NEW HORIZONS IN SPHERE PACKING THEORY, PART I:
FUNDAMENTAL CONCEPTS & CONSTRUCTIONS, FROM DENSE TO RARE
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Abstract. The field ofn-dimensional sphere packings is elegant and mature in itsematical development
and characterization. However, it is still relatively lbetd in its practical applications, especially for> 3. The
present line of research intends to open up two broad nevg éoe@rofitable application of this powerful body of
mathematical literature in science and engineering. Tdsvtis end, the present paper (Part I) reviews the essential
results available in this field (reconciling the theordtlitarature for dense and rare sphere packings, which taday
largely disjoint), catalogs the key properties of the ppledense and rare sphere packings and corresponding nets
available (including hundreds of values not previouslywn)) and extends the study of regular rare sphere packings
and nets ta > 3 dimensions (an area which up to now has been largely uned)loThese results are leveraged
heavily in the practical applications addressed in Pargdl IIl. In particular, Part Il builds from this presentatio
to develop a new algorithm for Lattice-Based DerivativeefrOptimization via Global Surrogates (LABDOGS),
leveraging dense sphere packings as an alternative tostZertgrids to coordinate derivative-free searches; Part Il
also develops and uses a new algorithm for efficient solusfodiscrete Thomson problems restricted to nearest-
neighbor points of a lattice. Part Ill builds from this pretstion to develop new interconnect graphs for switchless
multiprocessor computer systems, leveraging nets defiivedrare sphere packings as alternatives to Cartesiaa grid
to establish structured, fast, and inexpensive interotsneaying particular attention to the improved coordarat
sequences facilitated by such nets. In both applicatioagg€ian grids are used as the default choice today in almost
all related realizations; the present sequence of paptblishes that significant performance improvements may
be realized by leveraging-dimensional sphere packings appropriately in such malctipplications.

Key words. n-dimensional sphere packings, lattices, nets, codingyheerivative-free optimization, switch-
less computational interconnects
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1. Introduction . An n-dimensional infinitesphere packings an array of nodal points
in R" obtained via the packing of identicaldimensional spheres. Byacking we mean an
equilibrium configuration of spheres, each with at least@&est neighbors, against which a
repellant force is applied. Many packings investigatechin literature arstablepackings,
meaning that there is a restoring force associated with argllsnovement of any node
of the packing; this requires each sphere in thalimensional) packing to have at least
n+ 1 neighbors. However, unstable packings with lower neareigthbor counts are also of
interest. Note also that, by replacing each sphere in-dimensional packing with a nodal
point (representing, e.g., a computer), and connectingetimodal points which are nearest
neighbors, aet(a.k.a.interconnecbr contact graphis formed.

An n-dimensional realattice (a.k.a.lattice packing is a sphere packing which is shift
invariant (that is, which looks identical upon shifting amydal point to the origin); this shift
invariance generally makes lattice packings simpler tacidles and enumerate than their
nonlattice alternatives. Note that there are many redudphere packings which areot
shift invariant [the nonlattice packings correspondinghe honeycomb net in 2D and the
diamond and quartz nets in 3D are some well-known examplés)will focus our attention
in this paper on those packings and nets which are at lg@isbdal(that is, which look
identical upon shifting any nodal point to the origin andatotg and reflecting appropriately).
For densesphere packings, from a practical perspective, latticikipgs are essentialfy
as good a choice as their more cumbersome nonlattice diteradorn < 24 in terms of

1As introduced in the second-to-last paragraph of §2.3,riisiral with certain sphere packings (for example,
D, AL, and the packings associated with i’ and T nets) to define nets which aret contact graphs of the
corresponding sphere packings by connecting non-neaeggitbor points.

2The regularity of a nonlattice packing is quantified pregise §3.1.

SForn=10, 11, 13, 18, 20, and 22, there exist nonlattice packingsddP;oc, P11a, Piza, Big Bsg A3,) that
are 8.3%, 9.6%, 9.6%, 4.0%, 5.2%, and 15.2% denser then thesponding best known lattice packings (Conway
& Sloane 1998, p. xix); to put this into perspective, the dgraf Ao, is over 16 timesthe density ofZ22.
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the four metrics defined below (that is, for maximizing packdensity and kissing number
and minimizing covering thickness and quantization erréipwever, the bestare sphere
packings (with small kissing number) are all nonlatticelpags.

As illustrated in Figure 1.1 and Table 1, we may introducestiigject ofn-dimensional
sphere packings by focusing our attention first onrike 2 case: specifically, on theian-
gular* lattice (A2), thesquarelattice (Z?), and thehoneycomimonlattice packingAj). The
characteristics of such sphere packings may be quantifigigebfpllowing measures:

e The packing radius(a.k.a. theerror-correction radiu$ of a packing,p, is the maximal
radius of the spheres in a set of identical nonoverlappirggs centered at each nodal
point.

e Thepacking densitpf a packingA, is the fraction of the volume of the domain included
within a set of identical non-overlapping spheres of ragiggntered at each nodal point on
the packing. Packings that maximize this metric are refeiweasclose-packed

e The covering radiusof a packing,R, is the maximum distance between any point in the
domain and its nearest nodal point on the packing. déep hole®f a packing are those
points which are at a distané&from all of their nearest neighbors. Typical vectors from a
nodal point to the nearest deep holes in a lattice packingfeea denotedl], [2], etc.

e The covering thicknessf a packing,©, is the number of spheres of radiRxentered at
each nodal point containing an arbitrary point in the domaweraged over the domain.

e The Vorond cell of a nodal point in a packind2(P,), consists of all points in the domain
that are at least as close to the nodal pBirss they are to any other nodal poift

e The mean squared quantization error per dimensiina lattice or uninodal nonlattice
packing,G, is the average mean square distance of any point in the daimdts nearest
nodal point, normalized by times the appropriate power of the volunwg,of the Voronoi
cell. Shifting the origin to be at the centroid of a Voronell®(R,), it is given by

G=—>_ where S:/ Ix[2dx, vz/ dx. (1.1)
Q(R) Q(R)

e Thekissing numbe(fa.k.a. theerror coefficien} of a lattice or uninodal nonlattice packing,
T, is the number of nearest neighbors to any given nodal poitfite packing. In other words,

it is the number of spheres of radipsentered at the nodal points of the packing that touch,
or “kiss”, the sphere of radius centered at the origin.

e Thecoordination numbeof a net (derived from a sphere packing, as discussed prayjou

is the first number of the netsoordination sequencéhek’th element of which is given by
tdx —tdx_1, wheretdy, which quantifies the netlecal topological densityis the total number

of nodes reached viahops or less from the origin in the Ret

Certain applications, such as that explored in Part Il of thork (Belitz & Bewley
2011), require dense lattices. There are two key drawbadaks@artesian approaches for
such applications. First, thdiscretization of space is significantly less unifosen using
the Cartesian grid as opposed to the available alternaagaseasured by the packing den-
sity A, the covering thicknes®, and the mean-squared quantization error per dimen&ion,
(see Table 1). Second, tkenfiguration of nearest-neighbor gridpoints is signifitgmore

4Note that many in this field refer to th lattice as “hexagonal”. We prefer the unambiguous namarigilar”
to avoid confusion with the honeycomb nonlattice packireg(Bigure 1.1).

5In most cases, the natural net to form from a sphere packitiigisontact graph; in such cases, the kissing
number,t, and the coordination number are equal. As mentioned prskipit is natural with certain sphere pack-
ings to define nets which amatcontact graphs by connecting non-nearest-neighbor pairgsich cases, the kissing
number (a property of the sphere packing) and the coordimatimber (as defined here, a property of a correspond-
ing net) are, in generafotequal. We find this clear semantical distinction to be usefprevent confusion between
these two distinct concepts; note that some authors (eogwey & Sloane 1998) do not make this distinction.
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FIG. 1.1. The triangular lattice (a,b), the square lattice (c,d), athee honeycomb nonlattice packing (e,f).
Indicated in the left three subfigures is the packing witheseh of radiug, the corresponding net or contact graph
(solid lines), a typical Voronoi cell (dashed line), ane tkissing number (that is, the spheres that contact a given
sphere). Indicated in the right three subfigures is the dogewith spheres of radius R. Looking at their respective
packing densitied in Table 1, as compared with the square lattice, the trianglattice is said to belense and
the honeycomb nonlattice packing is said taée.

0

‘ n ‘ packing ‘ name H A (©] ‘ G H T ‘ tdio
A triangular 0.9069 1.2092 | 0.08019 6 331
2 z? square 0.7854 1.5708 | 0.08333 4 221
Af honeycomb|| 0.6046 2.4184 | 0.09623 3 166
Es Gosset 0.2537 4.059 | 0.07168| 240 | 1,006,201,681
z8 Cartesian || 0.01585 64.94 | 0.08333 16 1,256,465
8 Vo 5.590e-4 | 49.89 | 0.09206 4 37,009
(unstable) Jeg 2327e-4| 8731 | 0.09266| 3 2290
Noa Leech 0.001930 | 7.904 | 0.06577 || 196560 >10°
24 Ty Cartesian || 1.150e-10| 4,200,263| 0.08333 || 48 | 24,680,949,041

Table 1. Characteristics of selected lattice and uninodailattice packings and nets. Note
that n= 24is a natural stopping point in this study. It is special besait is the only integer
n> 1 that satisfied? + 22+ ... +n? = n? where m is itself an integer; as a consequence, a
particularly uniform lattice with a large number of symnietris available in this dimension.
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Fic. 1.2.(left) Ten marbles placed in a triangle [referred to by thethiagoreans as astpoaktic, and upon
which they placed a particular mystic significance], andglr) the Pythagoreans’ placement of two triangular
groups of marbles into an “oblong” nx (m+ 1) rectangle, from which the formula fop |, follows immediately.

limited when using the Cartesian grid, as measured by the kissindpetmwhich is an in-
dicator of the degree of flexibility available when selegtfrom nearest-neighbor points. As
seen by comparing the= 2, n= 8, andn = 24 cases in Table 1, these drawbacks become
increasingly substantial as the dimensiois increased; by the dimension= 24, the best
available lattice has

a factor of 000193(/1.1501e— 10~ 17,000,000 better (higher) packing density,

a factor of 4200,263/7.9035~ 530,000 better (lower) covering thickness,

a factor of 008333/0.0658~ 1.27 better (lower) mean-squared quantization error, and
a factor of 19656048~ 4100 better (higher) kissing number

than the corresponding Cartesian grid. Thus, the seleofitime Cartesian grid, by default,
for applications requiring dense (that is, uniform) lagavithn > 3 is simply untenable.

Other applications, such as that explored in Part Il of thiwk (Cessna & Bewley
2011), require regular nets which, with low coordinatiommer, connect to a large number
of nodes with each successive hop from the origin, as queatify the net's coordination
sequence. As mentioned previously, a useful measure ofsatopological density is given,
e.g., bytdip, which is the number of distinct nodes within 10 hops of thigior Note that
the coordination number of thedimensional Cartesian grid isi2the coordination number
of the alternativer-dimensional constructions introduced in 83 are as smal @s4, while
the topological density increases rapidlyrais increased (compare, e.g., the valuesdaf
for AJ andZ?, with T = 3 andt = 4 respectively, to those forg° andV§° in Table 1); it
is thus seen that, for applications requiring graphs with émordination number and high
topological density, the selection of the Cartesian gryddéfault, is also untenable.

We are thus motivated to make the fundamental results ofdetike and rane-dimensional
sphere packing theory more broadly accessible to the sziend engineering community,
and to illustrate how this powerful body of theory may be puiise in two important new ap-
plications of practical relevance. Towards this end, tmeai@der of Part | succinctly reviews
and extends several significant results in this mature aplisticated field, inter-relating the
literature on dense and rare packings, which is today lpdjsjoint. These results are lever-
aged heavily in the applications described in Parts Il ahd\le note that, beyond providing
an up-to-date and synthetic review of this otherwise diffisubject in a (hopefully) accessi-
ble language, a significant number of new computations,toactfons, algorithms, metrics,
and codes are also reported in this document (Part ) [thaerda referred specifically to
Tables 2-3, 83.4.1 through §3.4.7, 83.5, and §5.5].

The mathematical characterization of sphere packings fasyeand rich history. Some
recent articles and popular books recount this history taitléncluding Zong (1999), Szpiro
(2003), Hales (2006), and Aste & Weaire (2008). The purpdsbepresent article is not
to repeat these historical retrospectives, which theseeswo quite adequately, but to char-
acterize, catalog, and extend the infinite packings aVaildalay to facilitate their practical
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F1G. 1.3. Pyramidal stacks of spheres with triangular, square, an8ltmg” (rectangular) bases. All three
stacks are subsets of the face-centered cubic latticeysksd further ir§2.3.

application in new fields. Nonetheless, we would remiss ifdiekn't at least provide a brief
historical context to this field, which we attempt in the éoling two subsections.

1.1. Finite packings: mystic marbles, stacked spheres, pawuted planets, cartoned
cans, catastrophic sausages, and concealed origind/e begin by defining, fom> 1, a
notation to build from:

m
Tom=1,  Tim= ) Tok=m (the positive integers)
=

In the sixth century BC, Pythagoras and his secret socigtywierologists, the Pythagoreans,
discovered geometrically (see Figure 1.2, and pp. 43-50eatii1931) the formula for the
number of marbles placed in a (2D) triangle (that is, theftgular numbers”):

m
Tz_’m £ Z Tl,k = m(m—|— 1)/2.
k=1

The earliest known mathematical work to discuss the (30okétg of objects is a San-
skrit documen®he Aryabhatiya of Aryabha{@99 AD; see Clark 1930, p. 37), which states:

“In the case of ampaciti[lit., ‘pile’] which has ... the product of three terms, hagithe
number of terms for the first term and one as the common difteredivided by six, is the
citighanal[lit., ‘cubic contents of the pile’]. Or, the cube of the nuertof terms plus one,
minus the cube root of this cube, divided by six.”

Thus, Aryabhata establishes, in words, two equivalentesgions for the number of objects
(“cubic contents”) in a (3D) triangular-based pyramid (&3) with m objects on each edge:

T, Mm+1)(m+2)  (m41)°— (mi1)
3m= 3! B 6 ’

note also thalam = Y4 Tok.

Thomas Harriot was apparently the first to frame the probléspbere packing math-
ematically in modern times (see, e.g., the biography of idahy Rukeyser 1972). At the
request of Sir Walter Raleigh, for whom Harriot served, aghother capacities, as an in-
structor of astronomical navigational and on various peoid related to gunnery, Harriot (on
December 12, 1591) computed, but did not publish, the numibeannonballs in a pile with
atriangular, squarerjx m], and rectangulampx (m+1), a.k.a. “oblong”] base, as illustrated
in Figure 1.3, obtaininds m, Sn, andRy, respectively, where

m
C Rn= 3 (k1) = Syt Top = D@D
k=1

o m(m+1)(2m+1

So= § k= MM DN+
& 6 6

In 1614, Harriot wrotdde Numeris Triangularibus Et inde De Progressionibus Artieticis:

Magisteria magngOn triangular numbers and thence on arithmetic progressidhe great
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doctring®. Looking closely at the triangular table of binomial cog#fits’ on pp. 1-3 (folios
108-110) of this remarkable document, it is seen that Hawnoerstood thgeometricrela-
tionship between the positive integfisy, the “triangular numbersT, , [that is, the number
of spheres in a (2D) triangle witin spheres on each edge], the “pyramidal numb@&ggsn
[that is, the number of spheres in a (3D) trianglar-basedpyat with m spheres on each
edge], and the next logical steps in this arithmetic progjoes given by:

m(m+ 1)(m+2)(m+3
4

m(m-+ 1)(m+ 2)(m+ 3)(m+4)
51 ’

Tam2 3 T. ) Tsm2 3 T,

4m kzl 3k . Tsm k; 4k
etc. In particular, Harriot noticed that tife+ 1)’th element of the(n+ m)'th row of this
triangular table isT, m. Accordingly, we may think off, m as the number of spheres in an
“n-dimensional pyramid” withm spheres on each edge, witf, representingn+ 1 spheres
configured at the corners of a regutadimensional simplex. It is thus natural to credit Har-
riot (1614) with the first important steps towards the disrg\of laminated lattices, discussed
further in 82.4 and §2.6.

Harriot also introduced the packing problem to Johannedefgpltimately leading Ke-
pler (1611), in another remarkable docum8trena seu de nive sexang(fldhe six-cornered
snowflakg which also hypothesized about a related atomistic phy$iasis for hexagonal
symmetry in crystal structures of water, to conjecture that

“The (cubic or hexagonal close) packing is the tightest fpbsssuch that in no other
arrangement can more spheres be packed into the same ewiitain

Kepler’s conjecture is, of course, patently false if copsédl in a finite container of a spec-
ified shape. For instance, @ 2 2d x 2d cubic container can fit 8 spheres of diametef
arranged in Cartesian configuration, but can only fit 5 sphiéeranged in a “close-packed”
configuratiof. It is presumed that Kepler in fact recognized this, and thegsler’s conjec-
ture is commonly understood as a conjecture regarding theedé¢ packing possible in the
limit that the size of the container is taken to infinity (farther discusssion, see §1.2).

Note in Figure 1.3 that any sphere (referred to as a “sun”)henirtterior of the piles
has 12 nearest neighbors (referred to as its “planets”) sidering this sun and its 12 plan-
ets in isolation, there is in fact adequate room to permweptanets to different positions
while keeping them in contact with the sun, something lik ec@rnered Rubik’s cube with
spherical pieces (see Figure 1.4). Due to the extra spadalalean this configuration, it is
unclear upon first inspection whether or not there is sufitdieom to fit a 13'th planet in to
touch the sun while keeping all of the other 12 planets inactwith it. In 1694, Isaac New-
ton conjectured this could not be done, in a famous disageaemith David Gregory, who
thought it could. Newton turned out to be right, with a cont@leroof first given in Schitte
& van der Waerden (1953), and a substantially simplified pgbeen in Leech (1956).

