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Linear control and estimation of nonlinear chaotic convection:
Harnessing the butterfly effect
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This paper examines the application of linear optimal/robust control theory to a low-order nonlinear
chaotic convection problem. Linear control feedback is found to be fully effective only when it is
switched off while the state is far from the desired equilibrium point, relying on the attractor of the
system to bring the state into a neighborhood of the equilibrium point before control is applied.
Linear estimator feedback is found to be fully effective only when~a! the Lyapunov exponent of the
state estimation error is negative, indicating that the state estimate converges to the uncontrolled
state, and~b! the estimator is stable in the vicinity of the desired equilibrium point. The aim in
studying the present problem is to understand better some possible pitfalls of applying linear
feedback to nonlinear systems in a low-dimensional framework. Such an exercise foreshadows
problems likely to be encountered when applying linear feedback to infinite-dimensional nonlinear
systems such as turbulence. It is important to understand these problems and the remedies available
in a low-dimensional framework before moving to more complex systems. ©1999 American
Institute of Physics.@S1070-6631~99!01105-8#
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I. AIM AND SCOPE

The high sensitivity of nonlinear chaotic systems, su
as fluid convection and turbulence, to small levels of exter
forcing may be exploited to stabilize such systems with sm
levels of coordinated feedback. It is demonstrated in t
paper that linear state feedback is capable of regulatin
nonlinear convection problem from an arbitrary initial flu
state by modulation of the rate of heating applied to
system. It is similarly demonstrated that a nonlinear estim
tor with linear measurement feedback is capable of estim
ing the nonlinear convection problem based on meas
ments of the lateral temperature fluctuations in the fluid.
we will show, special care must be taken in both cases, as
nonlinearity of the system has important consequences
nally, a state estimator and a controller may be combine
regulate the present nonlinear convection problem to the
sired flow state based on limited state measurements.

The aptness of linear state feedback for regulating
nonlinear convection system with full state information
first characterized. An important difficulty with the dire
application of linear feedback to the nonlinear problem
identified: specifically, an aggravated undesired flow stat
stabilized by the linear feedback in addition to the desi
flow state, and the domain of convergence to this undes
state is large. Further, closed-loop system response w
strong linearly stabilizing control is applied may even
unbounded, although the desired flow state is endowed
a high degree of linear stability. An effective solution to th
problem is demonstrated: namely, the convection sys

a!Current address: Dept. of MAE, UC San Diego, La Jolla, California 920
phone: ~858! 534-4287; fax: ~858! 822-3107; electronic mail:
bewley@ucsd.edu
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may be ‘‘caught’’ with a linearly stabilizing controller by
applying control only when the state is ‘‘near’’ the desire
state, relying on the chaotic dynamics of the uncontrol
system to bring the state into such a neighborhood be
control is applied.

The aptness of nonlinear estimators forced with line
measurement feedback for estimating the nonlinear con
tion system with limited noisy measurements is then char
terized. The nonlinearity makes the estimation problem f
damentally different than the control problem: more than j
linear stability of infinitesimal estimation errors at a sing
location in phase space is required to build an estima
which is effective for the uncontrolled nonlinear syste
However, convergence of the estimator is possible with
rect linear feedback when appropriate feedback gains
used even though the estimator so constructed is not st
over the entire attractor of the uncontrolled system. The
ture of the estimation problem is examined, weak conditio
for effective estimator behavior~based on the Lyapunov ex
ponent of the estimation error! are established, and an effe
tive state estimator is determined.

Finally, conclusions are drawn and related questions
raised about the implications of the present work on the
plication of linear control theory to the infinite-dimension
nonlinear problem of turbulence.

II. BACKGROUND

A. Nominal behavior of the convection system

By major simplification of a buoyancy-driven flow prob
lem governed by the Navier–Stokes equation,1,2 Edward Lo-
renz derived and characterized a simple set of ordinary

,

9 © 1999 American Institute of Physics
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1170 Phys. Fluids, Vol. 11, No. 5, May 1999 Thomas R. Bewley
ferential equations which models a fluid convection probl
~Fig. 1! and exhibits chaotic behavior~Fig. 2!. This system
may be expressed as

ẋ15s~x22x1!,

ẋ252x22x1x3 , ~1!

ẋ352bx31x1x22br,

wherex1 is proportional to the intensity of the fluid motion
x2 is proportional to the lateral temperature fluctuations
the fluid, andx3 is proportional to the vertical temperatu
fluctuations in the fluid. The loop Rayleigh numberr is pro-
portional to the heating rate at the bottom of the convec
system, the loop Prandtl numbers is related to the fluid’s
kinematic viscosity and thermal conductivity, the quantityb
is related to the fluid’s thermal expansion coefficient, and
variables have been nondimensionalized.1 Lorenz showed
that fluid motion in this system is chaotic for a sufficient
high rate of heatingr .r H5s(s1b13)/(s2b21). In this
paper, all computations are carried out for parameter va
typical for a laboratory-scale implementation3 of the geom-
etry of Fig. 1~b! in the chaotic regime, nominally,s54, b
51, andr 53r H548.

FIG. 1. Geometry of two chaotic convection problems, approximately g
erned by Eq.~1!, to which unsteady heatingr 5ū1u8 may be applied in
order to stabilize a stationary convection state. Only the convection in
torus illustrated in~b!, which is restricted by its geometry to a single mod
is accurately governed by Eq.~1! when the steady-state heating rate is s
ficiently high (ū.r H) that the convection phenomenon is chaotic.7
e

ll

es

The Lorenz equation was originally derived as a lo
order model of the semi-infinite convection phenomenon
lustrated in Fig. 1~a!, roughly modeling the solar heating a
the bottom of a layer of convection cells in the earth
atmosphere.1,2 However, the Lorenz equation models acc
rately only simple roll convection forr ,r H , when the
steady two-dimensional convection rollers are stable.4 Cha-
otic motion in this system is characterized by the interact
of several Fourier modes, and thus is not adequately mod
by Eq. ~1!.

As shown by Yorke and Yorke5 and Gorman, Widmann
and Robins,6,7 a confined toroidal geometry, as illustrated
Fig. 1~b!, can prevent other major convection modes fro
forming. When heated from below and cooled at the sa
rate from above~e.g., with a simple heat pump!, this system
is approximately governed by Eq.~1! well into the chaotic
regimer .r H . Its simple geometry and construction mak
this model system a prime candidate for the study of
feedback control of chaotic fluid phenomena, much as
inverted pendulum has become a standard testbed for
control of unstable systems in dynamics. Both problems r
resent easily constructed minimum realizations of import
unstable phenomena in large-scale systems, and thus a
ough understanding of the estimation and control of th
model systems is illuminating.

Note that the present work assumes a laminar drag
in the derivation of the governing equation.7 Note also that,
for implementations in which the heating and cooling ra
are not identical~such as the experimental apparatus
Wang, Singer, and Bau3!, a fourth equation may be incorpo
rated into the system model in order to increase its fidelity
accounting for the fluctuations of the average temperatur
the loop.7,8 System identification techniques may also
used to develop even higher-order ODE models that cap
the secondary instabilities of the flow in the torus. Such s
ondary instabilities are important for large values ofr and for
geometries in which the minor radius of the torus is n
sufficiently small as compared to the major radius.

The chaotic behavior of the uncontrolled system~see
Fig. 2! is well understood.1,4,9,10 Under the present condi
tions, the trajectory of the state meanders deterministic
but nonperiodically around two unstable focus pointsx̄ and
x̄8 and an unstable saddle pointx̄9, where, definingc1

5Ab(r 21),

x̄5S c1

c1

21
D , x̄85S 2c1

2c1

21
D , and x̄95S 0

0
2r

D .

The system takes from one to several cycles around e
focus point alternately. The unstable focusx̄ corresponds to
uniform clockwise fluid motion, the unstable focusx̄8 corre-
sponds to uniform anti-clockwise fluid motion, and the u
stable saddlex̄9 corresponds to zero fluid motion.

