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Abstract. The field ofn-dimensional sphere packings is elegant and mature in its mathematical development
and characterization. However, it is still relatively limited in its practical applications, especially forn > 3. The
present line of research intends to open up two broad new areas for profitable application of this powerful body of
mathematical literature in science and engineering. Towards this end, the present paper (Part I) reviews the essential
results available in this field (reconciling the theoretical literature for dense and rare sphere packings, which todayare
largely disjoint), catalogs the key properties of the principle dense and rare sphere packings and corresponding nets
available (including hundreds of values not previously known), and extends the study of regular rare sphere packings
and nets ton > 3 dimensions (an area which up to now has been largely unexplored). These results are leveraged
heavily in the practical applications addressed in Parts IIand III. In particular, Part II builds from this presentation
to develop a new algorithm for Lattice-Based Derivative-free Optimization via Global Surrogates (LABDOGS),
leveraging dense sphere packings as an alternative to Cartesian grids to coordinate derivative-free searches; Part II
also develops and uses a new algorithm for efficient solutionof discrete Thomson problems restricted to nearest-
neighbor points of a lattice. Part III builds from this presentation to develop new interconnect graphs for switchless
multiprocessor computer systems, leveraging nets derivedfrom rare sphere packings as alternatives to Cartesian grids
to establish structured, fast, and inexpensive interconnects, paying particular attention to the improved coordination
sequences facilitated by such nets. In both applications, Cartesian grids are used as the default choice today in almost
all related realizations; the present sequence of papers establishes that significant performance improvements may
be realized by leveragingn-dimensional sphere packings appropriately in such practical applications.
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1. Introduction . An n-dimensional infinitesphere packingis an array of nodal points
in Rn obtained via the packing of identicaln-dimensional spheres. Bypacking, we mean an
equilibrium configuration of spheres, each with at least 2 nearest neighbors, against which a
repellant force is applied. Many packings investigated in the literature arestablepackings,
meaning that there is a restoring force associated with any small movement of any node
of the packing; this requires each sphere in the (n-dimensional) packing to have at least
n+1 neighbors. However, unstable packings with lower nearest-neighbor counts are also of
interest. Note also that, by replacing each sphere in ann-dimensional packing with a nodal
point (representing, e.g., a computer), and connecting those nodal points which are nearest
neighbors, anet(a.k.a.interconnector contact graph) is formed1.

An n-dimensional reallattice (a.k.a.lattice packing) is a sphere packing which is shift
invariant (that is, which looks identical upon shifting anynodal point to the origin); this shift
invariance generally makes lattice packings simpler to describe and enumerate than their
nonlattice alternatives. Note that there are many regular2 sphere packings which arenot
shift invariant [the nonlattice packings corresponding tothe honeycomb net in 2D and the
diamond and quartz nets in 3D are some well-known examples].We will focus our attention
in this paper on those packings and nets which are at leastuninodal (that is, which look
identical upon shifting any nodal point to the origin and rotating and reflecting appropriately).
For densesphere packings, from a practical perspective, lattice packings are essentially3

as good a choice as their more cumbersome nonlattice alternatives for n ≤ 24 in terms of

1As introduced in the second-to-last paragraph of §2.3, it isnatural with certain sphere packings (for example,
D∗

n, Ar
n, and the packings associated with theT90

n andT60
n nets) to define nets which arenot contact graphs of the

corresponding sphere packings by connecting non-nearest-neighbor points.
2The regularity of a nonlattice packing is quantified precisely in §3.1.
3Forn= 10, 11, 13, 18, 20, and 22, there exist nonlattice packings (denotedP10c, P11a, P13a, B ∗18, B

∗
20, A

∗
22) that

are 8.3%, 9.6%, 9.6%, 4.0%, 5.2%, and 15.2% denser then the corresponding best known lattice packings (Conway
& Sloane 1998, p. xix); to put this into perspective, the density of Λ22 is over 106 timesthe density ofZ22.
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the four metrics defined below (that is, for maximizing packing density and kissing number
and minimizing covering thickness and quantization error). However, the bestrare sphere
packings (with small kissing number) are all nonlattice packings.

As illustrated in Figure 1.1 and Table 1, we may introduce thesubject ofn-dimensional
sphere packings by focusing our attention first on then = 2 case: specifically, on thetrian-
gular4 lattice (A2), thesquarelattice (Z2), and thehoneycombnonlattice packing (A+

2 ). The
characteristics of such sphere packings may be quantified bythe following measures:

• The packing radius(a.k.a. theerror-correction radius) of a packing,ρ, is the maximal
radius of the spheres in a set of identical nonoverlapping spheres centered at each nodal
point.
• Thepacking densityof a packing,∆, is the fraction of the volume of the domain included
within a set of identical non-overlapping spheres of radiusρ centered at each nodal point on
the packing. Packings that maximize this metric are referred to asclose-packed.

• The covering radiusof a packing,R, is the maximum distance between any point in the
domain and its nearest nodal point on the packing. Thedeep holesof a packing are those
points which are at a distanceR from all of their nearest neighbors. Typical vectors from a
nodal point to the nearest deep holes in a lattice packing areoften denoted[1], [2], etc.
• Thecovering thicknessof a packing,Θ, is the number of spheres of radiusR centered at
each nodal point containing an arbitrary point in the domain, averaged over the domain.

• TheVoronöı cell of a nodal point in a packing,Ω(Pi), consists of all points in the domain
that are at least as close to the nodal pointPi as they are to any other nodal pointPj .
• The mean squared quantization error per dimensionof a lattice or uninodal nonlattice
packing,G, is the average mean square distance of any point in the domain to its nearest
nodal point, normalized byn times the appropriate power of the volume,V, of the Voronoı̈
cell. Shifting the origin to be at the centroid of a Voronoı̈ cell Ω(Pi), it is given by

G =
S

nV
n+2

n

where S=
Z

Ω(Pi)
|x|2dx, V =

Z

Ω(Pi)
dx. (1.1)

• Thekissing number(a.k.a. theerror coefficient) of a lattice or uninodal nonlattice packing,
τ, is the number of nearest neighbors to any given nodal point in the packing. In other words,
it is the number of spheres of radiusρ centered at the nodal points of the packing that touch,
or “kiss”, the sphere of radiusρ centered at the origin.
• Thecoordination numberof a net (derived from a sphere packing, as discussed previously)
is the first number of the net’scoordination sequence, thek’th element of which is given by
tdk−tdk−1, wheretdk, which quantifies the net’slocal topological density, is the total number
of nodes reached viak hops or less from the origin in the net5.

Certain applications, such as that explored in Part II of this work (Belitz & Bewley
2011), require dense lattices. There are two key drawbacks with Cartesian approaches for
such applications. First, thediscretization of space is significantly less uniformwhen using
the Cartesian grid as opposed to the available alternatives, as measured by the packing den-
sity ∆, the covering thicknessΘ, and the mean-squared quantization error per dimension,G
(see Table 1). Second, theconfiguration of nearest-neighbor gridpoints is significantly more

4Note that many in this field refer to theA2 lattice as “hexagonal”. We prefer the unambiguous name “triangular”
to avoid confusion with the honeycomb nonlattice packing (see Figure 1.1).

5In most cases, the natural net to form from a sphere packing isthe contact graph; in such cases, the kissing
number,τ, and the coordination number are equal. As mentioned previously, it is natural with certain sphere pack-
ings to define nets which arenotcontact graphs by connecting non-nearest-neighbor points; in such cases, the kissing
number (a property of the sphere packing) and the coordination number (as defined here, a property of a correspond-
ing net) are, in general,notequal. We find this clear semantical distinction to be usefulto prevent confusion between
these two distinct concepts; note that some authors (e.g., Conway & Sloane 1998) do not make this distinction.
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(a) (b)

(c) (d)

(e) (f)

FIG. 1.1. The triangular lattice (a,b), the square lattice (c,d), andthe honeycomb nonlattice packing (e,f).
Indicated in the left three subfigures is the packing with spheres of radiusρ, the corresponding net or contact graph
(solid lines), a typical Voronoı̈ cell (dashed line), and the kissing number (that is, the spheres that contact a given
sphere). Indicated in the right three subfigures is the covering with spheres of radius R. Looking at their respective
packing densities∆ in Table 1, as compared with the square lattice, the triangular lattice is said to bedense, and
the honeycomb nonlattice packing is said to berare.

n packing name ∆ Θ G τ td10

A2 triangular 0.9069 1.2092 0.08019 6 331

2 Z2 square 0.7854 1.5708 0.08333 4 221

A+
2 honeycomb 0.6046 2.4184 0.09623 3 166

E8 Gosset 0.2537 4.059 0.07168 240 1,006,201,681

8

Z8 Cartesian 0.01585 64.94 0.08333 16 1,256,465

V90
8 5.590e-4 49.89 0.09206 4 37,009

(unstable)
Y90

8 2.327e-4 87.31 0.09266 3 2290

Λ24 Leech 0.001930 7.904 0.06577 196560 > 1015

24
Z24 Cartesian 1.150e-10 4,200,263 0.08333 48 24,680,949,041

Table 1. Characteristics of selected lattice and uninodal nonlattice packings and nets. Note
that n= 24 is a natural stopping point in this study. It is special because it is the only integer
n > 1 that satisfies12 +22 + . . .+n2 = m2 where m is itself an integer; as a consequence, a
particularly uniform lattice with a large number of symmetries is available in this dimension.
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FIG. 1.2. (left) Ten marbles placed in a triangle [referred to by the Pythagoreans as aτετρακτυ′ ς, and upon
which they placed a particular mystic significance], and (right) the Pythagoreans’ placement of two triangular
groups of marbles into an “oblong” m× (m+1) rectangle, from which the formula for T2,m follows immediately.

limited when using the Cartesian grid, as measured by the kissing numberτ, which is an in-
dicator of the degree of flexibility available when selecting from nearest-neighbor points. As
seen by comparing then = 2, n = 8, andn = 24 cases in Table 1, these drawbacks become
increasingly substantial as the dimensionn is increased; by the dimensionn = 24, the best
available lattice has

• a factor of 0.001930/1.1501e−10≈ 17,000,000 better (higher) packing density,
• a factor of 4,200,263/7.9035≈ 530,000 better (lower) covering thickness,
• a factor of 0.08333/0.0658≈ 1.27 better (lower) mean-squared quantization error, and
• a factor of 196560/48≈ 4100 better (higher) kissing number

than the corresponding Cartesian grid. Thus, the selectionof the Cartesian grid, by default,
for applications requiring dense (that is, uniform) lattices withn > 3 is simply untenable.

Other applications, such as that explored in Part III of thiswork (Cessna & Bewley
2011), require regular nets which, with low coordination number, connect to a large number
of nodes with each successive hop from the origin, as quantified by the net’s coordination
sequence. As mentioned previously, a useful measure of a net’s topological density is given,
e.g., bytd10, which is the number of distinct nodes within 10 hops of the origin. Note that
the coordination number of then-dimensional Cartesian grid is 2n; the coordination number
of the alternativen-dimensional constructions introduced in §3 are as small as3 or 4, while
the topological density increases rapidly asn is increased (compare, e.g., the values oftd10

for A+
2 andZ2, with τ = 3 andτ = 4 respectively, to those forY90

8 andV90
8 in Table 1); it

is thus seen that, for applications requiring graphs with low coordination number and high
topological density, the selection of the Cartesian grid, by default, is also untenable.

We are thus motivated to make the fundamental results of bothdense and raren-dimensional
sphere packing theory more broadly accessible to the science and engineering community,
and to illustrate how this powerful body of theory may be put to use in two important new ap-
plications of practical relevance. Towards this end, the remainder of Part I succinctly reviews
and extends several significant results in this mature and sophisticated field, inter-relating the
literature on dense and rare packings, which is today largely disjoint. These results are lever-
aged heavily in the applications described in Parts II and III. We note that, beyond providing
an up-to-date and synthetic review of this otherwise difficult subject in a (hopefully) accessi-
ble language, a significant number of new computations, constructions, algorithms, metrics,
and codes are also reported in this document (Part I) [the reader is referred specifically to
Tables 2-3, §3.4.1 through §3.4.7, §3.5, and §5.5].

The mathematical characterization of sphere packings has along and rich history. Some
recent articles and popular books recount this history in detail, including Zong (1999), Szpiro
(2003), Hales (2006), and Aste & Weaire (2008). The purpose of the present article is not
to repeat these historical retrospectives, which these sources do quite adequately, but to char-
acterize, catalog, and extend the infinite packings available today to facilitate their practical
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FIG. 1.3. Pyramidal stacks of spheres with triangular, square, and “oblong” (rectangular) bases. All three
stacks are subsets of the face-centered cubic lattice, discussed further in§2.3.

application in new fields. Nonetheless, we would remiss if wedidn’t at least provide a brief
historical context to this field, which we attempt in the following two subsections.

1.1. Finite packings: mystic marbles, stacked spheres, permuted planets, cartoned
cans, catastrophic sausages, and concealed origins.We begin by defining, form≥ 1, a
notation to build from:

T0,m , 1, T1,m ,
m

∑
k=1

T0,k = m (the positive integers).

In the sixth century BC, Pythagoras and his secret society ofnumerologists, the Pythagoreans,
discovered geometrically (see Figure 1.2, and pp. 43-50 of Heath 1931) the formula for the
number of marbles placed in a (2D) triangle (that is, the “triangular numbers”):

T2,m ,
m

∑
k=1

T1,k = m(m+1)/2.

The earliest known mathematical work to discuss the (3D) stacking of objects is a San-
skrit documentThe Aryabhatiya of Aryabhata(499 AD; see Clark 1930, p. 37), which states:

“In the case of anupaciti [lit., ‘pile’] which has ... the product of three terms, having the
number of terms for the first term and one as the common difference, divided by six, is the
citighana[lit., ‘cubic contents of the pile’]. Or, the cube of the number of terms plus one,
minus the cube root of this cube, divided by six.”

Thus, Aryabhata establishes, in words, two equivalent expressions for the number of objects
(“cubic contents”) in a (3D) triangular-based pyramid (“pile”) with m objects on each edge:

T3,m =
m(m+1)(m+2)

3!
=

(m+1)3− (m+1)

6
;

note also thatT3,m , ∑m
k=1T2,k.

Thomas Harriot was apparently the first to frame the problem of sphere packing math-
ematically in modern times (see, e.g., the biography of Harriot by Rukeyser 1972). At the
request of Sir Walter Raleigh, for whom Harriot served, among other capacities, as an in-
structor of astronomical navigational and on various problems related to gunnery, Harriot (on
December 12, 1591) computed, but did not publish, the numberof cannonballs in a pile with
a triangular, square [m×m], and rectangular [m×(m+1), a.k.a. “oblong”] base, as illustrated
in Figure 1.3, obtainingT3,m, Sm, andRm respectively, where

Sm =
m

∑
k=1

k2 =
m(m+1)(2m+1)

6
, Rm =

m

∑
k=1

k(k+1) = Sm+T2,m =
m(m+1)(2m+4)

6
.

In 1614, Harriot wroteDe Numeris Triangularibus Et inde De Progressionibus Artithmeticis:
Magisteria magna(On triangular numbers and thence on arithmetic progressions: the great
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doctrine)6. Looking closely at the triangular table of binomial coefficients7 on pp. 1-3 (folios
108-110) of this remarkable document, it is seen that Harriot understood thegeometricrela-
tionship between the positive integersT1,m, the “triangular numbers”T2,m [that is, the number
of spheres in a (2D) triangle withm spheres on each edge], the “pyramidal numbers”T3,m

[that is, the number of spheres in a (3D) trianglar-based pyramid with m spheres on each
edge], and the next logical steps in this arithmetic progression, given by:

T4,m,
m

∑
k=1

T3,k =
m(m+1)(m+2)(m+3)

4!
, T5,m,

m

∑
k=1

T4,k =
m(m+1)(m+2)(m+3)(m+4)

5!
,

etc. In particular, Harriot noticed that the(n+ 1)’th element of the(n+ m)’th row of this
triangular table isTn,m. Accordingly, we may think ofTn,m as the number of spheres in an
“n-dimensional pyramid” withm spheres on each edge, withTn,2 representingn+1 spheres
configured at the corners of a regularn-dimensional simplex. It is thus natural to credit Har-
riot (1614) with the first important steps towards the discovery of laminated lattices, discussed
further in §2.4 and §2.6.

Harriot also introduced the packing problem to Johannes Kepler, ultimately leading Ke-
pler (1611), in another remarkable documentStrena seu de nive sexangula(The six-cornered
snowflake), which also hypothesized about a related atomistic physical basis for hexagonal
symmetry in crystal structures of water, to conjecture that

“The (cubic or hexagonal close) packing is the tightest possible, such that in no other
arrangement can more spheres be packed into the same container.”

Kepler’s conjecture is, of course, patently false if considered in a finite container of a spec-
ified shape. For instance, a 2d×2d×2d cubic container can fit 8 spheres of diameterd if
arranged in Cartesian configuration, but can only fit 5 spheres if arranged in a “close-packed”
configuration8. It is presumed that Kepler in fact recognized this, and thusKepler’s conjec-
ture is commonly understood as a conjecture regarding the densest packing possible in the
limit that the size of the container is taken to infinity (for further discusssion, see §1.2).

Note in Figure 1.3 that any sphere (referred to as a “sun”) on the interior of the piles
has 12 nearest neighbors (referred to as its “planets”). Considering this sun and its 12 plan-
ets in isolation, there is in fact adequate room to permute the planets to different positions
while keeping them in contact with the sun, something like a 12-cornered Rubik’s cube with
spherical pieces (see Figure 1.4). Due to the extra space available in this configuration, it is
unclear upon first inspection whether or not there is sufficient room to fit a 13’th planet in to
touch the sun while keeping all of the other 12 planets in contact with it. In 1694, Isaac New-
ton conjectured this could not be done, in a famous disagreement with David Gregory, who
thought it could. Newton turned out to be right, with a complete proof first given in Schütte
& van der Waerden (1953), and a substantially simplified proof given in Leech (1956).

Moving from 16th-century stacks of cannonballs to 21st-century commerce, the ques-
tion of dense finite packings of circles and spheres finds practical relevance in a variety of
packaging problems. For example, to form a rectangular cardboard carton for 12 fl oz soda
cans, 164 cm2 of cardboard per can is needed if 18 cans are placed in a cartesian configura-
tion with 3 rows of 6 cans per row, whereas 3.3% less cardboardper can is needed if 18 cans
are placed in a triangular configuration (within a rectangular box) with 5 rows of{4,3,4,3,4}
cans per row. If an eye-catching (stackable, strong, “green”...) hexagonal cardboard carton
for the soda cans is used, with 19 cans (described in marketing terms as “18 plus 1 free”)
again placed in a triangular configuration, 17.7% less cardboard per can is required.

Two new questions arise when one “shrink-wraps” a number (m) of n-dimensional spheres
(resulting in a convex, fitted container), namely: what configuration of the spheres minimizes

6Harriot (1614) passed through several hands before finally being published in 2009, almost 4 centuries later.
7This now famous triangular table of binomial coefficients isincorrectly attributed by many in the west to Blaise

Pascal (b. 1623), though it dates back to several earlier sources, the earliest being Pingala’s Sanskrit workChandas
Shastra, written in the fifth century BC.

8For larger containers, the arrangements which pack in the greatest number of spheres (or other objects) must
in general be found numerically (see Gensane 2004, Schürmann 2006, and Friedman 2009).
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⇒ ⇒

FIG. 1.4.Illustration of the 13 spheres (a.k.a. Newton-Gregory) problem and planetary permutations. Config-
uration (a) is 13 of the spheres taken from the second, third,and fourth layers of the stack in the orientation shown
in Figure 1.3b, whereas configuration (c) is 13 of the spherestaken from the third, fourth, and fifth layers of the stack
in the orientation shown in Figure 1.3a [extended by one additional layer]. In both configurations, the 12 “planets”
(positioned around the central “sun”) are centered at the vertices of a cuboctahedron. The planets can be permuted
by “pinching” together two of the four planets on the cornersof each square face, in an alternating fashion, to form
a symmetric icosahedral configuration with significant space between each pair of planets [configuration (b)], then
“pushing” apart pairs of planets in an analogous fashion to form a different cuboctahedron. Alternatively, starting
from configuration (b), identifying any pair of opposite planets as “poles”, and slightly shifting the five planets
in each of the “tropics” as close as possible to their nearestrespective poles, the resulting northern and southern
groupings of planets can be rotated in relation to each otheralong the equator. Repeated application of these two
fundamental motions can be used to permute the planets arbitrarily.

the surface area of the resulting container, and what configuration minimizes the volume
of the resulting container? Both questions remain open, andare reviewed in Zong (1999).
Regarding the minimim surface area question, it was conjectured by Croft, Falconer, & Guy
(1991) that the minimum surface area, forn≥ 2 and largem, is achieved with a roughly spher-
ical arrangement. In contrast, regarding the minimim volume question, it was conjectured by
L. Fejes Tóth (1975) that the minimum volume, forn ≥ 5 and anym, is achieved by plac-
ing the spheres in a line, leading to a shrink-wrapped container in the shape of a “sausage”.
Forn = 3, it has been shown that a roughly spherical arrangement minimizes the volume for
m= 56, m= 59 to 62, andm≥ 65, and it is conjectured that a sausage configuration min-
imizes the volume for all otherm (see Gandini & Willis 1992); forn = 4, there appears to
be a similar “catastrophe” in the volume-minimizing solution, from a sausage configuration
to a roughly spherical configuration, asm is increased beyond a critical value (Willis 1983
conjectures this critical value to bem≈ 75000, whereas Gandini & Zucco 1992 conjectures
it to bem= 375769).

Finally, L. Fejes Tóth (1959) presents a curious set of questions that arise when consid-
ering the blocking of light with a finite number of opaque unitspheres packed around the
origin. The first such question, known as Hornich’s Problem,seeks the smallest number of
opaque unit spheres that completely conceal light rays emanating from a point source at the
center of a transparent unit sphere at the origin. A related question, known as L. Fejes Tóth’s
Problem, seeks the smallest number of opaque spheres that completely conceal light rays em-
anating from the surface of a unit sphere at the origin (e.g.,in Figure 1.4, adding additional
outer planets to completely conceal the view of the sun from all angles). In 2D, the (trivial)
answer to both problems is 6, via the triangular packing indicated in Figure 1.1a. In higher
dimensions, both questions remain open, and the answer differs depending on whether or
not the sphere centers are restricted to the nodal points of alattice. For the L. Fejes Tóth’s
Problem, forn≥ 3, the answer is unbounded if restricted to lattice points, and bounded if not.
For Hornich’s Problem, the answer is bounded in both cases, with the number of spheres,h,
required in the 3D case, when not restricted to lattice points, being somewhere in the range
30≤ h≤ 42. Zong (1999) derives several of the known bounds available in both problems.

