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Abstract This paper introduces a modification of our original Delaunay-based optimization
algorithm (developed in JOGO DOI:10.1007/s10898-015-0384-2) that reduces the number
of function evaluations on the boundary of feasibility as compared with the original algorithm.
A weaknesses we have identified with the original algorithm is the sometimes faulty behavior
of the generated uncertainty function near the boundary of feasibility, which leads to more
function evaluations along the boundary of feasibility than might otherwise be necessary. To
address this issue, a second search function is introduced which has improved behavior near
the boundary of the search domain. Additionally, the datapoints are quantized onto a Cartesian
grid, which is successively refined, over the search domain. These two modifications lead to
a significant reduction of datapoints accumulating on the boundary of feasibility, and faster
overall convergence.

Keywords Derivative-free optimization - Surrogate functions - Delaunay triangulation -
Cartesian grid

1 Introduction

In this paper, a derivative-free optimization algorithm is presented to minimize a (possibly
nonconvex) function subject to bound constraints:!

minimize f(x) with x € L ={x|la <x <b}, a <b. (1)

wherex e R?, f: R" - R, a,b € R™.

1 Taking a and b as vectors, a < b implies that a; < b; Vi.
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The algorithm presented is a modification of the original algorithm for Delaunay-based
derivative-free optimization via global surrogates, dubbed A-DOGS, developed in [8,9].
In this paper, we will assume that there is a target value fo which is achievable (Ix €
L suchthat f(x) < fo), and the goal is to find a point such that f(x) < fy. As done in
Algorithm 2 of [8], the present algorithm can be modified to problems for which a target
value of fj is unavailable (as it discussed in the “Appendix”). However, in this paper, we will
assume that this target value fy is known.

Derivative-free algorithms are suitable for such problems even if neither the gradient of
f(x) nor an accurate numerical approximation of this gradient is readily available. This is
common in situations in which the function f(x) is derived either from an experiment or
from many types of numerical simulations. There are three main classes of deterministic
derivative-free algorithms.

The first class is Direct Search Methods, as reviewed in [15], including Pattern Search
Methods [21,22] and Mesh Adaptive Direct search [1,4—6]. These methods are generally
used to identify a local minimum of a function from some initial guess in parameter space.
The more difficult challenge of attempting to identify accurately the global minimum of
a nonconvex function f(x), with as few function evaluations as possible, is an issue of
significant interest.

The second class of derivative-free optimization algorithms is branch and bound methods,
which can be used for the purpose of global optimization. In such algorithms, the search region
at each iteration is constrained based on some condition imposed on the objective function.
The most common such condition imposed is a bound on the Lipschitz norm, as studied in
[11,13,17,20].

The third class of derivative-free optimization algorithms is Response Surface Methods,
which employ an interpolating model of the available function evaluations at each iteration in
order to summarize the trends evident in the available data. Expected Improvement, Baysian
optimization, and other Kriging-based optimization strategies [2,7,10,14,18,19] are the most
well-known methods in this class. With such methods, an interpolation strategy is used which
inherently builds both an estimate of the function itself, p(x), as well as a model of the
uncertainty of this estimate, e(x), over the entire feasible domain of parameter space.

Kriging interpolation, and other correlation-based interpolation strategies, have various
shortcomings, the most significant of which is the numerical stiffness of the computational
problem of fitting the Kriging model to the datapoints, and the subsequent inaccuracy of
this fit. This problem is exacerbated when many datapoints are available, some of which
are clustered in a small region of parameter space (see, e.g, the Appendix of [8]). Another
important consideration is that the selection of the best interpolation strategy is an application-
specific problem; based on various known characteristics of the cost function of interest,
different interpolation strategies might be best suited.

Delaunay-based optimization [3,8,9] is arecently-developed response surface method that
can uses any interpolation strategy, together with an artificially-generated function modeling
the uncertainty associated with this interplant, to find the global minimum of an objective
function. This uncertainty model is built on the framework of a Delaunay triangulation of the
available datapoints in parameter space. One of the challenges with these new algorithms is
their overexploration of the boundary of feasibility. This problem might be exacerbated if the
objective function itself has irregular behavior close to the boundary of L, which is common.
In this paper, we develop a modified Delaunay-based optimization algorithm which performs
fewer function evaluations on the boundary of feasibility.

The structure of this paper is as follows: Sect. 2 reviews the original elements of the
Delaunay-based optimization algorithm [8]. Section 3 presents the modified algorithm, and all
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the tools that are needed. Section 5 proves the convergence to a point whose objective function
is less than the target value for Lipschitz continuous and twice differentiable functions.
Section 6 applies both the original and the modified optimization algorithm to a representative
example. Some conclusions are presented in Sect. 7.

2 The original Delaunay-based optimization algorithm

In this section, we review our original algorithm for Delaunay-based Derivative-free Opti-
mization via Global Surrogates, dubbed A-DOGS. This algorithm is a global, derivative-free
optimization algorithm to solve (1) using successive function evaluations inside a feasible
domain to find the global minimum. At each iteration of the algorithm, a metric based on an
interpolation of the existing function evaluations, a model of the uncertainty of this interpo-
lation, and the target value of the optimization fj is used to find the best possible candidate
point for the next function evaluation. In this work, the interpolating function and the uncer-
tainty function at iteration k are denote by p¥(x) and X (x), respectively. This method can
handle any well-behaved interpolation strategy which is twice differentiable with bounded
Hessian at all iterations. For the uncertainty function, a piecewise quadratic function is used
which is nonnegative everywhere, and which goes to zero at the available datapoints. The
uncertainty function is defined as follows:

Definition 1 Consider S as a set of feasible points which includes the vertices of L, and A as
a Delaunay triangulation of S. Then, for each simplex A; € A, the local uncertainty function
is defined as:

ei(x) = R — Ilx — Zi|%, (@)

where R; and Z; are the circumradius and circumcenter of A;. The global uncertainty function
e(x) is a piecewise function defined as follows:

e(x) =ei(x) Vx € A;. 3)

The uncertainty function e(x) has a number of properties which are established in Lemmas
[2:5] of [8], as listed bellow:

. The uncertainty function e(x) > O forall x € L, and e(x) = 0 forall x € S.

