to
O(10�) control variables per optimization horizon in
some of our simulations) be made tractable.

8.1. Adjoint-based optimization approach

8.1.1. Governing equation
The problem we consider here is the control of a fully

developed turbulent channel #ow with full #ow-"eld in-
formation and copious computational resources avail-
able to the control algorithm. The #ow is governed by the
incompressible Navier}Stokes equation inside a three-
dimensional rectangular domain (Fig. 15) with unsteady
wall-normal velocity boundary conditions � applied on
the walls as the control. Three vector "elds are "rst
de"ned: the #ow state q, the #ow perturbation state q�,
and the adjoint state qH:

q(x, t)"�
p(x, t)

u(x, t)�, q�(x, t)"�
p�(x, t)

u�(x, t)�,

qH(x, t)"�
pH(x, t)

uH(x, t)�.

Each of these vector "elds is composed of a pressure
component and a velocity component, all of which are
continuous functions of space, x, and time, t. The velocity
components themselves are also vectors, with compo-
nents in the streamwise direction x

�
, the wall-normal

direction x
�
, and the spanwise direction x

�
. Partial dif-

ferential equations governing all three of these "elds will
be derived in due course, and the motivation for intro-
ducing q� and qH will be given as the need for these "elds
arises in the control derivation. Only after the optimiza-
tion approach has been derived completely in di!erential
form is it discretized in space and time; an alternative
strategy, discretizing the state equation in space
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before determining the adjoint operator, is discussed in
Section 8.2.
The governing equation is written as

N(q)"F in �, (11a)

u"!� n on ��
�
, (11b)

u"u
�

at t"0, (11c)

where N(q) is the (nonlinear) Navier}Stokes operator

N(q)"�
�u

�
�x

��u
�

�t
#
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u
�
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��u

�
�x�

�

#

�p
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�
�,

F is a forcing vector accounting for an externally applied
mean pressure gradient driving the #ow in the stream-
wise direction, and n is the unit outward normal to the
boundary ��. The boundary conditions on the state q are
periodic in the streamwise and spanwise directions.
A wall-normal control velocity � is distributed over the
walls as indicated, and is constrained to inject zero net
mass such that, ∀t, ���

�
�dx"���

�
�dx"0. Initial condi-

tions on the velocity, u
�
, of fully developed turbulent

channel #ow are prescribed.

8.1.2. Cost functional
As in the linear setting, an essential step in the framing

of the nonlinear optimization problem is the representa-
tion of the control objective as a cost functional to be
minimized. Several cases of physical interest may be
represented by a cost functional of the generic form

J
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Four cases of particular interest are:

(a) C
�
"d

�
I and C

�
"C

�
"0Nregulation of turbu-

lent kinetic energy;
(b) C

�
"d

�
�� and C

�
"C

�
"0Nregulation of the

square of the vorticity;
(c) C

�
"d

�
I and C

�
"C

�
"0Nterminal control of

turbulent kinetic energy;
(d) C

�
"d

	
I and C

�
"C

�
"0Nminimization of the

time-average skin friction in the direction r integrated
over the boundary of the domain, where r is a unit
vector in the streamwise direction.

All four of these cases, and many others, may be con-
sidered in the present framework, and the extension to
other cost functionals is straightforward. The dimen-
sional constants d

�
(which are the appropriate functions

of the kinematic viscosity, the channel width, and the
bulk velocity), as well as l, are included to make the cost

functional dimensionally consistent and to account for
the relative weight of each individual term.
Clearly, in both the chess problem and the turbulence

problem, the further into the future one can optimize the
problem the better (Fig. 14); however, both problems get
exponentially harder to optimize as the prediction hor-
izon is increased. Since only intermediate-term optimiza-
tion is tractable, it is not always the best approach to
represent the "nal objective in the cost functional. In the
chess problem, though the "nal aim is to capture the
other player's king, it is most e!ective to adopt a mid-
game strategy of establishing good board position and
achieving material advantage. Similarly, if the turbulence
control objective is reducing drag, it was found in [30]
that it is most e!ective along the way to minimize
a "nite-horizon cost functional related to the turbulent
kinetic energy of the #ow, as the turbulent transport of
momentum is responsible for inducing a substantial por-
tion of the drag in a turbulent #ow. In a sense, turbulence
is the `causea and high drag is the `e!ecta, and it is most
e!ective to target the `causea in the cost functional when
optimizations on only intermediate prediction horizons
are possible.
In addition, a smart optimization algorithm allows for

excursions in the short term if it leads to a long-term
advantage. For example, in chess, a good player is willing
to sacri"ce a lesser piece if, by so doing, a commanding
board position is attained and/or a restoring exchange is
forced a few moves later. Similarly, by allowing a turbu-
lence control scheme to increase (temporarily) the turbu-
lent kinetic energy of a #ow, a transient may ensue which,
eventually, e!ectively diminishes the strength of the
near-wall coherent structures. It was found in [30] that
terminal control strategies, aimed at minimizing the tur-
bulence only at the end of each optimization period, have
a decided advantage over regulation strategies, which
penalize excursions of the turbulent kinetic energy over
the entire prediction horizon.

8.1.3. Gradient of cost functional
As suggested by Abergel and Temam [38], a rigorous

procedure may be developed to determine the sensitivity
of a cost functional J to small modi"cations of the
control � for nonlinear problems of this sort. To do this,
consider the perturbation to the cost functional resulting
from a small perturbation to the control � in the direc-
tion ��. (Note that this control perturbation direction ��
is arbitrary and scaled to have unit norm.) De"ne J� as
the FreH chet di!erential [39] of a cost functional J such
that

J�Olim
���

J(�#���)!J(�)

�

O�
�

�
���

�

DJ(�)

D�
�� dtdx.
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The quantity J� is the cost functional perturbation due
to a control perturbation ��� scaled by the inverse of the
control perturbation magnitude � in the limit that �P0.
The above relation, considered for arbitrary ��, also
de"nes the gradient of the cost functionalJ with respect
to the control �, which is written DJ(�)/D�.
In the present approach, the cost functional perturba-

tionJ� de"ned above will be expressed as a simple linear
function of the direction of the control perturbation ��
through the solution of an adjoint problem. By the above
formula, such a representation then reveals the gradient
direction DJ(�)/D� directly. With this gradient in-
formation, the control � is updated on (0,¹] in the
direction that, at least locally (i.e. for in"nitesimal control
updates), most e!ectively reduces the cost functional. The
"nite distance the control is updated in this direction is
then found by a line search routine, which makes this
iteration procedure stable even when controlling nonlin-
ear phenomena. The #ow resulting from this modi"ed
control is then computed according to the (nonlinear)
Navier}Stokes equation (11), the sensitivity of this new
#ow to further control modi"cation is computed, and the
process repeated. Upon convergence of this iteration, the
#ow is advanced over the interval (0,¹

�
], where¹

�
)¹,

and an iteration for the optimal control over a new time
interval (¹

�
,¹

�
#¹] begins anew.