1.2. Infinite packings. In the last 300 years,manydifferent constructions of infinite
lattice and nonlattice packings have been proposed in each dimension. These packings each
have different packing density, covering thickness, mean-squared quantization error, and kiss-
ing number, and their corresponding nets each have different topological density; knowledge



8 T. BEWLEY, P. BELITZ, & J. CESSNA

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−6
−4

−2
0

2
4

6

−6

−4

−2

0

2

4

6

−5

0

5

−5

0

5

−6
−4

−2
0

2
4

6

−6

−4

−2

0

2

4

6

FIG. 1.5. (a) A regular truncated octahedron, used to tileR3 in Kelvin’s conjecture; (b) an irregular
tetrakaidecahedron and dodecahedron, used to tileR3 in the Weaire-Phelan structure.

of these properties is essential when selecting a packing ornet for any given application.
We have thus attempted to catalog these constructions and their properties thoroughly in the
remainder of this review.

In the characterization of density, amongst alllattice packings of a given dimension,
the A2, A3, D4, D5, E6, E7, E8, andΛ24 constructions given in §2 have been proven to be
of maximum density, in Lagrange (1773) forn = 2, Gauss (1831) forn = 3, Korkine &
Zolotareff (1873, 1877) forn = 4 and 5, Blichfeldt (1935) forn = 6 through 8, and Cohn &
Kumar (2009) forn= 24. There are no such proofs of optimality for other values ofn, though
the latticesΛn andKn introduced in §2.6 are likely candidates in the range 9≤ n≤ 23.

Remarkably, if one considers both latticeandnonlattice packings, proof of which pack-
ing is of maximum density in a given dimension is still open for n > 3. It was established
in Thue (1892) thatA2 has the maximum density amongst all lattice and nonlattice packings
for n = 2. Considerable attention has been focused over the centuries on the corresponding
question forA3 in dimensionn = 3, that is, on Kepler’s conjecture (posed in 1611) in the
limit that the container size is taken to infinity. Indeed, David Hilbert, in his celebrated list of
23 significant open problems in mathematics in 1900, included a generalization of Kepler’s
conjecture as part of his 18th problem (see, e.g., Milnor 1976).

Note that it is not at all obvious that an infinite packing as regular asA3 would neces-
sarily be the packing that maximizes density. Indeed, as mentioned in footnote 3 on page 1,
nonlattice packings are known in dimensionsn = 10, 11, 13, 18, 20, and 22 that are each
slightly denser than the densest known lattice packings in these dimensions.

In three dimensions, physiologist Stephen Hales (1727), inhis groundbreaking work
Vegetable Staticks, reported a curious experiment:

“I compressed several fresh parcels of Pease in the same Pot,. . . by the great incumbent
of weight, pressed into the interstices of the Pease, which they adequately filled up, being
therefore formed into pretty regular dodecahedrons.”

This report implied that many of the dilated peas in this experiment had 12 nearest neighbors
and/or pentagonal faces. However, the “pretty regular” qualification left a certain ambiguity,
and this experiment left mathematicians puzzled, as it is patently impossible to tileR3 with
regular dodecahedra. Kelvin (1887) formalized the question inherent in Hales’ dilated pea
experiment by asking howR3 could be divided into regions of equal volume while minimiz-
ing the partitional area. He conjectured the answer to be a regular tiling ofR3 with truncated
octahedra, which are in fact the Voronoı̈ cells of theA∗

3 lattice (see §3.4.3). [Note that the
Voronoı̈ cell of theA3 lattice is the (face-transitive)rhombicdodecahedron, which is dual to
the cuboctahedron illustrated in Figures 1.4a,c and tilesR3 with slightly greater partitional
area than does the tiling with truncated octahedra.] Kelvin’s conjecture stood for over 100
years, until Weaire & Phelan (1994) discovered a tiling ofR3 based on irregular tetrakaidec-
ahedra (with 2 hexagonal faces and 12 pentagonal faces) and irregular dodecahedra (with 12
pentagonal faces); this tiling has 0.3% less partitional area than the much more regular tiling
with truncated octahedra considered by Kelvin (see Figure 1.5). In hindsight, it is quite pos-
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sible that Hales might have in fact stumbled upon the Weaire-Phelan structure in his cooking
pot (in 1727!) and, seeing all of those pentagonal faces and 12-sided (as well as 14-sided)
dilated peas, asserted that what he was looking at was a culinary approximation to a tiling of
R3 with regular dodecahedra, even though such a tiling is impossible.

Returning to Kepler’s conjecture, in 1998, Thomas Hales (norelation to Stephen) an-
nounced a long-sought-after proof, in a remarkably difficult analysis making extensive use
of computer calculations. This proof was spread over a sequence of papers published in the
years that followed (see Hales 2005). An extensive discussion of this proof, which is still
under mathematical scrutiny, is given in Szpiro (2003). Inspiration for this proof was based,
in part, on a strategy to prove Kepler’s conjecture proposedby L. Fejes Tóth (1953), the first
step of which is a quantitative version of the Newton-Gregory problem discussed in §1.1.

2. Dense lattice packings for n ≤ 24. There are many dense lattices more complex
than the Cartesian lattice that offer superior uniformity and nearest-neighbor configuration,
as quantified by the standard metrics introduced in §1 (namely, packing density, covering
thickness, mean-square quantization error, and kissing number). This section provides an
overview of many of these lattices;the definitive comprehensive reference for this subject is
Conway & Sloane (1998), to which the reader is referred for much more detailed discussion
and further references on many of the topics discussed in§2. Note that the subject of cod-
ing theory, reviewed in §4, is very closely related to the subject of dense lattice packings.
As mentioned in the abstract, the practical application explored in Part II of this work also
leverages these constructions heavily.

2.1. Lattice terminology . The notationLn
∼= Mn means that the latticesLn andMn are

equivalent(when appropriately rotated and scaled) at the specified dimensionn. Also note
that the four most basic families of lattices introduced in §2, denotedZn, An, Dn, andEn, are
often referred to asroot latticesdue to their relation to the root systems of Lie algebra.

There are three primary methods9 to define any givenn-dimensional real lattice:

• As anexplicit descriptionof the points included in the lattice.
• As aninteger linear combination(that is, a linear combination with integer coefficients) of

a set ofn basis vectorsbi defined inRn+m for m≥ 0; for convenience, we arrange these
basis vectors as the columns10 of abasis matrix11 B.

• As aunion of cosets, or sets of nodal points, which themselves may or may not be lattices.

The standard form of these definitions, as used in §2, makes itstraightforward to generalize
application codes that can build easily upon any of the lattices so described.

Any real (or complex) latticeLn has associated with it adual lattice L∗n defined such that

L∗
n =

{
x ∈ R

n (or C
n) : x · ū ∈ Z for all u ∈ Ln

}
, (2.1)

whereZ denotes the set of all integers, dot denotes the usual scalarproduct, and overbar
denotes the usual complex conjugate. IfB is a square basis matrix forLn, thenB−T is a
square basis matrix forL∗

n.
Unless specified otherwise, the word lattice in this paper implies a real lattice, defined in

Rn. However, note that it is straightforward to extend this work to complex lattices, defined

9A convenient alternative method for building a cloud of lattice points near the origin is based on the stencil of
nearest-neighbor points to the origin in the lattice, repeatedly shifting this stencil to each of the lattice points near
the origin determined thus far in order to create additionallattice points in the cloud. Unfortunately, this simple
alternative method does not work for all lattices, such asD∗

n andAr
n (see §2.3 and 2.4).

10In the literature on this subject, it is more common to use agenerator matrix Mto describe the construction of
lattices. The basis matrix conventionB used here is related simply to the corresponding generator matrix such that
B = MT ; we find the basis matrix convention to be more natural in terms of its linear algebraic interpretation.

11Note that integer linear combinations of the columns of mostmatrices donotproduce lattices (as defined in the
second paragraph of §1). The matrices listed in §2 as basis matrices are special in this regard. Note also that basis
matrices are not at all unique, but the lattices constructedfrom alternative forms of them are equivalent; the forms of
the basis matrices listed in §2 were selected based on their simplicity.
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in Cn. To accomplish this extension, it is necessary to extend theconcept of the integers,
which are used to construct a lattice via the “integer” linear combination of the basis vectors
in a basis matrixB, as described above. There are two primary such extensions:

• TheGaussian integers, defined asG = {a+bı : a,b∈ Z} whereı =
√
−1, which lie on a

square array in the complex planeC.
• The Eisenstein integers, defined asE = {a+ bω : a,b ∈ Z} whereω = (−1+ ı

√
3)/2

[note thatω3 = 1], which lie on a triangular array in the complex planeC.

We may thus define three types of lattices from a basis matrixB:

• a real lattice, defined as a linear combination of the columnsof B with integers as weights;
• a (complex)G lattice, defined as a linear combination of the columns ofB with Gaussian

integers as weights; and
• a (complex)E lattice, defined as a linear combination of the columns ofB with Eisenstein

integers as weights.

The specialn-dimensional real,G , andE lattices formed by takingB = In×n are denotedZn,
Z[ı]n, andZ[ω]n respectively. Note also that, for any complex lattice with elementsz̃ ∈ Cn,
there is a corresponding real lattice with elementsx̃ ∈ R2n such that

x̃ =
(
ℜ{z̃1} ℑ{z̃1} . . . ℜ{z̃n} ℑ{z̃n}

)T
. (2.2)

The present sequence of papers focuses on the practical use of real lattice and nonlattice
packings withn > 3. Thus, in the present Part I, we only make brief use of complex lattices
to simplify certain constructions.

2.2. The Cartesian lattice Zn. TheCartesian lattice, Zn, is definedZn =
{
(x1, . . . ,xn) :

xi ∈ Z
}

, and may be constructed via integer linear combination of the columns of the basis
matrixB = In×n. The Cartesian lattice is self dual [that is,(Zn)∗ ∼= Zn] for all n.

2.3. The checkerboard lattice Dn, its dual D∗
n, and the offset checkerboard packing

D+
n . Thecheckerboard lattice, Dn, is ann-dimensional extension of the 3-dimensionalface-

centered cubic(FCC, a.k.a.cubic close packed) lattice. It is defined

Dn =
{
(x1, . . . ,xn) ∈ Z

n : x1 + . . .+xn = even
}
, (2.3a)

and may be constructed via integer linear combination of thecolumns of then× n basis
matrix

BDn =




−1 1 0
−1 −1 1

...
...
−1 1

0 −1




. (2.3b)

The dual of the checkerboard lattice, denotedD∗
n and reasonably identified as theoffset

Cartesian lattice, is ann-dimensional extension of the 3-dimensionalbody-centered cubic
(BCC) lattice. It may be written as

D∗
n = Dn∪ ([1]+Dn)∪ ([2]+Dn)∪ ([3]+Dn) ∼= Z

n∪ ([1]+Z
n), (2.4a)

where thecoset representatives[1], [2], and[3] are defined in this case such that

[1] =




1/2
...

1/2
1/2


 , [2] =




0
...
0
1


 , [3] =




1/2
...

1/2
−1/2


 .
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TheD∗
n lattice may also be constructed via integer linear combination of the columns of the

n×n basis matrix

BD∗
n
=




1 0 0.5
1 0.5

...
...

1 0.5
0 0.5




. (2.4b)

It is important to recognize that, forn≥ 5, the contact graph of theD∗
n lattice is simply

two disjoint nets given by the contact graphs of theZn and shiftedZn sets of lattice points
upon whichD∗

n may be built [see (2.4a)]. Thus, as suggested by Conway & Sloane (1997),
we introduce, forn≥ 4, ageneralized netformed by connecting each node of the unshifted
Zn set to the 2n nearest nodes on the shiftedZn set, and each node on the shiftedZn set to
the 2n nearest nodes on the unshiftedZn set. The resulting net, of coordination number 2n, is
uninodal, but isnota contact graph of the corresponding sphere packing.

The packingD+
n , reasonably identified as theoffset checkerboard packing, is an n-

dimensional extension of the 3-dimensionaldiamondpacking, and is defined simply as

D+
n = Dn∪ ([1]+Dn); (2.5)

note thatD+
n is a lattice packing only for evenn, and thatD+

3 is thediamond packing(for
further discussion, see §3.4.1).

2.4. The zero-sum lattice An, its dual A∗
n, and the glued zero-sum lattices Ar

n. The
zero-sum lattice, An, may be thought of as ann-dimensional extension of the 2-dimensional
triangular lattice; in 3 dimensions,A3 ∼= D3. It is defined

An =
{
(x0, . . . ,xn) ∈ Z

n+1 : x0 + . . .+xn = 0
}
, (2.6a)

and may be constructed via integer linear combination of thecolumns of the(n+1)×n basis
matrix

BAn =




−1 0
1 −1

...
...
1 −1

0 1




, with nAn =




1
1
...
1
1




. (2.6b)

Notice thatAn is constructed here vian basis vectors inn+1 dimensions. The resulting lattice
lies in ann-dimensional subspace inRn+1; this subspace is normal to the vectornAn. An
illustrative example isA2, the triangular 2D lattice, which may conveniently be constructed
on a plane inR3 (see Figure 2.1).

Note that, starting from a (2D) triangular configuration of oranges or cannonballs (see
Figure 1.1a), one can stack additional layers of oranges in atrangular configuration on top,
appropriately offset from the base layer, to build up the (3D) FCC configuration mentioned
previously (see Figure 1.3a). This idea is referred to as lamination, and will be extended
further in §2.6 when considering theΛn family of lattices.

Also note that, in the special case ofn = 2, theA2 lattice may also be written as

A2 ∼= R2∪ (a+R2), where a =

(
1/2√
3/2

)
(2.6c)
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FIG. 2.1. A cloud of points on the A2 lattice, defined on a plane inR3. Note that the normal vectornA2 =(
1 1 1

)T
points directly out of the page in this view.

and R2 is the rectangular grid (not a lattice, nor even a nonlattice packing) obtained by
stretching theZ2 lattice in the second element by a factor of

√
3.

The dual of the zero-sum lattice, denotedA∗
n, may be written as

A∗
n =

n
[

s=0

([s]+An), (2.7a)

where then+1 coset representatives[s], for s= 0, . . . ,n, are defined such that thek’th com-
ponent of the vector[s] is

[s]k =

{
s

n+1 k≤ n+1−s,
s−n−1

n+1 otherwise.
(2.7b)

TheA∗
n lattice may be constructed via integer linear combination of the columns of the(n+

1)×n basis matrix

BA∗
n
=




1 1 · · · 1 −n
n+1

−1 0 1
n+1

−1 1
n+1

. . .
...

−1 1
n+1

0 1
n+1




, with nA∗
n
= nAn. (2.7c)

A related family of lattice packings, developed in §12 of Coxeter (1951) and reasonably
identified as theglued zero-sum lattices Ar

n, is a family of lattices somewhere betweenAn and
A∗

n [as given in (2.7a)] defined via the union ofr translates ofAn for n≥ 5:

Ar
n = An∪ ([s]+An)∪ ([2s]+An)∪ ...∪ ([(r −1)s]+An), where r ·s= n+1, (2.8)

where the components of the “glue” vectors[s] are specified in (2.7b), and wherer ands
are integer divisors of(n+ 1) with 1 < s < n+ 1 and 1< r < n+ 1, excluding the case
{r = 2,s = 3} for n = 5. The latticesA5

9, A4
11, A7

13, A5
14, A8

15, A9
17, A10

19, A7
20, andA11

21 are
found to have especially good covering thickness, with the last four currently the thinnest
coverings available in their respective dimensions (see Baranovskii 1994, Anzin 2002, and
Sikirić, Schürmann, & Vallentin 2008). Note also thatA2

7
∼= E7, A4

7
∼= E∗

7, andA3
8
∼= E8, each

of which is discussed further below.
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Note finally that the contact graphs of some of theAr
n lattices, such asA5

9 andA4
11, are

disjoint nets given by the contact graphs of theAn and shiftedAn sets of lattice points upon
which these glued zero-sum lattices are built [see (2.8)]. Thus, as in the case ofD∗

n for n> 4 as
discussed in §2.3, ageneralized netmay be formed by connecting each node of the unshifted
An set to the nearest nodes on the shiftedAn set. Again, the resulting net is uninodal, but is
not a contact graph of the corresponding sphere packing.

2.5. The Gosset lattice E8 ∼= E∗
8 , E7, E∗

7, E6, and E∗
6. The Gosset lattice E8 ∼= E∗

8,
which has a (remarkable) kissing number ofτ = 240, may be defined simply as

E8 = D+
8 , (2.9a)

and may be constructed via integer linear combination of thecolumns of the 8× 8 basis
matrix

BE8 =




2 −1 0 1/2
1 −1 1/2

1 −1 1/2
1 −1 1/2

1 −1 −1/2
1 −1 −1/2

1 −1/2
0 −1/2




. (2.9b)

The latticeE7 is defined by restrictingE8, as constructed above, to a 7-dimensional
subspace,

E7 = {(x1, . . . ,x8) ∈ E8 : x1 + . . .+x8 = 0}, (2.10a)

and may be constructed directly via integer linear combination of the columns of the 8×7
basis matrix

BE7 =




−1 0 1/2
1 −1 1/2

1 −1 1/2
1 −1 1/2

1 −1 −1/2
1 −1 −1/2

1 −1/2
0 −1/2




, with nE7 =




1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2




. (2.10b)

The dual of theE7 lattice may be written as

E∗
7 = E7∪ ([1]+E7), where [1] =




1/4
...

1/4
−3/4
−3/4




, (2.11a)

and may be constructed directly via integer linear combination of the columns of the 8×7
basis matrix
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BE∗
7
=




−1 0 −3/4
1 −1 −3/4

1 −1 1/4
1 −1 1/4

1 −1 1/4
1 −1 1/4

1 1/4
0 1/4




, with nE∗
7
= nE7. (2.11b)

The latticeE6 is defined by further restrictingE7, as defined in (2.10), to a 6-dimensional
subspace,

E6 = {(x1, . . . ,x8) ∈ E7 : x1 +x8 = 0}, (2.12a)

and may be constructed directly via integer linear combination of the columns of the 8×6
basis matrix

BE6 =




0 1/2
−1 1/2
1 −1 1/2

1 −1 1/2
1 −1 −1/2

1 −1 −1/2
1 −1/2

0 −1/2




, with NE =




1 1/2
0 1/2
0 1/2
0 1/2
0 1/2
0 1/2
0 1/2
1 1/2




=




| |
nE6 nE7

| |


 .

(2.12b)

The dual of theE6 lattice may be written as

E∗
6 = E6∪ ([1]+E6)∪ ([2]+E6), where [1] =




0
−2/3
−2/3
1/4

...
1/4
0




, [2] = −[1], (2.13a)

and may be constructed directly via integer linear combination of the columns of the 8×6
basis matrix

BE∗
6
=




0 0 1/2
−1 2/3 1/2
1 −1 2/3 1/2

1 −1 −1/3 1/2
1 −1 −1/3 −1/2

1 −1/3 −1/2
−1/3 −1/2

0 0 −1/2




, with NE∗ = NE. (2.13b)
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2.6. The laminated lattices Λn, and the closely-related Kn lattices . The lattices in the
Λn andKn families can be built up one dimension, or “laminate”, at a time, starting from the
integer lattice (Z ∼= Λ1 ∼= K1), to triangular (A2 ∼= Λ2 ∼= K2), to FCC (A3 ∼= D3 ∼= Λ3 ∼= K3), all
the way up (one layer at a time) to the remarkable Leech lattice (Λ24 ∼= K24). Both families
of lattices may in fact be extended (but not uniquely) to at leastn = 48.

The Leech lattice,Λ24, is the unique lattice inn = 24 dimensions with a (remarkable)
kissing number ofτ = 196,560. It may be constructed via integer linear combination ofthe
columns of the 24×24 basis matrixBΛ24, which is depicted here in the celebrated Miracle
Octad Generator (MOG) coordinates (see Curtis 1976 and Conway & Sloane 1998):

BΛ24 =
1√
8




8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2 −3

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 1

4 2 2 2 2 2 2 2 2 1

4 2 2 2 1

4 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 2 2 2 2 1

4 2 2 2 2 1

4 2 2 2 2 1

2 2 2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

4 2 2 2 2 2 2 1

2 2 1

2 2 1

2 1

2 2 2 1

2 1

2 1

1




.

As in theE8 → E7 → E6 progression described in §2.5, theΛn lattices forn = 23,22, . . . ,1
may all be constructed by restricting theΛ24 lattice to smaller and smaller subspaces via the
normal vectors assembled in the matrix12

12There are, of course,manyequivalent constructions ofΛ1 throughΛ23 via restriction ofΛ24, and the available
literature on the subject considers these symmetries at length. The convenient form ofNΛ depicted here was deduced,
with some effort, from Figure 6.2 of Conway & Sloane (1998).
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NΛ =




1

1

1 1

1 1 1

1

1 −1

1 −1

1

1

1 −1

1 −1

1

1 1

1 1

1

1 1

1

1 1

1 1

1 1

1

1 −1

1 −1

1




=
(
nΛ0 . . . nΛ23

)
.

Thus, theΛ23 lattice is obtained from the points of theΛ24 lattice inR24 (which them-
selves are generated via integer linear combination of the columns ofBΛ24) which lie in
the 23-dimensional subspace orthogonal tonΛ23. Similarly, theΛ22 lattice is obtained from
the points of theΛ24 lattice which lie in the 22-dimensional subspace orthogonal to both
nΛ23 andnΛ22, etc. Noting the block diagonal structure ofNΛ, it follows that Λn may be
constructed using the basis matrix, denotedBΛn, given by then×n submatrix in the upper-
left corner ofBΛ24 for any n ∈ N1 = {21,20,16,9,8,5,4}. For the remaining dimensions,
n∈ N2 = {19,18,17,15,14,13,12,11,10,7,6,3,2,1}, Λn may be constructed via the appro-
priate restriction of the lattice generated by the next larger basis matrix in the setN1; for
example,Λ14 may be constructed inR16 via restriction of the lattice generated by the basis
matrix BΛ16 to the subspace normal to the vectors (inR16) given by the first 16 elements of
nΛ15 andnΛ14.