. The uncertainty function e(x) is continuous and Lipschitz.

. The uncertainty function e(x) is piecewise quadratic, with Hessian of —2 [.

. The uncertainty function e(x) is equal to the maximum of the local uncertainty functions:

a0 o

e(x) = max e; (x). @

The steps of A-DOGS are presented in Algorithm 1. Implementation and proof of con-
vergence of this Algorithm are given in [8]. As mentioned previously, one of the weaknesses
of this algorithm is the sometimes irregular behavior of the uncertainty function e(x) close
to the boundary of feasibility (see Fig. 1). This issue was addressed in Sect. 4 of [8] by pro-
jecting the point x; onto the boundary of feasibility whenever xi is, in a certain sense, close
to the boundary of feasibility. Using this approach, the irregular behavior of the uncertainty
function close to the boundary of L is reduced somewhat; however, further reduction of the
accumulation of datapoints along the boundary of feasibility is sometimes desired, and is
achieved by the strategy described in the remainder of this paper.
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Fig. 1 Illustration of the uncertainty function e(x) for a set S of 10 randomly-selected points within a square
domain together with the vertices of the domain. It is seen that e(x) has irregular behavior near the boundary
of domain

Algorithm 1 The steps of the original Delaunay-based optimization algorithm, A-DOGS
are as follows:

0. Set k = 0. Take the set of initialization points S as the union of all vertices of the
feasible domain L together with any user-supplied initialization points of interest (see
Sect. 1 in [8] for implementation).

1. Calculate (or, for k > 0, update) an appropriate interpolating function p* (x) through all
points in S¥.

2. Calculate (or, for k > 0, update) a Delaunay triangulation A¥ over all of the points in S¥.

3. Find x; as a global minimizer of s¥(x) in L to obtain xi, where

Prm—fo ook
sk(x)Z{‘fk(")’ TP = fo.

k . 5)
p*(x) — fo, otherwise,

where ¢¥ (x) is the uncertainty function (see Definition 1) for the datasset Sk,
4. Take SF*1 = sk u {xx}, increment k, calculate f(xj), and repeat from 1.

3 Acceleration of Delaunay-based optimization with a grid

This section presents, in Algorithm 2, the new optimization algorithm, dubbed A-DOGS(Z),
as well as its essential elements. Before explaining Algorithm 2, some preliminary concepts
are required.

Definition 2 Taking Ny = 2, the Cartesian grid of level £ over the feasible domain L =
{x|a < x < b}, denoted L, is defined as follows:

b._ .
Lg:{xlx,-:a,'+ ’Na’-z, 7€{0,1,..., N}, ie{O,l,...,n}}.
y4
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Fig. 2 Representation of a 2D Cartesian grid (with £ = 1), the process of quantization, and the maximum
quantization error 8y, . Gridpoints are denoted by open squares, and the point of interest x denoted by a star.
In middle figure, note that the constraints that are binding at x are also binding at the quantization of this point,
x{; this is always true when quantizing to a Cartesian grid, a fact which is specifically leveraged in the proof
of Lemma 1. a Quantization of an interior point (w/o binding constraints). b Quantization of a boundary point
(w/ binding constriants). ¢ Maximum quantization error (a.k.a. “covering radius”)

The quantization of a point x onto the grid L, denoted x‘f, is a point on the grid which has the
minimum distance from x. Note that this quantization process might have multiple solutions;
any of these solutions is acceptable. The maximum quantization error (i.e., in the language
of sphere packing theory, the “covering radius”) of the grid, 8, is defined as follows:

16 — all

N, (6)

8p, = max [x —xq|l =
xely
Remark 1 There are three important properties of the Cartesian grid which are used in our
optimization algorithm.

a. The grid of level £ covering the feasible domain L in an n dimensional space has (N, +
1)"* grid points. Such a grid is best suited for an approximately square domain L; for
rectangular domains with high aspect ratios, this grid is easily generalized, as discussed
in Remark 2.

b. limy_ 61, = 0.

c. If x, is a quantization of x onto L, then A,(x) € A,(x,), where A, (x) is the set of
active constraints at x. This point is illustrated in Fig. 2.

Remark 2 The square Cartesian grid proposed in Definition 2 is easily generalized to a

rectangular Cartesian grid by defining

bi —da;
Ny,i

s

Ly= {x|x,- =a; + 2, e{0 L. Ny}, i e{o, 1,...,n}},
where Ny; = ¢; 2¢ for small integers c;, which are selected such that the grid spacings
of the initial grid, Axq; £ (b — ai)/No.;, are approximately equal in each direction i. For
rectangular domains L with high aspect ratios, a grid defined in such a manner is significantly
better suited.

Definition 3 Consider x as a point in L, and S as a nonempty set of points in L, such that
z € S is the closest point in S from x. The pair (x, S) is called activated if and only if
Aqs(x) € A,(z), where A, (x) is the set of active constraints at x. Note that the domain L
has a total of 2 n constraints.
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Fig. 3 The set S is shown by

black squares. The pair (x1, S) is n 22
not activated, since z1 (the closest X
point to x1 in S) is not on the 2

same boundary of L that x lies.
The pair (x7, S) is activated,
since z; (the closest point to x7 in
S) is located on the same
boundary of L that x, lies

Remark 3 If there are multiple points z which share the minimum distance from x in S, then
the pair (x, §) is activated if, for all such z, A, (x) € A,(2).

