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Abstract
This paper considers the efficient minimization of the infinite time average of a sta-
tionary ergodic process in the space of a handful of design parameters which affect 
it. Problems of this class, derived from physical or numerical experiments which are 
sometimes expensive to perform, are ubiquitous in engineering applications. In such 
problems, any given function evaluation, determined with finite sampling, is associ-
ated with a quantifiable amount of uncertainty, which may be reduced via additional 
sampling. The present paper proposes a new optimization algorithm to adjust the 
amount of sampling associated with each function evaluation, making function eval-
uations more accurate (and, thus, more expensive), as required, as convergence is 
approached. The work builds on our algorithm for Delaunay-based Derivative-free 
Optimization via Global Surrogates ( �-DOGS, see JOGO https​://doi.org/10.1007/
s1089​8-015-0384-2). The new algorithm, dubbed �-DOGS, substantially reduces 
the overall cost of the optimization process for problems of this important class. 
Further, under certain well-defined conditions, rigorous proof of convergence to the 
global minimum of the problem considered is established.
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1  Introduction

In this paper, the Delaunay-based derivative-free optimization algorithm developed 
in [1, 2, 12–14, 47], dubbed �-DOGS, is modified to minimize an objective func-
tion, f (x) ∶ ℝ

n
→ ℝ , which cannot be evaluated directly, but can be approximated 

to a tuneable degree of precision. As the precision of any function evaluation is 
increased, the computational (or experimental) cost of that function evaluation is 
increased accordingly. An example for this type of objective function is the infinite-
time average of a discrete-time ergodic process g(x, k) for k = 1, 2, 3,… such that 

where, for k ≥ k̄ , g(x,  k) is assumed to be statistically stationary. The feasible 
domain in which the optimal design parameter vector x ∈ ℝ

n is sought is a bound 
constrained domain

 In practice, the precise numerical determination of f(x) for any x is not possible, 
as this would require infinite time averaging; f(x) can only be approximated as the 
average of g(x, k) over some finite number of samples N. The truth function f(x) is 
typically a smooth function of x, though it is often nonconvex; computable approxi-
mations of f(x), however, are generally nonsmooth in x, as the truncation error (asso-
ciated with the fact any approximation of f(x) must be computed with finite N) is 
effectively decorrelated from one approximation of f(x) to the next.

Minimizing (1a) within the feasible domain (1b) is the subject of interest in host 
of practical applications, such as the optimization of stiffness and shape parameters 
[25], feedback control gains in mechanical systems [10] and manufacturing pro-
cesses involving turbulent flows [37], etc.

One interesting class of global optimization algorithms is the Direct (DIviding 
RECTangles) method which was developed in [22] for optimizing Lipschitz func-
tions. These methods are extended in [38] to the case of any possible semi-metric by 
simultaneously considering the subspaces that can contain the optimum. The meth-
ods are deterministic optimization algorithms which was designed for problems with 
exact function evaluation. Later, these methods were modified to solve for objective 
functions obtained from noisy measurements in [19, 23, 45].

A second relevant class of global optimization algorithms are branch and bound 
methods [28], which partition the search domain, then characterize the most promis-
ing partition in which to perform the next function evaluation. These methods were 
initially designed for optimizing objective functions in which exact function evalu-
ations were possible; however, the methods in [33] modified it to address problems 
with noisy function evaluations.

Another class of methods are polynomial optimization algorithms [24] which 
globally solves an optimization algorithm using Lasserre type Moment-SOS 
relaxations. The methods in [27] extends these algorithms to address stochastic 

(1a)f (x) = lim
N→∞

1

N

N∑

k=1

g(x, k),

(1b)L = {x|a ≤ x ≤ b} where a < b ∈ ℝ
n.



3

1 3

A derivative‑free optimization algorithm for the efficient…

optimization problems. However, these methods are limited to the problems where 
f(x) is a polynomial function of x.

Derivative-free optimization methods is discussed in [5, 17, 18, 35], and indeed 
appear to be the most promising class of approaches for problems of the present 
form. These methods are implemented for shape optimization in airfoil design [25], 
as well as in online optimization [23]. With such methods, only values of the func-
tion evaluations themselves are used, and neither a derivative nor its estimate is 
needed. The best methods of this class strive to keep function evaluations far apart 
in parameter space until convergence is approached, thereby mitigating somewhat 
the effect of uncertainty in the function evaluations. This class of methods gener-
ally handles bound constraints quite well, and may be used to globally minimize the 
function of interest. Moreover, some advance algorithms [3, 4, 6] in this class can 
handle problems with nonlinear constraints. However, this class of method scales 
poorly with the dimension of the problem. The surrogate management framework 
[15, 35, 42] and Bayesian algorithms [30–32, 36, 39] are amongst the best deriva-
tive-free methods available today, and are implemented for minimizing a problem 
of the form in (1) in [25, 26, 40, 43]. In this class, the method developed in [39] 
develops a promising Bayesian approach, in a manner which increases the sampling 
of new measurements as convergence is approached. However, this method does not 
selectively refine existing measurements, which is a key contributor to the efficiency 
of the algorithm developed herein.

In this paper, a provably globally convergent (under the appropriate assump-
tions) new optimization approach is developed for problems of the form given in 
(1). The structure of the remainder of the paper is as follows: Sect. 2 briefly reviews 
the key features of the �-DOGS(Z) algorithm developed in [12], upon which the 
present paper is built. Section 3 lays out all of the new elements that compose the 
new optimization approach, as well as the new algorithm itself, dubbed �-DOGS. 
Section 4 analyzes the convergence properties of the new algorithm, and establishes 
conditions which are sufficient to guaranty its convergence to the global minimum. 
Section 5 applies the new algorithm to a selection of model problems in order to 
illustrate its behavior. Some conclusions are presented in Sect. 7.

2 � Delaunay‑based optimization coordinated with a grid: �‑DOGS(Z)

This section presents a simplified version of the �-DOGS(Z) algorithm, the full ver-
sion of which is given as Algorithm 2 of [12], where it is analyzed in detail. The �
-DOGS(Z) algorithm is a grid-based acceleration of the �-DOGS algorithm orig-
inally developed in [14], and is designed to minimize problems in which precise 
function evaluations are available, while avoiding an accumulation of unnecessary 
function evaluations on the boundary of the feasible domain.

The optimization problem considered in this section is the minimization of 
an objective function f(x), approximations of which are assumed to be available, 
in the feasible domain L = {x|x ∈ ℝ

n, a ≤ x ≤ b} . At each iteration of the sim-
plified �-DOGS(Z) algorithm considered here, a metric based on an interpola-
tion of existing function evaluations, and a model e(x) of the “remoteness” of 
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any point x ∈ L from the available datapoints at that iteration (which in the �
-DOGS(Z) algorithm characterizes the uncertainty of the interpolation) is mini-
mized to obtain the location of the next point x ∈ L at which the function will be 
evaluated. The interpolation and remoteness functions at iteration k are denoted 
here by pk(x) and ek(x) , the latter of which is defined below. Note that the function 
ek(x) is called an “uncertainty” function in [12–14]; we use the name “remote-
ness” function for the same construction in the present paper, as it plays a slightly 
different role in the sections that follow.

