
A DERIVATIVE-FREE OPTIMIZATION ALGORITHM FOR THE
EFFICIENT MINIMIZATION OF TIME-AVERAGED STATISTICS

POORIYA BEYHAGHI AND THOMAS BEWLEY

Abstract This paper considers the efficient minimization of the infinite time av-
erage of a stationary ergodic process in the space of a handful of design parameters
which affect it. Problems of this class, derived from physical or numerical experiments
which are sometimes expensive to perform, are ubiquitous in engineering applications.
In such problems, any given function evaluation, determined with finite sampling, is
associated with a quantifiable amount of uncertainty, which may be reduced via addi-
tional sampling. The present paper proposes a new optimization algorithm to adjust
the amount of sampling associated with each function evaluation, making function
evaluations more accurate (and, thus, more expensive), as required, as convergence
is approached. The work builds on our algorithm for Delaunay-based Derivative-free
Optimization via Global Surrogates (∆-DOGS, see JOGO DOI: 10.1007/s10898-015-
0384-2). The new algorithm, dubbed α-DOGS, substantially reduces the overall cost
of the optimization process for problems of this important class. Further, under cer-
tain well-defined conditions, rigorous proof of convergence to the global minimum of
the problem considered is established.

1. Introduction. In this paper, the Delaunay-based derivative-free optimization
algorithm developed in [4–6], dubbed ∆-DOGS, is modified to minimize an objective
function, f(x) : Rn → R, obtained by taking the infinite-time average of a discrete-
time ergodic process g(x, k) for k = 1, 2, 3, . . . such that

(1a) f(x) = lim
N→∞

1

N

N∑
k=1

g(x, k),

where, for k & k̄, g(x, k) is assumed to be statistically stationary. The feasible domain
in which the optimal design parameter vector x ∈ Rn is sought is a bound constrained
domain

(1b) L = {x|a ≤ x ≤ b} where a < b ∈ Rn.

Note that calculating the true value of f(x) for any x is impossible; f(x) can only be
approximated as the average of g(x, k) over some finite number of samples N . The
truth function f(x) is typically a smooth function of x, though it is often nonconvex;
computable approximations of f(x), however, are generally nonsmooth in x, as the
truncation error (associated with the fact any approximation of f(x) must be com-
puted with finite N) is effectively decorrelated from one approximation of f(x) to the
next.

Minimizing (1a) within the feasible domain (1b) is the subject of interest in host
of practical applications, such as the optimization of stiffness and shape parameters
and feedback control gains in mechanical systems and manufacturing processes in-
volving turbulent flows, the setting of airline ticket prices, etc. Remarkably, however,
there are very few optimization algorithms today ([13] and [26] being notable excep-
tions) that specifically address problems of this form, which instead are typically han-
dled using classical derivative-free optimization approaches which, quite inefficiently,
approximate each function evaluation with the same amount of sampling. Though
many such classical derivative-free optimization approaches effectively keep function

1

evaluations far apart in parameter space until convergence is approached, thereby
mitigating somewhat the effect of uncertainty in the function evaluations, at least for
a while, they are not specifically designed to adjust the amount of sampling asso-
ciated with each individual function evaluation, making function evalutations more
accurate (and, thus, more expensive), as required, as convergence is approached. The
algorithm presented here, in contrast, automatically adjusts the sampling associated
with each function evaluation as convergence is approached. Three existing classes of
algorithms that might be considered to optimize problems of the form given in (1)
are discussed further below.

The first is based on a convex production planning model [16], using the dynamic
programming principle to find an optimal solution. This modeling has been analyzed
in both the discrete [11] and continuous [24, 25] settings. This approach is appropriate
for control problems in which an adaptive controller is implemented with a large
number of design parameters.

The second is based on an adjoint formulation (see, e.g., [10, 12, 20, 21]), which
calculates the gradient of the function of interest at each iteration based on an adjoint
computation. This method is very powerful for many problems in which essentially
exact function evaluations are available, and scales exceptionally well to problems
with many design parameters. However, for problems of the form (1), such as the
optimization of airfoil shapes for turbulent flows, classical adjoint formulations are
not suitable. This issue is addressed in a clever way in [32] and [31], where a novel
method to alleviate it is presented. Nevertheless, this approach still only assures local
convergence, and is highly sensitive to the accuracy of the mathematical model which
is used for adjoint-based computations of the gradient.

The third is the class of derivative-free methods, which are indeed the most
promising class of approaches for problems of the present form. These methods are
also implemented for shape optimization in airfoil design [14], as well as in online opti-
mization [13]. With such methods, only values of the function evaluations themselves
are used, and neither a derivative nor its estimate is needed. The best methods of
this class strive to keep function evaluations far apart in parameter space until con-
vergence is approached, thereby mitigating somewhat the effect of uncertainty in the
function evaluations. This class of methods generally handles feasibility boundaries
quite well, and may be used to globally minimize the function of interest. However,
this class of method scales quite poorly with dimension of the problem. The surrogate
management framework [7] and Bayesian algorithms [18, 19, 23, 26] are amongst the
best derivative-free methods available today, and are implemented for minimizing a
problem of the form in (1) in [14, 15, 27, 28].

For problems of the form (1), [13] and [26] are perhaps the two most closely re-
lated papers to the present in the literature. In [13], a clever Lipschitzian optimization
algorithm is presented which uses measurements with differing amounts of accuracy;
this approach builds specifically upon accurate knowledge of the Lipchitz norm of the
truth function. Proof of convergence of the algorithm proposed is provided in [13].
In [26], a promising Kriging-based algorithm of the surrogate management framework
family is proposed, in a manner which increases the sampling of new measurements as
convergence is approached. However, this method does not selectively refine existing
measurements, which is a key contributor to the efficiency of the algorithm devel-
oped herein. Also, rigorous proof of convergence of the algorithm proposed in [26] is
unavailable.

In this paper, a highly efficient and provably convergent new optimization ap-
proach is developed for problems of the form given in (1). The structure of the

2

remainder of the paper is as follows: Section 2 briefly reviews the key features of
the ∆-DOGS(Z) algorithm developed in [5], upon which the present paper is built.
Section 3 lays out all of the new elements that compose the new optimization ap-
proach, as well as the new algorithm itself, dubbed α-DOGS. Section 4 analyzes the
convergence properties of the new algorithm, and establishes conditions which are
sufficient to guaranty its convergence to the global minimum. Section 5 applies the
new algorithm to a selection of model problems in order to illustrate its behavior.
Some conclusions are presented in Section 6.

2. Delaunay-based optimization coordinated with a grid: ∆-DOGS(Z).
This section presents a simplified version of the ∆-DOGS(Z) algorithm, the full ver-
sion of which is given as Algorithm 2 of [5], where it is analyzed in detail. The ∆-
DOGS(Z) algorithm is a grid-based acceleration of the ∆-DOGS algorithm originally
developed in [6], and is designed to minimize problems in which accurate function
evaluations are available, while avoiding an accumulation of unnecessary function
evaluations on the boundary of the feasible domain.