Remark 4 If x is on the interior of L, then the pair (x, S) is activated for any nonempty set S.
However, if x is on the boundary of L, the pair (x, S) may or may not activated, depending
on the position of x and the points in S (see Fig. 3).

Definition 4 Consider S as a set of points in L which is partitioned into two subsets, S =
Sg U Sy, as follows:

— The evaluated points are denoted Sg, where the function values are available.
— The support points are denoted Sy, where the function values are not available. The
support points will be helpful when developing the triangulation.

The continuous search function (see Fig. 4) at iteration k, denoted sf (x), is defined for all
x € L such that

k(x) —
o | s itk =

PX(x) — fo otherwise,

)

whereas the discrete search function (see Fig. 4) at iteration k, denoted ss (x), is defined for
all x € L such that .
pr(x)— fo .
k — if PE) > fo,
s4(x) = { Dis{x, Sj} ()
pk (x) — fo otherwise,

where ¢*(x) is the uncertainty function (see Definition 1) constructed with all the points in
Sk, p*(x) is an interpolating function passing through all the points in S¥., and Dis{x, Sﬁ} =
minzesg [[x =zl

Remark 5 Note that the continuous search function sf (x) used here is similar to the search
function s¥(x) defined and used in [8,9]. However, the uncertainty function e(x) and the
interpolating function p(x), upon which s (x) is based, are developed based on two different
set of points (S* and sk, respectively).
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Fig. 4 Illustration of continuous and discrete search function. a Illustrates: (solid line) the interpolating
function p(x), (dashed line) the uncertainty function e(x), (black squares) evaluation points Sg, and (stars)
support points Si7. b Illustrates: (sold line) the continuous search function xé‘ (x), and (closed circles) the

discrete search function xs (x).a p(x), e(x), Sg and Sy. b sc(x) and s4(x)

Now we have all the tools necessary to present the modified optimization algorithm con-
sidered in this work. The following three key modifications to A-DOGS are performed to
obtain A-DOGS(Z), as listed in Algorithm 2:

1. The datapoints in Algorithm 2 are restricted to lie on the Cartesian grid, which is occa-
sionally refined as the iteration proceeds.

2. At each iteration, two different sets of points are considered, Sg and Sy. Function eval-
uations are available only for the points in Sg.

3. Two different search functions, s.(x) and s;(x), are considered at each iteration. One
of them, s.(x), is minimized over the entire feasible domain L. The other, s;(x), is
minimized only over the points in Sy.

Defining x; as the minimizer of the continuous search function sé‘ (x) in L, y; as the
quantization of x; onto the grid L, and wy as the minimizer of the discrete search function
ss (x) in ¥, there are four possible cases at each iteration of Algorithm 2, corresponding to
four of the numbered steps of this algorithm:

(6) The pair (x, S¥) is not activated. This is called an inactivated step: yy is simply added
to S’l‘/, and no function evaluation is performed. [Note that the other three steps below, in
contrast, are said to be activated.]

(7) The pair (x, §¥Y is activated and ss(wk) < s(lj (xx). This is called an evaluating step: wy
is removed from S{‘,, added to Slfzs and f(wy) calculated.

(8) The pair (x¢, Sk) is activated, s’j (xp) < sf}(wk), and yx ¢ SJkE. This is called an identifying
step: the new point yi is added to S];s’ and f(yg) is calculated.

(9) The pair (xi, S¥) is activated, s&(x¢) < sk(wy), and y, € S%. This is called a grid
refinement step: Ly is refined, and the sets Sé and S[k] are unchanged.

At any given iteration k of Algorithm 2, exactly one of the above four cases applies, and

the corresponding step is taken. Iterations at which evaluating and identifying steps are

taken are illustrated in Fig. 5 (note that, in 1D, all iterations after the initialization are
activated).
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Fig. 5 Illustration of identifying (first row) and evaluating (second row) iterations of Algorithm 2. Left
figures: (dashed line) the interpolating function pk (x); (solid line) the objective function f(x); (open squares)
evaluated points S’E; (stars) support points S’é. Right figures: (solid line) the continuous search function sé‘ (x);
(closed squares) the discrete search function 55 (x); (open square) the global minimizer xj of the continuous
search function sé‘ (x). a (left) pk (x) and f(x), and (right) sé‘ (x) and 55 (x), for an iteration at which an
identifying step is performed. See caption below for legend, b (left) pk (x) and f(x), and (right) si? (x) and
ss (x), for an iteration at which an evaluating step is performed

Algorithm 2 The steps of the Modified Delaunay-based optimization algorithm, A-
DOGS(Z) are as follows:

0. Set k = 0 and initialize £. Take the initial set of support points S?, as all 2" vertices of
the feasible domain L. Choose at least n + 1 points on the initial grid, n + 1 of which
are affinely independent, put them in S%, and calculate f(x) at each of these points.

1. Calculate (or, for k > 0, update) an appropriate interpolating function p*(x) through all
points in S'é.

2. Calculate (or, for k > 0, update) a Delaunay triangulation A* over all of the points in
Sk = s U sk

3. Find x; as the minimizer of sf (x) (see Definition 4) in L, and take yy as its quantization
onto the grid Ly.

4. Find wy as the minimizer of s’j (x) (see Definition 4) in S]f].

5. If the pair (xg, $¥) is not activated (see Definition 3), then take S5, = S U {y¢} and
Sﬁ“ = SX_increment k, and repeat from 2.

