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1. Introduction

In Part 1 [1] of this two-part paper, a technique was developed to optimize the excitation to a system for the purpose of
making damage most visible. In this second part, the focus is on experimental validation of the developed technique on a
structural system. In addition, a second-order version of the adjoint problem is formulated. Through this formulation, it is
easily seen that the mass, damping, and tangent stiffness matrices are the only terms needed for the solution of the adjoint
system. These matrices are calculated automatically by most commercial finite element codes, which enhances the
usability of the developed technique.

One of the conjectures made in Part 1 was the robustness of the technique to modeling errors. The specific topic of
robustness is not directly addressed in this paper. However, the experimental validation of the developed techniques is very
important, because it lends support to this conjecture and demonstrates that the technique can be used in the real world,
where modeling errors are inevitable.

The remainder of this paper describes the experimental setup, develops the appropriate adjoint problem for the
excitation optimization, and presents the experimental results.

2. Experimental setup

The experimental setup consists of a non-linear cantilever beam, shown in Fig. 1. The beam, made from 6061 aluminum,
is 381 mm long, 50.8 mm wide, and 2.29 mm thick. The nonlinearity is introduced through a set of neodymium magnets at
the free end of the beam (region 1 in Fig. 1). A close up view of the magnets, with polarity annotations, is shown in Fig. 2.
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Fig. 1. Experimental setup.

Fig. 2. Magnet configuration and orientation.

The magnets are arranged such as to create the effect of a stiffening spring between the free end of the beam and ground.
As is discussed below, the magnets introduce a linear stiffness term in addition to non-linear terms. The purpose of the two
magnets furthest from the beam and their associated orientation is to minimize this linear term. Damage is simulated by
moving the magnets connected to ground further away from the beam. This has the effect of decreasing the stiffening
effect. Excitation to the beam is provided by an electrodynamic shaker (region 2 in Fig. 1) located 130.5 mm from the
clamped end. Beam deflection approximately half way in between the point of excitation and the free end of the beam is
measured with a laser displacement sensor (region 3 in Fig. 1). The reason for choosing this location for measuring the
displacement is due to the range and resolution of the laser displacement sensor. Thus, the goal of the excitation design is
to provide an excitation that causes the undamaged and damaged measured displacements to be as different as possible.

3. Adjoint model development

The beam is modeled as an Euler-Bernoulli beam, and is governed by the familiar equation

d? d*u d%u
el <EIW> + pAW =0

u(0,t) = 2—2(0, =0

d (. d*u
a (Eldxz>
d (. d*u
d (Eldxz>

Please cite this article as: M.T. Bement, T.R. Bewley, Excitation design for damage detection using iterative adjoint-based
optimization—Part 2:...,, Mechanical Systems and Signal Processing (2008), doi:10.1016/j.ymssp.2008.07.005

=f®

X=Xg

= K, u(L, £) + Knpy u(L, ) + Ky u(L, £)°

x=L



dx.doi.org/10.1016/j.ymssp.2008.07.005

M.T. Bement, T.R. Bewley / Mechanical Systems and Signal Processing 1 (1iin) ni-am 3

where u is the defection of the beam, E is the elastic modulus, I is the area moment of inertia, p is the density per unit
length, A is the cross sectional area, L is the length of the beam, f(t) is the force supplied by the shaker, and x; is the location
of the shaker. The boundary condition at the free end due to the magnets can be easily derived. The force between two
parallel magnets decreases with one over distance to the fourth power. Because there are magnets on both sides of the
beams, the force seen at the free end of the beam due to the magnets may be modeled as

kmag kmag
FuL)y) = sgnu(l) — d) ) d + sgn(u(l) + d) D+ dF (1)
where knmag is a coefficient related to the strength of the magnets and d is distance between the magnets on the beam and
the ones attached to ground. Force/displacement data were collected for the undamaged configuration (d = 0.035 m). From
these data, it was determined that kymag = 2.7¢ — 6N m*. Furthermore, for reasons relating to the solution of the equations,
this model was approximated with a fifth-order polynomial. Because of the symmetric nature of the force/displacement
function, the constant, second, and fourth-order coefficients in this polynomial fit are zero and ky,, kn;,, and k. are the
first, third, and fifth-order coefficients, respectively. Note that despite the non-linear nature of the magnets, they do
introduce a linear stiffness component. Fig. 3 shows the experimental data, the fit from the model, and the polynomial fit.