The optimization problem we consider in this section is the minimization of an
objective function f(x), accurate evaluations of which are assumed to be available, in
the feasible domain L = {x|x ∈ Rn, a ≤ x ≤ b}. At each iteration of the simplified ∆-
DOGS(Z) algorithm considered here, a metric based on an interpolation of existing
function evaluations, and a model ek(x) of the “remoteness” of any point x ∈ L
from the available datapoints at that iteration (which in the ∆-DOGS(Z) algorithm
characterizes the uncertainty of the interpolation) is minimized to obtain the location
of the next point x ∈ L at which the function will be evaluated. The interpolation and
remoteness functions at iteration k are denoted here by pk(x) and ek(x), the latter
of which is defined below. Note that the function ek(x) is called an “uncertainty”
function in [4–6]; we use the name “remoteness” function for the same construction in
the present paper, as this function plays a slightly different role in the sections that
follow.

definition Consider S as a set of feasible points which includes the vertices of L,
and ∆ as a Delaunay triangulation of S. Then, for each simplex ∆i ∈ ∆, the local
remoteness function is defined as:

(2a) ei(x) = R2
i − ‖x− Zi‖

2
,

where Ri and Zi are the circumradius and circumcenter of ∆i. The global remoteness
function e(x) is a piecewise quadratic function which is nonnegative everywhere and
goes to zero at the datapoints, and is defined as follows:

(2b) e(x) = ei(x) ∀x ∈ ∆i.

The remoteness function e(x) has a number of properties which are estab-
lished in Lemmas [2:5] in [6], as listed bellow.

Definition 1. a. The remoteness function e(x) ≥ 0 for all x ∈ L, and e(x) = 0
for all x ∈ S.

b. The remoteness function e(x) is continuos and Lipschitz.
c. The remoteness function e(x) is piecewise quadratic with Hessian of −2 I.
d. The remoteness function e(x) is equal to the maximum of the local remoteness

functions:

(3) e(x) = max
1≤i≤n

ei(x).

3

We now review the definition of the Cartesian grid over the feasible domain, as
discussed further in [5].

definition Taking N` = 2`, the Cartesian grid of level ` over the feasible domain
L = {x|a ≤ x ≤ b}, denoted L`, is defined as follows:

L` =

{
x|xi = ai +

bi − ai
N`

· z, z ∈ {0, 1, . . . , N`}, i ∈ {0, 1, . . . , n}
}
.

The quantization of a point x onto the grid L`, denoted x`q, is a point on the grid
L` which has the minimum distance from x. Note that this quantization process
might have multiple solutions; any of these solutions is acceptable. The maximum
quantization error of the grid, δL`

, is defined as follows:

(4) δL`
= max
x∈L`

‖x− x`q‖ =
‖b− a‖

2N`
.

Three important properties of the Cartesian grid for the present purposes
follow.

Definition 2. a. The grid of level ` covering the feasible domain L in an n
dimensional space has (N` + 1)n grid points.

b. lim`→∞ δL`
= 0.

c. If x`q is a quantization of x onto L`, then Aa(x) ⊆ Aa(x`q), where Aa(x) is the
set of active constraints at x0.

Algorithm 1 presents a strawman form of the ∆-DOGS(Z) algorithm. A signifi-
cant refinement of this algorithm is presented as Algorithm 2 of [5], together with its
proof of convergence and its implementation on model problems. The key refinement
in [5] of the strawman algorithm presented here is the identification of two different
sets of points in L, dubbed SE (on which function evaluations are performed) and SU
(on which function evaluations are not yet performed); the latter set proves useful in
[5] to regularize the triangulations. The algorithm proposed in §3 below effectively
generalizes this notion, of evaluation points at which the function has been evaluated,
and support points at which the function has not yet been evaluated, to the quantifi-
cation and control over the extent of sampling performed for any given approximation
of f(x).

3. Delaunay-based optimization of a time-averaged value: α-DOGS.
This section presents the essential elements of the new optimization algorithm, dubbed
α-DOGS, which is designed to efficiently minimize a function f(x) given by (1a) within
the feasible domain L defined by (1b). We begin by introducing some fundamental
concepts.

definitionTake S as a set of points xi, for i = 1, . . . ,M , at which the function f(x)
in (1a) has been approximated; drawing a parallel to the nomenclature commonly used
in estimation theory, we refer to any such approximation of f(x), developed with a
finite number of samples Ni, as a measurement, denoted yi:

(5) yi = y(xi, Ni) =
1

Ni

Ni∑
k=1

g(xi, k).

Any such measurement yi has a finite uncertainty associated with it, which may made
small by increasing Ni. For many problems, there is an initial transient such that,
for k < k̄, the assumption of stationarity of g(x, tk) is not valid. For such problems,

4

Algorithm 1 Strawman form of the grid-accelerated Delaunay-Based optimization
algorithm, ∆-DOGS(Z), presented as Algorithm 2 in [5], which assumes that accurate
function evaluations are available.

1: Set k = 0 and initialize `. Take the set of initialization points S0 as all ver-
tices of the feasible domain L, together with any user-supplied points of interest
(quantized onto the grid L0), and perform function evaluations at all points in
S0.

2: Calculate (or, for k > 0, update) an appropriate interpolating function pk(x)
through all points in Sk.

3: Calculate (or, for k > 0, update) a Delaunay triangulation ∆k over all of the
points in Sk.

4: Find z as a global minimizer of skc (x) = pk(x) −K ek(x) in L, and take z` as its
quantization onto the grid L`.

5: If z` /∈ Sk, then take Sk+1 = Sk ∪ {z`} calculate f(z`), increment k, and repeat
from 2.

6: Otherwise, take Sk+1 = Sk, increment both k and `, and repeat from 2.

the initial transient in the data can be detected using the approach developed in [1]
and set aside, and the signal considered as stationary therafter. In such problems, to
increase the speed of convergence of the statistics, the finite sum used for averaging
the samples in (5) is modified to begin at k̄ instead of beginning at 1. Since, for k > k̄,
g(x, k) is statistically stationary, each measurement yi is an unbiased estimate of the
corresponding value of f(xi). We assume that a model for the standard deviation
quantifying the uncertainty of this measurement, denoted σi = σ(xi, Ni), is also
available. Since g(x, t) is a stationary ergodic process, for any point xi ∈ L,

(6) lim
Ni→∞

y(xi, Ni) = f(xi), lim
Ni→∞

σ(xi, Ni) = 0.

If a stationary ergodic process g(x, k) at some point xi ∈ L is independent and
identically distributed (IID), then σ(xi, Ni) = σ(xi, 1)/

√
Ni; otherwise, estimates of

σ(xi, Ni) can be developed using standard uncertainty quantification (UQ) proce-
dures, such as those developed in [2, 3, 17, 22, 29]. The discrete-time process g(x, k)
may often be obtained by sampling a continuous-time process g(x, t) at timesteps
tk = kh for some appropriate sample interval h. For sufficiently large h, the sam-
ples of this continuous-time process g(x, k) are often essentially IID; however, with
the appropriate UQ procedures in place, significantly smaller sample intervals h will
lead to a given degree of convergence in a substantially shorten period of time t, al-
beit with increased storage.definition Define S as a set of measurements yi, for
i = 1, 2, . . . ,M , at corresponding points xi and with standard deviation σi. We will
call a regression p(x) for this set of measurements a strict regression if, for some
constant β,

(7) |p(xi)− yi| ≤ β σi, ∀ 1 ≤ i ≤M.