The cost functional perturbation J�
�
resulting from

a control perturbation in the direction �� is given by

J�
�
(�)"�

�

�
��
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�
C

�
u ) u�dx dt#��
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u ) u�)

	��
dx

!�
�

�
���

�

�CH
�
r )

�u�
�n

dxdt#l��
�

�
���

�

���dxdt

O�
�

�
���

�

DJ
�
(�)
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��dx dt,

where u� is the FreH chet di!erential of u, as de"ned in the
following subsection. Adjoint calculus is used simply to
re-express the integrals involving u� as a linear function of
��. Once this is accomplished, �� is factored out of the
integrands and, as the equation holds for arbitrary ��, an
expression for the gradient DJ

�
(�)/D� is identi"ed.

8.1.4. Linearized perturbation xeld
Now consider the linearized perturbation q� to the #ow

q resulting from a perturbation �� to the control �.
Again, the quantity q� may be de"ned by the limiting
process of a FreH chet di!erential such that

q�Olim
���

q(�#���)!q(�)

�
.

For the purpose of gaining physical intuition, it is useful
to note that the quantity q�, described above as a di!eren-
tial quantity, may instead be de"ned as the small per-
turbation to the state q arising from a small control

perturbation �� to the control �. In such derivations, the
notations �� and �q, denoting small perturbations to
� and q, are used instead of the di!erential quantities ��
and q�. The two derivations are roughly equivalent,
though the present derivation does not assume that
primed quantities are small.
The equation governing the dependence of the lin-

earized #ow perturbation q� on the control perturbation
�� may be found by taking the FreH chet di!erential of the
state equation (11). The result is

N�(q) q�"0 in �, (12a)

u�"!�� n on ��
�
, (12b)

u�"0 at t"0, (12c)

where the linearized Navier}Stokes operation N�(q) q� is
given by

N�(q) q�

"�
�u�

�
�x

��u�
�

�t
#

�
�x

�

(u
�
u�
�
#u�

�
u
�
)!�

��u�
�

�x�
�

#

�p�
�x

�
�.

The operation N�(q) q� is a linear operation on the per-
turbation "eld q�, though the operator N�(q) is itself
a function of the solution q of the Navier}Stokes prob-
lem. Eq. (12) thus re#ects the linear dependence of the
perturbation "eld q� in the interior of the domain on the
control perturbation �� at the boundary. However,
the implicit linear relationship q�"q�(��) given by this
equation is not yet tractable for expressingJ�

�
in a simple

form from which DJ
�
(�)/D� may be deduced. For the

purpose of determining a more useful relationship with
which we may determine DJ

�
(�)/D�, we now appeal to

an adjoint identity.

8.1.5. Statement of adjoint identity
This subsection derives the adjoint of the linear partial

di!erential operatorN�(q). For readers not familiar with
this approach, a review of the derivation of an adjoint
operator for a very simple case in the present notation is
given in Appendix A of [30]. The adjoint derivation
presented below extends in a straightforward manner to
more complex equations, such as the compressible Euler
equation, as shown in Appendix B of [30] (again, using
the same notation). Such generality highlights the versa-
tility of the present approach.
De"ne an inner product over the domain in space-time

under consideration such that

�qH, q��"�
�

�
��

qH ) q�dx dt

and consider the identity

�qH,N�(q) q��"�N�(q)H qH,q��#b. (13)
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Integration by parts may be used to move all di!erential
operations from q� on the left-hand side of (13) to qH on
the right-hand side, resulting in the derivation of the
adjoint operator

N�(q)H qH

"�
!

�uH
�

�x
�

!
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��
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�x�
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!

�pH

�x
�
�,

where, again, the operation N�(q)H qH is a linear opera-
tion on the adjoint "eld qH, and the operator N�(q)H is
itself a function of the solution q of the Navier}Stokes
problem. From the integrations by parts, we also get
several boundary terms

b"���uH
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p��dx dt.

The identity (13) is the key to expressingJ� in the desired
form. An adjoint "eld qH is "rst de"ned using the oper-
ator N�(q)H together with appropriate forcing on an
interior equation with appropriate boundary conditions
and initial conditions. There is here some #exibility
which we exploit to obtain a simple expression of J�.
Indeed, combining this de"nition of qH with the de"ni-
tions of q in (11) and q� in (12), the identity (13) reveals the
desired expression, as will now be shown.

8.1.6. Dexnition of adjoint xeld
Consider an adjoint state de"ned (as yet, arbitrarily) by

N�(q)H qH"�
0

CH
�
C

�
u� in �, (14a)

uH"CH
�
r on ��

�
, (14b)

uH"CH
�
C

�
u at t"¹, (14c)

where the adjoint operation N�(q)H qH is derived in the
previous section. Note that, depending on where the cost
functional weighs the #ow perturbations (see Section
8.1.2), the adjoint problem may be driven by the initial
conditions (14c), by the boundary conditions (14b), or by
the RHS of the adjoint PDE (14a) itself. Note also that
the `initiala conditions in (14c) are de"ned at t"¹, and
are thus best referred to as `terminala conditions. With
this de"nition, the adjoint "eld must be marched back-
ward in time over the optimization horizon* due to the
sign of the time derivative and viscous terms in the
adjoint operator N�(q)H, this is the natural direction for
this time march. However, as both the operator N�(q)H
and the RHS forcing on (14a) are functions of q, compu-
tation of the adjoint "eld qH requires storage of the #ow
"eld q on t3[0,¹], which itself must be computed with

a forward march. This storage issue presents one of the
numerical complications which preclude solution of the
present optimization problem for large optimization in-
tervals ¹. However, this storage issue is not insurmount-
able for intermediate values of ¹��O(100). The adjoint
problem (14), though linear, has complexity similar to
that of the Navier}Stokes problem (11), and may be
solved with similar numerical methods.

8.1.7. Identixcation of gradient
The identity (13) is now simpli"ed using the equations

de"ning the state "eld (11), the perturbation "eld (12),
and the adjoint "eld (14). Due to the judicious choice of
the forcing terms driving the adjoint problem, the ident-
ity (13) reduces (after some manipulation) to
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Using this equation, the cost functional perturbationJ�
�

may be rewritten as

J�
�
(�;��)"�

�

�
���

�

(pH#l��)��dxdt

O�
�
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���

�

DJ
�
(�)

D�
��dx dt.

