
J Glob Optim (2017) 69:927–949
DOI 10.1007/s10898-017-0548-3

Implementation of Cartesian grids to accelerate
Delaunay-based derivative-free optimization

Pooriya Beyhaghi1 · Thomas Bewley1

Received: 17 July 2016 / Accepted: 17 July 2017 / Published online: 9 August 2017
© Springer Science+Business Media, LLC 2017

Abstract This paper introduces a modification of our original Delaunay-based optimization
algorithm (developed in JOGO DOI:10.1007/s10898-015-0384-2) that reduces the number
of function evaluations on the boundary of feasibility as comparedwith the original algorithm.
Aweaknesses we have identified with the original algorithm is the sometimes faulty behavior
of the generated uncertainty function near the boundary of feasibility, which leads to more
function evaluations along the boundary of feasibility than might otherwise be necessary. To
address this issue, a second search function is introduced which has improved behavior near
the boundary of the search domain.Additionally, the datapoints are quantized onto aCartesian
grid, which is successively refined, over the search domain. These two modifications lead to
a significant reduction of datapoints accumulating on the boundary of feasibility, and faster
overall convergence.

Keywords Derivative-free optimization · Surrogate functions · Delaunay triangulation ·
Cartesian grid

1 Introduction

In this paper, a derivative-free optimization algorithm is presented to minimize a (possibly
nonconvex) function subject to bound constraints:1

minimize f (x) with x ∈ L = {x |a ≤ x ≤ b}, a < b. (1)

where x ∈ R
n , f : R

n → R, a, b ∈ R
m .

1 Taking a and b as vectors, a ≤ b implies that ai ≤ bi ∀i .

B Pooriya Beyhaghi
p.beyhaghi@gmail.com

Thomas Bewley
bewley@eng.ucsd.edu

1 Flow Control Lab, University of California, San Diego, La Jolla, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10898-017-0548-3&domain=pdf
http://dx.doi.org/10.1007/s10898-015-0384-2

928 J Glob Optim (2017) 69:927–949

The algorithm presented is a modification of the original algorithm for Delaunay-based
derivative-free optimization via global surrogates, dubbed Δ-DOGS, developed in [8,9].
In this paper, we will assume that there is a target value f0 which is achievable (∃ x ∈
L such that f (x) ≤ f0), and the goal is to find a point such that f (x) ≤ f0. As done in
Algorithm 2 of [8], the present algorithm can be modified to problems for which a target
value of f0 is unavailable (as it discussed in the “Appendix”). However, in this paper, we will
assume that this target value f0 is known.

Derivative-free algorithms are suitable for such problems even if neither the gradient of
f (x) nor an accurate numerical approximation of this gradient is readily available. This is
common in situations in which the function f (x) is derived either from an experiment or
from many types of numerical simulations. There are three main classes of deterministic
derivative-free algorithms.

The first class is Direct Search Methods, as reviewed in [15], including Pattern Search
Methods [21,22] and Mesh Adaptive Direct search [1,4–6]. These methods are generally
used to identify a local minimum of a function from some initial guess in parameter space.
The more difficult challenge of attempting to identify accurately the global minimum of
a nonconvex function f (x), with as few function evaluations as possible, is an issue of
significant interest.

The second class of derivative-free optimization algorithms is branch and bound methods,
which can be used for the purpose of global optimization. In such algorithms, the search region
at each iteration is constrained based on some condition imposed on the objective function.
The most common such condition imposed is a bound on the Lipschitz norm, as studied in
[11,13,17,20].

The third class of derivative-free optimization algorithms is Response Surface Methods,
which employ an interpolating model of the available function evaluations at each iteration in
order to summarize the trends evident in the available data. Expected Improvement, Baysian
optimization, and other Kriging-based optimization strategies [2,7,10,14,18,19] are themost
well-knownmethods in this class.With suchmethods, an interpolation strategy is used which
inherently builds both an estimate of the function itself, p(x), as well as a model of the
uncertainty of this estimate, e(x), over the entire feasible domain of parameter space.

Kriging interpolation, and other correlation-based interpolation strategies, have various
shortcomings, the most significant of which is the numerical stiffness of the computational
problem of fitting the Kriging model to the datapoints, and the subsequent inaccuracy of
this fit. This problem is exacerbated when many datapoints are available, some of which
are clustered in a small region of parameter space (see, e.g, the Appendix of [8]). Another
important consideration is that the selection of the best interpolation strategy is an application-
specific problem; based on various known characteristics of the cost function of interest,
different interpolation strategies might be best suited.

Delaunay-based optimization [3,8,9] is a recently-developed response surfacemethod that
can uses any interpolation strategy, together with an artificially-generated function modeling
the uncertainty associated with this interplant, to find the global minimum of an objective
function. This uncertainty model is built on the framework of a Delaunay triangulation of the
available datapoints in parameter space. One of the challenges with these new algorithms is
their overexploration of the boundary of feasibility. This problemmight be exacerbated if the
objective function itself has irregular behavior close to the boundary of L , which is common.
In this paper, we develop a modified Delaunay-based optimization algorithmwhich performs
fewer function evaluations on the boundary of feasibility.

The structure of this paper is as follows: Sect. 2 reviews the original elements of the
Delaunay-based optimization algorithm [8]. Section 3presents themodified algorithm, and all

123

J Glob Optim (2017) 69:927–949 929

the tools that are needed. Section 5 proves the convergence to a point whose objective function
is less than the target value for Lipschitz continuous and twice differentiable functions.
Section 6 applies both the original and themodified optimization algorithm to a representative
example. Some conclusions are presented in Sect. 7.

2 The original Delaunay-based optimization algorithm

In this section, we review our original algorithm for Delaunay-based Derivative-free Opti-
mization via Global Surrogates, dubbedΔ-DOGS. This algorithm is a global, derivative-free
optimization algorithm to solve (1) using successive function evaluations inside a feasible
domain to find the global minimum. At each iteration of the algorithm, a metric based on an
interpolation of the existing function evaluations, a model of the uncertainty of this interpo-
lation, and the target value of the optimization f0 is used to find the best possible candidate
point for the next function evaluation. In this work, the interpolating function and the uncer-
tainty function at iteration k are denote by pk(x) and ek(x), respectively. This method can
handle any well-behaved interpolation strategy which is twice differentiable with bounded
Hessian at all iterations. For the uncertainty function, a piecewise quadratic function is used
which is nonnegative everywhere, and which goes to zero at the available datapoints. The
uncertainty function is defined as follows:

Definition 1 Consider S as a set of feasible points which includes the vertices of L , andΔ as
a Delaunay triangulation of S. Then, for each simplexΔi ∈ Δ, the local uncertainty function
is defined as:

ei (x) = R2
i − ‖x − Zi‖2, (2)

where Ri and Zi are the circumradius and circumcenter ofΔi . The global uncertainty function
e(x) is a piecewise function defined as follows:

e(x) = ei (x) ∀x ∈ Δi . (3)

The uncertainty function e(x) has a number of properties which are established in Lemmas
[2:5] of [8], as listed bellow:

a. The uncertainty function e(x) ≥ 0 for all x ∈ L , and e(x) = 0 for all x ∈ S.
b. The uncertainty function e(x) is continuous and Lipschitz.
c. The uncertainty function e(x) is piecewise quadratic, with Hessian of −2 I .
d. The uncertainty function e(x) is equal to the maximum of the local uncertainty functions:

e(x) = max
1≤i≤n

ei (x). (4)

The steps of Δ-DOGS are presented in Algorithm 1. Implementation and proof of con-
vergence of this Algorithm are given in [8]. As mentioned previously, one of the weaknesses
of this algorithm is the sometimes irregular behavior of the uncertainty function e(x) close
to the boundary of feasibility (see Fig. 1). This issue was addressed in Sect. 4 of [8] by pro-
jecting the point xk onto the boundary of feasibility whenever xk is, in a certain sense, close
to the boundary of feasibility. Using this approach, the irregular behavior of the uncertainty
function close to the boundary of L is reduced somewhat; however, further reduction of the
accumulation of datapoints along the boundary of feasibility is sometimes desired, and is
achieved by the strategy described in the remainder of this paper.