Definition 1  Consider S as a set of feasible points which includes the vertices of 
L, and � as a Delaunay triangulation of S. Then, for each simplex �i ∈ � , the local 
remoteness function is defined as: 

where Ri and Zi are the circumradius and circumcenter of �i . The global remoteness 
function e(x) is a piecewise quadratic function which is nonnegative everywhere and 
goes to zero at the datapoints, and is defined as follows:

The remoteness function e(x) has a number of properties which are established 
in Lemmas [2:5] in [14], as listed bellow. 

(a)	 The remoteness function e(x) ≥ 0 for all x ∈ L , and e(x) = 0 for all x ∈ S.
(b)	 The remoteness function e(x) is continuous and Lipschitz.
(c)	 The remoteness function e(x) is piecewise quadratic with Hessian of −2 I.
(d)	 The remoteness function e(x) is equal to the maximum of the local remoteness 

functions: 

where Ns is the number of simplices.
We now review the definition of the Cartesian grid over the feasible domain, as 

discussed further in [12].

Definition 2  Taking N
�
= 2� , the Cartesian grid of level � over the feasible domain 

L = {x|a ≤ x ≤ b} , denoted L
�
 , is defined as follows:

The quantization of a point x onto the grid L
�
 , denoted x�

q
 , is a point on the grid L

�
 

which has the minimum distance from x. Note that this quantization process might 
have multiple solutions; any of these solutions is acceptable. The maximum quanti-
zation error of the grid, �L

�
 , is defined as follows:

(2a)ei(x) = R2
i
− ‖x − Zi‖2,

(2b)e(x) = ei(x) ∀x ∈ �i.

(3)e(x) = max
1≤i≤Ns

ei(x),

L
𝓁
=

{
x|xj = aj +

bj − aj

N
𝓁

⋅ z, z ∈ {1, 2,… ,N
𝓁
}, j ∈ {1, 2,… , n}

}
.
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Remark 1  Three important properties of the Cartesian grid for the present purposes 
follow. 

(a)	 The grid of level � covering the feasible domain L in an n dimensional space has 
(N

�
+ 1)n grid points.

(b)	 lim
�→∞ �L

�
= 0.

(c)	 If x�
q
 is a quantization of x onto L

�
 , then Aa(x) ⊆ Aa(x

�

q
) , where Aa(x) is the set 

of active bound constraints at x.

Algorithm  1 presents a strawman form of the �-DOGS(Z) algorithm. A sig-
nificant refinement of this algorithm is presented as Algorithm 2 of [12], together 
with its proof of convergence and its implementation on model problems. The key 
refinement in [12] of the strawman algorithm presented here is the identification of 
two different sets of points in L, dubbed SE (on which function evaluations are per-
formed) and SU (on which function evaluations are not yet performed); the latter 
set proves useful in [12] to regularize the triangulation. The algorithm proposed in 
Sect. 3 below effectively generalizes this notion, of evaluation points at which the 
function has been evaluated, and support points at which the function has not yet 
been evaluated, to the quantification and control over the extent of sampling per-
formed for any given approximation of f(x). 

3 � Delaunay‑based optimization of a time‑averaged value: ̨ ‑DOGS

This section presents the essential elements of the new optimization algorithm, 
dubbed �-DOGS, which is designed to efficiently minimize a function f(x) given by 
(1a) within the feasible domain L defined by (1b). We begin by introducing some 
fundamental concepts.

(4)�L
�
= max

x∈L
�

‖x − x�
q
‖ =

‖b − a‖
2N

�

.
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Definition 3  Take S as a finite set of points xi , for i = 1,… ,M , at which the func-
tion f(x) in (1a) has been approximated; drawing a parallel to the nomenclature com-
monly used in estimation theory, we refer to any such approximation of f(x), devel-
oped with a finite number of samples Ni , as a measurement, denoted yi:

Any such measurement yi has a finite uncertainty associated with it, which can be 
reduced by increasing Ni.

Remark 2  For many problems, there is an initial transient such that, for k < k̄ , the 
assumption of stationarity of g(x, tk) is not valid. For such problems, the initial tran-
sient in the data can be detected using the approach developed in [7] and set aside, 
and the signal considered as stationary therafter. In such problems, to increase the 
speed of convergence of the statistics, the finite sum used for averaging the samples 
in (5) is modified to begin at k̄ instead of beginning at 1.

Since, for k > k̄ , g(x,  k) is statistically stationary, each measurement yi is an 
unbiased estimate of the corresponding value of f (xi) . We assume that a model for 
the standard deviation quantifying the uncertainty of this measurement, denoted 
�i = �(xi,Ni) , is also available. Since g(x, t) is a stationary ergodic process, for any 
point xi ∈ L,

Remark 3  If a stationary ergodic process g(x, k) at some point xi ∈ L is independent 
and identically distributed (IID), then �(xi,Ni) = �(xi, 1)∕

√
Ni ; otherwise, estimates 

of �(xi,Ni) can be developed using standard uncertainty quantification (UQ) pro-
cedures, such as those developed in [8, 9, 11, 29, 34, 44]. The discrete-time pro-
cess g(x, k) may often be obtained by sampling a continuous-time process g(x, t) at 
timesteps tk = kh for some appropriate sample interval h. For sufficiently large h, the 
samples of this continuous-time process g(x, k) are often essentially IID; however, 
with the appropriate UQ procedures in place, significantly smaller sample intervals 
h will lead to a given degree of convergence in a substantially shorter period of time 
t, albeit with increased storage.

Definition 4  Define S as a set of measurements yi , for i = 1, 2,… ,M , at correspond-
ing points xi and with standard deviation �i . We will call a regression p(x) for this set 
of measurements a strict regression if, for some constant �,

Based on the concepts defined above, Algorithm 2 presents our algorithm to 
efficiently and globally minimize a function of the form (1a) within a feasible 
domain defined by (1b). At each iteration k of this algorithm, Sk denotes the set of 

(5)yi = y(xi,Ni) =
1

Ni

Ni∑

k=1

g(xi, k).

(6)lim
Ni→∞

y(xi,Ni) = f (xi), lim
Ni→∞

�(xi,Ni) = 0.

(7)|p(xi) − yi| ≤ � �i, ∀ 1 ≤ i ≤ M.
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M points xi , for i = 1, 2,… ,M , at which measurements have so far been made; for 
each point xi ∈ Sk , yi = y(xi,Ni) denotes the measured value, �i = �(xi,Ni) denotes 
the uncertainty of this estimate, and Ni quantifies the sampling performed thus 
far at point xi . Note that the values of M, Ni , yi , � , � , and K are all updated from 
time to time as the iterations proceed, and are thus annotated with a k superscript 
at various points in the analysis of Sect.  4 to remove ambiguity. Akin to Algo-
rithm 1, at iteration k, pk(x) is assumed to be a strict regression (for some value of 
� ) of the current set of measurements yi , and � is the current grid level.