As �� is arbitrary, we may identify (weakly) the desired
gradient as

DJ
�
(�)

D�
"pH#l��.

The desired gradient DJ
�
(�)/D� is thus found to be

a simple function of the solution of the adjoint problem
proposed in (14); speci"cally, in the present case of
boundary forcing by wall-normal blowing and suction, it
is found to be a simple function of the adjoint pressure on
the walls.
In fact, this simple result hints at the more funda-

mental physical interpretation of what the adjoint "eld
actually represents:

The adjoint "eld qH, when properly de"ned, is
a measure of the sensitivity of the terms of the cost
functional which appraise the state q to additional
forcing of the state equation.

Note that there are exactly as many components of the
adjoint "eld qH as there are components of the state PDE
on the interior of the domain, and that the adjoint "eld
may take nontrivial values at the initial time t"0 and on
the boundaries ��

�
. Depending upon where the control is

applied to the state equation (11), (i.e., on the RHS of
the mass or momentum equations on the interior of the
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	Note that we may also consider temporally discretizing the
governing equation before determining the optimization equa-
tions. Generally, the spatial discretization of a turbulent system
is the most restrictive issue, however, so we focus on that
problem here.

domain, on the boundary conditions, or on the initial
conditions), the adjoint "eld will appear in the resulting
expression for the gradient accordingly.
To summarize: the forcing on the adjoint problem is

a function of where the #ow perturbations are weighed in
the cost functional. The dependence of the gradient
DJ(�)/D� on the resulting adjoint "eld, on the other
hand, is a function of where the control enters the state
equation.

8.1.8. Gradient update to control
A control optimization strategy using a steepest

descent algorithm may now be proposed such that

�
"�
��!


DJ

�
(�
��)

D�

over the entire time interval t3(0,¹], where k indicates
the iteration number and 

 is a parameter of descent
which governs how large an update is made, which is
adjusted at each iteration step to be that value which
minimizesJ. This algorithm updates � at each iteration
in the direction of maximum decrease of J. As kPR,
the algorithm should converge to some local minimum of
J over the domain of the control � on the time interval
t3(0,¹]. Note that convergence to a global minimum
will not in general be attained by such a scheme, and that,
as time proceeds, J will not necessarily decrease.
The steepest descent algorithm described above illus-

trates the essence of the approach, but is usually not very
e$cient. Even in linear low-dimensional problems, for
cases in which the cost functional has a long, narrow
`valleya, the lack of a momentum term from one iteration
to the next tends to cause the steepest descent algorithm
to bounce from one side of the valley to the other without
turning to proceed along the valley #oor. Standard
nonlinear conjugate gradient algorithms (see, e.g. [40])
improve this behavior considerably with relatively little
added computational cost or algorithmic complexity, as
discussed further in [30].
As mentioned previously, the dimension of the control

in the present problem (once discretized) is quite large,
which precludes the use of second-order techniques
which are based on the computation or approximation of
the Hessian matrix ��J/��

�
��

�
or its inverse during the

control optimization. The number of elements in such
a matrix scales with the square of the number of control
variables, and is unmanageable in the present case.
However, reduced-storage variants of variable metric
methods [41], such as the Davidon}Fletcher}Powell
(DFP) method, the Broydon}Fletcher}Goldfarb}
Shanno (BFGS) method, and the sequential quadratic
programming (SQP) method, approximate the inverse
Hessian information by outer products of stored gradient
vectors, and thus achieve nearly second-order conver-
gence without storage of the Hessian matrix itself. Such

techniques should be explored further for very large scale
optimization problems such as the present in future
work.

8.2. Continuous adjoint vs. discrete adjoint

Direct numerical simulations (DNS) of the present
three-dimensional nonlinear system necessitate carefully
chosen numerical techniques involving a stretched, stag-
gered grid, an energy-conserving spatial discretization,
and a mixture of implicit and multi-step explicit schemes
for accurate time advancement, with incompressibility
enforced by an involved fractional step algorithm. The
optimization approach described above, which will be
referred to as `optimize then discretizea (OTD), avoids all
of these cumbersome numerical details by deriving the
gradient of the cost functional in the continuous setting,
discretizing in time and space only as the "nal step before
implementation in numerical code. The remarkable sim-
ilarity of the #ow and adjoint systems allow both to be
coded with similar numerical techniques. For systems
which are well resolved in the numerical discretization,
this approach is entirely justi"able, and is found to yield
adjoint systems which are easy to derive and implement
in numerical code.
Unfortunately, many PDE systems, such as high

Reynolds-number turbulent #ows, are di$cult or im-
possible to simulate with su$cient resolution to capture
accurately all of the important dynamic phenomena of
the continuous system. Such systems are often simulated
on coarse grids, usually with some `subgrid-scale modela
to account for the unresolved dynamics. This setting is
referred to as large eddy simulation (LES), and a variety
of techniques are currently under development to model
the signi"cant subgrid-scale e!ects.
There are important unresolved issues concerning how

to approach large eddy simulations in the optimization
framework. If we continue with the OTD approach, in
which the optimization equations are determined before
the numerical discretization is applied, it is not yet clear
at what point the LES model should be introduced. Prof.
Scott Collis's group (Rice U.) have modi"ed the numer-
ical code of [30] in order to study this issue; Chang and
Collis [42] report on their preliminary "ndings.
An alternative approach to the OTD setting, in which

one spatially discretizes the governing equation before
determining the optimization equations, may also be
considered.	 After spatially discretizing the governing
equation, this approach, which will be referred to as
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Fig. 16. Schematic of a saddle point representing the neighbor-
hood of a solution to a robust control problem with one scalar
disturbance variable � and one scalar control variable �. When
the robust control problem is solved, the cost function J

�
is

simultaneouslymaximized with respect to � and minimized with
respect to �, and a saddle point such as (�M ,�M ) is reached. An
essentially in"nite-dimensional extension of this concept may be
formulated to achieve robustness to disturbances and insensitiv-
ity to design point in #uid}mechanical systems. In such ap-
proaches, the cost J

�
is related to a distributed disturbance

� and a distributed control � through the solution of the
Navier}Stokes equation.

