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Linear control and estimation of nonlinear chaotic convection:
Harnessing the butterfly effect
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This paper examines the application of linear optimal/robust control theory to a low-order nonlinear
chaotic convection problem. Linear control feedback is found to be fully effective only when it is
switched off while the state is far from the desired equilibrium point, relying on the attractor of the
system to bring the state into a neighborhood of the equilibrium point before control is applied.
Linear estimator feedback is found to be fully effective only wk@rthe Lyapunov exponent of the

state estimation error is negative, indicating that the state estimate converges to the uncontrolled
state, andb) the estimator is stable in the vicinity of the desired equilibrium point. The aim in
studying the present problem is to understand better some possible pitfalls of applying linear
feedback to nonlinear systems in a low-dimensional framework. Such an exercise foreshadows
problems likely to be encountered when applying linear feedback to infinite-dimensional nonlinear
systems such as turbulence. It is important to understand these problems and the remedies available
in a low-dimensional framework before moving to more complex systems19@9 American
Institute of Physicg.S1070-663199)01105-9

I. AIM AND SCOPE may be “caught” with a linearly stabilizing controller by
applying control only when the state is “near” the desired
The high sensitivity of nonlinear chaotic systems, suchstate, relying on the chaotic dynamics of the uncontrolled
as fluid convection and turbulence, to small levels of externagystem to bring the state into such a neighborhood before
forcing may be exploited to stabilize such systems with smaltontrol is applied.
levels of coordinated feedback. It is demonstrated in this The aptness of nonlinear estimators forced with linear
paper that linear state feedback is capable of regulating measurement feedback for estimating the nonlinear convec-
nonlinear convection problem from an arbitrary initial fluid tion system with limited noisy measurements is then charac-
state by modulation of the rate of heating applied to theterized. The nonlinearity makes the estimation problem fun-
system. It is similarly demonstrated that a nonlinear estimadamentally different than the control problem: more than just
tor with linear measurement feedback is capable of estimatinear stability of infinitesimal estimation errors at a single
ing the nonlinear convection problem based on measurdocation in phase space is required to build an estimator
ments of the lateral temperature fluctuations in the fluid. Asvhich is effective for the uncontrolled nonlinear system.
we will show, special care must be taken in both cases, as tHdowever, convergence of the estimator is possible with di-
nonlinearity of the system has important consequences. Ffect linear feedback when appropriate feedback gains are
nally, a state estimator and a controller may be combined tdsed even though the estimator so constructed is not stable
regulate the present nonlinear convection problem to the dedver the entire attractor of the uncontrolled system. The na-
sired flow state based on limited state measurements. ture of the estimation problem is examined, weak conditions
The aptness of linear state feedback for regulating théor effective estimator behavidbased on the Lyapunov ex-
nonlinear convection system with full state information is Ponent of the estimation ernoare established, and an effec-
first characterized. An important difficulty with the direct tive state estimator is determined.
application of linear feedback to the nonlinear problem is  Finally, conclusions are drawn and related questions are
identified: specifically, an aggravated undesired flow state i§aised about the implications of the present work on the ap-
stabilized by the linear feedback in addition to the desiredPlication of linear control theory to the infinite-dimensional
flow state, and the domain of convergence to this undesiregonlinear problem of turbulence.
state is large. Further, closed-loop system response when
strong linearly stabilizing control is applied may even be
unbounded, although the desired flow state is endowed with
a high degree of linear stability. An effective solution to this |I. BACKGROUND
problem is demonstrated: namely, the convection systenlg\. Nominal behavior of the convection system
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1070-6631/99/11(5)/1169/18/$15.00 1169 © 1999 American Institute of Physics



1170

Phys. Fluids, Vol. 11, No. 5, May 1999

Thomas R. Bewley

The Lorenz equation was originally derived as a low-
order model of the semi-infinite convection phenomenon il-
lustrated in Fig. (&), roughly modeling the solar heating at

<~ ——— —— . . \
~~ Vi e the bottom of a layer of convection cells in the earth’s
\ /
/ .
\ [/ \ [/ atmospheré:? However, the Lorenz equation models accu-
\ . .
X ‘,.1'—}.,' rately only simple roll convection for<r,, when the
# L % J X steady two-dimensional convection rollers are st&tBha-
/’ \\ P4 \\ otic motion in this system is characterized by the interaction
7’ N

of several Fourier modes, and thus is not adequately modeled
by Eq.(1).

As shown by Yorke and YorReand Gorman, Widmann,
and Robing;’ a confined toroidal geometry, as illustrated in
Fig. 1(b), can prevent other major convection modes from
I forming. When heated from below and cooled at the same

\ rate from abovéde.g., with a simple heat pumyhis system
is approximately governed by E¢l) well into the chaotic
regimer>ry. Its simple geometry and construction makes
this model system a prime candidate for the study of the
feedback control of chaotic fluid phenomena, much as the
inverted pendulum has become a standard testbed for the
control of unstable systems in dynamics. Both problems rep-
resent easily constructed minimum realizations of important
unstable phenomena in large-scale systems, and thus a thor-
X ough understanding of the estimation and control of these
model systems is illuminating.

Note that the present work assumes a laminar drag law
in the derivation of the governing equatiéiNote also that,

FIG. 1. Geometry of two chaotic convection problems, approximately gov-for implementations in which the heating and cooling rates
erned by Eq(1), to which unsteady heating=u-+u’ may be applied in are not identical(such as the experimental apparatus of

order to stabilize a stationary convection state. Only the convection in tth ; : ;
. . o ; . ; an inger, and Bdy a fourth equation may be incorpo-
torus illustrated inb), which is restricted by its geometry to a single mode, g, Singer, d Y q Y P

is accurately governed by El) when the steady-state heating rate is suf- 'ated int_o the system mod_el in order to increase its fidelity b_y
ficiently high @>r) that the convection phenomenon is chadtic. accounting for the fluctuations of the average temperature in

the loop’® System identification techniques may also be
used to develop even higher-order ODE models that capture

the secondary instabilities of the flow in the torus. Such sec-

fer_ential equatio_ns_ which models a_ﬂui_d convec_tion prObIemondary instabilities are important for large values aihd for
(Fig. 1) and exhibits chaotic behavidFig. 2). This system o, metries in which the minor radius of the torus is not

may be expressed as sufficiently small as compared to the major radius.

The chaotic behavior of the uncontrolled systésee
Fig. 2 is well understood:**1°Under the present condi-
tions, the trajectory of the state meanders deterministically

SEREE

(a) Semi-infinite 2D convection rollers.

e

X3

l gravity

(b) Closed convection loop.