At each iteration of Algorithm  2, there are three possible situations, corre-
sponding to three of the numbered iterations of this algorithm: 

(6)	 The sampling of an existing measurement is increased. This is called a supple-
mental sampling iteration.

(7)	 A new point is identified, and an initial measurement at this point is added to the 
dataset. This is called an identifying sampling iteration.

(8)	 The mesh coordinating the problem is refined and the algorithm parameters � 
and K adjusted. This is called a grid refinement iteration.

Figure 1 illustrates supplemental sampling and identifying sampling iterations of 
Algorithm 2.
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Algorithm 2 depends upon a handful of algorithm parameters, the selection of 
which affects its rate of convergence, explored in Sect. 5, though not its proof of 
convergence, established in Sect. 4. The remainder of this section discusses heu-
ristic strategies to tune these algorithm parameters, noting that this tuning is an 
application-specific problem, and alternative strategies (based on experiment or 
intuition) might lead to more rapid convergence for certain problems.

The first task encountered during the setup of the optimization problem is the 
definition of the design parameters. Note that the feasible domain considered dur-
ing the optimization process is characterized by simple upper and lower bounds 
for each design parameter; normalizing all design parameters to lie between 0 and 
1 is often helpful.

The second challenge is to scale the function f(x) itself, such that the range of 
the normalized function f(x) over the feasible domain L is about unity. If an esti-
mate of the actual range of f(x) is not available a priori, we may estimate it at any 
given iteration using the available measurements. Following this approach, at any 
iteration k with available measurements {y1, y2,… , yM} , all measurements yi , as 
well as the corresponding uncertainty of these measurements �i , may be scaled by 
a factor rs wherever used in iteration k of Algorithm 2 where, for that iteration, rs 
is computed such that

where R(x) is the ramp function. So defined, rs is a “saturated” version of the factor 
r, constrained to lie in the range rl ≤ rs ≤ ru . Note that scaling the yi and �i does not 
interfere with the proof of the convergence of the algorithm, provided in Sect. 4, but 

r =
1

max1≤i≤M{yi} −min1≤i≤M{yi}
, rs = rl + R(r − rl) − R(r − ru),

(a) (b)

Fig. 1   Representation of one iteration in Algorithm  2 in different situations: (solid line) truth func-
tion f(x), (dashed line) the regression pk(x) , (dash-dot line) continuous search function sk

c
(x) , (closed 

squares) sk
d
(x) , and (asterix) z. In (a), sk

c
(z) < sk

d
(xj) ; it is thus an identifying sampling iteration. In (b), 

sk
c
(z) > sk

d
(xj) ; it is thus an supplemental sampling iteration. Horizontal axis is the x coordinate and the 

vertical axis is the function value f(x)
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can improve its performance. In the numerical simulations performed in Sect. 5, we 
take rl = 10−3 and ru = 103.

For problems which are IID with no initial transient, N0 = N� = 1 is a reasonable 
starting point; increasing N0 and N� ultimately reduces the number of iterations of 
the algorithm (and, thus, the number of Delaunay triangulations) required for con-
vergence, but generally increases slightly the total amount of sampling performed. 
Suggested values of other algorithm parameters, which work well in the numeri-
cal simulations reported in Sect. 5 but the values of which do not affect the proof 
of convergence provided in Sect. 4, include �0 = �

� = 0.5 , K0 = 0.5 , �0 = 3 , � = 4 , 
and � = 100.

4 � Analysis of ̨ ‑DOGS

We now analyze the convergence of Algorithm 2. We first present some preliminary 
definitions.

Definition 5  The point �k ∈ S is called the candidate point at iteration k if

Define f (x∗) as the global minimum of f(x) in L, then the regret is defined as

The definition of the regret given above is common in the optimization literature 
(see, e.g., [16, 23, 40]). We show in this section that, under the following assump-
tions, the regret of the optimization process governed by Algorithm 2 will converge 
to zero:

Assumption 1  A constant K̂ exist such that, for all k > 0 and x ∈ L,

where I is the identity matrix.

Assumption 2  There is a real continuous and monotonically increasing function 
E ∶ ℝ

+
→ [0,Q] , which has the following properties: 

a.	 E(0) = 0 and limr→0+ E(r) = 0 and limr→∞ E(r) = Q.
b.	 For all x ∈ L and N ∈ ℕ , we have: 

Assumption 3  There are real numbers 𝛼 > 0 and � ∈ (0 1] , such that

(10)�
k ∈ argminz∈Sk{yk(z) + �

k
�k(z)}.

(11)rk = f (vk) − f (x∗).

−2 K̂I ≼ ∇2pk(x) ≼ 2 K̂I, −2 K̂I ≼ ∇2f (x) ≼ 2 K̂I,

(12)
||||||

1

N

N∑

k=1

g(x, k) − f (x)

||||||
= |y(x,N) − f (x)| ≤ E(�(x,N)).
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Note that, if the stationary process g(x, k) has a short-range dependence, like 
ARMA processes, the parameter � = 0.5 . However, for different � , this gen-
eral model can also handle stationary processes with long-range dependence, 
like Fractional ARMA processes. Moreover, at any given point x ∈ L , �(x,N) 
is a monotonically nonincreasing function of N. This condition means that, 
by increasing the averaging interval, the uncertainty of the estimate must not 
increase.

Remark 4  Assumption 2 is a stronger condition than ergodicity of g(x, k). Recall that 
ergodicity of g(x, k) is equivalent to the convergence of y(x, N) to f(x) as N → ∞ , 
which is the straightforward outcome of Assumptions 2 and 3. In Assumption 2, the 
convergence of the sample mean is assumed to be bounded by a function of �(x,N) 
of the form specified.

Lemma 1  For any point x ∈ L and real positive number 0 < 𝜀 < Q,

Proof  If �(x,N) ≤ E−1(�) then, since E(x) is an increasing function, by (12), we 
have:

Otherwise, 𝜎(x,N) > E−1(𝜀) ; thus, again by (12), we have

Thus, (14) is verified for both cases. � □

Lemma 2  During the execution of Algorithm  2, there are an infinite number of 
mesh refinement iterations.

Proof  This lemma is shown by contradiction. If Algorithm 2 has a finite number of 
mesh refinement iterations, then there is an integer number �̄  such that the mesh L

�̄
 

contains all datapoints obtained by the algorithm. Since the number of datapoints on 
this mesh is finite, only a finite number of points must be considered, which leads to 
having a finite number of identifying sampling iterations.

Since the number of identifying sampling and mesh refinement iterations are 
finite, there must be an infinite number of supplemental sampling iterations. At each 
supplemental sampling iteration, the averaging length of the estimate at an existing 
datapoint is incremented by N� ≥ 1 . Since only a finite number of points is consid-
ered, a datapoint exists for which the estimate is improved for an infinite number 
of supplemental sampling iterations. As a result, there is an supplemental sampling 

(13)�(x,N) ≤ �N−� ∀x ∈ ℝ, N ∈ ℕ.