Moving from 16th-century stacks of cannonballs to 21sttagncommerce, the ques-
tion of dense finite packings of circles and spheres findstigedaelevance in a variety of
packaging problems. For example, to form a rectangularbcendl carton for 12 fl 0z soda
cans, 164 crhof cardboard per can is needed if 18 cans are placed in a ieartEmfigura-
tion with 3 rows of 6 cans per row, whereas 3.3% less cardhpardan is needed if 18 cans
are placed in a triangular configuration (within a rectaagbbx) with 5 rows 0f 4,3,4,3,4
cans per row. If an eye-catching (stackable, strong, “dregmexagonal cardboard carton
for the soda cans is used, with 19 cans (described in magkeims as “18 plus 1 free”)
again placed in a triangular configuration, 17.7% less azadbper can is required.

Two new questions arise when one “shrink-wraps” a numioeof n-dimensional spheres
(resulting in a convex, fitted container), namely: what agunfation of the spheres minimizes

SHarriot (1614) passed through several hands before finallygopublished in 2009, almost 4 centuries later.

"This now famous triangular table of binomial coefficientsisorrectly attributed by many in the west to Blaise
Pascal (b. 1623), though it dates back to several earligcesyuthe earliest being Pingala’s Sanskrit wehandas
Shastra written in the fifth century BC.

8For larger containers, the arrangements which pack in thatgst number of spheres (or other objects) must
in general be found numerically (see Gensane 2004, Schir2@06, and Friedman 2009).
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FiG. 1.4.lllustration of the 13 spheres (a.k.a. Newton-Gregory)hgtemn and planetary permutations. Config-
uration (a) is 13 of the spheres taken from the second, thind, fourth layers of the stack in the orientation shown
in Figure 1.3b, whereas configuration (c) is 13 of the spheaksn from the third, fourth, and fifth layers of the stack
in the orientation shown in Figure 1.3a [extended by one taidl layer]. In both configurations, the 12 “planets”
(positioned around the central “sun”) are centered at thetiees of a cuboctahedron. The planets can be permuted
by “pinching” together two of the four planets on the cornefseach square face, in an alternating fashion, to form
a symmetric icosahedral configuration with significant sphetween each pair of planets [configuration (b)], then
“pushing” apart pairs of planets in an analogous fashion @rh a different cuboctahedron. Alternatively, starting
from configuration (b), identifying any pair of opposite péas as “poles”, and slightly shifting the five planets
in each of the “tropics” as close as possible to their neanestpective poles, the resulting northern and southern
groupings of planets can be rotated in relation to each otfleng the equator. Repeated application of these two
fundamental motions can be used to permute the planetganilyit

the surface area of the resulting container, and what caatfigemn minimizes the volume
of the resulting container? Both questions remain open,aaedeviewed in Zong (1999).
Regarding the minimim surface area question, it was camjedtby Croft, Falconer, & Guy
(1991) that the minimum surface area, fior 2 and largen, is achieved with a roughly spher-
ical arrangement. In contrast, regarding the minimim vauquestion, it was conjectured by
L. Fejes Toth (1975) that the minimum volume, for> 5 and anym, is achieved by plac-
ing the spheres in a line, leading to a shrink-wrapped coatan the shape of a “sausage”.
Forn= 3, it has been shown that a roughly spherical arrangemertnizies the volume for

m =56, m=59 to 62, andn > 65, and it is conjectured that a sausage configuration min-
imizes the volume for all othemn (see Gandini & Willis 1992); fon = 4, there appears to
be a similar “catastrophe” in the volume-minimizing sodutj from a sausage configuration
to a roughly spherical configuration, asis increased beyond a critical value (Willis 1983
conjectures this critical value to e~ 75000, whereas Gandini & Zucco 1992 conjectures
it to bem=375769).

Finally, L. Fejes Toth (1959) presents a curious set of tijoles that arise when consid-
ering the blocking of light with a finite humber of opaque usjitheres packed around the
origin. The first such question, known as Hornich’s Probleegeks the smallest number of
opaque unit spheres that completely conceal light rays aetimnfrom a point source at the
center of a transparent unit sphere at the origin. A relatestpon, known as L. Fejes Toth’s
Problem, seeks the smallest number of opaque spheres thpletely conceal light rays em-
anating from the surface of a unit sphere at the origin (&d=jgure 1.4, adding additional
outer planets to completely conceal the view of the sun frbrarales). In 2D, the (trivial)
answer to both problems is 6, via the triangular packingdatid in Figure 1.1a. In higher
dimensions, both questions remain open, and the answerglifiepending on whether or
not the sphere centers are restricted to the nodal pointdatfiee. For the L. Fejes Toth's
Problem, fom > 3, the answer is unbounded if restricted to lattice pointd,lzounded if not.
For Hornich’s Problem, the answer is bounded in both casiis the number of spherek,
required in the 3D case, when not restricted to lattice goioe¢ing somewhere in the range
30< h<42. Zong (1999) derives several of the known bounds availaiboth problems.

1.2. Infinite packings. In the last 300 yearsnanydifferent constructions of infinite
lattice and nonlattice packings have been proposed in éawngdion. These packings each
have different packing density, covering thickness, megumared quantization error, and kiss-
ing number, and their corresponding nets each have diffespological density; knowledge
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FiG. 1.5. (a) A regular truncated octahedron, used to ti®® in Kelvin’s conjecture; (b) an irregular
tetrakaidecahedron and dodecahedron, used tdiflén the Weaire-Phelan structure.

of these properties is essential when selecting a packingebfor any given application.
We have thus attempted to catalog these constructions aigtperties thoroughly in the
remainder of this review.

In the characterization of density, amongstlattice packings of a given dimension,
the Ay, Ag, D4, Ds, Eg, E7, Eg, and/y4 constructions given in 82 have been proven to be
of maximum density, in Lagrange (1773) far= 2, Gauss (1831) fon = 3, Korkine &
Zolotareff (1873, 1877) fon= 4 and 5, Blichfeldt (1935) fon = 6 through 8, and Cohn &
Kumar (2009) fon = 24. There are no such proofs of optimality for other values ¢fiough
the lattices\n andKp introduced in 82.6 are likely candidates in the range®9< 23.

Remarkably, if one considers both lattiaed nonlattice packings, proof of which pack-
ing is of maximum density in a given dimension is still open fio> 3. It was established
in Thue (1892) tha#, has the maximum density amongst all lattice and nonlatiakings
for n = 2. Considerable attention has been focused over the cestomithe corresponding
question forAg in dimensionn = 3, that is, on Kepler’'s conjecture (posed in 1611) in the
limit that the container size is taken to infinity. IndeedyideHilbert, in his celebrated list of
23 significant open problems in mathematics in 1900, incdumgeneralization of Kepler's
conjecture as part of his 18th problem (see, e.g., Milnoi6}97

Note that it is not at all obvious that an infinite packing agular asAs would neces-
sarily be the packing that maximizes density. Indeed, agiomed in footnote 3 on page 1,
nonlattice packings are known in dimensions- 10, 11, 13, 18, 20, and 22 that are each
slightly denser than the densest known lattice packingsesd dimensions.

In three dimensions, physiologist Stephen Hales (1727hisngroundbreaking work
Vegetable Statickseported a curious experiment:

“I compressed several fresh parcels of Pease in the same. Hnt,the great incumbent
of weight, pressed into the interstices of the Pease, wihieh &dequately filled up, being
therefore formed into pretty regular dodecahedrons.”

This report implied that many of the dilated peas in this expent had 12 nearest neighbors
and/or pentagonal faces. However, the “pretty regularlitication left a certain ambiguity,
and this experiment left mathematicians puzzled, as it isrity impossible to tiléR3 with
regular dodecahedra. Kelvin (1887) formalized the quastiberent in Hales’ dilated pea
experiment by asking ho®? could be divided into regions of equal volume while minimiz-
ing the partitional area. He conjectured the answer to bgaaetiling of R3 with truncated
octahedra, which are in fact the Voronoi cells of figlattice (see §3.4.3). [Note that the
Voronoi cell of theAg lattice is the (face-transitivehombicdodecahedron, which is dual to
the cuboctahedron illustrated in Figures 1.4a,c and Rigsvith slightly greater partitional
area than does the tiling with truncated octahedra.] K&wnnjecture stood for over 100
years, until Weaire & Phelan (1994) discovered a tilingRébased on irregular tetrakaidec-
ahedra (with 2 hexagonal faces and 12 pentagonal facesjragdlar dodecahedra (with 12
pentagonal faces); this tiling has 0.3% less partitioneddhan the much more regular tiling
with truncated octahedra considered by Kelvin (see Figusg In hindsight, it is quite pos-
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sible that Hales might have in fact stumbled upon the WeRlrelan structure in his cooking
pot (in 1727") and, seeing all of those pentagonal faces &rsided (as well as 14-sided)
dilated peas, asserted that what he was looking at was acyiipproximation to a tiling of
RR3 with regular dodecahedra, even though such a tiling is irsiptes

Returning to Kepler’s conjecture, in 1998, Thomas Halesréation to Stephen) an-
nounced a long-sought-after proof, in a remarkably diffiemalysis making extensive use
of computer calculations. This proof was spread over a semuef papers published in the
years that followed (see Hales 2005). An extensive disonssi this proof, which is still
under mathematical scrutiny, is given in Szpiro (2003)piration for this proof was based,
in part, on a strategy to prove Kepler's conjecture propdmseld. Fejes Toth (1953), the first
step of which is a quantitative version of the Newton-Grggooblem discussed in 81.1.

2. Dense lattice packings for n < 24. There are many dense lattices more complex
than the Cartesian lattice that offer superior uniformityl amearest-neighbor configuration,
as quantified by the standard metrics introduced in 81 (narpekking density, covering
thickness, mean-square quantization error, and kissimgbet). This section provides an
overview of many of these latticethe definitive comprehensive reference for this subject is
Conway & Sloane (1998), to which the reader is referred focimonore detailed discussion
and further references on many of the topics discussé&2.ifNote that the subject of cod-
ing theory, reviewed in 84, is very closely related to thejscbof dense lattice packings.
As mentioned in the abstract, the practical applicatiorlaneol in Part Il of this work also
leverages these constructions heavily.

2.1. Lattice terminology . The notatiorL, = M,, means that the latticds, andM,, are
equivalentwhen appropriately rotated and scaled) at the specifie@mionn. Also note
that the four most basic families of lattices introduced2y &noted.", A,, D, andEy, are
often referred to amot latticesdue to their relation to the root systems of Lie algebra.

There are three primary methdds define any givem-dimensional real lattice:

e As anexplicit descriptiorof the points included in the lattice.

e As aninteger linear combinatiofthat is, a linear combination with integer coefficients) of
a set ofn basis vector®' defined inR™™ for m > 0; for convenience, we arrange these
basis vectors as the columfsf abasis matrix® B.

e As aunion of cosetsor sets of nodal points, which themselves may or may notttieda.

The standard form of these definitions, as used in §2, malstésightforward to generalize
application codes that can build easily upon any of theckadtiso described.
Any real (or complex) latticé, has associated with itdual lattice L, defined such that

Ly={xeR"(orC") : x-ucZforall ucln}, (2.1)

whereZ denotes the set of all integers, dot denotes the usual gualduct, and overbar
denotes the usual complex conjugate.Blfs a square basis matrix far,, thenB~ T is a
square basis matrix fdr;,.

Unless specified otherwise, the word lattice in this pap@ties a real lattice, defined in
R". However, note that it is straightforward to extend this kviar complex lattices, defined

9A convenient alternative method for building a cloud ofitatpoints near the origin is based on the stencil of
nearest-neighbor points to the origin in the lattice, régaig shifting this stencil to each of the lattice points mea
the origin determined thus far in order to create additidatice points in the cloud. Unfortunately, this simple
alternative method does not work for all lattices, sucDasndA], (see §2.3 and 2.4).

101n the literature on this subject, it is more common to ugererator matrix Mo describe the construction of
lattices. The basis matrix conventi@used here is related simply to the corresponding generatnixisuch that
B = MT; we find the basis matrix convention to be more natural in senivits linear algebraic interpretation.

1INote that integer linear combinations of the columns of maatrices daot produce lattices (as defined in the
second paragraph of §1). The matrices listed in §2 as badicasare special in this regard. Note also that basis
matrices are not at all unique, but the lattices construitted alternative forms of them are equivalent; the forms of
the basis matrices listed in 82 were selected based on thmilicty.
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in C". To accomplish this extension, it is necessary to extend:éimeept of the integers,
which are used to construct a lattice via the “integer” lineanbination of the basis vectors
in a basis matriB, as described above. There are two primary such extensions:

e TheGaussian integerslefined a&/ = {a+bi : a,b € Z} wherel = /-1, which lie on a
square array in the complex pla@e

e TheEisenstein integerglefined ass = {a+bw : a,b e Z} wherew = (—1+1v/3)/2
[note thatw® = 1], which lie on a triangular array in the complex plafie

We may thus define three types of lattices from a basis mBtrix

o areal lattice, defined as a linear combination of the coluofiBswith integers as weights;

e a (complex)¥ lattice, defined as a linear combination of the columnB @fith Gaussian
integers as weights; and

e a (complex)s lattice, defined as a linear combination of the columnB wiith Eisenstein
integers as weights.

The speciah-dimensional real?, and&’ lattices formed by takin® = I« are denoted.”,
ZN", andZ[w]" respectively. Note also that, for any complex lattice wikneentsz ¢ C",
there is a corresponding real lattice with elemémnsR?" such that

= (0{z} O{z) ... O{&) O{z)" (2.2)

The present sequence of papers focuses on the practicaF usal dattice and nonlattice
packings withn > 3. Thus, in the present Part I, we only make brief use of corlpltices
to simplify certain constructions.

2.2. The Cartesian lattice Z". TheCartesian latticeZ", is definedzZ" = {(xl, sy Xn)
X € Z}, and may be constructed via integer linear combination efctilumns of the basis
matrix B = Inxn. The Cartesian lattice is self dual [that {&")* = Z"] for all n.

2.3. The checkerboard lattice Dy, its dual D}, and the offset checkerboard packing
Dy. Thecheckerboard latticeDp, is ann-dimensional extension of the 3-dimensiofeade-
centered cubi¢FCC, a.k.a.cubic close packédattice. It is defined

Dn={(X1,..., %) € Z" : X1 +...+ X = even}, (2.3a)

and may be constructed via integer linear combination ofcthlemns of then x n basis
matrix

-1 1 0
-1 -1 1
Bp, = . (2.3b)
-1 1
0 -1

The dual of the checkerboard lattice, denoBgdand reasonably identified as tb#set
Cartesian lattice is ann-dimensional extension of the 3-dimensiobaldy-centered cubic
(BCQ lattice. It may be written as

D}, = Dn U ([1] + Dn) U ([2] +Dn) U (3] + Dn) 2 Z"U ([1] + Z1), (2.4a)

where thecoset representatived], [2], and[3] are defined in this case such that
1/2 0 1/2
-l el ome]
(4 12 2] o 3 12
1/2 1 -1/2
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TheD;, lattice may also be constructed via integer linear comimnaif the columns of the
n x n basis matrix

1 0 05
1 05

Bp; — : (2.4b)
1 05
0 05

It is important to recognize that, for> 5, the contact graph of th;, lattice is simply
two disjoint nets given by the contact graphs of #ieand shiftedZ" sets of lattice points
upon whichD;, may be built [see (2.4a)]. Thus, as suggested by Conway &8l¢5997),
we introduce, fon > 4, ageneralized neformed by connecting each node of the unshifted
7" set to the 2 nearest nodes on the shiftéd set, and each node on the shiftéd set to
the 2' nearest nodes on the unshiftédiset. The resulting net, of coordination numb@rig
uninodal, but isnota contact graph of the corresponding sphere packing.

The packingD}, reasonably identified as thefset checkerboard packings ann-
dimensional extension of the 3-dimensiode&mondpacking, and is defined simply as

Dy =DnU([1]+Dn); (2.5)

note thatD, is a lattice packing only for even, and thatD3 is thediamond packingfor
further discussion, see §3.4.1).

2.4. The zero-sum lattice Ay, its dual A}, and the glued zero-sum lattices A;,. The
zero-sum latticeA,, may be thought of as amdimensional extension of the 2-dimensional
triangular lattice in 3 dimensionsAg = Ds. It is defined

An=1{(X0,-- ;%) € Z" I xg+ ...+ X =0}, (2.6a)

and may be constructed via integer linear combination ofthemns of thén+ 1) x n basis
matrix

-1 0 1
1 -1 1
Ba, = R with na, =1 : |- (2.6b)
1 -1 1
0 1 1

Notice thatA, is constructed here viabasis vectors in+ 1 dimensions. The resulting lattice
lies in ann-dimensional subspace R"*!; this subspace is normal to the vectgy,. An
illustrative example i\, the triangular B lattice, which may conveniently be constructed
on a plane irR® (see Figure 2.1).

Note that, starting from a (2D) triangular configuration oémges or cannonballs (see
Figure 1.1a), one can stack additional layers of orangediiangular configuration on top,
appropriately offset from the base layer, to build up the)(BBC configuration mentioned
previously (see Figure 1.3a). This idea is referred to asnation, and will be extended
further in 82.6 when considering tiig, family of lattices.

Also note that, in the special caserof 2, theA, lattice may also be written as

A2 RyU(a+Ry), where a= (%/22) (2.6¢)
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FiG. 2.1. A cloud of points on the Alattice, defined on a plane iR3. Note that the normal vectar, =
(11 1)T points directly out of the page in this view.

and R is therectangular grid (not a lattice, nor even a nonlattice packing) obtained by
stretching theéZ? lattice in the second element by a factond3.
The dual of the zero-sum lattice, deno#gd may be written as

n

Av= (19+An), (2.7a)

s=0

where then+ 1 coset representativés, for s=0,...,n, are defined such that tfk&h com-
ponent of the vectols is

gy = T k<n+1l-s, (2.7b)
k s—n—1 : .
e otherwise

TheA), lattice may be constructed via integer linear combinatibtne columns of thén+
1) x n basis matrix

n+1
THRRE-
_1 1
Ba, = _ "L with  na =na, (2.7¢)
- 1
o
O .