X1= 0 (Xp—X1),

Xzz —Xo—X1X3, (1) : H mi
but nonperiodically around two unstable focus poixtand
X3= —bXg+X;X,—br, X’ and an unstable saddle poirf, where, definingc;
=b(r—-1),
wherex; is proportional to the intensity of the fluid motion,
X, is proportional to the lateral temperature fluctuations in c ¢ 0
the fluid, andxs is proportional to the vertical temperature _ L L
fluctuations in the fluid. The loop Rayleigh numbeis pro- = Cll , X'= _Cll , and X'= Or

portional to the heating rate at the bottom of the convective
system, the loop Prandtl numberis related to the fluid's
kinematic viscosity and thermal conductivity, the quanbty The system takes from one to several cycles around each
is related to the fluid’s thermal expansion coefficient, and alfocus point alternately. The unstable focusorresponds to
variables have been nondimensionalizedorenz showed uniform clockwise fluid motion, the unstable focdscorre-

that fluid motion in this system is chaotic for a sufficiently sponds to uniform anti-clockwise fluid motion, and the un-
high rate of heating>ry=0(oc+b+3)/(c—b—1). Inthis  stable saddl&” corresponds to zero fluid motion.

paper, all computations are carried out for parameter values Note that Fig. 2c) illustrates that the sheet containing
typical for a laboratory-scale implementatioof the geom-  the attractor is twisted in such a way that the intermittent
etry of Fig. Xb) in the chaotic regime, nominallyr=4, b maxima inxz along the state trajectory in the quadrant near
=1, andr=3ry=48. either focus point may occur on either of two lobes. This



Phys. Fluids, Vol. 11, No. 5, May 1999 Thomas R. Bewley 1171

100

x3 50

(c) Detailed oblique view of the {1 > 0,z3 > 0) quadrant, (d) Surface of absorbing ball (outer ellipsoid) and
illustrating that the sheet of the attractor is twisted. chaotic trajectory of state (red). (sce Appendix A)

FIG. 2. Trajectory of the state in phase space for a convection problem governed by the Lorenz equatioarwithb= 1, andr =3r;=48. In 2a)—2(c),
violet and blue indicate the portion of the attractor with positive local Lyapunov expdReifit 13 (diverging trajectorieswhereas red and yellow indicate
the portion of the attractor with negative local Lyapunov exporiennverging trajectorigs Other figures characterizing this attractor are available at
http://turbulence.ucsd.edubewley/lorenz.

results in the multiple-valued Poincaneap of Fig. 3(i.e., The chaotic motion of the present convection system is
draw a vertical line and it intersects the curve in at least foucharacterized by trajectories which, when integrated over the
places. Note that the smaller of the two lobes is visited very attractor, diverge exponentially. The system, therefore, is
infrequently; over 40 000 peaks iy were computed in or- highly sensitive to small disturbances. Such disturbances
der to produce the plot shown in Fig. 3. may arise from a variety of sources, including:
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FIG. 3. Poincaremap of the uncon-
. trolled Lorenz systemd=4, b=1,u
e | =48, u'=0). The jth maximum of
-~ X3(t) is plotted as a function of thej (
~ —1)th maximum ofx;(t), a common
7 technique used to characterize the na-
ture of a chaotic systerfRef. 1). Note
that the map is multiple valued. Points
to the right of each cusp are accompa-
nied by a change in sign ok,,
whereas points to the left of each cusp
are accompanied by no change in sign
508 5085 500 of x; . Near the lower-left corner of the
p map, as illustrated in greater detail in
e the inset, the curvature is smoafhot
o cusped and the map is at least qua-
druple valued.

25 30

(@ modification of the initial conditions,

(b) unmodeled perturbations to the control appliedthis .= lim 1| 1ox(T)I|
case taken to be the heating natend T 1 ||5X(0)||

() unmodeled perturbations to the governing equation

(such as those resulting from secondary flows and othetr | t all initial states(O) and initial infinitesimal
unmodeled system dynamics or almost all initial statex(0) and initial infinitesimal per-

turbationséx(0). The Lyapunov exponent thus measures the
For PDE systems such as turbulence, the sources of distugxponential rate of convergence\(<0) or divergence
bance may be identified as perturbations to the initial condi{\ ,>0) of perturbed trajectories of the system when aver-
tions, the boundary conditions, and the PDE itself. This senaged over long time intervalsT(~«). For the present pa-
sitivity to perturbations is loosely referred to in the popularrameter values, the Lyapunov exponent was calculated to be
literature as the “butterfly effect;*1%1* \..=0.707. The local Lyapunov exponent(x(t)) is de-

disturbances of magnitude commensurate with fined as

the flap of a butterfly’'s wing are sufficient to
alter substantially the trajectory of the system 1 ||5x(t+T)||

ally X(1)) = lim = log —— <~
over a long time interval. Ae(X( TooT ||5x(t)\|

Note that the trajectory from two almost identical initial

states may take a long time to diverge, although the expo for almost all initial statex(0) and initial infinitesimal per-

nential divergence of the system will eventually dommateturbatmns@((O) and fort sufficiently large thax(t) lies on
under most circumstances.

the attractor andx(t) points along the expanding direction
The convergence or divergence of system trajectories is B The local L h
made precise by the Lyapunov exponent and the loca 0 tangent spac e local Lyapunov exponent thus mea-
Lyapunov exponer2-%Consider an infinitesimal perturba- Rures the local exponential rate of convergence or divergence
tion ox(0) of an initial statex(0). The perturbationsx(t) of trajectories on the attractor, and the Lyapunov exponent is

evolves in the tangent space x{ft) according to the linear- ;[cr)]((:aallo Eg;ITr?o?/Vg;a%i::(%detE? :yztz? dt)rjjl'?(i:st((stzo?/]\c/;hi?]
ization of Eq.(1), which is given by yap P gs. '

Appendix D that the Lyapunov exponent is a general prop-
erty of the system in the sense that it is independent of the
choice of norm used in its definition, although this is not true
of the local Lyapunov exponentin our present computa-
tions, we takd-|| to be the Euclidean normThese quantities
. will be extended in Sec. IV to examine the convergence or
MKy =—DOMg+ X1 0%+ X0Xy . divergence of the state estimation error when Iinear%eedback
The Lyapunov exponernt,, is defined as is applied.

1= 0 SXp— OXy),

Xy = — OXp— X1 0X3— X38%y,
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(scalaj temperature measurement. It is assumed @aand
a are time invariant. In the present problem, as nothing is
known about the state disturbancaspriori, they are as-
sumed to have the simple covarian@g21. Known struc-
ture of the covariance of the state disturbaffoe example,
knowledge of where the unmodeled heat transfer is likely to
occup is accounted for by replacin@, =1 with an appropri-
ate matrix of unit maximum singular value, retaining the
quantity « to reflect the ratio between the magnitude of the
measurement noise and the magnitude of the state
FIG. 4. The local Lyapunov exponent(t) for the uncontrolled systetas  disturbancé? As any covariance of the disturbances known
computed with the Euclidean nojras the sta_te moves on the attractor. The in advance is accounted for (El and «, the external distur-
average o_f the local Lyapunov exponent mtegrat_ed over the path of th?)ance vectow taken to drive this problem is assumed to be
attractor gives the Lyapunov exponent=0.707, indicating that perturbed | . %
trajectories diverge exponentially. in the optimal case, an uncorrelated, zero-mean, white
Gaussian process and, in the robust case, an unstructured

disturbance with equal weighting on all states.

The externally disturbed system equation xoand the
equation for the noisy flow measuremeanbf the left/right

B. The control problem

Interest in the convection model of Lorenz has been re ; i , i
kindled recently by attempts to control chaotic phenomenat.emper"’1ture difference, are written in matrix form as
As shown in this paper, the system sensitivity described X=Ax+N(x)+Byw+Byu+r, (29
above may be harnessed to control the present problem with y=C,X+ Dy, (2b)
small amounts of linear feedback. )

In the present control problem, a steady-state heatinﬁj‘”th

rateu is modulated by an unsteady conttdl such that X1 0
r=u+u’. x2| X2 |, uZ(’), r&| 0 [,
X3 _bU
The control problem considered here is to find an algorithm
for computing the controu’ (modulation of the cooling/ oo 0 0
heating rate at the top/bottom of the apparptogsed on A=l 0 -1 0 [, NX=Z| —XiX3],

limited observations of the sta{epecifically, noisy measure- 0 0 —-b X1X5
ments ofx,) in order to stabilize the focus point correspond-

ing to time-invariant clockwise motion of the flux] which 0
is stationary but linearly unstable in the uncontrollad ( B1£(G; 0), By=| 0 |,
=0) Lorenz system fon>r, . This model control problem, —b

introduced in the linear optimal context by Vinc&hand

C,2(0 1 0), and D, 2(0 al).