Based on the concepts defined above, Algorithm 2 presents our algorithm to efficiently
and globally minimize a function of the form (1a) within a feasible domain defined
by (1b). At each iteration k of this algorithm, Sk denotes the set of M points xi,
for i = 1, 2, . . . ,M , at which measurements have so far been made; for each point
xi ∈ Sk, yi = y(xi, Ni) denotes the measured value, σi = σ(xi, Ni) denotes the

5

Algorithm 2 The new optimization algorithm, dubbed α-DOGS, for minimizing the
function f(x) in (1a) within the feasible domain L defined in (1b).

Definition 4. 1: Set k = 0 and initialize the algorithm parameters α, K, γ, β, `, N0,
and Nδ as discussed in §3. Take the initial set of M sampled points, S0, as the 2n

vertices of the feasible domain L = {x|a ≤ x ≤ b} together with any user-supplied
points of interest quantized onto the grid L`. Take Ni = N0 for i = 1, . . . ,M , and
compute an initial measurement yi = y(xi, N

0) and corresponding uncertainty
σi = σ(xi, N

0) for each point xi ∈ S0.
2: Calculate a strict regression pk(x) for all M available measurements.
3: Calculate (or, for k > 0, update) a Delaunay triangulation ∆k over all of the

points in Sk.
4: Determine xj as the minimizer (and, j as the corresponding index), over all xi ∈
Sk, of the discrete search function skd(xi), defined as follows:

(8) skd(xi) = min{pk(xi), 2 yi − pk(xi)} − ασki for i = 1, . . . ,M.

5: Noting the definition of ek(x) in (2), determine z as the minimizer, over all x ∈ L,
of the continuous search function skc (x), defined as follows:

(9) skc (x) = pk(x)−K ek(x) for x ∈ L.

Denote z` as the quantization of z onto the grid L`.
6: If skc (z) > skd(xj) and Nj < γ 2` where Nj is the current number of samples taken

at xj , then take Nδ additional samples at xj , update Nj ← Nj +Nδ, update the
measurement yj = y(xj , Nj) and uncertainty σj = σ(xj , Nj), increment k, and
repeat from 2.

7: Otherwise, if z` /∈ Sk, then set xM+1 = z` and Sk+1 = Sk ∪ {xM+1}, take
NM+1 = N0, compute the measurement yM+1 = y(xM+1, N

0) and uncertainty
σM+1 = σ(xM+1, N

0), increment M and k, and repeat from 2.
8: Otherwise, increment both ` and k, adjust the algorithm parameters such that
α← α+ αδ and K ← 2K, and repeat from 2.

uncertainty of this estimate, and Ni quantifies the sampling performed thus far at
point xi. Note that the values of M , Ni, yi, `, α, and K are all updated from time to
time as the iterations proceed, and are thus annotated with a k superscript at various
points in the analysis of §4 to remove ambiguity. Akin to Algorithm 1, at iteration k,
pk(x) is assumed to be a strict regression (for some value of β) of the current set of
measurements yi, and ` is the current grid level.

At each iteration of Algorithm 2, there are three possible situations, corresponding
to three of the numbered iterations of this algorithm:

(6) The sampling of an existing measurement is increased. This is called a sup-
plemental sampling iteration.

(7) A new point is identified, and an initial measurement at this point is added
to the dataset. This is called an identifying sampling iteration.

(8) The mesh coordinating the problem is refined and the algorithm parameters
α and K adjusted. This is called a grid refinement iteration.

Figure 1 illustrates supplemental sampling and identifying sampling iterations of Al-
gorithm 2.

Algorithm 2 depends upon a handful of algorithm parameters, the selection of

6

z
xj

(a) An identifying sampling iteration

z
xj

(b) A supplemental sampling iteration.

Figure 1: Representation of one iteration in Algorithm 2 in different situations: (solid
line) truth function f(x), (dashed line) the regression pk(x), (dash-dot line) continuous
search function skc (x), (closed squares) skd(x), and (asterix) z. In figure (a), skc (z) <
skd(xj); it is thus an identifying sampling iteration. In figure (b), skc (z) > skd(xj); it is
thus an supplemental sampling iteration.

which affects its rate of convergence, explored in §5, though not its proof of conver-
gence, established in §4. The remainder of this section discusses heuristic strategies
to tune these algorithm parameters, noting that this tuning is an application-specific
problem, and alternative strategies (based on experiment or intuition) might lead to
more rapid convergence for certain problems.

The first task encountered during the setup of the optimization problem is the
definition of the design parameters. Note that the feasible domain considered during
the optimization process is characterized by simple upper and lower bounds for each
design parameter; normalizing all design parameters to lie between 0 and 1 is often
helpful.

The second challenge is to scale the function f(x) itself, such that the range of
the normalized function f(x) over the feasible domain L is about unity. If an estimate
of the actual range of f(x) is not available a priori, we may estimate it at any given
iteration using the available measurements. Following this approach, at any iteration
k with available measurements {y1, y2, . . . , yM}, all measurements yi, as well as the
corresponding uncertainty of these measurements σi, may be scaled by a factor rs
wherever used in iteration k of Algorithm 2 where, for that iteration, rs is computed
such that

r =
1

max1≤i≤M{yi} −min1≤i≤M{yi}
, rs = rl +R(r − rl)−R(r − ru),

where R(x) is the ramp function. So defined, rs is a “saturated” version of the factor
r, constrained to lie in the range rl ≤ rs ≤ ru. Note that scaling the yi and σi does
not interfere with the proof of the convergence of the algorithm, provided in §4, but
can improve its performance. In the numerical simulations performed in §5, we take
rl = 10−3 and ru = 103.

7

For problems which are IID with no initial transient, N0 = Nδ = 1 is a reasonable
starting point; increasing N0 and Nδ ultimately reduces the number of iterations of
the algorithm (and, thus, the number of Delaunay triangulations) required for con-
vergence, but generally increases slightly the total amount of sampling performed.
Suggested values of other algorithm parameters, which work well in the numerical
simulations reported in §5 but the values of which do not affect the proof of con-
vergence provided in §4, include α0 = αδ = 0.5, K0 = 0.5, `0 = 3, β = 4, and
γ = 100.

4. Analysis of α-DOGS. We now analyze the convergence of Algorithm 2. We
first present some preliminary definitions.

definition The point ηk ∈ S is called the candidate point at iteration k if

(10) ηk = argminz∈Sk{yk(z) + αkσk(z)}.

Define f(x∗) as the global minimum of f(x) in L, then the regret is defined as

(11) rk = f(vk)− f(x∗).