A similar sequence of lattices, denotedKn, may be constructed via restriction of the
Leech lattice (generated viaBΛ24) in a similar fashion (for details, see Figure 6.3 of Conway
& Sloane 1998). Lattices from theΛn and/orKn families have the maximal packing densities
and kissing numbers amongst all lattices for the entire range considered here, 1≤ n ≤ 24.
Note that theΛn andKn families are not equivalent in the range 7≤ n≤ 17, with Λn being
superior toKn by all four metrics introduced in §1 at most values ofn in this range, except for
the narrow range 11≤ n≤ 13, where in factKn has a slight advantage. Note also that there is
some flexibility in the definition of the latticesΛ11, Λ12, andΛ13; the branch of theΛn family
considered here is that which maximizes the kissing numberτ in this range ofn, and thus the
corresponding lattices are denotedΛmax

11 , Λmax
12 , andΛmax

13 . Note thatK12 is referred to as the
Coxeter-Todd lattice andΛ16 is referred to as the Barnes-Wall lattice.
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2.7. Some numerically-generated lattices for thin coverings in dimensions 6-15 .
Recall from §2.1 that ann-dimensional real lattice may be defined as an integer linearcom-
bination of a set ofn basis vectorsbi defined inRn+m for m≥ 0; that is, any lattice point may
be written as

x = ξ1b1 + ξ2b2 + . . .+ ξnbn = Bξξξ,

where the elements{ξ1, . . . ,ξn} of the vectorξξξ are taken as integers. The square of the
distance of any lattice point from the origin is thus given byf (ξξξ) = ξξξTAξξξ, whereA , BTB
is known as theGram matrixassociated with the lattice in question, and the functionf (ξξξ)
is referred to as the correspondingquadratic form[note that each term off (ξξξ) is quadratic
in the elements ofξξξ]. All of the lattices studied thus far, when scaled appropriately, are
characterized by Gram matrices withinteger elements, and thus their corresponding quadratic
forms f (ξξξ) have integer coefficients (and are thus referred to asintegral quadratic forms).

There is particular mathematical interest in discovering (or generating numerically) both
lattice and non-lattice packings which minimize covering thickness and/or packing density.
The numerical approach to this problem studied in Schürmann & Vallentin (2006) and Sikirić,
Schürmann, & Vallentin (2008) has generated new lattices in dimensions 6-15 with the
thinnest covering thicknesses known amongst all lattices.The lattice so generated in di-
mension 7 happens to correspond to an integral quadratic form, but the others, apparently, do
not. Gram matricesA corresponding to these 10 lattices (denotedLc1

6 , Lc
7, Lc

8, . . . , Lc
15) are

available at http://fma2.math.uni-magdeburg.de/ ˜ latgeo/covering table.html ;
(nonunique) basis matricesB corresponding to each of these lattices may be generated simply
by taking the Cholesky decomposition of the corresponding Gram matrix, asA = BTB.

2.8. Discussion . For all of the dense lattices described thus far, as well as for the rare
packings and nets described in §3, Tables 2-3 list the known values of the packing density∆,
the covering thicknessΘ, and the mean squared quantization error per dimension,G. Table
2 also lists the coordination sequence throughk = 10 of the corresponding net, as well as
its local topological densitytd10. If this net is a contact graph, the coordination number
(that is, the first element of the coordination sequence) is equal to the kissing number of the
corresponding packing; if this net isnota contact graph, it is marked with aG, and the kissing
numberτ of the corresponding sphere packing is listed in parentheses.

The other information appearing in Table 2 is described further in §3. Note that Table 2
alone has 8 columns and over 100 rows, with those results which we believe to be new denoted
in italics. The original source of each of the several hundred existing results reported can not
feasibly be spelled out here. Suffice it to say that the vast majority of those existing results re-
lated to lattices are discussed in Conway & Sloane (1998) andin the On-Line Encyclopedia of
Integer Sequences (on the web athttp://www.research.att.com/ ˜ njas/sequences/ ),
where a large number of the original references are listed indetail. The vast majority of
those existing results related to 3D nets (see §3),including clear drawings of eachas well as
detailed lists of original references, are given in the Reticular Chemistry Structure Resource,
available online at, e.g.,http://rcsr.anu.edu.au/nets/fcu , where “fcu ” may be re-
placed by any of the lowercase boldface three-letter identifiers given in Table 2 and §3; for
further discussion of this database and others, see O’Keeffe et al. (2008), Treacy et al. (2004),
Blatov (2006), and Hyde et al. (2006). Note also that there are hundreds of new results re-
ported in Tables 2 and 3, as denoted in italics; most of these are the result of painstaking
numerical simulation, some of which tooks weeks of CPU time (on a quad-core 3GHz Intel
Xeon server) to complete.

Note finally that there are a variety of (lattice-specific) ways to quantize to the nearest
lattice point; for an introduction, see §5.
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n packing net ∆ Θ G coordination sequence(throughk = 10) td10
point symbol
vertex symbol

1 Z,Λ1 integer 1 1 0.083333 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 21 ∗

A2,A∗
2,Λ2 triangular 0.90690 1.2092 0.080188 6, 12, 18, 24, 30, 36, 42, 48, 54, 60 331 36.46.53

Z2,D2,D∗
2,D

+
2 square 0.78540 1.5708 0.083333 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 221 4.4.4.4.∗ .∗

2
A+

2 ,TA∗
2 honeycomb 0.60460 2.4184 0.09623 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 166 6.6.6

Â+
2 ,TÂ

∗
2

augmented
honeycomb

0.39067 5.832 0.1652 3, 4, 6, 8, 12, 14, 15, 18, 21, 22 124 3.12.12

D3,A3,Λ3 fcu 0.74048 2.0944 0.078745 12, 42, 92, 162, 252, 362, 492, 642, 812, 1002 3871 324.436.56

hcp 0.74048 2.0944 0.078745 12, 44, 96, 170, 264, 380, 516, 674, 852, 1052 4061 324.433.59

D∗
3,A

∗
3 bcu 0.68017 1.4635 0.078543 8, 26, 56, 98, 152, 218, 296, 386, 488, 602 2331 424.64

Z3 pcu 0.52360 2.7207 0.083333 6, 18, 38, 66, 102, 146, 198, 258, 326, 402 1561 412.63

qtz, V60
3 0.39270 2.0405 0.08534 4, 12, 30, 52, 80, 116, 156, 204, 258, 318 1231 6.6.62.62.87.87

A+
3 ,D+

3 dia, V90
3 0.34009 2.7207 0.09114 4, 12, 24, 42, 64, 92, 124, 162, 204, 252 981 62.62.62.62.62.62

lon 0.34009 3.3068 0.09139 4, 12, 25, 44, 67, 96, 130, 170, 214, 264 1027 62.62.62.62.62.62

TA∗
3 sod 0.2777 8.781 0.1092 4, 10, 20, 34, 52, 74, 100, 130, 164, 202 791 4.4.6.6.6.6

3 Â+
3 dia-a 0.12354 9.1723 0.1511 4, 6, 12, 18, 36, 48, 60, 78, 108, 126 497 3.122.3.122.3.122

TÂ
∗
3 sod-a 0.1033 28.26 0.1943 4, 6, 12, 17, 28, 38, 52, 64, 84, 104 410 3.8.3.12.3.12

qzd, T60
3 0.6046 2.1549 0.08151 G: 4, 12, 36, 72, 122, 188, 264, 354, 456, 570(τ = 8) 2079 72.∗ .73.73.73.73

cds, T90
3 0.52360 2.7207 0.08333 G: 4, 12, 30, 58, 94, 138, 190, 250, 318, 394(τ = 6) 1489 6.6.6.6.62.∗

nbo, S3 0.39270 3.1416 0.08602 4, 12, 28, 50, 76, 110, 148, 194, 244, 302 1169 62.62.62.62.82.82

(unstable)
bto (α = 60◦), 0.2687 3.0042 0.09129

3, 6, 12, 24, 43, 64, 91, 124, 160, 202 730 10.102.102
Y60

3 (α ≈ 70.5◦) 0.2551 2.7251 0.09217

ths (α = 60◦), 0.2327 4.3099 0.09706
3, 6, 12, 24, 38, 56, 77, 102, 129, 160 608 102.104.104

Y90
3 (α ≈ 70.5◦) 0.2207 3.518 0.09817

srs 0.1851 3.4281 0.1072 3, 6, 12, 24, 35, 48, 69, 86, 108, 138 530 105.105.105

srs-a 0.0555 9.739 0.1882 3, 4, 6, 8, 12, 16, 24, 32, 48, 54 208 3.205.205

Table 2a. (Continued on next page.)
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D4,D∗
4,Λ4 0.61685 2.4674 0.076603

24, 144, 456, 1056, 2040, 3504, 5544, 8256, 11736, 16080 48,841 396.4168.512

G: 16, 80, 240, 544, 1040, 1776, 2800, 4160, 5904, 8080(τ = 24) 24,641 4112.68

A4 0.55173 3.1780 0.078020 20, 110, 340, 780, 1500, 2570, 4060, 6040, 8580, 11750 35,751 360.4120.510

A∗
4 0.44138 1.7655 0.077559 10, 50, 150, 340, 650, 1110, 1750, 2600, 3690, 5050 15,401 440.65

Z4,D+
4 0.30843 4.9348 0.08333 8, 32, 88, 192, 360, 608, 952, 1408, 1992, 2720 8361 424.64

4 A+
4 0.17655 6.3558 0.08827 5, 20, 50, 110, 200, 340, 525, 780, 1095, 1500 4626 610

TA∗
4 0.10593 42.4 0.1221 5, 15, 35, 70, 125, 205, 315, 460, 645, 875 2751 45.65

Â+
4 0.03354 23.82 0.1398 5, 8, 20, 32, 80, 116, 170, 236, 380, 482 1530 36.124

T90
4 0.3084 4.935 0.08333 G: 4, 12, 36, 92, 200,384, 664, 1056, 1576, 2240(τ = 8) 6265 83.83.83.83.84.∗

S4 0.1542 3.855 0.08692 4, 12, 36, 84, 172, 292, 468, 692, 988, 1348 4097 82.82.85.85.85.85
(unstable)

V90
4 0.1187 5.814 0.09333 4, 12, 36, 74, 136, 228, 352, 518, 732, 994 3087 86.86.87.87.87.87

Y
90
4 0.06793 6.458 0.09736 3, 6, 12, 24, 48, 90, 146, 230, 336, 478 1374 122.122.122

D5,Λ5 0.46526 4.5977 0.075786 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 119720, 182002 463,715 3240.4520.520

A5 0.37988 5.9218 0.077647 30, 240, 1010, 2970, 7002, 14240, 26070, 44130, 70310, 106752 272,755 3120.4300.515

D∗
5 0.32899 2.4982 0.075625 G: 32, 242, 992, 2882, 6752, 13682, 24992, 42242, 67232, 102002 (τ = 10) 261,051 4480.616

D+
5 0.28736 5.2638 0.07784 16, 120, 480, 1410, 3296, 6712, 12256, 20770, 33056, 50232 128,349 480.640

A∗
5 0.25543 2.1243 0.076922 12, 72, 272, 762, 1752, 3512, 6372, 10722, 17012, 25752 66,241 460.66

Z5 0.16449 9.1955 0.083333 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290, 14002 36,365 440.65

A+
5 0.08514 8.8223 0.08646 6, 30, 90, 240, 510, 1010, 1770, 2970, 4626, 7002 18,255 615

5 TA∗
5 0.035174 254.9 0.1349 6, 21, 56, 126, 252, 461, 786, 1266, 1946, 2877 7798 49.66

Â+
5 0.008055 35.81 0.1313 6, 10, 30, 50, 150, 230, 390, 570, 1050, 1420 3907 310.125

T90
5 0.16449 9.1955 0.08333 G: 4, 12, 36, 100, 258, 610, ?(τ = 10) ? 82.82.82.82.106.∗

S5 0.05140 9.310 0.08666 4, 12, 36, 100, 244, 514, 980, 1682, 2724, 4162 10,459 8.8.8.8.82.82

V60
5 0.04786 8.4884 0.08753 4, 12, 36, 100, 248, 522, 988, 1724, 2800, 4324 10,759 8.8.8.8.82.82

(unstable) Y60
5 0.03516 254.8 0.1350 3, 6, 12, 24, 48, 90, 168, 312, 556, 914 2134 122.122.122

T60
5 0.02478 6.2578 0.09038 G: 4, 12, 36, 100, 268, ?(τ = 14) ? 82.82.82.82.1110.∗

V90
5 0.02478 6.016 0.09037 4, 12, 36, 100, 220, 428, 752, 1254, 1944, 2924 7675 8.8.8.8.82.82

Y90
5 0.01858 11.19 0.09605 3, 6, 12, 24, 48, 90, 168, 312, 532, 872 2068 122.122.122

Table 2b. (Continued on next page.)
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n packing net ∆ Θ G coordination sequence(throughk = 10) td10
point symbol
vertex symbol

E6,Λ6 0.37295 7.0722 0.074347 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304, 1408104 2,900,773 3720.41800.536

E∗
6 0.33151 2.6521 0.074244 54, 828, 5202, 20376, 60030, 146484, 312858, 605232, 1084806, 1830060 4,065,931 3270.41134.527

D6 0.32298 8.7205 0.075591 60, 792, 4724, 18096, 52716, 127816, 271908, 524640, 938652, 1581432 3,520,837 3480.41260.530

D+
6 0.27252 5.1677 0.07459 32, 332, 1824, 6776, 19488, 46980, 99680, 192112, 343584, 578876 1,289,685 4480.616

A6 0.24415 9.8401 0.077466 42, 462, 2562, 9492, 27174, 65226, 137886, 264936, 472626, 794598 1,775,005 3210.4630.521

D∗
6 0.16149 4.3603 0.075120 G: 64, 728, 4032, 14896, 42560, 102024, 215488, 413792, 737856, 1240120 (τ = 12) 244,069 41984.632

A∗
6 0.13453 2.5511 0.076490 14, 98, 462, 1596, 4410, 10374, 21658, 41272, 73206, 122570 275,661 484.67

Lc1
6 0.31853 2.4648 ? 32, ? ? ?

6
Z6 0.08075 17.441 0.08333 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436, 58728 134,245 460.66

A+
6 0.03844 19.681 0.08525 7, 42, 147, 462, 1127, 2562, 5047, 9492, 16317, 27174 62,378 621

TA∗
6 0.010459 1836.5 0.14712 7, 28, 84, 210, 462, 924, 1715, 2996, 4977, 7924 19,328 414.67

Â+
6 0.001774 99.91 0.1259 7, 12, 42, 72, 252, 402, 777, 1182, 2457, 3492 6,496 315.126

T
90
6 0.08075 17.441 0.08333 G: 4, 12, 36, 100, ?(τ = 12) ? ?

S6 0.01514 9.78 0.08601 4, 12, 36, 100, 276, 660, 1484, 2920, ? ? 8.8.8.8.82.82
(unstable)

V
90
6 9.740e-3 19.79 0.09322 4, 12, 36, 100, 276, 610, 1284, 2346, 4152, 6792 15,613 8.8.8.8.82.82

Y90
6 4.640e-3 24.15 0.09479 3, 6, 12, 24, 48, 90, 168, 312, 580, 1046 2290 122.122.122

E7,Λ7 0.29530 13.810 0.073231 126, 2898, 25886, 133506, 490014, 1433810, 3573054, 7902594, 15942206, 29896146 59,400,241 32016.45796.563

D+
7 0.26170 4.7248 0.07273 64, 1092, 8064, 37842, 131328, 371940, 906816, 1976898, 3946048, 7344164 14,724,257 41792.6224

E∗
7 0.21578 4.1872 0.073116

˜
56, 938, 7688, 39746, 150248, 455114, 1171928, 2668610, 5521880, 10585514 20,601,723 41512.628

D7 0.20881 16.749 0.075686 84, 1498, 11620, 55650, 195972, 559258, 1371316, 2999682, 6003956, 11193882 22,392,919 3840.42604.542

A7 0.14765 18.899 0.077396 56, 812, 5768, 26474, 91112, 256508, 623576, 1356194, 2703512, 5025692 10,089,705 3336.41176.528

D∗
7 0.07382 4.5687 0.07493 G: 128, 2186, 16256, 75938, 263552, 745418, 1817216, 3959426, 7902848, 14704202(τ = 14) 29,487,171 48064.664

7
A∗

7 0.06542 3.0596 0.076187 16, 128, 688, 2746, 8752, 23536, 55568, 118498, 232976, 428752 871,661 4112.68

Lc
7 0.11738 2.9000 ? ? ? ?

Z7 0.03691 33.498 0.083333 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598, 209762 433,905 484.67

A+
7 0.01636 30.163 0.08442 8, 56, 224, 812, 2240, 5768, 12656, 26474, 49952, 91112 189,303 628

TA∗
7 2.839e-3 ? ? 8, 36, 120, 330, 792, 1716, 3432, 6434, 11432, 19412 43,713 420.68

Â+
7 3.586e-4 137.9 0.1214 8, 14, 56, 98, 392, 644, 1400, 2198, 5096, 7532 17,439 321.127

Table 2c. (Continued on next page.)
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T60
7 0.05673 15.87 0.08076 G: 4, 12, 36, 100, 276, ?(τ = 20) ? ?

T
90
7 0.03691 33.50 0.08333 G: 4, 12, 36, 100, 276, ?(τ = 14) ? ?

S7 4.035e-3 24.15 0.08525 4, 12, 36, 100, 276, ? ? ?

7 (unstable) V60
7 3.730e-3 15.00 0.08702 4, 12, 36, 100, 276, ? ? ?

V90
7 2.424e-3 32.39 0.09267 4, 12, 36, 100, 276, 724, 1676, 3592, 7012, 12868 26,301 8.8.8.8.82.82

Y60
7 1.652e-3 18.95 0.08854 3, 6, 12, 24, 48, ? ? ?

Y90
7 1.074e-3 36.73 0.09365 3, 6, 12, 24, 48, 90, 168, 312, 580, 1046 2290 122.122.122

E8,E∗
8 ,

D+
8 ,Λ8

0.25367 4.0587 0.071682 240, 9120, 121680, 864960, 4113840, 14905440, 44480400, 114879360,
265422960, 561403680

1,006,201,681 36720.421840.5120

D8 0.12683 32.470 0.075914 112, 2592, 25424, 149568, 629808, 2100832, 5910288, 14610560, 32641008,
67232416

123,302,609 31344.44816.556

A8 0.08456 32.993 0.077391 72, 1332, 11832, 66222, 271224, 889716, 2476296, 6077196, 13507416, 27717948 51,019,255 3504.42016.536

D∗
8 0.03171 8.1174 0.074735

G: 256, 6560, 65280, 384064, 1614080, 5374176, 15097600, 37281920, 83222784,
171312160 (τ = 16)

314,358,881 432512.6128

A∗
8 0.02969 3.6658 0.075972 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146, 1854882 3,317,445 4144.69

Lc
8 0.08253 3.1422 ? ? ? ?

8 Z8 0.01585 64.939 0.083333 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688, 658048 1,256,465 4112.68

A+
8 6.599e-3 65.99 0.0838 9, 72, 324, 1332, 4104, 11832, 28674, 66222, 136404, 271224 520,198 636

TA∗
8 7.128e-4 ? ? 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24309, 43749 92,368 427.69

Â+
8 6.759e-5 301.1 0.1178 9, 16, 72, 128, 576, 968, 2340, 3768, 9648, 14716 32,242 328.128

T90
8 0.01585 64.94 0.08333 G: 4, 12, 36, 100, 276, 724, ?(τ = 16) ? ?

S8 9.903e-4 28.28 0.08452 4, 12, 36, 100, 276, 724, ? ? ?
(unstable)

V90
8 5.590e-4 49.89 0.09206 4, 12, 36, 100, 276, 724, 1908, 4390, 9876, 19682 37,009 8.8.8.8.82.82

Y
90
8 2.327e-4 87.31 0.09266 3, 6, 12, 24, 48, 90, 168, 312, 580, 1046 2290 122.122.122

Table 2d. (Continued from previous pages.) Characteristics of some exemplary lattice and uninodal nonlattice packings and nets through n= 8, ordered from
dense to rare in each section. Values in italics are (as far aswe know) new. At each n, bold double underlined values are proven to be optimal (maximum or
minimum) amongst allpackings, and bold single underlined values are proven to be optimal amongst alllattices. Bold values (without underlines) are the
best knownvalues amongst allpackings, and bold undertilded values are the best known values amongst all lattices. The point symbol is provided for those
nets withτ ≥ 5; the vertex symbol is provided for those nets withτ ≤ 4. Nets whose coordination sequences are identified with aG are generalized nets,
not contact graphs (see, e.g., the second-to-last paragraph of §2.3); in these cases, the kissing numberτ is indicated in parentheses after the coordination
sequence. In all other cases, the first element of the coordination sequence is the kissing numberτ. Note also that theY90

n andY60
n nets are constructed with

α = cos−1(1/n) for n≥ 3 (see§3.4.5); in addition, the barycentric constructions withα = 60, corresponding tobto andths, are also listed for n= 3.
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n packing ∆ Θ G τ

Λ9 0.14577 9.0035 0.07206 272
˜

D+
9 0.14577 4.3331 0.07110 144

D∗
9 0.01288 8.6662 0.07469 18

9 A∗
9 0.01268 4.3889 0.07582 20

A5
9 0.08447 4.3402 0.07207 90

Lc
9 0.08149 4.2686 ? ?

Z9 0.006442 126.81 0.08333 18

Λ10 0.09202
˜

12.409 0.07150 336
˜

D+
10 0.07969 7.7825 0.07081 180

10 A∗
10 0.005128 5.2517 0.07570 22

Lc
10 0.02995 5.1545 ? ?

Z10 0.002490 249.04 0.08333 20

K11 0.06043
˜

? ? 432

Λmax
11 0.05888 24.781 0.07116 438

˜
D+

11 0.04163 8.4072 ? 220

11 A∗
11 0.001974 6.2813 0.07562 24

A4
11 0.04740 5.5983 0.07025 132

Lc
11 0.04124 5.5056 ? ?

Z11 9.200e-4 491.40 0.08333 22

K12,K∗
12 0.04945 17.783 0.07010 756

˜
Λmax

12 0.04173 30.419 0.07058 648

D+
12 0.02086 15.209 ? 264

12
A∗

12 7.271e-4 7.5101 0.07557 26

Lc
12 0.004306 7.4655 ? ?

Z12 3.260e-4 973.41 0.08333 24

K13 0.02921
˜

? ? 918
˜

Λmax
13 0.02846 60.455 0.07009 906

A∗
13 2.569e-4 8.9768 0.07553 28

13
A7

13 ? 7.8641 ? 368

Lc
13 0.002255 7.7621 ? ?

Z13 1.112e-4 1934.6 0.08333 26

Λ14 0.02162 98.876 0.06946 1422
˜

A∗
14 8.740e-5 10.727 0.07551 30

14 A5
14 ? 9.0066 ? ?

Lc
14 0.005221 8.8252 ? ?

Z14 3.658e-5 3855.6 0.08333 28

Λ15 0.01686 202.91 0.06892 2340

A∗
15 2.870e-5 12.817 0.07549 32

15 A8
15 ? 11.602 ? ?

Lc
15 6.206e-5 11.005 ? ?