Yuen and Bad® has been the topic of several recent

investigations'11'15-21The present study characterizes Cer_The appropriate transfer function norms, reflecting the re-

tain problems which arise when linear feedback is used fopP°o"s€ 9f the closed-loop systems 0 be developgd to small
the estimation and control of the Lorenz system. These isinean disturbancesy, are tabulated in the following two

sues should be well understood on this model nonlinear Syé_ections. For clarity, the simulations of the full nonlinear

tem before applying linear feedback to more complex nonSystems in the present work are performed with the distur-

linear systems such as turbulence, as discussed in Sec. Vll_aance _vect0|w= 0. In this way, we analyze the nonlinear .
dynamics of the closed-loop systems separately from their

small-disturbance response characteristics.

) o i IIl. DETERMINATION OF AN EFFECTIVE CONTROL
State disturbances are inevitable in the present systemTRATEGY

and come from sources such as unmodeled heat transfer and In this section, we present an effective control strategy
secopdar_y flows. NO'S(.E of some _Ievel n th_e measurement g, yhe nonlinear system EqRa) when full state information
also inevitable, and arises from inaccuracies of the thermol—s available for determining the control. Initially, linear
couples measuring thg tempgrat_ure d|ffer(_an§eand from . optimal/robust control theory is used to compute control
the electronics processing their signals, which are often QUItE, o dback which linearly stabilizes the desired state. Subse-

low voltage. These "disturbances,” as thgy shall genencallyquemly, the resultinglinean control feedback is applied to
be referred to, are now accounted for in a general form;

. . . . X the full nonlinear problem, as discussed in the Introduction.
details of the disturbance scaling outlined here, using the . sine the perturbatiog of the statex from the desired
same notation as the present development, may be found [0~ \ch that

Ref. 22. _

DefineG; as the square root of the expected covariance EEX—X.
of the state disturbances to be added to the three componeriike stabilization of uniform clockwise motion is equivalent
of Eqg. (1) and a as the rms amplitude of the noise of the to the regulation of the perturbatidrto zero. We would like

C. State disturbances and measurement noise
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TABLE I. Optimal controller feedback gaingy& ) and linear disturbance rejection near desired fixed point
(x=X). Transfer function norms reported measure the linearized response of the closed-loop system to state
disturbances when the system is near the linearization peint for which the controllers were designed.
Case studied by Yuen and BéRef. 16.

7 K IT gl IT gl ITuwll2
1000 (0.3222 —0.3222 1.327y 1.848 3.173 1.946
10 (0.3247 —0.3254 1.3392 1.832 3.120 1.946
1t (0.4696 —0.5424 2.071p 1.296 1.512 2.083
0.50 (0.6541 —0.9428 3.2341 0.994 0.847 2.400
0.25 (0.8722 —1.9933 5.6581L 0.774 0.466 2.980
0.10 (0.4843 —6.4708 12.7740 0.622 0.269 4.128
0.050 (—-1.8511 —15.8700 23.8717 0.575 0.271 5.311
0.025 (—8.1871 —36.3081 44.8130 0.551 0.273 7.049
0.010 (—29.1673 —99.2058 105.5891 0.536 0.268 10.759

to accomplish this regulation with a limited amount of con-where the linearized system matéAxand the constant vector
trol u. In the robust setting, we would even like to accom-ttake the form

plish such regulation in the presence of a finite disturbance

which maximally spoils the control objective. Thus follow- o 0 0
ing the approach of standard linear optimal/robust control pA2a4+| —X; 0 —X;
theory, the problem under consideration is expressed as the
minimization of a control objective7 with respect to the
controlu and the simultaneousaximizationof the control  Note thatr=0 becausex is taken here to be a stationary

. TREAXHNX) +r.
X X 0

objective 7 with respect to the disturbanee where point of the uncontrolled system E@l). For sufficiently
aE S /20% U= VAW W small pe_rturbat|o_n§, the nonlinear ternN(§) is s_maII com-
JELEQE Y ] pared with the linear terms. Thus for a statén a suffi-
=E[Z* z— y*W* W], ciently small neighborhood of the desired stajethe con-

troller feedback u solving the noncooperative game

the expectation valuée[ -] is defined as the long-time- discussed above for the nonlinear system @& may be
averaged expected value of the quantity in brackets for al- y y

most all initial stateg(0) and(in the optimal caseunit-norm determined by analysis of just the linear terms of k4.

white Gaussian disturbances and the performance mea- The linear operato is unstable foru>ry. For the
surez is defined such that present parameter values, the eigenvalues Aofare
N {—6.66,0.337.50}. As the complex eigenvalues have
2=C18+ Dl (3) positive real parts, a small perturbation to the stateom
with the stationary poink causes the state to spiral away from the
QU2 0 stationgry point in the uncontrolled system.
Clé( 0 and Dlzé(/l)- A linear controller of the form
u=Ké&=K(x—X) (59

As all of the elements of the state are similarly scaled, it is
reasonable to tak@ =1. The parameter denotes the price solving the noncooperative game discussed above for the
of the control. Reduced values &f penalize the cost func- linearization of the system Ed4) governing the state per-

tion less upon the application of control, and thereby tend taurbation£ is given by the controller feedback

result in larger control magnitude&[u* u], and smaller ex-

cursions of the perturbatio[ £ Q&]. Similarly, the param- K=— 1 B* X (5b)
2 T . : e - o222

eter ¥y denotes the “price” of the disturbance, in the spirit /

of a noncooperative game. Note that setting « eliminates

the disturbance from the noncooperative game-(0 in the

maximization w.r.t.w), resulting in the optimal control re- 1 1

* —

where

sult. Reduced values gfintroduce a finite component of the . A —BiBl — BB}

worst-case disturbance to the problem, generally resulting in X=Ric Y 4 ' (50)

larger feedback gains targeted at stabilizing the system re- -CiC, —A*

sponse to the worst-case disturbance. Further discussion of ) ) ) . )

the nature of this noncooperative game is deferred to Ref. 22"d Rlc(és}.denotes the solution of the associated Riccat
The equation governing the state perturbatiofin fact, problems® in accordance with standard linear optimal/robust

for any reference poir) is easily derivedl from Eq. (23  control theoryz.“‘zs'zzResylting feedback matricésfor rep-
and written in matrix form as resentative” and y are given in Tables | and .

o Inserting a linear controller of the form=K§¢ into Eq.
E=AE+N(&+Byw+Byu+r, (4)  (4) and rearranging, the closed-loop system matrix takes the
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TABLE II. Robust controller feedback gain$=10) and linear disturbance rejection near desired fixed point
(see legend of Table.l

Y K ez ITeul-- IT w2
e (0.3247 —0.3254 1.3392 1.832 3.118 1.946
25 (0.5151 —0.7188 2.458p 1.161 1.193 2.189
20 (0.6855 —1.8348 47175 0.832 0.556 2.775
18 (—0.5661 —8.7956 13.0871 0.619 0.257 4.246
175 (—11.2060 —41.0934 39.9697 0.554 0.248 7.316
17.35 (—128.2235  —365.7229 285.2543 0.533 0.243 20.442
v0~17.33 (—3377.5645 —9338.9540 7028.6511 0.530 0.242 102.676

form A+B,K. For the present parameter values with, formal and robust controllers is in sharp contrast with the re-
example,/=0.25 andy=% andK computed from Eq(5),  sults of the high-dimensional, highly nonorthogonal prob-
the eigenvalues of+B,K are{—6.70-2.48+7.39}. As Iems studied in the traqsition control problem of Ref. 22, in
all eigenvalues now have negative real parts, any small pe?{l’h'ch the noncooperative aspect of the controller formula-
turbation to the state from the stationary poirk causes the tion is much more significant. .
state to spiral back to the stationary point in the controlled ~APPendix B derives sufficient conditions on the feed-
system. bac_:kK_for bOL_mdedness of th(_a closed-loqp nonlinear system
The linear(i.e., smal disturbance rejection of the vari- Which is obtained by application of the linear feedback Eg.
ous controllersk near the desired stationary poit-x is (9@ {0 the undisturbedi.e., w=0) nonlinear plant Eq(2a).
quantified by the appropriate transfer function nofhghe ~ For control feedback determined from E@), which hap-

precise mathematical description of these transfer functioR€nS t0 satisfy these conditions, as shown in Fig. 5, direct
norms is summarized in Ref. 22. In short application of linear feedback stabilizes both the desired

statex (indicated by the black trajectories of Fig. &nd an
"indesired state] (indicated by the green trajectories of Fig.
5). This undesired stabilized stat¢, given by