The definition of the regret given above is common in the optimization literature (see,
e.g., [8, 13, 27]). We show in this section that, under the following assumptions, the
regret of the optimization process governed by Algorithm 2 will converge to zero:
A constant K̂ exist such that, for all k > 0 and x ∈ L,

−2 K̂ ≤ ∇2pk(x) ≤ 2 K̂, −2 K̂ ≤ ∇2f(x) ≤ 2 K̂.

There is a real positive function E(x) : R+ → R+, which has the
following properties:

Assumption 2. a. E(x) is continuous and monotonically increasing.
b. E(x) is bounded such that

(12) E(x) ≤ Q, sup
x∈R+

E(x) = Q.

c. For all x ∈ L and N ∈ N, we have:

(13)
∣∣∣ 1

N

N∑
k=1

g(x, k)− f(x)
∣∣∣ = |y(x,N)− f(x)| ≤ E(σ(x,N)).

d. limx→0+ E(x)→ 0.
Assumption 3. There are real numbers α > 0 and θ ∈ (0 1], such that

(14) σ(x,N) ≤ αN−θ ∀x ∈ R, N ∈ N.

Note that, if the stationary process g(x, k) has a short-range dependence, like
ARMA processes, the parameter θ = 0.5. However, for different θ, this general
model can also handle stationary processes with long-range dependence, like Frac-
tional ARMA processes. Moreover, at any given point x ∈ L, σ(x,N) is a mono-
tonically nonincreasing function of N . This condition means that, by increasing the
averaging interval, the uncertainty of the estimate must not increase.

Assumption 2 is a stronger condition than ergodicity of g(x, k). Recall that er-
godicity of g(x, k) is equivalent to the convergence of y(x,N) to f(x) as N → ∞,
which is the straightforward outcome of Assumptions 2 and 3. In Assumption 2, the

8

convergence of the sample mean is assumed to be bounded by a function of σ(x,N)
of the form specified.

lemma For any point x ∈ L and real positive number 0 < ε < Q,

(15) |y(x,N)− f(x)| − Q

E−1(ε)
σ(x,N) ≤ ε,

Proof. If σ(x,N) ≤ E−1(ε) then, since E(x) is an increasing function, by (13), we
have:

E(σ(x,N)) ≤ E(E−1(ε)) = ε ⇒ |y(x,N)− f(x)| ≤ ε.

Otherwise, σ(x,N) > E−1(ε); thus, again by (13), we have

Q

E−1(ε)
σ(x,N) ≥ Q ⇒ |y(x,N)− f(x)| −Q ≤ E(σN)−Q ≤ 0,

Thus, (15) is verified for both cases.
lemma During the execution of Algorithm 2, there are an infinite number of mesh

refinement iterations.
Proof. This lemma is shown by contradiction. If Algorithm 2 has a finite number of
mesh refinement iterations, then there is an integer number ¯̀ such that the mesh L¯̀

contains all datapoints obtained by the algorithm. Since the number of datapoints on
this mesh is finite, only a finite number of points must be considered, which leads to
having a finite number of identifying sampling iterations.

Since the number of identifying sampling and mesh refinement iterations are fi-
nite, there must be an infinite number of supplemental sampling iterations. At each
supplemental sampling iteration, the averaging length of the estimate at an existing
datapoint is incremented by Nδ ≥ 1. Since only a finite number of points is con-
sidered, a datapoint exists for which the estimate is improved for an infinite number
of supplemental sampling iterations. As a result, there is an supplemental sampling
iteration, such that Nj > γ2

¯̀
, which is in contradiction with the assumption of having

finite number of mesh refinement iterations.
Note that the following short Lemma and proof, which are necessary for this

development, are copied directly from [5].
lemma Consider G(x) as a twice differentiable function such that ∇2G(x) −

2K1I ≤ 0, and x∗ ∈ L as a local minimizer of G(x) in L. Then, for each x ∈ L
such that Aa(x∗) ⊆ Aa(x), we have:

(16) G(x)−G(x∗) ≤ K1‖x− x∗‖2.

Proof. Define function G1(x) = G(x) − K1 ‖x − x∗‖2. By construction, G1(x) is
concave; therefore,

G1(x) ≤ G1(x∗) +∇G1(x∗)T (x− x∗),
G1(x∗) = G(x∗), ∇G1(x∗) = ∇G(x∗),

G(x) ≤ G(x∗) +∇G(x∗)T (x− x∗) +K1 ‖x− x∗‖2.

Since the feasible domain is a bounded domain, the constrained qualification holds;
therefore, x∗ is a KKT point. Therefore, using Aa(x∗) ⊆ Aa(x) leads to ∇G(x∗)T (x−
x∗) = 0, which verifies (16).

9

lemma Consider z, xj , and x∗ as global minimizers of skc (x), skd(x), and f(x),
respectively. Note that skd(x) is only defined for the points in Sk, but skc (x) and f(x)
are defined over the feasible domain L. Define Mk as:

(17) Mk = min{skc (z)− f(x∗), skd(xj)− f(x∗)}.

Then,

(18) lim sup
k→∞

Mk ≤ 0.

Proof. By Lemma 7, there are infinite number of mesh refinement iterations during
the execution of Algorithm 2. Thus,

(19) lim
k→∞

Kk =∞, lim
k→∞

αk =∞.

As a result, for any 0 < ε < Q, there is a kε such that, if k > kε, then

(20) Kk ≥ 3 K̂ and αk ≥ 2Q

E−1(ε)
.

Consider ∆k
x∗ as a simplex in ∆k, a Delaunay triangulation for Sk, that contains

x∗. Define M(x) : ∆k
x∗ → R as the unique linear function in ∆k

x∗ such that

M(V kj) = 2 f(V kj)− pk(V kj),

where V kj are the vertices of ∆k
x∗ . Define G(x) : ∆k

x∗ → R as follows:

G(x) = skc (x) +M(x)− 2 f(x) = pk(x) +M(x)− 2 f(x)−Kk ek(x).

By construction, G(V kj) = 0. Moreover:

∇2G(x) = ∇2{pk(x)− 2 f(x)}+ 2Kk I.

Using Assumption 1 and (20), G(x) is strictly convex in simplex ∆k
x∗ . Since G(x) = 0

at the vertices of ∆k
x∗ , then G(x∗) ≤ 0.

Moreover, since M(x) is a linear function, then

min
x∈Sk

[2 f(x)− pk(x)] ≤ min
1≤j≤n+1

[2 f(V kj)− pk(V kj)] ≤M(x∗),

skd(x) ≤ [2 f(x)− pk(x)] + 2 (yk(x)− f(x))− αkσ(x).(21)

Using (15) in Lemma 6 and (20) leads to:

(22) 2 yk(x)− 2 f(x)− αkσ(x) ≤ 2 ε.

Combining (21) and (22) leads to:

skd(x) ≤ [2 f(x)− pk(x)] + 2 ε.

Since xj is the minimizer of the skd(x),

skd(xj) ≤ min
x∈Sk

[2 f(x)− pk(x)] + 2 ε ≤M(x∗) + 2 ε.