(14)|y(x,N) − f (x)| − Q

E−1(�)
�(x,N) ≤ �,

E(�(x,N)) ≤ E(E−1(�)) = � ⇒ |y(x,N) − f (x)| ≤ �.

Q

E−1(�)
�(x,N) ≥ Q ⇒ |y(x,N) − f (x)| − Q ≤ E(�N) − Q ≤ 0,



11

1 3

A derivative‑free optimization algorithm for the efficient…

iteration, such that Nj > 𝛾2�̄ , which is in contradiction with the assumption of hav-
ing finite number of mesh refinement iterations. � □

Note that the following short Lemma and proof, which are necessary for this 
development, are copied directly from [12].

Lemma 3  Consider G(x) as a twice differentiable function such that ∇2G(x) − 2K1I ≼ 0 , 
and x∗ ∈ L as a local minimizer of G(x) in L. Then, for each x ∈ L such that 
Aa(x

∗) ⊆ Aa(x) , we have:

Proof  Define function G1(x) = G(x) − K1 ‖x − x∗‖2 . By construction, G1(x) is con-
cave; therefore,

Since the feasible domain is a bounded domain, the constrained qualifica-
tion holds; therefore, x∗ is a KKT point. Therefore, using Aa(x

∗) ⊆ Aa(x) leads to 
∇G(x∗)T (x − x∗) = 0 , which verifies (15). � □

Lemma 4  Consider z, xj , and x∗ as global minimizers of sk
c
(x) , sk

d
(x) , and f(x), 

respectively. Note that sk
d
(x) is only defined for the points in Sk , but sk

c
(x) and f(x) are 

defined over the feasible domain L. Define Mk as:

Then,

Proof  By Lemma 2, there are infinite number of mesh refinement iterations during 
the execution of Algorithm 2. Thus,

As a result, for any 0 < 𝜀 < Q , there is a k
�
 such that, if k > k

𝜀
 , then

Consider �k
x∗

 as a simplex in �k , a Delaunay triangulation for Sk , that contains x∗ . 
Define M(x) ∶ �

k
x∗
→ ℝ as the unique linear function in �k

x∗
 such that

(15)G(x) − G(x∗) ≤ K1‖x − x∗‖2.

G1(x) ≤ G1(x
∗) + ∇G1(x

∗)T (x − x∗),

G1(x
∗) = G(x∗), ∇G1(x

∗) = ∇G(x∗),

G(x) ≤ G(x∗) + ∇G(x∗)T (x − x∗) + K1 ‖x − x∗‖2.

(16)Mk = min{sk
c
(z) − f (x∗), sk

d
(xj) − f (x∗)}.

(17)lim sup
k→∞

Mk ≤ 0.

(18)lim
k→∞

Kk = ∞, lim
k→∞

�
k = ∞.

(19)Kk ≥ 3 K̂ and 𝛼
k ≥ 2Q

E−1(𝜀)
.

M(Vk
j
) = 2 f (Vk

j
) − pk(Vk

j
),
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where Vk
j
 are the vertices of �k

x∗
 . Define G(x) ∶ �

k
x∗
→ ℝ as follows:

By construction, G(Vk
j
) = 0 . Moreover:

Using Assumption 1 and (19), G(x) is strictly convex in simplex �k
x∗

 . Since G(x) = 0 
at the vertices of �k

x∗
 , then G(x∗) ≤ 0 . Moreover, since M(x) is a linear function, then

Using (14) in Lemma 1 and (19) leads to:

Combining (20) and (21) leads to:

Since xj is the minimizer of the sk
d
(x),

Furthermore, z is the global minimizer of sk
c
(x) and G(x∗) ≤ 0 ; therefore,

Thus, for any 𝜀 > 0 and k > k̂
𝜀
 , (22) is satisfied; therefore, (17) is verified. � □

Lemma 5  If {k1, k2,…} are the mesh refinement iterations of Algorithm 2, then

where �ki is the candidate point at iteration ki and x∗ is a global minimizer of f(x) in 
L.

Proof  Consider z as a global minimizer of skic (x) in L, and z
�
 as its quantization on 

L
�
 . Since iteration ki is a mesh refinement, z

�
∈ Ski . Consider �ki

j
 as a simplex in the 

Delaunay triangulation �ki which contains z. By property (d) of the remoteness func-
tion eki (x),

G(x) = sk
c
(x) +M(x) − 2 f (x) = pk(x) +M(x) − 2 f (x) − Kk ek(x).

∇2G(x) = ∇2{pk(x) − 2 f (x)} + 2Kk I.

(20)
min
x∈Sk

[2 f (x) − pk(x)] ≤ min
1≤j≤n+1 [2 f (V

k
j
) − pk(Vk

j
)] ≤ M(x∗),

sk
d
(x) ≤ [2 f (x) − pk(x)] + 2 (yk(x) − f (x)) − �

k
�(x).

(21)2 yk(x) − 2 f (x) − �
k
�(x) ≤ 2 �.

sk
d
(x) ≤ [2 f (x) − pk(x)] + 2 �.

sk
d
(xj) ≤ min

x∈Sk
[2 f (x) − pk(x)] + 2 � ≤ M(x∗) + 2 �.

(22)
sk
c
(z) ≤ sk

c
(x∗) ≤ 2 f (x∗) −M(x∗),

sk
c
(z) + sk

d
(xj) ≤ 2 f (x∗) + 2 �.

(23a)lim sup
i→∞

{
y(�ki ,N

ki

�
ki
) − f (x∗) + �

ki�(�ki ,N
ki

�
ki
)
} ≤ 0, and

(23b)lim
i→∞

�(�ki ,N
ki

�
ki
) = 0,
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By Property (c) of Remark 1 concerning the Cartesian grid quantizer, Aa(z) ⊆ Aa(z�) . 
According to Assumption 1 and Property (c) of the remoteness function introduced 
in Definition 1, ∇2{pki (x) − Kkie

ki
j
(x)} − {K̂ + 2Kki}I ≤ 0 ; thus, by Lemma 3 and 

the fact (see Lemma 5 in [14] for proof) that z globally minimizes pki(x) − Kkie
ki
j
(x),

Define �ki as the maximum quantization error at iteration ki , then ‖z
�
− z‖ ≤ �ki

 . On 
the other hand, z

�
∈ Ski , which leads to skic (z�) = pki(z

�
) , and

At each mesh refinement iteration of Algorithm 2, there are two possibilities. In the 
first case, skic (z) ≤ s

ki
d
(xj) ; since xj is a minimizer of ski

d
(x) , then

Using (16) (see Lemma 4) and (25) leads to

Since the regression is strict,

Using (26), (27), and (28) leads to

In the second case, skic (z) > s
ki
d
(xj) , then by the construction of Mki

 [see (16)],

Moreover, since iteration ki is mesh refinement, then the sampling Nj ≥ �2� . Thus, 
using Assumption 3,

eki (z
�
) ≥eki

j
(z

�
), eki (z) = e

ki
j
(z),

ski
c
(z

�
) − ski

c
(z) = pki (z

�
) − pki(z) + Kki (eki (z) − eki (z

�
)),

ski
c
(z

�
) − ski

c
(z) ≤ pki (z

�
) − pki(z) + Kki (e

ki
j
(z) − e

ki
j
(z

�
)).