A related family of lattice packings, developed in 812 of €ter (1951) and reasonably
identified as thglued zero-sum lattices/Ais a family of lattices somewhere betwe&nand
A [as given in (2.7a)] defined via the unionmofranslates oA, for n > 5:

A =AU ([g+A)U([28 +AnU...U([(r—1)s +An), where r-s=n+1, (2.8)

where the components of the “glue” vectdssare specified in (2.7b), and whereand s
are integer divisors ofn+ 1) with 1 <s<n+1 and 1<r < n+ 1, excluding the case
{r=2,5s=3} for n=5. The latticesA3, A?;, A5, A, A8, A}, A1, Al andAll are
found to have especially good covering thickness, with &g four currently the thinnest
coverings available in their respective dimensions (semaiiavskii 1994, Anzin 2002, and
Sikiri¢, Schirmann, & Vallentin 2008). Note also thgt= E;, A3 = E3, andA3 = Eg, each
of which is discussed further below.
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Note finally that the contact graphs of some of fglattices, such a#g andA},, are
disjoint nets given by the contact graphs of tgeand shiftedA, sets of lattice points upon
which these glued zero-sum lattices are built [see (2.8)liST as in the case Bf, forn> 4 as
discussed in §82.3,generalized netnay be formed by connecting each node of the unshifted
An set to the nearest nodes on the shiftgdset. Again, the resulting net is uninodal, but is
not a contact graph of the corresponding sphere packing.

2.5. The Gosset lattice Eg = Eg, E7, E7, Es, and E;. The Gosset lattice E= Eg,
which has a (remarkable) kissing numberef 240, may be defined simply as

Eg =D, (2.9a)

and may be constructed via integer linear combination ofcthlemns of the 8 8 basis
matrix

2 -1 0 12
1 -1 1/2
1 -1 1/2
B 1 -1 1/2
s 1 -1 ~1/2
1 -1 -1/2
1 -1/2
0 ~1/2

(2.9b)

The latticeE7 is defined by restrictindes, as constructed above, to a 7-dimensional
subspace,

Er={(x1,...,X8) €EEg : X1 +... +xg =0}, (2.10a)

and may be constructed directly via integer linear comimnadf the columns of the 8 7
basis matrix

-1 0 12 1/2
1 -1 1/2 1/2
1 -1 1/2 1/2
1 -1 1/2 . 1/2
Bg, = 1 1 _{/2 , with Ng, = 1§2 (2.10Db)
1 -1 -1/2 1/2
1 -1/2 1/2
0 ~1/2 1/2
The dual of theky lattice may be written as
1/4
E; =E7U([1+E7), where [1]= 1} a | (2.11a)
—-3/4
—-3/4

and may be constructed directly via integer linear comimnadf the columns of the & 7
basis matrix
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1 0 -3/4
1 -1 ~3/4
1 -1 1/4
BE7 = 1 11 = i?i , with Ng; = Ng;. (2.11b)
1 -1 1/4
1 14
0 1/4

The latticeEs is defined by further restrictingz, as defined in (2.10), to a 6-dimensional
subspace,

Ee={(x1,...,X8) €E7 : X1 +xg =0}, (2.12a)

and may be constructed directly via integer linear comimnadf the columns of the 8 6
basis matrix

0 1/2 1 1/2
-1 1/2 0 1/2
I 1/2 0 1/2 | |
1 -1 1/2 , 0 1/2
BE5: 1 1 7]/_/2 R with Ng = 0 1;2 —(T‘IE6 I’IE7>.
1 -1 —1/2 0 1/2 |
1 -1/2 0 1/2
0 -1/2 1 1/2
(2.12b)
The dual of theEg lattice may be written as
0
—2/3
-2/3
Es =EsU([+E6)U([2 +Es), where [1=| Y4 |, [2=-[1, (2.13a)
1)4
0

and may be constructed directly via integer linear comimnadf the columns of the & 6
basis matrix

0o 0 12
~1 2/3 12
1 -1 2/3 12
B 1 -1 ~1/3  1/2 . B
BES = 1 1 _1/3 _1/2 s with Ng« = Ng. (213b)

1 -1/3 -1/2
~1/3 -1/2
0 0o -1/2
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2.6. The laminated lattices /\n, and the closely-related Kp, lattices . The lattices in the
Nn andK, families can be built up one dimension, or “laminate”, atad;j starting from the
integer lattice 7 = A1 2 Kj), to triangular £, = Ay =2 K5), 1o FCC Az = D3 2 A3 = K3), all
the way up (one layer at a time) to the remarkable Leech éaffies = K,4). Both families
of lattices may in fact be extended (but not uniquely) to asta = 48.

The Leech lattice/\24, is the unique lattice im = 24 dimensions with a (remarkable)
kissing number of = 196 560. It may be constructed via integer linear combinatiothef
columns of the 24 24 basis matrixBa,,, which is depicted here in the celebrated Miracle
Octad Generator (MOG) coordinates (see Curtis 1976 and @p&vSloane 1998):

8 4 4 4 4 4 4 2 4 4 4 2 4 2 2 2 4 2 2 2 -3
2 2 2 2 2 1
4 2 2 2 2 2 1
4 2 2 2 2 2 1
4 2 2 2 2 2 2 2 1
4 2 2 2 1
4 2 2 2 1
2 2 2 1
4 2 2 2 2 2 2 2 2 2 1
4 2 2 2 2 1
4 2 2 2 2 1
Bl\uzi 2 2 2 1.
V8 4 2 2 2 2 2 2 1
2 2 1
2 2 1
2 1
4 2 2 2 2 2 1
2 1
2 2 1
2 1
2 2 1
1
2 1
1

As in theEg — E7 — Eg progression described in §2.5, the lattices forn=2322...,1
may all be constructed by restricting the, lattice to smaller and smaller subspaces via the
normal vectors assembled in the matfix

12There are, of coursenanyequivalent constructions @f; through/A,3 via restriction ofA,4, and the available
literature on the subject considers these symmetriesgttiefhe convenient form df, depicted here was deduced,
with some effort, from Figure 6.2 of Conway & Sloane (1998).
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1
1 1
1 1 1
1
1 -1
1 -1
1
1
1 -1
1 -1
1
Na = 11
1 1
1
1 1
1
1 1
1 1
1 1
1
1 -1
1 -1
1
= (I’]/\0 ce n,\zs) .

Thus, theAys lattice is obtained from the points of thie, lattice inR%* (which them-
selves are generated via integer linear combination of thgnmns ofBy,,) which lie in
the 23-dimensional subspace orthogonatg,. Similarly, the/; lattice is obtained from
the points of the/\y4 lattice which lie in the 22-dimensional subspace orthogemdoth
NA,, @ndnp,,, etc. Noting the block diagonal structure A, it follows that A, may be
constructed using the basis matrix, dendsag, given by then x n submatrix in the upper-
left corner ofBp,, for anyn € N1 = {21,20,16,9,8,5,4}. For the remaining dimensions,
ne Ny ={19,1817,1514,13 12 11,10,7,6,3,2,1}, A, may be constructed via the appro-
priate restriction of the lattice generated by the nextdafgasis matrix in the séd;; for
example A14 may be constructed iR via restriction of the lattice generated by the basis
matrix By, to the subspace normal to the vectorsKitf) given by the first 16 elements of
Nas @andnp,.

A similar sequence of lattices, denotkgd, may be constructed via restriction of the
Leech lattice (generated vig,,) in a similar fashion (for details, see Figure 6.3 of Conway
& Sloane 1998). Lattices from th, and/orK,, families have the maximal packing densities
and kissing numbers amongst all lattices for the entire eazamnsidered here, 4 n < 24,
Note that the\, andK, families are not equivalent in the range<th < 17, with A being
superior toKp, by all four metrics introduced in 81 at most valuesa this range, except for
the narrow range 1& n < 13, where in facK, has a slight advantage. Note also that there is
some flexibility in the definition of the lattice’s;1, A12, and/A13; the branch of thé\, family
considered here is that which maximizes the kissing numbethis range oh, and thus the
corresponding lattices are deno®fi™, AT%™, andAT$™. Note thatKy» is referred to as the
Coxeter-Todd lattice anfl1g is referred to as the Barnes-Wall lattice.
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2.7. Some numerically-generated lattices for thin coverings in dimensions 6-15 .
Recall from 8§2.1 that an-dimensional real lattice may be defined as an integer lioear-
bination of a set of basis vectorb' defined inR™ ™ for m > 0; that is, any lattice point may
be written as

X =&1bt+Eb%+ ...+ Eb" = BE,

where the element§y,...,&n} of the vector§ are taken as integers. The square of the
distance of any lattice point from the origin is thus givenf{§) = ETAE, whereA = BB
is known as theGram matrixassociated with the lattice in question, and the funcfi®)
is referred to as the correspondiggadratic form[note that each term off(§) is quadratic
in the elements ok]. All of the lattices studied thus far, when scaled apprafaly, are
characterized by Gram matrices witheger elementsand thus their corresponding quadratic
forms (&) have integer coefficients (and are thus referred tot@gral quadratic forms
There is particular mathematical interest in discoverargyenerating numerically) both
lattice and non-lattice packings which minimize coverihigkness and/or packing density.
The numerical approach to this problem studied in Schiim&avillentin (2006) and Sikiric,
Schiarmann, & Vallentin (2008) has generated new latticegimensions 6-15 with the
thinnest covering thicknesses known amongst all latticEse lattice so generated in di-
mension 7 happens to correspond to an integral quadratit fart the others, apparently, do
not. Gram matrice# corresponding to these 10 lattices (dendtgd LS, LS, ..., LS,) are
available at http://fma2.math.uni-magdeburg.de/ ~ latgeo/covering _table.html
(nonunique) basis matric&scorresponding to each of these lattices may be generatgdysim
by taking the Cholesky decomposition of the correspondiranGmatrix, asA = BT B.

2.8. Discussion . For all of the dense lattices described thus far, as well athéorare
packings and nets described in 83, Tables 2-3 list the kn@aireg of the packing density,
the covering thicknes®, and the mean squared quantization error per dimen&ioiiable
2 also lists the coordination sequence throligh 10 of the corresponding net, as well as
its local topological densitydio. If this net is a contact graph, the coordination number
(that is, the first element of the coordination sequencejigkto the kissing number of the
corresponding packing; if this netm®ta contact graph, it is marked with& and the kissing
numbert of the corresponding sphere packing is listed in parenthese

The other information appearing in Table 2 is describechirrin 83. Note that Table 2
alone has 8 columns and over 100 rows, with those resultdmedelieve to be new denoted
in italics. The original source of each of the several hudd@rasting results reported can not
feasibly be spelled out here. Suffice it to say that the vagtritpaof those existing results re-
lated to lattices are discussed in Conway & Sloane (1998jratié On-Line Encyclopedia of
Integer Sequences (on the webhtp://www.research.att.com/ ~ njas/sequences/ ),
where a large number of the original references are listedeiail. The vast majority of
those existing results related to 3D nets (see i88)uding clear drawings of eacas well as
detailed lists of original references, are given in the ®e#ir Chemistry Structure Resource,
available online at, e.ghttp://rcsr.anu.edu.au/nets/fcu , Where fcu " may be re-
placed by any of the lowercase boldface three-letter ilergigiven in Table 2 and 83; for
further discussion of this database and others, see O'&ee#l. (2008), Treacy et al. (2004),
Blatov (2006), and Hyde et al. (2006). Note also that theeehamdreds of new results re-
ported in Tables 2 and 3, as denoted in italics; most of theseh& result of painstaking
numerical simulation, some of which tooks weeks of CPU tioe 4 quad-core 3GHz Intel
Xeon server) to complete.

Note finally that there are a variety of (lattice-specific)yswdo quantize to the nearest
lattice point; for an introduction, see 85.
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n packing net A [S] G coordination sequencgthroughk = 10) tdio Egi?;xsirynn:)gl)l
‘ 1 7.\ integer H 1 1 ‘ 0.083333 ‘ 2,2,2,2,2,2,2,2,2,2 21 «
Ag, A5 N2 triangular 0.90690 | 1.2092 | 0.080188 || 6,12, 18, 24, 30, 36, 42, 48, 54, 60 331 36,45 53
72,D,,D5,D5 square 0.78540 | 1.5708 | 0.083333|| 4, 8,12, 16, 20, 24, 28, 32, 36, 40 221 4444 % x
2 ALTA honeycomb 0.60460 | 2.4184 | 0.09623 || 3,6,9, 12, 15, 18, 21, 24, 27, 30 166 6.6.6
A A ﬁgg?yi’;ﬁ% 0.39067 | 5.832 | 0.1652 || 3,4,6,8, 12, 14, 15, 18, 21, 22 124 31212
D3,As,A3 fcu 0.74048 | 2.0944 | 0.078745 || 12 42,92, 162, 252, 362, 492, 642, 812, 1002 3871 324 436 56
hcp 0.74048 | 2.0944 | 0.078745 || 12, 44, 96, 170, 264, 380, 516, 674, 852, 1052 4061 324 433 59
D5, A} bcu 0.68017 | 1.4635| 0.078543|| 8, 26, 56, 98, 152, 218, 296, 386, 488, 602 2331 424 6
73 pcu 0.52360 | 2.7207 | 0.083333 || 6, 18, 38, 66, 102, 146, 198, 258, 326, 402 1561 4126
qtz, V§° 0.39270 | 2.0405 | 0.08534 || 4,12, 30, 52, 80, 116, 156, 204, 258, 318 1231 | 6.6.6.6,.87.87
A;,DJ dia, V§° 0.34009 | 2.7207 | 0.09114 || 4,12, 24,42, 64, 92, 124, 162, 204, 252 981 | 6,.62.6,.62.62.67
lon 0.34009 | 3.3068 | 0.09139 || 4,12, 25, 44, 67, 96, 130, 170, 214, 264 1027 | 67.6,.62.67.6,.6;
A, sod 0.2777 | 8.781 | 0.1092 || 4,10, 20, 34, 52, 74, 100, 130, 164, 202 791 4.4.6.6.6.6
3 Ay dia-a 0.12354 | 9.1723| 0.1511 || 4, 6,12, 18, 36, 48, 60, 78, 108, 126 497 | 312,312,312
A sod-a 0.1033 | 28.26 | 0.1943 || 4,6,12,17,28, 38, 52, 64, 84, 104 410 38312312
gzd, TS 0.6046 | 2.1549 | 0.08151 || G: 4,12, 36, 72, 122, 188, 264, 354, 456, 5(10= 8) 2079 | 72.%.73.73.73.73
cds TP 0.52360 | 2.7207 | 0.08333 || G: 4,12, 30, 58, 94, 138, 190, 250, 318, 30¢= 6) 1489 6.6.6.6.67.%
nbo, S3 0.39270 | 3.1416 | 0.08602 || 4,12, 28, 50, 76, 110, 148, 194, 244, 302 1169 | 6,.6,.62.62.8,.8;
bto (a = 60°), 0.2687 | 3.0042 | 0.09129
(unstable) Y8 (@~ 705) || 0.2551 | 2.7251] 0.09217 3,6,12, 24,43, 64, 91, 124, 160, 202 730 10.10,.10,
ths (o = 60°), 0.2327 | 4.3099 | 0.09706
v (@~ 705°) | 02207 | 3518 | 0.09817 3,6,12, 24, 38, 56, 77, 102, 129, 160 608 10,.104.104
srs 0.1851 | 3.4281| 0.1072 || 3,6,12, 24, 35, 48, 69, 86, 108, 138 530 105.105.105
srs-a 0.0555 | 9.739 | 0.1882 || 3,4,6,8, 12, 16, 24, 32, 48,54 208 3.205.205

Table 2a. (Continued on next page.)