Z15 1.164e-5 7703.1 0.08333 30

Table 3a. (Continued on next page.)
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n packing ∆ Θ G τ

Λ16,Λ∗
16 0.01471 96.500 0.06830 4320

16 A∗
16 9.116e-6 15.311 0.07549 34

Z16 3.591e-6 15,422 0.08333 32

Λ17 0.008811 197.72 0.06822 5346

A∗
17 2.807e-6 18.288 0.07549 36

17
A9

17 ? 12.357 ? ?

Z17 1.076e-6 30,936 0.08333 34

Λ18 0.005928
˜

301.19 0.06792 7398

18 A∗
18 8.396e-7 21.841 0.07550 38

Z18 3.134e-7 62,158 0.08333 36

Λ19 0.004121 607.62 0.06767 10668

A∗
19 2.443e-7 26.082 0.07552 40

19
A10

19 ? 21.229 ? ?

Z19 8.892e-8 125,077 0.08333 38

Λ20 0.003226
˜

889.86 0.06731 17400

A∗
20 6.924e-8 31.143 0.07553 42

20
A7

20 ? 20.367 ? ?

Z20 2.461e-8 252,020 0.08333 40

Λ21 0.002466 1839.5 0.06701 27720

A∗
21 1.914e-9 37.185 0.07555 44

21
A11

21 ? 27.773 ? ?

Z21 6.651e-9 508,417 0.08333 42

Λ22 0.002128
˜

≤ 3426.8 ? 49896

Λ∗
22 2.952e-4 ≤ 27.884 ? 1782

22
A∗

22 5.168e-10 44.395 0.07558 46

Z22 1.757e-9 1,026,792 0.08333 44

Λ23 0.001905 ≤ 7609.0 ? 93150

Λ∗
23 2.788e-4 ≤ 15.322 ? 4600

23
A∗

23 1.364e-10 53.000 0.07560 48

Z23 4.543e-10 2,075,774 0.08333 46

Λ24,Λ∗
24 0.001930 7.9035 0.06577 196560

24 A∗
24 3.523e-11 63.269 0.07563 50

Z24 1.150e-10 4,200,263 0.08333 48

Table 3b. (Continued from previous page.) Characteristicsof some exemplary dense lattices
for n = 9 to 24, with≤ denoting a bound, not an exact value; see Table 2 legend for descrip-
tion of notation. Note that the covering radii ofΛ13 throughΛ15 andΛ17 throughΛ21 are,
respectively,{

√
26,
√

80/3,
√

28} and{
√

26,
√

80/3,
√

28,
√

28,
√

29} (this was verified nu-
merically in the present work; lower bounds on these values,which turn out to be sharp, are
given in Conway & Sloane 1998).
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3. Rare nonlattice packings and nets for n ≤ 8. We now turn our attention to the
problem of infiniterare sphere packings, with packing densitylower than that of the corre-
sponding Cartesian packing, and the closely related problem of infinite nets. Forn = 2, this
problem is essentially trivial. Forn = 3, the richness of solutions to this problem is fasci-
nating and, due to the intense interest in crystallographicstructures with various desirable
chemical properties, has been exhaustively studied and catalogued. Forn > 3, relatively few
regular constructions are known, and it appears as if what academic interest there has been
has not yet led to any applications of significance in scienceand engineering; Part III of this
work intends to change this, thus motivating the present study.

Interest inn-dimensional space groups and symmetries dates back to the nineteenth cen-
tury, with the work of Hessel, Bravais, Gadolin, Frankenheim, Barlow, Rodrigues, Möbius,
Jordan, Sohncke, Fedorov, Schönflies, Fricke, and Klein. Historical accounts of this early
work, as well as several follow-on mathematical developments related to space groups and
symmetries, are available in Brown et al. (1978) and Schwarzenberger (1980). Much of the
related work in the field of geometry was developed by Coxeter(1970, 1973, 1974, 1987,
1989). Despite this intense interest, there are very few explicit constructions of regular rare
sphere packings forn > 3 available today, outside of very short treatments of the subject by
O’Keeffe (1991b) and Beukemann & Klee (1992), discussed below.

As mentioned in the abstract and explored in depth in Part III, certain emerging engi-
neering applications now motivate the further developmentand deployment of quasi-infinite
n-dimensional nets, with a particular focus on structured nets with low coordination number
and high topological density. Such nets are well suited for the rapid spread of information in
switchless computational interconnect systems with a reduced number of wires and, thus, re-
duced cost. In such systems, a logical network withn > 3 may easily be designed and built13

and, as we will see, there are significant potential benefits for so doing. We are thus motivated
to revisit the problem of the design of structured nets with low coordination number. Note
that none of the lattice alternatives to the Cartesian lattice discussed in §2 have a coordination
number lower than that of the corresponding Cartesian lattice,τ = 2n. However, forn = 3,
there is a wide range of stable and unstable nonlattice packings that lead to such nets; as
shown below, many of these packings and nets generalize naturally to higher dimensions.

3.1. Net terminology . The terminology used to discuss 3D nets, most of which gener-
alizes readily to the discussion ofn-dimensional nets, has been clarified significantly over the
last decade, and is now quite precise.

Recall first the measures defined in §1, including thecoordination number, thecoordi-
nation sequence, and ak-hop measure oflocal topological densitygiven by the cumulative
sum of all nodes reached withink hops from origin, denotedtdk (Tables 1 and 2 list this quan-
tity for k = 10). O’Keeffe (1991a) defines another, sometimes preferred(see, e.g., Grosse-
Kunstleve et al. 1996) measure ofglobal topological density, td = limk→∞ tdk/kn, which
reveals the rate of growth oftdk with k in the limit of largek. [For a uninodaln-dimensional
net,td may be found by representing14 the coordination sequence as an(n−1)’th-order poly-
nomial in the number of hopsk, then taking the leading coefficient of this polynomial and
dividing by n.] Despite some impressive efforts in representing coordination sequences with
such polynomials (see, e.g., Conway & Sloane 1997, and the references contained therein),
the measuretd is currently unknown for most of the nets discussed here. As amatter of
computational tractability, we thus resort in the present paper to the tabulation of the local
topological density measure,td10, as this measure is much easier to compute.

13Recall, e.g., the “hypercube” computational interconnectsystem introduced several years ago; though designed
with a logical network withn > 3, the hypercube, like most computational interconnect strategies deployed today, is
significantly hampered by its inherent dependence on a Cartesian topology.

14Or by approximatingthis coordination sequence as an(n−1)’th-order polynomial for largek, if such a poly-
nomial does not fit exactly.
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Our attention in this paper is focused almost exclusively onequilibrium packings(that
is, on sphere packings which, if unperturbed, can bear compressive loads applied at the edges
of a packing that is built out to fill a finite convex domain) andtheir correspondingequilib-
rium nets(which are constructed with tensile members connecting nearest-neighbor nodes,
and can bear tensile loads applied at the edges of a finite convex domain)15,16. Equilibrium
packings fall into two catagories: stable (that is, sphere packings which, if perturbed, oscillate
about their equilibrium configurations, and return to theseconfigurations if there is damping
present in the system) and unstable (that is, sphere packings which depart from equilibrium
if perturbed); we consider both.

After years of conflicting terminology in the literature on nets, the concepts ofcycles,
rings, strong rings, tilings, natural tilings, point symbols, andvertex symbolshave, in 3D,
finally crystallized. The reader is referred to Blatov et al.(2009) and the references contained
therein for description of this modern terminology, as wellas numerous cautions concerning
the conflicting nomenclatures adopted elsewhere in the published literature. In short:

• A cycle is a sequence of nodes in a net, connected by edges, such that the first and last
nodes of the sequence coincide, while none of the other nodesin the sequence appears
more than once.

• A cycle sum, of cycles A and B, is the union of those edges in either A or B but not both.
• A ring is a cycle that is not the sum of two smaller cycles.
• A strong ringis a cycle that is not the sum of any number of smaller cycles.
• A tiling of R

3 by a 3D net is simply the dissection of 3D space into volumes whose faces,
which in general may be curved (asminimal surfaces, like soap bubbles; see, e.g., Sadoc
& Rivier 1999), are bounded by cycles of the net. A 3D net generally admits many tilings.

• Thedual of a tiling is the unique new tiling obtained by placing a new vertex inside each
original tile and connecting the vertices of adjacent tiles(that is, with shared faces) in
the original tiling with edges. If a tiling and its dual are identical, the tiling is said to be
self-dual. The dual of a dual is the original tiling.

• A natural tiling of R3 by a 3D net is a tiling with the smallest possible tiles such that the
tiles have the maximum combinatorial symmetry and all the faces of the tiles are strong
rings. A 3D net often17 admits a unique natural tiling. If a tiling and its dual are both
natural, the pair is referred to asnatural duals. If a natural tiling is self-dual, it is said to
benaturally self-dual.

• Thepoint symbolof a uninodal net, of the formAa.Bb.Cc . . ., indicates that there area pairs
of edges touching the node at the origin with shortest cyclesof lengthA, b pairs of edges
touching the node at the origin with shortest cycles of length B (with B> A), etc. Note that
the sum of the superscripts in a point symbol totalsτ(τ−1)/2.

• Thevertex symbolof a uninodal net, of the formAa.Bb.Cc . . ., indicates that the first pair
of edges touching the node at the origin hasa shortest rings of lengthA, the second pair
of edges touching the node at the origin hasb shortest rings of lengthB, etc. If for any
entry there is only 1 such shortest ring, the subscript is suppressed; if for any entry there is
no ring, a subscript∗ is used. The entries are sorted such that smaller rings are listed first,
and when two rings of the same size appear, the entry with the smaller subscript is listed
first. In the special case ofτ = 4, the six entries of the vertex symbol are listed as three

15A family of structures with both tensile and compressive members, known astensegrity, might be said to cover
the gap between purely compressive sphere packings and purely tensile nets. The mathematical characterization of
tensegrity systems in 3D is now precise, due largely to the work of Skelton & de Oliveira (2009). An interesting
extension of the present study would be to generalize such tensegrity systems ton > 3 dimensions.

16For the purpose of the applications studied in Parts II and III, we do not actually use the property of mechanical
equilibrium of the corresponding structure; this propertymay rather be considered as a convenient means to an end
when designing a regular packing or net. Several nets discussed in the literature (see, e.g., Wells 1977, page 80) are
not equilibrium sphere packings, and might be interesting to consider further.

17Unfortunately, not all 3D nets have natural tilings, and some have multiple natural tilings; §3 of Blatov et
al. (2007) discusses this issue further.
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pairs of entries, with each pair of entries corresponding toopposite pairs of edges, and are
otherwise again sorted from smallest to largest. Note that the number of entries in a vertex
symbol isτ(τ−1)/2.

The concepts ofcycles, rings, strong rings, point symbols, andvertex symbolsextend im-
mediately ton dimensions; for practical considerations (specifically, because the number of
entries in a vertex symbol gets unmanageable for largeτ), we list the point symbol in Table 2
whereverτ ≥ 5, and the vertex symbol whereτ ≤ 4. The extension of the tiling concept ton
dimensions is more delicate, and is discussed further in §3.5.

Following Delgado-Friedrichs et al. (2003a,b), theregularity of a 3D net may now be
characterized precisely. In short, consider a 3D net withp kinds of vertex andq kinds of
edge and whose natural tiling is characterized byr kinds of face andskinds of tile. Delgado-
Friedrichs & Huson (2000) introduced a clear and self-consistent method for characterizing
the regularity of such a net simply by forming the arraypqrs: examining the 4-digit number
so formed, referred to as thetransitivity of the net, the most “regular” 3D nets are generally
those with the smallest transitivity.

Finally, aminimal netis a net with the minimum possible number of vertices and edges
in its primitive cell18; that is, upon deletion of any further edges in the primitivecell, the re-
sulting net breaks into multiple disconnected structures.Beukemann & Klee (1992) establish
that there are only 15 such minimal nets in 3D. Delgado-Friedrichs & O’Keeffe (2003) define
a 3D net asbarycentricif every vertex is placed in the center of gravity of its neighbors (to
which it is connected by edges). Bonneau et al. (2004), in turn, establish that 7 of the 15
such minimal nets in 3D havecollisions; that is, when arranged in barycentric fashion, the
location of two or more vertices coincide (and, thus, the netis in a sense degenerate). Of the
8 remaining minimal nets without collision, five are uninodal.

3.2. 2D nets . Consider first the development of uninodal 2D nets with low coordination
number. Start from the triangular (A∗

2
∼= A2) lattice (see §1) and perform a red/black/blue

coloring of the nodes such that no two nearest-neighbor nodes are the same color. If we re-
tain only the red and black nodes, we are left with thehoneycomb packing(see Figure 1.1e),
and the corresponding net is an array of hexagons. The coordination number of this stable
sphere packing isτ = 3, which is less than that of the 2D square packing(τ = 4); this implies
fewer wires in the corresponding computational interconnect application. Unfortunately, the
topological density of this net is quite poor, withtd10 = 166 (that is, with information spread-
ing from one node to only 165 others after a message progresses 10 hops in the network
application). We are thus motivated to explore other ways ofconstructing structured (that
is, easy-to-build and easy-to-navigate) nets with low coordination number (that is, with low
cost) but high topological density (that is, with a fast spread of information).

Note that the honeycomb packing has a packing density which is less than that of the cor-
responding triangular and square lattices discussed previously (see Table 2). If minimization
of packing density is the goal19, then the honeycomb packing may beaugmentedby replac-
ing every sphere with a set of three spheres in contact, each such set forming an equilateral
triangle which touches the neighbors in exactly the same locations as the single sphere which
it replaces in the original (unaugmented) packing (see, e.g., Heesch & Laves 1933, Figure
13). The packing density of the resulting stableaugmented honeycombpacking is less than
2/3 that of the original honeycomb packing (see Table 2), and isthe rarest uninodal sphere
packing available in 2D.

3.3. A List of Twelve “highly regular” uninodal 3D nets . There are far too many 3D
nets to review them all here. We thus identify a List of Twelvehighly “regular” (as defined
in §3.1, via their transitivity) uninodal 3D nets upon whichwe will focus our attention and

18A primitive cellof a net is the smallest fundamental volume (e.g., hypercube) that, when repeated as an infinite
array in all directions with zero spacing, generates the net.

19Note that, forn > 3, the authors are actually unaware of any practical application, other than mathematical
curiosity, for which minimization of packing density is a significant goal.
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which, following Delgado-Friedrichs et al. (2003a,b), we denote (listing from dense to rare):
1. fcu: face-centered cubic (FCC),
2. bcu: body-centered cubic (BCC),
3. pcu: cubic,
4. qtz: quartz,

5. nbo: NbO,
6. dia: diamond,
7. sod: sodalite,
8. qzd: quartz dual,

9. cds: CdSO4,
10. bto: B2O3,
11. ths: ThSi2,
12. srs: SrSi2.

See Table 2 for the common names, associated packings, and key characteristics of each20.
These twelve nets have been studied thoroughly in the literature, including the landmark
work of Wells (1977, 1979, 1983, 1984) and scores of important publications since, including
Koch & Fischer (1995, 2006) and the numerous references contained therein; space does not
allow a comprehensive review of this broad body of literature here, nor even a comprehensive
analysis of these twelve well-studied nets. Suffice it to sayhere that included in our List of
Twelve are the 5regular nets (that is, of transitivity 1111),bcu, pcu, nbo, dia, andsrs,
and the 1quasiregularnet (of transitivity 1112),fcu, as well as 2 of the 14semiregular
nets (of transitivity 11rs), qtz andsod (both of which have transitivity 1121), as discussed
in O’Keeffe et al. (2000) and Delgado-Friedrichs et al. (2003a,b). Also included in this list
are the 5 uninodal minimal nets without collision,pcu, dia, cds, srs, andths, the first 4 of
which are naturally self-dual, as discussed in Bonneau et al. (2004, Table 1); note thatcds
is of transitivity 1221, andths is of transitivity 121121. The remaining 2 nets on our List
of Twelve,qzd (transitivity 1211; see Delgado-Friedrichs et al. 2003c) and bto (transitivity
1221; see Blatov 2007), are included because of their close structural relationship to the
others, as discussed further in §3.4. We also note that four on our List of Twelve,qtz, qzd,
bto, andsrs, arechiral (that is, these nets twist in such a way that the nets and theirreflections
are not superposable).

The 12 remaining semiregular nets (of transitivity 11rs) of Delgado-Friedrichs et al. (2003b,
Table 1) are the next natural candidates in this taxonomy (hxg, crs, reo, andrhr might be
of particular interest), perhaps followed by the 28 binodaledge-transitive nets (of transitivity
21rs) of Delgado-Friedrichs et al. (2006, Table 1) and the 3 binodal minimal nets without
collision (of transitivity 2222, 2211, and 2321) of Bonneauet al. (2004, Table 1) [see also
Delgado-Friedrichs & O’Keeffe (2007)]. Note that just halfof the List of Twelve considered
here (specifically, in order of frequency,dia, pcu, srs, ths, nbo, andcds) account for 66%
of the 774 uninodal metal-organic frameworks (MOFs) tabulated in the Cambridge Struc-
tural Database (CSD), as reviewed by Ockwig et al. (2005), thus indicating the prevalence in
nature of several of the structures considered here.

The idea of augmentation, introduced in §3.2, extends directly to many 3D nets in order
to reduce packing density. For example, in the (stable) packings related to thedia andsodnets
(discussed further in §3.4.1 and §3.4.3 respectively), both of which have coordination number
4, we may replace each sphere with a set of four spheres in contact, each such set of spheres
forming a tetrahedron, creating what is referred to as theaugmented diamond(dia-a) and
augmented sodalite(sod-a) nets. In the case of the augmentation of the packing relatedto the
dia net, each tetrahedral set touches the neighbors in exactly the same locations as the single
sphere which it replaces in the original (unaugmented) packing (see Heesch & Laves 1933,
Figure 12). In the case of the augmentation of the packing related to thesodnet, as the angles
between the 4 nearest neighbors of any node are not uniform inthesodnet, each tetrahedral
set is slightly larger than the single sphere which they replace in the original (unaugmented)
packing, and the contact points are slightly shifted (O’Keeffe 1991b); note that the packing
associated with thesod-anet is the rarest uninodal stable 3D packing currently known. On
the other hand, in the augmentation of the (unstable) packing related to thesrsnet, which has
coordination number 3, we may replace each sphere with a set of three spheres in contact,
each such set of spheres, as in the augmentation of the honeycomb packing, forming an

20Again, clear drawings of each of these nets are available athttp://rcsr.anu.edu.au/nets/fcu , where
“ fcu ” may be replaced by any of the lowercase boldface three-letter identifiers given here.

21As illustrated in Bonneau et al. (2004, Figure 3), a self-dual tiling of ths may in fact be constructed; this tiling
has transitivity 1221.
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equilateral triangle and touching the neighbors in exactlythe same locations as the single
sphere which it replaces in the original (unaugmented) packing (see Heesch & Laves 1933,
Figure 10); note that the packing associated with the resulting srs-anet is the rarest uninodal
unstable 3D packing known.

Comparing augmented honeycomb to honeycomb,dia-a (transitivity 1222) todia, sod-
a (transitivity 1332) tosod, andsrs-a (transitivity 1221) tosrs, it is seen that augmentation,
while reducing the packing density∆ (see Table 2), also significantly reduces both the topo-
logical density,td10, and the regularity of the resulting net. Thus, the process of augmentation
appears to be of little interest for the purpose of developing efficient computational intercon-
nects. Note that Fischer (2005) and Dorozinski & Fischer (2006) show that the process of
augmentation can be repeated indefinitely in order to obtain(non-uninodal) sphere packings
of arbitrarily low packing density.

Finally, there are two other 3D nets which, though less regular than our List of Twelve,
are worthy of “honorable mention”:hexagonal close packing(hcp, transitivity 1232) and
lonsdaleite(lon, transitivity 1222). As hinted by their identical packing densities (see Table
2a), hcp is closely related tofcu, and lon is closely related todia; curiously, both have
slightly highervalues oftd10 than do their more regular cousins. The relations between these
two pairs of packings is readily evident when they are considered as built up in layers, as
introduced in the second paragraph of §2.4 and discussed further below.

TheA3 lattice (a.k.a. FCC, corresponding to thefcu net) may be built up as an alternating
series of three 2D triangular (A2) layers, offset from each other in the formabcabc. . ., with
the nodes in one layer over the holes in the layer below;hcp is built up similarly, but with
two alternating layers, offset from each other in the formabab. . .

Similarly, the sphere packings corresponding to thedia and lon nets may be built up
as alternating series of approximately 2D honeycomb layersoffset from each other. These
honeycomb “layers” are in fact not quite 2D; if the nodes in a single layer are marked with an
alternate red/black coloring, the red nodes are raised a bitand the black nodes lowered a bit.
In both packings, the layers are offset from each other, withthe lowered nodes in one layer
directly over the raised nodes in the other. In the packing corresponding to thedia net, there
are three such alternating layers stacked in the formabcabc. . .; in the packing corresponding
to thelon net, there are two such alternating layers stacked in the form abab. . .

3.4. Uninodal extension of several regular 3D nets to higher dime nsions . The fcu
net is based on theD3 ∼= A3 lattice, and thus may be extended ton dimensions in two obvious
ways (that is, viaAn or Dn). Thebcu net is based on theD∗

3
∼= A∗

3 lattice, and thus may also
be extended ton dimensions in two obvious ways (viaA∗

n or D∗
n). Thepcu net is based on

theZ3 lattice, and thus extends ton dimension viaZn. This section explores how most of the
other nets on the List of Twelve described above extend naturally to higher dimensions.

It is important to recall that the nets in theD∗
n case forn > 4 turn out to be a bit peculiar,

as discussed further in §2.3; theT90
n andT60

n nets encountered in §3.4.7 are similar.

3.4.1. Extending dia: the A+
n and D+

n packings . Thedia net may be obtained from the
well-knownD+

3 packing defined in (2.5) (see also Sloane 1987), and thus extends naturally
to n dimensions asD+

n . However, there is an alternative construction of thedia net, described
below and denotedA+

n , which is equivalent toD+
n for n = 3 but extends ton dimensions

differently. In fact, a third extension of thedia net ton dimensions, theV90
n construction, is

introduced in §3.4.6. These alternative extensions of thedia net ton dimensions, with low
coordination number, are perhaps better suited thanD+

n for many practical applications. We
thus stress that names such as “n-dimensional diamond” are parochial, as there are sometimes
multiple “natural” n-dimensional extensions of a net related to a given three-dimensional
crystalline structure (e.g.,D+

n , A+
n , andV

90
n ). For n-dimensional nets in general, we thus

strongly prefer names derived from a corresponding well-defined n-dimensional lattice or,
when such a name is not available, names evocative of theirn-dimensional construction; this
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preference is in sharp contrast with the names suggested by O’Keeffe (1991b).
Recall the first paragraph of §3.2. Now start from a BCC (A∗

3
∼= D∗

3) lattice and perform
a red/black/blue/yellow coloring of the points such that notwo nearest-neighbor points are
the same color. If we retain only the red and black points, we are left with the diamond
packing. The coordination number of this packing isτ = 4, which is less than that of the
3D cubic packing (τ = 6), but also has a reduced topological density, as quantifiedby td10

(see Table 2). The diamond packing also has a packing densitywhich is less than that of the
corresponding FCC, BCC, and cubic lattices.