`discretize then optimizea (DTO), follows an analogous
sequence of steps as the OTD approach presented pre-
viously, with these steps now applied in the discrete
setting. As shown in Appendix B, derivation of the
adjoint operator is signi"cantly more cumbersome in this
discrete setting. In general, the processes of optimization
and discretization do not commute, and thus the OTD
andDTO approaches are not necessarily equivalent even
upon re"nement of the space/time grid [43]. However, by
carefully framing the discrete identity de"ning the DTO
adjoint operator as a discrete approximation of the ident-
ity given in (13), these two approaches can be posed in an
equivalent fashion for Navier}Stokes systems, as shown
in Appendix B.
It remains the topic of some debate whether or not the

DTO approach is better than the OTD approach for
marginally resolved PDE systems. The argument for
DTO is that it clearly is the most direct way to optimize
the discrete problem actually being solved by the com-
puter. The argument against DTO is that one really
wants to optimize the continuous problem, so gradient
information which identi"es and exploits de"ciencies in
the numerical discretization which can lead to perfor-
mance improvements in the discrete problem might be
misleading when interpreting the numerical results in
terms of the physical system.

9. Robusti5cation: appealing to Murphy's law

Though optimal control approaches possess an at-
tractive mathematical elegance and are now proven to
provide excellent results in terms of drag and turbulent
kinetic energy reduction in fully developed turbulent
#ows, they are often impractical. One of the most signi"-
cant drawbacks of this nonlinear optimization approach
is that it tends to `over-optimizea the system, leaving
a high degree of design-point sensitivity. This phenomena
has been encountered frequently in, for example, the
adjoint-based optimization of the shape of aircraft wings.
Overly optimized wing shapes might work quite well at
exactly the #ow conditions for which they were designed,
but their performance is often abysmal at o!-design con-
ditions. In order to abate such system sensitivity, the
noncooperative framework of robust control provides
a natural means to `detunea the optimized results. This
concept can be applied easily to a broad range of related
applications.
The noncooperative approach to robust control, one

might say, amounts to Murphy's law taken seriously:

If a worst-case disturbance can disrupt a controlled
closed-loop system, it will.

When designing a robust controller, therefore, one might
plan on a "nite component of the worst-case disturbance

aggravating the system, and design a controller which is
suited to handle even this extreme situation. A controller
which is designed to work even in the presence of a "nite
component of the worst-case disturbance will also be
robust to a wide class of other possible disturbances
which, by de"nition, are not as detrimental to the control
objective as the worst-case disturbance. This concept is
exactly that which leads to the H

�
control formulation

discussed previously in the linear setting, and can easily
be extended to the optimization of nonlinear systems.
Based on the ideas of H

�
control theory presented in

Section 2, the extension of the nonlinear optimization
approach presented in Section 8 to the noncooperative
setting is straightforward. A disturbance is "rst introduc-
ed to the governing equation (11); as an example, we may
consider disturbances which perturb the state PDE itself
such that

N(q)"F#B
�
(�) in �.

Accounting for disturbances to the boundary conditions
and initial conditions of the governing equation is also
straightforward. The cost functional is then extended to
penalize these disturbances in the noncooperative frame-
work, as was also done in the linear setting

J
�
(�,�)"J

�
!


�
2 �

�

�
��

����dxdt.

This cost functional is simultaneously minimized with
respect to the controls � and maximized with respect to
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Fig. 18. Schematic of the space-time domain over which the
adjoint "eld qH is de"ned. The possible regions of forcing in the
system de"ning qH, corresponding exactly to the possible do-
mains in which the cost functional J can depend on q, are: (1)
the right-hand side of the PDE, indicated with shading, repres-
enting regulation of an interior quantity (e.g., turbulent kinetic
energy); (2) the boundary conditions, indicated with diagonal
stripes, representing regulation of a boundary quantity (e.g., wall
skin friction); (3) the terminal conditions, indicated with checker-
board, representing terminal control of an interior quantity (e.g.,
turbulent kinetic energy).

Fig. 17. Schematic of the space-time domain over which the
#ow "eld q is de"ned. The possible regions of forcing in the
system de"ning q are: (1) the right-hand side of the PDE,
indicated with shading, representing #ow control by interior
volume forcing (e.g., externally applied electromagnetic forcing
by wall-mounted magnets and electrodes); (2) the boundary
conditions, indicated with diagonal stripes, representing #ow
control by boundary forcing (e.g., wall transpiration); (3) the
initial conditions, indicated with checkerboard, representing op-
timization of the initial state in a data assimilation framework
(e.g., the weather forecasting problem).

the disturbances � (Fig. 16). The parameter 
 is used to
scale the magnitude of the disturbances accounted for in
this noncooperative competition, with the limit of
large 
 recovering the optimal approach discussed in
Section 8 (i.e., �P0). A gradient-based algorithm may
then be devised to march to the saddle point, such as the
simple algorithm given by

�
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The robust control problem is considered to be solved
when a saddle point (�M ,�M ) is reached; note that such
a solution, if it exists, is not necessarily unique.
The gradients DJ

�
(�;�)/D� and DJ

�
(�;�)/D� may

be found in a manner analogous to that leading to
DJ

�
(�)/D� discussed in Section 8. In fact, both gradients

may be extracted from the single adjoint "eld de"ned by
(14). Thus, the additional computational complexity
introduced by the noncooperative component of the ro-
bust control problem is simply a matter of updating and
storing the appropriate disturbance variables.

9.1. Well-posedness

Based on the extensive mathematical literature on the
Navier}Stokes equation, Abergel and Temam [38]
established the well-posedness of the mathematical
framework for the optimization problem presented in
Section 8. This characterization was generalized and
extended to the noncooperative framework of Section 9
in Bewley et al. [44].
Due to the fact that the inequalities currently available

for estimating the magnitude of the various terms of the
Navier}Stokes equation are limited, the mathematical
characterizations in both of these articles are quite con-
servative. In our numerical simulations, we regularly
apply numerical optimization techniques to control
problems which are well outside the range over which we
can mathematically establish well-posedness. However,
such mathematical characterizations are still quite im-
portant, as they give us con"dence that, for example, if
l and 
 are at least taken to be large enough, a saddle
point of the noncooperative optimization problem will
exist. Once such mathematical characterizations are de-
rived, numerically determining the values of l and 

for which solutions of the control problem may still
be obtained is reduced to a simple matter of imple-
mentation.

9.2. Convergence of numerical algorithm

Saddle points are typically more di$cult to "nd than
minimum points, and particular care needs to be taken to

craft e$cient but stable numerical algorithms for "nding
them. In the approach described above, su$ciently small
values of 

 and �
 must be selected in order to insure
convergence. Fortunately, the same mathematical in-
equalities used to characterize well-posedness of the
control problem can also be used to characterize
convergence of proposed numerical algorithms. Such
characterizations lend valuable insight when designing
practical numerical algorithms. Preliminary work in the
development of such saddle point algorithms is reported
by Tachim Medjo [45].