6. If ss(wk) < sg(xk), then take Sf,“ = S{‘] — {wg} and SZH = S'& U {wy}, calculate
f(wy), and increment k; if f(wg) > fo, repeat from 2, otherwise halt.
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7. If yi ¢ Sk, then take S{‘/H = S’L‘, and Sf;r] = S'f; U {yx}, calculate f(yx), and increment
k; if f(yk) > fo, repeat from 2, otherwise halt.
8. Take S@H = S(kj and Sllf:“ = sk , increment both k and ¢, and repeat from 1.

4 Trust restriction based on the decrease of the interpolating function

We now describe a modification of Algorithm 2 which improves its convergence. At each
iteration, sf (x) must be minimized over all x € L, and 35 (x) must be minimized over all
xke S{C]. Note that, if sf (xx) < 0, then there is a point x € L for which pk (x) < fo, and thus
P (xk) < fo.

Definition 5 Those iterations of Algorithm 2 for which p*(xx) < fo are called trust restric-
tion iterations.

If pX(x;) is much less than fp, the value of the interpolation itself may be unreliable
near xx. This can happen only when xi is, in a sense, far from the available datapoints
(at which the function values are all greater than fp). In this case, we propose a strat-
egy to identify a point x for which p*(x) = fy (which is, thus, closer to the existing
datapoints), and evaluate the function at this new point instead. This approach, akin to
the venerable frust region approach (see, e.g., [16]), is a more promising strategy for
rapidly finding a value of x for which f(x) < fp, as the algorithm focuses at any given
iteration k on promising regions in L where the interpolant is, in a sense, reasonably
reliable.

To accomplish this, at the end of step 4 of Algorithm 2, it is checked whether or
not pk (xx) < fo. If it is (that is, if this is a trust restriction iteration), then a point
X is identified as the closest point in S]fE to xi; since the algorithm has not yet termi-
nated, pk (x¢) > fo. There is thus at least one point X on the line segment between x.
and x; such that pf(X) = fo. Finding such a point X (see, for example, Fig. 6) is a
simple one-dimensional root finding problem for the computationally inexpensive func-
tion p¥(x) — fo. A false position method may be used to find £ such that p*(x) =
fo. The point x; is then replaced by x, and Algorithm 2 proceeds from step 5 as
before.

Fig. 6 Illustration of a trust
restriction iteration of
Algorithm 2: (dashed line)
interpolating function pk (x);
(solid line) objective function
f(x); (open squares) evaluated
points S ; (stars) support points

S]f]; and (solid horizontal line)
target value fj
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S Analysis of the new algorithm

We now analyze the convergence properties of Algorithm 2. If the algorithm terminates after
finite number of iterations k, then a point xy is found for which the function value is less than
or equal to the target value fp; otherwise, all computed values of the objective function are
greater than the target value. In this section, we will show, in the latter case, that a limit point
of the datapoints that are obtained in the evaluation set Sg includes a feasible point whose
objective function is equal to the target value. Therefore, for this analysis, we will assume
that Algorithm 2 proceeds for an infinite number of iterations.

Before analyzing the convergence of Algorithm 2, we first show that Algorithm 2 includes
an infinite number of mesh refinements. To show this, a preliminary lemma is first established.

Lemma 1 Ifk as an inactivated iteration of Algorithm 2; then, y; ¢ S*.

Proof We establish this lemma by contradiction. Assume that y; € S¥, and that iteration
k is inactivated; that is, assume that there is a point z; € S* with minimum distance from
xi for which A, (xg) Q Ay (zk). Since all points in Sk are on the grid L, of iteration &,
and y is a quantizer of x; on this grid, ||xx — x|l < llxx — z«|l. On the other hand, since
yr € S¥ and z is the closest point to xg in S¥, ||xx — ykll > |lxx — z«ll. This leads to
lxx — zkll = llxx — yxll. As a result; the point z; is also a quantizer of x; on the Cartesian
grid Ly, which is in contradiction with A, (xx) g A4 (zk), as illustrated in Fig. 2. ]

Theorem 1 There are an infinite number of mesh refinement iterations if Algorithm 2 pro-
ceeds without terminating.

Proof This theorem is also estabshied by contradiction. Assume that there are a finite number
of mesh refinement iterations as Algorithm 2 proceeds, then all datapoints must lie on a grid
with some level £. At each iteration of Algorithm 2, if it is an identifying iteration, then |S’,§.|
and | S¥| are both incremented by one. If it is an evaluating iteration, then |SZ| is incremented
by one and |S¥| is fixed. if it is inactivated, then |S’,‘5| is fixed and |S§| is incremented by one.
Therefore, at each iteration of the algorithm which is not mesh refinement, we will increment
the value of | S| + |S’;5| by at least one. Since the number of points on the grid of level £ is
finite, we must have only finite number of iterations which are not mesh refinements, which
is in contradiction with the fact that there are infinite number of iterations for Algorithm 2.0

We now analyze the convergence of Algorithm 2. To do this, the following conditions are
imposed for the objective and interpolating functions.

Assumption 1 The interpolating functions pk (x), objective function f (x), and pk x)—f(x)
are Lipschitz with the same Lipschitz constant L.