Note in general [see (2.7a)] thatA∗
n may be defined as the union ofn+ 1 shiftedAn

lattices, which is analogous to the property [see (2.4a)] thatD∗
n may be defined as the union of

4 shiftedDn lattices. Recall from (2.5) thatD+
n , which we referred to theoffset checkerboard

packing, was defined as the union of just 2 shiftedDn lattices, and generates the diamond
packing in 3D (whereD3

∼= A3). Motivated by the previous paragraph and the first paragraph
of §3.2, we are thus also keenly interested in the nonlatticepacking considered in Table 1 of
O’Keeffe (1991b), denoted hereA+

n and referred to as theoffset zero-sum packing, and which
is defined as the union of just 2 shiftedAn lattices [cf. (2.5), (2.7)]:

A+
n = An∪ ([1]+An), where [1]k =

{
1

n+1 k≤ n,
−n
n+1 k = n+1.

(3.1)

The coordination number of the regular uninodal nonlatticepackingA+
n is n+ 1, with these

n+1 nearest neighbors forming a regularn-dimensionalsimplex[that is, a regularn-dimensional
polytope withn+ 1 vertices—e.g., inn = 3 dimensions, a tetrahedron]. The generalization
of the honeycomb and diamond packings to higher dimensions given byA+

n is significant, as
it illustrates how a highly regular stable packing with coordination number lower than that
of the Cartesian lattice may be extended to dimensionn > 3. Note also that the nonlattice
packingsA+

n are distinct from the lattice packingsAr
n defined in (2.8), which are generated in

a similar manner.

3.4.2. Augmenting the A+
n packing: Â+

n . The third paragraph of §3.3 discusses the
augmentation of theA+

3 packing, replacing each sphere with a tetrahedral set of 4 smaller
spheres. This idea extends immediately to the augmentation, in n dimensions, of theA+

n
packing discussed above, replacing each (n-dimensional) sphere with a regularn-dimensional
simplex ofn+1 smaller spheres.

3.4.3. Extending sod: the TA∗
n packing . The familiarsod net is formed by the edges

of the Voronoı̈ tesselation of space formed by theA∗
3 (that is, BCC) packing, with the nodes

of the net located at theholesof the packing rather than at the centers of the spheres of the
packing. As noted by O’Keeffe (1991b), this construction extends immediately to then-
dimensional net formed by the Voronoı̈ tesselation of spacevia theA∗

n packing. Constructing
theA∗

n packing as defined in §2.4, the holes of this packing that are nearest to the origin (that
is, in its Voronoı̈ tesselation, the corners of the Voronoı̈cell which contains the origin) are
given by the(n+1)! permutations of the vector (see Conway & Sloane, 1998, page474):

1
2(n+1)

(
−n −n+2 −n+4 . . . n

)T
.

These nodal points [which, like the lattice points ofA∗
n itself, are defined in an(n+ 1)-

dimensional space, but all lie in then-dimensional subspace orthogonal to the vectornAn

defined in (2.6b)] are equidistant from theirn+1 nearest neighbors, and formpermutohedra
(in 3D, truncated octahedra) which tile n-dimensional space. Note that these nodal points
themselves form a uninodal sphere packing with coordination numberτ = n+ 1; due to its
relationship to thetesselationof space via the points of theA∗

n packing, we thus introduce the
notationTA∗

n for this packing.
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FIG. 3.1. Construction of three rare packings: (left) theY2 (honeycomb) net, (center) theY90
3 (ths) net, and

(right) theV90
3 (dia) net. All three constructions build from left to right in theabove figures from a basic “Y” or

“ V” stencil, and have obvious extensions to higher dimensions.

3.4.4. Extending nbo: the Sn construction . Thenbo net, a subset of thepcu net, has
an obvious uninodal extension ton dimensions withτ = 4, which may be visualized as the
contact graph formed by repeating a unit hypercube pattern as an infinite array with unit
spacing (see Figure 4.3), where each hypercube itself has two paths which “snake” along the
edges from the(0,0, · · · ,0,0) node to the(1,1, · · · ,1,1) node, one coordinate direction at a
time; we thus suggest the symbolSn to denote this construction. These two paths touch at the
opposite corners of the unit hypercube:

path A : (0,0, · · · ,0,0), (0,0, · · · ,0,1), (0,0, · · · ,1,1), . . . , (0,1, · · · ,1,1), (1,1, · · · ,1,1), and

path B : (0,0, · · · ,0,0), (1,0, · · · ,0,0), (1,1, · · · ,0,0), . . . , (1,1, · · · ,1,0), (1,1, · · · ,1,1).

3.4.5. Extending ths and bto: the Y90
n and Y60

n constructions . The honeycomb pack-
ingA+

2 , of coordination numberτ = 3, contains a fundamentalY-shaped stencil. As illustrated
in Figure 3.1a, starting with thisY stencil and adjoining translates of itself, tip to tip, builds
up the honeycomb packing in 2D. Extending this idea to 3D, as illustrated in Figure 3.1b, we
may “twist” theY stencil by 90◦ at each level: starting with the basicY stencil in, say, thee1-
e2 plane, we can shift to the right (ine1) and adjoinY stencils twisted by 90◦ (that is, aligned
in thee1-e3 plane), then shift to the right again and adjoinY stencils twisted again (aligned
in thee1-e2 plane), etc. This construction forms theths net in 3D, and extends immediately
to dimensionn > 3; we thus denote this constructionY90

n .
Instead of twisting theY stencil by 90◦ at each step, we may instead twist it by 60◦.

This forms thebto net in 3D. As with thehcp versusfcu and lon versusdia nets in 3D, as
described at the end of §3.3, there is a bit of flexibility in terms of the ordering of the the
successive twists forn > 3. A highly regular net for oddn, which we denoteY60

n , is formed
by pairing off the dimensions after the first and alternatingthe twists as follows: starting with
the basicY stencil in, say, thee1-e2 plane, we continue by adjoiningY stencils in thee1-e4

plane, then in thee1-e6 plane, etc. We then adjoinY stencils in thee1-z60
23 plane, wherez60

23 is
the vector formed by rotating thee2 unit vector 60◦ in the direction towardse3; we continue
by adjoiningY stencils in thee1-z60

45 plane, then in thee1-z60
67 plane, etc. Next, we adjoinY

stencils in thee1-z120
23 plane, wherez120

23 is the vector formed by rotating thez60
23 vector 60◦

further in thee2-e3 plane; we continue by adjoiningY stencils in thee1-z120
45 plane, then in

thee1-z120
67 plane, etc., and repeat (that is, with stencils again aligned in thee1-e2 plane).

TheY90
n andY60

n constructions have a parameter, denotedα and defined as half of the
angle between the two top branches of theY stencil (thus,α → 0◦ closes down theY to
an I, whereasα → 90◦ opens up theY to a T). The Voronoı̈ volume of theY90

n andY
60
n

constructions may be written as simple functions ofα as follows:

V
Y90

n
(α) = fYn(α)V

Y90
n

(ᾱ)

V
Y60

n
(α) = fYn(α)V

Y60
n

(ᾱ)

}
with ᾱ = 45◦, fYn(α) = (2−

√
2)(1+cosα)(

√
2 sinα)n−1.
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FIG. 3.2.Variation of the Voronoı̈ volume of the (left)Y90
n & Y60

n and (right)V90
n & V60

n packings as a function
of α for n = 2 to n= 8.

This relation is plotted in Figure 3.2a. The characteristics of Y90
n andY60

n reported in Table
2 are computed forα = cos−1(1/n), as marked with circles in Figure 3.2a, which maximizes
the Voronoı̈ volume and, thus, minimizes the packing density. An alternative natural choice
is α = 60, which results in barycentric constructions ofY90

n andY60
n .

3.4.6. Extending dia and qtz: the V90
n and V60

n constructions . TheV90
n andV60

n con-
structions are defined in an identical manner as theirY90

n andY60
n counterparts, with aV

stencil replacing theY stencil (see, e.g., Figure 3.1c), thus resulting in nets with coordination
numberτ = 4 instead ofτ = 3. These constructions lead to thedia andqtz nets in 3D.

As with theY90
n andY60

n construction, theV90
n andV60

n constructions have a parameter,
denotedα and defined as half of the angle between the two top branches oftheV stencil. The
Voronoı̈ volume of theV90

n andV60
n constructions may be written as simple functions ofα as

follows:

V
V90

n
(α) = fVn(α)V

V90
n

(ᾱ)

V
V60

n
(α) = fVn(α)V

V60
n

(ᾱ)

}
with ᾱ = 45◦, fVn(α) = 2n/2 cosα(sinα)n−1.

This relation is plotted in Figure 3.2b. The characteristics ofV90
n andV60

n reported in Table 2
are computed forα = cos−1(1/

√
n), as marked with circles in Figure 3.2a, which maximize

the Voronoı̈ volumes and, thus, minimize the packing density. Note that theV90
n andV60

n
constructions are barycentric for anyα in the range 0< α < 90◦.

3.4.7. Extending cds and qzd: the T90
n and T60

n constructions . The T90
n and T60

n
constructions are defined in an analogous manner as theirY90

n , V90
n , Y60

n , andV60
n counterparts,

and lead to thecdsandqzd nets in 3D. The only difference now is that, instead of adjoining
two newY or V symbols on the tips of eachY or V symbol in the previous layer, we now
adjoin a single newT symbol centered atop eachT symbol in the previous layer, appropriately
twisted; these constructions thus result in nets with coordination numberτ = 4. Note that the
“horizontal” and “vertical” distances between nodes in these constructions are equal, and that
these constructions are parameter free and barycentric.

Note that thex1 direction is special in theY90
n , Y60

n , V90
n , V60

n , T90
n , andT60

n constructions.
These constructions are configured in this way intentionally, in order to construct equilibrium
packings; however, other variations are certainly possible. Note also that theY60

n , V60
n , and

T60
n constructions involve pairing off the dimensions after thefirst and rotating in each pair of

dimensions 60◦ at a time, in the manner described in §3.4.5. If we follow the same procedure
but rotate 90◦ at a time, we recover nets equivalent to the correspondingY90

n , V90
n , andT90

n
nets, respectively, as defined previously.
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Note also that theY90
n , V90

n , andT90
n constructions form square layers in thee2-e3 plane,

the e4-e5 plane, thee6-e7 plane, etc., whereas theY60
n , V60

n , andT60
n constructions form

triangular layers in these planes. In the resultingY90
n , Y60

n , V90
n , andV60

n nets, there are, in
fact, no edges of the net within these layers (that is, all of the edges connect nodes in different
layers). On the other hand, in the resultingT

90
n andT

60
n nets, each node is connected via

edges of the net to exactly two others (note:not four or six) within these layers. As with the
peculiarD∗

n net discussed previously, theT90
n andT60

n constructions are, in fact,not contact
graphs of the corresponding sphere packings22; some bonds must be cut in the corresponding
contact graphs (which, in the case ofT90

n , is simplyZn) in order to form theT90
n andT60

n nets.

3.4.8. Other extensions . Sections 3.4.1 through 3.4.7 summarize several uninodal fam-
ilies of n-dimensional extrapolations of some common 3D nets; most ofthese (unless indi-
cated otherwise, via references to existing literature) are new. Note that O’Keeffe (1991b)
mentions two other such extensions, one corresponding to the lon net and one corresponding
to thesod-a, the latter of which is currently the rarest uninodal stablepacking known forn> 3
(and which, consistent with the above developed naming conventions, we might suggest to
identify asTÂ∗

n). Beukemann & Klee (1992, page 50) mentions two extensions of their own
(at least, ton = 4), both related to thedia net. Judging from the vast assortment of distinct
rare sphere packings and related nets available in 3D, thereare certainlymanymore uninodal
extensions to higher dimensions of regular rare 3D packingsthat are still awaiting discovery;
we have focused our attention here on what appear to be several of the most regular. The
regularity ofn-dimensional nets forn > 3 is discussed further below.

3.5. Regularity and transitivity of n-dimensional nets for n > 3. As reviewed in §3.1,
the regularity of a 3D net is defined based on its transitivity, which in turn is based on the
so-called natural tiling of the 3D net. The natural tiles of 3D nets have been thoroughly
characterized in the literature for all of the most regular 3D nets available. In §3.4, we de-
scribed uninodal extensions of several regular 3D nets to higher dimensions, and mentioned
that many more such uninodal nets withn > 3 most certainly exist. The natural question to
ask, then, is how the concepts of regularity and transitivity can be extended to higher dimen-
sions, so that we may differentiate between these nets and identify those which are the most
regular.

This question is difficult to visualize in dimensions higherthan three, and requires a
symbolic/numerical description of the net to proceed. The net arising from theZn lattice
for n = 4,5, . . ., which is naturally tiled byn-dimensional hypercubes, is by far the easiest
starting point. Denote first the symbols{v,w,x,y,z} as variables that range from 0 to 1. The
3D unit cube, denoted{xyz}, has six faces,{xy0,xy1,x0z,x1z,0yz,1yz}. Each face, in turn,
has four edges; e.g.,{0yz} has edges{0y0,0y1,00z,01z}. Finally, each edge connects two
nodes; e.g.,{00z} connects nodes{000,001}. The 4D unit hypercube,{wxyz}, has eight
3-faces,{wxy0,wxy1,wx0z,wx1z,w0yz,w1yz,0xyz,1xyz}, each 3-face has six 2-faces, each
2-face has four edges, and each edge connects two nodes. The 5D unit hypercube,{vwxyz},
has ten 4-faces, each 4-face has eight 3-faces, each 3-face has six 2-faces, each 2-face has
four edges, and each edge connects two nodes; etc.

In 3D, as reviewed in §3.1, the transitivity is based on the number of distinct nodes,
edges, (two-dimensional) faces, and (three-dimensional)tiles. By analogy, then, in 4D we
may define the transitivity of a net based on the number of distinct nodes, edges, 2-faces,
3-faces, and (4-dimensional) tiles in the natural tiling. Similarly, in 5D, we may define the
transitivity based on the number of distinct nodes, edges, 2-faces, 3-faces, 4-faces and (5-
dimensional) tiles in the natural tiling; etc. Via this definition, the net derived from theZ4

lattice has transitivity 11111, the net derived from theZ5 lattice has transitivity 111111, etc.

22Note that there is a lower-symmetry form ofcds in 3D with four nearest neighbors per node whose contact
graph does generate thecdsnet; see Delgado-Friedrichs et al. (2005, Figure 1). Lower symmetry forms of otherT90

n
andT60

n constructions, whose nets are contact graphs, might also exist.
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For all of the other nets withn > 3 listed in Table 2, the computation of the transitivity
remains an important unsolved problem. Note that, in a tiling corresponding to a 3D net,
the (two-dimensional) faces of the (three-dimensional) tiles are, in general, minimal surfaces
stretched over non-planar frames built from (one-dimensional) edges between several nodal
points defined in 3D. In a tiling corresponding to ann-dimensional net forn > 3, the 2-
faces of the tiles are, in general, minimal surfaces stretched over nonplanar frames between
several nodes defined inn dimensions. [Note that the computation of such minimal surfaces
in n dimensions is straightforward using standard level set methods; see, e.g., Cecil (2005).]
Several of these nonplanar 2-faces combine to form the boundaries of each 3-face, which
itself is not confined to lie within a 3D subspace of then-dimensional domain. Several of
these 3-faces then combine to form the boundaries of each 4-face; etc.

Identification of such high-dimensional natural tilings isapparently a task that could be
readily accomplished numerically, but is, in general, expected to be difficult to visualize.

4. Coding theory . Though the lattices that arise fromn-dimensional sphere packings
have connections that permeate many foundational conceptsin number theory and pure ge-
ometry, the list of successful direct applications in science and engineering ofn-dimensional
sphere packings withn > 3 is currently surprisingly short23; this list includes

• the numerical evaluation of integrals (Sloan & Kachoyan 1987),
• the solution of the linear Diophantine inequalities that arise in integer linear programming

(Schrijver 1986),
• the characterization of crystals with curious five-fold symmetries (Janssen 1986),
• attempts at unifying the 4 fundamental forces (in 10, 11, or 26 dimensions) via superstring

theory (Kaku 1999), and
• the development of maximally effective numerical schemes to address an information-

theoretic interference suppression problem known as the Witsenhausen counterexample
(Grover, Sahai, & Park 2010).

Far and away the most elegant and practical application ofn-dimensional sphere packings,
however, is in the framing and understanding oferror correcting codes(ECCs). The reader
is referred to MacWilliams & Sloane (1977), Thompson (1983), Pless (1998), Conway &
Sloane (1998), and Morelos-Zaragoza (2006) for some comprehensive reviews of this fasci-
nating subject. A brief overview of this field is given here to emphasize the existing practical
relevance ofn-dimensional sphere packings withn > 3; we aim to augment this list of prac-
tical applications significantly in Parts II and III of the present work, based heavily on the
various extensions ofn-dimensional sphere packing theory developed in this paper.

To proceed, defineFq [also denotedGF(q)] as the set of symbols in afinite field(a.k.a.Ga-
lois field) of orderq, whereq= pa with p prime, and defineFn

q as the set of all vectors of order
n with elements selected fromFq. The cases of particular interest in this work are thebinary
fieldF2 = {0,1}, theternary fieldF3 = {0,1,2}, and thequaternary field24 F4 = {0,1,ω, ω̄},
where, as in §2.1,ω = (−1+ ı

√
3)/2 [note thatω2 = ω̄, ω̄2 = ω, andω̄ ·ω = 1]. In a finite

field Fq, addition (+) and multiplication (·) are closed (that is, they map to elements within
the field) and satisfy the usual rules: they are associative,commutative, and distributive, there
is a 0 element such thata+ 0 = a, there is a 1 element such thata ·1 = a, for eacha there
is an element(−a) such thata+(−a) = 0, and for eacha 6= 0 there is an elementa−1 such
thata·a−1 = 1. If q is itself prime (e.g., ifq = 2 orq = 3), then standard integer addition and

23Notably, Conway & Sloane (1998, page 12) state: “A related application that has not yet received much
attention is the use of these packings for solvingn-dimensionalsearchor approximationproblems”; this is exactly
the problem focused on in our Part II.

24We limit our attention in the quaternary case to codes designed over the finite fieldF4; though there is some
attention in the literature to codes defined overZ4 [that is, over the integers mod 4], codes defined over finite fields
turn out to be, in a sense, more natural.
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multiplication modq forms a finite field. If not (e.g., ifq = 4), a bit more care is required in
order to obtain closure within the finite field while respecting these necessary rules on addi-
tion and multiplication. For the cases considered in this section (specifically,F2, F3, andF4),
addition and multiplication onFq are thus defined as follows:

F2:
+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

F3:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

F4:

+ 0 1 ω ω̄
0 0 1 ω ω̄
1 1 0 ω̄ ω
ω ω ω̄ 0 1
ω̄ ω̄ ω 1 0

· 0 1 ω ω̄
0 0 0 0 0
1 0 1 ω ω̄
ω 0 ω ω̄ 1
ω̄ 0 ω̄ 1 ω

A vector inFn
q is a vector of lengthn with each element inFq. TheHamming distance

between two such vectors is the number of elements that differ between them.
An [n,k]q (if d is specified,[n,k,d]q) q-ary linear25 code(LC) is defined via a set ofk< n

independentbasis vectorsvi ∈ Fn
q. Theqk distinctcodewordswi ∈ Fn

q of the LC are given by
all q-ary linear combinationsof the basis vectorsvi (that is, by all linear combinations with
coefficients selected fromFq, with addition and multiplication defined elementwise onFq).
The basis vectorsvi are generally selected such theminimum distance dof the LC (that is,
the minimum Hamming distance between any two resulting codewords) is maximized.

This work focuses on cases withq = 2 [termed alinear binary code(LBC)], q = 3
[termed alinear ternary code(LTC)], andq = 4 [termed alinear quaternary code(LQC)]. In
cases withq = 2, which are common, we frequently write simply[n,k] or [n,k,d], dropping
theq subscript. We denote byV[n,k]q (orV[n,k,d]q) then×k basis matrixwith thek basis vectors

vi as columns, and byW[n,k]q (or W[n,k,d]q) then×qk codeword matrixwith theqk codewords
wi as columns. Without loss of generality, we writeV[n,k]q and a companion(n− k)× n

parity-check matrix H[n,k]q in the standard (a.k.a.systematic) form26

H[n,k]q =
[
−P(n−k)×k I(n−k)×(n−k)

]
, V[n,k]q =

[
Ik×k

P(n−k)×k

]
, wi =

[
di

bi

]
. (4.1)

When written in systematic form, each of the data vectorswi block decomposes into itsk
data symbols27 di and itsr = n− k parity symbolsbi ; note thatr is sometimes called the
redundancyof the code. Note also thatH[n,k]qV[n,k]q = 0 (onFq)28, which establishes that the
basis vectorsvi so constructed [and, thus, all of the resulting codewordswi ] each satisfy the
parity-check equations, H[n,k]qwi = 0 (onFq), as implied by the rows ofH[n,k]q and illustrated
by the several examples given in systematic form in §4.1, §4.2, and §4.3. Note further that,
for LBCs and LQCs,P = −P.

The key to designing a “good”[n,k]q LC is to construct theparity submatrix P(n−k)×k
in (4.1) in such a way that the minimum distanced of the resulting code is maximized for
given values ofn, k, andq. Indeed, the problem of designing a good binary error correcting
code is essentially a finite sphere packing problem onF2; thus the very close relationship

25Nonlinearq-ary codes also appear in the literature, in which the valid codewords arenot simply linear com-
binations of a set of basis vectors and must be enumerated differently. Such codes, which are related to nonlattice
packings, are in general more difficult to decode than LCs, and are not considered further here.

26In the literature on this subject, it is more common to use a “generator matrix”G to describe the construction of
linear codes. The “basis matrix” conventionV used here is related simply to the corresponding generator matrix such
thatV = GT ; we find the basis matrix convention to be more natural in terms of its linear algebraic interpretation.

27The word “bit”, a portmanteau word for “binary digit”, is generally reserved for the case withq = 2; in the
general case, we use the word “symbol” in its place.

28The qualifiers “(onFq)” and “(modq)” are used, as appropriate, to remind the reader that multiplication and
addition in the equation indicated are performed elementwise on the finite fieldFq, as discussed above.
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FIG. 4.1. Valid codewords of (left) the (SED)[3,2,2]2 LBC, and (right) its dual, the (perfect, SEC)[3,1,3]2
LBC. The blue sphere denotes the origin, and d specifies the number of edges between any two codewords.