10. Uni5cation: synthesizing a general framework

The various cost functionals considered previously
led to three possible sources of forcing for the adjoint
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problem: the right-hand side of the PDE, the boundary
conditions, and the initial conditions. Similarly, three
di!erent locations of forcing may be identi"ed for the
#ow problem. As illustrated in Figs. 17 and 18 and
discussed further in [44], the various regions of forcing of
the #ow and adjoint problems together form a general
framework which can be applied to a wide variety of
problems in #uid mechanics including both #ow control
(e.g., drag reduction, mixing enhancement, and noise
control) and #ow forecasting (e.g., weather prediction
and storm forecasting). Related techniques, but applied
to the time-averaged Navier}Stokes equation, have also
been used extensively to optimize the shapes of airfoils
(see, for example, [46]).
By identifying a range of problems which all "t into the

same general framework, we can better understand how
to extend, for example, the idea of noncooperative optim-
izations to a full suite of related problems in #uid mech-
anics. Though advanced research projects must often be
highly focused and specialized in order to obtain solid
results, the importance of making connections of such
research to a large scope of related problems must be
recognized in order to realize fully the potential impact of
the techniques developed.

11. Decomposition: simulation-based system modeling

For the purpose of developing model-based feedback
control strategies for turbulent #ows, reduced-order non-
linear models of turbulence which are e!ective in the
closed-loop setting are highly desired. Recent work in
this direction, using proper orthogonal decompositions
(POD) to obtain these reduced-order representations, is
reviewed by Lumley and Blossey [47].
The POD technique uses analysis of a simulation

database to develop an e$cient reduced-order basis for
the system dynamics represented within the database
[48]. One of the challenges of this approach is that the
dynamics of the system in closed loop (after the control is
turned on) is often quite di!erent than the dynamics of
the open-loop (uncontrolled) system. Thus, development
of simulation-based reduced-order models for turbulent
#ows should probably be coordinated with the design of
the control algorithm itself in order to determine system
models which are maximally e!ective in the closed-loop
setting. Such coordination of simulation-based modeling
and control design is largely an unsolved problem. A par-
ticularly sticky issue is the fact that, as the controls are
turned on, the dynamics of the turbulent #ow system are
nonstationary (they evolve in time). The system eventual-
ly relaminarizes if the control is su$ciently e!ective. In
such nonstationary problems, it is not clear which
dynamics the POD should represent (that of the #ow
shortly after the control is turned on, that of the nearly
relaminarized #ow, or something in between), or if in fact,

several PODs should be used in a scheduled approach in
an attempt to capture several di!erent stages of the
nonstationary relaminarization process.
Reduced-order models which are e!ective in the

closed-loop setting need not capture the majority of the
energetics of the unsteady #ow. Rather, the essential
feature of a system model for the purpose of control
design is that the model capture the important e!ects of
the control on the system dynamics. Future control-
oriented modeling e!orts might bene"t by deviating from
the standard POD mindset of attempting to capture the
energetics of the system dynamics, instead focusing on
capturing the signi"cant e!ects of the control on the
system in a reduced-order fashion.

12. Global stabilization: conservatively enhancing
stability

Global stabilization approaches based on Lyapunov
analysis of the system energetics have recently been
explored for 2D channel-#ow systems (in the continuous
setting) by Balogh et al. [49]. In the setting considered
there, localized tangential wall motions are coordinated
with local measurements of skin friction via simple
proportional feedback strategies. Analysis of the #ow at
Re40.125 motivate such feedback rules, indicating ap-
propriate values of proportional feedback coe$cients
which enhance the ¸� stability of the #ow. Though such
an approach is very conservative, rigorously guarantee-
ing enhanced stability of the channel-#ow system only at
extremely low Reynolds numbers, extrapolation of the
feedback strategies so determined to much higher
Reynolds numbers also indicates e!ective enhancements
of system stability, even for 3D systems up to Re"2000
(A. Balogh, private communication).
An alternative approach for achieving global stabiliz-

ation of a nonlinear PDE is the application of nonlinear
backstepping to the discretized system equation.
Bos\ kovicH and KrsticH [50] reports on recent e!orts in this
direction (applied to a thermal convection loop). Back-
stepping is typically an aggressive approach to stabiliz-
ation. One of the primary di$culties with this approach
is that proofs of convergence to a continuous, bounded
function upon re"nement of the grid is di$cult to attain
due to increasing controller complexity as the grid is
re"ned. Signi"cant advancements will be necessary be-
fore this approach will be practical for turbulent #ow
systems.

13. Adaptation: accounting for a changing environment

Adaptive control algorithms, such as least mean
squares (LMS), neural networks (NN), genetic algorithms
(GA), simulated annealing, extremum seeking, and the
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Fig. 19. An enticing picture: fundamental restructuring of the
near-wall unsteadiness to insulate the wall from the viscous
e!ects of the bulk #ow. It has been argued [53,54] that it might
be possible to maintain a series of so-called `#uid rollersa to
e!ectively reduce the drag of a near-wall #ow. Such rollers are
depicted in the cartoon above by indicating total velocity vec-
tors in a reference frame convecting with the vortices themselves;
in this frame, the generic picture of #uid rollers is similar to
a series of stationary Kelvin}Stuart cat's eye vortices. A possible
mechanism for drag reduction might be akin to a series of solid
cylinders serving as an e!ective conveyor belt, with the bulk #ow
moving to the right above the vortices and the wall moving to
the left below the vortices. It is still the topic of some debate
whether or not a continuous #ow can be maintained in such
a con"guration by an unsteady control in such a way as to sus-
tain the mean skin friction below laminar levels. Such a control
might be implemented either by interior electromagnetic forcing
(applied with wall-mounted magnets and electrodes) or by
boundary controls such as zero-net mass #ux blowing/suction.