123

930 J Glob Optim (2017) 69:927–949

1
0.8

0.6
0.4

0.2
00

0.2
0.4

0.6
0.8

1

0.3

0.25

0.2

0.15

0.1

0.05

0

Fig. 1 Illustration of the uncertainty function e(x) for a set S of 10 randomly-selected points within a square
domain together with the vertices of the domain. It is seen that e(x) has irregular behavior near the boundary
of domain

Algorithm 1 The steps of the original Delaunay-based optimization algorithm, Δ-DOGS
are as follows:

0. Set k = 0. Take the set of initialization points S0 as the union of all vertices of the
feasible domain L together with any user-supplied initialization points of interest (see
Sect. 1 in [8] for implementation).

1. Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through all
points in Sk .

2. Calculate (or, for k > 0, update) a Delaunay triangulationΔk over all of the points in Sk .
3. Find xk as a global minimizer of sk(x) in L to obtain xk , where

sk(x) =
{

pk (x)− f0
ek (x)

, if pk(x) ≥ f0,

pk(x) − f0, otherwise,
(5)

where ek(x) is the uncertainty function (see Definition 1) for the datasset Sk .
4. Take Sk+1 = Sk ∪ {xk}, increment k, calculate f (xk), and repeat from 1.

3 Acceleration of Delaunay-based optimization with a grid

This section presents, in Algorithm 2, the new optimization algorithm, dubbedΔ-DOGS(Z),
as well as its essential elements. Before explaining Algorithm 2, some preliminary concepts
are required.

Definition 2 Taking N� = 2�, the Cartesian grid of level � over the feasible domain L =
{x |a ≤ x ≤ b}, denoted L�, is defined as follows:

L� =
{
x |xi = ai + bi − ai

N�

· z, z ∈ {0, 1, . . . , N�}, i ∈ {0, 1, . . . , n}
}
.

123

J Glob Optim (2017) 69:927–949 931

x

xq

x

xq

L

(a) (b) (c)

δ

Fig. 2 Representation of a 2D Cartesian grid (with � = 1), the process of quantization, and the maximum
quantization error δL�

. Gridpoints are denoted by open squares, and the point of interest x denoted by a star.
Inmiddle figure, note that the constraints that are binding at x are also binding at the quantization of this point,
x�
q ; this is always true when quantizing to a Cartesian grid, a fact which is specifically leveraged in the proof
of Lemma 1. a Quantization of an interior point (w/o binding constraints). bQuantization of a boundary point
(w/ binding constriants). c Maximum quantization error (a.k.a. “covering radius”)

The quantization of a point x onto the grid L�, denoted x�
q , is a point on the grid which has the

minimum distance from x . Note that this quantization process might have multiple solutions;
any of these solutions is acceptable. The maximum quantization error (i.e., in the language
of sphere packing theory, the “covering radius”) of the grid, δL�

, is defined as follows:

δL�
= max

x∈L�

‖x − xq‖ = ‖b − a‖
2N�

. (6)

Remark 1 There are three important properties of the Cartesian grid which are used in our
optimization algorithm.

a. The grid of level � covering the feasible domain L in an n dimensional space has (N� +
1)n grid points. Such a grid is best suited for an approximately square domain L; for
rectangular domains with high aspect ratios, this grid is easily generalized, as discussed
in Remark 2.

b. lim�→∞ δL�
= 0.

c. If xq is a quantization of x onto L�, then Aa(x) ⊆ Aa(xq), where Aa(x) is the set of
active constraints at x . This point is illustrated in Fig. 2.

Remark 2 The square Cartesian grid proposed in Definition 2 is easily generalized to a
rectangular Cartesian grid by defining

L� =
{
x |xi = ai + bi − ai

N�,i
· zi , zi ∈ {0, 1, . . . , N�,i }, i ∈ {0, 1, . . . , n}

}
,

where N�,i = ci 2� for small integers ci , which are selected such that the grid spacings
of the initial grid, Δx0,i � (bi − ai)/N0,i , are approximately equal in each direction i . For
rectangular domains L with high aspect ratios, a grid defined in such amanner is significantly
better suited.

Definition 3 Consider x as a point in L , and S as a nonempty set of points in L , such that
z ∈ S is the closest point in S from x . The pair (x, S) is called activated if and only if
Aa(x) ⊆ Aa(z), where Aa(x) is the set of active constraints at x . Note that the domain L
has a total of 2 n constraints.

123

932 J Glob Optim (2017) 69:927–949

Fig. 3 The set S is shown by
black squares. The pair (x1, S) is
not activated, since z1 (the closest
point to x1 in S) is not on the
same boundary of L that x1 lies.
The pair (x2, S) is activated,
since z2 (the closest point to x2 in
S) is located on the same
boundary of L that x2 lies

x
1

z
1

x
2

z
2

Remark 3 If there are multiple points z which share the minimum distance from x in S, then
the pair (x, S) is activated if, for all such z, Aa(x) ⊆ Aa(z).

Remark 4 If x is on the interior of L , then the pair (x, S) is activated for any nonempty set S.
However, if x is on the boundary of L , the pair (x, S) may or may not activated, depending
on the position of x and the points in S (see Fig. 3).

Definition 4 Consider S as a set of points in L which is partitioned into two subsets, S =
SE ∪ SU , as follows:

– The evaluated points are denoted SE , where the function values are available.
– The support points are denoted SU , where the function values are not available. The

support points will be helpful when developing the triangulation.

The continuous search function (see Fig. 4) at iteration k, denoted skc (x), is defined for all
x ∈ L such that

skc (x) =
⎧⎨
⎩

pk(x) − f0
ek(x)

if pk(x) ≥ f0,

pk(x) − f0 otherwise,
(7)

whereas the discrete search function (see Fig. 4) at iteration k, denoted skd (x), is defined for
all x ∈ L such that

skd (x) =

⎧⎪⎨
⎪⎩

pk(x) − f0
Dis{x, SkE } if pk(x) ≥ f0,

pk(x) − f0 otherwise,
(8)

where ek(x) is the uncertainty function (see Definition 1) constructed with all the points in
Sk , pk(x) is an interpolating function passing through all the points in SkE , and Dis{x, SkE } =
minz∈SkE ‖x − z‖.

Remark 5 Note that the continuous search function skc (x) used here is similar to the search
function sk(x) defined and used in [8,9]. However, the uncertainty function e(x) and the
interpolating function p(x), upon which skc (x) is based, are developed based on two different
set of points (Sk and SkE , respectively).