8T



D D3 s 061685 | 2.4674 | 0.076603 24, 144, 456, 1056, 2040, 3504, 5544, 8256, 11736, 16080 48,841 396.4168 512
G: 16, 80, 240, 544, 1040, 1776, 2800, 4160, 5904, 8080-= 24) 24,641 4112 68
Ay 0.55173 | 3.1780 | 0.078020 || 20, 110, 340, 780, 1500, 2570, 4060, 6040, 8580, 11750 35,751 360 4120 510
A; 0.44138 | 1.7655 | 0.077559 || 10, 50, 150, 340, 650, 1110, 1750, 2600, 3690, 5050 15,401 440 g°
74D} 0.30843 | 4.9348 | 0.08333 || 8,32, 88, 192, 360, 608, 952, 1408, 1992, 2720 8361 424 64
4 Ay 0.17655 | 6.3558 | 0.08827 || 5,20, 50, 110, 200, 340, 525, 780, 1095, 1500 4626 610
A 0.10593 | 42.4 0.1221 || 5,15, 35, 70, 125, 205, 315, 460, 645, 875 2751 45.6°
Af 0.03354 | 23.82 | 0.1398 || 5,8, 20,32, 80, 116, 170, 236, 380, 482 1530 3512
T || 0.3084 | 4.935 | 0.08333 || G:4,12, 36,92, 200,384, 664, 1056, 1576, 2240= 8) 6265 83.83.83.83.84.%
S4 0.1542 | 3.855 | 0.08692 || 4,12, 36,84, 172, 292, 468, 692, 988, 1348 4097 | 87.8,.85.85.85.85
(unstable) Vi || 0.1187 | 5.814 | 0.09333 || 4,12, 36, 74, 136, 228, 352, 518, 732, 994 3087 | 85.85.87.87.87.8;
Y30 || 0.06793 | 6.458 | 0.09736 || 3, 6,12, 24, 48, 90, 146, 230, 336, 478 1374 12,.12,.12,
Ds,As 0.46526 | 4.5977 | 0.075786|| 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 119720, £3200 463,715 3240 4520 520
As 0.37988 | 5.9218 | 0.077647|| 30, 240, 1010, 2970, 7002, 14240, 26070, 44130, 70310, 20675 272,755 31204300 515
D 0.32899 | 2.4982 | 0.075625 || G: 32, 242, 992, 2882, 6752, 13682, 24992, 42242, 67232, T0206- 10) 261,051 4480 16
D 0.28736 | 5.2638| 0.07784 || 16, 120, 480, 1410, 3296, 6712, 12256, 20770, 33056, 50232 128,349 480 640
A 0.25543 | 2.1243 | 0.076922 || 12,72, 272, 762, 1752, 3512, 6372, 10722, 17012, 25752 66,241 480 g6
VA 0.16449 | 9.1955 | 0.083333|| 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290, 14002 36,365 490 6°
Al 0.08514 | 8.8223 | 0.08646 || 6,30, 90, 240, 510, 1010, 1770, 2970, 4626, 7002 18,255 61°
5 AL 0.035174| 254.9 | 0.1349 || 6,21, 56,126, 252, 461, 786, 1266, 1946, 2877 7798 49 68
Al 0.008055| 35.81 | 0.1313 || 6,10, 30, 50, 150, 230, 390, 570, 1050, 1420 3907 310125
T2 || 0.16449 | 9.1955| 0.08333 || G:4, 12, 36, 100, 258, 610, Pt = 10) ? 8,.85.8,.85.105.%
Ss 0.05140 | 9.310 | 0.08666 || 4,12, 36, 100, 244, 514, 980, 1682, 2724, 4162 10,459 8.8.8.8.8,.8;
Ve || 0.04786 | 8.4884 | 0.08753 || 4,12, 36, 100, 248, 522, 988, 1724, 2800, 4324 10,759 8.8.8.8.8,.8;
(unstable) | YE© || 0.03516 | 254.8 | 0.1350 || 3,6,12, 24,48, 90, 168, 312, 556, 914 2134 12,.12,.12,
T || 0.02478 | 6.2578 | 0.09038 || G:4, 12, 36, 100, 268, 71 = 14) ? 82.82.85.87.1130.%
v || 0.02478 | 6.016 | 0.09037 || 4,12, 36,100, 220, 428, 752, 1254, 1944, 2924 7675 8.8.8.8.8,.8;
v || 0.01858 | 11.19 | 0.09605 || 3,86,12, 24, 48, 90, 168, 312, 532, 872 2068 12,.12,.12,

Table 2b. (Continued on next page.)
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point symbol

VNSS3D €% 'ZLI139 d ‘A31M3g L

packing | net A (S] G coordination sequencegthroughk = 10) tdio vertex symbol
Es. N6 0.37295 | 7.0722 | 0.074347|| 72 1062, 6696, 26316, 77688, 189810, 405720, 785304, 1408104 2,900,773 | 372041800536
E; 0.33151 | 2.6521 | 0.074244 | 54,828, 5202, 20376, 60030, 146484, 312858, 605232, 1634830060 4,065,931 | 327041134527
De 0.32298 | 8.7205 | 0.075591 || 60, 792, 4724, 18096, 52716, 127816, 271908, 524640, 938582432 3,520,837 | 38041260530
D¢ 0.27252 | 5.1677 | 0.07459 || 32,332, 1824, 6776, 19488, 46980, 99680, 192112, 343588767 1,289,685 4480 616
As 0.24415 | 9.8401 | 0.077466 | 42,462, 2562, 9492, 27174, 65226, 137886, 264936, 472626598 1,775,005 | 32104630521
Dj 0.16149 | 4.3603 | 0.075120|| G: 64, 728, 4032, 14896, 42560, 102024, 215488, 413792, B371230120 (1= 12) 244,069 41984 632
A 0.13453 | 2.5511 | 0.076490| 14,98, 462, 1596, 4410, 10374, 21658, 41272, 73206, 122570 275,661 434 67
L 0.31853 | 2.4648 ? 32,7 ? ?
78 0.08075 | 17.441| 0.08333 || 12, 72,292, 912, 2364, 5336, 10836, 20256, 35436, 58728 134,245 450 g5
Ad 0.03844 | 19.681 | 0.08525 || 7,42, 147,462, 1127, 2562, 5047, 9492, 16317, 27174 62,378 621
A 0.010459 | 1836.5| 0.14712 || 7,28, 84, 210, 462, 924, 1715, 2996, 4977, 7924 19,328 414 67
Ay 0.001774| 99.91 | 0.1259 | 7,12,42, 72,252,402, 777, 1182, 2457, 3492 6,496 315,126
T || 0.08075 | 17.441| 0.08333 || G: 4, 12,36, 100, ?(1 = 12) ? ?
Se 0.01514 | 9.78 | 0.08601 || 4,12, 36, 100, 276, 660, 1484, 2920, ? ? 8.8.8.8.8,.8;
(unstable) V0 || 9.740e-3| 19.79 | 0.09322 || 4,12, 36, 100, 276, 610, 1284, 2346, 4152, 6792 15,613 8.8.8.8.8,.8,
Y20 || 4.640e-3 | 24.15 | 0.09479 || 3,6,12, 24,48, 90, 168, 312, 580, 1046 2290 12,.12,.12
E7, A7 0.29530 | 13.810 | 0.073231 || 126 2898, 25886, 133506, 490014, 1433810, 3573054, 79025942206, 29896146 59,400,241 | 3201645796 563
D3 0.26170 | 4.7248 | 0.07273 || 64,1092, 8064, 37842, 131328, 371940, 906816, 19768980384 7344164 14,724,257 417926224
E3 0.21578 | 4.1872| 0.073116|| 56, 938, 7688, 39746, 150248, 455114, 1171928, 26686108852 10585514 20,601,723 41512 628
D7 0.20881 | 16.749 | 0.075686 || 84, 1498, 11620, 55650, 195972, 559258, 1371316, 2999683956, 11193882 22,392,019 | 384042604542
A 0.14765 | 18.899 | 0.077396 || 56, 812, 5768, 26474, 91112, 256508, 623576, 1356194, 2203625692 10,089,705 | 333641176528
D3 0.07382 | 4.5687 | 0.07493 || G:128, 2186, 16256, 75938, 263552, 745418, 1817216, 395942848, 14704202(1 = 14) | 29,487,171| 48064654
A 0.06542 | 3.0596 | 0.076187 || 16, 128, 688, 2746, 8752, 23536, 55568, 118498, 232976 52287 871,661 4112 g8
LS 0.11738 | 2.9000 ? ? ? ?
z’ 0.03691 | 33.498 | 0.083333| 14,98, 462, 1666, 4942, 12642, 28814, 59906, 115598, 209762 433,905 434 67
AS 0.01636 | 30.163 | 0.08442 || 8,56, 224, 812, 2240, 5768, 12656, 26474, 49952, 91112 189,303 628
A 2.839%-3 ? ? 8, 36, 120, 330, 792, 1716, 3432, 6434, 11432, 19412 43,713 420 68
Ay 3.586e-4 | 137.9 | 0.1214 || 8,14, 56, 98, 392, 644, 1400, 2198, 5096, 7532 17,439 31127

Table 2c. (Continued on next page.)
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T || 0.05673 | 15.87 | 0.08076 || G:4,12, 36, 100, 276, 7T = 20) ? ?
T || 0.03691 | 33.50 | 0.08333 || G: 4,12, 36, 100, 276, {1 = 14) ? ?
S7 || 4.035e-3| 24.15 | 0.08525 || 4,12, 36,100, 276, ? ? ?
7 (unstable)| V&0 || 3.730e-3| 15.00 | 0.08702 || 4,12, 36, 100, 276, ? ? ?
V0 || 2.424e-3| 32.39 | 0.09267 || 4,12, 36,100, 276, 724, 1676, 3592, 7012, 12868 26,301 8.8.8.8.8,.8;
Y80 || 1.652e-3| 18.95 | 0.08854 || 3,6,12,24,48,? ? ?
Y0 || 1.074e-3| 36.73 | 0.09365 || 3, 6,12, 24, 48, 90, 168, 312, 580, 1046 2290 12,.12,.12,
E%r, E;\38 0.25367 | 4.0587 | 0.071682 %214921229%0]’.2516618400,386%1)960, 4113840, 14905440, 44480400, 98687 1,006,201,681] 367204218405120
Ds 0.12683 | 32.470 | 0.075914 é%séi%’ 25424, 149568, 629808, 2100832, 5910288, 1466182641008, 123,302,600 | 3134444816 556
Ag 0.08456 | 32.993 | 0.077391| 72,1332, 11832, 66222, 271224, 889716, 2476296, 60778867416, 27717948 51,019,255 3504 42016 536
D 003171 | 81174 | 0.074735 % 12;;32, fgg% ezsig)o, 384064, 1614080, 5374176, 150976081329, 83222784, 51/ 300 g 432512 128
Ay 0.02969 | 3.6658 | 0.075972|| 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864148,8B2 3,317,445 414469
LS 0.08253 | 3.1422 ? ? ? ?
8 78 0.01585 | 64.939 | 0.083333 || 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688 4580 1,256,465 4112 68
Ay 6.599e-3| 65.99 | 0.0838 || 9,72,324,1332, 4104, 11832, 28674, 66222, 136404, 271224 520,198 636
A 7.128e-4| ? ? 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24309, 43749 92,368 427.6°
Ad 6.759e-5| 301.1 | 0.1178 || 9,16, 72,128, 576, 968, 2340, 3768, 9648, 14716 32,242 328 128
T || 0.01585 | 64.94 | 0.08333 || G:4,12, 36, 100, 276, 724, A1 = 16) ? ?
Ss || 9.903e-4| 28.28 | 0.08452 || 4,12, 36,100, 276, 724, ? ? ?
(unstable) s~ 5 50064 | 49.89 | 0.09206 || 4, 12, 36, 100, 276, 724, 1908, 4390, 9876, 10682 37,009 8.8.8.8.8,.8
Y0 || 2.327e-4| 87.31 | 0.09266 || 3,6, 12, 24, 48, 90, 168, 312, 580, 1046 2290 12,.12,.12,

Table 2d. (Continued from previous pages.) Charactessiicsome exemplary lattice and uninodal nonlattice packargl nets through & 8, ordered from
dense to rare in each section. Values in italics are (as fawvaknow) new. At each n, bold double underlined values aregoréo be optimal (maximum or
minimum) amongst appackings and bold single underlined values are proven to be optimmabagst alllattices Bold values (without underlines) are the
best knownvalues amongst appackings and bold undertilded values are the best known values asta@lidattices The point symbol is provided for those
nets witht > 5; the vertex symbol is provided for those nets with 4. Nets whose coordination sequences are identified withaae generalized nets,
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not contact graphs (see, e.g., the second-to-last pardycd|§2.3); in these cases, the kissing numbes indicated in parentheses after the coordinations

sequence. In all other cases, the first element of the comidimsequence is the kissing numbeNote also that the2° and Y5 nets are constructed with

a = cos %(1/n) for n > 3 (see§3.4.5); in addition, the barycentric constructions with= 60, corresponding tdto andths, are also listed for n= 3.
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‘ n ‘ packing H A ‘ © ‘ G H T
Ao 0.14577 | 9.0035 | 0.07206 || 272
Dg 0.14577 | 4.3331| 0.07110| 144
D} 0.01288 | 8.6662 | 0.07469 | 18
9 AS 0.01268 | 4.3889 | 0.07582| 20
A 0.08447 | 4.3402 | 0.07207 || 90
LS 0.08149 | 4.2686 ? ?
z° 0.006442 | 126.81| 0.08333| 18
Ao 0.09202 | 12.409 | 0.07150| 336
DJo 0.07969 | 7.7825| 0.07081| 180
10| A} 0.005128 | 5.2517 | 0.07570| 22
LSo 0.02995 | 5.1545 ? ?
70 0.002490 | 249.04 | 0.08333| 20
Ki1 0.06043 ? ? 432
s 0.05888 | 24.781 | 0.07116 || 438
D}, 0.04163 | 8.4072 ? 220
11| A} 0.001974 | 6.2813 | 0.07562 | 24
A 0.04740 | 55983 | 0.07025 | 132
LS, 0.04124 | 5.5056 ? ?
! 9.200e-4 | 491.40 | 0.08333| 22
Ki2,K;i, || 0.04945 | 17.783 | 0.07010 | 756
N 0.04173 | 30.419 | 0.07058 | 648
D1, 0.02086 | 15.209 ? 264
12 AL 7.271e-4 | 7.5101 | 0.07557| 26
LS, 0.004306 | 7.4655 ? ?
712 3.260e-4 | 973.41| 0.08333 | 24
Kis 0.02921 ? ? 918
N 0.02846 | 60.455 | 0.07009 || 906
Alg 2.569e-4 | 8.9768 | 0.07553| 28
13 Al ? 7.8641 ? 368
LSy 0.002255 | 7.7621 ? ?
73 1.112e-4 | 1934.6 | 0.08333| 26
g 0.02162 | 98.876 | 0.06946 || 1422
AL, 8.740e-5 | 10.727 | 0.07551 || 30
14 A, ? 9.0066 ? ?
LS, 0.005221 | 8.8252 ? ?
/i 3.658e-5 | 3855.6 | 0.08333 | 28
A1s 0.01686 | 202.91 | 0.06892 || 2340
Alg 2.870e-5 | 12.817 | 0.07549| 32
15 | A% ? 11.602 ? ?
LSs 6.206e-5 | 11.005 ? ?
VA 1.164e-5 | 7703.1| 0.08333| 30

Table 3a. (Continued on next page.)
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‘ n ‘ packing H A €] G H T
N6 Nig 0.01471 96.500 | 0.06830 | 4320
16 Aig 9.116e-6 | 15.311 | 0.07549 34
718 3.591e-6 | 15,422 | 0.08333 32
A17 0.008811| 197.72 | 0.06822| 5346
A 2.807e-6 | 18.288 | 0.07549 36
17
A%, ? 12.357 ? ?
zx7 1.076e-6 | 30,936 | 0.08333 34
Ais 0.005928 | 301.19 | 0.06792| 7398
18 Aig 8.396e-7 | 21.841 | 0.07550 38
718 3.134e-7 | 62,158 | 0.08333 36
A1o 0.004121| 607.62 | 0.06767 | 10668
Aig 2.443e-7 | 26.082 | 0.07552 40
19 o
AL ? 21.229 ? ?
719 8.892e-8 | 125,077 | 0.08333 38
A2o 0.003226 | 889.86 | 0.06731|| 17400
Aso 6.924e-8 | 31.143 | 0.07553 42
20
Al ? 20.367 ? ?
720 2.461e-8 | 252,020 | 0.08333 40
No1 0.002466 | 1839.5 | 0.06701| 27720
Ay 1.914e-9 | 37.185 | 0.07555 44
21
Al ? 27.773 ? ?
721 6.651e-9 | 508,417 | 0.08333 42
Noo 0.002128 | < 34268 ? 49896
Ny 2.952e-4 | <27.884 ? 1782
22
Ay 5.168e-10| 44.395 | 0.07558 46
722 1.757e-9 | 1,026,792| 0.08333 44
A23 0.001905 | < 76090 ? 93150
Nsg 2.788e-4 | < 15322 ? 4600
23
Asq 1.364e-10| 53.000 | 0.07560 48
733 4.543e-10| 2,075,774| 0.08333 46
N2a, N5, || 0.001930 | 7.9035 | 0.06577 || 196560
24 A, 3.523e-11| 63.269 | 0.07563 50
724 1.150e-10| 4,200,263| 0.08333 48

Table 3b. (Continued from previous page.) Characteristicsome exemplary dense lattices

23

for n=9to 24, with< denoting a bound, not an exact value; see Table 2 legend farigpe
tion of notation. Note that the covering radii 6fi3 throughA15 and A17 throughAz; are,
respectively{v/26, \/80/3,/28} and{\/26,/80/3,1/28, /28, 1/29} (this was verified nu-
merically in the present work; lower bounds on these valwésch turn out to be sharp, are
given in Conway & Sloane 1998).
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3. Rare nonlattice packings and nets for n < 8. We now turn our attention to the
problem of infiniterare sphere packings, with packing dendibyver than that of the corre-
sponding Cartesian packing, and the closely related pmobfenfinite nets. Fon = 2, this
problem is essentially trivial. Far = 3, the richness of solutions to this problem is fasci-
nating and, due to the intense interest in crystallograptuiecctures with various desirable
chemical properties, has been exhaustively studied aatbgated. Fon > 3, relatively few
regular constructions are known, and it appears as if wraderoic interest there has been
has not yet led to any applications of significance in sciemmmbengineering; Part IIl of this
work intends to change this, thus motivating the preseimatystu

Interest inn-dimensional space groups and symmetries dates back tanéteenth cen-
tury, with the work of Hessel, Bravais, Gadolin, FrankemmeBarlow, Rodrigues, Mobius,
Jordan, Sohncke, Fedorov, Schonflies, Fricke, and KleiistoHcal accounts of this early
work, as well as several follow-on mathematical developimeslated to space groups and
symmetries, are available in Brown et al. (1978) and Schevdrerger (1980). Much of the
related work in the field of geometry was developed by Cox&t@70, 1973, 1974, 1987,
1989). Despite this intense interest, there are very fevi@xponstructions of regular rare
sphere packings far > 3 available today, outside of very short treatments of thmgesi by
O’Keeffe (1991b) and Beukemann & Klee (1992), discussedvel

As mentioned in the abstract and explored in depth in Partéitain emerging engi-
neering applications now motivate the further developnaatdeployment of quasi-infinite
n-dimensional nets, with a particular focus on structured méth low coordination number
and high topological density. Such nets are well suitedHerrapid spread of information in
switchless computational interconnect systems with agedunumber of wires and, thus, re-
duced cost. In such systems, a logical network with 3 may easily be designed and btilt
and, as we will see, there are significant potential beneifitsd doing. We are thus motivated
to revisit the problem of the design of structured nets watlv toordination number. Note
that none of the lattice alternatives to the Cartesiarcktliscussed in 82 have a coordination
number lower than that of the corresponding Cartesiarc&gtti= 2n. However, forn = 3,
there is a wide range of stable and unstable nonlattice pgskhat lead to such nets; as
shown below, many of these packings and nets generalizeafigtio higher dimensions.