like, play an important role in the control of #uid}mech-
anical systems when the number of undetermined para-
meters in the control problem is fairly small (�O(10)) and
individual `function evaluationsa (i.e., quantitative char-
acterizations of the e!ectiveness of the control) can be
performed relatively quickly. Many control problems in
#uid mechanics are of this type, and are readily ap-
proachable by a wide variety of well-established adaptive
control strategies. A signi"cant advantage of such ap-
proaches over those discussed previously is that they do
not require extensive analysis or coding of localized con-
volution kernels, adjoint "elds, etc., but may instead be
applied directly `out of the boxa to optimize the para-
meters of interest in a given #uid}mechanical problem.
This also poses a bit of a disadvantage, however, because
the analysis required during the development of model-
based control strategies can sometimes yield signi"cant
physical insight which black-box optimizations fail to
provide.
To apply the adaptive approach, one needs a fast

simulation code or an experimental apparatus in which
the control parameters can be altered by an automated
algorithm. Any of a number of established methodologi-
cal strategies can then be used to search the parameter
space for favorable closed-loop system behavior. Given
enough function evaluations and a small enough number
of control parameters, such strategies usually converge to
e!ective control solutions. Koumoutsakos et al. [51]
demonstrate this approach (computationally) to deter-
mine e!ective control parameters for exciting instabilities
in a round jet. Rathnasingham and Breuer [52] demon-
strate this approach (experimentally) for the feedforward
reduction of turbulence intensities in a boundary layer.
Unfortunately, due to an e!ect known as `the curse of

dimensionalitya, as the number of control parameters to
be optimized is increased, the ability of adaptive strat-
egies to converge to e!ective control solutions based on
function evaluations alone is diminished. For example, in
a system with 1000 control parameters, it takes 1000
function evaluations to determine the gradient informa-
tion available in a single adjoint computation. Thus, for
problems in which the number of control variables to be
optimized is large, the convergence of adaptive strategies
based on function evaluations alone is generally quite
poor. In such high-dimensional problems, for cases in
which the control problem of interest is plagued by
multiple minima, a blend of an e$cient adjoint-based
gradient optimization approach with GA-type manage-
ment of parameter `mutationsa or the simulated anneal-
ing approach of varying levels of `noisea added to the
optimization process might prove to be bene"cial.
Adaptive strategies are also quite valuable for recogniz-

ing and responding to changing conditions in the #ow
system. In the low-dimensional setting, they can be used
online to update controller gains directly as the system
evolves in time (for instance, as the mean speed or direc-

tion of the #ow changes or as the sensitivity of a sensor
degrades). In the high-dimensional setting, adaptive strat-
egies can be used to identify certain critical aspects of the
#ow (such as the #ow speed), and, based on this identi"ca-
tion, an appropriate control strategy may be selected from
a look-up table of previously computed controller gains.
The selection of what level of adaptation is appropriate

for a particular #ow control problem of interest is, again,
a consideration that must be guided by physical insight
of the particular problem at hand.

14. Performance limitation: identifying ideal control
targets

Another important, but as yet largely unrealized, role
for mathematical analysis in the "eld of #ow control is in
the identi"cation of fundamental limitations on the per-
formance that can be achieved in certain #ow control
problems. For example, motivated by the active debate
surrounding the proposed physical mechanism for chan-
nel-#ow drag reduction illustrated in Fig. 19, we formally
state the following, as yet unproven, conjecture:

Conjecture. The lowest sustainable drag of an incompress-
ible constant mass-yux channel yow, in either 2D or 3D,
when controlled via a distribution of zero-net mass-yux
blowing/suction over the channel walls, is exactly that of the
laminar yow.
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Fig. 21. Simulation of a proposed driven-cavity actuator design by Prof. Rajat Mittal (U. of Florida). The #uid-"lled cavity is driven by
vertical motions of the membrane along its lower wall. Numerical simulation and reduced-order modeling of the in#uence of such
#ow-control actuators on the system of interest will be essential for the development of feedback control algorithms to coordinate arrays
of realistic sensor/actuator con"gurations.

Fig. 20. AMEMS tile integrating sensors, actuators and control
logic for distributed #ow control applications, developed by
Profs. Chih-Ming Ho (UCLA) and Yu-Chong Tai (Caltech).

Note that, by `sustainable draga, we mean the long-
time average of the instantaneous drag, given by

D
�

" lim
���

!1

¹ �
�

�
���

�

�
�u

�
�n

dx dt.

Proof (by mathematical analysis) or disproof (by counter-
example) of this conjecture would be quite signi"cant and
lead to greatly improved physical understanding of the
channel #ow problem. If proven to be correct, it would
provide rigorous motivation for targeting #ow re-
laminarization when the problem one actually seeks to
solve is minimization of drag. If shown to be incorrect,
our target trajectories for future #ow control strategies
might be substantially altered.
Similar fundamental performance limitations may also

be sought for exterior #ow problems, such as the min-
imum drag of a circular cylinder subject to a class of
zero-net control actions, such as rotation or transverse
oscillation (B. Protas, private communication).

15. Implementation: evaluating engineering tradeo4s

We are still some years away from applying the distrib-
uted control techniques discussed herein to micro-
electro-mechanical-systems (MEMS) arrays of sensors
and actuators, such as that depicted in Fig. 20. One of the
primary hurdles left to be tackled in order to bring us
closer to actual implementation is that of accounting for
practical designs of sensors and actuators in the control
formulations, rather than the idealized distributions of
blowing/suction and skin-friction measurements which
we have assumed here. Detailed simulations, such as that
shown in Fig. 21, of proposed actuator designs will be
essential for developing reduced-order models of the ef-
fects of the actuators on the system of interest in order to

make control design for realistic arrays of sensors and
actuators tractable.
By performing analysis and control design in a high-

dimensional, unconstrained setting, as discussed in the
present article, it is believed that we can obtain substan-
tial insight into the physical characteristics of highly
e!ective control strategies. Such insight naturally guides
the engineering tradeo!s that follow in order to make the
design of the turbulence control system practical. Par-
ticular traits of the present control solutions in which we
are especially interested include the times scales and the
streamwise and spanwise length scales which are domi-
nant in the optimized control computations (which shed
insight on suitable actuator bandwidth, dimensions, and
spacing) and the extent and structure of the convolution
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kernels (which indicate the distance and direction over
which sensor measurements and state estimates should
propagate when designing the communication architec-
ture of the tiled array).
It is recognized that the control algorithm "nally to be

implemented must be kept fairly simple for its realization
in the on-board electronics to be feasible. We believe that
an appropriate strategy for determining implementable
feedback algorithms which are both e!ective and simple
is to learn how to solve the high-dimensional, fully re-
solved control problem "rst, as discussed herein. This
results in high-dimensional compensator designs which
are highly e!ective in the closed-loop setting. Compen-
sator reduction strategies combined with engineering
judgmentmay then be used to distill the essential features
of such well-resolved control solutions to implementable
feedback designs with minimal degradation of the
closed-loop system behavior.

16. Discussion: a common language for dialog

It is imperative that an accessible language be de-
veloped which provides a common ground upon which
people from the "elds of #uid mechanics, mathematics,
and controls can meet, communicate, and develop new
theories and techniques for #ow control. Pierre-Simon de
Laplace (quoted by Rose [55]) once said

Such is the advantage of a well constructed language
that its simpli"ed notation often becomes the source
of profound theories.