Assumption 2 A constant K > 0 exists for which

VA f(x)— p*()}+2K1 >0, VxeLandk >0, 9)
V2{p¥(x)} —=2K1 <0, VxeLandk >0, (10)
V2 {f(x)}—2KI <0, VxeL. (11)

We now establish four Lemmas which together help to prove convergence. In the first, we
determine a bound for the maximum violation from the local minimum of a general twice
differentiable function from its local minimum. This bound is used in Lemma 4 to prove that
a solution will be obtained as the location of the datapoints become dense in the feasible
domain.
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Lemma 2 Consider G(x) as a twice differentiable function such that ViG(x)—2K;I <0,
and x* € L as a local minimizer of G(x) in L. Then, for each x € L such that A,(x*) C
Ay (x), we have:

G(x) — G(x*) < Kyllx — x*|%, (12)

Proof Define function G1(x) = G(x) — K1 ||x — x*||2. By construction, G (x) is concave;
therefore,
Gi(¥) < G1(x") + VG 1(xH) (x —x9),
Gi(x") = G(x™), VGI(x*)=VG(x™),
G(x) < G(x™) + VG (x —x*) + Ky [lx — x*||%.
Since the feasible domain is a bounded domain, the constrained qualification holds (see [12]);

therefore, x* is a KKT point. Therefore, using A, (x*) € Aq(x) leadsto VG (x*)T (x —x*) =
0, which verifies (12). ]

Lemma 3 Considerk as an iteration of Algorithm 2 which is activated and a trust restriction.
Then A
P = fo < 2{K + K)lba — 2l (13)

where K = sf (xx) > 0.

: : s kiyy — PrO—fo k
Proof Since x is a global minimizer of s, (x) = oy and s;(x) > Oforallx € L,

then x; is a global minimizer of T (x) = pk(xk) — K ex(x) too, and T*(xy) = fo (see
Sect. 5 in [8] for discussion of why). Consider Ai.‘ € AF as the simplex which includes xk.
By construction, K = ef‘ (xx). Define Tik x) = pk x)—K ef‘ (x), then Tik (x) is a twice
differentiable function in L, and

V2TE () = VApR ()} + 2K 1, VATF(x) —2(R + K} <0.

By (4), ef.‘ (zx) < €*(zx), which leads to T (x) < Tik (x) for all points x € L, xi is a global
minimizer of 7% (x), and T* (x¢) = T} (x). Therefore, x; is a global minimizer of T* (x) as
well.

Since iteration £ is activated, A, (xx) € A, (zk); thus, using Lemma 2, we have:

TF(zi) — TF o) < 2(K + K}z — x|
@) <T@, TG = T,

TH(z) — TR () < 2{K + K}z — xell?

TH () — fo < 2{K + K}llzx — x 1™

Since zx € SX., e¥(zx) = 0 and p*(zx), which leads to T*(z;) = p*(zx) which shows (13).0

Lemma 4 Consider x* as a global minimizer of f(x) in L. Then, for each iteration of
Algorithm 2 which is not a trust restriction, we have:

k(% k
n{sc(ic ),min :SdEZ)]} < 2. (14)
K zesk L

Proof Consider A{f as a simplex in AF which includes x* whose vertices are {Vlk, Vzk, o
Vrf 1} Define LK(x) as the unique linear function in Af.‘ such that L(Vl.k) =2f (Vik) -
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p*(VF), and define G*(x) = p*(x) + L¥(x) — 2 Ke¥(x) — 2 f(x). Then, for each vertex
VE(x) of A%,

G* (Vi) = pF(v)) + LK (V) = 2Kk (v =2 (V) = 0.

Moreover, since VZLi(x) = 0, and V2e¥(x) = —2 I inside the simplex Af , then according
to Assumption 2, V2Gk (x) > 0. Thus, Gk (x) is convex in Af.‘ , and its maximum is located
at one of its vertices; therefore,

G'x") =0, preM +LMeM) -2 f0) 2K @) <.
Since fj is assumed to be achievable, fy > f(x*), and thus
Pra) + LA (") =2 fo —2 Kt (x*) < 0.
Since x* € A{-‘ and L¥ (x) is linear, it follows that

min L* (Vk> < L*(x™),
1<j<n+l J

min !2f (V{‘> — pk (Vk)} = min L* (Vk>
1<j<n+1 J J 1<j<n+1

min(2 /@) - p@) = min {27 (V) =" (v})}.

I<j<n+1

(15)

PO = fo =2 R +min(2 £ () = () = fo} < 0.
ze
Define Z as the closest point to z in S’,}. By construction, p¥(2) — f(2) = 0. Furthermore, by
Assumption 1, the function pk (x) — f(x) is Lipschitz with constant ﬁ, and thus

p*(z) — f(2) < L|z - 2|l = L Dis(z, S& )
p*(z) — 2L Dis(z, S%) <2 f(2) — pr (). (16)

Using (15) and (16) leads to:
P = fo - 2ReF )+ min | p @) — fo—2EDis (= sE)} <0, a7
zeSk

Since iteration k is not a mesh refinement, pX(x) — fo > 0 for all x € L. Thus and

_L
T sy ()
are well defined functions everywhere in L, and equation (17) can be rewritten as:

2E ) tmint (ho - ) (1- 2= ) <0 an)
ss(x) ze$ sg(z)

Since p¥(x*) — fo > 0 and p*(2) — fo > 0 Vz € S¥, (14) is verified. |

1
s[? (x)

(PF (™) —

Lemma 5 Consider k as a mesh refinement iteration of Algorithm 2 which is not a trust
restriction. Then
min /() — fo gmax[uak,ﬁ[{a,%}, (19)

zeS

where 8 is the maximum discretization error of the Cartesian grid L at this iteration.
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Proof Since iteration k is mesh refinement, by construction, sg (xg) < sg(wk). Additionally,
x and wy are the global minimizer of sg‘ (x) and sfj (x)in L and S{‘] respectively. Thus, by
using (14) in Lemma 4, we have:

n:sf(f"),ss(fk)} <2 (20)
£ i

There are two possible cases: In the first case, si‘ (xp) < 2K ; thus, using Lemma 3, we have:
PEOR) — fo < 212K + Klllxe — yell* = 6 K [y — xil”-
Since y; € sk flx) = pk(yk). Furthermore, ||xx — yr|| < 8k; thus, (19) is verified in this
case. In the second case, s](; (xp) < 21. Since Vi € Slkg, and all points in S]fY are on the grid
Ly, it follows that Dis(xg, S’fg) = |lxk — yk|l = 8k, and thus
PrOw) = fo <2 LIk — well, p* () — p* () < Llbwe — well,
fOr) = fo <3 Llxk — yell <3 Lék.