(24)ski
c
(z

�
) − ski

c
(z) ≤ {K̂ + 2Kki}‖z

�
− z‖2.

(25)pki (z
�
) ≤ ski

c
(z) + {K̂ + 2Kki}𝛿2

ki
.

(26)

pki (z
�
) ≤ s

ki
d
(z

�
) + {K̂ + 2Kki}𝛿2

ki
,

s
ki
d
(z

�
) ≤ pki (z

�
) − 𝛼

ki𝜎(z
�
,Nki

z
�

),

𝜎(z
�
,Nki

z
�

) ≤ {K̂ + 2Kki}

𝛼ki
𝛿
2
ki
.

(27)pki(z
�
) − f (x∗) ≤ Mki

+ {K̂ + 2Kki}𝛿2
ki
.

(28)y(z
�
,Nki

z
�

) − pki(z
�
) ≤ � �(z

�
,Nki

z
�

).

(29)y(z
�
,Nki

z
�

) − f (x∗) ≤ Mki
+ {K̂ + 2Kki}𝛿2

ki
+ 𝛽

[
{K̂ + 2Kki}

𝛼ki
𝛿
2
ki

]
.

(30)s
ki
d
(xj) − f (x∗) = Mki

.

(31)�(xj,N
ki
xj
) ≤ � �

−�2−�� .
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Furthermore, the regression pki(x) is strict which leads to:

Using (30), (31), and (32) leads to

Note that �ki is the candidate point at iteration ki . Thus, using (26), (29), (31), and 
(33), and the construction of candidate point (see Definition 5),

On the other hand,

By substituting (35) in (34) and using (17) (see Lemma 4), (23a) is verified. Further-
more, using Assumption 2, we have

Thus, using (23a), f (𝜂ki ) − f (x∗) > 0 , and (36) leads to

Since �(�ki ,Nki

�
ki
) ≥ 0 and limi→∞ �

ki = ∞ , (23b) is verified. � □

Theorem 1  Consider �k as the candidate point at iteration k of Algorithm 2, then

where x∗ is a global minimizer of f(x).

Proof  At any iteration k > k1 , take ki < k as the most recent mesh refinement itera-
tion of Algorithm 2. Then �ki ∈ Sk , and

Using Assumption 2 leads to:

(32)y(xj,N
ki
xj
) − s

ki
d
(xj) ≤ (� + �

ki ) �(xj,N
ki
xj
)

(33)y(xj,N
ki
xj
) − f (x∗) ≤ Mki

+ (� + �
ki )��−�2−�� .

(34)

y(𝜂ki ,N
ki

𝜂
ki
) − f (x∗) + 𝛼

ki𝜎(𝜂ki ,N
ki

𝜂
ki
) ≤ Mki

+max

{
(𝛽 + 𝛼

ki )𝛼𝛾−𝜃2−𝜃� , (K̂ + 2Kki )𝛿2
ki
+ 𝛽

[
(K̂ + 2Kki )

𝛼ki
𝛿
2
ki

]}

+ 𝛼
ki max

{
𝛼𝛾

−𝜃2−𝜃� ,
(K̂ + 2Kki )

𝛼ki
𝛿
2
ki

}
.

(35)�ki
=

‖b − a‖
2�0+i

, �
ki = �

0 + i �� , Kki = K0 2
i, �

ki = �
0 + i.

(36)|y(�ki ,Nki

�
ki
) − f (�ki )| ≤ E(�ki ,N

ki

�
ki
) ≤ Q.

lim sup
i→∞

{
−Q + �

ki�(�ki ,N
ki

�
ki
)
} ≤ 0.

(37)lim
k→∞

f (�k) = f (x∗),

(38)y(�k,Nk

�k
) + �

k
�(�k,Nk

�k
) ≤ y(�ki ,Nk

�
ki
) + �

k
�(�ki ,Nk

�
ki
).
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By construction, since the sampling at �ki at iteration k is greater than or equal to its 
sampling at iteration ki , �(�ki ,Nk

�
ki
) ≤ �(�ki ,N

ki

�
ki
) . Since the function E(x) is 

nondecreasing,

Using (23) in Lemma 5, Assumption 2, and �k = �
ki + �

� , leads to:

Similar to the proof of (23b), it is thus again easy to show

On the other hand, based on Assumption 2, and optimality of f (x∗)

Since f (�k) − f (x∗) ≥ 0 , (37) is verified. � □

5 � Results

We now illustrate the performance of Algorithm 2 on some representative examples. 
The function g(x, k) in (1a) is assumed to be a discrete-time statistically stationary ran-
dom ergodic process. In this section, we further assume that g(x, k) is IID in the index 
k, and that the variation of g(x, k) from the truth function f(x) is homogeneous in x. In 
particular,

In this section, two different test functions for f(x) are considered within the simple 
feasible domain L = {x|0 ≤ xi ≤ 1 ∀i} , the shifted parabolic function

|y(�ki ,Nk

�
ki
) − y(�ki ,N

ki

�
ki
)| ≤ E(�(�ki ,N

ki

�
ki
)) + E(�(�ki ,Nk

�
ki
)),

y(�k,Nk

�k
) + �

k
�(�k,Nk

�k
) ≤ y(�ki ,N

ki

�
ki
) + �

k
�(�ki ,N

ki

�
ki
)

+ E(�(�ki ,N
ki

�
ki
)) + E(�(�ki ,Nk

�
ki
)).

y(�k,Nk

�k
) + �

k
�(�k,Nk

�k
) ≤ y(�ki ,N

ki

�
ki
) + �

k
�(�ki ,N

ki

�
ki
) + 2E(�(�ki ,N

ki

�
ki
)).

(39)lim sup
k→∞

y(�k,Nk

�k
) − f (x∗) + �

k
�(�k,Nk

�k
) ≤ lim sup

k→∞

{
�
�
�(�ki ,N

ki

�
ki
)
}
= 0.

lim
i→∞

�(�k,Nk

�k
) = 0.

f (�k) + �
k
�(�k,Nk

�k
) − f (x∗) − E(�(�k,Nk

�k
)) ≤ y(�k,Nk

�k
) + �

k
�(�k,Nk

�k
) − f (x∗),

lim
k→∞

E(�(�k,Nk

�k
)) = 0,

lim sup
k→∞

f (�k) − f (x∗) ≤ 0.

g(x, k) = f (x) + vk where vk = N(0, 0.3).

(40)f (x) =
5

n

n∑

i=1

(xi − 0.3)2,
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with a global minimizer in L of x∗
i
= 0.3 and a corresponding global minimum of 

f (x∗) = 0 , and the scaled Schwefel fuction

with a global minimizer in L of x∗
i
= 0.8419 and a corresponding global minimum 

of f (x∗) = 0 . We will consider these two functions in n = 1 , 2, and 3 dimensions.
One-dimensional representations of these functions are illustrated in Fig 2: for 

the shifted parabolic function (40), the truth function (unknown to the optimization 
algorithm) is a simple parabola, whereas for the scaled Schwefel fuction (41), the 
truth function is a smooth nonconvex function with four local minima. Note that 
the perturbations present in several measurements of these functions, computed with 
finite Ni , result in a complicated, nonsmooth, nonconvex behavior. This paper shows 
how to efficiently minimize such functions based only on such noisy measurements, 
automatically refining the measurements (by increasing the sampling) as conver-
gence is approached.