Note that Fig. 2~c! illustrates that the sheet containin
the attractor is twisted in such a way that the intermitte
maxima inx3 along the state trajectory in the quadrant ne
either focus point may occur on either of two lobes. Th

-
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FIG. 2. Trajectory of the statex in phase space for a convection problem governed by the Lorenz equation withs54, b51, andr 53r H548. In 2~a!–2~c!,
violet and blue indicate the portion of the attractor with positive local Lyapunov exponent~Ref. 13! ~diverging trajectories! whereas red and yellow indicate
the portion of the attractor with negative local Lyapunov exponent~converging trajectories!. Other figures characterizing this attractor are available
http://turbulence.ucsd.edu/;bewley/lorenz.
ou
ry

is
the

, is
ces
results in the multiple-valued Poincare´ map of Fig. 3~i.e.,
draw a vertical line and it intersects the curve in at least f
places!. Note that the smaller of the two lobes is visited ve
infrequently; over 40 000 peaks inx3 were computed in or-
der to produce the plot shown in Fig. 3.
r
The chaotic motion of the present convection system

characterized by trajectories which, when integrated over
attractor, diverge exponentially. The system, therefore
highly sensitive to small disturbances. Such disturban
may arise from a variety of sources, including:
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FIG. 3. Poincare´ map of the uncon-
trolled Lorenz system (s54, b51, ū
548, u850). The j th maximum of
x3(t) is plotted as a function of the (j
21)th maximum ofx3(t), a common
technique used to characterize the n
ture of a chaotic system~Ref. 1!. Note
that the map is multiple valued. Point
to the right of each cusp are accomp
nied by a change in sign ofx1 ,
whereas points to the left of each cus
are accompanied by no change in sig
of x1 . Near the lower-left corner of the
map, as illustrated in greater detail i
the inset, the curvature is smooth~not
cusped! and the map is at least qua
druple valued.
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~a! modification of the initial conditions,
~b! unmodeled perturbations to the control applied~in this

case taken to be the heating rate!, and
~c! unmodeled perturbations to the governing equat

~such as those resulting from secondary flows and o
unmodeled system dynamics!.

For PDE systems such as turbulence, the sources of di
bance may be identified as perturbations to the initial con
tions, the boundary conditions, and the PDE itself. This s
sitivity to perturbations is loosely referred to in the popu
literature as the ‘‘butterfly effect:’’4,10,11

disturbances of magnitude commensurate with
the flap of a butterfly’s wing are sufficient to
alter substantially the trajectory of the system
over a long time interval.

Note that the trajectory from two almost identical initi
states may take a long time to diverge, although the ex
nential divergence of the system will eventually domina
under most circumstances.

The convergence or divergence of system trajectorie
made precise by the Lyapunov exponent and the lo
Lyapunov exponent.12–14Consider an infinitesimal perturba
tion dx~0! of an initial statex~0!. The perturbationdx(t)
evolves in the tangent space ofx(t) according to the linear-
ization of Eq.~1!, which is given by

dx•15s~dx22dx1!,

dx•252dx22x1dx32x3dx1 ,

dx•352bdx31x1dx21x2dx1 .

The Lyapunov exponentl` is defined as
n
er

ur-
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-
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l`5 lim
T→`

1

T
log

idx~T!i
idx~0!i

for almost all initial statesx~0! and initial infinitesimal per-
turbationsdx~0!. The Lyapunov exponent thus measures
exponential rate of convergence (l`,0) or divergence
(l`.0) of perturbed trajectories of the system when av
aged over long time intervals (T→`). For the present pa
rameter values, the Lyapunov exponent was calculated t
l`50.707. The local Lyapunov exponentle(x(t)) is de-
fined as

le~x~ t !!5 lim
T→0

1

T
log

idx~ t1T!i
idx~ t !i

for almost all initial statesx~0! and initial infinitesimal per-
turbationsdx~0! and for t sufficiently large thatx(t) lies on
the attractor anddx(t) points along the expanding directio
in tangent space.13 The local Lyapunov exponent thus me
sures the local exponential rate of convergence or diverge
of trajectories on the attractor, and the Lyapunov exponen
the long-time average along the system trajectoryx(t) of the
local Lyapunov exponent~see Figs. 2 and 4!. It is shown in
Appendix D that the Lyapunov exponent is a general pr
erty of the system in the sense that it is independent of
choice of norm used in its definition, although this is not tr
of the local Lyapunov exponent.~In our present computa
tions, we takei•i to be the Euclidean norm.! These quantities
will be extended in Sec. IV to examine the convergence
divergence of the state estimation error when linear feedb
is applied.
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B. The control problem

Interest in the convection model of Lorenz has been
kindled recently by attempts to control chaotic phenome
As shown in this paper, the system sensitivity describ
above may be harnessed to control the present problem
small amounts of linear feedback.

In the present control problem, a steady-state hea
rate ū is modulated by an unsteady controlu8 such that

r 5ū1u8.

The control problem considered here is to find an algorit
for computing the controlu8 ~modulation of the cooling/
heating rate at the top/bottom of the apparatus! based on
limited observations of the state~specifically, noisy measure
ments ofx2) in order to stabilize the focus point correspon
ing to time-invariant clockwise motion of the fluidx̄, which
is stationary but linearly unstable in the uncontrolled (u8
50) Lorenz system forū.r H . This model control problem
introduced in the linear optimal context by Vincent15 and
Yuen and Bau,16 has been the topic of several rece
investigations.3,11,15–21The present study characterizes c
tain problems which arise when linear feedback is used
the estimation and control of the Lorenz system. These
sues should be well understood on this model nonlinear
tem before applying linear feedback to more complex n
linear systems such as turbulence, as discussed in Sec.

C. State disturbances and measurement noise

State disturbances are inevitable in the present sys
and come from sources such as unmodeled heat transfe
secondary flows. Noise of some level in the measureme
also inevitable, and arises from inaccuracies of the ther
couples measuring the temperature differencex2 and from
the electronics processing their signals, which are often q
low voltage. These ‘‘disturbances,’’ as they shall generica
be referred to, are now accounted for in a general fo
details of the disturbance scaling outlined here, using
same notation as the present development, may be foun
Ref. 22.

DefineG1 as the square root of the expected covaria
of the state disturbances to be added to the three compon
of Eq. ~1! and a as the rms amplitude of the noise of th

FIG. 4. The local Lyapunov exponentle(t) for the uncontrolled system~as
computed with the Euclidean norm! as the state moves on the attractor. T
average of the local Lyapunov exponent integrated over the path of
attractor gives the Lyapunov exponentl`50.707, indicating that perturbed
trajectories diverge exponentially.
-
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~scalar! temperature measurement. It is assumed thatG1 and
a are time invariant. In the present problem, as nothing
known about the state disturbancesa priori, they are as-
sumed to have the simple covarianceG1,I . Known struc-
ture of the covariance of the state disturbance~for example,
knowledge of where the unmodeled heat transfer is likely
occur! is accounted for by replacingG15I with an appropri-
ate matrix of unit maximum singular value, retaining th
quantitya to reflect the ratio between the magnitude of t
measurement noise and the magnitude of the s
disturbance.22 As any covariance of the disturbances know
in advance is accounted for inG1 anda, the external distur-
bance vectorw taken to drive this problem is assumed to b
in the optimal case, an uncorrelated, zero-mean, w
Gaussian process and, in the robust case, an unstruc
disturbance with equal weighting on all states.

The externally disturbed system equation forẋ and the
equation for the noisy flow measurementy of the left/right
temperature differencex2 are written in matrix form as

ẋ5Ax1N~x!1B1w1B2u1r , ~2a!

y5C2x1D21w, ~2b!

with

x,S x1

x2

x3

D , u,~u8!, r,S 0
0

2bū
D ,

A,S 2s s 0

0 21 0

0 0 2b
D , N~x!,S 0

2x1x3

x1x2

D ,

B1,~G1 0!, B2,S 0
0

2b
D ,

C2,~0 1 0!, and D21,~0 aI !.

The appropriate transfer function norms, reflecting the
sponse of the closed-loop systems to be developed to s
~linear! disturbancesw, are tabulated in the following two
sections. For clarity, the simulations of the full nonline
systems in the present work are performed with the dis
bance vectorw50. In this way, we analyze the nonlinea
dynamics of the closed-loop systems separately from t
small-disturbance response characteristics.