Thus, (19) is shown for both cases. O

Remark 6 If iteration k of Algorithm 2 is a mesh refinement and a trust restriction, then
PE(x0) = fo. Additionally, pF(x) is Lipschitz with constant L; therefore,

PO — fo < Lilxg — yell < L. Q1)
Moreover, y; € S,’g, then
FOr) — fo < Llxe — yell < L. (22)

Theorem 2 If Algorithm 2 is not terminated at any iteration, then the set $°° = limy_, o0 S¥
has a limit point, denoted v € L, such that f(v) = fo.

Proof According to Theorem 1, there is an infinite number of mesh refinement iterations dur-
ing the execution of Algorithm 2, denoted here {k1, k2, .. . }. Considerv; € argmin g f(2).
According to Lemma 5 and Remark 6, we have:

f) = fosmax{3Lé, 6K 8}, (23)
Since Algorithm 2 is not terminated at any iteration, f(v;) — fo > 0. Additionally,
lim; 00 8; = 0 and f(x) is continuous (see Assumption 1 and 2), which leads to
lim; 00 f(vi) = fo. o
6 Results

In this section, we compare the performance of A-DOGS(Z), as given Algorithm 2, with the
original A-DOGS algorithm, as given in Algorithm 1 (and originally presented as Algorithm
2 in [8]). Note that the new A-DOGS(Z) algorithm modifies the orginal A-DOGS algorithm
in two essential ways:

Trust restriction that is, restricting the update based on the decrease of the interpolating
function (Sect. 4), and

Grid quantization that is, restricting function evaluations to lie on a grid that is successively
refined as convergence is approached (Sect. 3).
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To characterize independently the performance gains associated with these two modifica-
tions, four different algorithms are considered:

The original A-DOGS algorithm, denoted in this paper as Algorithm 1.

The original A-DOGS with trust restriction, denoted Algorithm 1A.

The original A-DOGS with grid quantization, denoted Algorithm 1B.

The new A-DOGS(Z) algorithm, given by the original A-DOGS with both trust restric-
tion and grid quantization, denoted in this paper as Algorithm 2.

Ll NS

6.1 Numerical tests on problems for which the solution is on the interior

In this section, numerical tests are performed on two different test problems, the Styblinski
Tang test problem

"Xt —16x2 + 5y
f(x):Z’f’l+39.l660n, where L={x|—-5<x; <5}, (24)

i=1

and the Schwefel test problem

n
f(x) =418.9829n — Zx,- sin(x;), where L = {x|0 <x; < 500}. (25)
i=1
The global minimum for each of these test problems is zero, and they have, respectively,
2" and 4" local minima inside their indicated search domains L, with global solutions at,
respectively, x; = —2.907 Vi, and x; = 420.9878 Vi.

In this section, the Styblinski Tang test problem (24) is analyzed for n = {2, 3, 4, 5}, and
the Schwefel test function (25) is analyzed forn = {2, 3, 4}. The target value considered in all
optimizations performed is the actual value of the global minimum, fy = 0. For Algorithms
1B and 2, an initial grid level of £o = 3 is considered, and the optimizations are continued
until the grid level of £ = 8 is terminated. To facilitate a fair comparison, Algorithms 1 and
1A are terminated when Dis(xy, Sk ) < dr4, where §;4 is the maximum quantization error of
grid level ¢ = 8, which leads to a comparable level of accuracy for all four methods tested.

For Algorithms 1B and 2, the initial n + 1 datapoints S% are given by

bi —a;

s%:{xo,x°+ e, Vie{l,Z,...,n}} (26)

260
where, for each i, ¢’ is the i’th unit vector, and x° is an initial point on the grid of level
£o. The results of Algorithms 1B and 2 will, naturally, depend upon the choice of xY; thus,
two different values for x° are considered. For the Styblinski Tang test function, we take (a)
x?’“ = 0Vi,and (b) x?’b = —2Vi.For the Schwefel test function, we take (a) x?’” = 100Vi,
and (b) x*"” = 400 Vi.

For the n = 2 cases, the position of the datapoints that are used during the optimization
process are illustrated in Fig. 7 for problem (24), and Fig. 8 for problem (25). It is observed
that Algorithm 2 significantly reduces the accumulation of datapoints on the boundary of the
feasibility, which accelerates convergence.

It is seen that trust restriction modification sometimes improves convergence, particularly
if a good initial value x° is used. However, this modification does not make a major improve-
ment if extensive global exploration of the domain is initially required, before identifying the
neighborhood of the global solution. The convergence histories in the higher-dimensional
cases are shown in Fig. 9 for problem (24), and Fig. 10 for problem (25).
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*
PO S S Y

(0
Fig.7 Implementation of Algorithms 1, 1A, 1B, and 2 on problem (24) for n = 2 dimensions: (open square)
evaluated points, (stars) support points. a Alg. 1, # of fn. evals: 37. b Alg. 1A, # of fn. evals: 37. ¢ Alg. 1B,

x4 # of fn. evals: 22. d Alg. 1B, x0:2_ # of fn. evals: 24. e Alg. 2, x9¢_# of fn. evals: 16. f Alg. 2, x0:0, #
of fn. evals: 5

Fig. 8 Implementation of Algorithms 1, 1A, 1B, and 2 on problem (25) for n = 2 dimensions: (open square)
evaluated points, (stars) support points. a Alg. 1, # of fn. evals: 30. b Alg. 1A, # of fn. evals: 30. ¢ Alg. 1B,
xo’“, # of fn. evals: 17. d Alg. 1B, xo*b, # of fn. evals: 11. e Alg. 2, xo'“, # of fn. evals: 24. f Alg. 2, xo*b, #
of fn. evals: 13

The results are summarized in Table 1. Note that the performance of Algorithms 1B and 2 in
the various dimensions reported in Table 1, for both problems (24) and (25), are compared by
starting from 4 different initial points x° on the initial grid (generated uniformly randomly in
the feasible domain), and averaging to determine the “typical” number of function evaluations
and support points required.