[ Tanll2 measures the rms value of the state perturbatio
& in response to small white Gaussian distur-

bancesw,

[T sl measures the rms value of the state perturbation -c,
& in response to small disturbanceswith the X=| —¢|,
worst-case structure, and -1

[Tuwllz measures the rms value of the conttoin re-

sponse to small white Gaussian disturbanges Wwhere c,=b(r—1)—b(k;+k;), is near the aforemen-
tioned pointx” for small values oK. An unstable manifold
exists between these two stabilized points, as indicated by
}he contorted blue/red surfaces in Fig. 5. Any initial state on

state response to Gaussian disturband@,l,). Decreas- the blue side of this manifold will converge to the desired

ing /” also happens to reduce the state response to worst-cad te, and any initial state on the red S'd_e of this mamfold
disturbances|(T a,|..) fairly effectively will converge to the undesired state. It is mathematically
gull» :

Table Il illustrates the effect of accounting for a finite possible that an unstable chaotic system trajectory still exists

component of the worst-case disturbance in the control probv—v_hICh IS conflnt_—:td to the mam_fold_separatlng these two re-
lem by reducingy. Starting from one of the optimal control- gions of attl’aCtIO!’]. In a practpz(msturped system, hovy—
lers of Table I(specifically, the one witt = 10), reducingy ~ SY&" the state will never remain on this unstable manifold.
effectively reduces the response of the state to Worst—caégo.te that_ th? unstab!e mar_nfol_d mc!ude_s te=x,=0 axis,
disturbances||(T 4,/|..). There is a minimum valug= y, be- Which is indicated with white lines in Fig. 5. .

low which the Riccati equatiofbc) cannot be solved. Foy As seen in Fig. 5, for mc_reased f(_a_edback magnitide
close to this value, the feedback gains are quite large, ag'g" decreased), the undesired stabilized statg moves

though such increased feedback has only a small effect o rther_ from the origin,_ and the domain of convergence of the
||T§W||oo- Due to the possibility of system uncertainties, ac_undeswed state remains large; the closed-loop system even-

tuator saturation, and measurement noise, large feedba%iaIIy becomes unbounded for sufficiently large feedbiick

gains are not desirable, and intermediate values of bBoth ome form 9f nonlingarity in th? feedback ru.Ie is requﬁred tp
and y are preferred. In the present system, there are fev@hmma\te this undesired behavior. An effective technique is
degrees of freedom, and the robust controllers do not providE0 apply control of the form

much beyond what the optimal controllers provide. Notice, 0 for ¢<0

for example, the similar weight& and the similar transfer u=H(R=[x=XDKE H()=|1 ¢, >0

function norms attained with the’=0.025, y=« (“opti- ’
mal”) case in Table | and th&'=10, y=17.5(“robust”)  such that the control is turned on only when the skft¢ is
case in Table Il. This similarity in performance of the opti- inside a sphere of radiuR, centered ak, completely con-

As seen in Table |, decreasing the parameteresults in
increased control feedback T,,/l>) to counteract distur-
bances with stronger control, thereby resulting in a smalle
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(a) £ = 1000 (L) £=10 Q=1

(d) £ =0.5 (e} £ = 0.25

{i} £ = 0,01 (unbounded)

(b} £ = 0025

FIG. 5. Regions of attraction of desirédlue) and undesiredred stationary points in linearly controlled convection system and typical trajectories in each
region(black and green, respectivelyrhe cubical domain illustrated {3 = (—25,25Y in all nine subfigures; for clarity, slightly different viewpoints are used

in each subfigure.

tained in the domain of convergence of the desired stationarfeedback control which makes the subdomain in which the
point in the linearly controlled system. Such a subdomain idinear control may be applied successfully as large as pos-
denoted by a violet sphere in Figiah. The chaotic dynamics sible, so that the uncontrolled statét), moving along the
of the uncontrolled system will bring the system into this attractor of the system, enters this subdomain in a short
subdomain in finite time, as depicted by Figlb after  amount of time"
which control may be applied to “catch” the state at the
desired equilibrium point. Similar switched approaches wer
recommegded by VFi)ncent ard Yd,Wang andp,rb)\bed9 and V. DETERMINATION OF AN EFFECTIVE STATE-

’ ' ESTIMATION STRATEGY

Vincent® for the Lorenz problem, and may also be applied
to swing up and catch an inverted pendulum, as demon- When full state information is not available, one may

strated by Malmborg, Bernhardsson, anstrém.?® The key first develop a state estimate based on the available state
to the effectiveness of this approach is the determination of eneasurements, then feed this state estimate back through a
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(&)

FIG. 6. Combination of the linear controller with an on/off switch. No control is applied when the state is outside the violet subdomain shown. The chaotic
uncontrolled system eventually brings the state inside the subdomain shown. Linear control is then applied to “catch” the system, drawing it to the desired
stabilized state(@) Definition of a subdomaifviolet) completely contained in th@lue) domain of convergence of the desired fixed point when linear optimal
control with/'=0.25 is applied. It is possible to define a subdomain so contained which is larger than the exampléishbaersubdomain define@iolet)

contains a substantial portion of the chaotic attractor of the uncontrolled system. Thus the uncontrolled system will eventually move inside the subdomain
where linear control is effective.

full-state controller, such as one of the controllers of Sec. Il tation, all three components of the model equatiéa may

to control the system. This chapter discusses how to detebe forced by the estimator feedbatk (0, 0, 03)* with no

mine an effective state estimator for the present problemdifficulty in the implementation.

Details of how the synthesized estimator/controller is as-  Consider the deviationg and ;, of the statex and the

sembled are given in Sec. V. state estimat& from some(as yet undeterminédeference
A reasonable requirement of the state estimator is that it§tateX such that

dynamics be at least similar to the dynamics of the state itself a

when no feedback is applied. To achieve this, the state esti- 7=

mator itself must be nonlmea_r. Since the state equ'a(ﬁw The equations governing and ;7 are easily derived from

and the measurement equati(®b) are well known in the Egs.(2a) and (68 such that

present problem, we will model them closely in our estima-

x—% and #EX—X. (7

tor equations such that 7=An+N(n)+Bw+Bou+T, (8a)
x=AR+N(%) +Byu+r—a, (6a) 7=Ai+N(#) +Bu+T—0, (8b)
§=CoX. (6b)  \where the linearized system mat#hxand the constant vector

The disturbancev that drives the flow system E¢@), which T take the form

is unmeasurable, is not available to force the model system 0 0 0

Eq. (6). Instead, a forcing termi is computed based on the A ~ _ . _

flow measurementy and added to the rhs of E¢6a to ASA+| —X3 0 =X |, TEAR+EN(X)+r.

force the state estimatein the estimator toward the state X, %X O

itself, correcting for the state disturbandgsw in Eq. (2a)
while accounting for the measurement nol3g,w in Eg.