3.1. Net terminology . The terminology used to discuss 3D nets, most of which gener-
alizes readily to the discussiondimensional nets, has been clarified significantly over the
last decade, and is now quite precise.

Recall first the measures defined in 81, includingdberdination numberthe coordi-
nation sequenceand ak-hop measure dbcal topological densitygiven by the cumulative
sum of all nodes reached withikhops from origin, denotetdly (Tables 1 and 2 list this quan-
tity for k = 10). O’Keeffe (1991a) defines another, sometimes prefdeee, e.g., Grosse-
Kunstleve et al. 1996) measure global topological densitytd = limy_.., tdy/k", which
reveals the rate of growth odlx with k in the limit of largek. [For a uninodah-dimensional
net,td may be found by representitfighe coordination sequence as(an- 1)’th-order poly-
nomial in the number of hopls then taking the leading coefficient of this polynomial and
dividing by n.] Despite some impressive efforts in representing coaitthn sequences with
such polynomials (see, e.g., Conway & Sloane 1997, and teeereces contained therein),
the measured is currently unknown for most of the nets discussed here. Awater of
computational tractability, we thus resort in the preseagey to the tabulation of the local
topological density measuril; g, as this measure is much easier to compute.

BRecall, e.g., the “hypercube” computational interconmsgstem introduced several years ago; though designed
with a logical network wittn > 3, the hypercube, like most computational interconneeteties deployed today, is
significantly hampered by its inherent dependence on a §lant¢opology.

140r by approximatingthis coordination sequence as @m- 1)'th-order polynomial for largé, if such a poly-
nomial does not fit exactly.
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Our attention in this paper is focused almost exclusivelgquilibrium packinggthat
is, on sphere packings which, if unperturbed, can bear cesspre loads applied at the edges
of a packing that is built out to fill a finite convex domain) aheir correspondingquilib-
rium nets(which are constructed with tensile members connectingaséaeighbor nodes,
and can bear tensile loads applied at the edges of a finitegatomain}>16. Equilibrium
packings fall into two catagories: stable (thatis, sphaekmgs which, if perturbed, oscillate
about their equilibrium configurations, and return to thesefigurations if there is damping
present in the system) and unstable (that is, sphere packinigh depart from equilibrium
if perturbed); we consider both.

After years of conflicting terminology in the literature opts, the concepts afycles
rings, strong rings tilings, natural tilings point symbolsandvertex symbolfave, in 3D,
finally crystallized. The reader is referred to Blatov e{2009) and the references contained
therein for description of this modern terminology, as veslinumerous cautions concerning
the conflicting nomenclatures adopted elsewhere in thagheal literature. In short:

e A cycleis a sequence of nodes in a net, connected by edges, sucheHhast and last
nodes of the sequence coincide, while none of the other nodiee sequence appears
more than once.

A cycle sumof cycles A and B, is the union of those edges in either A or Brima both.

A ring is a cycle that is not the sum of two smaller cycles.

A strong ringis a cycle that is not the sum of any number of smaller cycles.

A tiling of R3 by a 3D net is simply the dissection of 3D space into volumessgHaces,

which in general may be curved (agnimal surfaceslike soap bubbles; see, e.g., Sadoc

& Rivier 1999), are bounded by cycles of the net. A 3D net galiyeadmits many tilings.

e Thedual of a tiling is the unique new tiling obtained by placing a nesvtex inside each
original tile and connecting the vertices of adjacent tilénat is, with shared faces) in
the original tiling with edges. If a tiling and its dual aresigtical, the tiling is said to be
self-dual The dual of a dual is the original tiling.

e A natural tiling of R3 by a 3D net is a tiling with the smallest possible tiles sucit the
tiles have the maximum combinatorial symmetry and all tlee$aof the tiles are strong
rings. A 3D net ofteh’ admits a unique natural tiling. If a tiling and its dual arettbo
natural, the pair is referred to asitural duals If a natural tiling is self-dual, it is said to
benaturally self-dual

e Thepoint symbobf a uninodal net, of the formA@.BP.CC. . ., indicates that there aeepairs
of edges touching the node at the origin with shortest cyaldsngthA, b pairs of edges
touching the node at the origin with shortest cycles of lafwith B > A), etc. Note that
the sum of the superscripts in a point symbol totgts— 1) /2.

e Thevertex symbobf a uninodal net, of the form,.By.Cc. .., indicates that the first pair
of edges touching the node at the origin laashortest rings of length, the second pair
of edges touching the node at the origin lheshortest rings of lengtB, etc. If for any
entry there is only 1 such shortest ring, the subscript ipsegsed; if for any entry there is
no ring, a subscript is used. The entries are sorted such that smaller ringsshee liirst,
and when two rings of the same size appear, the entry withrifadlex subscript is listed
first. In the special case af= 4, the six entries of the vertex symbol are listed as three

15A family of structures with both tensile and compressive rhers, known agensegrity might be said to cover
the gap between purely compressive sphere packings anly pemsile nets. The mathematical characterization of
tensegrity systems in 3D is now precise, due largely to thekwb Skelton & de Oliveira (2009). An interesting
extension of the present study would be to generalize susedgity systems to > 3 dimensions.

18For the purpose of the applications studied in Parts | alyevi do not actually use the property of mechanical
equilibrium of the corresponding structure; this propentgy rather be considered as a convenient means to an end
when designing a regular packing or net. Several nets disdus the literature (see, e.g., Wells 1977, page 80) are
not equilibrium sphere packings, and might be interestingonsider further.

7Unfortunately, not all 3D nets have natural tilings, and edmave multiple natural tilings; §3 of Blatov et
al. (2007) discusses this issue further.
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pairs of entries, with each pair of entries correspondingjoosite pairs of edges, and are
otherwise again sorted from smallest to largest. Note trehtimber of entries in a vertex
symbol ist(t—1)/2.

The concepts otycles rings, strong rings point symbolsandvertex symbolgxtend im-
mediately ton dimensions; for practical considerations (specificalgcduse the number of
entries in a vertex symbol gets unmanageable for laxgee list the point symbol in Table 2
wherevern > 5, and the vertex symbol whete< 4. The extension of the tiling conceptio
dimensions is more delicate, and is discussed further . 83.

Following Delgado-Friedrichs et al. (2003a,b), tlegularity of a 3D net may now be
characterized precisely. In short, consider a 3D net ittinds of vertex andy kinds of
edge and whose natural tiling is characterized kinds of face and kinds of tile. Delgado-
Friedrichs & Huson (2000) introduced a clear and self-csiesit method for characterizing
the regularity of such a net simply by forming the argays examining the 4-digit number
so formed, referred to as thiansitivity of the net, the most “regular” 3D nets are generally
those with the smallest transitivity.

Finally, aminimal netis a net with the minimum possible number of vertices and sedge
in its primitive cellt8; that is, upon deletion of any further edges in the primitied, the re-
sulting net breaks into multiple disconnected structuBesikemann & Klee (1992) establish
that there are only 15 such minimal nets in 3D. Delgado-Fitad & O’Keeffe (2003) define
a 3D net aarycentricif every vertex is placed in the center of gravity of its ndighs (to
which it is connected by edges). Bonneau et al. (2004), in, testablish that 7 of the 15
such minimal nets in 3D haveollisions that is, when arranged in barycentric fashion, the
location of two or more vertices coincide (and, thus, theimét a sense degenerate). Of the
8 remaining minimal nets without collision, five are uninbda

3.2. 2D nets. Consider first the development of uninodal 2D nets with lowrdmation
number. Start from the triangulafAf = A;) lattice (see §1) and perform a red/black/blue
coloring of the nodes such that no two nearest-neighborsiatethe same color. If we re-
tain only the red and black nodes, we are left with ltlo@eycomb packin(see Figure 1.1e),
and the corresponding net is an array of hexagons. The cwioin number of this stable
sphere packing is= 3, which is less than that of the 2D square pacKing 4); this implies
fewer wires in the corresponding computational intercabapplication. Unfortunately, the
topological density of this net is quite poor, wiith o = 166 (that is, with information spread-
ing from one node to only 165 others after a message progrd€s@ops in the network
application). We are thus motivated to explore other waysaoistructing structured (that
is, easy-to-build and easy-to-navigate) nets with low dowtion number (that is, with low
cost) but high topological density (that is, with a fast sjtef information).

Note that the honeycomb packing has a packing density whilelss than that of the cor-
responding triangular and square lattices discussedquslyi (see Table 2). If minimization
of packing density is the go] then the honeycomb packing may &egmentedby replac-
ing every sphere with a set of three spheres in contact, eathset forming an equilateral
triangle which touches the neighbors in exactly the samatiogs as the single sphere which
it replaces in the original (unaugmented) packing (see, Elgesch & Laves 1933, Figure
13). The packing density of the resulting stablegmented honeyconplacking is less than
2/3 that of the original honeycomb packing (see Table 2), anlddégarest uninodal sphere
packing available in 2D.

3.3. A List of Twelve “highly regular” uninodal 3D nets . There are far too many 3D
nets to review them all here. We thus identify a List of Tweighly “regular” (as defined
in 83.1, via their transitivity) uninodal 3D nets upon whiafe will focus our attention and

187 primitive cellof a net is the smallest fundamental volume (e.g., hypejdhia¢, when repeated as an infinite
array in all directions with zero spacing, generates the net

19Note that, forn > 3, the authors are actually unaware of any practical agjitaother than mathematical
curiosity, for which minimization of packing density is @sificant goal.
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which, following Delgado-Friedrichs et al. (2003a,b), wendte (listing from dense to rare):

1. fcu: face-centered cubic (FCC), 5. nbo: NbO, 9. cds CdSQ,
2. bcu: body-centered cubic (BCC), 6. dia: diamond, 10. bto: B20s3,
3. pcu: cubic, 7. sod sodalite, 11. ths: ThSk,
4. qtz: quartz, 8. gzd: quartzdual, 12. srs. SrSp.

See Table 2 for the common names, associated packings, sruh&eacteristics of eadh
These twelve nets have been studied thoroughly in the titeraincluding the landmark
work of Wells (1977, 1979, 1983, 1984) and scores of impagablications since, including
Koch & Fischer (1995, 2006) and the numerous referencesitwd therein; space does not
allow a comprehensive review of this broad body of literatioere, nor even a comprehensive
analysis of these twelve well-studied nets. Suffice it tolsane that included in our List of
Twelve are the Segular nets (that is, of transitivity 1111)Qcu, pcu, nbo, dia, andsrs,
and the lquasiregularnet (of transitivity 1112)fcu, as well as 2 of the 14emiregular
nets (of transitivity 11s), qtz andsod (both of which have transitivity 1121), as discussed
in O’'Keeffe et al. (2000) and Delgado-Friedrichs et al. (28®). Also included in this list
are the 5 uninodal minimal nets without collisigugu, dia, cds srs, andths, the first 4 of
which are naturally self-dual, as discussed in Bonneau. §2@04, Table 1); note thatds

is of transitivity 1221, andhs is of transitivity 121#%. The remaining 2 nets on our List
of Twelve, gzd (transitivity 1211; see Delgado-Friedrichs et al. 2003t) to (transitivity
1221; see Blatov 2007), are included because of their clusetsral relationship to the
others, as discussed further in §3.4. We also note that fowuo List of Twelve,qgtz, gzd,
bto, andsrs, arechiral (that is, these nets twist in such a way that the nets andréfgctions
are not superposable).

The 12 remaining semiregular nets (of transitivityd)bf Delgado-Friedrichs et al. (2003b,
Table 1) are the next natural candidates in this taxondmy,(crs, reo, andrhr might be
of particular interest), perhaps followed by the 28 binaetide-transitive nets (of transitivity
21rs) of Delgado-Friedrichs et al. (2006, Table 1) and the 3 baedinimal nets without
collision (of transitivity 2222, 2211, and 2321) of Bonneziual. (2004, Table 1) [see also
Delgado-Friedrichs & O’Keeffe (2007)]. Note that just haffthe List of Twelve considered
here (specifically, in order of frequendia, pcu, srs, ths, nbo, andcds) account for 66%
of the 774 uninodal metal-organic frameworks (MOFs) tatadan the Cambridge Struc-
tural Database (CSD), as reviewed by Ockwig et al. (2008} thdicating the prevalence in
nature of several of the structures considered here.

The idea of augmentation, introduced in 83.2, extends tjrex many 3D nets in order
to reduce packing density. For example, in the (stable)ipgskelated to thdia andsodnets
(discussed furtherin §3.4.1 and 83.4.3 respectively)y bbivhich have coordination number
4, we may replace each sphere with a set of four spheres iaadpetich such set of spheres
forming a tetrahedron, creating what is referred to asaihgmented diamon(tlia-a) and
augmented sodalitgsod-g nets. In the case of the augmentation of the packing retattuk
dia net, each tetrahedral set touches the neighbors in exhetlseime locations as the single
sphere which it replaces in the original (unaugmented) ipgctsee Heesch & Laves 1933,
Figure 12). In the case of the augmentation of the packirsdedlto thesodnet, as the angles
between the 4 nearest neighbors of any node are not unifotine 5od net, each tetrahedral
set is slightly larger than the single sphere which theyaepin the original (unaugmented)
packing, and the contact points are slightly shifted (Ofe&991b); note that the packing
associated with theod-anet is the rarest uninodal stable 3D packing currently kno@n
the other hand, in the augmentation of the (unstable) pgckiated to thers net, which has
coordination number 3, we may replace each sphere with af $kte® spheres in contact,
each such set of spheres, as in the augmentation of the lmmbygacking, forming an

20Again, clear drawings of each of these nets are availabletmtircsr.anu.edu.au/nets/fcu , Where
“fcu ” may be replaced by any of the lowercase boldface threerl&tentifiers given here.

21ps illustrated in Bonneau et al. (2004, Figure 3), a selfldiling of ths may in fact be constructed; this tiling
has transitivity 1221.
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equilateral triangle and touching the neighbors in exaittey same locations as the single
sphere which it replaces in the original (unaugmented) ipgctsee Heesch & Laves 1933,
Figure 10); note that the packing associated with the riegidts-anet is the rarest uninodal

unstable 3D packing known.

Comparing augmented honeycomb to honeycaidsa (transitivity 1222) todia, sod-

a (transitivity 1332) tosod andsrs-a (transitivity 1221) tosrs, it is seen that augmentation,
while reducing the packing density(see Table 2), also significantly reduces both the topo-
logical densitytdio, and the regularity of the resulting net. Thus, the procéasgmentation
appears to be of little interest for the purpose of develggiificient computational intercon-
nects. Note that Fischer (2005) and Dorozinski & FischeO@G&Ghow that the process of
augmentation can be repeated indefinitely in order to olfteain-uninodal) sphere packings
of arbitrarily low packing density.

Finally, there are two other 3D nets which, though less @gillan our List of Twelve,
are worthy of “honorable mention"hexagonal close packin@cp, transitivity 1232) and
lonsdaleite(lon, transitivity 1222). As hinted by their identical packingrisities (see Table
2a), hep is closely related tdcu, andlon is closely related talia; curiously, both have
slightly highervalues otd;o than do their more regular cousins. The relations betwesseth
two pairs of packings is readily evident when they are cargid as built up in layers, as
introduced in the second paragraph of §2.4 and discusstzfurelow.

TheAgs lattice (a.k.a. FCC, corresponding to fiee net) may be built up as an alternating
series of three 2D triangulaA{) layers, offset from each other in the fombcabc .., with
the nodes in one layer over the holes in the layer belwg; is built up similarly, but with
two alternating layers, offset from each other in the faipab. . .

Similarly, the sphere packings corresponding to diee and lon nets may be built up
as alternating series of approximately 2D honeycomb lagset from each other. These
honeycomb “layers” are in fact not quite 2D; if the nodes imgke layer are marked with an
alternate red/black coloring, the red nodes are raisedanbithe black nodes lowered a bit.
In both packings, the layers are offset from each other, thighlowered nodes in one layer
directly over the raised nodes in the other. In the packirrgesponding to thélia net, there
are three such alternating layers stacked in the fboabc . .; in the packing corresponding
to thelon net, there are two such alternating layers stacked in the &ab. . .

3.4. Uninodal extension of several regular 3D nets to higher dime nsions . Thefcu
net is based on thes; = Az lattice, and thus may be extendeditdimensions in two obvious
ways (that is, vigh, or Dy). Thebcu net is based on the; = A; lattice, and thus may also
be extended to dimensions in two obvious ways (vig, or D). Thepcu net is based on
theZ?2 lattice, and thus extends todimension vigZ". This section explores how most of the
other nets on the List of Twelve described above extend alyuo higher dimensions.

Itis important to recall that the nets in tB case fom > 4 turn out to be a bit peculiar,
as discussed further in §2.3; tfig° and TS° nets encountered in §3.4.7 are similar.

3.4.1. Extending dia: the A} and D;; packings . Thedia net may be obtained from the
well-known D3 packing defined in (2.5) (see also Sloane 1987), and thusdsxteaturally
to n dimensions aB;;. However, there is an alternative construction ofdieenet, described
below and denoted,, which is equivalent td; for n = 3 but extends tm dimensions
differently. In fact, a third extension of thaia net ton dimensions, th&/2° construction, is
introduced in §3.4.6. These alternative extensions ofltaenet ton dimensions, with low
coordination number, are perhaps better suited Barfior many practical applications. We
thus stress that names such aslimensional diamond” are parochial, as there are somstime
multiple “natural” n-dimensional extensions of a net related to a given threeedsional
crystalline structure (e.gD;, A, andV3%). For n-dimensional nets in general, we thus
strongly prefer names derived from a corresponding wefihed n-dimensional lattice or,
when such a name is not available, names evocative ofriidimensional construction; this
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preference is in sharp contrast with the names suggestetkaete (1991b).