III. DETERMINATION OF AN EFFECTIVE CONTROL
STRATEGY

In this section, we present an effective control strate
for the nonlinear system Eq.~2a! when full state information
is available for determining the control. Initially, linea
optimal/robust control theory is used to compute cont
feedback which linearly stabilizes the desired state. Sub
quently, the resulting~linear! control feedback is applied to
the full nonlinear problem, as discussed in the Introductio

Define the perturbationj of the statex from the desired
statex̄ such that

j,x2 x̄.

The stabilization of uniform clockwise motion is equivale
to the regulation of the perturbationj to zero. We would like

e
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TABLE I. Optimal controller feedback gains (g5`) and linear disturbance rejection near desired fixed po
(x5 x̄). Transfer function norms reported measure the linearized response of the closed-loop system
disturbances when the system is near the linearization pointx5 x̄ for which the controllers were designed
†Case studied by Yuen and Bau~Ref. 16!.

l K iTjwi2 iTjwi` iTuwi2

1000 ~0.3222 20.3222 1.3277! 1.848 3.173 1.946
10 ~0.3247 20.3254 1.3392! 1.832 3.120 1.946
1† ~0.4696 20.5424 2.0719! 1.296 1.512 2.083
0.50 ~0.6541 20.9428 3.2341! 0.994 0.847 2.400
0.25 ~0.8722 21.9933 5.6581! 0.774 0.466 2.980
0.10 ~0.4843 26.4708 12.7740! 0.622 0.269 4.128
0.050 ~21.8511 215.8700 23.8717! 0.575 0.271 5.311
0.025 ~28.1871 236.3081 44.8130! 0.551 0.273 7.049
0.010 ~229.1673 299.2058 105.5891! 0.536 0.268 10.759
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to accomplish this regulation with a limited amount of co
trol u. In the robust setting, we would even like to acco
plish such regulation in the presence of a finite disturbancw
which maximally spoils the control objective. Thus follow
ing the approach of standard linear optimal/robust con
theory, the problem under consideration is expressed as
minimization of a control objectiveJ with respect to the
control u and the simultaneousmaximizationof the control
objectiveJ with respect to the disturbancew, where

J,E@j* Qj1l 2u* u2g2w* w#

5E@z* z2g2w* w#,

the expectation valueE@•# is defined as the long-time
averaged expected value of the quantity in brackets for
most all initial statesj~0! and~in the optimal case! unit-norm
white Gaussian disturbancesw, and the performance mea
surez is defined such that

z,C1j1D12u, ~3!

with

C1,S Q1/2

0 D and D12,S 0
l I D .

As all of the elements of the state are similarly scaled, i
reasonable to takeQ5I . The parameterl 2 denotes the price
of the control. Reduced values ofl penalize the cost func
tion less upon the application of control, and thereby tend
result in larger control magnitudes,E@u* u#, and smaller ex-
cursions of the perturbation,E@j* Qj#. Similarly, the param-
eterg2 denotes the ‘‘price’’ of the disturbance, in the spi
of a noncooperative game. Note that settingg→` eliminates
the disturbance from the noncooperative game (w→0 in the
maximization w.r.t.w!, resulting in the optimal control re
sult. Reduced values ofg introduce a finite component of th
worst-case disturbance to the problem, generally resultin
larger feedback gains targeted at stabilizing the system
sponse to the worst-case disturbance. Further discussio
the nature of this noncooperative game is deferred to Ref.

The equation governing the state perturbationj ~in fact,
for any reference pointx̄) is easily derived1 from Eq. ~2a!
and written in matrix form as

j̇5Āj1N~j!1B1w1B2u1 r̄ , ~4!
-

l
he

l-

s

o

in
e-
of
2.

where the linearized system matrixĀ and the constant vecto
r̄ take the form

Ā,A1S 0 0 0

2 x̄3 0 2 x̄1

x̄2 x̄1 0
D , r̄,Ax̄1N~ x̄!1r .

Note that r̄50 becausex̄ is taken here to be a stationar
point of the uncontrolled system Eq.~1!. For sufficiently
small perturbationsj, the nonlinear termN(j) is small com-
pared with the linear terms. Thus for a statex in a suffi-
ciently small neighborhood of the desired statex̄, the con-
troller feedback u solving the noncooperative gam
discussed above for the nonlinear system Eq.~2a! may be
determined by analysis of just the linear terms of Eq.~4!.

The linear operatorĀ is unstable forū.r H . For the
present parameter values, the eigenvalues ofĀ are
$26.66, 0.3367.50i %. As the complex eigenvalues hav
positive real parts, a small perturbation to the statex from
the stationary pointx̄ causes the state to spiral away from t
stationary point in the uncontrolled system.

A linear controller of the form

u5Kj5K~x2 x̄! ~5a!

solving the noncooperative game discussed above for
linearization of the system Eq.~4! governing the state per
turbationj is given by the controller feedback

K52
1

l 2 B2* X, ~5b!

where

X5RicS Ā
1

g2 B1B1* 2
1

l 2 B2B2*

2C1* C1 2Ā*
D , ~5c!

and Ric~•! denotes the solution of the associated Ricc
problem,23 in accordance with standard linear optimal/robu
control theory.24–26,22Resulting feedback matricesK for rep-
resentativel andg are given in Tables I and II.

Inserting a linear controller of the formu5Kj into Eq.
~4! and rearranging, the closed-loop system matrix takes
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TABLE II. Robust controller feedback gains (l 510) and linear disturbance rejection near desired fixed po
~see legend of Table I!.

g K iTjwi2 iTjwi` iTuwi2

` ~0.3247 20.3254 1.3392! 1.832 3.118 1.946
25 ~0.5151 20.7188 2.4580! 1.161 1.193 2.189
20 ~0.6855 21.8348 4.7175! 0.832 0.556 2.775
18 ~20.5661 28.7956 13.0871! 0.619 0.257 4.246
17.5 ~211.2060 241.0934 39.9697! 0.554 0.248 7.316
17.35 ~2128.2235 2365.7229 285.2543! 0.533 0.243 20.442

g0'17.33 ~23377.5645 29338.9540 7028.6511! 0.530 0.242 102.676
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form Ā1B2K. For the present parameter values with,
example,l 50.25 andg5` andK computed from Eq.~5!,
the eigenvalues ofĀ1B2K are $26.70,22.4867.39i %. As
all eigenvalues now have negative real parts, any small
turbation to the statex from the stationary pointx̄ causes the
state to spiral back to the stationary point in the control
system.

The linear~i.e., small! disturbance rejection of the var
ous controllersK near the desired stationary pointx' x̄ is
quantified by the appropriate transfer function norms.27 The
precise mathematical description of these transfer func
norms is summarized in Ref. 22. In short,

iTjwi2 measures the rms value of the state perturba
j in response to small white Gaussian distu
bancesw,

iTjwi` measures the rms value of the state perturba
j in response to small disturbancesw with the
worst-case structure, and

iTuwi2 measures the rms value of the controlu in re-
sponse to small white Gaussian disturbancesw.

As seen in Table I, decreasing the parameterl results in
increased control feedback (iTuwi2) to counteract distur-
bances with stronger control, thereby resulting in a sma
state response to Gaussian disturbances (iTjwi2). Decreas-
ing l also happens to reduce the state response to worst
disturbances (iTjwi`) fairly effectively.