123

J Glob Optim (2017) 69:927–949 933

(a) (b)

Fig. 4 Illustration of continuous and discrete search function. a Illustrates: (solid line) the interpolating
function p(x), (dashed line) the uncertainty function e(x), (black squares) evaluation points SE , and (stars)
support points SU . b Illustrates: (sold line) the continuous search function skc (x), and (closed circles) the
discrete search function skd (x). a p(x), e(x), SE and SU . b sc(x) and sd (x)

Now we have all the tools necessary to present the modified optimization algorithm con-
sidered in this work. The following three key modifications to Δ-DOGS are performed to
obtain Δ-DOGS(Z), as listed in Algorithm 2:

1. The datapoints in Algorithm 2 are restricted to lie on the Cartesian grid, which is occa-
sionally refined as the iteration proceeds.

2. At each iteration, two different sets of points are considered, SE and SU . Function eval-
uations are available only for the points in SE .

3. Two different search functions, sc(x) and sd(x), are considered at each iteration. One
of them, sc(x), is minimized over the entire feasible domain L . The other, sd(x), is
minimized only over the points in SU .

Defining xk as the minimizer of the continuous search function skc (x) in L , yk as the
quantization of xk onto the grid L�, and wk as the minimizer of the discrete search function
skd (x) in SkU , there are four possible cases at each iteration of Algorithm 2, corresponding to
four of the numbered steps of this algorithm:

(6) The pair (xk, Sk) is not activated. This is called an inactivated step: yk is simply added
to SkU , and no function evaluation is performed. [Note that the other three steps below, in
contrast, are said to be activated.]

(7) The pair (xk, Sk) is activated and skd (wk) < skd (xk). This is called an evaluating step: wk

is removed from SkU , added to SkE , and f (wk) calculated.
(8) The pair (xk, Sk) is activated, skd (xk) ≤ skd (wk), and yk /∈ SkE . This is called an identifying

step: the new point yk is added to SkE , and f (yk) is calculated.
(9) The pair (xk, Sk) is activated, skd (xk) ≤ skd (wk), and yk ∈ SkE . This is called a grid

refinement step: L� is refined, and the sets SkE and SkU are unchanged.

At any given iteration k of Algorithm 2, exactly one of the above four cases applies, and
the corresponding step is taken. Iterations at which evaluating and identifying steps are
taken are illustrated in Fig. 5 (note that, in 1D, all iterations after the initialization are
activated).

123

934 J Glob Optim (2017) 69:927–949

s ck (
x)

x
k

s dk (
x)

s ck (
x)

x
k

s dk (
x)

Fig. 5 Illustration of identifying (first row) and evaluating (second row) iterations of Algorithm 2. Left
figures: (dashed line) the interpolating function pk (x); (solid line) the objective function f (x); (open squares)
evaluated points SkE ; (stars) support points S

k
U . Right figures: (solid line) the continuous search function skc (x);

(closed squares) the discrete search function skd (x); (open square) the global minimizer xk of the continuous

search function skc (x). a (left) pk (x) and f(x), and (right) skc (x) and skd (x), for an iteration at which an

identifying step is performed. See caption below for legend, b (left) pk (x) and f(x), and (right) skc (x) and
skd (x), for an iteration at which an evaluating step is performed

Algorithm 2 The steps of the Modified Delaunay-based optimization algorithm, Δ-
DOGS(Z) are as follows:

0. Set k = 0 and initialize �. Take the initial set of support points S0U as all 2n vertices of
the feasible domain L . Choose at least n + 1 points on the initial grid, n + 1 of which
are affinely independent, put them in S0E , and calculate f (x) at each of these points.

1. Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through all
points in SkE .

2. Calculate (or, for k > 0, update) a Delaunay triangulation Δk over all of the points in
Sk = SkU ∪ SkE .

3. Find xk as the minimizer of skc (x) (see Definition 4) in L , and take yk as its quantization
onto the grid L�.

4. Find wk as the minimizer of skd (x) (see Definition 4) in SkU .
5. If the pair (xk, Sk) is not activated (see Definition 3), then take Sk+1

U = SkU ∪ {yk} and
Sk+1
E = SkE , increment k, and repeat from 2.

6. If skd (wk) ≤ skd (xk), then take Sk+1
U = SkU − {wk} and Sk+1

E = SkE ∪ {wk}, calculate
f (wk), and increment k; if f (wk) > f0, repeat from 2, otherwise halt.

123

J Glob Optim (2017) 69:927–949 935

7. If yk /∈ SkE , then take S
k+1
U = SkU and Sk+1

E = SkE ∪ {yk}, calculate f (yk), and increment
k; if f (yk) > f0, repeat from 2, otherwise halt.

8. Take Sk+1
U = SkU and Sk+1

E = SkE , increment both k and �, and repeat from 1.

4 Trust restriction based on the decrease of the interpolating function

We now describe a modification of Algorithm 2 which improves its convergence. At each
iteration, skc (x) must be minimized over all x ∈ L , and skd (x) must be minimized over all
x ∈ SkU . Note that, if s

k
c (xk) < 0, then there is a point x ∈ L for which pk(x) < f0, and thus

pk(xk) < f0.

Definition 5 Those iterations of Algorithm 2 for which pk(xk) < f0 are called trust restric-
tion iterations.

If pk(xk) is much less than f0, the value of the interpolation itself may be unreliable
near xk . This can happen only when xk is, in a sense, far from the available datapoints
(at which the function values are all greater than f0). In this case, we propose a strat-
egy to identify a point x for which pk(x) = f0 (which is, thus, closer to the existing
datapoints), and evaluate the function at this new point instead. This approach, akin to
the venerable trust region approach (see, e.g., [16]), is a more promising strategy for
rapidly finding a value of x for which f (x) ≤ f0, as the algorithm focuses at any given
iteration k on promising regions in L where the interpolant is, in a sense, reasonably
reliable.

To accomplish this, at the end of step 4 of Algorithm 2, it is checked whether or
not pk(xk) < f0. If it is (that is, if this is a trust restriction iteration), then a point
xc is identified as the closest point in SkE to xk ; since the algorithm has not yet termi-
nated, pk(xc) > f0. There is thus at least one point x̂ on the line segment between xc
and xk such that pk(x̂) = f0. Finding such a point x̂ (see, for example, Fig. 6) is a
simple one-dimensional root finding problem for the computationally inexpensive func-
tion pk(x) − f0. A false position method may be used to find x̂ such that pk(x̂) =
f0. The point xk is then replaced by x̂ , and Algorithm 2 proceeds from step 5 as
before.

Fig. 6 Illustration of a trust
restriction iteration of
Algorithm 2: (dashed line)
interpolating function pk (x);
(solid line) objective function
f (x); (open squares) evaluated
points SkE ; (stars) support points

SkU ; and (solid horizontal line)
target value f0

x̂

xk

xc

123

936 J Glob Optim (2017) 69:927–949

5 Analysis of the new algorithm

We now analyze the convergence properties of Algorithm 2. If the algorithm terminates after
finite number of iterations k, then a point xk is found for which the function value is less than
or equal to the target value f0; otherwise, all computed values of the objective function are
greater than the target value. In this section, we will show, in the latter case, that a limit point
of the datapoints that are obtained in the evaluation set SE includes a feasible point whose
objective function is equal to the target value. Therefore, for this analysis, we will assume
that Algorithm 2 proceeds for an infinite number of iterations.

Before analyzing the convergence of Algorithm 2, we first show that Algorithm 2 includes
an infinite number ofmesh refinements. To show this, a preliminary lemma is first established.

Lemma 1 If k as an inactivated iteration of Algorithm 2; then, yk /∈ Sk.