Similarly, it was recognized by Gottfried Wilhelm
Leibniz (quoted by Simmons [56]) that

In symbols one observes an advantage in discovery
which is greatest when they express the exact nature of
a thing brie#y 2 then indeed the labor of thought is
wonderfully diminished.

Profound new theories are still possible in this young
"eld. To a large extent, however, we have not yet homed
in on a common language in which such profound the-
ories can be framed. Such a language needs to be actively
pursued; time spent on identifying, implementing, and
explaining a clear `compromisea language which is ap-
proachable by those from the related `traditionala disci-
plines is time well spent.
In particular, care should be taken to respect the

meaning of certain `loadeda words which imply speci"c
techniques, qualities, or phenomena in some disciplines,
but only general notions in others. When both writing
and reading papers on #ow control, one must be espe-
cially alert, as these words are sometimes used outside of
their more narrow, specialized de"nitions, creating
undue confusion. With time, a common language will

develop. In the meantime, avoiding the use of such words
outside of their specialized de"nitions, precisely de"ning
such words when they are used, and identifying and using
the existing names for specialized techniques already well
established in some disciplines when introducing such
techniques into other disciplines, will go a long way
towards keeping us focused and in sync as an extended
research community.
There are, of course, some signi"cant obstacles to the

implementation of a common language. For example,
#uid mechanicians have historically used u to denote
#ow velocities and x to denote spatial coordinates,
whereas the controls community overwhelmingly adopts
x as the state vector and u as the control. The simpli"ed
2D systems #uid mechanicians often study examines the
#ow in a vertical plane, whereas the simpli"ed 2D sys-
tems meteorologists often study examines the #ow in
a horizontal plane; thus, when studying 3D problems
such as turbulence, those with a background in #uid
mechanics usually introduce their third coordinate, z, in
a horizontal direction, whereas those with a background
in meteorology normally have `their zed in the cloudsa.
Writing papers in a manner which is conscious to such
di!erent backgrounds and notations, elucidating, moti-
vating, and distilling the suitable control strategies, the
relevant #ow physics, the useful mathematical inequali-
ties, and the appropriate numerical methods to a general
audience of specialists from other "elds, is certainly extra
work. However, such e!orts are necessary to make #ow
control research accessible to the broad audience of
scientists, mathematicians, and engineers whose talents
will be instrumental in advancing this "eld in the years
to come.

17. The future: a Renaissance

The "eld of #ow control is now poised for explosive
growth and exciting new discoveries. The relative matur-
ity of the traditional scienti"c disciplines contributing to
this "eld provides us with key elements which future
e!orts in this "eld may leverage. The work described
herein represents only our "rst, preliminary steps to-
wards laying an integrated, interdisciplinary footing
upon which future e!orts in this "eld may be based.
Many technologically signi"cant and fundamentally im-
portant problems lie before us, awaiting analysis and new
understanding in this setting. With each of these new
applications come signi"cant new questions about
how best to integrate the constituent disciplines. The
answers to these di$cult questions will only come about
through a broad knowledge of what these disciplines
have to o!er and how they can best be used in concert.
A few problems which might be studied in the near future
in the present interdisciplinary framework are high-
lighted in Fig. 22.
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Fig. 22. Future interdisciplinary problems in #ow control amenable to adjoint-based analysis: (a) minimization of sound radiating from
a turbulent jet (simulation by Prof. Jon Freund, UCLA), (b) maximization of mixing in interacting cross-#ow jets (simulation by Dr.
Peter Blossey, UCSD), (c) optimization of surface compliance properties to minimize turbulent skin friction and (d) accurate forecasting
of inclement weather systems.
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Unfortunately, there are particular di$culties in
pursuing truly interdisciplinary investigations of funda-
mental problems in #ow control in our current society, as
it is impossible to conduct such investigations from the
perspective of any particular traditional discipline alone.
Though the language of interdisciplinary research is in
vogue, many university departments, funding agencies,
technical journals, and, therefore, college professors fall
back on the pervasive tendency of the 20-century scientist
to categorize and isolate di$cult scienti"c questions,
often to the exclusion of addressing the fundamentally
interdisciplinary issues. The proliferation and advance-
ment of science in the twentieth century was, in fact,
largely due to such an approach; by isolating speci"c and
di$cult problems with single-minded focus into narrow-
ly de"ned scienti"c disciplines, great advances could once
be achieved. To a large extent, however, the opportuni-
ties which were once possible with such a narrow focus
have stagnated in many "elds, though we are left with the
scienti"c infrastructure in which that approach once
#ourished. To advance, we must courageously lead our
research groups outside of the various neatly de"ned
scienti"c domains into which this infrastructure injects
us, and pursue the signi"cant new opportunities appear-
ing at their intersection. University departments and
technical journals can and will follow suit as increasingly
successful interdisciplinary e!orts, such as those in the
"eld of #ow control, gain momentum. The endorsement
which professional societies, technical journals, and
funding agencies might bring to such interdisciplinary
e!orts holds the potential to signi"cantly accelerate this
reformation of the scienti"c infrastructure.
In order to promote interdisciplinary work in the scient-

i"c community at large, describing oneself as working at
the intersection of disciplines X and > (or, where they are
still disjoint, the bridge between such disciplines) needs to
become more commonplace. People often resort to the
philosophy `I do X2 oh, and I also sometimes dabble
a bit with >a, as the philosophy `I do X*>a, where * de-
notes something of the nature of an integral convolution,
has not been in favor since the Renaissance. Perhaps the
primary reason for this is that X and > (and Z, =, etc.)
have gotten progressively more and more di$cult. By spe-
cialization (though often to the point of isolation), we are
able to `mastera our more and more narrowly de"ned
disciplines. In the experience of the author, not only is it
often the case that X and > are not immiscible, but the
solution sought may often not be formulated with the
ingredients of X or > alone. In order to advance, the
essential ingredients of X and > must be crystallized and
communicated across the arti"cial disciplinary boundaries.
New research must then be conducted at the intersection of
X and >. To be successful in the years to come, we must
prepare ourselves and our students with the training, per-
spective, and resolve to seize the new opportunities appear-
ing at such intersections with a Renaissance approach.
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Appendix A. Alternative scaling of H
�

problem

As mentioned previously, it is useful to pose spatially
discretizedH

�
control problems based on PDE systems

in such a way that the feedback gains converge to
continuous functions upon re"nement of the spatial
discretization. In order to accomplish this, consider the
discretized plant

x� "Ax#G
�
w
�
#Bu,

y"Cx#
G
�
w
�
.