The magnets attached to the free end of the beam have a mass of 43.6 g, and it is assumed that the shaker introduces an
additional mass, stiffness and damping at its point of application. The mass is taken to be 50g, the stiffness is taken to be
18 kN/m, and the damping is taken to be 70 N/m/s. This equation is solved using a standard finite element method (cubic
Hermite shape functions) with 20 elements (see, for example [2]). This results in a set of ODEs of the form

MU + CU + KU = Bf(t) (2)
where U = [u”(du/dx)"]". Because it will be used below, we also note that the tangent linear equation can be easily verified
to be given by

MU' + CU' + K(H)U' = Bf'(t) (3)
Because the stable time step necessary for integration of this set of equations using the fourth-order Runge-Kutta method is very
small (less than a microsecond), Eq. (2) is integrated in time using the Newmark method with constant average acceleration

Ugs1 = Uy + AU; + 0.5(At* Uy o5

U1 = Up + AtUpo5

Upros = 0.5U; + 0.5U;4

With this integration scheme, much larger time steps are possible (1 ms was chosen). Let the output y = GU be the deflection at
the location of the laser displacement sensor (approximately 247 mm from the clamped end). Following the procedure developed
in Part 1, the cost function that we seek to maximize is
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Fig. 3. Magnet force/displacement data for undamaged configuration.
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where y, represents the output for the undamaged condition, y, represents the output for the damaged condition, U = [UT Ud]
G =[G —G],and Q = G'G. Following the technique developed in Part 1, which is not repeated here, it is seen that the second-
order version of the adjoint equation is given by

M'R-C'R+K'R=0QU

R(T) =

where
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and K, (t) and Ky(t) are the time varying stiffness matrices obtained from the tangent linear equations for the undamaged and
damaged systems, respectively. It is worth noting that the adjoint equation only requires the mass, damping and tangent stiffness
matrices, all of which are available in any number of commercial finite element codes. Thus, a commercial finite element code

such as Abaqus could be used, without the need for any special, adjoint version of the code. This represents a significant usability
advantage. The gradient of the cost function with respect to the excitation f(t) then follows from Part 1 and is given by

Dj
Df
where B = [BT BT|". The updated excitation is then given by

D,
FOnr = fO + D—}

=R"B

where o is determined via a line search. This updated f(t) is then normalized to the maximum excitation amplitude, as
appropriate. For this example, the excitation supplied to the shaker was limited to 10V.

4. Results

Two different damage scenarios were considered. The first, referred to as damage scenario 1, corresponds to moving the
magnets attached to ground away from the beam by 3.1 mm. For the second scenario, referred to as damage scenario 2, the
first damaged state becomes the new “undamaged” system, and damage corresponds to moving the magnets attached to
ground an additional 1.4mm away from the beam. Using Eq. (1), we can predict the magnet force (and associated
polynomial fit coefficients) for these damage scenarios by altering d (by 38.3 mm for the first scenario and 39.7 mm for the
second scenario). A plot of the resulting magnet force/displacement curves is shown in Fig. 4.

Following the same procedure as in Part 1, we select a random input with frequency content up to 30 Hz as the initial
excitation. The duration of the excitation, T, was chosen to be 2 s, and the sampling frequency used was 1000 Hz. Because
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Fig. 4. Magnet force/displacement data.
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the bandwidth of the electrodynamic shaker is approximately 5000 Hz, no actuator dynamics needed to be incorporated
into the damaged and undamaged models. A plot of this initial excitation is shown in Fig. 5.

The predicted cost function (4) was evaluated for both damage scenarios using this initial excitation, and the procedure
outlined above and in Part 1 was followed to optimize the excitation for each damage scenario. The initial and optimized
signals (which were limited to 10V) were then supplied to the shaker, and the response recorded. From this recorded
response, actual values of the cost function may be calculated to determine if indeed the optimized excitation gave a larger
value of the cost function than the initial excitation.

For the first damage scenario, the predicted cost function value for the initial random excitation signal is 1.2e — 7. The
optimized excitation for this scenario is shown in Fig. 6 and will be referred to as E1. The predicted cost function value for
the E1 excitation is 7.1e — 6 (approximately a 60x increase as compared to the random excitation).
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Fig. 5. Initial random excitation.
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Fig. 6. Damage scenario 1 optimized excitation.
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The actual cost function value for the random excitation is 1.1e — 7, and the actual cost function value for the E1
excitation is 7.1e — 6 (approximately a 62x increase as compared to the random excitation). Fig. 7 shows y, — y, for the
chirp and E1 excitations, and the increased difference due to the E1 excitation is clearly visible.

For the second damage scenario (which is essentially designing an excitation to tell the difference between damage level
1 and damage level 2), the predicted cost function value for the random excitation is 1.3e — 7, and the predicted cost
function value for the optimized excitation is 7.5e — 6 (approximately a factor of 58 x improvement as compared to the
random excitation). The optimized excitation for this damage scenario is shown in Fig. 8 and will be referred to as E2.

The actual cost function value for the random excitation is 6.7e — 8, and the actual cost function value for the E2
excitation is 2.0e — 6 (approximately a 30x increase as compared to the random excitation). Fig. 9 shows y, — y, for the
chirp and E2 excitations.
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Fig. 7. Damage scenario 1 response to random and optimized excitation E1.
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Fig. 8. Damage scenario 2 optimized excitation.
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Fig. 9. Damage scenario 2 response to random and optimized excitation E2.
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Fig. 10. Initial chirp excitation.