10

Furthermore, z is the global minimizer of skc (x) and G(x∗) ≤ 0; therefore,

skc (z) ≤ skc (x∗) ≤ 2 f(x∗)−M(x∗),

skc (z) + skd(xj) ≤ 2 f(x∗) + 2 ε.(23)

Thus, for any ε > 0 and k > k̂ε, (23) is satisfied; therefore, (18) is verified.
lemma If {k1, k2, . . . } are the mesh refinement iterations of Algorithm 2, then

lim sup
i→∞

{
y(ηki , Nki

ηki
)− f(x∗) + αkiσ(ηki , Nki

ηki
)
}
≤ 0, and(24a)

lim
i→∞

σ(ηki , Nki
ηki

) = 0,(24b)

where ηki is the candidate point at iteration ki and x∗ is a global minimizer of f(x)
in L.
Proof. Consider z as a global minimizer of skic (x) in L, and z` as its quantization on
L`. Since iteration ki is a mesh refinement, z` ∈ Ski . Consider ∆ki

j as a simplex in

the Delaunay triangulation ∆ki which contains z. By property (d) of the remoteness
function eki(x),

eki(z`) ≥ ekij (z`), eki(z) = ekij (z),

skic (z`)− skic (z) = pki(z`)− pki(z) +Kki(eki(z)− eki(z`)),
skic (z`)− skic (z) ≤ pki(z`)− pki(z) +Kki(ekij (z)− ekij (z`)).

By Property (c) of Remark 2 concerning the Cartesian grid quantizer, Aa(z) ⊆ Aa(z`).
According to Assumption 1 and Property (c) of the remoteness function introduced
in Definition 1, ∇2{pki(x)−Kkiekij (x)} − {K̂ + 2Kki}I ≤ 0; thus, by Lemma 8 and

the fact (see Lemma 5 in [6] for proof) that z globally minimizes pki(x)−Kkiekij (x),

(25) skic (z`)− skic (z) ≤ {K̂ + 2Kki}‖z` − z‖2.

Define δki as the maximum quantization error at iteration ki, then ‖z`−z‖ ≤ δki . On
the other hand, z` ∈ Ski , which leads to skic (z`) = pki(z`), and

(26) pki(z`) ≤ skic (z) + {K̂ + 2Kki}δ2
ki .

At each mesh refinement iteration of Algorithm 2, there are two possibilities. In the
first case, skic (z) ≤ skid (xj); since xj is a minimizer of skid (x), then

pki(z`) ≤ skid (z`) + {K̂ + 2Kki}δ2
ki ,

skid (z`) ≤ pki(z`)− αkiσ(z`, N
ki
z`

),

σ(z`, N
ki
z`

) ≤ {K̂ + 2Kki}
αki

δ2
ki .(27)

Using (17) (see Lemma 9) and (26) leads to

(28) pki(z`)− f(x∗) ≤Mki + {K̂ + 2Kki}δ2
ki .

Since the regression is strict,

(29) y(z`, N
ki
z`

)− pki(z`) ≤ β σ(z`, N
ki
z`

).

11

Using (27), (28), and (29) leads to

(30) y(z`, N
ki
z`

)− f(x∗) ≤Mki + {K̂ + 2Kki}δ2
ki + β

[{K̂ + 2Kki}
αki

δ2
ki

]
.

In the second case, skic (z) > skid (xj), then by the construction of Mki (see (17)),

(31) skid (xj)− f(x∗) = Mki .

Moreover, since iteration ki is mesh refinement, then the sampling Nj ≥ γ2`. Thus,
using Assumption 3,

(32) σ(xj , N
ki
xj

) ≤ αγ−θ2−θ`.

Furthermore, the regression pki(x) is strict which leads to:

(33) y(xj , N
ki
xj

)− skid (xj) ≤ (β + αki)σ(xj , N
ki
xj

)

Using (31), (32), and (33) leads to

(34) y(xj , N
ki
xj

)− f(x∗) ≤Mki + (β + αki)αγ−θ2−θ`.

Note that ηki is the candidate point at iteration ki. Thus, using (27), (30), (32),
and (34), and the construction of candidate point (see Definition 5),

y(ηki , Nki
ηki

)− f(x∗) + αkiσ(ηki , Nki
ηki

) ≤Mki+

max
{

(β + αki)αγ−θ2−θ`, (K̂ + 2Kki)δ2
ki + β

[(K̂ + 2Kki)

αki
δ2
ki

]}
+αki max

{
αγ−θ2−θ`,

(K̂ + 2Kki)

αki
δ2
ki

}
.(35)

On the other hand,

δki =
‖b− a‖
2`0+i

, αki = α0 + i αδ, Kki = K0 2i, `ki = `0 + i.(36)

By substituting (36) in (35) and using (18) (see Lemma 9), (24a) is verified. Further-
more, using Assumption 2, we have

(37) |y(ηki , Nki
ηki

)− f(ηki)| ≤ E(ηki , Nki
ηki

) ≤ Q.

Thus, using (24a), f(ηki)− f(x∗) > 0, and (37) leads to

lim sup
i→∞

{
−Q+ αkiσ(ηki , Nki

ηki
)
}
≤ 0.

Since σ(ηki , Nki
ηki

) ≥ 0 and limi→∞ αki =∞, (24b) is verified.

theoremConsider ηk as the candidate point at iteration k of Algorithm 2, then

(38) lim
k→∞

f(ηk) = f(x∗).

Theorem 11. Proof. At any iteration k > k1, take ki < k as the most recent mesh
refinement iteration of Algorithm 2. Then ηki ∈ Sk, and

(39) y(ηk, Nk
ηk) + αkσ(ηk, Nk

ηk) ≤ y(ηki , Nk
ηki

) + αkσ(ηki , Nk
ηki

).

12

Using Assumption 2 leads to:

|y(ηki , Nk
ηki

)− y(ηki , Nki
ηki

)| ≤ E(σ(ηki , Nki
ηki

)) + E(σ(ηki , Nk
ηki

)),

y(ηk, Nk
ηk) + αkσ(ηk, Nk

ηk) ≤ y(ηki , Nki
ηki

) + αkσ(ηki , Nki
ηki

)+

E(σ(ηki , Nki
ηki

)) + E(σ(ηki , Nk
ηki

)).

By construction, since the sampling at ηki at iteration k is greater than or equal to
its sampling at iteration ki, σ(ηki , Nk

ηki
) ≤ σ(ηki , Nki

ηki
). Since the function E(x) is

nondecreasing,

y(ηk, Nk
ηk) + αkσ(ηk, Nk

ηk) ≤ y(ηki , Nki
ηki

) + αkσ(ηki , Nki
ηki

) + 2E(σ(ηki , Nki
ηki

)).

Using (24) in Lemma 10, Assumption 2, and αk = αki + αδ, leads to:

(40) lim sup
k→∞

y(ηk, Nk
ηk)− f(x∗) + αkσ(ηk, Nk

ηk) ≤ lim sup
k→∞

{
αδσ(ηki , Nki

ηki
)
}

= 0.

Similar to the proof of (24b), it is thus again easy to show

lim
i→∞

σ(ηk, Nk
ηk) = 0.