Table II illustrates the effect of accounting for a fini
component of the worst-case disturbance in the control p
lem by reducingg. Starting from one of the optimal contro
lers of Table I~specifically, the one withl 510), reducingg
effectively reduces the response of the state to worst-c
disturbances (iTjwi`). There is a minimum valueg5g0 be-
low which the Riccati equation~5c! cannot be solved. Forg
close to this value, the feedback gains are quite large,
though such increased feedback has only a small effec
iTjwi` . Due to the possibility of system uncertainties, a
tuator saturation, and measurement noise, large feed
gains are not desirable, and intermediate values of botl

and g are preferred. In the present system, there are
degrees of freedom, and the robust controllers do not pro
much beyond what the optimal controllers provide. Noti
for example, the similar weightsK and the similar transfe
function norms attained with thel 50.025, g5` ~‘‘opti-
mal’’ ! case in Table I and thel 510, g517.5 ~‘‘robust’’ !
case in Table II. This similarity in performance of the op
r

r-
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n
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n
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ase
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se
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on
-
ck
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e
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mal and robust controllers is in sharp contrast with the
sults of the high-dimensional, highly nonorthogonal pro
lems studied in the transition control problem of Ref. 22,
which the noncooperative aspect of the controller formu
tion is much more significant.

Appendix B derives sufficient conditions on the fee
backK for boundedness of the closed-loop nonlinear syst
which is obtained by application of the linear feedback E
~5a! to the undisturbed~i.e., w50) nonlinear plant Eq.~2a!.
For control feedback determined from Eq.~5!, which hap-
pens to satisfy these conditions, as shown in Fig. 5, dir
application of linear feedback stabilizes both the desi
statex̄ ~indicated by the black trajectories of Fig. 5! and an
undesired statex̄c8 ~indicated by the green trajectories of Fi
5!. This undesired stabilized statex̄c8 , given by

x̄c85S 2c2

2c2

21
D ,

where c25Ab(r 21)2b(k11k2), is near the aforemen
tioned pointx̄8 for small values ofK. An unstable manifold
exists between these two stabilized points, as indicated
the contorted blue/red surfaces in Fig. 5. Any initial state
the blue side of this manifold will converge to the desir
state, and any initial state on the red side of this manif
will converge to the undesired state. It is mathematica
possible that an unstable chaotic system trajectory still ex
which is confined to the manifold separating these two
gions of attraction. In a practical~disturbed! system, how-
ever, the state will never remain on this unstable manifo
Note that the unstable manifold includes thex15x250 axis,
which is indicated with white lines in Fig. 5.

As seen in Fig. 5, for increased feedback magnitudeK
~e.g., decreasedl !, the undesired stabilized statex̄c8 moves
farther from the origin, and the domain of convergence of
undesired state remains large; the closed-loop system e
tually becomes unbounded for sufficiently large feedbackK.
Some form of nonlinearity in the feedback rule is required
eliminate this undesired behavior. An effective technique
to apply control of the form

u5H~R2ux2 x̄u!Kj, H~z!5 H0
1

for z<0
for z.0,

such that the control is turned on only when the statex(t) is
inside a sphere of radiusR, centered atx̄, completely con-
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FIG. 5. Regions of attraction of desired~blue! and undesired~red! stationary points in linearly controlled convection system and typical trajectories in
region~black and green, respectively!. The cubical domain illustrated isV5(225,25)3 in all nine subfigures; for clarity, slightly different viewpoints are us
in each subfigure.
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tained in the domain of convergence of the desired station
point in the linearly controlled system. Such a subdomain
denoted by a violet sphere in Fig. 6~a!. The chaotic dynamics
of the uncontrolled system will bring the system into th
subdomain in finite time, as depicted by Fig. 6~b!, after
which control may be applied to ‘‘catch’’ the state at th
desired equilibrium point. Similar switched approaches w
recommended by Vincent ard Yu,17 Wang and Abed,19 and
Vincent15 for the Lorenz problem, and may also be appli
to swing up and catch an inverted pendulum, as dem
strated by Malmborg, Bernhardsson, and A˚ ström.28 The key
to the effectiveness of this approach is the determination
ry
is

e

n-

a

feedback control which makes the subdomain in which
linear control may be applied successfully as large as p
sible, so that the uncontrolled statex(t), moving along the
attractor of the system, enters this subdomain in a sh
amount of time.15

IV. DETERMINATION OF AN EFFECTIVE STATE-
ESTIMATION STRATEGY

When full state information is not available, one ma
first develop a state estimate based on the available s
measurements, then feed this state estimate back throu
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FIG. 6. Combination of the linear controller with an on/off switch. No control is applied when the state is outside the violet subdomain shown. The
uncontrolled system eventually brings the state inside the subdomain shown. Linear control is then applied to ‘‘catch’’ the system, drawing it to th
stabilized state.~a! Definition of a subdomain~violet! completely contained in the~blue! domain of convergence of the desired fixed point when linear optim
control with l 50.25 is applied. It is possible to define a subdomain so contained which is larger than the example shown.~b! The subdomain defined~violet!
contains a substantial portion of the chaotic attractor of the uncontrolled system. Thus the uncontrolled system will eventually move inside the s
where linear control is effective.
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full-state controller, such as one of the controllers of Sec.
to control the system. This chapter discusses how to de
mine an effective state estimator for the present probl
Details of how the synthesized estimator/controller is
sembled are given in Sec. V.

A reasonable requirement of the state estimator is tha
dynamics be at least similar to the dynamics of the state it
when no feedback is applied. To achieve this, the state
mator itself must be nonlinear. Since the state equation~2a!
and the measurement equation~2b! are well known in the
present problem, we will model them closely in our estim
tor equations such that

ẋ̂5Ax̂1N~ x̂!1B2u1r2û, ~6a!

ŷ5C2x̂. ~6b!

The disturbancew that drives the flow system Eq.~2!, which
is unmeasurable, is not available to force the model sys
Eq. ~6!. Instead, a forcing termû is computed based on th
flow measurementsy and added to the rhs of Eq.~6a! to
force the state estimatex̂ in the estimator toward the statex
itself, correcting for the state disturbancesB1w in Eq. ~2a!
while accounting for the measurement noiseD21w in Eq.
~2b!. The task at hand is to determine the feedbackû as a
function of the measurementsy such that this goal is at
tained. As in the previous section, the feedback will be
termined by application of linear optimal/robust contr
theory, although this feedback is applied, in the end, to
nonlinearestimator given by Eq.~6!. Since the state estimat
is computed in the controlling electronics in any impleme
I,
r-
.
-

ts
lf
ti-

-

m

-

e

-

tation, all three components of the model equation~6a! may
be forced by the estimator feedbackû5(û1 û2 û3)* with no
difficulty in the implementation.

Consider the deviationsh and ĥ of the statex and the
state estimatex̂ from some~as yet undetermined! reference
statex̃ such that

h,x2 x̃ and ĥ, x̂2 x̃. ~7!

The equations governingh and ĥ are easily derived from
Eqs.~2a! and ~6a! such that

ḣ5Ãh1N~h!1B1w1B2u1 r̃ , ~8a!

ḣ̂5Ãĥ1N~ĥ! 1B2u1 r̃2û, ~8b!

where the linearized system matrixÃ and the constant vecto
r̃ take the form

Ã,A1S 0 0 0

2 x̃3 0 2 x̃1

x̃2 x̃1 0
D , r̃,Ax̃1N~ x̃!1r .

Note thatx̃ need not be a stationary point, and thusr̃ is not
necessarily zero. Defining the estimation errorxe,x2 x̂5h

2ĥ and the measurement errorye,y2 ŷ and subtracting Eq.
~8b! from Eq.~8a! and Eq.~6b! from Eq.~2b!, it is seen that
xe andye obey the equations

ẋe5Ãxe1N~h!2N~ĥ!1B1w1û, ~9a!

ye5C2xe1D21w. ~9b!
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TABLE III. Optimal estimator~a.k.a. Kalman–Bucy filter! feedback gains (g5`), Lyapunov exponent char-
acterizing estimator convergence to uncontrolled state, and linear disturbance rejection near desired fixe
The Lyapunov exponentk` denotes the exponential rate of convergence (k`,0) or divergence (k`.0) of the
state estimate to the state as the state moves on the attractor when the estimation errorxe is small. Transfer
function norms reported measure linearized response, nearx5 x̂5 x̄, of estimator error to state disturbance
though the estimator feedback was designed with linear theory by linearization aboutx5 x̂50 ~i.e., transfer
function norms are reported at conditions which are off the design point!. Necessary conditions for effective
estimator behavior are:~a! k` must be negative, and~b! the transfer function norms reported must be bound

a L* k` iTxewi2 iTxewi` iTûwi2

10 ~20.0040 20.0050 0.0! 0.70 ` ` `
1 ~20.3060 20.4142 0.0! 0.45 ` ` `
0.50 ~20.7929 21.2361 0.0! 0.04 1.690 2.599 1.555
0.25 ~21.5379 23.1231 0.0! 21.04 0.977 0.777 2.049
0.10 ~22.5765 29.0499 0.0! 23.95 0.747 0.401 3.384
0.050 ~23.1675 219.0250 0.0! 23.67 0.784 0.602 4.927
0.025 ~23.5456 239.0125 0.0! 21.82 0.913 0.915 6.851
0.010 ~23.8077 299.0050 0.0! 0.01 1.101 1.361 9.814
at
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The nonlinear term in this equation may be written

N~h!2N~ĥ!5M ~ĥ!xe1N~xe!,

5M ~h!xe2N~xe!, ~10!

where

M ~h!5S 0 0 0

2h3 0 2h1

h2 h1 0
D .