To summarize, it is observed that the two modifications of Algorithm 1 that are presented
in this article (that is, trust restriction and grid quantization) significantly and consistently
improve its convergence behavior. A key reason for this is that fewer datapoints accumulate on
the boundary of the feasible domain using the new Algorithm 2. Most of the boundary points
that are used by Algorithm 1 are needed simply to regularize the triangulation; Algorithm 2
avoids performing function evaluations at these boundary points by dividing S¥ into evaluated
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Fig. 9 Convergence histories for Algorithms 1, 1A, 1B, and 2 with two different initial points on problem
(24) for n = 3, 4 and 5. The behavior near convergence is shown in the insets. a Alg. 1, n = 3. b Alg. 1A,
n=3.cAlg IB,n=3x% adAlg I1B,n=3x%% eAlg 2, n=3x%fAlg 2 n=23x%0 gAlg
I,n=4hAlg 1A, n=4.iAlg. 1B, n =4, x% jAlg. 1B,n =4, x02 k Alg. 2, n = 4, x99 1 Alg. 2,
n=4x% mAlg 1,n =5 nAlg. 1A,n =5.0Alg. 1B, n = 5,x%4 p Alg. 1B, n = 5, x%0. q Alg. 2,
n=5x%rAlg.2n=5x%
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Fig. 10 Convergence histories for Algorithms 1, 1A, 1B, and 2 with two different initial points on problem
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points S’I‘E and support points Sk, thereby more rapidly exploring the interior of the feasible
domain during the optimization process.

6.2 Numerical tests on problems for which the solution is on the boundary

In the previous section, it was shown that Algorithm 2 has a signicantly improved rate
of convergence, as compared with Algorithm 1, when the global solution of the problem
considered is on the interior the feasible domain. In this section, we consider the case in
which the global solution of the problem considered is on the boundary of the feasible
domain. We focus our attention on two cases, one in n = 2 dimensions, and one in n = 4
dimensions.

The first case considered is the Styblinski Tang problem (24) with n = 2, with the feasible
domain L modified as follows:

—291<x1 <5, —-5=<x<5. 27

The global solution of this problem is x* = [—2.91, 2.907], which is on the feasible domain
boundary, with one active constraint.
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Table1 Application of Algorithms 1, 1A, 1B, and 2 to the Styblinski Tang test problem (24) and the Schwefel
test problem (25)

Test problem Dimension Algorithm # of function evaluations # of support points
(24) n=2 1 37 N/A
1A 37 N/A
1B 22.25 7.25
2 20.25 8.25
n=3 1 70 N/A
1A 67 N/A
1B 43.75 315
2 35.25 29.5
n=4 1 149 N/A
1A 149 N/A
1B 80.25 83.75
2 58 65.75
n=>5 1 284 N/A
1A 282 N/A
1B 150.25 2325
2 114.25 220.75
(25) n=2 1 30 N/A
1A 30 N/A
1B 25.25 9.25
2 22.25 9.75
n=3 1 78 N/A
1A 79 N/A
1B 34.75 60.25
2 29.25 59.5
n=4 1 222 N/A
1A 222 N/A
1B 103.25 211.75
2 83.00 202.75

For Algorithms 1B and 2, the number of function evaluations and support points averaged over 4 random
initial points x9 are reported

The second case considered is the Styblinski Tang problem (24) with n = 4, with the
feasible domain L modified as follows:

—291 <x1 <5, -291<x <5 -—-5=<x3<5, -5<x<5. (28)

The global solution of this problem is x* = [-2.91, —2.91, —2.907, —2.907], which is on
the feasible domain boundary, with two active constraints.

The implementation of Algorithms 1 and 2 on the n = 2 problem constrained by (27) is
shown in Fig. 11. As in the previous section, Algorithm 2 is initialized with two different
initial points, defined as follows:
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945

Fig. 11 Implementation of Algorithms 1 and 2 on the n = 2 Styblinski Tang test problem inside the feasible
domain characterized by (27). a Algorithm 1, # of fn. evals: 25. b Algorithm 2, xo'”, # of fn. evals: 26. ¢

Algorithm 2, xo’b, # of fn. evals: 12
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Fig. 12 Convergence history of Algorithms 1, 1A, 1B, and 2 on the n = 4 Styblinski Tang test problem inside
the feasible domain characterized by (28). a Alg. 1. b Alg. 1A. ¢ Alg. 1B, x%-¢. d Alg. 1B, x9?. e Alg. 2,
x4 f Alg. 2, x0-P

x4 =[-1.328, —2], x"9 =[1.045, 0]. (29)
Itis observed that the number of function evaluations accumulating on those boundaries which
do not include the solution is reduced in Algorithm 2, though the boundary that contains the
solution is still effectively explored. Thus, again, Algorithm 2 is seen to minimize the function
evaluations on the boundary which are not necessary.

The convergence history of Algorithms 1, 1A, 1B, and 2 on the n = 4 problem constrained
by (28) are shown in Fig. 12. Again, Algorithms 1B and 2 are initialized with two different
initial points, defined as follows:

200 =[-1.328, —1.328, —2, —2], x*? =[1.045, 1.045, 0, 0].