Proof We establish this lemma by contradiction. Assume that yk ∈ Sk , and that iteration
k is inactivated; that is, assume that there is a point zk ∈ Sk with minimum distance from
xk for which Aa(xk) � Ax (zk). Since all points in Sk are on the grid L� of iteration k,
and yk is a quantizer of xk on this grid, ‖xk − yk‖ ≤ ‖xk − zk‖. On the other hand, since
yk ∈ Sk and zk is the closest point to xk in Sk , ‖xk − yk‖ ≥ ‖xk − zk‖. This leads to
‖xk − zk‖ = ‖xk − yk‖. As a result; the point zk is also a quantizer of xk on the Cartesian
grid L�, which is in contradiction with Aa(xk) � Aa(zk), as illustrated in Fig. 2. �

Theorem 1 There are an infinite number of mesh refinement iterations if Algorithm 2 pro-
ceeds without terminating.

Proof This theorem is also estabshied by contradiction. Assume that there are a finite number
of mesh refinement iterations as Algorithm 2 proceeds, then all datapoints must lie on a grid
with some level �. At each iteration of Algorithm 2, if it is an identifying iteration, then |SkE |
and |Sk | are both incremented by one. If it is an evaluating iteration, then |SkE | is incremented
by one and |Sk | is fixed. if it is inactivated, then |SkE | is fixed and |SkE | is incremented by one.
Therefore, at each iteration of the algorithm which is not mesh refinement, we will increment
the value of |Sk | + |SkE | by at least one. Since the number of points on the grid of level � is
finite, we must have only finite number of iterations which are not mesh refinements, which
is in contradiction with the fact that there are infinite number of iterations for Algorithm 2.�

We now analyze the convergence of Algorithm 2. To do this, the following conditions are
imposed for the objective and interpolating functions.

Assumption 1 The interpolating functions pk(x), objective function f (x), and pk(x)− f (x)
are Lipschitz with the same Lipschitz constant L̂ .

Assumption 2 A constant K̂ > 0 exists for which

∇2{ f (x) − pk(x)} + 2 K̂ I > 0, ∀x ∈ L and k > 0, (9)

∇2{pk(x)} − 2 K̂ I < 0, ∀x ∈ L and k > 0, (10)

∇2{ f (x)} − 2 K̂ I < 0, ∀x ∈ L . (11)

We now establish four Lemmas which together help to prove convergence. In the first, we
determine a bound for the maximum violation from the local minimum of a general twice
differentiable function from its local minimum. This bound is used in Lemma 4 to prove that
a solution will be obtained as the location of the datapoints become dense in the feasible
domain.

123

J Glob Optim (2017) 69:927–949 937

Lemma 2 Consider G(x) as a twice differentiable function such that∇2G(x)−2 K1 I ≤ 0,
and x∗ ∈ L as a local minimizer of G(x) in L. Then, for each x ∈ L such that Aa(x∗) ⊆
Aa(x), we have:

G(x) − G(x∗) ≤ K1‖x − x∗‖2. (12)

Proof Define function G1(x) = G(x) − K1 ‖x − x∗‖2. By construction, G1(x) is concave;
therefore,

G1(x) ≤ G1(x
∗) + ∇G1(x

∗)T (x − x∗),
G1(x

∗) = G(x∗), ∇G1(x
∗) = ∇G(x∗),

G(x) ≤ G(x∗) + ∇G(x∗)T (x − x∗) + K1 ‖x − x∗‖2.
Since the feasible domain is a bounded domain, the constrained qualification holds (see [12]);
therefore, x∗ is a KKT point. Therefore, using Aa(x∗) ⊆ Aa(x) leads to∇G(x∗)T (x−x∗) =
0, which verifies (12). �

Lemma 3 Consider k as an iteration ofAlgorithm2which is activated and a trust restriction.
Then

pk(zk) − f0 ≤ 2 {K + K̂ }‖xk − zk‖2, (13)

where K = skc (xk) > 0.

Proof Since xk is a global minimizer of skc (x) = pk (x)− f0
ek (x)

, and skc (x) ≥ 0 for all x ∈ L ,

then xk is a global minimizer of T k(x) = pk(xk) − K ek(x) too, and T k(xk) = f0 (see
Sect. 5 in [8] for discussion of why). Consider Δk

i ∈ Δk as the simplex which includes xk .
By construction, ek(xk) = eki (xk). Define T

k
i (x) = pk(x) − K eki (x), then T k

i (x) is a twice
differentiable function in L , and

∇2T k
i (x) = ∇2{pk(x)} + 2 K I, ∇2T k

i (x) − 2{K̂ + K }I ≤ 0.

By (4), eki (zk) ≤ ek(zk), which leads to T k(x) ≤ T k
i (x) for all points x ∈ L , xk is a global

minimizer of T k(x), and T k(xk) = T k
i (xk). Therefore, xk is a global minimizer of T k

i (x) as
well.

Since iteration k is activated, Aa(xk) ⊆ Aa(zk); thus, using Lemma 2, we have:

T k
i (zk) − T k

i (xk) ≤ 2 {K + K̂ }‖zk − xk‖2.
T k(zk) ≤ T k

i (zk), T k(xk) = T k
i (xk),

T k(zk) − T k(xk) ≤ 2 {K + K̂ }‖zk − xk‖2,
T k(zk) − f0 ≤ 2 {K + K̂ }‖zk − xk‖2.

Since zk ∈ SkE , e
k(zk) = 0 and pk(zk), which leads to T k(zk) = pk(zk) which shows (13).�

Lemma 4 Consider x∗ as a global minimizer of f (x) in L. Then, for each iteration of
Algorithm 2 which is not a trust restriction, we have:

min

{
skc (x

∗)
K̂

, min
z∈SkU

{
skd (z)

L̂

}}
≤ 2. (14)

Proof Consider Δk
i as a simplex in Δk which includes x∗ whose vertices are {V k

1 , V k
2 , . . . ,

V k
n+1}. Define Lk(x) as the unique linear function in Δk

i such that L(V k
i) = 2 f (V k

i) −

123

938 J Glob Optim (2017) 69:927–949

pk(V k
i), and define Gk(x) = pk(x) + Lk(x) − 2 K̂ ek(x) − 2 f (x). Then, for each vertex

V k
i (x) of Δk

i ,

Gk(Vi) = pk(Vi) + Lk(V k
i) − 2K̂ ek(Vi) − 2 f (V k

i) = 0.

Moreover, since ∇2Lk(x) = 0, and ∇2ek(x) = −2 I inside the simplex Δk
i , then according

to Assumption 2, ∇2Gk(x) ≥ 0. Thus, Gk(x) is convex in Δk
i , and its maximum is located

at one of its vertices; therefore,

Gk(x∗) ≤ 0, pk(x∗) + Lk(x∗) − 2 f (x∗) − 2 K̂ ek(x∗) ≤ 0.

Since f0 is assumed to be achievable, f0 ≥ f (x∗), and thus

pk(x∗) + Lk(x∗) − 2 f0 − 2 K̂ ek(x∗) ≤ 0.

Since x∗ ∈ Δk
i and Lk(x) is linear, it follows that

min
1≤ j≤n+1

Lk
(
V k
j

)
≤ Lk(x∗),

min
1≤ j≤n+1

{
2 f

(
V k
j

)
− pk

(
V k
j

)}
= min

1≤ j≤n+1
Lk

(
V k
j

)
,

min
z∈Sk

{2 f (z) − pk(z)} ≤ min
1≤ j≤n+1

{
2 f

(
V k
j

)
− pk

(
V k
j

)}
,

pk(x∗) − f0 − 2 K̂ ek(x∗) + min
z∈Sk

{2 f (z) − pk(z) − f0} ≤ 0.