On the other hand, based on Assumption 2, and optimality of f(x∗)

f(ηk) + αkσ(ηk, Nk
ηk)− f(x∗)− E(σ(ηk, Nk

ηk)) ≤ y(ηk, Nk
ηk) + αkσ(ηk, Nk

ηk)− f(x∗),

lim
k→∞

E(σ(ηk, Nk
ηk)) = 0,

lim sup
k→∞

f(ηk)− f(x∗) ≤ 0.

Since f(ηk)− f(x∗) ≥ 0, (38) is verified.

5. Results. We now illustrate the performance of Algorithm 2 on some repre-
sentative examples. The function g(x, k) in (1a) is assumed to be a discrete-time
statistically stationary random ergotic process. In this section, we further assume
that g(x, k) is IID in the index k, and that the variation of g(x, k) from the truth
function f(x) is homogeneous in x. In particular, we take σ(xi, 1) = 0.3, and

g(x, k) = f(x) + vk where vk = N (0, 0.09).

In this section, two different test functions for f(x) are considered within the
simple feasible domain L = {x|0 ≤ xi ≤ 1 ∀i}, the shifted parabolic function

(41) f(x) =

n∑
i=1

(xi − 0.3)2,

with a global minimizer in L of x∗i = 0.3 and a corresponding global minimum of
f(x∗) = 0, and the scaled Schwefel fuction

(42) f(x) = 1.6759n−
n∑
i=1

xi
2

sin(500 |xi|),

13

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

2.5

3

(a) Shifted parabolic function (41).

0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(b) Scaled Schwefel fuction (42).

Figure 2: Illustration of test problems (41) and (42). (solid line) truth function f(x),
and (dashed line) a set of measurements yi computed with a single sample at each
measurement, Ni = 1.

with a global minimizer in L of x∗i = 0.8419 and a corresponding global minimum
of f(x∗) = −1.6759n. We will consider these two functions in n = 1, 2, and 3
dimensions.

One-dimensional representations of these functions are illustrated in Fig 2: for
the shifted parabolic function (41), the truth function (unknown to the optimization
algorithm) is a simple parabola, whereas for the scaled Schwefel fuction (42), the
truth function is a smooth nonconvex function with four local minima. Note that
the perturbations present in several measurements of these functions, computed with
finite Ni, result in a complicated, nonsmooth, nonconvex behavior. This paper shows
how to efficiently minimize such functions based only on such noisy measurements,
automatically refining the measurements (by increasing the sampling) as convergence
is approached.

The optimizations are initialized with measurements of sample length N0 = 1 at
the vertices of L. Figure 3 illustrates the application of Algorithm 2 after k = 100
iterations in the 1D case, taking N0 = Nδ = 1 additional sample (at either a new
measurement point, or at an existing measurement point) at each iteration of the
algorithm. In Figure 3a, the sampling Ni after k = 100 iterations (plus the 2 initial
sample points, for a total of 102 samples) at the M = 5 measured points yi indi-
cated, enumerated from left to right, is {4, 14, 82, 1, 1}; in Figure 3b, the sampling Ni
after 100 iterations at the 7 measured points indicated is {2, 1, 1, 9, 23, 65, 1}. Both
results clearly show that the algorithm focuses the bulk of its sampling in the imme-
diate vicinity of the minimum, where the accuracy of the measurements is especially
important, while avoiding unnecessary sampling far from the minimum, where the
accuracy of the measurements is of reduced importance. It is also seen that more ex-
ploration is performed for the scaled Schwefel function than for the shifted parabolic
function, as a result of its more complex underlying trend.

Since the function evaluation process in these tests has a stochastic component,
Algorithm 2 was next applied an ensemble of three separate tests, for both model
problems discussed above, in each of three different cases with increasingly higher

14

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

2

2.5

3

(a) Shifted parabolic function (41).

-0.5 0 0.5 1 1.5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(b) Scaled Schwefel function (42).

Figure 3: Illustration of Algorithm 2 on model problems (41) and (42) in 1D after 100
iterations, taking N0 = Nδ = 1: (solid line) the truth function f(x), and (error bars) the
66 percent confidence intervals of the measurements.

dimension (that is, n = 1, n = 2, and n = 3). The convergence histories of these
simulations are illustrated in Figures 4 and 5.

To better quantify the performance of the algorithm proposed, we now introduce
the following concept.

definitionAssume that the stationary process g(x, k) is IID, and that
the nominal variance σ(xi, 1) = σ0 for all points xi ∈ L. As mentioned
in Remark 3, denoting Ni as the total number of samples taken at point
xi, the uncertainty of the corresponding measurement yi given by (5) is
σi = σ(xi, Ni) = σ0/

√
Ni. If we assume that all of sampling of the algorithm

is performed at a single point, the uncertainty of this single measurement af-
ter k samples would thus be σ0/

√
k, which we refer to as the reference error.

This function is indicated in Figures 4 and 5 by a solid line of slope −1/2 in
log-log coordinates. It is remarkable to note that, in all 18 of the optimiza-
tions reported in Figures 4 and 5, in which we have again taken 1 new sample
at each iteration, the regret function of Algorithm 2 is eventually diminished
to a value substantially smaller than the reference error. That is, the value of
the regret at the end of these optimizations is actually substantially less than
the uncertainty of a single measurement, assuming that all of the sampling is
done at a single point. Figures 4 and 5 also report the number of datapoints
which are considered by the optimization algorithm as the iterations proceed.
This number is important in optimization problems for which the function
evaluations are obtained from simulations which have an (expensive) initial
transient, which must be set aside before sampling the statistic of interest, as
discussed further in Remark 3. It is observed, as in the 1D case illustrated in
Figure 3, that the number of datapoints that are considered for the shifted
parabolic function is less than that for the scaled Schwefel function. Further,
the regret function converges faster to the general proximity of the global
solution, in about 10 to 50 iterations, for the shifted parabolic function. This
result is reasonable, since the underlying function in the shifted parabolic

15

case is simpler. This paper presents a new optimization algorithm, dubbed
α-DOGS, for the minimization of functions given by the infinite-time average
of stationary ergodic processes in the computational or experimental setting.
Two search functions are considered at each iteration. The first is a contin-
uous search functions, skc (x), defined over the entire feasible space x ∈ L,
combining a strict regression pk(x) of the available datapoints together with
a remoteness function characterizing the distance of any given point in the
feasible domain from the nearest measurements, and built on the framework
of a Delaunay triangulation over all available measurements at that iteration.
The second is a discrete search function, skd(xi), defined over the available
measurements xi ∈ Sk. A comparison between the minima of these two
search functions is made in order to decide between further sampling (and,
therefore, refining) an existing measurement, or sampling at a new point in
parameter space. The method developed builds closely on the Delaunay-
based Derivative-free Optimization via Global Surrogates algorithm, dubbed
∆-DOGS, proposed in [4–6]. The convergence of the algorithm is established
in problems for which

Definition 12. a. The underlying truth (infinite-time averaged) function, as
well as the regressions computed at each iteration k, are twice differentiable.

b. The stationary process g(x, k) upon which the truth function f(x) is gen-
erated, in (1a), is ergodic, and the convergence of the averaging process to
the underlying truth function is bounded by a monotonic function of a com-
putable uncertainty function (see Assumption 2).

c. The uncertainty of the time averaging process decays exponentially to zero
(see Assumption 3); this is true for almost all stationary models of random
processes.