In the Example in Part 1, it was seen that a random input was not as good of an input as a sinusoid. For the sake of
completeness, and to demonstrate that the developed technique does not just improve on very poor initial excitations, it is
desirable to compare the optimized excitations to a sinusoidal excitation. However, because the magnets introduce a linear
stiffness component at the free end of the beam (in addition to the non-linear components), it is not as straightforward
as that in the Example in Part 1 to select a meaningful single frequency sinusoid to use as the initial excitation.
As a compromise, a chirp signal from 0 to 30Hz was selected as an alternate initial excitation. This initial excitation is
shown in Fig. 10.

The predicted and observed values for the cost function for the chirp signal, and the optimized signals for both damage
levels are summarized in Table 1. Plots of y, — y, for these excitations are shown in Figs. 11 and 12. Clearly, the optimized
excitations are still an improvement, even compared to the chirp excitation. Finally, for the sake of completeness, the
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Table 1
Results with chirp excitation

Predicted J (chirp) Actual J (chirp) Predicted J(E) Actual J(E)

Damage scenario 1 2.6e—6 3.0e -6 7.1e—6 7.1e—6
Damage scenario 2 13e—6 0.8e—6 7.5e — 6 2.0e—6
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Fig. 11. Damage scenario 1 response to chirp and optimized excitation E1.
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Fig. 12. Damage scenario 2 response to chirp and optimized excitation E2.
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Fig. 13. Log magnitudes of excitations in frequency domain.

log-magnitude in the frequency domain of all excitations is shown in Fig. 13. This figure is given purely for comparison
purposes, as it is emphasized that the developed excitation optimization technique is a time domain technique and makes
no statements about the frequency characteristics of the optimized signal.

5. Discussion and recommendations for future research

There are several aspects of the results worthy of discussion. First, the developed technique was shown to produce
excitations which improve the detectability of damage relative to two different “naive” excitations (a random input and a
chirp). In addition, the technique was shown to be effective across multiple damage levels. While not surprising, it is
interesting to note that the excitation produced for damage scenario 2 was not the same as the excitation produced for
damage scenario 1. Indeed, even to the eye, the excitations look significantly different. This implies that the excitation that
is useful for identifying one type of damage need not be the same as the excitation useful for identifying a different or
subsequent type of damage. This is actually quite a useful effect as it may be possible to design an excitation which is
sensitive to one type of change (e.g., damage), but is not sensitive to other types of change (e.g., temperature change).
Because the so-called “data normalization” is a significant challenge in structural health monitoring, this “selective”
excitation design represents an interesting area for future research.

It is also interesting to note that while the designed excitations undeniably improve the detectability of the damage
relative to the naive excitations, the prediction of this improvement in damage scenario 1 was more accurate than the
prediction of this improvement in damage scenario 2. There may be several reasons for the discrepancy. One possible
reason may be incorrect modeling of the magnets for the second damage scenario. Recall that the terms in Eq. (1) were fit
using force/displacement data obtained in the undamaged condition. The damaged conditions were then estimated by
increasing d in Eq. (1). However, as d increases, the magnets on the beam and the magnets attached to ground become
less parallel when they come into close proximity, due to the slope at the free end of the beam. Because Eq. (1) is only
valid for parallel magnets, the model for the magnetic force may start to lose accuracy at higher damage levels. If the model
for damage is incorrect, it should come as no surprise if the predicted and actual values for the increase in the cost function
for the designed excitation are somewhat different.

Regardless of whether the damage model is correct, there are certainly other modeling errors. For example, other than
attempting to capture effective mass, damping, and stiffness terms for the shaker, no other shaker or amplifier dynamics
were modeled. In Part 1, a conjecture was made that the developed technique should be somewhat insensitive to non-
damage related modeling errors. The fact that the prediction for the increases in the cost function for damage scenario 1
was quite accurate supports this conjecture. To understand another potential reason for the discrepancy in the magnitude
of the predicted effect for damage scenario 2, recall that as noted above, the excitation for damage scenario 1 and the
excitation for damage scenario 2 appears to be significantly different. Thus, it may be possible that some excitations are
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more robust to non-damage related modeling errors than other excitations. A formal investigation into designing “robust”
excitation represents another area for future research.

6. Conclusions

The iterative, adjoint-based excitation optimization technique developed in Part 1 was evaluated on an experimental
structure consisting of a non-linear cantilever beam. The developed technique was shown to be effective at producing
excitations which significantly improve the detectability of damage relative to two different “naive” excitations (a random
input and a chirp). The technique was also shown to be effective across multiple damage levels. In addition, by formulating
a second-order version of the adjoint problem, it was shown that the terms needed to solve the associated adjoint equation
are readily available from many commercially available finite element packages, which further enhances the usability of the
technique. Finally, avenues for future research including “selective” excitation design and “robust” excitation design were
proposed.
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