(15)

Define ẑ as the closest point to z in SkE . By construction, p
k(ẑ) − f (ẑ) = 0. Furthermore, by

Assumption 1, the function pk(x) − f (x) is Lipschitz with constant L̂ , and thus

pk(z) − f (z) ≤ L̂‖z − ẑ‖ = L̂ Dis(z, SkE),

pk(z) − 2 L̂ Dis(z, SkE) ≤ 2 f (z) − pk(z). (16)

Using (15) and (16) leads to:

pk(x∗) − f0 − 2 K̂ ek(x∗) + min
z∈Sk

{
pk(z) − f0 − 2 L̂Dis

(
z, SkE

)}
≤ 0. (17)

Since iteration k is not a mesh refinement, pk(x) − f0 > 0 for all x ∈ L . Thus, 1
skd (x)

and
1

skc (x)
are well defined functions everywhere in L , and equation (17) can be rewritten as:

(pk(x∗) − f0)(1 − 2 K̂

skd (x
∗)

) + min
z∈Sk

{(
pk(z) − f0

) (
1 − 2 L̂

skd (z)

)}
≤ 0 (18)

Since pk(x∗) − f0 > 0 and pk(z) − f0 > 0 ∀z ∈ Sk , (14) is verified. �

Lemma 5 Consider k as a mesh refinement iteration of Algorithm 2 which is not a trust
restriction. Then

min
z∈SkE

f (z) − f0 ≤ max
{
3 L̂ δk, 6 K̂ δ2k

}
, (19)

where δk is the maximum discretization error of the Cartesian grid L� at this iteration.

123

J Glob Optim (2017) 69:927–949 939

Proof Since iteration k is mesh refinement, by construction, skd (xk) ≤ skd (wk). Additionally,
xk and wk are the global minimizer of skc (x) and skd (x) in L and SkU respectively. Thus, by
using (14) in Lemma 4, we have:

min

{
skc (xk)

K̂
,
skd (xk)

L̂

}
≤ 2. (20)

There are two possible cases: In the first case, skc (xk) ≤ 2K̂ ; thus, using Lemma 3, we have:

pk(yk) − f0 ≤ 2 [2K̂ + K̂]‖xk − yk‖2 = 6 K̂‖yk − xk‖2.
Since yk ∈ SkE , f (yk) = pk(yk). Furthermore, ‖xk − yk‖ ≤ δk ; thus, (19) is verified in this
case. In the second case, skd (xk) ≤ 2L̂ . Since yk ∈ SkE , and all points in SkE are on the grid
L�, it follows that Dis(xk, SkE) = ‖xk − yk‖ = δk , and thus

pk(xk) − f0 ≤ 2 L̂‖xk − yk‖, pk(yk) − pk(xk) ≤ L̂‖xk − yk‖,
f (yk) − f0 ≤ 3 L̂‖xk − yk‖ ≤ 3 L̂δk .

Thus, (19) is shown for both cases. �

Remark 6 If iteration k of Algorithm 2 is a mesh refinement and a trust restriction, then
pk(xk) = f0. Additionally, pk(x) is Lipschitz with constant L̂; therefore,

pk(yk) − f0 ≤ L̂‖xk − yk‖ ≤ L̂δk . (21)

Moreover, yk ∈ SkE , then

f (yk) − f0 ≤ L̂‖xk − yk‖ ≤ L̂δk . (22)

Theorem 2 IfAlgorithm 2 is not terminated at any iteration, then the set S∞ = limk→∞ Sk

has a limit point, denoted v ∈ L, such that f (v) = f0.

Proof According to Theorem 1, there is an infinite number of mesh refinement iterations dur-
ing the execution ofAlgorithm2, denoted here {k1, k2, . . . }. Consider vi ∈ argminz∈Ski f (z).
According to Lemma 5 and Remark 6, we have:

f (vi) − f0 ≤ max
{
3 L̂ δki , 6 K̂ δ2ki

}
, (23)

Since Algorithm 2 is not terminated at any iteration, f (vi) − f0 ≥ 0. Additionally,
limi→∞ δki = 0 and f(x) is continuous (see Assumption 1 and 2), which leads to
limi→∞ f (vi) = f0. �

6 Results

In this section, we compare the performance of Δ-DOGS(Z), as given Algorithm 2, with the
originalΔ-DOGS algorithm, as given in Algorithm 1 (and originally presented as Algorithm
2 in [8]). Note that the new Δ-DOGS(Z) algorithm modifies the orginal Δ-DOGS algorithm
in two essential ways:
Trust restriction that is, restricting the update based on the decrease of the interpolating
function (Sect. 4), and
Grid quantization that is, restricting function evaluations to lie on a grid that is successively
refined as convergence is approached (Sect. 3).

123

940 J Glob Optim (2017) 69:927–949

To characterize independently the performance gains associated with these two modifica-
tions, four different algorithms are considered:

1. The original Δ-DOGS algorithm, denoted in this paper as Algorithm 1.
2. The original Δ-DOGS with trust restriction, denoted Algorithm 1A.
3. The original Δ-DOGS with grid quantization, denoted Algorithm 1B.
4. The new Δ-DOGS(Z) algorithm, given by the original Δ-DOGS with both trust restric-

tion and grid quantization, denoted in this paper as Algorithm 2.

6.1 Numerical tests on problems for which the solution is on the interior

In this section, numerical tests are performed on two different test problems, the Styblinski
Tang test problem

f (x) =
n∑

i=1

x4i − 16 x2i + 5 xi
2

+ 39.1660 n, where L = {x | − 5 ≤ xi ≤ 5}, (24)

and the Schwefel test problem

f (x) = 418.9829 n −
n∑

i=1

xi sin(xi), where L = {x |0 ≤ xi ≤ 500}. (25)

The global minimum for each of these test problems is zero, and they have, respectively,
2n and 4n local minima inside their indicated search domains L , with global solutions at,
respectively, xi = −2.907 ∀i , and xi = 420.9878 ∀i .

In this section, the Styblinski Tang test problem (24) is analyzed for n = {2, 3, 4, 5}, and
the Schwefel test function (25) is analyzed for n = {2, 3, 4}. The target value considered in all
optimizations performed is the actual value of the global minimum, f0 = 0. For Algorithms
1B and 2, an initial grid level of �0 = 3 is considered, and the optimizations are continued
until the grid level of � = 8 is terminated. To facilitate a fair comparison, Algorithms 1 and
1A are terminated when Dis(xk, Sk) ≤ δL8 , where δL8 is the maximum quantization error of
grid level � = 8, which leads to a comparable level of accuracy for all four methods tested.

For Algorithms 1B and 2, the initial n + 1 datapoints S0E are given by

S0E =
{
x0, x0 + bi − ai

2�0
ei , ∀i ∈ {1, 2, . . . , n}

}
(26)

where, for each i , ei is the i’th unit vector, and x0 is an initial point on the grid of level
�0. The results of Algorithms 1B and 2 will, naturally, depend upon the choice of x0; thus,
two different values for x0 are considered. For the Styblinski Tang test function, we take (a)
x0,ai = 0 ∀i , and (b) x0,bi = −2 ∀i . For the Schwefel test function, we take (a) x0,ai = 100 ∀i ,
and (b) x0,bi = 400 ∀i .

For the n = 2 cases, the position of the datapoints that are used during the optimization
process are illustrated in Fig. 7 for problem (24), and Fig. 8 for problem (25). It is observed
that Algorithm 2 significantly reduces the accumulation of datapoints on the boundary of the
feasibility, which accelerates convergence.