(2b). The task at hand is to determine the feedbécks a nefzessarlly zero. Defining the estlm:':\tlon erxgéx—.xz K
function of the measurements such that this goal is at- %7 @nd the measurement ery=y—§ and subtracting Eq.

tained. As in the previous section, the feedback will be de!8P) from Eq.(88) and Eq.(6b) from Eq.(2b), it is seen that
termined by application of linear optimal/robust control Xe @ndYe obey the equations

theo_ry, altho_ugh this_ feedback is applied, in the end_, to the So=Axe+N(27)—N(#)+B,w+0, (9a)
nonlinearestimator given by Eq6). Since the state estimate

is computed in the controlling electronics in any implemen-  y,=CyXg+ Dyw. (9b)

Note thatX need not be a stationary point, and thuis not
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TABLE lll. Optimal estimator(a.k.a. Kalman—Bucy filtgrfeedback gains¥= =), Lyapunov exponent char-
acterizing estimator convergence to uncontrolled state, and linear disturbance rejection near desired fixed point.
The Lyapunov exponeri.. denotes the exponential rate of convergenee<(0) or divergence £..>0) of the

state estimate to the state as the state moves on the attractor when the estimatigp isrsonall. Transfer
function norms reported measure linearized response, xye#ir=x, of estimator error to state disturbances,
though the estimator feedback was designed with linear theory by linearization xabd«t O (i.e., transfer
function norms are reported at conditions which are off the design)pdlecessary conditions for effective
estimator behavior aré¢a) «,, must be negative, angh) the transfer function norms reported must be bounded.

@ L* Koo ”Txew”Z HTxewa |‘TGW|‘2
10 (—0.0040 —0.0050 0.0 0.70 o o0 o
1 (—0.3060 —0.4142 0.0 0.45 s % %
0.50 (—0.7929 —1.2361 0.0 0.04 1.690 2.599 1.555
0.25 (—1.5379 —3.1231 0.0 —1.04 0.977 0.777 2.049
0.10 (—2.5765 —9.0499 0.0 —3.95 0.747 0.401 3.384
0.050 (—3.1675 —19.0250 0.0 —3.67 0.784 0.602 4.927
0.025 (—3.5456 —39.0125 0.9 -1.82 0.913 0.915 6.851
0.010 (—3.8077 —99.0050 0.0 0.01 1.101 1.361 9.814

The nonlinear term in this equation may be written

1 * l *
A*  5CiC,— —CiC,

N(7)—N(7) =M () X+ N(X,), Y =Ric Y a , (110
— * n
=M (7%~ N(X,), (10 B1B; —A
where in accordance with standard linear theéty?®??>Note that
0 0 0 an “optimal estimator,” determined witly=c0, is usually
0 referred to as a Kalman—Bucy filter. Resulting feedback ma-
M(m)=| ~7s BRGE tricesL for representativer and y are given in Tables Il and
72 m O (\VA

The linear (i.e., smal) disturbance rejection of the
closed-loop system Ed9) with the estimator feedback Eg.
(119 applied, given that the stateand the state estimate
are near a known reference point(agair quantified by the
€ ppropriate transfer function norfis? In short,

For sufficiently smally andx,, the linear terms of Eq9a)
dominate the nonlinear teri(7)—N(7) [see Eq.(10)].
Thus for sufficiently small estimator errgg andfor the state

x in a sufficiently small neighborhood of the reference stat
X, the estimator feedbadk minimizing the estimation error o
x, may be determined by analysis of just the linear terms of || Txull2 measures the rms value of the estimation error

Eqg. (9). Xe in response to small white Gaussian distur-
Linear estimator feedback of the form bancesw,
o R I Tyl measures the rms value of the estimation error
0=Lye=Lly=9) (113 X, in response to small disturbanoeswith the
solving the dual of the noncooperative game discussed in worst-case structure, and
Sec. Ill for the linearization of the system E§) governing [ Towllo measures the rms value of the estimator feed-
the estimation errox, is given by the estimator feedback backd in response to small white Gaussian dis-
1 turbancesw.
L=-——YC, (11D The dependence of the performance of the estimation error
« system Eq(9) on a and y near the design point=X~X is
where similar to the dependence of the design-point perfor-

TABLE V. Robust estimator feedback gaina€ 1), Lyapunov exponent characterizing estimator conver-
gence to uncontrolled state, and linear disturbance rejection near desired fixe(speifégend of Table I\

Y L* Koo ”TxewHZ “TerHoc [Tawl2
o (—0.3060 —0.4142 0.0 0.45 o o o

2 (—0.3384 —0.4413 0.0 0.44 o 0 o

15 (—0.3729 —0.4696 0.0 0.43 oo o oo

11 (—0.5091 —0.5781 0.0 0.38 4.778 21.57 2.326
1.02 (—0.7062 —0.7294 0.0 0.29 2.597 6.290 1.670

¥0~1.016 (—0.7879 —0.7909 0.0 0.24 2.292 4.868 1.621
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mance of the controlled system ehand y studied in Sec. 1 exe(Dl
[ll. The estimators summarized in Tables Ill and IV are de- K== ||m?|09w
signed with the feedbadk determined according to E¢fL1) T ¢
with X=0. In Tables Il and IV, we investigate the linear for almost all initial statex(0) and initial infinitesimal esti-
disturbance rejection of the closed-loop estimation error sysmator perturbationssx.(0), in a manner analogous to the
tem near the desired fixed poirt=X=~X, conditions which Lyapunov exponent. of the uncontrolled system. The
are off the design point for the estimator. For largethe  Lyapunov exponent of the state estimation erray, thus
feedback determined is not sufficient to stabilize the estimameasures the exponential rate of convergeneg<{(0) or
tor near the desired fixed poim~X~X, and the transfer divergence k..>0) of the state estimator when averaged
function norms reported are unbounded. Decreasing the paver long time intervals T—«). Calculated values of the
rametera results in increased estimator feedback gaiasid  Lyapunov exponenk,, for the present estimators are tabu-
eventually stabilizes the estimation error near the desirethted in Tables Il and IV. The local Lyapunov exponent of
fixed point. This results in finite values of the transfer func-the state estimation errok,(x(t)), is defined as
tion norms reported in Table Il for=<0.5. Decreasing the

- - 1 [[xe(t+T)
parametera from 0.5 to 0.1 results in increased estimator Kk (X(1)) = lim = log————
feedback [T;ul2) to account for disturbances more rapidly, 1ol l[oxe(t)]]

thereby r(.asululng in a smaller response of the estimation €IG%r almost all initial statex(0) and initial infinitesimal esti-
to Gaussian dlsturbance|$Tg(eW||2). The worst-case response 5y, perturbation®x.(0) and fort sufficiently large, in a
of the estimation error|T_u|.) in this problem, which has  manner analogous to the local Lyapunov exponesk(t))
few degrees of freedom, follows trends which closely matchof the uncontrolled system. The local Lyapunov exponent of
the estimation error response to Gaussian disturbancele state estimation errok,(x(t)), thus measures the local
(ITxll2), and introducing the robust componéfiable IV)  exponential rate of convergence or divergence of state and
does not provide much beyond what the optimal approacthe state estimate when the estimation error is small. The
can provide. The large feedback gaindor the estimators Lyapunov exponenk.. is the long-time average along the
with < 0.1 are not effective in reducing further the systemsystem trajectoryx(t) of the local Lyapunov exponent
response under these off-design conditions; as for the conc.(x(t)) (see Fig. 7. As the estimator equatiof6a accu-
troller, intermediate values of botta and y are preferred. rately models the state equatit®e), the Lyapunov exponent
By applying the linear measurement feedback @da  for the estimatorx.. reduces to the Lyapunov exponent for
to the undisturbedi.e., w=0) estimation error equatior(§),  the uncontrolled stata.=0.707 when the estimator feed-
noting Eq.(10), the closed-loop equation for the estimation backL is made small, as shown in Table III.