The optimizations are initialized with measurements of sample length N0 = 1 at 
the vertices of L. Figure 3 illustrates the application of Algorithm 2 after k = 200 
iterations in the 1D case, taking N0 = N� = 1 additional sample (at either a new 
measurement point, or at an existing measurement point) at each iteration of the 
algorithm. In Fig. 3a, the sampling Ni after k = 100 iterations (plus the 2 initial sam-
ple points, for a total of 202 samples) at the M = 5 measured points yi indicated, 
enumerated from left to right, is {25, 94, 58, 24, 1} ; in Fig. 3b, the sampling Ni after 
202 iterations at the 7 measured points indicated is {7, 6, 11, 4, 55, 115, 4} . Both 
results clearly show that the algorithm focuses the bulk of its sampling in the imme-
diate vicinity of the minimum, where the accuracy of the measurements is especially 
important, while avoiding unnecessary sampling far from the minimum, where the 

(41)f (x) = 0.83797 −
1

n

n∑

i=1

xi sin(500 |xi|),

0

1

2

3

(a) Shifted parabolic function (40).
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2.5

(b) Scaled Schwefel fuction (41).

Fig. 2   Illustration of test problems (40) and (41). (solid line) truth function f(x), and (dashed line) a set 
of measurements yi computed with a single sample at each measurement, Ni = 1 . Global minimum of the 
truth functions are shown by asterisks
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accuracy of the measurements is of reduced importance. It is also seen that more 
exploration is performed for the scaled Schwefel function than for the shifted para-
bolic function, as a result of its more complex underlying trend.

Since the function evaluation process in these tests has a stochastic component, 
Algorithm 2 was next applied an ensemble of twenty separate tests, for both model 
problems discussed above, in each of three different cases with increasingly higher 
dimension (that is, n = 1 , n = 2 , and n = 3 ). The convergence histories of these sim-
ulations are illustrated in Figs. 4 and 5.

To better quantify the performance of the algorithm proposed, we now introduce 
the following concept.

Definition 6  Assume that the stationary process g(x, k) is IID, and that the nominal 
variance �(xi, 1) = �0 for all points xi ∈ L . As mentioned in Remark 3, denoting Ni 
as the total number of samples taken at point xi , the 99.6 confidence intervals of 
the corresponding measurement yi given by (5) is 3 �i = 3 �(xi,Ni) = 3 �0∕

√
Ni . If 

we assume that all of sampling of the algorithm is performed at a single point, the 
uncertainty of this single measurement after k samples would thus be �0∕

√
k , which 

we refer to as the reference error. This function is indicated in Figs. 4 and 5 by a 
solid line of slope −1∕2 in log-log coordinates.

It is observed that, (see Figs. 4 and 5), in which we have again taken 1 new sam-
ple at each iteration, the averaged value of the regret function of Algorithm  2 is 
eventually diminished to a value close to the reference error. That is, the value of the 
regret at the end of these optimizations is actually proportional to the uncertainty of 
a single measurement, assuming that all of the sampling is done at a single point.

Figures  4 and 5 also report the number of datapoints which are considered 
by the optimization algorithm as the iterations proceed. This number is impor-
tant in optimization problems for which the function evaluations are obtained 
from simulations which have an (expensive) initial transient, which must be set 

0

1

2

3

(a) Shifted parabolic function (40).

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

2

2.5

(b) Scaled Schwefel function (41).

Fig. 3   Illustration of Algorithm  2 on model problems (40) and (41) in 1D after 200 iterations, taking 
N0 = N� = 1 : (solid line) the truth function f(x), and (error bars) the 66% confidence intervals of the 
measurements. Global Minimum of the truth functions are shown by asterisks
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aside before sampling the statistic of interest, as discussed further in Remark 2. 
It is observed, as in the 1D case illustrated in Fig. 3, that the number of data-
points that are considered for the shifted parabolic function is less than that for 
the scaled Schwefel function. Further, the regret function converges faster to the 
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(c) The regret function in 2D.
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(e) The regret function in 3D.
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(f ) Total number of datapoints in 3D.

Fig. 4   Implementation of Algorithm  2 on the stochastically-obscured parabolic test problem (40), for 
twenty different runs. The left figure shows the mean, min, and max value of the regression function over 
the ensembles. Also plotted at left (dashed bold) is the reference error
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general proximity of the global solution for the shifted parabolic function. This 
result is reasonable, since the underlying function in the shifted parabolic case is 
much simpler.
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Fig. 5   Implementation of Algorithm  2 on the stochastically-obscured Schwefel test problem (41), for 
twenty different runs. The left figure shows the mean, min, and max value of the regression function over 
the ensembles. Also plotted at left (dashed bold) is the reference error
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The simulations whose results are shown in Figs. 4 and 5 indicate that the pre-
sented algorithm has improved the performance of the optimization process by 
reducing the simulation time at the datapoints, which are far from the solution. 
However, the necessity of refining steps needs further considerations. For this pur-
pose, we have applied algorithm 2 with and without refining step on to problem (40) 
whose results are shown in Fig. 6. For the optimization algorithm without refining 
steps, the candidate point at each iteration is the minimizer of the regression func-
tion in the datapoints. It is observed that by removing the refining steps from the 
optimization process, convergence speed varies significantly among the ensemble 
runs. In other words, the presence of the refining step in the optimization process 
is necessary to ensure consistent convergence performance among the ensemble 
runs. Another advantage of the refining step is to reduce the total number of data-
points in the optimization process as shown in Fig. 6. This is a significant advantage, 
especially for those range of optimization problems whose function evaluations are 
obtained from simulations with a long initial transient time.

6 � Application of ̨ ‑DOGS to estimate the parameters of a Lorenz 
system

In this section, Algorithm 1 ( �-DOGS), Algorithm 2 ( �-DOGS), and the Surrogate 
Management Framework (SMF) developed in [15] and implemented in [25] are 
applied to a representative optimization problem, based on infinite-time-averaged 
statistics, of the type considered in this paper [see (1)].