It is seen that trust restriction modification sometimes improves convergence, particularly
if a good initial value x0 is used. However, this modification does not make a major improve-
ment if extensive global exploration of the domain is initially required, before identifying the
neighborhood of the global solution. The convergence histories in the higher-dimensional
cases are shown in Fig. 9 for problem (24), and Fig. 10 for problem (25).

123

J Glob Optim (2017) 69:927–949 941

505-
-5

-4

-3

-2

-1

0

1

2

3

4

5

505-
-5

-4

-3

-2

-1

0

1

2

3

4

5

505-
-5

-4

-3

-2

-1

0

1

2

3

4

5

505-
-5

-4

-3

-2

-1

0

1

2

3

4

5

505-
-5

-4

-3

-2

-1

0

1

2

3

4

5

505-
-5

-4

-3

-2

-1

0

1

2

3

4

5

(a)

(c) (d) (e) (f)

(b)

Fig. 7 Implementation of Algorithms 1, 1A, 1B, and 2 on problem (24) for n = 2 dimensions: (open square)
evaluated points, (stars) support points. a Alg. 1, # of fn. evals: 37. b Alg. 1A, # of fn. evals: 37. c Alg. 1B,
x0,a , # of fn. evals: 22. d Alg. 1B, x0,b , # of fn. evals: 24. e Alg. 2, x0,a , # of fn. evals: 16. f Alg. 2, x0,b , #
of fn. evals: 5

505-
-5

-4

-3

-2

-1

0

1

2

3

4

5

505-
-5

-4

-3

-2

-1

0

1

2

3

4

5

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

(a) (b)

(c) (d) (e) (f)

Fig. 8 Implementation of Algorithms 1, 1A, 1B, and 2 on problem (25) for n = 2 dimensions: (open square)
evaluated points, (stars) support points. a Alg. 1, # of fn. evals: 30. b Alg. 1A, # of fn. evals: 30. c Alg. 1B,
x0,a , # of fn. evals: 17. d Alg. 1B, x0,b , # of fn. evals: 11. e Alg. 2, x0,a , # of fn. evals: 24. f Alg. 2, x0,b , #
of fn. evals: 13

The results are summarized inTable 1.Note that the performance ofAlgorithms1Band2 in
the various dimensions reported in Table 1, for both problems (24) and (25), are compared by
starting from 4 different initial points x0 on the initial grid (generated uniformly randomly in
the feasible domain), and averaging to determine the “typical” number of function evaluations
and support points required.

To summarize, it is observed that the two modifications of Algorithm 1 that are presented
in this article (that is, trust restriction and grid quantization) significantly and consistently
improve its convergence behavior. A key reason for this is that fewer datapoints accumulate on
the boundary of the feasible domain using the new Algorithm 2. Most of the boundary points
that are used by Algorithm 1 are needed simply to regularize the triangulation; Algorithm 2
avoids performing function evaluations at these boundary points by dividing Sk into evaluated

123

942 J Glob Optim (2017) 69:927–949

0 20 40 60 80
0

100

200

300

400

500

60 65 70
0

2

4

6

8

(a)
0 20 40 60 80

0

100

200

300

400

500

60 65 70
0

2

4

6

8

(b)

0 20 40 60 80
0

100

200

300

400

70 72 74 76
0

2

4

6

8

(c)
0 20 40 60

0

100

200

300

400

500

42 44 46 48
0

2

4

6

8

(d)
0 10 20 30 40

0

100

200

300

400

30 35 40
0

2

4

6

(e)
0 2 4 6

0

10

20

30

40

50

60

5 5.5 6
0

2

4

6

8

(f)

0 100 200 300
0

500

1000

1500

2000

2500

3000

211 212 213 214
2

4

6

8

10

(g)
0 100 200 300

0

500

1000

1500

2000

2500

3000

211 212 213 214
2

4

6

8

10

(h)

0 50 100
0

100

200

300

400

60 70 80 90
0

2

4

6

(i)
0 50 100

0

100

200

300

400

60 70 80 90
0

2

4

6

(j)
0 50 100

0

100

200

300

400

60 70 80 90
0

2

4

6

(k)
0 2 4 6 8

0

20

40

60

80

6 6.5 7
0

5

10

(l)

0 100 200 300
0

200

400

600

800

1000

260 270 280 290
0

2

4

6

8

(m)
0 100 200 300

0

200

400

600

800

1000

260 270 280 290
0

2

4

6

8

(n)

0 50 100 150
0

200

400

600

800

1000

90 95 100 105
0

5

10

(o)
0 20 40 60

0

200

400

600

800

1000

54 56 58 60
0

5

10

(p)
0 20 40 60

0

200

400

600

800

50 55 60
0

5

10

(q)
0 2 4 6 8

0

20

40

60

80

7 8 9
-1

0

1

2

(r)

Fig. 9 Convergence histories for Algorithms 1, 1A, 1B, and 2 with two different initial points on problem
(24) for n = 3, 4 and 5. The behavior near convergence is shown in the insets. a Alg. 1, n = 3. b Alg. 1A,
n = 3. c Alg. 1B, n = 3, x0,a . d Alg. 1B, n = 3, x0,b . e Alg. 2, n = 3, x0,a . f Alg. 2, n = 3, x0,b . g Alg.
1, n = 4. h Alg. 1A, n = 4. i Alg. 1B, n = 4, x0,a . j Alg. 1B, n = 4, x0,b . k Alg. 2, n = 4, x0,a . l Alg. 2,
n = 4, x0,a . m Alg. 1, n = 5. n Alg. 1A, n = 5. o Alg. 1B, n = 5, x0,a . p Alg. 1B, n = 5, x0,b . q Alg. 2,
n = 5, x0,a . r Alg. 2, n = 5, x0,b

123

J Glob Optim (2017) 69:927–949 943

0 20 40 60 80
0

500

1000

1500

2000

70 75 80
0

2

4

6

8

(a)
0 20 40 60 80

0

500

1000

1500

2000

70 75 80
0

2

4

6

8

(b)

0 20 40 60 80
0

500

1000

1500

2000

50 55 60 65
0

10

20

30

(c)
0 5 10 15 20

0

500

1000

1500

2000

10 15 20
0

2

4

6

8

(d)
0 20 40 60 80

0

500

1000

1500

2000

50 55 60 65
0

10

20

30

(e)
0 5 10 15

0

500

1000

1500

2000

8 10 12 14
0

10

20

30

(f)

0 100 200 300
0

500

1000

1500

2000

2500

3000

210 215 220 225
0

5

10

15

20

(g)
0 100 200 300

0

500

1000

1500

2000

2500

3000

210 215 220 225
0

5

10

15

20

(h)

0 50 100 150 200
0

500

1000

1500

2000

2500

170 180 190 200
0

10

20

30

40

(i)
0 10 20 30 40

0

500

1000

1500

2000

2500

32 32.5 33
0

5

10

(j)
0 50 100

0

500

1000

1500

2000

2500

3000

80 81 82
0

5

10

(k)
0 10 20 30

0

500

1000

1500

10 15 20 25
0

10

20

30

(l)

Fig. 10 Convergence histories for Algorithms 1, 1A, 1B, and 2 with two different initial points on problem
(25) for n = 3 and 4. a Alg. 1, n = 3. b Alg. 1A, n = 3. c Alg. 1B, n = 3, x0,a . d Alg. 1B, n = 3, x0,b . e
Alg. 2, n = 3, x0,a . f Alg. 2, n = 3, x0,b . g Alg. 1, n = 4. h Alg. 1A, n = 4. i Alg. 1B, n = 4, x0,a . j Alg.
1B, n = 4, x0,b . k Alg. 2, n = 4, x0,a . l Alg. 2, n = 4, x0,b

points SkE and support points SkU , thereby more rapidly exploring the interior of the feasible
domain during the optimization process.