For sufficiently smallh andxe , the linear terms of Eq.~9a!
dominate the nonlinear termN(h)2N(ĥ) @see Eq.~10!#.
Thus for sufficiently small estimator errorxe and for the state
x in a sufficiently small neighborhood of the reference st
x̃, the estimator feedbackû minimizing the estimation erro
xe may be determined by analysis of just the linear terms
Eq. ~9!.

Linear estimator feedback of the form

û5Lye5L~y2 ŷ! ~11a!

solving the dual of the noncooperative game discussed
Sec. III for the linearization of the system Eq.~9! governing
the estimation errorxe is given by the estimator feedback

L52
1

a2 YC2* , ~11b!

where
e

f

in

Y5RicS Ã*
1

g2 C1* C12
1

a2 C2* C2

2B1B1* 2Ã
D , ~11c!

in accordance with standard linear theory.24–26,22 Note that
an ‘‘optimal estimator,’’ determined withg5`, is usually
referred to as a Kalman–Bucy filter. Resulting feedback m
tricesL for representativea andg are given in Tables III and
IV.

The linear ~i.e., small! disturbance rejection of the
closed-loop system Eq.~9! with the estimator feedback Eq
~11a! applied, given that the statex and the state estimatex̂
are near a known reference point, is~again! quantified by the
appropriate transfer function norms.27,22 In short,

iTxewi2 measures the rms value of the estimation er
xe in response to small white Gaussian distu
bancesw,

iTxewi` measures the rms value of the estimation er
xe in response to small disturbancesw with the
worst-case structure, and

iTûwi2 measures the rms value of the estimator fe
back û in response to small white Gaussian d
turbancesw.

The dependence of the performance of the estimation e
system Eq.~9! on a andg near the design pointx' x̂' x̃ is
similar to the dependence of the design-point perf
er-
TABLE IV. Robust estimator feedback gains (a51), Lyapunov exponent characterizing estimator conv
gence to uncontrolled state, and linear disturbance rejection near desired fixed point~see legend of Table III!.

g L* k` iTxewi2 iTxewi` iTûwi2

` ~20.3060 20.4142 0.0! 0.45 ` ` `
2 ~20.3384 20.4413 0.0! 0.44 ` ` `
1.5 ~20.3729 20.4696 0.0! 0.43 ` ` `
1.1 ~20.5091 20.5781 0.0! 0.38 4.778 21.57 2.326
1.02 ~20.7062 20.7294 0.0! 0.29 2.597 6.290 1.670

g0'1.016 ~20.7879 20.7909 0.0! 0.24 2.292 4.868 1.621
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mance of the controlled system onl and g studied in Sec.
III. The estimators summarized in Tables III and IV are d
signed with the feedbackL determined according to Eq.~11!
with x̃50. In Tables III and IV, we investigate the linea
disturbance rejection of the closed-loop estimation error s
tem near the desired fixed pointx' x̂' x̄, conditions which
are off the design point for the estimator. For largea, the
feedback determined is not sufficient to stabilize the estim
tor near the desired fixed pointx' x̂' x̄, and the transfer
function norms reported are unbounded. Decreasing the
rametera results in increased estimator feedback gainsL and
eventually stabilizes the estimation error near the des
fixed point. This results in finite values of the transfer fun
tion norms reported in Table III fora<0.5. Decreasing the
parametera from 0.5 to 0.1 results in increased estima
feedback (iTûwi2) to account for disturbances more rapidl
thereby resulting in a smaller response of the estimation e
to Gaussian disturbances (iTxewi2). The worst-case respons
of the estimation error (iTxewi`) in this problem, which has
few degrees of freedom, follows trends which closely ma
the estimation error response to Gaussian disturba
(iTxewi2), and introducing the robust component~Table IV!

does not provide much beyond what the optimal appro
can provide. The large feedback gainsL for the estimators
with a,0.1 are not effective in reducing further the syste
response under these off-design conditions; as for the
troller, intermediate values of botha andg are preferred.

By applying the linear measurement feedback Eq.~11a!
to the undisturbed~i.e.,w50) estimation error equations~9!,
noting Eq.~10!, the closed-loop equation for the estimatio
error may be written in the form

ẋe5~Ã1LC2!xe2N~xe!1M ~h~ t !!xe ,

5~A1LC21M ~x~ t !!!xe2N~xe!. ~12!

Conservative sufficient conditions for convergence of
nonlinear closed-loop system Eq.~12! are established in Ap
pendix C. Unfortunately, it does not appear possible to se
time-invariant linear estimator feedbackL such that the esti-
mator error decreases uniformly as the uncontrolled s
x(t) moves along the trajectory of the attractor, as the te
M (x(t)) is destabilizing over a portion of the attractor. How
ever, this does not imply that the estimator will necessa
diverge; effective estimators may still be found, as will no
be shown.

The convergence or divergence of the state estimato
the uncontrolled system when the estimation errorxe is small
may be made precise by extensions of the Lyapunov ex
nentl` and the local Lyapunov exponentle(x(t)) used to
characterize the uncontrolled system in Sec. II A. Consi
an infinitesimal perturbationdxe(0) of the state estimato
such that udxe(0)u5ux(0)2 x̂(0)u!1. The perturbation
dxe(t) evolves according to the linearization of Eq.~12!,
which is given by

•

dxe5~A1LC21M ~x~ t !!!dxe .

The Lyapunov exponent of the state estimation error,k`, is
defined as
-
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k`5 lim
T→`

1

T
log

idxe~T!i
idxe~0!i

for almost all initial statesx~0! and initial infinitesimal esti-
mator perturbationsdxe(0), in a manner analogous to th
Lyapunov exponentl` of the uncontrolled system. Th
Lyapunov exponent of the state estimation error,k` , thus
measures the exponential rate of convergence (k`,0) or
divergence (k`.0) of the state estimator when averag
over long time intervals (T→`). Calculated values of the
Lyapunov exponentk` for the present estimators are tab
lated in Tables III and IV. The local Lyapunov exponent
the state estimation error,ke(x(t)), is defined as

ke~x~ t !!5 lim
T→0

1

T
log

idxe~ t1T!i
idxe~ t !i

for almost all initial statesx~0! and initial infinitesimal esti-
mator perturbationsdxe(0) and for t sufficiently large, in a
manner analogous to the local Lyapunov exponentle(x(t))
of the uncontrolled system. The local Lyapunov exponen
the state estimation error,ke(x(t)), thus measures the loca
exponential rate of convergence or divergence of state
the state estimate when the estimation error is small.
Lyapunov exponentk` is the long-time average along th
system trajectoryx(t) of the local Lyapunov exponen
ke(x(t)) ~see Fig. 7!. As the estimator equation~6a! accu-
rately models the state equation~2a!, the Lyapunov exponen
for the estimatork` reduces to the Lyapunov exponent f
the uncontrolled statel`50.707 when the estimator feed
backL is made small, as shown in Table III.