error may be written in the form It is demonstrated in simulatior(see, for example, Fig.
_ - 8) that, for « sufficiently small thatx,,<<O (Table III), the
Xe=(A+LC2)Xe—N(Xe) + M(7())Xe, estimator feedback stabilizes the estimator exoto zero
=(A+LCyt M(X(1)))%e— N(Xg). (12) even for initial conditions of the estimation errog(0)

which are not small. As opposed to the control problem, no
Conservative sufficient conditions for convergence of theundesired stabilized states other thar- 0 were detected in
nonlinear closed-loop system Hd2) are established in Ap-  the closed-loop nonlinear system for the estimation error.
pendix C. Unfortunately, it does not appear possible to select |t was found[compare Fig. #) and 7c)] that choosing
time-invariant linear estimator feedbatksuch that the esti- a (time-invarianj reference stat® at the origin, which is the
mator error decreases uniformly as the uncontrolled statgpproximate “center of mass” of the orbits of the uncon-
X(t) moves along the trajectory of the attractor, as the termrolled systenfFig. 2(a)—(c)], gave the best estimator perfor-
M(x(t)) is destabilizing over a portion of the attractor. How- mance for the range of initial conditions tested. This is rea-
ever, this does not imply that the estimator will necessarilysonable, as the reference stateabout which we linearize
diverge; effective estimators may still be found, as will now the system to determine the estimator feedback, should be as
be shown. close as possible to the statét) at any instant for the lin-

The convergence or divergence of the state estimator fagarization of the estimator error equatifspecifically, the

the uncontrolled system when the estimation exggs small  neglect ofM(#) in Eq. (12)] to be valid.
may be made precise by extensions of the Lyapunov expo- |t was also foundcompare Fig. ) and 7c)] that the
nent\.. and the local Lyapunov exponent(x(t)) used to  nonlinear ternmN(X) in the estimator Eq(6a) is essential for
characterize the uncontrolled system in Sec. Il A. Considefood estimator performance. Without it, the equation for a
an infinitesimal perturbatiodx.(0) of the state estimator small perturbatiordx,(t) of the estimatowhen we takex
such that |6x,(0)|=|x(0)—X(0)|<1. The perturbation =0) takes the form
oXo(t) evolves according to the linearization of E@.2), )
which is given by OXe=(A+LC,)oxe+ N(x(1)),

55<e:(A+ LC,+M(X(1)))Xe. where the nonlinear termi(x(t)) is not small as the state
X(t) moves on the attractor. The linear estimator feedback
The Lyapunov exponent of the state estimation erkgr,is  LC,0x%e, which is proportional to the size of the estimation
defined as error perturbation, is not sufficient to stabilize this term. The
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FIG. 7. Local Lyapunov exponent.(t) describing the local growth or attenuation of small perturbations of the estimationxgttdrin the closed-loop

system for the state estimator as the skdt¢ moves along the attractdi@) Estimator designed witk=1.0,X=0. The value of the Lyapunov exponesf ,

which is the average value of the local Lyapunov exponemnplotted, isx..=0.45>0. This indicates that the state estimator is unstak|e-0) more than

it is stable «.<0), and thus the state estimate will not converge to the uncontrolled &tatEstimator designed witle=0.1,X=0. The value of the
Lyapunov exponent ig,.= —3.95<0. This indicates that the state estimator is stable more than it is unstable, and thus the state estimate will converge to the
uncontrolled state whex, is small. Note that estimator convergence is attained even though the estimator error does not decrease uniformly over the entire
path of the attractor(c) Estimator designed witk=0.1,X=X. Lyapunov exponenk., = —2.33<0. It is found that linear estimator feedback designed with

X=0 has better convergence properties (b)]. (d) Estimator designed wita=0.1,X=0, and the nonlinear term dropped from the estimator equ#€pn
Lyapunov exponenk..=0.01. The nonlinear term in the estimator is essential for good perforniaha®)].

estimator will continually be disrupted if the nonlinear term feedback gains. Note that the simple switching function
N(X) is not included in the equation for the estimator Ej. H(¢) used for the controller feedback in the previous section
Better performance may be obtained in flow systemds a crude example of a simple gain scheduling approach. For
which prove to be more difficult to estimate usinggain  the estimator, a gain scheduling approach might entail a ref-
schedulingapproach to select the most suitable estimatoerence state which is a function of time, with the linear feed-
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FIG. 8. Trajectory of the estimation errog(t) for estimators determined witk=0 and three different values af when applied to the uncontrolled,
undisturbed convection system. The initial conditions on the sté@=(5 1 0)*, and the state estimat®0)=(—5 10 0), are separated significantly

in these simulations. Even so, for estimators with<0, the estimator feedbadkrapidly brings the state estimatein close proximity to the state based

on measurements o, only. Such behavior is seen with all initial conditions tested. The approach of the estimated state to the actual state is more rapid for
estimators with more negative valuesxf . After the state and the estimate are brought into proximity, nonlinear estimators with accurately track the

chaotic trajectory of the state with little further estimator feedback required.
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back gaind_(t) recomputed as the system evolves using thdions. Note that estimator feedback is turned on only after an
linearizationX(t) =X(t) in the spirit of a linear parameter- amount of timet; has elapsed which is sufficiently large that
varying (LPV) procedure. With such an approao}(,t) and the statex(t) is near the attractor, after which the conver-
M (7(t)) are identically zero, and stability of the estimator 9€NCe of the estimator has been thoroughly verified, and con-

error to small disturbances anywhere on the attractor is easiiyf®! féedback is turned on only after both

established by the local linear stability of the closed-loop(i)
system matrix"A(t)JrL(t)Cz. A gain scheduling approach,
however, is more difficult to implement than constant-gain
feedback, requiring on-line computation of the estimator(ii)
Riccati equation(11¢), and isnot required to stabilize the
estimator error in the present system, given that the constant
estimator feedback selected is sufficient to provide.,

<0, as discussed above.

an amount of time,>t, has elapsed which is suffi-
ciently large that the state estimation errft) = x(t)
—X(t) is small, and

the state estimati(t) (and therefore the statet) it-
self) has meandered to a point within the subdomain,
illustrated in Fig. 6, inside of which convergence of the
linearly controlled system to the desired state is as-
sured.

For this approach to be effective, the estimator must be able

V. PRACTICAL CONTROL APPROACH

It is straightforward to combine the estimators and con-(a)
trollers of the two previous sections to obtain an estimator-
based controller which may be implemented based on lim¢b)
ited noisy measurements. The flow of information in this

to both

track the uncontrolled statg(t) as it moves on the
attractor, and

track small perturbations of the controlled state in the
vicinity of the desired fixed point.

approach is illustrated schematically by the following stan-

dard block diagram.
disturbances

V

observation

V

csimeer]<
state estimate

control
u

X >

The plant, forced by external disturbances, has an intern
statex which cannot be observed. Instead, a noisy observ

tiony is made and an estimate of the staetermined. This

state estimate is then fed through the controller to determine

the controlu to be applied on the plant to regulatéo zero.
To summarize, the equations governing the plaet
placed in the implementation by the apparatus ijsmié

Xx=Ax+N(x)+B;w+Byu+r,
y: C2X+ D21W,

the (nonlineaj equations for the estimatqupdated by the
measurementg only) are

&= AR+ N(R)+Bou+r—0a,
=C2)?,

a=H(t—t)L(y—¥),

<

and the equation for the controllébased now on the state

estimateR) is
u=H(t—ty)H(R—|X=X])K(X—X).