The specific problem considered here is derived from the well-known 3-state Lor-
enz model [21, 41], the dynamics of which exhibit a familiar chaotic behavior that 
roughly characterizes the bulk flow of a fluid within a hollow torus that is heated 
from below and cooled from above [10], and is governed by 
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(b) Optimization without refining step

Fig. 6   Implementation of Algorithm  2 with and without refining step on to the optimization problem 
(40) for twenty different runs. Left figure shows the convergence history of regret function for algo-
rithm 2 with refining step, and right figure shows the results without refining step
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 where (X, Y,  Z) are the components of the state, which generally moves along a 
chaotic attractor, and (�, �, s) are the three (constant) adjustable parameters which 
affect various characteristics of this attractor. The infinite-time-averaged mean and 
standard deviation of the Z component of this ergotic system are given by: 

 In the optimization problem considered in this section, the value of s = 10 is taken 
as known, and the parameters � and � are considered as optimization variables. 
Using the method developed in this paper (which is based on successive finite-time 
simulations), we will seek the values of � and � which reproduce known values of Z̄ 
and Ẑ in the infinite time averaged statistics of the Lorenz system (42). Towards this 
end, the cost function considered in this section is

Note that the value of Ẑ and Z̄ are functions of {�, �} . The search domain for {�, �} 
is taken as 24 ≤ � ≤ 29.15 and 1.8 ≤ � ≤ 4 ; note that the Lorenz system (42) exhib-
its a statistically stationary ergodic behavior everywhere within this search domain 
[21]. The optimal solution to this optimization problem is known to be approxi-
mately � = 28 , � = 2.667.

The cost function given in (44) might initially appear to be in a slightly different 
form than that given in (1a). However, it has the same essential structure, in that 
f(x) can be approximated with increasing accuracy by increasing the sampling (as 
well as the computational cost) of any given measurement. As a result, Algorithm 
(2) can be applied to this problem directly, given a sufficiently representative uncer-
tainty quantification (UQ) procedure for the finite-time-averaged approximations of 
the infinite-time-averaged statistics of interest. In this work, for the purpose of illus-
tration, we will use the simple UQ approach proposed in Appendix 2, which proves 
to be adequate for our purposes here; improved UQ approaches developed and dis-
cussed elsewhere could certainly be used instead.

To numerically simulate the ODE given in (42), we use a standard RK4 
method with a uniform timestep of h = 0.05 ; this approach provides a reasonably 

(42a)
d

dt
X = s (Y − X),

(42b)
d

dt
Y = −XZ + �X − Y ,

(42c)
d

dt
Z = XY − � Z,

(43a)Z̄ = lim
T→∞

1

T ∫
T

t=0

(Z(t)) dt,

(43b)Ẑ = lim
T→∞

√
1

T ∫
T

t=0

(Z(t) − Z̄)2 dt.

(44)f (x) = |(Z̄ − 23.57)| + |(Ẑ − 8.67)|, x = (𝜌, 𝛽).
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small time discretization error [21, 29] for this problem. [Using the same timestep 
h in all simulations during the optimization process is a drawback of the �-
DOGS optimization algorithm as developed in this paper; this limitation will be 
addressed in a future paper, which is currently under development.]

Initial conditions near the attractor are taken for all simulations, and (for sim-
plicity) the first 2600 timesteps (up to T = 13 ) are deleted from all simulations, in 
order to begin time averaging after the system has closely approached the attrac-
tor itself. [The interesting problem of automating the detection of such “initial 
transients”, during which the chaotic system approaches the attractor, is also 
deferred to a future paper.]

Note that all optimizations performed in this section are terminated when

where f̂ (x, T) and �(x, T) are the estimates and uncertainty at point x, and f (x∗) = 0 
is the global minimum of f(x).

According to the procedure developed in Appendix 2, T = 2513 (502600 
timesteps) is the minimum simulation time required to achieve the target uncer-
tainty in (46). As a result, all simulations of �-DOGS and SMF use fixed time-
averaging lengths of T = 2513 . In contrast, the time averaging length used by �-
DOGS for each datapoint computed during the optimization process is controlled 
by the optimizer itself, and depends on two parameters: 

(a)	 The averaging length during identifying sampling iterations, which is denoted 
by T0 = 20 (4000 timesteps). Note that the first 2513 timesteps are not included 
in time-averaging process, as they are in the startup transient.

(b)	 The additional averaging length during supplemental sampling iterations, which 
is denoted by T1 = 7 (1400 timesteps).

The results of applying the three optimization algorithms considered to problem 
(44) may summarized as follows: 

(a)	 �-DOGS requires greatly reduced (up to two orders of magnitude) total averaging 
time as compared with the other two algorithms considered (see Fig. 7).

(b)	 �-DOGS uses fewer actual datapoints than �-DOGS (see Fig. 8) to achieve a 
desired degree of convergence; however, since the time-averaging length at all 
datapoint is much higher in �-DOGS, the actual rate of convergence, in terms 
of computation time, is greatly improved using �-DOGS.

(c)	 For �-DOGS, the required averaging times at the datapoints which have reduced 
cost function values are significantly greater than the required averaging times at 
the datapoints that are far from the desired solution (see Fig. 9). As a result, the 
computational cost of the global exploration process during the optimization is 
significantly reduced using �-DOGS.

(45)|f̂ (x, T) − f (x∗)| ≤ 0.04 and

(46)�(x, T) ≤ 0.02,
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Fig. 7   Best measurement versus total averaging length. Convergence history of optimization algorithm 
for optimization problem (44) based on Lorenz system

1.5

2

2.5

3

3.5

4
-Dogs

1.5

2

2.5

3

3.5

4
-Dogs

26 28 30 26 28 30 26 28 30
1.5

2

2.5

3

3.5

4
SMF

Fig. 8   Location of the datapoints considered during the optimization of (44) based on the Lorenz system



24	 P. Beyhaghi et al.

1 3

7 � Conclusions

This paper presents a new optimization algorithm, dubbed �-DOGS, for the minimi-
zation of functions given by the infinite-time average of stationary ergodic processes 
in the computational or experimental setting. Two search functions are considered 
at each iteration. The first is a continuous search functions, sk

c
(x) , defined over the 

entire feasible space x ∈ L , combining a strict regression pk(x) of the available data-
points together with a remoteness function characterizing the distance of any given 
point in the feasible domain from the nearest measurements, and built on the frame-
work of a Delaunay triangulation over all available measurements at that iteration. 
The second is a discrete search function, sk

d
(xi) , defined over the available measure-

ments xi ∈ Sk . A comparison between the minima of these two search functions is 
made in order to decide between further sampling (and, therefore, refining) an exist-
ing measurement, or sampling at a new point in parameter space. The method devel-
oped builds closely on the Delaunay-based Derivative-free Optimization via Global 
Surrogates algorithm, dubbed �-DOGS, proposed in [12–14]. Convergence of the 
algorithm is established in problems for which 

(a)	 The underlying truth (infinite-time averaged) function, as well as the regressions 
computed at each iteration k, are twice differentiable.

(b)	 The stationary process g(x, k) upon which the truth function f(x) is generated, in 
(1a), is ergodic, and the convergence of the averaging process to the underlying 
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Fig. 9   Relationship between the averaging length and cost function value for �-DOGS applied on optimi-
zation problem (44)
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truth function is bounded by a monotonic function of a computable uncertainty 
function (see Assumption 2).

(c)	 The uncertainty of the time averaging process decays exponentially to zero (see 
Assumption 3); this is true for almost all stationary models of random processes.