It is demonstrated in simulations~see, for example, Fig
8! that, for a sufficiently small thatk`,0 ~Table III!, the
estimator feedback stabilizes the estimator errorxe to zero
even for initial conditions of the estimation errorxe(0)
which are not small. As opposed to the control problem,
undesired stabilized states other thanxe50 were detected in
the closed-loop nonlinear system for the estimation error

It was found@compare Fig. 7~b! and 7~c!# that choosing
a ~time-invariant! reference statex̃ at the origin, which is the
approximate ‘‘center of mass’’ of the orbits of the unco
trolled system@Fig. 2~a!–~c!#, gave the best estimator perfo
mance for the range of initial conditions tested. This is re
sonable, as the reference statex̃, about which we linearize
the system to determine the estimator feedback, should b
close as possible to the statex(t) at any instant for the lin-
earization of the estimator error equation@specifically, the
neglect ofM (h) in Eq. ~12!# to be valid.

It was also found@compare Fig. 7~b! and 7~c!# that the
nonlinear termN( x̂) in the estimator Eq.~6a! is essential for
good estimator performance. Without it, the equation fo
small perturbationdxe(t) of the estimator~when we takex̃
50) takes the form

•

dxe5~A1LC2!dxe1N~x~ t !!,

where the nonlinear termN(x(t)) is not small as the state
x(t) moves on the attractor. The linear estimator feedb
LC2dxe , which is proportional to the size of the estimatio
error perturbation, is not sufficient to stabilize this term. T
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FIG. 7. Local Lyapunov exponentke(t) describing the local growth or attenuation of small perturbations of the estimation errorxe(t) in the closed-loop
system for the state estimator as the statex(t) moves along the attractor.~a! Estimator designed witha51.0, x̃50. The value of the Lyapunov exponentk` ,
which is the average value of the local Lyapunov exponentke plotted, isk`50.45.0. This indicates that the state estimator is unstable (ke.0) more than
it is stable (ke,0), and thus the state estimate will not converge to the uncontrolled state.~b! Estimator designed witha50.1, x̃50. The value of the
Lyapunov exponent isk`523.95,0. This indicates that the state estimator is stable more than it is unstable, and thus the state estimate will conver
uncontrolled state whenxe is small. Note that estimator convergence is attained even though the estimator error does not decrease uniformly over
path of the attractor.~c! Estimator designed witha50.1, x̃5 x̄. Lyapunov exponentk`522.33,0. It is found that linear estimator feedback designed w
x̃50 has better convergence properties@cf. ~b!#. ~d! Estimator designed witha50.1, x̃50, and the nonlinear term dropped from the estimator equation~6!.
Lyapunov exponentk`50.01. The nonlinear term in the estimator is essential for good performance@cf. ~b!#.
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estimator will continually be disrupted if the nonlinear ter
N( x̂) is not included in the equation for the estimator Eq.~6!.

Better performance may be obtained in flow syste
which prove to be more difficult to estimate using again
schedulingapproach to select the most suitable estima
s

r

feedback gains. Note that the simple switching functi
H(z) used for the controller feedback in the previous sect
is a crude example of a simple gain scheduling approach.
the estimator, a gain scheduling approach might entail a
erence state which is a function of time, with the linear fee
,

rapid for
FIG. 8. Trajectory of the estimation errorxe(t) for estimators determined withx̃50 and three different values ofa when applied to the uncontrolled
undisturbed convection system. The initial conditions on the state,x(0)5(5 1 0)* , and the state estimate,x̂(0)5(25 10 0)* , are separated significantly
in these simulations. Even so, for estimators withk`,0, the estimator feedbackû rapidly brings the state estimatex̂ in close proximity to the statex based
on measurements ofx2 only. Such behavior is seen with all initial conditions tested. The approach of the estimated state to the actual state is more
estimators with more negative values ofk` . After the state and the estimate are brought into proximity, nonlinear estimators withk`,0 accurately track the
chaotic trajectory of the state with little further estimator feedback required.
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back gainsL(t) recomputed as the system evolves using
linearization x̃(t)5 x̂(t) in the spirit of a linear parameter
varying ~LPV! procedure. With such an approach,ĥ(t) and
M (ĥ(t)) are identically zero, and stability of the estimat
error to small disturbances anywhere on the attractor is ea
established by the local linear stability of the closed-lo
system matrixÃ(t)1L(t)C2 . A gain scheduling approach
however, is more difficult to implement than constant-ga
feedback, requiring on-line computation of the estima
Riccati equation~11c!, and isnot required to stabilize the
estimator error in the present system, given that the cons
estimator feedbackL selected is sufficient to providek`

,0, as discussed above.

V. PRACTICAL CONTROL APPROACH

It is straightforward to combine the estimators and co
trollers of the two previous sections to obtain an estima
based controller which may be implemented based on
ited noisy measurements. The flow of information in th
approach is illustrated schematically by the following sta
dard block diagram.

The plant, forced by external disturbances, has an inte
statex which cannot be observed. Instead, a noisy obse
tion y is made and an estimate of the statex̂ determined. This
state estimate is then fed through the controller to determ
the controlu to be applied on the plant to regulatex to zero.

To summarize, the equations governing the plant~re-
placed in the implementation by the apparatus itself! are

ẋ5Ax1N~x!1B1w1B2u1r ,

y5C2x1D21w,

the ~nonlinear! equations for the estimator~updated by the
measurementsy only! are

ẋ̂5Ax̂1N~ x̂!1B2u1r2û,

ŷ5C2x̂,

û5H~ t2t1!L~y2 ŷ!,

and the equation for the controller~based now on the stat
estimatex̂) is

u5H~ t2t2!H~R2ux̂2 x̄u!K~ x̂2 x̄!.

Values of K and L have been computed by application
linear control theory to the appropriate linearized proble
and are reported in Tables I–IV. Three parameters$g,a,l %
may be used to scale the magnitude of the estimator
controller feedback appropriately for particular implemen
e

ily
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tions. Note that estimator feedback is turned on only after
amount of timet1 has elapsed which is sufficiently large th
the statex(t) is near the attractor, after which the conve
gence of the estimator has been thoroughly verified, and c
trol feedback is turned on only after both

~i! an amount of timet2.t1 has elapsed which is suffi
ciently large that the state estimation errorxe(t)5x(t)
2 x̂(t) is small, and

~ii ! the state estimatex̂(t) ~and therefore the statex(t) it-
self! has meandered to a point within the subdoma
illustrated in Fig. 6, inside of which convergence of th
linearly controlled system to the desired state is
sured.

For this approach to be effective, the estimator must be a
to both

~a! track the uncontrolled statex(t) as it moves on the
attractor, and

~b! track small perturbations of the controlled state in t
vicinity of the desired fixed point.

It is found by simulation that, when the appropriate co
trollers and estimators are selected, the approach desc
above converges from all initial conditions tested. A partic
lar case tested in detail tookt150, t255, R59, x̂(0)50,
estimator feedback computed witha50.1 andg5`, con-
troller feedback computed withl 50.25 and g5`, and
sampled a large range of initial conditionsx~0! within the
absorbing ball of Fig. 2~d!. The estimator converged prop
erly and the control application successfully caught the s
at the desired state in all cases tested.

VI. CONCLUSIONS AND RELATED QUESTIONS
IN THE TURBULENCE PROBLEM

It has been demonstrated that, using linear optim
robust control theory, the Lorenz equation may be estima
effectively based on partial state measurements and
trolled effectively with limited control authority. Linear stat
feedback is found to be fully effective only when it
switched off while the state is far from the desired equil
rium point, relying on the attractor of the system to bring t
state into a neighborhood of the equilibrium point befo
control is applied. Linear estimator feedback is found to
fully effective only when~a! the Lyapunov exponent of the
state estimation error is negative, indicating that the s
estimate converges to the uncontrolled state, and~b! the es-
timator is stable in the vicinity of the desired equilibriu
point. Fundamental limitations in the control and estimati
of a nonlinear system by linear feedback have been cha
terized.

For the present nonlinear problem, nonlinear feedb
controllers may be constructed which are superior in term
their global convergence to the linear controllers examin
here. Wang and Abed19 achieve effective control of the
present system with a washout filter and control with a cu
nonlinearity, supplanting the linear controller Eq.~5! with

ẋ45x32k1x4 ,
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u52k2~x32k1x4!3.