It is found by simulation that, when the appropriate con-
trollers and estimators are selected, the approach described
above converges from all initial conditions tested. A particu-
lar case tested in detail toadk=0, t,=5, R=9, X(0)=0,
estimator feedback computed with=0.1 andy=<, con-
troller feedback computed with’=0.25 and y=, and
sampled a large range of initial conditior§0) within the
absorbing ball of Fig. @). The estimator converged prop-
erly and the control application successfully caught the state
at the desired state in all cases tested.

Ei/ll. CONCLUSIONS AND RELATED QUESTIONS
4N THE TURBULENCE PROBLEM

It has been demonstrated that, using linear optimal/
robust control theory, the Lorenz equation may be estimated
effectively based on partial state measurements and con-
trolled effectively with limited control authority. Linear state
feedback is found to be fully effective only when it is
switched off while the state is far from the desired equilib-
rium point, relying on the attractor of the system to bring the
state into a neighborhood of the equilibrium point before
control is applied. Linear estimator feedback is found to be
fully effective only when(a) the Lyapunov exponent of the
state estimation error is negative, indicating that the state
estimate converges to the uncontrolled state, @ndhe es-
timator is stable in the vicinity of the desired equilibrium
point. Fundamental limitations in the control and estimation
of a nonlinear system by linear feedback have been charac-
terized.

For the present nonlinear problem, nonlinear feedback
controllers may be constructed which are superior in terms of
their global convergence to the linear controllers examined

Values ofK andL have been computed by application of pore “\Wang and Abédl achieve effective control of the
linear control theory to the appropriate linearized problems,resent system with a washout filter and control with a cubic

and are reported in Tables I-IV. Three parameteta,/}

nonlinearity, supplanting the linear controller £§) with

may be used to scale the magnitude of the estimator and

controller feedback appropriately for particular implementa-

X4: X3_ k1X4 y
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u=—Ko(Xz—kyXz)3. To make these questions concrete, subcritical, low
Reynolds numberturbulent channel flow is an appropriate

A controller of a similar form was implemented experimen- testbed This flow is observed in simulation and experiment
tally by Yuen and Bad' Ezal, Pan, and Kokotovi¢ have to have recurrent features, referred to as coherent
shown that the integrator backstepping appro@chich in-  structures*3® characteristic of higher Reynolds number
volves the recursive construction of appropriate Lyapunovlows of practical engineering interest. The near-wall coher-
functions for each scalar component of the governing equaent structures are a major source of the turbulent cascade of
tion) may be applied to compute nonlinear feedback controlgnergy, and may be eliminated by control actuation applied
for a certain class of nonlinear systems for global stabilizaat the wall (blowing/suction. Globally stabilizing controls,
tion while maintaining local optimality. Systems that lend however, are exceedingly difficult to determine and, to date,
themselves to this approach may be written in the stricthave been found only with nonlinear optimal control theory

feedback form in an (entirely impractical predictive control settind® More
practical control algorithms are necessary. At least three con-
X1=Xp+ f1(X1) +hy(X)W, trol approaches for this nonlinear problem come to mind:

(1) Design a linear optimal/robust controller for in-
creased linear stability of the laminar flé®possibly cou-
pling with a reduced-order state estimafarpdated with lin-
ear measurement feedback. Such an approach is a direct
Xp=U+fn(Xg,m 1 Xn) +hn(Xg, o Xp)W. extension of the approach used in the present manuscript,

and similar problems should be expected. Note that uncon-

trolled subcritical turbulent channel flow remains at all times
Cr}ar from the stable equilibrium point of laminar channel flow
at the same bulk velocity. Thus the state of the uncontrolled
system might never enter a subdomain inside of which the
&fectiveness of the linear controller can be asslictdFig.

Xo=Xz+ f(X1,X2) +hy(Xg, X)W,

Such methods of constructive Lyapunov stabilizatfodo
extend to the Lorenz equation, at least in problems in whi
the control is applied to the equation fap (the left/right
temperature differengeas considered by Jankovitin the
problem considered in the present paper, control is applied t
the equation fos (the top/bottom temperature difference

This appears to be a slightly more difficult control problem: ('2) Numerically optimize the undetermined coefficients
for instance, globally stabilizing linear controls, such as.

. ~in a simple (linear or nonlinear output feedback rule for
thbc:sg fotlrj]nd by Wr;m ae?d B(antéﬂgjgp;eﬁr to bg untavsn— particular turbulent flow realizations, either with nonlinear
able in the present cassee Appendix i 1 remains 10 be ., yimalrobust control theo®39 or with a heuristic training
seen whether or not the intriguing nonlinear approaches dis-

d above mav be extended to mor molex ¢ rnalgorithm such as a neural netwdkSuch optimizations
cussed above may be exiended 1o more complex SySteMgy gt pe performed on large ensembles of turbulent flows to
such as those governed by the Navier—Stokes equation.

In this paper. we have focused our attention on the funachieve optimizedd hoccontrol rules which generalize to
paper, we ¥ 0 -ntion on th other turbulent flow realizations, and thus are numerically
damental limitations inherent to the application of linear

feedback control to the present nonlinear system, as we achallenging to perform. Effective performance of such ap-
b Y ' ?eroaches can not be guaranteed, but can at least partially

considering the Lprenz system as a mo.del for more comple educe the magnitude of the turbulent fluctuati¢hs.
systems for which appropriate nonlinear feedback ap- (3) Apply nonlinear feedback control theory for PDEs

based on ri ti h as L2-gain and pas&ivit
C 30 : . gorous notions such as L2-gain and passivity
Kokotovic,* Richard Bellman is said to have compared ON€.c <ich theory becomes available.

who designs linear controls for nonlinear systems with one It is not certain which approach will most effectively

Yt\'ho’d hawlng lost h'f ,\,N_?tCh n a df;\;l_( aIIe;:, |shseef1rcthr:ng for bring turbulence into the light, and all three approaches will
it under a lamp post.” To pursue this metaphor further, we_ . o pe explored.

are, indeed, waiting at the lamp post with our present ap-
proach; however, due to the chaotic behavior of the Loren

system, we are confident that our watch will roll into view in i‘CKNOWLEDGMENTS
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(1) Are switched approaches, similar to the one required fo
the present convection problem, necessary for effectiv
application of linear feedback to turbulence?

(2) If the answer to questiofl) is positive, under what con-
ditions does turbulence flow into the view of linear con-
trols, and what linear control algorithms illuminate the
largest area?

(3) If the conditions for the successful application of linear
feedback to turbulence are overly restrictive, what forms  After an initial transient, the trajectory of the statén
of nonlinear feedback are best suited for the problem othe uncontrolled Lorenz system E@) ultimately becomes
turbulence? confined to a bounded subspace of the three-dimensional

APPENDIX A: BOUNDEDNESS OF THE STATE
OF THE UNCONTROLLED SYSTEM
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phase spacéx,,X,,X3}, as indicated in Fig. 2, approaching APPENDIX B: BOUNDEDNESS OF THE STATE OF
the set referred to as the attractor of the system. The boundHE CONTROLLED SYSTEM

edness of this attractor is now established.

Lemma 1. Given the uncontrolled open-loop system for the
statex, of the form

Lemma 2. Given the linearly controlled closed-loop sys-
tem for »=x—X, the deviation of the stat& from some
(arbitrary) reference stat&, which may be written in the

o(X2—X1) form
X= TXaTXiXg | =AXEN(X)+, 7= (A+B,K) p+N(n)+T,
—bxz+Xx.X,—bu )
with
with
-0 g
—o o 0 0 A+BK2[  —%s -1 % |,
AS 0 -1 0|, NX=| XX, ~%,—bk, X;—bk, —b—bks
0 0 -b X1X2 —
0 K*£| ka2 |, X=| vb(u-1) [,
ré 0 , k3 —1
—bu,

for 0=1, 0<b<2, andu>1. The existence of an absorbing
ball may be established such that any trajectoryxadrigi-
nating outside of this ball will enter it in finite time, and any
trajectory ofx inside this ball will never leave it.