The �-DOGS algorithm performs and refines measurements with different 
amounts of sampling in different locations in the feasible region of parameter 
space as necessary. By doing so, the total cost of the optimization process is sub-
stantially reduced as compared with using existing derivative-free optimization 
strategies, with the same amount of sampling at different locations in parameter 
space. Computational experiments demonstrate that the algorithm developed ulti-
mately devotes most of its sampling time to points in parameter space near to 
the global minimum. Further, these computational experiments indicate that the 
regret function (see Definition 5) eventually diminishes to a value that is actually 
substantially less than the uncertainty of a single measurement, assuming that all 
of the sampling is done at a single point.

In future work, the �-DOGS algorithm will be applied to additional benchmark 
and application-based optimization problems, including shape optimization for 
airfoils and hydrofoils. For problems in which the function is determined compu-
tationally (from, e.g., numerical simulations of turbulent flows), the extension of 
the present framework to, as convergence is approached, simultaneously (a) refine 
the computational grid, and (b) increase the measurement sampling, is also under 
development.
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Appendix 1: Polyharmonic spline regression

The algorithm described in this paper depends upon a smooth regression pk(x) 
(see Assumption 1). The best technique for computing the regression is problem 
dependent. As with [12–14], a key advantage of our Delaunay-based approach in 
the present work is that it facilitates the use of any suitable regression technique, 
subject to it satisfying the “strict” regression property given in Definition 4. Since 
our numerical tests all implement the polyharmonic spline regression technique, 
the derivation of this regression technique is briefly explained in this appendix; 
additional details may be found in [46].

The polyharmonic spline regression p(x) of a function f(x) in ℝn is defined as 
a weighted sum of a set of radial basis functions �(r) built around the location of 
each measurement point, plus a linear function of x:
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The weights wi and vi represent N and n + 1 unknowns. Assume that 
{y(x1), y(x2),… , y(xn)} is the set of measurements, with standard deviations 
{�1, �2,… , �2} . The wi and vi coefficients are computed by minimizing the following 
objective function, which expresses is a tradeoff between the fit to the observed data 
and the smoothness of the regressor:

where B is a large box domain containing all of the xi , and ∇mp(x) is the vector 
including all m derivatives of p(x) (see [20]). It is shown in [20] that the first-order 
optimality condition for the objective function (48) is as follows:

where � is a parameter proportional to � . In summary, the coefficient of the regres-
sion can be derived by solving:

where �i,j is the Kronecker delta.
The problem which is left to solve when computing the regression is to find 

an appropriate value of � ∈ [0,∞) . Solving (50) for any value of � gives a unique 
regression, denoted p(x, �) . The parameter � is then obtained by a predictive 
mean-square error criteria developed in §4.4 in [46], which is given by imposing 
the following condition:

For � → ∞ , wi → 0 , and the solution of (50) is a weighted mean-square linear 
regression, which is obtained by solving (51). If T(∞) ≤ 1 , we take this linear 
regression as the best current regression for the available data. Otherwise, we have 
T(∞) > 1 and (by construction) T(0) = 0 ; thus, (51) has a solution with finite 𝜌 > 0 , 
which gives the desired regression.

If T(∞) > 1 , we thus seek a � for which for T(�) = 1 . Following [46], using 
(50), (51) simplifies to:

(47)
p(x) =

N�

i=1

wi �(r) + vT
�
1

x

�
,

where �(r) = r3 and r = ‖x − xi‖.

(48)Lp(x) =

N∑

i=1

[
(p(xi) − y(xi))

�i

]2
+ �∫B

|∇mp(x)|,

(49)p(xi) − y(xi) + � �
2
i
wi = 0, ∀1 ≤ i ≤ N,

(50)

�
F VT

V 0

� �
w

v

�
=

�
f (xi)

0

�
,

Fij = �(‖xi − xj‖) + ��i,j �
2
i
, V =

�
1 1 … 1

x1 x2 … xN

�
,

(51)T(�) =

N∑

i=1

[
p(xi, �) − y(xi)

�i

]2
= 1.



27

1 3

A derivative‑free optimization algorithm for the efficient…

 where wi,� is the wi which is obtained by solving (50). Define Dw and Dv as the vec-
tors whose i-th elements are the derivatives of wi and vi with respect to � , then

where �2 is a diagonal matrix whose i-the diagonal element is � �2
i
 . Therefore, the 

analytic expression for the derivative of T(�) is available. Thus, (51) can be solved 
quickly using Newton’s method.

The regression process presented here, imposing (1) as suggested by [46], is 
designed to obtain a regression which is reasonably smooth. However, there is no 
guarantee that this particular regression satisfies the strictness property required 
in the present work (see Definition 4). Note, however, that by imposing � = 0 , the 
regression is made strict for arbitrary small � . Thus, to satisfy strictness for a given 
finite � , the value of � must sometimes be decreased from that which satisfies (1), as 
necessary.

Appendix 2: UQ for finite‑time‑averaging of the Lorenz system

This appendix summarizes briefly the simple empirical approach that is used in this 
paper to quantify the uncertainty of the cost function (44) when it is estimated using 
a finite time average.

In the method used, we simply simulated the Lorenz system (42) 30 independent 
times with various initial values for (X, Y, Z). The cost function was then approx-
imated using these different simulation lengths, and the standard deviation of the 
estimations obtained using various simulation lengths was calculated. The simple 
model given by A∕

√
T  for the uncertainty was found to fit this empirical calculation 

quite well, as shown in Fig. 10.

Appendix 3: Application of ̨ ‑DOGS on higher dimensional problems

We now consider the challenge of increasing the dimension of the problem con-
sidered. This is rather difficult, as the algorithm developed herein (specifically, the 
computational cost of computing the Delaunay triangulation) scales rather poorly as 
the dimension of the problem is increased. In this appendix, the convergence behav-
ior on a 5-dimensional problem is thus investigated.

(52)T(�) = �
2

(
N∑

i=1

wi) �i

)2

= 1,

T �(�) = �
2

N∑

i=1

wi Dwi�
2
i
+ 2 �

(
N∑

i=1

wi,��i

)2

,

[
F VT

V 0

] [
Dw

Dv

]
+

[
��2 0

0 0

] [
w

v

]
=

[
0

0

]
,
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The test problem that is considered here is the stochastically-obscured scaled 
Schwefel function (41) for n = 5 . As in Sect.  6, performance of the �-DOGS, �-
DOGS, and SMF algorithms are characterized. In this investigation, for all datapoint 
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Fig. 10   Uncertainty quantification (UQ) for finite-time-average approximations of the inifinite-time-aver-
age statistic of interest in the cost function related to the Lorenz model. The uncertainty quantification 
model of A∕

√
T  is found to give a very good empirical fit
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in �-DOGs and SMF algorithm, a fixed averaging time of T = 100 was used. Fig-
ure 11 shows the convergence history of the regret function for each method. It is 
observed that the required total averaging time for the optimization problem with �
-DOGS is significantly better than the other methods considered.

To scale to even higher dimensional problems, the practical (though, perhaps, not 
provably globally convergent) idea of using only approximate Delaunay triangula-
tions has been proposed, and will be considered in future work.
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