FIG. 4.2.Valid codewords of (left) the (SED)[3,2,2]3 LTC, and (right) its dual, the (SEC)[3,1,3]3 LTC.

between the design of error-correcting codes and the designof infinite sphere packings inRn,
as discussed in §2.

For q = pa with p prime,conjugationin Fq (that is, for a scalarv∈ Fq) is defined such
thatv̄= vp; conjugation inFn

q (that is, for vectorsv ∈ Fn
q), as well as for matrices formed with

a number of such vectors as columns, is performed elementwise. Any [n,k]q linear codeC
has associated with it an[n,n−k]q dual code C⊥ defined [cf. (2.1)] such that

C⊥ =
{

w ∈ Fn
q : w · ū = 0 for all u ∈C

}
. (4.2)

The parity-check and codeword matrices ofC⊥ may be written in systematic form as

H⊥
[n,n−k]q

=
[
P̄T I(n−k)×(n−k)

]
, V⊥

[n,n−k]q
=

[
I(n−k)×(n−k)

−P̄T

]
. (4.3)

whereP̄ denotes conjugation inFq of each element of the parity submatrixP of the original
[n,k]q linear codeC. Note thatP̄T is of orderk×(n−k), and, of course, thatH⊥

[n,n−k]q
V⊥

[n,n−k]q
=

0 (onFq). Note further that, for LBCs and LTCs,u = ū andP = P̄.
A self-dualcodeC is a code for which the the transpose of the codeword matrixV results

in a new matrixH which is itself the parity-check matrix of a code which is equivalent toC,
albeit not in systematic form.

Graphically, the codewords of an[n,k,d]2 LBC may be thought of as a carefully chosen
subset of 2k of the 2n corners on a singlen-dimensional unit hypercube, as illustrated for
n = 3 in Figure 4.1, whereas an[n,k,d]3 LTC may be thought of as a subset of 3k of the 3n

gridpoints in a cluster of 2n unit hypercubes inn-dimensions, as illustrated forn= 3 in Figure
4.2. For anyq, d quantifies the minimum number of symbols which differ between any two
codewords. It follows that:

• An LC with d = 2 issingle error detecting(SED) [see, e.g., Figures 4.1a and 4.2a]. In this
case, the sum (onFq) of the symbols in each transmitted codeword is zero, so if itis as-
sumed that at most one symbol error occured and this sum is nonzero, then a symbol error
in transmission occurred, whereas if it is zero, then a symbol error did not occur. How-
ever, if a symbol error in transmission occured, the received (invalid) message is generally
equidistant from multiple codewords, so it is not possible to correct the symbol error. Two
or more symbol errors generally cause the codeword to be misinterpreted.
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• An LC with d = 3 is single error correcting(SEC) [see, e.g., Figures 4.1b and 4.2b]. In
this case, if it is again assumed that at most one symbol errorin transmission occured,
then if the received codeword is not a codeword, there is onlyone codeword that is unit
Hamming distance away, so the single symbol error may in factbecorrected. Again, 2 or
more symbol errors generally cause the codeword to be misinterpreted.

• An LC with d = 4 issingle error correcting and double error detecting(SECDED). In this
case, if a single symbol error occurs, the received codewordwill be unit Hamming distance
away from a single codeword, and thus single symbol errors can be corrected. On the other
hand, if two symbol errors occur, the received codeword is generally Hamming distance 2
away from multiple codewords, so double symbol errors can bedetected butnotcorrected.
Now, 3 or more symbol errors generally cause the codewords tobe misinterpreted.

• An LC with d = 5 isdouble error correcting(DEC), with 3 or more symbol errors generally
causing misinterpretation.

• An LC with d = 6 isdouble error correcting and triple error detecting(DECTED), with 4
or more symbol errors generally causing misinterpretation.

• An LC with d = 7 is triple error correcting(TEC), with 4 or more symbol errors generally
causing misinterpretation.

• An LC with d = 8 is triple error correcting and quadruple error detecting(TECQED),
with 5 or symbol errors generally causing misinterpretation.

• An LC with d = 9 is quadruple error correcting(QEC), with 5 or more symbol errors
generally causing misinterpretation.

The labels defined above are frequently used to quantify the error correction capability of an
LC. Alternatively, if error correction isnotattempted, then:

• An LC with d = 2 is single error detecting, with 2 or more symbol errors generally causing
misinterpretation.

• An LC with d = 3 is double error detecting, with 3 or more symbol errors generally causing
misinterpretation.

• An LC with d = 4 is triple error detecting, with 4 or more symbol errors generally causing
misinterpretation.

• An LC with d = 5 is quadruple error detecting, with 5 or more symbol errors generally
causing misinterpretation.

Error correcting algorithms are useful for a broad range of data transmission or data storage
applications in which it is difficult or impossible to request that a corrupted codeword be
retransmitted; algorithms which use such LCs for error detection only, on the other hand,
may be used only when efficient handshaking is incorporated in a manner which makes it
easy to request and resend any messages that might be corrupted during transmission.

An [n,k,d]q LC is perfectif, for some integert > 0, each possiblen-dimensionalq-ary
codeword is of Hamming distancet or less from a single codeword (that is, there are no
“wasted” codewords that are Hamming distancet +1 or more from the codewords, and thus
may not be corrected under the assumption that at mostt symbol errors have occured); note
that a perfect code has oddd = 2t +1 > 1. A remarkable proof by Tietäväinen (1973), which
was based on related work by Van Lint, establishes that theonlynontrivial perfect LCs are the
[(qm−1)/(q−1),(qm−1)/(q−1)−m,3]q perfectq-ary Hamming codes and the[23,12,7]2
and[11,6,5]3 binary and ternary Golay codes, described further in §4.1 and §4.2.

An [n,k,d] LC is quasi-perfectif, for some integert > 1, each possiblen-dimensional
q-ary codeword is either (a) of Hamming distancet −1 or less from a single codeword, and
thus up tot −1 symbol errors may be corrected, or (b) of Hamming distancet from at least
one codeword, and thus codewords witht symbol errors may be detected but not necessarily
corrected (that is, there are no “wasted” codewords that areHamming distancet +1 or more
from a codeword, and thus may not be reconciled under the assumption that at mostt symbol
errors have occured); note that a quasi-perfect code has even d = 2t > 2.
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FIG. 4.3.The lattice corresponding to an[n,k,d] LBC is formed by repeating the unit hypercube pattern given
by the LBC (see, e.g., Figure 4.1) as an infinite array with unit spacing. In the above example, we illustrate this
extension for (left) the face-centered cubic (FCC) latticegenerated by the[3,2,2] LBC, D3 =

S4
i=1 (wi

[3,2,2] +2Z3),

and (right) the body-centered cubic (BCC) lattice generated by the[3,1,3] LBC, D∗
3 =

S2
i=1 (wi

[3,1,3]
+ 2Z3). The

blue spheres, taken together, form a primitive cell that, repeated as an infinite array with zero spacing, tile (that is,
fill) the domain.

Note finally, as illustrated forn = 3 in Figure 4.3, that a real lattice corresponding to an
[n,k,d]2 LBC may often be constructed by forming a union of 2k cosets:

Construction A:
2k
[

i=1

(wi
[n,k,d]2

+2Z
n), (4.4a)

where thecoset representativesin this construction,wi
[n,k,d]2

for i = 1, . . . ,2k, are the code-

words of the[n,k,d]2 LBC under consideration and(w+2Zn) denotes aZn lattice scaled by
a factor of 2 with all nodal points shifted by the vectorw; thus, Construction A denotes the
union of the nodal points in several such scaled and shiftedZn lattices. An alternative real
lattice may sometimes be constructed via:

Construction B:
2k
[

i=1

(wi
[n,k,d]2

+2J) where J =

{
x ∈ Z

n

∣∣∣∣
[ n

∑
i=1

xi

]
∈ 2Z

}
, (4.4b)

where (2Z) denotes the even integers, and thus the last condition is sometimes written
∑n

i=1xi = 0 (mod 2).
In an analogous fashion, a complex lattice corresponding toan[n,k,d]q LC may often be

constructed by forming a union ofqk shifted and scaledn-dimensionalE latticesZ[ω]n (see
§2.1) such that

Construction Aπ
E

:
qk
[

i=1

(wi
[n,k,d]q

+ πZ[ω]n), (4.5a)

where, in the sequel, the multiplicative factorπ takes two possible values (2 andθ = ω−
ω̄ = ı

√
3) and the coset representatives in this construction,wi

[n,k,d]q
for i = 1, . . . ,qk, are

the codewords of the[n,k,d]q LC under consideration. An alternative complex lattice may
sometimes be constructed via:

Construction Bπ
E

:
qk
[

i=1

(wi
[n,k,d]q

+ πJ) where J =

{
x ∈ Z[ω]n

∣∣∣∣
[ n

∑
i=1

xi

]
∈ πE

}
, (4.5b)

where(πE ) denotes the lattice of Eisenstein integers in the complex plane multiplied (that
is, rotated and scaled) by the (possibly complex) factorπ. Note the remarkable similarity
in structure between the real constructions in (4.4a)-(4.4b) and the complex constructions
in (4.5a)-(4.5b). Note also that real lattices corresponding to any of the complex lattices so
constructed may easily be generated via (2.2).
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4.1. Exemplary linear binary codes (LBCs) . We now summarize some of the families
of LBCs available, presenting each in systematic form (4.1).

4.1.1. Binary single parity-check codes . The simple29 [n,n−1,2] binary single parity-
check codesare SED, and include[2,1,2] (self-dual),[3,2,2], [4,3,2], [5,4,2], etc. Using
such a code, for each(n−1) data bits to be transmitted, aparity bit is generated such that the
sum (mod 2) of the data bits plus the parity bit is 0; when decoding, an error is flagged if this
sum (mod 2) is 1. The[3,2,2] code illustrated in Figure 4.1a is given by

H[3,2,2] =
(
1 1 1

)
, V[3,2,2] =




1 0
0 1
1 1


 , W[3,2,2] =




0 1 0 1
0 0 1 1
0 1 1 0


 . (4.6)

Other binary single parity-check codes have a parity submatrix P [see (4.3)] of similar form
(a row of 1’s). As seen forn = 3 in Figure 4.3a, via Construction A, the[n,n−1,2] binary
single parity-check code generates theDn lattice (see §2.3), which forn = 3 is FCC.

A single parity-check code (binary or otherwise), withd = 2, can detect but not correct
an error in an unknown position. However, it can correct anerasure; that is, the loss of data
from a known position. A common application of this capability is in a RAID 5 system, a
popular configuration for a relatively smallRedundant Array of Independent Disks. In such
a system, data is striped acrossn drives using a single parity check code; if any single drive
fails, the data on it can be recovered simply by achieving parity with the other disks.

4.1.2. Binary repetition codes . The dual of the binary single parity-check codes are
the simple[n,1,n] binary repetition codes, which include[2,1,2] (SED, self-dual),[3,1,3]
(SEC, perfect),[4,1,4] (SECDED),[5,1,5] (DEC), etc. This family of codes just repeats
any given data bitn times; when decoding, one simply needs to determine which ofthe two
codewords that the received code is nearest to. The[3,1,3] code illustrated in Figure 4.1b is
given by

H[3,1,3] =

(
1 1 0
1 0 1

)
, V[3,1,3] =




1
1
1


 , W[3,1,3] =




0 1
0 1
0 1


 . (4.7)

Other binary repetition codes have a parity submatrix of similar form (a column of 1’s). As
seen forn= 3 in Figure 4.3b, via Construction A, the[n,1,n] binary repetition code generates
theD∗

n lattice (see §2.3), which forn = 3 is BCC. Via Construction B, on the other hand, the
[8,1,8] binary repetition code generates theE8 lattice (see §2.5). Note also that the[3,2,2]
binary single parity-check code with each bit inV repeated verticallym times leads to a
[3m,2,2m] code, which may subsequently be rearranged into systematicform; takingm= 4
and applying Construction B, the resulting[12,2,8] code, which is TECQED, generates the
Λmax

12 lattice (see §2.6).

4.1.3. Binary Hamming codes . The[2m−1,2m−1−m,3] binary Hamming codesare
perfect and SEC, and include[3,1,3], [7,4,3], [15,11,3], [31,26,3], [63,57,3], [127,120,3],
etc. For a given(2m−1−m) data bits to be transmitted, each parity bit is generated such that
the sum (mod 2) of a particular subset of the data bits plus that parity bit is 0. Note that, when
decoding, themparity bits may be used in a simple fashion to determine not only whether or
not a single bit error occured (which is true if one or more of these parity bits is nonzero), but
if it did, whichbit contains the error, as discussed further in §4.4. To illustrate, the venerable
[7,4,3] code, with four data bits{d1,d2,d3,d4} and three parity bits{b1,b2,b3}, is given by

29As mentioned previously, whenq = 2, we suppress theq subscript for notational clarity; we thus do this
throughout §4.1.
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H[7,4,3] =




0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1


 , V[7,4,3] =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1




, w =




d1
d2
d3
d4
b1
b2
b3




, (4.8a)

W[7,4,3] =




0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1




. (4.8b)

The parity-check matrixH of the [7,4,3] code has as columns all nonzero binary vectors
of length(n− k) = 3; when expressed in systematic form, the(n− k) columns ofH corre-
sponding to the identity matrix are shifted to the end, and the remainingk columns ofH, in
arbitrary order, make up the parity submatrixP. Other binary Hamming codes may be built
up similarly. Via Construction A, the[7,4,3] binary Hamming code generates theE∗

7 lattice
(see §2.5).

A Hamming code (binary or otherwise), withd = 3, can only correct a single error in
an unknown position. However, it can correct up to twoerasures(cf. §4.1.1). A common
application of this capability is in a RAID 6 system, a popular RAID configuration for very
large storage systems in data critical applications. In such a system, data may be striped
acrossn drives using a Hamming code; if any single drive fails, the data on it can be recovered
using an appropriate parity check equation (that is, one of the parity check equations that takes
that bit into account). If (while rebuilding the information on that disk, which might take a
while if the disk is large) aseconddrive fails, then two useful equations may be derived from
the (n− k) parity check equations: one that takes failed disk A into account but not failed
disk B, and one that takes failed disk B into account but not failed disk A. By restoring parity
in these two derived equations, the information onbothdrives may be rebuilt.

4.1.4. Binary simplex codes . The dual of the binary Hamming codes are the[2m−
1,m,2m−1] binary simplex codes[a.k.a. the binarymaximum-length-sequence(MLS) codes],
which include[3,2,2] (SED),[7,3,4] (SECDED),[15,4,8] (TECQED), etc. These codes are
remarkable geometrically, as their codewords form a regular simplex. The[3,2,2] code is
illustrated in Figure 4.1a; the[7,3,4] code is given by

H[7,3,4] =




0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1


 , V[7,3,4] =




1 0 0
0 1 0
0 0 1
0 1 1
1 0 1
1 1 0
1 1 1




. (4.9)

Other binary simplex codes have a parity submatrix given similarly by the transpose of the
corresponding binary Hamming code. Via Construction A, the[7,3,4] binary simplex code
generates theE7 lattice (see §2.5). Via Construction B, on the other hand, the [15,4,8] binary
simplex code generates theΛ15 lattice (see §2.6).

4.1.5. Extended binary Hamming codes . The[2m,2m−1−m,4] extended binary Ham-
ming codesare quasi-perfect and SECDED, and include[4,1,4], [8,4,4] (self-dual),[16,11,4],
etc. These codes are just binary Hamming codes (see §4.1.3) with an additional overall parity
bit (see §4.1.1), and thus, assuming no more than 2 bit errorshave occured, may be decoded
similarly, as discussed further in §4.4. To illustrate, thevenerable[8,4,4] code is given by



40 T. BEWLEY, P. BELITZ, & J. CESSNA

H[8,4,4] =




0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1


 , V[8,4,4] =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




. (4.10)

Other extended binary Hamming codes have a parity submatrixthat may similarly be con-
structed by adding an overall parity bit to the corresponding binary Hamming code. Via
Construction A, the[8,4,4] extended binary Hamming code again generates theE8 lattice.

4.1.6. Binary biorthogonal codes . The dual of the extended binary Hamming codes
are the[2m,m+ 1,2m−1] binary biorthogonal codes(a.k.a.Hadamard codes), and include
[4,3,2] (SED),[8,4,4] (SECDED, self-dual),[16,5,8] (TECQED),[32,6,16], etc. The[32,6,16]
code was used on the Mariner 9 spacecraft. These codes are distinguished by the characteris-
tic that their codewords are mutually orthogonal [that is,wi ·w j = 0 (mod 2) fori 6= j]. Note
that the[4,3,2] and[8,4,4] codes have already been discussed above. The binary biorthogo-
nal codes each have a parity submatrix that is simply the transpose of the parity submatrix of
the corresponding extended binary Hamming code, the construction of which is described in
§4.1.5. Via Construction B, the[16,5,8] binary biorthogonal code generates theΛ16 lattice.

4.1.7. Binary quadratic residue codes . The [n,(n+1)/2,d] binary quadratic residue
codesare defined for all primen for which there exists an integer 1< x < n such thatx2 = 2
(mod n) [equivalently, for all primen of the formn = 8m±1 wherem is an integer], and
include [7,4,3] (SEC, perfect, as introduced in §4.1.3),[17,9,5] (DEC), [23,12,7] (TEC,
perfect, a.k.a. thebinary Golay code), [31,16,7] (TEC), [41,21,9] (QEC), [47,24,11], etc.
Adding an overall parity bit to these codes, the[n+ 1,(n+ 1)/2,d + 1] extended binary
quadratic residue codesinclude [8,4,4] (SECDED, quasi-perfect, self-dual, as introduced
in §4.1.5),[18,9,6] (DECTED),[24,12,8] (TECQED, quasi-perfect, self-dual, a.k.a. theex-
tended binary Golay code), [32,16,8] (TECQED),[42,21,10], [48,24,12], etc. The venerable
[24,12,8] extended binary Golay code, which was used by the Voyager 1 & 2spacecraft, is
given by

H[24,12,8] =
[
P12×12 I12×12

]
, V[24,12,8] =

[
I12×12
P12×12

]
,

P12×12 =




0 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0
1 1 0 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 0 0 0 1




.

(4.11)

Note thatP is symmetric. The[23,12,7] binary Golay code may be obtained bypuncturing
the[24,12,8] code listed above; that is, by eliminating any row ofP (typically, the last).

Via Construction B, the[24,12,8] extended binary Golay code generates theLeech half-
lattice H24, which may be joined with a translate of itself [that is,H24+a wherea1 = −3/2
andak = 1/2 for k = 2, . . . ,24] to construct theΛ24 lattice.

Note that many of the binary codes introduced above fall within a larger family of codes
collectively referred to asReed-Mullercodes, as illustrated in Figure 4.4.
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[1,1,1]

[2,1,2]

[2,2,1]

[4,1,4]

[4,3,2]

[4,4,1]

[8,1,8]

[8,4,4]

[8,7,2]

[8,8,1]

[16,1,16]

[16,5,8]

[16,11,4]

[16,15,2]

[16,16,1]

[32,1,32]

[32,6,16]

[32,16,8]

[32,26,4]

[32,31,2]

[32,32,1]

k = 1, d = 2m

repetition codes

k = m+1, d = 2m−1

biorthogonal codes

k = 2m−1, d = 2(m+1)/2

self-dual codes

k = 2m−1−m, d = 4
extended Hamming codes

k = 2m−1, d = 2
single parity-check codes

k = 2m, d = 1
universe codes

FIG. 4.4.The family of[2m,k,d] Reed-Muller binary codes for m= 0 to 5.

4.1.8. Extending, puncturing, and shortening . The (perfect) binary Hamming and
binary Golay codes may beextendedto quasi-perfect codes by adding an overall parity bit,
thereby increasingn by 1 and, in the case of these specific codes, increasingd by 1. A code
obtained by essentially the reverse of this process, removing a parity bit and thus reducing
bothnandd by 1, is sometimes said to bepunctured. In contrast, a code obtained by removing
ℓ ≥ 1 data bits, thus reducing bothn and k by ℓ, is said to beshortened. A typical and
common application is in error-correcting memory systems for computers, in which the data
often comes naturally in blocks of 64 bits. Starting from the[127,120,3] binary Hamming
code, one may eliminate 56 data bits to create a shortened[71,64,3] SEC code; alternatively,
starting from the[128,120,4] extended binary Hamming code, one may eliminate 56 data
bits to create a shortened[72,64,4] SECDED code. Many ECC Memory and RAID 6 storage
systems are based on variants of such shortened binary Hamming codes, which are simple
and fast to use. Note also that, via Construction B, the[21,9,8] code obtained by shortening
the[24,12,8] extended binary Golay code by 3 data bits generates directlytheΛ21 lattice.

4.2. Exemplary linear ternary codes (LTCs) . We now summarize some of the families
of LTCs available, presenting each in systematic form (4.1), noting that all have analogs in
the binary setting.

4.2.1. Ternary single parity-check codes . The[n,n−1,2]3 ternary single parity-check
codesare SED, and include[2,1,2]3 (self-dual),[3,2,2]3, [4,3,2]3, etc. As illustrated for
n = 3 in Figure 4.2a, the[3,2,2]3 code is given by

H[3,2,2]3 =
(
1 1 1

)
, V[3,2,2]3 =




1 0
0 1
2 2


 , W[3,2,2]3 =




0 1 2 0 1 2 0 1 2
0 0 0 1 1 1 2 2 2
0 2 1 2 1 0 1 0 2


 . (4.12)

Other ternary single parity-check codes have a parity submatrix P [see (4.3)] of similar form
(a row of 2’s). Via ConstructionAθ

E
, the[3,2,2]3 ternary single parity-check code generates

theE∗
6 lattice.

4.2.2. Ternary repetition codes . The dual of the ternary single parity-check codes
are the[n,1,n]3 ternary repetition codes, which include[2,1,2]3 (SED, self-dual),[3,1,3]3
(SEC),[4,1,4]3 (SECDED), etc. As illustrated forn = 3 in Figure 4.2b, the[3,1,3]3 code is
given by
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H[3,1,3]3 =

(
2 1 0
2 0 1

)
, V[3,1,3]3 =




1
1
1


 , W[3,1,3]3 =




0 1 2
0 1 2
0 1 2


 . (4.13)

Other ternary repetition codes have a parity submatrix of similar form (a column of 1’s). Via
ConstructionAθ

E
, the[3,1,3]3 ternary repetition code generates theE6 lattice. Via Construc-

tion Bθ
E

, on the other hand, the[6,1,6]3 ternary repetition code generates theK12 lattice.