Proof of Lemma 1.(Outlined by Sparrow) Define a
Lyapunov functiofi***V such that

1_
Véz[uxf+ oxa+ o(x3—1)?].
DifferentiatingV, it is easily shown that
\-/:UX]_).(]_‘F O'X25(2+ 0'(X3_U))'(3
= — o(WX2+ X2+ bx3— bu?).

Note thatV<0 everywhere outside an ellipsoidal domain

whereD is defined by
2 2

+ 22 4531 wxeD
bu bu® w? '

X

Define an ellipsoidal domai& such that

(X3—u)?
4u?

2 2
X1 X3

—t = =1+

for some small but finite>>0. Note thatV is constant on the

TEAX+ N(X)+r+B,K(X—X),

where A, N-), r, o, b, and uare defined as in Lemma 1. If
k;>—(1+b)/b and I§<4(1+ ks3)/b, the existence of an
absorbing ball may be established such that any trajectory of
n originating outside of this ball will enter it in finite time,
and any trajectory ofy inside this ball will never leave it.
Proof of Lemma 2Define a Lyapunov functioW such that

1
Ve=57" 7.

Differentiating V. and noting thaty* N(#) =0, it is easily
shown that

Vo= 7* = 51* (A+B,K) 7+ 9*T.
The nonzero part of the first term comes from the symmetric
part of A+B,K, which is given by

_ 0'_7(3 ?2_bkl
7 2 2
- 0'_7(3 _bk2
S(X)= > -1 5
X,—bk; —bky b—bk
2 2 3

Define X2 (0 bk, o)*. With this value of%X, a sufficient
condition forS;(X) to be negative definite is that the subma-

surface ofE, with larger values outside and smaller values;,

inside. SinceD [the smaller ellipsoid of Fig. @)] is com-
pletely contained irE [the larger ellipsoid of Fig. @l)], it

follows thatV< — §(¢€) everywhere on the surface and out-

side of E, for some finited(€)>0. It follows directly from
these two conditions that

(a
(b)

any trajectory of the system originating outside ©f
will enter it in finite time, and

all trajectories pasimward through the boundary d,

so any trajectory of the system inside will never

leave it.

The surface oE is thus referred to as an “absorbing ball” of
the statex. O

— bk,
2

-1

— bk
2 —p—bks

has negative eigenvalues, which is true if
4(1+ksg)
2
p andk; b
Note that these inequalities are satisfied by some, but not all,

of the the valueX computed by linear optimal/robust con-
trol theory and reported in Tables | and 1.

Ky>— (B1)
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Let A, be the maximum eigenvalue &.(X), and as-
sume that the conditions of EGB1) are satisfiedi.e., \;
<0). It follows that

Ve=7* (A+BoK) g+ 7*F
<\ 7%+|7[F].

Define a spherical domai. such that

|g< +e Vpek,

A
for some small but finitee>0. It follows thatV.<— ()
everywhere on the surface and outsiddgf for some finite

6(e)>0. Note thatV, is constant on the surface of the
spherical domairk, with larger values outside and smaller

values inside. It therefore follows, as in the proof of Lemma

1, that the surface d&, is an absorbing ball of the controlled
statenp=x—X. O

If we takeX=Xin Lemma 2, it follows that=r=0 (as
in Sec. lll). Thus if we could chooseld such thaS,(X) (i.e.,
the symmetric part oA+ B,K) had all negative eigenvalues,
we could shrink the absorbing bdl, to a small neighbor-
hoode of x=X, and the desired fixed point would be globally

asymptotically stable. Unfortunately, this is impossible, dueb

to the fact that the submatrix

o—X3

Thomas R. Bewley

such that the eigenvalues of the symmetric part ofLAC,
+M(X) are negative.
Proof of Lemma 3Define a Lyapunov functioW, such that

1

Ve23

Differentiating V, and noting thaix} N(x.) =0, it is easily
shown that

*
Xg Xe -

Ve=XgXe=X5 (A+LCy+M(X))Xe.

The nonzero part of this expression comes from the symmet-
ric part of A+LC,+M(x), which is given by

_ 0'+|1_X3 X2
o 2 2
o+l;—X |
S0=| —5— 1+l 3
X2 R
2 2

Let E, contain only those points ir for which, for a given

L and for allxe E,, all eigenvalues of5,(x) are negative.

[A necessary and sufficient condition for all eigenvalues to
e negative may be established by applying the Routh—
Hurwitz criterion to the expression for det(-S(x)) ex-
panded as a polynomial in] It follows that, forxe E,, we
have

V=0 at x,=0 (i.e., k=X)
V<0 elsewhere.

has a positive eigenvalue in the present case. Note that, dhus wherx e E,, theL,-norm of the state estimation error
other Lyapunov functiond/, may also be considered, this x, decreases uniformly in time. O
observation does not suffice to prove that no constant linear Note thatE, is nonempty for at least some For ex-
feedback matriXK exists which provides global asymptotic ample, even fot.=0 (i.e., no measurement feedback aj all
stability to X in the present problem, though no such feed-the region near the link;= o, x,=0 has all negative eigen-

back has yet been found.

APPENDIX C: CONVERGENCE OF THE STATE
ESTIMATION ERROR

Lemma 3. Given the closed-loop system (with linear
measurement feedback) for the state estimation exgerx
—X, the deviation of the state from the state estimatg,
which may be written in the form

Xe=(A+LCy+M(X))Xe—N(Xg),

with
-0 oty 0
A+LC,2| 0 —1+1, O
0 I5 -b
I 0 0 O
LAl 1], MX)&| —x3 0 —x;],
I3 Xo X;y O

where A, N-), o, and b are defined as in Lemma 1. The
L,-norm of the state estimation errag decreases uniformly
in time whenever the linear feedback L and the state

values.

Unfortunately, it does not appeéor the present param-
eter valuepto be possible to select linear estimator feedback
L such that the entire absorbing b&lbf the statex (derived
in Lemma 1 is contained in the domaiR, inside of which
convergence of the estimator is assutedmma 3. Weaker
conditions which result in an estimator which is sufficient for
the present problem are discussed in Sec. IV.

APPENDIX D: NORM INDEPENDENCE OF THE
LYAPUNOV EXPONENT

In this appendix, it is shown that, for finite-dimensional
systems, the value of the Lyapunov exponent is independent
of the norm used in its definition, although the local
Lyapunov exponent is not. As the Lyapunov exponent is the
time average of the local Lyapunov exponent, this is an in-
teresting and perhaps counterintuitive observation. In addi-
tion, when the Euclidean norm is used, a simple physical
interpretation may be assigned to the local Lyapunov expo-
nent.

We first note the norm equivalence principle: for any
vector norm|jx| of a finite-dimensional vectax satisfying

(1) nonnegativity||x||=0 with ||x||=0&x=0,



Phys. Fluids, Vol. 11, No. 5, May 1999 Thomas R. Bewley 1185

(2) homogeneity|| ax||=|«|-|x| for all complex scalarsy, | 5%(1)]
and IWCOK(&((I)@((I))-
(3) the triangle inequalityx+ y||<||x||+|yl|, 2
o ) _ The final expression is simply the ratio of the magnitudes of
the following inequality holds: Sx(t) and 8x(t) times the cosine of the angle between them.

Naturally, if the cosine of this angle is positive, the magni-
tude of the perturbation in the Euclidean norm is increasing,

where x|, denotes the Euclidean norm. Note that, as theand if it is negative, the magnitude of the perturbation is
dimension of the system under consideration increases, thfecreasing.

ratio C,/C, also increases, and thus these bounds are not
very tight for high-dimensional systems.
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