As before, Cx denotes the raw vector of measured
variables, and G

�
and 
G

�
represent the square root of

any known or expected covariance structure of the state
disturbances and measurement noise, respectively. The
cost function considered now is

JOE[xHQx#l�uHRu!
�wHSw],

w"�
w
�

w
�
�, S"�

S
�

0

0 S
�
�,

for R, S
�
, and S

�
which are positive de"nite and nonsin-

gular. Appropriate de"nition of the matrices R and
S allow for a problem de"nition that will converge
upon re"nement of the space-time grid [19]. Assume
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Fig. 23. A uniform 2D staggered grid. The pressure p is stored at
the locations indicated by the dots, and the horizontal and
vertical velocities, u and v, are stored at the locations indicated
by the horizontal and vertical arrows, respectively. The continu-
ity equation is evaluated at the p locations, and the horizontal
and vertical momentum equations are evaluated at the u and
v locations, respectively.

a compensator of the form

x(� "Ax(#G
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,
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control solution minimizing J with respect to

uwhile maximizingJwith respect to w, which exists only
for stabilizable and detectable systems for su$ciently
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, is given by
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This solution may be obtained by the change of variables
u� "R���u, w� "S���w, and y� "S���

�
G��

�
y, which reduces

the above control problem to the standard form of the
H

�
control problem presented in Section 2, then chang-

ing the variables back to the present form once the
solution is obtained.

Appendix B. A discrete adjoint for the 2D
incompressible Navier}Stokes equation

In order to solve for the adjoint of a poorly resolved
#ow "eld, there is a signi"cant numerical advantage to
computing the adjoint of the spatially-discretized state
equation (an approach we will refer to as discretize then
optimize, or DTO) rather than attempting to spatially
discretize the continuous expression for the adjoint "eld
(an approach we will refer to as optimize then discretize,
or OTD). In low-dimensional discretizations of PDE
systems, the DTO discrete adjoint equation may be
determined by simply taking the conjugate transpose of
the (sparse) matrix representing the spatially discretized,
linear equation governing small perturbations to the
#ow. However, for high-dimensional discretizations of
PDE systems, it is not e$cient (or indeed even tractable)
to express this sparse matrix directly. Instead, it is

desirable to derive the discrete adjoint equation by hand.
Recent evidence indicates that such an exercise, though
tedious, may be bene"cial for the optimization of poorly
resolved PDE systems. In order to illustrate the ap-
proach, we derive here the discrete adjoint of the incom-
pressible Navier}Stokes equation in conservation form
for the case in which this equation is discretized with
a second-order method on the uniform staggered 2D grid
shown in Fig. 23. Extension of this approach to noncar-
tesian geometries might prove to be di$cult, though
extensions of the approach to 3D systems, large
eddy simulations with subgrid-scale models, stretched
grids, and mixed "nite-di!erence/Fourier discretizations
should be straightforward.
For clarity, we now adopt the notation that �u, v�

denote the velocity components, �x, y� denote the spatial
directions, and the subscripts �i, j� denote the gridpoint
location. De"ning

�
�
O�

�
�
, j"0,N>

1 otherwise,

and denoting by N
�
, N

�
and N

�
the components of the

spatially-discretized nonlinear 2D Navier}Stokes
equation corresponding to the continuity equation, the
horizontal momentum equation, and the vertical
momentum equation, respectively, it follows that:

(N
�
)
���

"�
�u
�x

#

�v
�y�

���

,

(N
�
)
�������

"�
�u
�t

#

�u�
�x

#

�vu
�y

!��u#

�p
�x�

�������

,

(N
�
)
�������

"�
�v
�t

#

�uv
�x

#

�v�
�y

!��v#
�p
�y�

�������

,

54 T.R. Bewley / Progress in Aerospace Sciences 37 (2001) 21}58



where the terms involving discretized spatial derivatives
are given by
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Near the walls, located at j"�
�
and j"N>#�

�
, the

expressions for u and v must be treated carefully to

account for the boundary conditions properly. In the
present work, we assume that the boundary values
v
H����

and v
H��
����

are prescribed as the control, that
the boundary values of u are equal to zero, and that the
boundary values of p are equal to their value at the
"rst interior gridpoint. For convenience, de"ne the
following (nonphysical) variables outside of the physical
domain
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Periodic boundary conditions in x are assumed, so that
u
�������H

Ou
����H

, etc. With these de"nitions, the above
expressions for the discretized spatial derivatives are
applied at all grid points for which they are de"ned on
the staggered grid, including the p and u gridpoints
adjacent to the walls (at j"1 and j"N>) and the
v gridpoints on the walls (at j"�

�
and j"N>#�

�
).

The perturbation of the convective terms (indicated
with a prime) that arise when the control is perturbed
a small amount (��) follow immediately from the
formulae given previously. For example,
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etc. The several other terms of the discrete perturbation
equation follow by inspection. In order to derive the
adjoint, we take the inner product of all of the terms of
the perturbation equation with the associated adjoint
variables pH

���
, uH

�������
, and vH

�������
, perform a discrete

integration over the domain of interest, and rearrange,
grouping separately all terms which multiply p�

���
,

u�
�������

and v�
�������

. This leads to an identity that may be
written in the symbolic form

�
�
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�y	�xdt
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�y	�xdt#b.

The tedious rearrangement of the summations necessary
to re-express the LHS of this equation in the form of the
RHS comprise what is e!ectively `discrete integration by
partsa. Carrying through all of the terms, it is eventually
found that the three parts of the adjoint operator may be
written in the suggestive form
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,

where the terms of these expressions which are found to
be discrete approximations of spatial derivatives are
given by
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Note that, when properly reorganized, the various terms
of the discrete adjoint equation are particular numerical
approximations of the continuous adjoint terms derived
in Section 8, though not necessarily the numerical ap-
proximation of these terms which one might "rst think to
implement in code if one derived only the continuous
adjoint form. Similarly, noting the (nonphysical) variable
de"nitions outside of the physical domain which were
enumerated previously, the boundary terms associated
with these `discrete integrations by partsa are simply
a discrete approximation of the corresponding expres-
sion for b given in Section 8; the derivation of this discrete
approximation of b is left as an exercise for the student.
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When the #ow system one is trying to optimize is well
resolved on the numerical grid chosen, both the OTD
andDTO approaches give approximately the same result
for the estimation of the gradient. However, deriving the
adjoint operator in this discrete fashion results in adjoint
"eld computations which still reveal reliable gradient
information for the discrete optimization problem even
when the grid is too coarse for the continuous PDEs to
be accurately represented by the discretized equations.
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