Recall the first paragraph of 83.2. Now start from a B@g £ D3) lattice and perform
a red/black/blue/yellow coloring of the points such thattwo nearest-neighbor points are
the same color. If we retain only the red and black points, veeleft with the diamond
packing. The coordination number of this packing is- 4, which is less than that of the
3D cubic packing{ = 6), but also has a reduced topological density, as quanbfed;
(see Table 2). The diamond packing also has a packing demisith is less than that of the
corresponding FCC, BCC, and cubic lattices.

Note in general [see (2.7a)] thaf, may be defined as the union of+ 1 shiftedA,
lattices, which is analogous to the property [see (2.4a)]DH may be defined as the union of
4 shiftedDy, lattices. Recall from (2.5) th&@;, which we referred to theffset checkerboard
packing was defined as the union of just 2 shifted lattices, and generates the diamond
packing in 3D (wher®3; = A3). Motivated by the previous paragraph and the first pardgrap
of 83.2, we are thus also keenly interested in the nonlgtéaiing considered in Table 1 of
O’Keeffe (1991b), denoted hefe and referred to as th&fset zero-sum packingnd which
is defined as the union of just 2 shiftéd lattices [cf. (2.5), (2.7)]:

+ =AU ([1]+An), where [1),= ar k<n, )
" 7 < i k=n+1l '

The coordination number of the regular uninodal nonlatiaekingA; is n+ 1, with these
n+ 1 nearest neighbors forming a regutadimensionasimpleXthatis, a regulan-dimensional
polytope withn+ 1 vertices—e.g., im = 3 dimensions, a tetrahedron]. The generalization
of the honeycomb and diamond packings to higher dimensiwes ¢y A/ is significant, as

it illustrates how a highly regular stable packing with adioation number lower than that
of the Cartesian lattice may be extended to dimension3. Note also that the nonlattice
packingsA} are distinct from the lattice packing$, defined in (2.8), which are generated in
a similar manner.

3.4.2. Augmenting the Al packing: A,J{ The third paragraph of 83.3 discusses the
augmentation of thé\i{ packing, replacing each sphere with a tetrahedral set ofallem
spheres. This idea extends immediately to the augmentatiamdimensions, of the
packing discussed above, replacing eaeHi(nensional) sphere with a reguladimensional
simplex ofn+ 1 smaller spheres.

3.4.3. Extending sod the TA! packing . The familiarsod net is formed by the edges
of the Voronoi tesselation of space formed by #igthat is, BCC) packing, with the nodes
of the net located at thieolesof the packing rather than at the centers of the spheres of the
packing. As noted by O’Keeffe (1991b), this constructioteexls immediately to the-
dimensional net formed by the Voronoi tesselation of spéaéheA;, packing. Constructing
the A, packing as defined in §2.4, the holes of this packing that eageest to the origin (that
is, in its Voronoi tesselation, the corners of the Vorooell which contains the origin) are
given by the(n+ 1)! permutations of the vector (see Conway & Sloane, 1998, gagé¢

1
2(n+1)

These nodal points [which, like the lattice points Aff itself, are defined in arin+ 1)-
dimensional space, but all lie in thredimensional subspace orthogonal to the veaiQr
defined in (2.6b)] are equidistant from thei# 1 nearest neighbors, and foparmutohedra

(in 3D, truncated octahediawhich tile n-dimensional space. Note that these nodal points
themselves form a uninodal sphere packing with coordinatiombert = n+ 1; due to its
relationship to theéesselatiorof space via the points of th&; packing, we thus introduce the
notation'A;; for this packing.

(-n —n+2 —-n+4 .. n)T.
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F1G. 3.1. Construction of three rare packings: (left) th& (honeycomb) net, (center) th%gO (ths) net, and
(right) the vgo (dia) net. All three constructions build from left to right in tladove figures from a basicY” or
“V” stencil, and have obvious extensions to higher dimensions

3.4.4. Extending nbo: the Sy construction . Thenbo net, a subset of thecu net, has
an obvious uninodal extension todimensions witht = 4, which may be visualized as the
contact graph formed by repeating a unit hypercube patteranainfinite array with unit
spacing (see Figure 4.3), where each hypercube itself lmpdtihs which “snake” along the
edges from thé€0,0,---,0,0) node to thg1,1,---,1,1) node, one coordinate direction at a
time; we thus suggest the symlsglto denote this construction. These two paths touch at the
opposite corners of the unit hypercube:

pathA: (0707"'>0>0)7 (0707"'>0>1)7 (0707"'>1>1)7 LN} (0>1>"'7171)> (1>1>"'7171)> and
pathB: (0707"'>0>0)7 (1707"'>0>0)~, (1717"'>0>0)~, LR (1>1>"'7170)> (1>1>"'7171)'

3.4.5. Extending ths and bto: the Y5°and Y&° constructions . The honeycomb pack-
ing A}, of coordination number= 3, contains a fundamentétshaped stencil. Asillustrated
in Figure 3.1a, starting with thi¥ stencil and adjoining translates of itself, tip to tip, loisil
up the honeycomb packing in 2D. Extending this idea to 3Dljastiated in Figure 3.1b, we
may “twist” theY stencil by 90 at each level: starting with the basicstencil in, say, the!-
€ plane, we can shift to the right (i) and adjoinY stencils twisted by 90(that is, aligned
in the e'-e plane), then shift to the right again and adjdirstencils twisted again (aligned
in the e-€? plane), etc. This construction forms ttres net in 3D, and extends immediately
to dimensiom > 3; we thus denote this constructif’.

Instead of twisting theé¥ stencil by 90 at each step, we may instead twist it by’60
This forms thebto net in 3D. As with thehcp versusfcu andlon versusdia nets in 3D, as
described at the end of §3.3, there is a bit of flexibility imis of the ordering of the the
successive twists far > 3. A highly regular net for odd, which we denoter€°, is formed
by pairing off the dimensions after the first and alternathgtwists as follows: starting with
the basicY stencil in, say, the!'-e? plane, we continue by adjoining stencils in thes!-e*
plane, then in the'-€® plane, etc. We then adjoli stencils in thee'-z53 plane, wheres3 is
the vector formed by rotating the# unit vector 60 in the direction towards®; we continue
by adjoiningY stencils in thee'-z32 plane, then in the!-z82 plane, etc. Next, we adjoiv
stencils in thee!-z32° plane, wherez23C is the vector formed by rotating the3 vector 60
further in thee?-e® plane; we continue by adjoining stencils in thee!-z12° plane, then in
theet-z32% plane, etc., and repeat (that is, with stencils again atignéhee-€? plane).

The Y29 and Y8 constructions have a parameter, denateghd defined as half of the
angle between the two top branches of thetencil (thus,a — 0° closes down thé&' to
an |, whereasa — 90° opens up the¥ to aT). The Voronoi volume of they2? and Y&°
constructions may be written as simple functionsi@fs follows:

Vygo(@) (@) Vygo()

= fv, o e
vyﬁow):fyn(amgo@} with =45 fy,(®) = (2= V2) (L+ cosm) (2 sina)"™
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FiG. 3.2.Variation of the Voronoi volume of the (Ieff° & Y& and (right) V2 & V8 packings as a function
ofaforn=2ton=8.

This relation is plotted in Figure 3.2a. The characteristitY2° and Y€ reported in Table

2 are computed fom = cos1(1/n), as marked with circles in Figure 3.2a, which maximizes
the Voronoi volume and, thus, minimizes the packing dgngih alternative natural choice
is a = 60, which results in barycentric constructionsy@P andY&°.

3.4.6. Extending dia and qtz: the V2% and VE° constructions . TheV?° andVE° con-
structions are defined in an identical manner as tW@% and YE° counterparts, with &
stencil replacing th& stencil (see, e.qg., Figure 3.1c), thus resulting in nets adbrdination
numbert = 4 instead oft = 3. These constructions lead to tili@ andqtz nets in 3D.

As with the Y2° andY8O construction, the/2° andVE° constructions have a parameter,
denotedx and defined as half of the angle between the two top branchiedfstencil. The
Voronoi volume of the/2° andVE° constructions may be written as simple functions afs
follows:

"vao(d)
"Vvﬁo(d)

() Pygo(@)

= fv, _

with o =45, fy, (a)=2"?cosa (sina)" 2.
= fv, () Vyyg0(X) }
This relation is plotted in Figure 3.2b. The characteristitV:° andVE° reported in Table 2
are computed foo = cos1(1/./n), as marked with circles in Figure 3.2a, which maximize
the Voronoi volumes and, thus, minimize the packing dgnditote that thev3® and V&°

constructions are barycentric for aoyin the range 6< a < 90°.

3.4.7. Extending cdsand gzd: the T3° and TEC constructions . The T2° and T8°
constructions are defined in an analogous manner asvffeiv2°, Y80, andve® counterparts,
and lead to thedsandqzd nets in 3D. The only difference now is that, instead of adjn
two newY or V symbols on the tips of eacti or V symbol in the previous layer, we now
adjoin a single new symbol centered atop eadrsymbol in the previous layer, appropriately
twisted; these constructions thus result in nets with coattbn number = 4. Note that the
“horizontal” and “vertical” distances between nodes irstheonstructions are equal, and that
these constructions are parameter free and barycentric.

Note that thex; direction is special in th¥?20, Y80, v20, 60 790 and T80 constructions.
These constructions are configured in this way intentignallorder to construct equilibrium
packings; however, other variations are certainly possiblote also that th¥&°, V89, and
T80 constructions involve pairing off the dimensions afterfitgt and rotating in each pair of
dimensions 60at a time, in the manner described in §3.4.5. If we follow th@e procedure
but rotate 90 at a time, we recover nets equivalent to the correspondffigVy°, andT°
nets, respectively, as defined previously.
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Note also that tha2°, V20, andT2° constructions form square layers in #3ees plane,
the es-e5 plane, thees-e; plane, etc., whereas thef, V80, and TE constructions form
triangular layers in these planes. In the resultiff, Y&, V29, andV&° nets, there are, in
fact, no edges of the net within these layers (that is, athefdges connect nodes in different
layers). On the other hand, in the resultiig’ and T8 nets, each node is connected via
edges of the net to exactly two others (natetfour or six) within these layers. As with the
peculiarD}, net discussed previously, tAg° and T8 constructions are, in fachot contact
graphs of the corresponding sphere packifiggome bonds must be cut in the corresponding
contact graphs (which, in the caseTgP, is simplyZ") in order to form ther2° and T80 nets.

3.4.8. Other extensions . Sections 3.4.1through 3.4.7 summarize several uninoghal fa
ilies of n-dimensional extrapolations of some common 3D nets; mogiexfe (unless indi-
cated otherwise, via references to existing literature)reaw. Note that O’Keeffe (1991b)
mentions two other such extensions, one correspondingtonimet and one corresponding
to thesod-g the latter of which is currently the rarest uninodal stgdaeking known fon > 3
(and which, consistent with the above developed namingemiions, we might suggest to
identify asTA;;). Beukemann & Klee (1992, page 50) mentions two extensibtiseir own
(at least, tan = 4), both related to thdia net. Judging from the vast assortment of distinct
rare sphere packings and related nets available in 3D, #ereertainlymanymore uninodal
extensions to higher dimensions of regular rare 3D packimafsare still awaiting discovery;
we have focused our attention here on what appear to be se¥e¢he most regular. The
regularity ofn-dimensional nets fan > 3 is discussed further below.

3.5. Regularity and transitivity of ~ n-dimensional nets for n> 3. Asreviewedin 83.1,
the regularity of a 3D net is defined based on its transitivityich in turn is based on the
so-called natural tiling of the 3D net. The natural tiles &f Bets have been thoroughly
characterized in the literature for all of the most regulBrrgts available. In §3.4, we de-
scribed uninodal extensions of several regular 3D netsgbdridimensions, and mentioned
that many more such uninodal nets with- 3 most certainly exist. The natural question to
ask, then, is how the concepts of regularity and transjtivétn be extended to higher dimen-
sions, so that we may differentiate between these nets antifigithose which are the most
regular.

This question is difficult to visualize in dimensions highlkan three, and requires a
symbolic/numerical description of the net to proceed. Thearising from theZ" lattice
forn=4,5,..., which is naturally tiled byn-dimensional hypercubes, is by far the easiest
starting point. Denote first the symbdlg w, x,y,z} as variables that range from 0 to 1. The
3D unit cube, denotefixyz}, has six faces{xy0,xyl,x0z x1z 0yz 1yz}. Each face, in turn,
has four edges; e.g{Qyz} has edgeg0y0,0y1,00z 01z}. Finally, each edge connects two
nodes; e.g.{00z} connects node§000,001}. The 4D unit hypercubefwxyz, has eight
3-faces,{wxy0, wxyl, wx0z, wxlz,wOyz wlyz Oxyz 1xyz}, each 3-face has six 2-faces, each
2-face has four edges, and each edge connects two nodesDTuretHypercube{vwxyz,
has ten 4-faces, each 4-face has eight 3-faces, each 3damh2-faces, each 2-face has
four edges, and each edge connects two nodes; etc.

In 3D, as reviewed in 83.1, the transitivity is based on thenber of distinct nodes,
edges, (two-dimensional) faces, and (three-dimensidited) By analogy, then, in 4D we
may define the transitivity of a net based on the number ofndishodes, edges, 2-faces,
3-faces, and (4-dimensional) tiles in the natural tilingmi&rly, in 5D, we may define the
transitivity based on the number of distinct nodes, edgdagces, 3-faces, 4-faces and (5-
dimensional) tiles in the natural tiling; etc. Via this défion, the net derived from th&*
lattice has transitivity 11111, the net derived from #fdlattice has transitivity 111111, etc.

22Note that there is a lower-symmetry form adsin 3D with four nearest neighbors per node whose contact
graph does generate thésnet; see Delgado-Friedrichs et al. (2005, Figure 1). Lowemsetry forms of othe 2°
and T80 constructions, whose nets are contact graphs, might alsb ex
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For all of the other nets with > 3 listed in Table 2, the computation of the transitivity
remains an important unsolved problem. Note that, in agtiiorresponding to a 3D net,
the (two-dimensional) faces of the (three-dimensionk}tare, in general, minimal surfaces
stretched over non-planar frames built from (one-dimemajoedges between several nodal
points defined in 3D. In a tiling corresponding to asdimensional net fon > 3, the 2-
faces of the tiles are, in general, minimal surfaces stegt@ver nonplanar frames between
several nodes defined mdimensions. [Note that the computation of such minimalaze$
in n dimensions is straightforward using standard level sehoug; see, e.g., Cecil (2005).]
Several of these nonplanar 2-faces combine to form the kaiewlof each 3-face, which
itself is not confined to lie within a 3D subspace of tikeimensional domain. Several of
these 3-faces then combine to form the boundaries of eaabej-étc.

Identification of such high-dimensional natural tilingsasparently a task that could be
readily accomplished numerically, but is, in general, etpe to be difficult to visualize.

4. Coding theory . Though the lattices that arise fromadimensional sphere packings
have connections that permeate many foundational conoeptesnber theory and pure ge-
ometry, the list of successful direct applications in sceeand engineering eFdimensional
sphere packings with > 3 is currently surprisingly shot; this list includes

e the numerical evaluation of integrals (Sloan & Kachoyan7)98

e the solution of the linear Diophantine inequalities thagen integer linear programming
(Schrijver 1986),

e the characterization of crystals with curious five-fold syatries (Janssen 1986),

e attempts at unifying the 4 fundamental forces (in 10, 11 ,6odiZnensions) via superstring
theory (Kaku 1999), and

e the development of maximally effective numerical schenzeaddress an information-
theoretic interference suppression problem known as theeWWhausen counterexample
(Grover, Sahai, & Park 2010).

Far and away the most elegant and practical applicatiardimensional sphere packings,
however, is in the framing and understandingeabr correcting codegECC9. The reader
is referred to MacWilliams & Sloane (1977), Thompson (19&3¢ss (1998), Conway &
Sloane (1998), and Morelos-Zaragoza (2006) for some congm&ve reviews of this fasci-
nating subjectA brief overview of this field is given here to emphasize tkisting practical
relevance ofi-dimensional sphere packings with> 3; we aim to augment this list of prac-
tical applications significantly in Parts Il and Il of thegzent work, based heavily on the
various extensions gf-dimensional sphere packing theory developed in this paper

To proceed, defingq [also denote®F(q)] as the set of symbols infanite field(a.k.a.Ga-
lois field) of orderq, whereq = p® with p prime, and defin€j as the set of all vectors of order
n with elements selected froRy,. The cases of particular interest in this work arelireary
fieldF, = {0,1}, theternary fieldFs = {0, 1,2}, and thegquaternary field* F4 = {0, 1, w, @},
where, as in §2.1p= (—1+11/3)/2 [note thatw? = ®, & = w, andw-w = 1]. In a finite
field Fq, addition ¢) and multiplication () are closed (that is, they map to elements within
the field) and satisfy the usual rules: they are associatdrmutative, and distributive, there
is a 0 element such that+ 0 = a, there is a 1 element such thatl = a, for eacha there
is an element—a) such thaa+ (—a) = 0, and for eacka # 0 there is an elemert ! such
thata-a~1 = 1. If qis itself prime (e.g., iff = 2 orq = 3), then standard integer addition and

23Notably, Conway & Sloane (1998, page 12) state: “A relatedlie@tion that has not yet received much
attention is the use of these packings for solvirdimensionalsearchor approximationproblems”; this is exactly
the problem focused on in our Part Il.