6. Conclusions. The α-DOGS algorithm performs and refines measurements
with different amounts of sampling in different locations in the feasible region of pa-
rameter space as necessary. By so doing, the total cost of the optimization process
is substantially reduced as compared with using existing derivative-free optimization
strategies, with the same amount of sampling at different locations in parameter
space. Computational experiments demonstrate that the algorithm developed ulti-
mately devotes most of its sampling time to points in parameter space near to the
global minimum. Further, these computational experiments indicate that the regret
function (see Definition 5) eventually diminishes to a value that is actually substan-
tially less than the uncertainty of a single measurement, assuming that all of the
sampling is done at a single point.

In future work, the α-DOGS algorithm will be applied to additional benchmark
and application-based optimization problems, including shape optimization for airfoils
and hydrofoils. For problems in which the function is determined computationally
(from, e.g., numerical simulations of turbulent flows), the extension of the present
framework to, as convergence is approached, simultaneously (a) refine the computa-
tional grid, and (b) increase the measurement sampling, is also under development.

Appendix: Polyharmonic spline regression. The algorithm described in
this paper depends upon a smooth regression pk(x) (see Assumption 1). The best
technique for computing the regression is problem dependent. As with [4–6], a key
advantage of our Delaunay-based approach in the present work is that it facilitates
the use of any suitable regression technique, subject to it satisfying the “strict” re-
gression property given in Definition 4. Since our numerical tests all implement the

16

Iteration
10

0
10

1
10

2
10

3

R
e
g
re

t
fu

n
c
ti
o
n

10
-4

10
-3

10
-2

10
-1

10
0

(a) The regret function in 1D.

Iteration
10

0
10

1
10

2
10

3

D
a
ta

 p
o
in

ts
 n

u
m

b
e
r

2

3

4

5

6

7

(b) Total number of datapoints in 1D.

Iteration
10

0
10

1
10

2
10

3

R
e
g
re

t
fu

n
c
ti
o
n

10
-3

10
-2

10
-1

10
0

(c) The regret function in 2D.

Iteration
10

0
10

1
10

2
10

3

D
a
ta

 p
o
in

ts
 n

u
m

b
e
r

4

6

8

10

12

14

16

(d) Total number of datapoints in 2D.

Iteration
10

0
10

1
10

2
10

3

R
e
g
re

t
fu

n
c
ti
o
n

10
-3

10
-2

10
-1

10
0

10
1

(e) The regret function in 3D.

Iteration
10

0
10

1
10

2
10

3

D
a
ta

 p
o
in

ts
 n

u
m

b
e
r

0

10

20

30

40

50

60

70

(f) Total number of datapoints in 3D.

Figure 4: Implementation of Algorithm 2 on parabolic test problem (41).

17

Iteration
10

0
10

1
10

2
10

3

R
e
g
re

t
fu

n
c
ti
o
n

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(a) The regret function in 1D.

Iteration
10

0
10

1
10

2
10

3

D
a
ta

 p
o
in

ts
 n

u
m

b
e
r

3

4

5

6

7

8

9

(b) Total number of datapoints in 1D.

Iteration
10

0
10

1
10

2
10

3

R
e
g
re

t
fu

n
c
ti
o
n

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(c) The regret function in 2D.

Iteration
10

0
10

1
10

2
10

3

D
a
ta

 p
o
in

ts
 n

u
m

b
e
r

0

10

20

30

40

50

60

(d) Total number of datapoints in 2D.

Iteration
10

0
10

1
10

2
10

3

R
e
g
re

t
fu

n
c
ti
o
n

10
-3

10
-2

10
-1

10
0

10
1

(e) The regret function in 3D.

Iteration
10

0
10

1
10

2
10

3

D
a
ta

 p
o
in

ts
 n

u
m

b
e
r

0

50

100

150

200

(f) Total number of datapoints in 3D.

Figure 5: Implementation of Algorithm 2 on Schwefel test problem (42).

18

polyharmonic spline regression technique, the derivation of this regression technique
is briefly explained in this appendix; additional details may be found in [30].

The polyharmonic spline regression p(x) of a function f(x) in Rn is defined as a
weighted sum of a set of radial basis functions ϕ(r) built around the location of each
measurement point, plus a linear function of x:

p(x) =

N∑
i=1

wi ϕ(r) + vT
[

1
x

]
,(43)

where ϕ(r) = r3 and r = ‖x− xi‖.

The weights wi and vi represent N and n+ 1 unknowns. Assume that {y(x1), y(x2),
. . . , y(xn)} is the set of measurements, with standard deviations {σ1, σ2, . . . , σ2}. The
wi and vi coefficients are computed by minimizing the following objective function,
which expresses is a tradeoff between the fit to the observed data and the smoothness
of the regressor:

(44) Lp(x) =

N∑
i=1

[(p(xi)− y(xi))

σi

]2
+ λ

∫
B

|∇mp(x)|,

where B is a large box domain containing all of the xi, and ∇mp(x) is the vector
including all m derivatives of p(x) (see [9]). It is shown in [9] that the first-order
optimality condition for the objective function (44) is as follows:

(45) p(xi)− y(xi) + ρ σ2
iwi = 0, ∀1 ≤ i ≤ N,

where ρ is a parameter proportional to λ. In summary, the coefficient of the regression
can be derived by solving: [

F V T

V 0

] [
w
v

]
=

[
f(xi)

0

]
,(46)

Fij = ϕ(‖xi − xj‖) + ρδi,j σ
2
i , V =

[
1 1 . . . 1
x1 x2 . . . xN

]
,

where δi,j is the Kronecker delta.
The problem which is left to solve when computing the regression is to find an

appropriate value of ρ ∈ [0,∞). Solving (46) for any value of ρ gives a unique
regression, denoted p(x, ρ). The parameter ρ is then obtained by a predictive mean-
square error criteria developed in §4.4 in [30], which is given by imposing the following
condition:

(47) T (ρ) =

N∑
i=1

[
p(xi, ρ)− y(xi)

σi
]2 = 1.

For ρ → ∞, wi → 0, and the solution of (46) is a weighted mean-square linear
regression, which is obtained by solving (47). If T (∞) ≤ 1, we take this linear
regression as the best current regression for the available data. Otherwise, we have
T (∞) > 1 and (by construction) T (0) = 0; thus, (47) has a solution with finite ρ > 0
which gives the desired regression.

If T (∞) > 1, we thus seek a ρ for which for T (ρ) = 1. Following [30], using (46),
(47) simplifies to:

(48) T (ρ) = ρ

N∑
i=1

wi,ρ σ
2
i = 1,

19

where wi,ρ is the wi which is obtained by solving (46). Define Dw and Dv as the
vectors whose i-th elements are the derivatives of wi and vi with respect to ρ, then

T ′(ρ) =

N∑
i=1

Dwiσ
2
i + ρ

N∑
i=1

Dwi,ρσ
2
i ,[

F V T

V 0

] [
Dw
Dv

]
+

[
ρΣ2 0

0 0

] [
w
v

]
=

[
0
0

]
,

where Σ2 is a diagonal matrix whose i-the diagonal element is ρ σ2
i . Therefore, the

analytic expression for the derivative of T (ρ) is available. Thus, (47) can be solved
quickly using Newton’s method.