4.2.3. Ternary Hamming codes . The [(3m− 1)/2,(3m− 1)/2−m,3]3 ternary Ham-
ming codesare perfect and SEC, and include[4,2,3]3 (self-dual, a.k.a. thetetracode), [13,10,3]3,
[40,36,3]3, etc. To illustrate, the venerable[4,2,3]3 tetracode is given by

H[4,2,3]3 =

(
1 1 1 0
1 2 0 1

)
, V[4,2,3]3 =




1 0
0 1
2 2
2 1


 . (4.14)

The parity-check matrixH of the[4,2,3]3 code has as columns those nonzero ternary vectors
of length (n− k) = 2 whose first nonzero entry is 1; when expressed in systematicform,
the (n− k) columns ofH corresponding to the identity matrix are shifted to the end,and
the remainingk columns ofH, in arbitrary order, make up the entries of−P. Other ternary
Hamming codes may be built up similarly; for example, the[13,10,3]3 code is given by

H[13,10,3]3 =

( 0 0 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 2 2 2
1 2 1 2 0 1 2 0 1 2
︸ ︷︷ ︸

,−P3×10

1 0 0
0 1 0
0 0 1

)
, V[13,10,3]3 =

[
I10×10
P3×10

]
. (4.15)

Via ConstructionAθ
E

, the[4,2,3]3 tetracode again generates theE8 lattice.

4.2.4. Ternary simplex codes . The dual of the ternary Hamming codes are the
[(3m− 1)/2,m,3m−1]3 ternary simplex codes, which include[4,2,3]3 (SEC, perfect, self-
dual), [13,3,9]3 (QEC), [40,4,27]3, etc. These codes are remarkable geometrically, as their
codewords are all equidistant from one another. Ternary simplex codes have a parity subma-
trix given by the negative transpose of the corresponding ternary Hamming code.

4.2.5. Ternary quadratic residue codes . The[n,(n+1)/2,d]3 ternary quadratic residue
codesare defined for all primen for which there exists an integer 1< x < n such thatx2 = 3
(modn) [equivalently, for all primen of the formn = 12m±1 wherem is an integer], and
include[11,6,5]3 (DEC, perfect, a.k.a. theternary Golay code), [13,7,5]3 (DEC),[23,12,8]3
(TECQED), [37,19,10]3, [47,24,14]3, etc. Adding an overall parity bit to these codes,
the [n+ 1,(n+ 1)/2,d + 1]3 extended ternary quadratic residue codesinclude [12,6,6]3
(DECTED, quasi-perfect, self-dual, a.k.a.the extended ternary Golay code), [14,7,6]3 (DECTED),
[24,12,9]3 (QEC), [38,19,11]3, [48,24,15]3, etc. The venerable[12,6,6]3 extended ternary
Golay code is given by

H[12,6,6]3 =
[
−P6×6 I6×6

]
, V[12,6,6]3 =

[
I6×6
P6×6

]
, P6×6 =




0 1 1 1 1 1
1 0 1 2 2 1
1 1 0 1 2 2
1 2 1 0 1 2
1 2 2 1 0 1
1 1 2 2 1 0




. (4.16)

Note thatP is symmetric. The[11,6,5]3 ternary Golay code may be obtained by puncturing
the[12,6,6]3 code listed above.

Via ConstructionBθ
E

, the [12,6,6]3 extended ternary Golay code generates an interme-
diate lattice which may be joined with two translates of itself to generate theΛ24 lattice.

4.3. Exemplary linear quaternary codes (LQCs) . We now summarize some of the
families of LQCs available, presenting each in systematic form (4.1).
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4.3.1. Quaternary single parity-check codes . The[n,n−1,2]4 quaternary single parity-
check codesare SED, and include[2,1,2]4 (self-dual),[3,2,2]4, [4,3,2]4, etc. The[3,2,2]4
code is given by

H[3,2,2]4 =
(
1 1 1

)
, V[3,2,2]4 =




1 0
0 1
1 1


 ,

W[3,2,2]4 =




0 1 ω ω̄ 0 1 ω ω̄ 0 1 ω ω̄ 0 1 ω ω̄
0 0 0 0 1 1 1 1 ω ω ω ω ω̄ ω̄ ω̄ ω̄
0 1 ω ω̄ 1 0 ω̄ ω ω ω̄ 0 1 ω̄ ω 1 0


 .

(4.17)

Other quaternary single parity-check codes have a parity submatrixP of similar form.

4.3.2. Quaternary repetition codes . The dual of the quaternary single parity-check
codes are the[n,1,n]4 quaternary repetition codes, which include[2,1,2]4 (SED, self-dual),
[3,1,3]4 (SEC),[4,1,4]4 (SECDED), etc. The[3,1,3]4 code is given by

H[3,1,3]4 =

(
1 1 0
1 0 1

)
, V[3,1,3]4 =




1
1
1


 , W[3,1,3]4 =




0 1 ω ω̄
0 1 ω ω̄
0 1 ω ω̄


 . (4.18)

Other quaternary repetition codes have a parity submatrix of similar form.

4.3.3. Quaternary Hamming codes . The [(4m−1)/3,(4m−1)/3−m,3]4 quaternary
Hamming codesare perfect and SEC, and include[5,3,3]4, [21,18,3]4, [85,81,3]4, etc. To
illustrate, the[5,3,3]4 code is given by

H[5,3,3]4 =

(
1 1 1 1 0
1 ω ω̄ 0 1

)
, V[5,3,3]4 =




1 0 0
0 1 0
0 0 1
1 1 1
1 ω ω̄


 . (4.19)

The parity-check matrixH of the [5,3,3]4 code has as columns those nonzero quaternary
vectors of length(n− k) = 2 whose first nonzero entry is 1; when expressed in systematic
form, the(n−k) columns ofH corresponding to the identity matrix are shifted to the end,and
the remainingk columns ofH, in arbitrary order, make up the entries ofP. Other quaternary
Hamming codes may be built up similarly.

4.3.4. Quaternary simplex codes . The dual of the quaternary Hamming codes are
the [(4m− 1)/3,m,4m−1]4 quaternary simplex codes, which include[5,2,4]4 (SECDED),
[21,3,16]4, [85,4,64]4, etc. These codes are remarkable geometrically, as their codewords
are all equidistant from one another. Quaternary simplex codes have a parity submatrix given
by the conjugate transpose of the corresponding quaternaryHamming code.

4.3.5. Quaternary quadratic residue codes . The[n,(n+1)/2,d]4 quaternary quadratic
residue codesare defined for all primen of the formn = 8m±3 wherem is an integer, and
include [5,3,3]4 (SEC, perfect, see §4.3.3),[11,6,5]4 (DEC), [13,7,5]4 (DEC), [19,10,7]4
(TEC), [29,15,11]4, [37,19,11]4, etc. The related[n+1,(n+1)/2,d+1]4 extended quater-
nary quadratic residue codesinclude[6,3,4]4 (SECDED, quasi-perfect, self-dual, a.k.a. the
hexacode), [12,6,6]4 (DECTED), [14,7,6]4 (DECTED, self-dual),[20,10,8]4 (TECQED),
[30,15,12]4 (self-dual),[38,19,12]4, etc. The venerable[6,3,4]4 hexacode is given by

H[6,3,4]4 =




1 1 1 1 0 0
1 ω ω̄ 0 1 0
1 ω̄ ω 0 0 1


 , V[6,3,4]4 =




1 0 0
0 1 0
0 0 1
1 1 1
1 ω ω̄
1 ω̄ ω




. (4.20)

Note thatP is symmetric. The[5,3,3]4 quaternary quadratic residue code may be obtained
by puncturing the[6,3,4]4 code listed above.

Via ConstructionA2
E

, the[6,3,4]4 hexacode generates theK12 lattice.
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FIG. 4.5.A labelling of 16 points of the D2 lattice (due to Ungerboeck 1982). The Ai jk points have coordinates
which are both even integers [e.g., A000=

(
0 0
)
], and the Bi jk points have coordinates which are both odd integers

[e.g., B000 =
(

1 1
)
]. The complete D2 lattice is formed by repeating this 2D pattern as an infinite array with

unit spacing, as in Figure 4.3; note that each of the subsets of D2 corresponding to a particular label is itself an
appropriate shift of a4D2 lattice (that is, the D2 lattice with the spacing quadrupled between the points).

The [6,3,4]4 hexacode, with 43 = 64 codewords, is of particular importance due to the
structured role it plays in some convenient constructions of the [24,12,8] extended binary
Golay code (see §4.1.7), with 212 = 4096 codewordsw, and the correspondingΛ24 lattice.
To construct the extended binary Golay code in this manner (see §11 of Conway & Sloane
1998), we may first arrange binary vectors of length 24 into 4×6 arrays with binary entries.
The sum of the bits (mod 2) in any row or column of this array gives itsparity, which is said
to beevenif the bits sum to 0 andodd if the bits sum to 1. We then define theprojectionof
any binary vectord ∈ F4

2 onto a symbolx∈ F4 via the productx =
(
0 1 ω ω̄

)
d (onF4).

The [24,12,8] extended binary Golay code is then given by the set of allw ∈ F24
2 such that,

in the corresponding 4×6 array,

• the parity of all of the columns matches the parity of the top row, and
• the projection of the six columns of the array forms a codeword of the[6,3,4]4 hexacode.

An alternative construction of theΛ24 lattice, due to Vardy & Be’ery (1993) and which
also leverages cleverly the[6,3,4]4 hexacode, is based on the Ungerboeck (1982) partitioning
of theD2 lattice (see §2.3) intoAi jk andBi jk subsets, as depicted in Figure 4.5. Binary vectors
of length 24 are now constructed as 2×6 arrays whose entries are points ofD2, labelled as
shown. When considering a pair of such points [say,c =

(
Ai1, j1,k1 Ai2, j2,k2

)T
],

• the pair is said to beevenor oddbased on the sum (mod 2) of the indices{i1, j1, i2, j2},
• the indexi1 is known as theh-parityof the pair,
• the sum (mod 2) ofk1 andk2 is known as thek-parityof the pair, and
• theprojectionof the pair is defined as above, based on the vectord =

(
i1 j1 i2 j2

)T
.

The Leech latticeΛ24 is then given by the set of allu ∈ Z24 such that, in the corresponding
2×6 array,

• all array entries are either points in theAi jk subsets ofD2 (referred to as atype-Aarray), or
points in theBi jk subsets ofD2 (referred to as atype-Barray),

• the overallk parity of the array [that is, the sum (mod 2) of thek-parity of the 6 pairs of
points] is even if the array is typeA and odd if the array is typeB,

• the pairs of points in the 6 columns of the array are either alleven (referred to as aneven
array) or all odd (referred to as anoddarray),

• the overallh parity of the array [that is, the sum (mod 2) of theh-parity of the 6 pairs of
points] is even if the array even and odd if the array is odd, and

• the projection of the six columns of the array forms a codeword of the[6,3,4]4 hexacode.

The union of all points corresponding to Type A arrays in thisconstruction forms theLeech
half lattice H24 mentioned in §4.1.7, whereas the union of all points corresponding to Type
B arrays forms its translate,H24 + a. The H24 lattice can be further decomposed into all
points corresponding to even arrays, which forms theLeech quarter lattice Q24, and all points
corresponding to odd arrays, which forms its translate,Q24+b. TheΛ24 lattice is then given
by the union ofQ24, Q24+b, Q24+a, andQ24+a+b; this construction is exploited in §5.5
when presenting a remarkably efficient algorithm for quantization fromR24 to Λ24.
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4.4. Decoding . The use of an[n,k,d]q linear code (a.k.a.linear block code) in practice
to communicate data over a noisy channel is straightforward:

• arrange the original data intoblocksof lengthk over analphabetof q symbols;
• codeeach resulting data vectord ∈ Fk

q into a longer codewordw ∈ Fn
q via w = V[n,k,d]qd;

• transmit the corresponding codewordw ∈ Fn
q over the noisy channel;

• receive the (possibly corrupted) messageŵ ∈ Fn
q on the other end;

• decodethe received messagêw leveragingH[n,k,d]q; that is, find the most likely codeword
w corresponding to the received messageŵ, and the data vectord that generated it.

The decoding problem is quite rich; many creative schemes have been proposed over the
years for decoding the various LCs that have been introducedthus far, as well as many others.
This subject goes a bit beyond the scope of the present review, but we would be remiss if we
didn’t at least briefly introduce a few exemplary decoding strategies.

For the purpose of fast decoding of an LC, it is useful to consider convenient alternatives
to the systematic form. IfH andV are the parity-check and basis matrices of an[n,k,d]q LC
in systematic form, withHV = 0 (onFq), then anequivalentLC, possibly not in systematic
form, is given by taking

H̃ = HQ and Ṽ = Q−1V. (4.21)

It follows immediately that, again,̃HṼ = 0 (onFq). In the simplest such transformation,Q
is a permutation matrix, and thusQ−1 = QT ; this transformation corresponds to reordering
the rows ofV and the corresponding columns ofH (that is, reordering the data bits and parity
bits in the corresponding LC). Other equivalent LCs may be constructed in this manner by
relaxing the constraint thatQ be a permutation matrix, effectively taking linear combinations
(on Fq) of the rows ofV and the corresponding columns ofH. Note further that reordering
the columns ofV and/or the rows ofH leaves an LC unchanged.

4.4.1. Algebraic decoding . Certain LBCs may be decoded quickly by arranging the
columns of the parity-check matrix in a convenient order andexamining the binary number
given by the product of the parity-check matrix and the (possibly, corrupted) received mes-
sage. To illustrate, consider the[7,4,3] binary Hamming code introduced in §4.1.3. Trans-
forming as described above with

Q =




0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0




results in a modified basis matrix̃V, and a modified parity-check matrix̃H arranged such that
the columns ofH̃ appear in binary order:

H̃[7,4,3] =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 , Ṽ[7,4,3] =




1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1




, w̃ =




b3
b2
d1
b1
d2
d3
d4




. (4.22)

Taking the matrixH̃[2m−1,2m−1−m,3] of a binary Hamming code arranged in such a fash-
ion (in the above example,m = 3) times (mod 2) any of the codewordsw̃ (generated via
w̃ = Ṽ[2m−1,2m−1−m,3]d whered ∈ F2m−1−m

2 ) gives the zero vector. On the other hand, taking
the matrixH̃[2m−1,2m−1−m,3] times (mod 2) any invalid vector̃̂w gives the nonzerosyndrome
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vectors, of orderm = n− k, which may be interpreted as a nonzerom-bit binary number
called thesyndrome, denoteds, of the received message. Conveniently, as a direct result of
the structure ofH̃ used in this construction, the numbers identifies precisely which bit of the
received message vectorˆ̃w, arranged as shown above, must be flipped in order to determine
the nearest codeword, thereby performing single error correction (SEC).

Consider now the class of[2m,2m−1−m,4] extended binary Hamming codes introduced
in §4.1.5. Define the syndromes as in the corresponding binary Hamming code of length
(2m−1) as discussed above, neglecting the overall parity bit, and definep as the sum (mod
2) over all the bits, including the overall parity bit. Thereare zero bit errors ifs = p = 0,
there two bit errors (which may be detected but not uniquely corrected) ifs 6= 0 andp = 0,
and there is a single bit error ifp = 1 (in which case, ifs = 0, this error is in the overall
parity bit, and, ifs 6= 0, this error is in one of the other bits and may be corrected based ons
just as in the corresponding binary Hamming code). This strategy thus performs single error
correction and double error detection (SECDED).

The extended binary Golay code introduced in §4.1.7 may be decoded via syndrome
computation in a similar fashion, though several more checks are involved, as the procedure
performs triple error correction and quadruple error detection (TECQED) on the received
messagêw. Recall the definitions ofH, V, andP = PT for the [24,12,8] extended binary
Golay code in systematic form, as listed in (4.11). Note thatVTV = 0, and thusVT serves
as an alternative parity-check matrix for this code. Defining wH(s) as the Hamming weight
(that is, the number of nonzero elements) of the vectors, and definingpi as thei’th column of
P, ei as thei’th Cartesian unit vector, and 0 as the zero vector, we may decodeŵ as follows:

sets= VTŵ, if wH(s) ≤ 3 then setc =
[
s; 0

]
, flag= 0, return, end if (case A)

setr = Ps, if wH(r) ≤ 3 then setc =
[
0; r

]
, flag= 0, return, end if (case B)

for i = 1 : 12
if wH(s+pi) ≤ 2 then setc =

[
s+pi; ei

]
, flag= 0, return, end if (case C)

if wH(r +pi) ≤ 2 then setc =
[
ei ; r +pi

]
, flag= 0, return, end if (case D)

end for
flag=1; return (4 total errors, can not be uniquely corrected)

Upon return, assuming the received vectorŵ has 4 or less bit errors, if flag= 0, then 3 or
fewer errors are detected and the corrected vector isw = ŵ + c, whereas if flag= 1, then 4
errors are detected and̂w can not be uniquely corrected. To verify this algorithm, noting that
VTw = 0 for any codewordw, it is sufficient to analyze the algorithm forw = 0 only. Block
partitioningŵ =

[
x; y

]
, consider the following 4 correctable cases:

Case A (0 parity bit errors, up to 3 data bit errors): Due to thestructure ofP, parity bit
errors (that is,wH(y) 6= 0) result inwH(s) ≥ 6; if wH(s) is less than this, theny = 0 and
s= VTŵ = Ix = x.

Case B (0 data bit errors, up to 3 parity bit errors): Note thatPVT = H, and thusr = Hŵ. By
an analogous argument as that used in Case A, due to the structure ofP, data bit errors (that
is,wH(x) 6= 0) result inwH(r)≥ 6; if wH(s) is less than this, thenx = 0 andr = Hŵ = Iy = y.

Case C (1 parity bit error, up to 2 data bit errors): In this case, we individually check each
of the (12) possible cases corresponding to a single parity bit error, essentially repeating the
analysis of Case A, mutatis mutandis. That is, for eachi, we consider the possibility that
y = ei , and thuss= x+pi, and check to see ifwH(x) = wH(s+pi) ≤ 2.

Case D (1 data bit error, up to 2 parity bit errors): In this case, we individually check each
of the (12) possible cases corresponding to a single data biterror, essentially repeating the
analysis of Case B, mutatis mutandis (cf. Case C).
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4.4.2. Cyclic form . A cyclic codeis an LC that may be transformed [via (4.21)] into a
form in which all cyclic shifts of codewords are themselves also codewords. The basis matrix
V = Vn×k and parity-check matrixH = H(n−k)×n of any [n,k]q cyclic code may be written in
the standard form

H[n,k]q =




hk hk−1 . . . h0 0
hk hk−1 . . . h0

. ..
. . .

. . .
. . .

0 hk hk−1 . . . h0


 , V[n,k]q =




v0 0
v1 v0

... v1
. . .

vn−k

...
. . . v0

vn−k

. . . v1

. . .
...

0 vn−k




. (4.23)

A convenient construction which simplifies the analysis of an [n,k]q cyclic code, as de-
fined above, is thecyclic shiftoperatorz. The use of this operator as discussed here is akin to
its use in theZ-transform analysis of discrete-time linear systems, withthe major difference
being that it is used here in a cyclic context onFq: that is, arithmetic with polynomials in
z and coefficients inFq is performed as usual, except that the coefficients of each power of
z are combined via the arithmetic rules onFq (see the second paragraph of §4), and higher
powers ofzk are simplified via the cyclic condition

zn = 1. (4.24)

In the deployment of an[n,k]q cyclic code, the operatorzappears in

thedata polynomial d(z) = d0 +d1z + . . .+dk−1zk−1

thebasis polynomial v(z) = v0 +v1z + . . .+vn−kz
n−k,

thecodeword polynomial w(z) = w0 +w1z+ . . .+wn−1zn−1,

thereceived-message polynomialŵ(z) = ŵ0 + ŵ1z+ . . .+ ŵn−1zn−1, and

theparity-check polynomial h(z) = h0 +h1z + . . .+hkz
k.

The basis polynomialv(z) and parity-check polynomialh(z) are constructed in mutually-
orthogonal manner that, taken together, enforces the cyclic condition (4.24):

v(z)h(z) = (zn−1), (4.25a)

which may also be written

[v(z)h(z)] mod(zn−1) = 0; (4.25b)

note that the mod command used in (4.25b) means that the polynomial [v(z)h(z)] is divided
by the polynomial(zn−1) and the remainder is equal to 0. One such factorization of(zn−1)
onFq, which exists for anyn andq, is

zn−1 = (z−1)(zn−1+zn−2 + . . .+z+1); (4.26)

this leads to the single parity check code[n,n−1,2]q if one takesv(z) = (z−1) andh(z) equal
to the rest, and to the repetition code[n,1,n]q if one takesh(z) = (z−1) andv(z) equal to the
rest. Other cyclic codes overFq for primeq may be built from the unique irreducible factors
of the polynomial(zn−1), grouping these factors appropriately to formv(z) andh(z); a few
such factorizations for various values ofn are listed in Table 4 forq= 2 (in which−1= 1) and
Table 5 forq = 3 (in which−1 = 2); others are easily found using Mathematica. Factoring
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z5−1= (z+1)(z4 +z3 +z2 +z+1)

z7−1= (z+1)(z3 +z+1)(z3 +z2 +1)

z15−1= (z+1)(z2 +z+1)(z4 +z+1)(z4 +z3 +1)(z4 +z3 +z2 +z+1)

z23−1= (z+1)(z11+z9 +z7 +z6 +z5 +z+1)(z11+z10+z6 +z5 +z4 +z2 +1)

Table 4. Unique irreducible factors of(zn−1) overF2 for various values ofn.

z4−1 = (z+2)(z+1)(z2 +1)

z11−1 = (z+2)(z5 +2z3 +z2 +2z+2)(z5 +z4 +2z3 +z2 +2)

z13−1 = (z+2)(z3 +2z+2)(z3 +z2 +2)(z3 +z2 +z+2)(z3 +2z2 +2z+2)

Table 5. Unique irreducible factors of(zn−1) overF3 for various values ofn.

z5−1 = (z2 +ωz+1)(z3 +ωz2 +ωz+1)

Table 6. A useful (though nonunique) factorization of(z5 − 1) over F4; note that Table 4
provides an alternative factorization of(z5−1) overF2 which is also valid overF4.

code description v(z) h(z)

[n,n−1,2]2 §4.1.1 z+1 zn−1 +zn−2 + . . .+z+1

[n,1,n]2 §4.1.2 zn−1 +zn−2 + . . .+z+1 z+1

[7,4,3]2 §4.1.3 z3 +z+1 z4 +z2 +z+1

[15,11,3]2 §4.1.3 z4 +z+1 z11+z8 +z7 +z5 +z3 +z2 +z+1

[31,26,3]2 §4.1.3 z5 +z2 +1 (z31−1)/(z5 +z2 +1) overF2

[63,57,3]2 §4.1.3 z6 +z+1 (z63−1)/(z6 +z+1) overF2

[127,120,3]2 §4.1.3 z7 +z3 +1 (z127−1)/(z7 +z3 +1) overF2

[23,12,7]2 §4.1.7 z11+z9 +z7 +z6 +z5 +z+1 z12+z10+z7 +z4 +z3 +z2 +z+1

[n,n−1,2]3 §4.2.1 z+2 zn−1 +zn−2 + . . .+z+1

[n,1,n]3 §4.2.2 zn−1 +zn−2 + . . .+z+1 z+2

[13,10,3]3 §4.2.3 z3 +z2 +2 z10+2z9 +z8 +2z6 +2z5 +z4 +z3 +z2 +1

[11,6,5]3 §4.2.5 z5 +2z3 +z2 +2z+2 z6 +z4 +2z3 +2z2 +2z+1

[n,n−1,2]4 §4.3.1 z+1 zn−1 +zn−2 + . . .+z+1

[n,1,n]4 §4.3.2 zn−1 +zn−2 + . . .+z+1 z+1

[5,3,3]4 §4.3.3 z2 +ωz+1 z3 +ωz2 +ωz+1

[85,81,3]4 §4.3.3 z4 +z3 +ωz+1 (z85−1)/(z4 +z3 +ωz+1) overF4

Table 7. Some small cyclic codes. Note that a cyclic form of the [4,2,3]3, [40,36,3]3, and
[21,18,3]4 Hamming codes do not exist (that is, the best[4,2]3, [40,36]3, and[21,18]4 codes
that may be cast in cyclic form haved = 2); in fact, a Hamming code of lengthn = (qm−
1)/(q−1) overFq exists in cyclic form only ifm and(q−1) are coprime (Blahut 2003).