24We limit our attention in the quaternary case to codes desigver the finite field 4; though there is some
attention in the literature to codes defined o¥grthat is, over the integers mod 4], codes defined over finitdgie
turn out to be, in a sense, more natural.
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multiplication modq forms a finite field. If not (e.g., i§ = 4), a bit more care is required in
order to obtain closure within the finite field while respagtithese necessary rules on addi-
tion and multiplication. For the cases considered in thisise (specificallyF2, F3, andF),
addition and multiplication ofrq are thus defined as follows:

+ o1 o1 +]of1]2 Joj1]2
F OJO0[1 o0fojo Fx 42 212 902 9.9
1 110 1 01 2 21 0] 1 2 0|21
+[o0]l]lw]|w Joj1]w]|®
0 0 l1]w|ow 0 ol0|O0}|O
Fa: 1 10| w]w 101 w]|w
wflw|]w|[O0]1 w0l |w]|1
wflw]lw|[1]O0 wl0]w]1]w

A vector in Fg is a vector of lengtm with each element ifrq. TheHamming distance
between two such vectors is the number of elements that diéfisveen them.

An [n,Kq (if dis specified]n, k,d]q) g-ary linea® code(LC) is defined via a set &f < n
independerbasis vectors' € Fj. Theg* distinctcodewordsv' € Ff of the LC are given by
all g-ary linear combinationsf the basis vectorg (that is, by all linear combinations with
coefficients selected froig, with addition and multiplication defined elementwise ).
The basis vectors' are generally selected such tminimum distance @f the LC (that is,
the minimum Hamming distance between any two resulting wodds) is maximized.

This work focuses on cases with= 2 [termed alinear binary code(LBC)], g = 3
[termed dinear ternary cod€LTC)], andq = 4 [termed dinear quaternary cod€¢LQC)]. In
cases withg = 2, which are common, we frequently write simpiyk] or [n,k,d], dropping
theq subscript. We denote b&{n,k]q (orV[n.k,d]q) then x k basis matrixwith thek basis vectors
v' as columns, and by, , (0r Wi a),) then x ¢ codeword matriwith the g* codewords
w' as columns. Without loss of generality, we wr\lg,.k}q and a companiofin — k) x n

parity-check matrix I g, in the standard (a.k.aystematigform?®

lkxk P [d
Hinkq = [Pk lin-kjxn—]»  Vinkiq = [p(nkm] Wi {bi , (4.1)
When written in systematic form, each of the data vectdrdlock decomposes into its
data symboK’ d' and itsr = n—k parity symbold'; note thatr is sometimes called the
redundancyof the code. Note also th&t[n.k}qv[n.k]q =0 (on Fq)28, which establishes that the

basis vectors' so constructed [and, thus, all of the resulting codewardgach satisfy the
parity-check equationﬁ[n.k}qw‘ =0 (onFg), as implied by the rows dﬂ[n,k]q and illustrated
by the several examples given in systematic form in 84.12,%hd 84.3. Note further that,
for LBCs and LQCsP = —P.
The key to designing a “goodh,k]q LC is to construct theparity submatrix B_y) .k

in (4.1) in such a way that the minimum distard®f the resulting code is maximized for
given values of, k, andg. Indeed, the problem of designing a good binary error ctirrgc
code is essentially a finite sphere packing problenignthus the very close relationship

?5Nonlinearg-ary codes also appear in the literature, in which the vadidesvords areot simply linear com-
binations of a set of basis vectors and must be enumeratedeaifly. Such codes, which are related to nonlattice
packings, are in general more difficult to decode than LCd,aaa not considered further here.

28In the literature on this subject, it is more common to usesmigator matrix'G to describe the construction of
linear codes. The “basis matrix” conventigrused here is related simply to the corresponding generatixsuch
thatV = GT; we find the basis matrix convention to be more natural in $eofrits linear algebraic interpretation.

2"The word “bit", a portmanteau word for “binary digit”, is gerally reserved for the case with= 2; in the
general case, we use the word “symbol” in its place.

28The qualifiers “(onFq)” and “(modq)” are used, as appropriate, to remind the reader that ricétiipn and
addition in the equation indicated are performed elemesawi the finite fieldrq, as discussed above.
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FIG. 4.1. Valid codewords of (left) the (SED8,2,2]> LBC, and (right) its dual, the (perfect, SE( 1,3,
LBC. The blue sphere denotes the origin, and d specifies tmdeuof edges between any two codewords.

) N

FIG. 4.2.Valid codewords of (left) the (SE[8,2,2|3 LTC, and (right) its dual, the (SEC},1,3]3 LTC.

between the design of error-correcting codes and the desigfinite sphere packings iR",
as discussed in §2.

For g = p? with p prime,conjugationin Fq (that is, for a scalav € Fq) is defined such
thatv = vP; conjugation inFg (that is, for vectors € Fg), as well as for matrices formed with
a number of such vectors as columns, is performed elementwsy [n,K|q linear codeC
has associated with it gn,n — k|q dual code G defined [cf. (2.1)] such that

C'={weFj :w-u=0forallueC}. (4.2)

The parity-check and codeword matrices<Cof may be written in systematic form as

S I (n—Kk)x (n—k
H[ﬁ,n—k}q = [PT '(n—k)x(n—k)} ) V[ﬁ,n_k]q = [(n _)Isgrn )] - (4.3)

whereP denotes conjugation iRy of each element of the parity submatfof the original
[n,Kq linear codeC. Note thaP' is of orderk x (n—k), and, of course, thad: . V.-

[n.n—Kg Y [n.n—Kg —
0 (onFg). Note further that, for LBCs and LTCs,= u andP = P.

A self-dualcodeC is a code for which the the transpose of the codeword métresults
in a new matrixH which is itself the parity-check matrix of a code which is e@lent toC,
albeit not in systematic form.

Graphically, the codewords of gn. k,d]> LBC may be thought of as a carefully chosen
subset of ® of the 2" corners on a single-dimensional unit hypercube, as illustrated for
n =3 in Figure 4.1, whereas dn,k,d]s LTC may be thought of as a subset &f& the 3
gridpoints in a cluster of”2unit hypercubes im-dimensions, as illustrated far= 3 in Figure
4.2. For anyg, d quantifies the minimum number of symbols which differ betwaay two
codewords. It follows that:

e An LC with d = 2 issingle error detectingSED) [see, e.g., Figures 4.1a and 4.2a]. In this
case, the sum (oRg) of the symbols in each transmitted codeword is zero, soisf @s-
sumed that at most one symbol error occured and this sum ien@rthen a symbol error
in transmission occurred, whereas if it is zero, then a syrabror did not occur. How-
ever, if a symbol error in transmission occured, the reckfirevalid) message is generally
equidistant from multiple codewords, so it is not possibledrrect the symbol error. Two
or more symbol errors generally cause the codeword to beteipreted.
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e An LC with d = 3 is single error correcting(SEQ [see, e.g., Figures 4.1b and 4.2b]. In
this case, if it is again assumed that at most one symbol errsansmission occured,
then if the received codeword is not a codeword, there is on/ codeword that is unit
Hamming distance away, so the single symbol error may infacbrrected Again, 2 or
more symbol errors generally cause the codeword to be reipirgted.

e An LC with d =4 issingle error correcting and double error detecti@ECDED. In this
case, if a single symbol error occurs, the received codewilrtde unit Hamming distance
away from a single codeword, and thus single symbol errarbeacorrected. On the other
hand, if two symbol errors occur, the received codeword reegaly Hamming distance 2
away from multiple codewords, so double symbol errors casdbected buhotcorrected.
Now, 3 or more symbol errors generally cause the codeworls toisinterpreted.

e AnLC with d=5isdouble error correctindDEC), with 3 or more symbol errors generally
causing misinterpretation.

e An LC with d = 6 isdouble error correcting and triple error detectif@ECTED), with 4
or more symbol errors generally causing misinterpretation

e An LC with d = 7 istriple error correcting(TEC), with 4 or more symbol errors generally
causing misinterpretation.

e An LC with d = 8 is triple error correcting and quadruple error detectin ECQED,
with 5 or symbol errors generally causing misinterpretatio

e An LC with d = 9 is quadruple error correcting QEC), with 5 or more symbol errors
generally causing misinterpretation.

The labels defined above are frequently used to quantifyrtioe eorrection capability of an
LC. Alternatively, if error correction isotattempted, then:

e An LC with d = 2 is single error detecting, with 2 or more symbol errors gelhecausing
misinterpretation.

e AnLCwith d = 3is double error detecting, with 3 or more symbol errors galhecausing
misinterpretation.

e An LC with d = 4 is triple error detecting, with 4 or more symbol errors gaiig causing
misinterpretation.

e An LC with d = 5 is quadruple error detecting, with 5 or more symbol erra@segally
causing misinterpretation.

Error correcting algorithms are useful for a broad rangeat&dransmission or data storage
applications in which it is difficult or impossible to requdbat a corrupted codeword be
retransmitted; algorithms which use such LCs for error ct&ir only, on the other hand,

may be used only when efficient handshaking is incorporatetdinanner which makes it

easy to request and resend any messages that might be edrduping transmission.

An [n,k,d]q LC is perfectif, for some integet > 0, each possibla-dimensionab-ary
codeword is of Hamming distandeor less from a single codeword (that is, there are no
“wasted” codewords that are Hamming distaheel or more from the codewords, and thus
may not be corrected under the assumption that at treyghbol errors have occured); note
that a perfect code has odd= 2t + 1 > 1. A remarkable proof by Tietavainen (1973), which
was based on related work by Van Lint, establishes thattihenontrivial perfect LCs are the
[(q"—1)/(q—1),(9"—1)/(q— 1) — m,3|q perfectg-ary Hamming codes and tli23,12,7]»
and[11,6,5]3 binary and ternary Golay codes, described further in §4d1&n2.

An [n,k,d] LC is quasi-perfecif, for some integet > 1, each possible-dimensional
g-ary codeword is either (a) of Hamming distaricel or less from a single codeword, and
thus up tat — 1 symbol errors may be corrected, or (b) of Hamming distarfoem at least
one codeword, and thus codewords wiymbol errors may be detected but not necessarily
corrected (that is, there are no “wasted” codewords thatlareming distancé+ 1 or more
from a codeword, and thus may not be reconciled under thergegn that at modtsymbol
errors have occured); note that a quasi-perfect code hasleve?t > 2.
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FIG. 4.3.The lattice corresponding to gn,k,d] LBC is formed by repeating the unit hypercube pattern given
by the LBC (see, e.g., Figure 4.1) as an infinite array witht spacing. In the above example we illustrate this
extension for (left) the face-centered cubic (FCC) latiemerated by thé3,2.2] LBC, D; = U, (w 322 +278),

and (right) the body-centered cubic (BCC) lattice genedlaty the[3,1,3] LBC, D = Uz, (WI[3,1,3] +278). The
blue spheres, taken together, form a primitive cell thgpegged as an infinite array with zero spacing, tile (that is,
fill) the domain.

Note finally, as illustrated fon = 3 in Figure 4.3, that a real lattice corresponding to an
[n,k,d]> LBC may often be constructed by forming a union bicdsets:
2k
Construction A [ (Wi, 4, +22"), (4.4a)
i=1

where thecoset representatives this constructionw‘[n’k,d]2 fori=1,...,2 are the code-
words of theln, k,d]2 LBC under consideration ar(év + 27Z") denotes &" lattice scaled by
a factor of 2 with all nodal points shifted by the vectoythus, Construction A denotes the
union of the nodal points in several such scaled and shiftetattices. An alternative real
lattice may sometimes be constructed via:
2k
Construction B | J (Wi, 4, +2J) where J= {x ez
i=1

Lixi} c 22}, (4.4b)

where (2Z) denotes the even integers, and thus the last condition igtdoes written
SiLix =0 (mod 2).

In an analogous fashion, a complex lattice correspondiag i, k, d]q LC may often be
constructed by forming a union gf shifted and scaled-dimensional’ latticesZ[w]" (see
§2.1) such that

k

Construction A : U nkdlg T TZ[]"), (4.5a)

i=1
where in the sequel, the multiplicative factottakes two possible values (2 aﬁd: w—
= 11/3) and the coset representatives in this construcuqrpkd fori=1,...,0% are

the codewords of thén, k,d]q LC under consideration. An alternat|ve complex lattice may
sometimes be constructed via:

qk

Construction B : | J (Wjy g, +TJ) where J= {x € Z[w
i=1

[le.} e ng} (4.5b)

where(11&’) denotes the lattice of Eisenstein integers in the complargmultiplied (that
is, rotated and scaled) by the (possibly complex) fattoNote the remarkable similarity
in structure between the real constructions in (4.4a)b(dahd the complex constructions
in (4.5a)-(4.5b). Note also that real lattices correspogdd any of the complex lattices so
constructed may easily be generated via (2.2).
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4.1. Exemplary linear binary codes (LBCs) . We now summarize some of the families
of LBCs available, presenting each in systematic form (4.1)

4.1.1. Binary single parity-check codes . The simplé®[n,n— 1, 2] binary single parity-
check codesire SED, and includ®,1,2] (self-dual),[3,2,2], [4,3,2], [5,4,2], etc. Using
such a code, for eadim— 1) data bits to be transmitted parity bitis generated such that the
sum (mod 2) of the data bits plus the parity bit is O; when dewpdan error is flagged if this
sum (mod 2) is 1. Thé, 2, 2] code illustrated in Figure 4.1a is given by

10 0 1 0 1
H[3‘2‘2] = (l 1 1) 5 V[3‘2‘2] = O 1 5 \/\/[3‘22] = 0 O 1 1 . (46)
11 0 1 1

0

Other binary single parity-check codes have a parity subrBt[see (4.3)] of similar form
(arow of 1's). As seen fon = 3 in Figure 4.3a, via Construction A, tfie,n— 1,2] binary
single parity-check code generates helattice (see §2.3), which far= 3 is FCC.

A single parity-check code (binary or otherwise), with= 2, can detect but not correct
an error in an unknown position. However, it can correceeasure that is, the loss of data
from a known position. A common application of this capdbpils in a RAID 5 system, a
popular configuration for a relatively sma&tledundant Array of Independent Diska such
a system, data is striped acrasdrives using a single parity check code; if any single drive
fails, the data on it can be recovered simply by achievingypaiith the other disks.

4.1.2. Binary repetition codes . The dual of the binary single parity-check codes are
the simple[n, 1,n] binary repetition codeswhich include[2,1,2] (SED, self-dual),3,1,3]
(SEC, perfect)/4,1,4] (SECDED),[5,1,5] (DEC), etc. This family of codes just repeats
any given data bib times; when decoding, one simply needs to determine whitheofwo
codewords that the received code is nearest to.[3He3| code illustrated in Figure 4.1b is
given by

1 1 0 1 0 1
H[3.1,3]:<1 0 1)7 V13 = i , Weig = 8 i . 4.7)

Other binary repetition codes have a parity submatrix oflanfiorm (a column of 1's). As
seen fom = 3 in Figure 4.3b, via Construction A, the, 1, n] binary repetition code generates
the D;, lattice (see 82.3), which far= 3 is BCC. Via Construction B, on the other hand, the
[8,1,8] binary repetition code generates thglattice (see §2.5). Note also that tf%2, 2]
binary single parity-check code with each bit\ihrepeated verticallyn times leads to a
[3m, 2,2m| code, which may subsequently be rearranged into systefoatig takingm= 4
and applying Construction B, the resultifi®, 2,8] code, which is TECQED, generates the
A5 lattice (see §2.6).

4.1.3. Binary Hamming codes . The[2™—1,2™—1—m, 3] binary Hamming codeare
perfect and SEC, and includ®, 1, 3], [7,4,3], [15,11,3], [31,26,3], [63,57,3], [127,120,3],
etc. For a giver{2™ — 1 — m) data bits to be transmitted, each parity bit is generateld that
the sum (mod 2) of a particular subset of the data bits plug#uéty bit is 0. Note that, when
decoding, then parity bits may be used in a simple fashion to determine nigtwhether or
not a single bit error occured (which is true if one or morehefse parity bits is nonzero), but
if it did, whichbit contains the error, as discussed further in 84.4. Tetilate, the venerable
[7,4,3] code, with four data bit$d;, dz,d3,ds} and three parity bit§bs, b, bz}, is given by

29As mentioned previously, when = 2, we suppress thg subscript for notational clarity; we thus do this
throughout §4.1.
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1.0 0 &
010 0 o
011110 00 1 0 ds
H[71473] = (1 0 1 1 0 1 % 5 V[77413] =10 0 0 1], w=|ds], (4.8a)
110100 001 1 1 by
10 1 1 by
1 1 0 bs
01 010101071010 10
001 1001100717100 1
000011110000 111
Wiad=lo 0 0 0 0 0 0 0 1 1 1 1 1 1 1 (4.8b)
001 11100110000 1
0101 101010710010

The parity-check matri of the [7,4,3] code has as columns all nonzero binary vectors
of length(n— k) = 3; when expressed in systematic form, {lhhe- k) columns ofH corre-
sponding to the identity matrix are shifted to the end, amdrémainingk columns ofH, in
arbitrary order, make up the parity submatfixOther binary Hamming codes may be built
up similarly. Via Construction A, thé7, 4,3] binary Hamming code generates B¢ lattice
(see §82.5).

A Hamming code (binary or otherwise), with= 3, can only correct a single error in
an unknown position. However, it can correct up to trasures(cf. 84.1.1). A common
application of this capability is in a RAID 6 system, a popURAID configuration for very
large storage systems in data critical applications. Ihsusystem, data may be striped
across drives using a Hamming code; if any single drive fails, theadsn it can be recovered
using an appropriate parity check equation (that is, onleegparity check equations that takes
that bit into account). If (while rebuilding the informatien that disk, which might take a
while if the disk is large) @econdlrive fails, then two useful equations may be derived from
the (n— k) parity check equations: one that takes failed disk A intooaot but not failed
disk B, and one that takes failed disk B into account but nitedadisk A. By restoring parity
in these two derived equations, the informatiorbamthdrives may be rebuilt.