6.2 Numerical tests on problems for which the solution is on the boundary

In the previous section, it was shown that Algorithm 2 has a signicantly improved rate
of convergence, as compared with Algorithm 1, when the global solution of the problem
considered is on the interior the feasible domain. In this section, we consider the case in
which the global solution of the problem considered is on the boundary of the feasible
domain. We focus our attention on two cases, one in n = 2 dimensions, and one in n = 4
dimensions.

The first case considered is the Styblinski Tang problem (24) with n = 2, with the feasible
domain L modified as follows:

− 2.91 ≤ x1 ≤ 5, −5 ≤ x2 ≤ 5. (27)

The global solution of this problem is x∗ = [−2.91, 2.907], which is on the feasible domain
boundary, with one active constraint.

123

944 J Glob Optim (2017) 69:927–949

Table 1 Application of Algorithms 1, 1A, 1B, and 2 to the Styblinski Tang test problem (24) and the Schwefel
test problem (25)

Test problem Dimension Algorithm # of function evaluations # of support points

(24) n = 2 1 37 N/A

1A 37 N/A

1B 22.25 7.25

2 20.25 8.25

n = 3 1 70 N/A

1A 67 N/A

1B 43.75 31.5

2 35.25 29.5

n = 4 1 149 N/A

1A 149 N/A

1B 80.25 83.75

2 58 65.75

n = 5 1 284 N/A

1A 282 N/A

1B 150.25 232.5

2 114.25 220.75

(25) n = 2 1 30 N/A

1A 30 N/A

1B 25.25 9.25

2 22.25 9.75

n = 3 1 78 N/A

1A 79 N/A

1B 34.75 60.25

2 29.25 59.5

n = 4 1 222 N/A

1A 222 N/A

1B 103.25 211.75

2 83.00 202.75

For Algorithms 1B and 2, the number of function evaluations and support points averaged over 4 random
initial points x0 are reported

The second case considered is the Styblinski Tang problem (24) with n = 4, with the
feasible domain L modified as follows:

− 2.91 ≤ x1 ≤ 5, −2.91 ≤ x2 ≤ 5, −5 ≤ x3 ≤ 5, −5 ≤ x4 ≤ 5. (28)

The global solution of this problem is x∗ = [−2.91,−2.91,−2.907,−2.907], which is on
the feasible domain boundary, with two active constraints.

The implementation of Algorithms 1 and 2 on the n = 2 problem constrained by (27) is
shown in Fig. 11. As in the previous section, Algorithm 2 is initialized with two different
initial points, defined as follows:

123

J Glob Optim (2017) 69:927–949 945

-2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

-2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

(a) (b) (c)

Fig. 11 Implementation of Algorithms 1 and 2 on the n = 2 Styblinski Tang test problem inside the feasible
domain characterized by (27). a Algorithm 1, # of fn. evals: 25. b Algorithm 2, x0,a , # of fn. evals: 26. c
Algorithm 2, x0,b , # of fn. evals: 12

0 50 100 150 200
0

200

400

600

800

160 165 170 175
0

2

4

6

(a)
0 50 100 150 200

0

200

400

600

800

160 165 170 175
0

2

4

6

(b)

0 50 100 150
0

200

400

600

800

90 95 100 105
0

5

10

(c)
0 20 40 60 80

0

50

100

150

200

250

300

60 65 70 75
0

5

10

(d)
0 20 40 60

0

50

100

150

200

250

300

35 40 45 50
0

2

4

6

8

(e)
0 5 10

0

20

40

60

80

6 7 8 9
0

5

10

(f)

Fig. 12 Convergence history of Algorithms 1, 1A, 1B, and 2 on the n = 4 Styblinski Tang test problem inside
the feasible domain characterized by (28). a Alg. 1. b Alg. 1A. c Alg. 1B, x0,a . d Alg. 1B, x0,b . e Alg. 2,
x0,a . f Alg. 2, x0,b

x0,a = [−1.328, −2], x0,a = [1.045, 0]. (29)

It is observed that the number of function evaluations accumulating on those boundarieswhich
do not include the solution is reduced in Algorithm 2, though the boundary that contains the
solution is still effectively explored. Thus, again, Algorithm 2 is seen tominimize the function
evaluations on the boundary which are not necessary.

The convergence history of Algorithms 1, 1A, 1B, and 2 on the n = 4 problem constrained
by (28) are shown in Fig. 12. Again, Algorithms 1B and 2 are initialized with two different
initial points, defined as follows:

x0,a = [−1.328, −1.328, −2, −2], x0,b = [1.045, 1.045, 0, 0].

The averaged performance of the application of the Algorithm 1, 1A, 1B and 2 in the n = 4
case are summarized in Table 2. It is again observed that Algorithm 2 significantly outper-
forms Algorithm 1.

It is observed that, the performance ofAlgorithm 2 is better this case too. The reason of this
phenomenon, is that the number of expolation of the objective function on the unnecessary
boundaries are reduced, but the boundary which includes the solution is explored.

123

946 J Glob Optim (2017) 69:927–949

Table 2 Summary of the convergence of Algorithms 1, 1A, 1B, 2 on the n = 4 Styblinski Tang test problem
inside the feasible domain characterized by (28)

Algorithm # of function evaluations # of support points

1 173 N/A

1A 173 N/A

1B 100.5 131.25

2 87.75 116.25

For Algorithms 1B and 2, the number of function evaluations and support points averaged over 4 random
initial points x0 are reported

7 Conclusions

In this paper, we have modified the original Delaunay-based derivative-free optimization
algorithm Δ-DOGS, proposed in [8], in order to accumulate fewer evaluation points on the
boundary of feasibility, thereby exploring the interior of the feasible domain more rapidly.
The resulting algorithm, dubbed Δ-DOGS(Z), has three main modifications as compared
with the original algorithm:

• Two different sets of points are considered during the optimization procession: evaluation
points and support points. The latter set helps to regulate the triangulation developed.

• Since the uncertainty function is zero at some points which are not in the evaluation set,
another metric for the search function is used at these points.

• The datapoints that are used in the Algorithm 2 all lie on a Cartesian grid which is
successively refined as the iterations proceed.

As with our original Delaunay-based optimization algorithm, as well as any other derivative-
free optimization algorithm, there is a significant curse of dimensionality, and optimization in
only moderate-dimensional problems (i.e., n � 10) is expected to be numerically tractable.
A key bottleneck of the present class of algorithms as the dimension of the problem is
increased is the overhead associated with the enumeration of the Delaunay triangulation.
Another limitation of the algorithm presented here is its restriction to bound-constrained
domains; note that the original Delaunay-based optimization algorithm developed in [8] can
handle any linearly-constrained domains. Another potential weakness is that the Cartesian
grid used here is not the best option for the discretization as the dimension n is increased (for
further explanation, see [7]). In future work, the algorithm developed here will be modified
to deal with general linearly-constrained domains, and different lattices will be considered
as alternatives to the Cartesian grid.

The optimization algorithm developed in this paper, using both polyharmonic spline inter-
polation as well as a new interpolation method developed by our group, dubbed Multivariate
Adaptive Polyharmonic Splines (MAPS), has already been successfully applied to a chal-
lenging real-world application involving the minimization of drag on a hydrofoil [3]; the
Δ-DOGS(Z) algorithm developed in the present work showed a significantly improved rate
of convergence as compared with the original Δ-DOGS algorithm. Additional benchmark
test problems and application-based optimization problemswill be considered in futurework.