A controller of a similar form was implemented experime
tally by Yuen and Bau.21 Ezal, Pan, and Kokotovic29 have
shown that the integrator backstepping approach~which in-
volves the recursive construction of appropriate Lyapun
functions for each scalar component of the governing eq
tion! may be applied to compute nonlinear feedback cont
for a certain class of nonlinear systems for global stabili
tion while maintaining local optimality. Systems that len
themselves to this approach may be written in the str
feedback form

ẋ15x21 f 1~x1!1h1~x1!w,

ẋ25x31 f 2~x1 ,x2!1h1~x1 ,x2!w,

]

ẋn5u1 f n~x1 ,¯ ,xn!1hn~x1 ,¯ ,xn!w.

Such methods of constructive Lyapunov stabilization30 do
extend to the Lorenz equation, at least in problems in wh
the control is applied to the equation forx2 ~the left/right
temperature difference!, as considered by Jankovic.31 In the
problem considered in the present paper, control is applie
the equation forx3 ~the top/bottom temperature difference!.
This appears to be a slightly more difficult control proble
for instance, globally stabilizing linear controls, such
those found by Wan and Bernstein,20 appear to be unavail
able in the present case~see Appendix B!. It remains to be
seen whether or not the intriguing nonlinear approaches
cussed above may be extended to more complex syst
such as those governed by the Navier–Stokes equation.

In this paper, we have focused our attention on the f
damental limitations inherent to the application of line
feedback control to the present nonlinear system, as we
considering the Lorenz system as a model for more comp
systems for which appropriate nonlinear feedback
proaches are not yet available. As quoted by Pe
Kokotovic,32 Richard Bellman is said to have compared o
who designs linear controls for nonlinear systems with o
who, ‘‘having lost his watch in a dark alley, is searching f
it under a lamp post.’’ To pursue this metaphor further,
are, indeed, waiting at the lamp post with our present
proach; however, due to the chaotic behavior of the Lor
system, we are confident that our watch will roll into view
finite time. Important open questions remain:

~1! Are switched approaches, similar to the one required
the present convection problem, necessary for effec
application of linear feedback to turbulence?

~2! If the answer to question~1! is positive, under what con
ditions does turbulence flow into the view of linear co
trols, and what linear control algorithms illuminate th
largest area?

~3! If the conditions for the successful application of line
feedback to turbulence are overly restrictive, what for
of nonlinear feedback are best suited for the problem
turbulence?
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To make these questions concrete, subcritical~i.e., low
Reynolds number! turbulent channel flow is an appropria
testbed.33 This flow is observed in simulation and experime
to have recurrent features, referred to as coher
structures,34,35 characteristic of higher Reynolds numb
flows of practical engineering interest. The near-wall coh
ent structures are a major source of the turbulent cascad
energy, and may be eliminated by control actuation app
at the wall ~blowing/suction!. Globally stabilizing controls,
however, are exceedingly difficult to determine and, to da
have been found only with nonlinear optimal control theo
in an ~entirely impractical! predictive control setting.36 More
practical control algorithms are necessary. At least three c
trol approaches for this nonlinear problem come to mind

~1! Design a linear optimal/robust controller for in
creased linear stability of the laminar flow,22 possibly cou-
pling with a reduced-order state estimator37 updated with lin-
ear measurement feedback. Such an approach is a d
extension of the approach used in the present manusc
and similar problems should be expected. Note that unc
trolled subcritical turbulent channel flow remains at all tim
far from the stable equilibrium point of laminar channel flo
at the same bulk velocity. Thus the state of the uncontro
system might never enter a subdomain inside of which
effectiveness of the linear controller can be assured@cf. Fig.
6~b!#.

~2! Numerically optimize the undetermined coefficien
in a simple ~linear or nonlinear! output feedback rule for
particular turbulent flow realizations, either with nonline
optimal/robust control theory38,39 or with a heuristic training
algorithm such as a neural network.40 Such optimizations
must be performed on large ensembles of turbulent flow
achieve optimizedad hoccontrol rules which generalize to
other turbulent flow realizations, and thus are numerica
challenging to perform. Effective performance of such a
proaches can not be guaranteed, but can at least par
reduce the magnitude of the turbulent fluctuations.40

~3! Apply nonlinear feedback control theory for PDE
based on rigorous notions such as L2-gain and passivity41,42

as such theory becomes available.
It is not certain which approach will most effectivel

bring turbulence into the light, and all three approaches w
continue to be explored.
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APPENDIX A: BOUNDEDNESS OF THE STATE
OF THE UNCONTROLLED SYSTEM

After an initial transient, the trajectory of the statex in
the uncontrolled Lorenz system Eq.~1! ultimately becomes
confined1 to a bounded subspace of the three-dimensio
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phase space$x1 ,x2 ,x3%, as indicated in Fig. 2, approachin
the set referred to as the attractor of the system. The bo
edness of this attractor is now established.
Lemma 1. Given the uncontrolled open-loop system for t
statex, of the form

ẋ5S s~x22x1!

2x22x1x3

2bx31x1x22bū
D 5Ax1N~x!1r ,

with

A,S 2s s 0

0 21 0

0 0 2b
D , N~x!,S 0

2x1x3

x1x2

D ,

r,S 0
0

2bū
D ,

for s>1, 0,b,2, and ū.1. The existence of an absorbin
ball may be established such that any trajectory ofx origi-
nating outside of this ball will enter it in finite time, and an
trajectory ofx inside this ball will never leave it.
Proof of Lemma 1.~Outlined by Sparrow.9! Define a
Lyapunov function41,43 V such that

V,
1

2
@ ūx1

21sx2
21s~x32ū!2#.

DifferentiatingV, it is easily shown that

V̇5ūx1ẋ11sx2ẋ21s~x32ū!ẋ3

52s~ ūx1
21x2

21bx3
22bū2!.

Note thatV̇,0 everywhere outside an ellipsoidal domainD,
whereD is defined by

x1
2

bū
1

x2
2

bū2 1
x3

2

ū2 <1 ;xPD.

Define an ellipsoidal domainE such that

x1
2

4sū
1

x2
2

4ū2 1
~x32ū!2

4ū2 <11e ;xPE

for some small but finitee.0. Note thatV is constant on the
surface ofE, with larger values outside and smaller valu
inside. SinceD @the smaller ellipsoid of Fig. 2~d!# is com-
pletely contained inE @the larger ellipsoid of Fig. 2~d!#, it
follows that V̇<2d(e) everywhere on the surface and ou
side of E, for some finited(e).0. It follows directly from
these two conditions that

~a! any trajectory of the system originating outside ofE
will enter it in finite time, and

~b! all trajectories passinward through the boundary ofE,
so any trajectory of the system insideE will never
leave it.

The surface ofE is thus referred to as an ‘‘absorbing ball’’ o
the statex. h
d-
APPENDIX B: BOUNDEDNESS OF THE STATE OF
THE CONTROLLED SYSTEM

Lemma 2.Given the linearly controlled closed-loop sy
tem for h5x2 x̃, the deviation of the statex from some
(arbitrary) reference statex̃, which may be written in the
form

ḣ5~Ã1B2K !h1N~h!1 r̃ ,

with

Ã1B2K,S 2s s 0

2 x̃3 21 2 x̃1

2 x̃22bk1 x̃12bk2 2b2bk3

D ,

K*,S k1

k2

k3

D , x̄,S Ab~ ū21!

Ab~ ū21!

21
D ,

r̃,Ax̃1N~ x̃!1r1B2K~ x̃2 x̄!,

where A, N(•), r , s, b, and ūare defined as in Lemma 1. I
k3.2(11b)/b and k2

2,4(11k3)/b, the existence of an
absorbing ball may be established such that any trajectory
h originating outside of this ball will enter it in finite time
and any trajectory ofh inside this ball will never leave it.
Proof of Lemma 2.Define a Lyapunov functionVc such that

Vc,
1

2
h* h.