The regression process presented here, imposing (48) as suggested by [30], is
designed to obtain a regression which is reasonably smooth. However, there is no
guaranty that this particular regression satisfies the strictness property required in
the present work (see Definition 4). Note, however, that by imposing ρ = 0, the
regression is made strict for arbitrary small β. Thus, to satisfy strictness for a given
finite β, the value of ρ must sometimes be decreased from that which satisfies (48),
as necessary.

References.
[1] Hernan P Awad and Peter W Glynn. On an initial transient deletion rule with

rigorous theoretical support. In Proceedings of the 38th conference on Winter
simulation, pages 186–191. Winter Simulation Conference, 2006.

[2] Jan Beran. Statistics for long-memory processes, volume 61. CRC Press, 1994.
[3] Jan Beran. Maximum likelihood estimation of the differencing parameter for in-

vertible short and long memory autoregressive integrated moving average models.
Journal of the Royal Statistical Society. Series B (Methodological), pages 659–
672, 1995.

[4] Pooriya Beyhaghi and Thomas R Bewley. Delaunay-based derivative-free opti-
mization via global surrogates, part ii: convex constraints. Journal of Global
Optimization, pages 1–33, 2016.

[5] Pooriya Beyhaghi and Thomas R Bewley. Implementation of cartesian grids to
accelerate delaunay-based derivative-free optimization. Journal of Global Opti-
mization, 2017. submitted.

[6] Pooriya Beyhaghi, Daniele Cavaglieri, and Thomas Bewley. Delaunay-based
derivative-free optimization via global surrogates, part i: linear constraints. Jour-
nal of Global Optimization, pages 1–52, 2015.

[7] Andrew J Booker, JE Dennis Jr, Paul D Frank, David B Serafini, Virginia Torc-
zon, and Michael W Trosset. A rigorous framework for optimization of expensive
functions by surrogates. Structural optimization, 17(1):1–13, 1999.

[8] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. X-armed
bandits. The Journal of Machine Learning Research, 12:1655–1695, 2011.

[9] Jean Duchon. Splines minimizing rotation-invariant semi-norms in sobolev
spaces. In Constructive theory of functions of several variables, pages 85–100.
Springer, 1977.

[10] Raymond M Hicks and Preston A Henne. Wing design by numerical optimization.
Journal of Aircraft, 15(7):407–412, 1978.

[11] Jonathan RM Hosking. Fractional differencing. Biometrika, 68(1):165–176, 1981.
[12] Antony Jameson and Seokkwan Yoon. Lower-upper implicit schemes with mul-

tiple grids for the euler equations. AIAA journal, 25(7):929–935, 1987.

20

[13] Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in
metric spaces. In Proceedings of the fortieth annual ACM symposium on Theory
of computing, pages 681–690. ACM, 2008.

[14] Alison L Marsden, Meng Wang, John E Dennis Jr, and Parviz Moin. Optimal
aeroacoustic shape design using the surrogate management framework. Opti-
mization and Engineering, 5(2):235–262, 2004.

[15] Alison L Marsden, Meng Wang, John E Dennis Jr, and Parviz Moin. Suppression
of vortex-shedding noise via derivative-free shape optimization. Physics of Fluids,
16(10):83–86, 2004.

[16] Franco Modigliani and Franz E Hohn. Production planning over time and the
nature of the expectation and planning horizon. Econometrica, Journal of the
Econometric Society, pages 46–66, 1955.

[17] Todd A Oliver, Nicholas Malaya, Rhys Ulerich, and Robert D Moser. Estimating
uncertainties in statistics computed from direct numerical simulation. Physics of
Fluids (1994-present), 26(3):035101, 2014.

[18] Victor Picheny, David Ginsbourger, Yann Richet, and Gregory Caplin. Quantile-
based optimization of noisy computer experiments with tunable precision. Tech-
nometrics, 55(1):2–13, 2013.

[19] Carl Edward Rasmussen. Gaussian processes for machine learning. Citeseer,
2006.

[20] James Reuther, Antony Jameson, James Farmer, Luigi Martinelli, and David
Saunders. Aerodynamic shape optimization of complex aircraft configurations
via an adjoint formulation, volume 96. NASA Ames Research Center, Research
Institute for Advanced Computer Science, 1996.

[21] James J Reuther, Antony Jameson, Juan J Alonso, Mark J Rimllnger, and David
Saunders. Constrained multipoint aerodynamic shape optimization using an ad-
joint formulation and parallel computers, part 2. Journal of aircraft, 36(1):61–74,
1999.

[22] Scott T Salesky, Marcelo Chamecki, and Nelson L Dias. Estimating the random
error in eddy-covariance based fluxes and other turbulence statistics: the filtering
method. Boundary-layer meteorology, 144(1):113–135, 2012.

[23] Matthias Schonlau, William J Welch, and Donald R Jones. A data-analytic
approach to bayesian global optimization. In Department of Statistics and Ac-
tuarial Science and The Institute for Improvement in Quality and Productivity,
1997 ASA conference, 1997.

[24] Suresh P Sethi and Gerald L Thompson. What is Optimal Control Theory?
Springer, 2000.

[25] Suresh P Sethi, Qing Zhang, and Han-Qin Zhang. Average-cost control of stochas-
tic manufacturing systems, volume 54. Springer Science & Business Media, 2005.

[26] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian opti-
mization of machine learning algorithms. In Advances in neural information
processing systems, pages 2951–2959, 2012.

[27] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias W Seeger.
Information-theoretic regret bounds for gaussian process optimization in the ban-
dit setting. Information Theory, IEEE Transactions on, 58(5):3250–3265, 2012.

[28] C Talnikar, P Blonigan, J Bodart, and Q Wang. Parallel optimization for les. In
Proceedings of the Summer Program, page 315, 2014.

[29] R Theunissen, A Di Sante, ML Riethmuller, and RA Van den Braembussche.
Confidence estimation using dependent circular block bootstrapping: application
to the statistical analysis of piv measurements. Experiments in Fluids, 44(4):591–

21

596, 2008.
[30] Grace Wahba. Spline models for observational data, volume 59. Siam, 1990.
[31] Qiqi Wang. Forward and adjoint sensitivity computation of chaotic dynamical

systems. Journal of Computational Physics, 235:1–13, 2013.
[32] Qiqi Wang, Parviz Moin, and Gianluca Iaccarino. Minimal repetition dynamic

checkpointing algorithm for unsteady adjoint calculation. SIAM Journal on Sci-
entific Computing, 31(4):2549–2567, 2009.

22

	Introduction
	Delaunay-based optimization coordinated with a grid: -DOGS(Z)
	Delaunay-based optimization of a time-averaged value: -DOGS
	Analysis of -DOGS
	Results
	Conclusions