Acknowledgements The authors gratefully acknowledge AFOSR FA 9550-12-1-0046 in support of this
work.

123

J Glob Optim (2017) 69:927–949 947

Appendix: Modified algorithm for problems without target value

In this appendix, we present a modified algorithm that does not required a target value for
the objective function. The algorithm developed is quite similar to Algorithm 2, with the
continuous and discrete search functions modified as follows:

skc (x) = pk(x) − Kk ek(x), (30)

skd (x) = pk(x) − Lk Dis{x, SkE }. (31)

The parameters Lk and Kk are two positive series which are defined as follows:

Lk = L0 �k, Kk = K0 �k . (32)

50-5
-5

-4

-3

-2

-1

0

1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

0 50 100
0

0.5

1

0 20 40 60 80 0 50 100 150
0

0.5

1

1.5

0 50 100 150
0

0.5

1

1.5

(a)

(b) (c)

Fig. 13 Application of the modified algorithm discussed in the “Appendix”, without leveraging knowledge
of the target value, for minimizing the Styblinski Tang test problem (24). The position of the evaluated points
(squares) and support points (stars) in the n = 2 case are depicted in (a). Convergence histories are shown
in b for n = 3 and c for n = 4. a Location of evaluated and support points, n = 2. b Convergence history,
n = 3. c Convergence history, n = 4

123

948 J Glob Optim (2017) 69:927–949

where �k is the level of the grid at step k. The convergence analysis of this modified algorithm
is similar to the analysis presented in Sect. 5, with the main differences as follows:

1. Equation (14) is modified to:

min

{
skc (x

∗), min
z∈SkU

{
skd (z)

}}
≤ f (x∗). (33)

Note that above equation is not true for all iterations k, but it is true once

Kk ≥ K̂ and Lk ≥ L̂;
note that the series Kk and Lk increase without bound, and thus (33) is satisfied for
sufficiently large k.

2. Equation (19) is modified to

min
z∈SkE

f (z) − f (x∗) ≤ max
{

(Lk + L̂) δk, (Kk + K̂) δ2k

}
. (34)

Moreover, we have:

lim
k→∞ Lkδk = lim

k→∞ L0δ0
�k

2�k
= 0,

lim
k→∞ Kkδ2k = lim

k→∞ K0δ
2
0
2�

4�
= 0.

As a result, the right hand size of (34) converges to zero as k → ∞.

Wehave implemented thismodified algorithmon the problemofminimizing the Styblinski
Tang test problem (24), for n = {2, 3, 4}, inside the domain −5 ≤ xi ≤ 5 ∀i , with the
initial point given by x0i = 0.5 ∀i . In these computations, the value of K0 = 50 and
L0 = 5 were used; note that these parameter values happen to be good for this test problem.
In general, selecting well these two parameters, which ultimately affect the convergence
rate of the resulting algorithm, involves an exercise in trial and error; note, however, that
(following themodified analysis described above) convergence is proved for thismodification
of Algorithm 2 for any choice of K0 and L0. An analogous issue was encountered when
selecting K in Algorithm 1 of [8]. Figure 13 shows the positions of the function evaluations
and support points for the n = 2 case, and the convergence histories for the n = 3 and n = 4
cases. The convergence of the modified algorithm proposed here is, again, seen to be quite
rapid.

References

1. Abramson, M.A., Audet, C., Dennis, J.E., Le Digabel, S.: OrthoMADS: a deterministic MADS instance
with orthogonal directions. SIAM J. Optim. 20(2), 948–966 (2009)

2. Alimohammadi, Shahrouz., He, Dawei.: Multi-stage algorithm for uncertainty analysis of solar power
forecasting. In: Power and Energy Society General Meeting (PESGM), 2016, pp. 1-5. IEEE (2016)

3. Alimohammadi, S., Beyhaghi, P., Bewley, T.: Delaunay-based optimization in CFD leveraging multi-
variate adaptive polyharmonic splines (MAPS). In: 58th AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference (2017)

4. Audet, C., Dennis, J.E.: A pattern search filter method for nonlinear programming without derivatives.
SIAM J. Optim. 14(4), 980–1010 (2004)

5. Audet, C., Dennis, J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J.
Optim. 17(1), 188–217 (2006)

123

J Glob Optim (2017) 69:927–949 949

6. Audet, C., Dennis, J.E.: A progressive barrier for derivative-free nonlinear programming. SIAM J. Optim.
20(1), 445–472 (2009)

7. Belitz, Paul, Bewley, Thomas:Newhorizons in sphere-packing theory, part II: lattice-based derivative-free
optimization via global surrogates. J. Glob. Optim. 56(1), 61–91 (2013)

8. Beyhaghi, P., Cavaglieri, D., Bewley, T.: Delaunay-based derivative-free optimization via global surro-
gates, part I: linear constraints. J. Glob. Optim. 63, 1–52 (2015)

9. Beyhaghi, P., Bewley, T.: Delaunay-based Derivative-free optimization via global surrogates, part II:
convex constraints. J. Glob. Optim. 2016, 1–33 (2016)

10. Booker, A.J., Deniss, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A Rigorous Framework
for Optimization of Expensive Function by Surrogates. Springer-Verlag, Berlin (1999)

11. Galperin, E.A.: The cubic algorithm. J. Math. Anal. Appl. 112, 635–640 (1985)
12. Gill, P.E., Murray,W.,Wright, M.H.: Practical optimization, pp. 99–104. Academic Press, London (1981)
13. Jones, D.R., Perttunen, Cary D., Stuckman, Bruce E.: Lipschitzian optimization without the Lipschitz

constant. J. Optim. Theory Appl. 79(1), 157–181 (1993)
14. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21,

345–383 (2001)
15. Lewis, R.M., Torczon,V., Trosset,M.W.:Direct SearchMethod: Then andNow,NASA/CR-2000-210125,

ICASE Report No.2000-26 (2000)
16. Wright, S., Nocedal, J.: Numerical Optimization. Springer, Berlin (1999)
17. Paulavicius, P., Zilinskas, J.: Simplical Optimization. Springer, Berlin (2014)
18. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge

(2006)
19. Schonlau, M., Welch, W.J., Jones, D.J.: A Data-Analytic Approach to Bayesian Global Optimization,

Department of Statistics and Actuarial Science and The Institute for Improvement in Quality and Pro-
ductivity, 1997 ASA Conference (1997)

20. Shubert, B.O.: A sequential method seeking the global maximum of a function. SIAM J. Numer. Anal.
9(3), 379–388 (1972)

21. Torczon, V.: Multi-Directional Search, A Direct Search Algorithm for Parallel Machines. Ph.D. thesis,
Rice University, Houston, TX (1989)

22. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)

123

	Implementation of Cartesian grids to accelerate Delaunay-based derivative-free optimization
	Abstract
	1 Introduction
	2 The original Delaunay-based optimization algorithm
	3 Acceleration of Delaunay-based optimization with a grid
	4 Trust restriction based on the decrease of the interpolating function
	5 Analysis of the new algorithm
	6 Results
	6.1 Numerical tests on problems for which the solution is on the interior
	6.2 Numerical tests on problems for which the solution is on the boundary

	7 Conclusions
	Acknowledgements
	Appendix: Modified algorithm for problems without target value
	References