The averaged performance of the application of the Algorithm 1, 1A, 1B and 2 in the n = 4
case are summarized in Table 2. It is again observed that Algorithm 2 significantly outper-
forms Algorithm 1.

Itis observed that, the performance of Algorithm 2 is better this case too. The reason of this
phenomenon, is that the number of expolation of the objective function on the unnecessary
boundaries are reduced, but the boundary which includes the solution is explored.
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Table 2 Summary of the convergence of Algorithms 1, 1A, 1B, 2 on the n = 4 Styblinski Tang test problem
inside the feasible domain characterized by (28)

Algorithm # of function evaluations # of support points
1 173 N/A

1A 173 N/A

1B 100.5 131.25

2 87.75 116.25

For Algorithms 1B and 2, the number of function evaluations and support points averaged over 4 random
initial points x0 are reported

7 Conclusions

In this paper, we have modified the original Delaunay-based derivative-free optimization
algorithm A-DOGS, proposed in [8], in order to accumulate fewer evaluation points on the
boundary of feasibility, thereby exploring the interior of the feasible domain more rapidly.
The resulting algorithm, dubbed A-DOGS(Z), has three main modifications as compared
with the original algorithm:

e Two different sets of points are considered during the optimization procession: evaluation
points and support points. The latter set helps to regulate the triangulation developed.

e Since the uncertainty function is zero at some points which are not in the evaluation set,
another metric for the search function is used at these points.

e The datapoints that are used in the Algorithm 2 all lie on a Cartesian grid which is
successively refined as the iterations proceed.

As with our original Delaunay-based optimization algorithm, as well as any other derivative-
free optimization algorithm, there is a significant curse of dimensionality, and optimization in
only moderate-dimensional problems (i.e., n < 10) is expected to be numerically tractable.
A key bottleneck of the present class of algorithms as the dimension of the problem is
increased is the overhead associated with the enumeration of the Delaunay triangulation.
Another limitation of the algorithm presented here is its restriction to bound-constrained
domains; note that the original Delaunay-based optimization algorithm developed in [8] can
handle any linearly-constrained domains. Another potential weakness is that the Cartesian
grid used here is not the best option for the discretization as the dimension # is increased (for
further explanation, see [7]). In future work, the algorithm developed here will be modified
to deal with general linearly-constrained domains, and different lattices will be considered
as alternatives to the Cartesian grid.

The optimization algorithm developed in this paper, using both polyharmonic spline inter-
polation as well as a new interpolation method developed by our group, dubbed Multivariate
Adaptive Polyharmonic Splines (MAPS), has already been successfully applied to a chal-
lenging real-world application involving the minimization of drag on a hydrofoil [3]; the
A-DOGS(Z) algorithm developed in the present work showed a significantly improved rate
of convergence as compared with the original A-DOGS algorithm. Additional benchmark
test problems and application-based optimization problems will be considered in future work.

Acknowledgements The authors gratefully acknowledge AFOSR FA 9550-12-1-0046 in support of this
work.
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Appendix: Modified algorithm for problems without target value

In this appendix, we present a modified algorithm that does not required a target value for
the objective function. The algorithm developed is quite similar to Algorithm 2, with the
continuous and discrete search functions modified as follows:

st () = ph) — K ek ), (30)
sk(x) = pF(x) — L¥ Dis{x, S&}. (1)

The parameters L¥ and K¥ are two positive series which are defined as follows:

LK = Lot*, k¥ = K ¢~ (32)

50 * m}
[m]

og

0 20 40 60 80 0 50 100 150

(b) (0

Fig. 13 Application of the modified algorithm discussed in the “Appendix”, without leveraging knowledge
of the target value, for minimizing the Styblinski Tang test problem (24). The position of the evaluated points
(squares) and support points (stars) in the n = 2 case are depicted in (a). Convergence histories are shown
in b for n = 3 and ¢ for n = 4. a Location of evaluated and support points, n = 2. b Convergence history,
n = 3. ¢ Convergence history, n = 4
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where ¢X is the level of the grid at step k. The convergence analysis of this modified algorithm
is similar to the analysis presented in Sect. 5, with the main differences as follows:

1. Equation (14) is modified to:

min {50, min [sh@] < £, (33)

€Sy
Note that above equation is not true for all iterations k, but it is true once
Kkzle and Lkzl:;

note that the series K¥ and L* increase without bound, and thus (33) is satisfied for
sufficiently large k.
2. Equation (19) is modified to

min f(z) — f(x*) < max [ (LK + L) &, (K¥ + K) 5,3] . (34)

Z€SE

Moreover, we have:

k

lim L*8; = lim LoSp—- =0,
(i, 0 = i Lo
ko2 226

lim k%82 = lim K82~ =0.
koo Ok TR, 00 4

As aresult, the right hand size of (34) converges to zero as k — oo.

‘We have implemented this modified algorithm on the problem of minimizing the Styblinski
Tang test problem (24), for n = {2, 3, 4}, inside the domain —5 < x; < 5 Vi, with the
initial point given by x? = 0.5 Vi. In these computations, the value of Ko = 50 and
Lo = 5 were used; note that these parameter values happen to be good for this test problem.
In general, selecting well these two parameters, which ultimately affect the convergence
rate of the resulting algorithm, involves an exercise in trial and error; note, however, that
(following the modified analysis described above) convergence is proved for this modification
of Algorithm 2 for any choice of Ky and Lo. An analogous issue was encountered when
selecting K in Algorithm 1 of [8]. Figure 13 shows the positions of the function evaluations
and support points for the n = 2 case, and the convergence histories for the n = 3 andn = 4
cases. The convergence of the modified algorithm proposed here is, again, seen to be quite
rapid.
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