(zn − 1) over F4 is more delicate, as the factorizations do not reduce to unique irreducible
forms; one such factorization is listed in Table 6. Based on (4.25a) and such factorizations, a
large number of cyclic codes may be constructed. However, only a few such codes have both
favorable minimum distanced and an available simple error dectection/correction scheme;
some such codes are listed in Table 7.

Given a data vectord ∈ Fk
q, the use of an LC in cyclic form is again straightforward:

• form a data polynomiald(z) with thek elements ofd as coefficients;
• code d(z) into a codeword polynomialw(z) leveraging the basis polynomialv(z) [using

nonsystematic coding, one simply takesw(z) = d(z)v(z)];
• transmit the corresponding codewordw ∈ Fn

q over the noisy channel;
• receive the (possibly corrupted) messageŵ ∈ Fn

q on the other end;
• decodethe corresponding ˆw(z) leveraging the parity-check polynomialh(z).
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Cyclic coding. For the purpose of fast decoding, we now present two methods with which
the basis polynomialv(z) may be leveraged to generate a codeword polynomialw(z) in sys-
tematic form [that is, rather than takingw(z) = d(z)v(z)]. By convention, the systematic form
in the cyclic case usually shifts thek data symbols ind(z) to the end of the codeword, that is:

w(z) = b(z)+zn−kd(z)

= b0 +b1z+ . . .+bn−k−1z
n−k−1 +d0z

n−k +d1z
n−k+1 + . . .+dk−1z

n−1.
(4.27)

If k/n < 0.5, a recursive approach may be used to determine the parity symbols inb(z).
By (4.25b) and the fact that each valid codeword polynomialw(z) is itself a linear combina-
tion of the basis polynomialsv(z), it is seen that

u(z) mod(zn−1) = 0 where u(z) , h(z)w(z) = u0 +u1z+u2z
2 + . . .

Initializing the lastk symbols ofw(z) as shown in (4.27), the remaining symbols ofw(z) may
thus be determined from the resulting convolution formulaefor un−1 throughuk as follows:

un−1 = h0wn−1 + . . .+hkwn−k−1 = 0 ⇒ wn−k−1 = −[h0wn−1 + . . .+hk−1wn−k−2]/hk,

un−2 = h0wn−2 + . . .+hkwn−k−2 = 0 ⇒ wn−k−2 = −[h0wn−2 + . . .+hk−1wn−k−3]/hk,

...

uk = h0wk + . . .+hkw0 = 0 ⇒ w0 = −[h0wk + . . .+hk−1w1 ]/hk.

If k/n > 0.5, a polynomial division approach to determine the parity symbols is more
efficient. This is accomplished by writing the shift of the data symbols as some multiple of
the basis polynomialv(z) plus a remainderr(z):

zn−kd(z) = q(z)v(z)+ r(z) ⇒ [zn−kd(z)] modv(z) = r(z),

where the mod command is interpreted as in (4.25b). Since thedegree ofv(z) is (n−k), the
maximum degree ofr(z) is (n−k−1). Calculatingr(z) as shown above, takingb(z) =−r(z),
and rearranging the above equations, it is seen that

w(z) = b(z)+zn−kd(z) = q(z)v(z),

thus verifying that the polynomialw(z) so generated is in fact a valid codeword polynomial,
as it is a multiple of the basis polynomialv(z).

Cyclic decoding. In single parity-check codes, single symbol errors are flagged if h(z)ŵ(z) 6=
0. In repetition codes, the symbols of ˆw(z) may be corrected by simple majority vote.

Decoding of the binary Hamming and the extended binary Golaycodes is introduced in
§4.4.1. Such syndrome decoding methods extend easily to codes in cyclic form, in which
the required syndrome computations are especially streamlined, as now shown. Note that
any valid codeword polynomialw(z) is a multiple of the basis polynomialv(z); thesyndrome
polynomial s(z) of the received-message polynomial ˆw(z) is thus given by the remainder:

s(z) = ŵ(z) modv(z).

Since the degree ofv(z) is (n− k), the maximum degree ofs(z) is (n− k−1), and thus the
corresponding syndrome vectors is of orderm= (n− k), as expected [see discussion after
(4.22)].

The polynomial multiplications and divisions involved in the cyclic coding and decoding
algorithms described above are easy to code and efficient to calculate in either anapplication-
specific integrated circuit(ASIC) or afield-programmable gate array(FPGA), in which re-
peated computations with shifted data may be performed quickly. The reduced storage asso-
ciated with the vector representation of the basis matrix and the parity-check matrix in cyclic
form help to facilitate such implementations.
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4.4.3. Shannon’s theorem and turbo codes . The low-dimensional LBC, LTC, and
LQC constructions given above are now supplanted by the morecomplexturbo codes for
high performance coding applications such as 10GBase-T ethernet and deep space communi-
cation. Though these codes are generally much longer than the simple codes discussed above,
they are built on the same fundamental principles, and achieve a coding efficiency over a
noisy channel that is very close to the celebrated Shannon limit (Shannon 1949). For more
information on such codes, the reader is referred to Gallager (1963), Berrouet al. (1993),
and Moon (2005). Note also that the study of ternary and quaternary codes is far more than
a mathematical curiosity; new memory storage technology concepts leveraging, for example,
DNA-based storage, with a four-character alphabet{A,T,G,C}, directly motivate the further
development of non-binary error-correcting coding strategies.

4.4.4. Soft-decision decoding . The type of decoding discussed in §4.4.1-4.4.3, in which
the received vector̂w is assumed to be inFn

q, is known ashard-decision decoding.
Another formulation of the decoding problem assumes again thatw ∈ Fn

q, but thatŵ ∈
Rn. The decoding problem in this case, calledsoft-decision decoding, is similar to that con-
sidered before (again, to find the most likely codewordw corresponding tôw, and the original
data vectord that generated it), but is now based on finding the codewordw that minimizes
the Euclidian distance tôw rather than that which minimizes the Hamming distance.

For example, consider the soft-decision decoding of a binary parity check code. Assume
that the transmitted codewordw ∈ Fn

2 (that is, the symbols being transmitted are binary, and
in this case rescaled to be±1) but that the received messageŵ ∈ Rn (that is, the symbols
received are real). In this case, we may decode the received message by initially takingw =
sign(ŵ). If the resulting decoded vector fails the parity check, we simply take the decision
that we were least certain about (that is, the element ofŵ that is closest to zero) and round it
the other direction; this is known asWagner’s decoding rule(Silverman & Balser 1954).

Many soft-decision decoding algorithms are essentially generalizations of Wagner’s de-
coding rule. Further, most soft-decision decoding algorithms may be framed as straightfor-
ward restrictions of a corresponding lattice quantizationalgorithm (see §5) to the appropriate
subset of the lattice in question.

5. Quantization onto lattices . We now introduce some methods for quantization from
an arbitrary pointx in Rn onto a point̃x on a discrete lattice, which may be defined via integer
linear combination of the columns of the corresponding basis matrixB. The solution to this
problem is lattice specific, and is thus treated lattice by lattice in the subsections below. Note
that §5.1 through §5.4 are adapted from Conway & Sloane (1998), and §5.5 is adapted from
Vardy & Be’ery (1993). Note also that we neglect the problem of scaling of the lattices in
this discussion, which is trivial to implement in code.

5.1. Quantization to Zn. Quantize toZn simply by rounding each element ofx to the
nearest integer.

5.2. Quantization to Dn. Quantize toDn by roundingx two different ways:

• Round each element ofx to the nearest integer, and call the resultx̂.
• Round each element ofx to the nearest integerexceptthat element ofx which is furthest

from an integer, and round that element the wrong way (that is, round it down instead of
up, or up instead of down); call the resultˆ̂x.

Compute the sumsof the individual elements of̂x; the desired quantiziation is̃x = x̂ if is s is
even, and̃x = ˆ̂x if s is odd.

5.3. Quantization to An. The An lattice is defined in ann-dimensional subspaceC of
Y = Rn+1. The subspaceC is spanned by then columns of the corresponding basis matrix
BAn, and the orthogonal complement ofC is spanned by the vectornAn. Thus, the nearest
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point in the subspace,yC ∈ C, to any given pointy ∈ Y is given by

yC = y− (y,nAn) ·nAn.

An orthogonal basiŝBAn of C may easily be determined fromBAn via Gram Schmidt orthog-
onalization. With this orthogonal basis, the vectorsx ∈ Rn comprising theAn lattice may be
related to the corresponding vectorsyC ∈ C ⊂ Y (that is, on ann-dimensional subspace of
Rn+1) via the equation

yC = B̂Anx. (5.1a)

Thus, starting from some pointx∈Rn but not yet quantized onto the lattice, we can easily de-
termine the corresponding(n+1)-dimensional vectoryC which lies within then-dimensional
subspaceC of Rn+1 via (5.1a). Given this value ofyC ∈ C, we now need to quantize onto the
lattice. We may accomplish this with the following simple steps:

• Round each component ofyC to the nearest integer, and call the resultŷ. Define the defi-
ciency∆ = ∑i ŷi , which quantifies the orthogonal distance of the pointŷ from the subspace
C.

• If ∆ = 0, thenỹ = ŷ. If not, defined = yC − ŷ, and distribute the integers 0, . . . ,n among
the indicesi0, . . . , in such that

−1/2≤ d(ŷi0) ≤ d(ŷi1) ≤ . . . ≤ d(ŷin) ≤ 1/2.

If ∆ > 0, then nudgêy back onto theC subspace by defining ˜yik =

{
ŷik −1 k < ∆,

ŷik otherwise.

If ∆ < 0, then nudgêy back onto theC subspace by defining ˜yik =

{
ŷik +1 k > n+ ∆,

ŷik otherwise.

Back inn-dimensional parameter space, the quantized valueỹ ∈ C corresponds to

x̃ = B̂T
An

ỹ. (5.1b)

5.4. Quantization to the union of cosets . The dual latticesD∗
n andA∗

n, the triangular
lattice A2, and the packingD+

n (including the latticeE8 ∼= E∗
8
∼= D+

8 ) are described via the
union of simple, real cosets in (2.4a), (2.7a), (2.6c), and (2.5), respectively. The latticesE7

andE∗
7 may be built via the union of simple, real cosets via Construction A [see (4.4a)],

with coset representativeswi
[n,k,d] defined in (4.8) and (4.9) respectively. To quantize a lattice

described in such a manner (as a union of simple cosets), one may quantize to each coset in-
dependently, then select from these individual quantizations that lattice point which is nearest
to the original pointx.

The latticesE6 andE∗
6 may be built via the union of complex cosets [which are scaled

and shifted complexE latticesZ[ω]3] via ConstructionAπ
E

[see (4.5a)], with coset represen-
tativeswi

[n,k,d] given in (4.13) and (4.12) respectively. Following Conway &Sloane (1984),
to discretize a pointx to coseti in these cases:

• Determine the complex vectorz∈ C3 corresponding tox ∈ R6. Shift and scale such that
ẑ = (z−ai)/θ.

• Determine the real vectorx̂ ∈ R6 corresponding tôz∈ C3. Quantize the first, second, and
third pairs of elements of̂x to the real triangularA2 lattice to create the quantized vectorˆ̃x.

• Determine the complex vectorˆ̃z∈ C3 corresponding tỗx ∈ R6. Unscale and unshift such
thatz̃ = θ ˆ̃z+ai.

• Determine the real vectorx̃ ∈ R6 corresponding tõz∈ C3.
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5.5. Quantization to Λ24. We now jump to the Leech lattice in dimensionn = 24. Re-
call from §2.6 that the best lattices in dimensionsn = 9 to n = 23 may all be determined as
lower-dimensional cross-sections ofΛ24; once the (difficult)n = 24 case is mastered, quanti-
zation to these intermediate dimensions is relatively straightforward.

Efficient quantization toΛ24 is a problem that received intense scrutiny in the 1980s and
early 1990s. The best algorithm described in the literature, due to Vardy & Be’ery (1993),
is based on the construction ofΛ24 described in the last paragraph of §4.3.5, and essentially
represents a culmination of the previous efforts that led toit. This remarkable algorithm re-
quires only about 3000 to 3600 floating-point operations andcomparisons, and a comparable
number of integer operations and comparisons, to compute the point of theΛ24 lattice that is
closest to any given pointr ∈R24. The algorithm leverages effectively many of the fundamen-
tal symmetries inherent inΛ24, including its close relationships with both carefully-chosen
subsets of theD2 lattice (Figure 4.5) as well as the[6,3,4]4 hexacode (§4.3.5).

Though it was proposed in 1993, the logic inherent to this algorithm is so intricate that,
as of the writing of this review, an executable version of it did not appear to be readily avail-
able in the literature. We have thus written an efficient30 Fortran90 implementation of this
algorithm, which is available online at:

http://renaissance.ucsd.edu/software/DecodeLeech.tg z
This implementation is thoroughly commented, and is written in a notation consistent with
that of Vardy & Be’ery (1993). Thus, in addition to being a useful code for new practical
applications of the Leech lattice in science and engineering, it is hoped that this executable
code can itself be a helpful guide in the understanding of this complex algorithm.

In short, using the notation introduced at the end of §4.3.5,this algorithm first splits the
problem of quantizating a pointr ∈ R24 to the nearestΛ24 point into two subproblems:

• quantizing toH24; that is, when forming the original vectorr ∈ R24 into a 2×6 array of
pointsrhn ∈ R2 for h = 0,1 andn = 0, . . . ,5, quantizing eachrhn to the bestAi jk points in
the Ungerboeck partitioning ofD2 such that the overallk parity of the array is even, while
the projection of the 2×6 array of points forms a codeword of the[6,3,4]4 hexacode; and

• quantizing toH24+ a; that is, quantizing to the bestBi jk points in the Ungerboeck parti-
tioning ofD2 such that the overallk parity of the array is odd, while, again, the projection
of the 2×6 array of points forms a codeword of the[6,3,4]4 hexacode.

The best of the two lattice points selected by these subproblems is then returned.
During the execution of each of these two subproblems, the closest point torhn in each

Ai jk family (in the even overallk parity case) or in eachBi jk family (in the odd overallk parity
case) is first identified, and thesquared Euclidian distance(SED) to each of these points is
calculated. For eachi and j, the “preferred” value ofk (that is, the one that leads to the
least SED for that point) is determined, and the SED penaltyδ for chosing the other value
of k is computed. The algorithm then further splits the quantization to H24 (and, similarly to
H24+a) into two smaller sub-subproblems:

• quantizing toQ24; that is, to arrays with the specified overallk parity such that, additionally,
the overallh parity is even; and

• quantizing toQ24+b; that is, to arrays with the specified overallk parity such that, addi-
tionally, the overallh parity is odd.

The best of the two lattice points selected by these sub-subproblems is then returned.

30Our implementation of this algorithm executes in about 0.3 milliseconds on a 2008 vintage laptop (2.53GHz
Intel Core 2 Duo), which is sufficiently fast for many applications. It is also trivial to parallelize this code efficiently
over four separate computational threads, as quantizationto each Leech quarter lattice is handled independently.
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The quantization toQ24 and its 3 translates is, in turn, decomposed into 5 distinct steps:

1. Only two sets of indices{i0, j0, i1, j1} project to each symbolp∈ F4; in this step, for each
symbol p and for each columnn of the 2× 6 array, we identify the “preferred represen-
tation” as that set which, when taken together with their corresponding preferred values
of k0 andk1, minimize the SED of the column, and the other set, referred to as the “non-
preferred representation”; we also calculate the SED penalty associated with chosing the
non-preferred representation. Conveniently, it turns outthat the preferred representation
and the non-preferred representation necessarily have oppositeh parity.

2. The three lists of penalties associated with changing thecolumn-wisek parities (case 0), the
column-wiseh parities (case 1), or both (case 2) are then sorted (our implementation uses
mergesorts, due to their cache efficiency; heapsorts or quicksorts are viable alternatives).

3. The SED for each preferred “block” (that is, each pair of columns) is then computed.
4. For each of the 64 codewords of the hexacode [see (4.20)], we then find the smallest pos-

sible correction(s) to the set of preferred representations such that the totalk parity and the
total h parity match the specified values required for the particular translate ofQ24 being
considered (of 4 possible cases). This step leverages the sorted lists computed in step 2.

5. For each of 16 sets of symbols [given byw0 ∈ F4 andw1 ∈ F4], calculate the total SED of
corrected representations, determined in step 4, corresponding to the 4 valid codewords of
the hexacode [given byw2 ∈ F4 and{w3,w4,w5} selected according toV[6,3,4]4 defined in
(4.20)]. We then find the minimum total SED amongst these 16 corrected representations,
and return the corresponding lattice point.

6. Enumerating nearest-neighbor lattice points . In the practical use of lattices in en-
gineering applications, in addition to effective quantization methods (§5), one occasionally
needs to generate a list of all lattice points that are nearest neighbors to a given lattice point.
It is sufficient to generate a list of all lattice points that are nearest neighbors of the origin,
then to shift these points as necessary to the vicinity of anyother lattice point. The present
section describes two methods to generate such lists of nearest neighbors on a lattice.

6.1. Cases withn≤ 8. Noting first (see §2.1) that a basis matrixB of ann-dimensional
lattice might itself have more thann rows, the following algorithm is found to be effective for
all lattices up to aboutn = 8:

0. Initialize p = 1.
1. Define a distribution of points̃zi such that each element of each of these vectors is selected

from the set of integers{−p, . . . ,0, . . . , p}, and thatall possible vectorsthat can be created
in such a fashion, except the origin, are present (without duplication) in this distribution.

2. Compute the distance of each transformed pointỹi = Bz̃i in this distribution from the ori-
gin, and eliminate those points in the distribution that arefarther from the origin than the
minimum distance computed in the set.

3. Count the number of points remaining in the distribution.If this number equals the (known)
kissing number of the lattice under consideration, as listed in Tables 2-3, then determine
an orthogonal̂B from B via Gram Schmidt orthogonalization, setx̃i = B̂T ỹi for all i, and
exit; otherwise, incrementp and repeat from step 1.

Though this simple algorithm is not at all efficient, forn ≤ 8 it really need not be, as the
nearest neighbor distribution is identical around every lattice point, and thus this algorithm
need only be run once for any given lattice.

6.2. Cases withn> 8. Forn> 8, the algorithm described above is prohibitively expen-
sive. We thus focus here on an efficient manner of obtaining the 196,560 nearest neighbors
to the origin of the Leech latticeΛ24, then on the restriction of this set of neighbors, one
dimension at a time, down ton = 9.

To proceed, it is first necessary to enumerate the codewords of the binary Golay code
following the approach described in §4.1.7. Recall that thebasis matrix of the binary Golay
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code has dimension 24×12; thus, the 212 = 4096 codewords of the binary Golay code follow
immediately as a binary linear combination (that is, as a linear combination, mod 2, with
binary coefficients) of the columns of this matrix.

Then, in order to identify all of the nearest neighbors of theLeech lattice, we may pro-
ceed (following Conway & Sloane 1998) by constructing threedistinct sets of points:
• The first set, consisting of 98,304 points, is obtained using the binary Golay codewords
discussed above. Construct first a 24× 24 matrixA with −3 everywhere along the main
diagonal and 1 everywhere else. Then, take each codeword of the binary Golay code, one
at a time, replace each 0 with−1, and perform elementwise multiplication of this modified
codeword to each column ofA, thereby generating 24 points for each of the 212 binary Golay
codewords, or 212 ·24= 98,304 points.
• The next set, consisting of 1,104 points, is composed of vectors with 22 zero elements
and two elements that are either 4 or−4. As there are 276 ways to select the locations of the
nonzero elements, and 22 = 4 valid ways to populate them, we obtain 22 ·276= 1,104 points.
• The third set, consisting of 97,152 points, is obtained using the 759 vectors of the Witt
design, which are just the 759 binary Golay codewords (discussed above) of weight 8. Note
that each of these vectors has 8 ones and 16 zeros. Construct an 8×128 matrixC such that
each element of each column is either a 2 or−2, with an even number of minus signs in each
column (note that there are 27 = 128 such columns possible). We then distribute the elements
in each of the 128 columns ofC into each of 8 positions where the ones sit in each of the 759
vectors of the Witt design, thereby obtaining the remaining128·759= 97,152 points.

The 98,304+1,104+97,152= 196,560 points so generated are the nearest neighbors
to the origin ofΛ24. Then, throwing out those pointsz for whichz·nΛ23 6= 0 (see §2.6) leaves
the 93,150 neighbors ofΛ23; additionally throwing out those pointsz for which z ·nΛ22 6= 0
leaves the 49,896 neighbors ofΛ22; etc.

7. Conclusions . In short, §2 of this paper is about generalizing to higher dimensions
the familiar triangular, BCC, and FCC lattices, which are dense alternatives to the Cartesian
lattice with reduced nonuniformity, whereas §3 of this paper is about generalizing to higher
dimensions a few (specifically, the most regular) of the manyfamiliar nets arising in biology
and crystallography, such as the honeycomb, diamond, and quartz graphs, which are rare al-
ternatives to the Cartesian lattice with reduced coordination number. The primary successful
application ofn-dimensional sphere packing theory to date is in coding theory, as reviewed in
§4. A working understanding of this material, including howto quantize to such lattices, as
summarized in §5, and how to enumerate nearest neighbors on such lattices, as summarized
in §6, is essential for new practical applications of spherepacking theory, such at those stud-
ied in Parts II and III of this work, both of which leverage heavily the foundational material
discussed here.
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