Differentiating Vc and noting thath* N(h)50, it is easily
shown that

V̇c5h* ḣ5h* ~Ã1B2K !h1h* r̃ .

The nonzero part of the first term comes from the symme
part of Ã1B2K, which is given by

Sc~ x̃!5S 2s
s2 x̃3

2

x̃22bk1

2

s2 x̃3

2
21

2bk2

2

x̃22bk1

2

2bk2

2
2b2bk3

D .

Define x̃,(0 bk1 s)* . With this value of x̃, a sufficient
condition forSc( x̃) to be negative definite is that the subm
trix

S 21
2bk2

2

2bk2

2
2b2bk3

D
has negative eigenvalues, which is true if

k3.2
11b

b
and k2

2,
4~11k3!

b
. ~B1!

Note that these inequalities are satisfied by some, but no
of the the valuesK computed by linear optimal/robust con
trol theory and reported in Tables I and II.
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Let l1 be the maximum eigenvalue ofSc( x̃), and as-
sume that the conditions of Eq.~B1! are satisfied~i.e., l1

,0). It follows that

V̇c5h* ~Ã1B2K !h1h* r̃

<l1uhu21uhuu r̃ u.

Define a spherical domainEc such that

uhu<U r̃

l1
U1e ;hPEc

for some small but finitee.0. It follows that V̇c<2d(e)
everywhere on the surface and outside ofEc , for some finite
d(e).0. Note thatVc is constant on the surface of th
spherical domainEc , with larger values outside and small
values inside. It therefore follows, as in the proof of Lemm
1, that the surface ofEc is an absorbing ball of the controlle
stateh5x2 x̃. h

If we take x̃5 x̄ in Lemma 2, it follows thatr̃5 r̄50 ~as
in Sec. III!. Thus if we could choose aK such thatSc( x̄) ~i.e.,
the symmetric part ofĀ1B2K) had all negative eigenvalues
we could shrink the absorbing ballEc to a small neighbor-
hoode of x5 x̄, and the desired fixed point would be global
asymptotically stable. Unfortunately, this is impossible, d
to the fact that the submatrix

S 2s
s2 x̄3

2

s2 x̄3

2
21

D
has a positive eigenvalue in the present case. Note tha
other Lyapunov functionsVc may also be considered, th
observation does not suffice to prove that no constant lin
feedback matrixK exists which provides global asymptot
stability to x̄ in the present problem, though no such fee
back has yet been found.

APPENDIX C: CONVERGENCE OF THE STATE
ESTIMATION ERROR

Lemma 3. Given the closed-loop system (with line
measurement feedback) for the state estimation errorxe5x
2 x̂, the deviation of the statex from the state estimatex̂,
which may be written in the form

ẋe5~A1LC21M ~x!!xe2N~xe!,

with

A1LC2,S 2s s1 l 1 0

0 211 l 2 0

0 l 3 2b
D ,

L,S l 1

l 2

l 3

D , M ~x!,S 0 0 0

2x3 0 2x1

x2 x1 0
D ,

where A, N(•), s, and b are defined as in Lemma 1. T
L2-norm of the state estimation errorxe decreases uniformly
in time whenever the linear feedback L and the statex are
e

as

ar

-

such that the eigenvalues of the symmetric part of A1LC2

1M (x) are negative.
Proof of Lemma 3.Define a Lyapunov functionVe such that

Ve,
1

2
xe* xe .

Differentiating Ve and noting thatxe* N(xe)50, it is easily
shown that

V̇e5xe* ẋe5xe* ~A1LC21M ~x!!xe .

The nonzero part of this expression comes from the symm
ric part of A1LC21M (x), which is given by

Se~x!5S 2s
s1 l 12x3

2

x2

2

s1 l 12x3

2
211 l 2

l 3

2

x2

2

l 3

2
2b

D .

Let Ee contain only those points inx for which, for a given
L and for all xPEe , all eigenvalues ofSe(x) are negative.
@A necessary and sufficient condition for all eigenvalues
be negative may be established by applying the Rou
Hurwitz criterion to the expression for det(lI2Se(x)) ex-
panded as a polynomial inl.# It follows that, forxPEe , we
have

H V̇e50

V̇e,0

at xe50 ~ i.e., x̂5x!

elsewhere.

Thus whenxPEe , theL2-norm of the state estimation erro
xe decreases uniformly in time. h

Note thatEe is nonempty for at least someL. For ex-
ample, even forL50 ~i.e., no measurement feedback at a!
the region near the linex35s, x250 has all negative eigen
values.

Unfortunately, it does not appear~for the present param
eter values! to be possible to select linear estimator feedba
L such that the entire absorbing ballE of the statex ~derived
in Lemma 1! is contained in the domainEe inside of which
convergence of the estimator is assured~Lemma 3!. Weaker
conditions which result in an estimator which is sufficient f
the present problem are discussed in Sec. IV.

APPENDIX D: NORM INDEPENDENCE OF THE
LYAPUNOV EXPONENT

In this appendix, it is shown that, for finite-dimension
systems, the value of the Lyapunov exponent is independ
of the norm used in its definition, although the loc
Lyapunov exponent is not. As the Lyapunov exponent is
time average of the local Lyapunov exponent, this is an
teresting and perhaps counterintuitive observation. In ad
tion, when the Euclidean norm is used, a simple phys
interpretation may be assigned to the local Lyapunov ex
nent.

We first note the norm equivalence principle: for a
vector normixi of a finite-dimensional vectorx satisfying

~1! nonnegativityixi>0 with ixi50⇔x50,
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~2! homogeneityiaxi5uau•ixi for all complex scalarsa,
and

~3! the triangle inequalityix1yi<ixi1iyi ,

the following inequality holds:

C1ixi2<ixi<C2ixi2 ,

where ixi2 denotes the Euclidean norm. Note that, as
dimension of the system under consideration increases
ratio C2 /C1 also increases, and thus these bounds are
very tight for high-dimensional systems.

Now consider bounds on the expression forl` ~which
we denote here byP! as defined with any normixi satisfying
the above listed properties by a similar expression~which we
denote here byQ! defined with the Euclidean normixi2 . By
the norm equivalence principle cited above, it follows tha

P, lim
T→`

1

T
log

idx~T!i
idx~0!i

< lim
T→`

1

T
log

C2idx~T!i2

C1idx~0!i2

5 lim
T→`

1

T
log

idx~T!i2

idx~0!i2
,Q.

By a similar calculation, it follows that

P5 lim
T→`

1

T
log

idx~T!i
idx~0!i

> lim
T→`

1

T
log

C1

C2

idx~T!i2

idx~0!i2
.

5 lim
T→`

1

T
log

idx~T!i2

idx~0!i2
5Q.

We have arrived at the inequalityQ<P<Q, and thus it
follows that P5Q, i.e., the Lyapunov exponent compute
with any norm satisfying the above listed properties is id
tical to that computed with the Euclidean norm in a finit
dimensional system. Note that the proof utilizes theT→`
limit and thus a similar proof does not follow for the loc
Lyapunov exponent.

In the special case in which we use the Euclidean no
in its definition, we can assign the local Lyapunov expon
a simple physical interpretation:

le~x~ t !!5 lim
T→0

1

T
log

idx~ t1T!i2

idx~ t !i2

5 lim
T→0

1

2T
log

~dx~ t !1Td ẋ~ t !!* ~dx~ t !1Td ẋ~ t !!

dx~ t !* dx~ t !

5 lim
T→0

1

2T
log

dx~ t !* dx~ t !12Td ẋ~ t !* dx~ t !1T2d ẋ~ t !* d ẋ~ t !

dx~ t !* dx~ t !

5
d ẋ~ t !* dx~ t !

dx~ t !* dx~ t !
e
he
ot

-

m
t

5
id ẋ~ t !i2

idx~ t !i2
cos\~d ẋ~ t !,dx~ t !!.

The final expression is simply the ratio of the magnitudes
d ẋ(t) anddx(t) times the cosine of the angle between the
Naturally, if the cosine of this angle is positive, the mag
tude of the perturbation in the Euclidean norm is increasi
and if it is negative, the magnitude of the perturbation
decreasing.
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