4.1.4. Binary simplex codes . The dual of the binary Hamming codes are {R& —
1,m, 2™1] binary simplex codefa.k.a. the binarynaximum-length-sequen@dLS) codes],
which include[3,2,2] (SED),[7,3,4] (SECDED),[15,4,8] (TECQED), etc. These codes are
remarkable geometrically, as their codewords form a regitaplex. The[3,2,2] code is
illustrated in Figure 4.1a; th@, 3,4] code is given by

1 0
0011100 P
1 0 1 0 1 0 O
Hrsa=|1 1 0 o o 1 o Vrs4= 2 (1) i (4.9)
1 1 1 0 0 O 11 0
1 1

Other binary simplex codes have a parity submatrix givenlaiiy by the transpose of the
corresponding binary Hamming code. Via Construction A,[8,4] binary simplex code
generates thEy lattice (see §2.5). Via Construction B, on the other harel[15, 4, 8] binary
simplex code generates thes lattice (see 8§2.6).

4.1.5. Extended binary Hamming codes . The[2™ 2™ —1—m, 4] extended binary Ham-
ming codesre quasi-perfectand SECDED, and incl{#l4, 4], [8,4,4] (self-dual)[16,11,4],
etc. These codes are just binary Hamming codes (see 84.ithf)madditional overall parity
bit (see 84.1.1), and thus, assuming no more than 2 bit eénemes occured, may be decoded
similarly, as discussed further in 84.4. To illustrate, theerablg8, 4, 4] code is given by
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1.0 0
010 0
00111100 001 0
101 101 0 0 000 1
Heas =11 1 0 1 0 0 1 o YB44=|o 1 1 1 (4.10)
11100 0 0 10 1 1
110 1
1 1

1

Other extended binary Hamming codes have a parity submnthtixmay similarly be con-
structed by adding an overall parity bit to the correspogdimary Hamming code. Via
Construction A, the8, 4, 4] extended binary Hamming code again generateEgHattice.

4.1.6. Binary biorthogonal codes . The dual of the extended binary Hamming codes
are the[2™ m+ 1,2™1] binary biorthogonal codega.k.a.Hadamard codés and include
[4,3,2] (SED),[8,4,4] (SECDED, self-dual)16,5,8] (TECQED),[32,6,16], etc. Thg32,6, 16
code was used on the Mariner 9 spacecraft. These codes tinguished by the characteris-
tic that their codewords are mutually orthogonal [thatis,w! = 0 (mod 2) fori # j]. Note
that the[4, 3,2] and[8,4, 4] codes have already been discussed above. The binary Ilgortho
nal codes each have a parity submatrix that is simply thep@se of the parity submatrix of
the corresponding extended binary Hamming code, the aarigtn of which is described in
§4.1.5. Via Construction B, thé 6,5, 8] binary biorthogonal code generates thg lattice.

4.1.7. Binary quadratic residue codes . The[n,(n+ 1)/2,d] binary quadratic residue
codesare defined for all prime for which there exists an integer<1x < n such thai?® = 2
(modn) [equivalently, for all primen of the formn = 8m+ 1 wherem is an integer], and
include [7,4,3] (SEC, perfect, as introduced in 84.1.8)7,9,5] (DEC), [23,12,7] (TEC,
perfect, a.k.a. theinary Golay codg [31,16,7] (TEC), [41,21,9] (QEC), [47,24,11], etc.
Adding an overall parity bit to these codes, tle+ 1,(n+ 1)/2,d + 1] extended binary
quadratic residue codeimclude [8,4,4] (SECDED, quasi-perfect, self-dual, as introduced
in 84.1.5),[18,9,6] (DECTED),[24,12,8] (TECQED, quasi-perfect, self-dual, a.k.a. the
tended binary Golay cogg32,16,8] (TECQED),[42,21,10], [48,24,12], etc. The venerable
[24,12 8] extended binary Golay code, which was used by the Voyager Isga2ecraft, is
given by

l12x12

[

Hpa12g = [Prax12  li2x12], \424128]::[

Piox12|’
01 1 1 1 1 1 1 1 1 1
111 0 1 1 1 0 0 0 1
110 1 1 1 00 0 1 O
101 11 000 1 0 1
111 1 000 1 0 1 1 (4.11)
P11 1000 10 1 10
212=17 1 0 0 0 1 0 1 1 0 1
100 0 1 0 1 1 0 1 1
100 1 0 1 1 0 1 1 1
101 01 1 01 1 1 0
11 0 1 1 0 1 1 1 0 0
101 1 0 1 1 1 0 0 O

Note thatP is symmetric. Theé23,12,7] binary Golay code may be obtained pyncturing
the[24,12,8] code listed above; that is, by eliminating any ronRoftypically, the last).

Via Construction B, th¢24,12 8] extended binary Golay code generatesltbech half-
lattice Hp4, which may be joined with a translate of itself [thatli#,+ a wherea; = —3/2
anday = 1/2 fork = 2,...,24] to construct thé\y4 lattice.

Note that many of the binary codes introduced above falliwighlarger family of codes
collectively referred to aReed-Mullercodes, as illustrated in Figure 4.4.
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k=2"d=1

v .
universe codes

2132,32,1]
[16,16,1] 5 k=2"-1,d=2

881 0[32 31.2) single parity-check codes

J4,4.1] .[16,15,2] 5 k=2"-1-md=4
extended Hamming codes
[2,2,1] J8,7.2 132,26,4]

4.3, ,[16,11.4]
@[2,7 3'7,21 ,,,,, [814,’ fl'] ,,,,,, e@%;@ ,8l k= 2m—1’ d= 2(m+1)/2
41,4 0[16 5,8 self-dual codes

.18,1,8] .[32,6,16
16,1,16| N

321,32

k=m+1,d=2m"1

[
° biorthogonal codes

k=1,d=2m
repetition codes

FIG. 4.4.The family of 2™ k.d] Reed-Muller binary codes for m0to 5.

PN

4.1.8. Extending, puncturing, and shortening . The (perfect) binary Hamming and
binary Golay codes may bextendedo quasi-perfect codes by adding an overall parity bit,
thereby increasing by 1 and, in the case of these specific codes, increasimgl. A code
obtained by essentially the reverse of this process, remaviparity bit and thus reducing
bothnandd by 1, is sometimes said to penctured In contrast, a code obtained by removing
¢ > 1 data bits, thus reducing bothandk by ¢, is said to beshortened A typical and
common application is in error-correcting memory systeancbmputers, in which the data
often comes naturally in blocks of 64 bits. Starting from {h27,120, 3] binary Hamming
code, one may eliminate 56 data bits to create a short@de@4, 3] SEC code; alternatively,
starting from the[128 120,4] extended binary Hamming code, one may eliminate 56 data
bits to create a shortenétl, 64,4] SECDED code. Many ECC Memory and RAID 6 storage
systems are based on variants of such shortened binary Heoodes, which are simple
and fast to use. Note also that, via Construction B,[21€9, 8] code obtained by shortening
the[24,12,8] extended binary Golay code by 3 data bits generates dirihethy,1 lattice.

4.2. Exemplary linear ternary codes (LTCs) . We now summarize some of the families
of LTCs available, presenting each in systematic form (sijing that all have analogs in
the binary setting.

4.2.1. Ternary single parity-check codes . The[n,n—1,2]3ternary single parity-check
codesare SED, and includ&, 1,2]3 (self-dual),[3,2,2]3, [4,3,2]3, etc. As illustrated for
n=3in Figure 4.2a, th3, 2, 2]3 code is given by

1 0 01 2 01 2 01
Hiz 22, = (1 1 1), Vig22, =10 1), Wgao,={0 0 0 1 1 1 2 2 . (412)
2 2

0 2 1 2 1 0 1 0

Other ternary single parity-check codes have a parity stfixia[see (4.3)] of similar form
(arow of 2's). Via Constructiom‘}, the[3,2,2]3 ternary single parity-check code generates
the E lattice.

4.2.2. Ternary repetition codes . The dual of the ternary single parity-check codes
are the[n, 1, n|3 ternary repetition codeswhich include[2,1,2]; (SED, self-dual)|3,1,3]3
(SEC),[4,1,4)3 (SECDED), etc. As illustrated far= 3 in Figure 4.2b, thé3,1, 3|3 code is
given by
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5 1 0 1 0o 1 2
H[3,1.3]3:<2 0 1)7 V313, = i s Ws13;= 8 i 2 . (4.13)

Other ternary repetition codes have a parity submatrixrafiar form (a column of 1's). Via
ConstructiorA%, the[3,1, 33 ternary repetition code generates Eglattice. Via Construc-
tion B‘}, on the other hand, th6, 1, 6]3 ternary repetition code generates K lattice.

4.2.3. Ternary Hamming codes . The [(3™—1)/2,(3™—1)/2— m,3]3 ternary Ham-
ming codesre perfectand SEC, and include2, 3|3 (self-dual, a.k.a. theetracode, [13,10, 3|3,
[40,36,3]3, etc. To illustrate, the venerabé 2, 3] tetracode is given by

1 1 1 0

H[4.2,3]3:<1 2 0 1>7 Via23, = (4.14)

NN OB
NP O

The parity-check matrixl of the[4, 2, 3|3 code has as columns those nonzero ternary vectors
of length (n — k) = 2 whose first nonzero entry is 1; when expressed in systerfaatit,

the (n— k) columns ofH corresponding to the identity matrix are shifted to the et

the remainingk columns ofH, in arbitrary order, make up the entries-eP. Other ternary
Hamming codes may be built up similarly; for example, b& 10, 3|3 code is given by

001 1 1 1 1 1 1 11 0 0 |
Hi13103, = ( 11001 112 2 201 0)-, V13103, = {;:Xlo] . (4.15)
1 2 1 2 01 2 01 20 0 1 x10

Ay
=-P3x10

Via Constructiomeg, the[4,2, 33 tetracode again generates thelattice.

4.2.4. Ternary simplex codes . The dual of the ternary Hamming codes are the
[(3™—1)/2,m,3™ 1|3 ternary simplex codeswhich include([4,2,3]3 (SEC, perfect, self-
dual),[13,3,9]5 (QEC),[40,4,27]3, etc. These codes are remarkable geometrically, as their
codewords are all equidistant from one another. Ternarplsixncodes have a parity subma-
trix given by the negative transpose of the correspondinrgaty Hamming code.

4.2.5. Ternary quadratic residue codes . The[n,(n+1)/2,d]3ternary quadratic residue
codesare defined for all prime for which there exists an integerd x < n such thai?® = 3
(modn) [equivalently, for all primen of the formn = 12m+ 1 wherem is an integer], and
include[11,6,5]3 (DEC, perfect, a.k.a. thernary Golay codg [13,7,5]3 (DEC),[23,12,8]3
(TECQED), [37,19,10Q]3, [47,24,14]3, etc. Adding an overall parity bit to these codes,
the [n+ 1,(n+1)/2,d + 1]3 extended ternary quadratic residue codaslude [12 6,6]3
(DECTED, quasi-perfect, self-dual, a.ktlae extended ternary Golay codgl4,7,6]s (DECTED),
[24,12 9]3 (QEC),[38,19,11]3, [48,24,15]3, etc. The venerabld2,6,6|3 extended ternary
Golay code is given by

4.16
Psx6 (4.16)

= NN -

|
Hizees = [~Poxe  loxe], Vitoeg); = { GXG} . Poxg=

RPRrREPRO
P NNR O
NNROR R,
NP ORNEER
RPORNNE

Note thatP is symmetric. Théll, 6,53 ternary Golay code may be obtained by puncturing
the[12,6,6]3 code listed above.

Via ConstructiorB%, the[12,6,6]3 extended ternary Golay code generates an interme-
diate lattice which may be joined with two translates oflftesegenerate thé\,4 lattice.

4.3. Exemplary linear quaternary codes (LQCs) . We now summarize some of the
families of LQCs available, presenting each in systematimf(4.1).
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4.3.1. Quaternary single parity-checkcodes . The[n,n—1,2]4 quaternary single parity-
check codeare SED, and includg, 1,2]4 (self-dual),[3,2,2]4, [4,3,2]4, etc. The[3,2,2]4
code is given by

1 0
Hazz,=(1 1 1), Vp2z,=(0 1],
1 1
_ _ z (4.17)
01 w w 01 w w 0 1 w w 0 1 w w
Wsz2,=(0 0 0 0 1 1 1 1w @ © ©® ® ©® @ .
0 1 w w 1 0 w ®w w w 0 1 w w 1 0

Other quaternary single parity-check codes have a paritgnairix P of similar form.

4.3.2. Quaternary repetition codes . The dual of the quaternary single parity-check
codes are thén, 1,n]4 quaternary repetition codesvhich include[2,1,2]4 (SED, self-dual),
[3,1,3]4 (SEC),[4,1,4]4 (SECDED), etc. Th¢3,1,3]4 code is given by

1 0 1 w

110
H[3,1,314:<1 0 1>= Vis13s = (i) W13, = (8 i ®
(V]

(4.18)

€€

Other quaternary repetition codes have a parity submatsimlar form.

4.3.3. Quaternary Hamming codes . The[(4M—1)/3,(4™—1)/3—m,3]4 quaternary
Hamming codesre perfect and SEC, and inclufe3,3]4, [21,18,3]4, [85,81,3]4, etc. To
illustrate, the]5,3,3]4 code is given by

1

1 1 1
H[5,3,3]4:<1 w @ 0 f)a V533, = (4.19)

= O OR
R ORFr O
Elrro

1

The parity-check matrit of the [5,3,3]4 code has as columns those nonzero quaternary
vectors of length(n — k) = 2 whose first nonzero entry is 1; when expressed in systematic
form, the(n—k) columns ofH corresponding to the identity matrix are shifted to the emd]

the remainind columns ofH, in arbitrary order, make up the entriesRfOther quaternary
Hamming codes may be built up similarly.

4.3.4. Quaternary simplex codes . The dual of the quaternary Hamming codes are
the [(4™ — 1)/3,m,4™ 1), quaternary simplex codesvhich include(5,2,4], (SECDED),
[21,3,16]4, [85,4,64)4, etc. These codes are remarkable geometrically, as théawmrds
are all equidistant from one another. Quaternary simplelesave a parity submatrix given
by the conjugate transpose of the corresponding quateHeamming code.

4.3.5. Quaternary quadratic residue codes . The[n, (n+1)/2,d]4 quaternary quadratic
residue codesare defined for all prima of the formn = 8m+ 3 wheremis an integer, and
include [5,3,3]4 (SEC, perfect, see §4.3.311,6,5]4 (DEC), [13,7,5]4 (DEC), [19,10,7]4
(TEC),[29,15,11]4, [37,19,11]4, etc. The relateh+ 1, (n+1)/2,d+ 1]4 extended quater-
nary quadratic residue codesclude|6, 3,44 (SECDED, quasi-perfect, self-dual, a.k.a. the
hexacodg [12,6,6]4 (DECTED), [14,7,6]4 (DECTED, self-dual)[20,10,8]4 (TECQED),
[30,15,12)4 (self-dual),[38,19,12]4, etc. The venerabl®, 3,4]4 hexacode is given by

0
Hesq,= (1 1 0Of, Veza,=
0 1

Note thatP is symmetric. Théb5,3,3]4 quaternary quadratic residue code may be obtained
by puncturing th€6, 3,4]4 code listed above.
Via ConstructionAZ, the 6,3, 4]4 hexacode generates tkg; lattice.

[

(4.20)

.
€IEr
€ Elr
SRR

PR RrOOR

€lE roro

€ E€lrro



44 T. BEWLEY, P. BELITZ, & J. CESSNA

B11o
A110  Auoo
Booo Boio  Boo1
Aooo  Aoio  Aoor  Aoir
Bioo Biz Bim
At Awor
Bo11
FiG. 4.5.Alabelling of 16 points of the Plattice (due to Ungerboeck 1982). ThgiApoints have coordinates
which are both even integers [e.god = (O 0)], and the Bjk points have coordinates which are both odd integers
[e.g., Booo = (1 1)]. The complete B lattice is formed by repeating this 2D pattern as an infiniteag with
unit spacing, as in Figure 4.3; note that each of the subs&f3,ccorresponding to a particular label is itself an
appropriate shift of a4D> lattice (that is, the D lattice with the spacing quadrupled between the points).

The [6,3,4]4 hexacode, with 4= 64 codewords, is of particular importance due to the
structured role it plays in some convenient constructidnthe [24,12 8] extended binary
Golay code (see §4.1.7), with2= 4096 codewordsv, and the correspondinfy4 lattice.

To construct the extended binary Golay code in this manresr §41 of Conway & Sloane
1998), we may first arrange binary vectors of length 24 into&4arrays with binary entries.
The sum of the bits (mod 2) in any row or column of this arrayegiitsparity, which is said
to beevenif the bits sum to 0 andddif the bits sum to 1. We then define tpeojectionof
any binary vectod € F‘21 onto a symbok € F4 via the produck = (O 1 w (B) d (onFy).
The[24,12,8] extended binary Golay code is then given by the set ofvadl F3* such that,
in the corresponding # 6 array,

e the parity of all of the columns matches the parity of the top,rand
o the projection of the six columns of the array forms a codevedithe |6, 3,4]4 hexacode.

An alternative construction of th&,4 lattice, due to Vardy & Be’ery (1993) and which
also leverages cleverly th@, 3,44 hexacode, is based on the Ungerboeck (1982) partitioning
of theD;, lattice (see §2.3) intdjx andB;jx subsets, as depicted in Figure 4.5. Binary vectors
of length 24 are now constructed ax B arrays whose entries are pointsif, labelled as

shown. When considering a pair of such points [say, (Ai,,j; k, Aiz,jz,k2>T],

the pair is said to bevenor oddbased on the sum (mod 2) of the indides j1,i2, j2},
the indexi1 is known as thé-parity of the pair,

the sum (mod 2) ok; andky is known as thé-parity of the pair, and

theprojectionof the pair is defined as above, based on the ve;bter(il j1 2 jz)T.

The Leech lattice\4 is then given by the set of ali € Z?* such that, in the corresponding
2 x 6 array,

o all array entries are either points in tAgy subsets oD, (referred to as &ype-Aarray), or
points in theB;x subsets oD, (referred to as &ype-Barray),

e the overallk parity of the array [that is, the sum (mod 2) of tkarity of the 6 pairs of
points] is even if the array is typ&and odd if the array is typB,

e the pairs of points in the 6 columns of the array are eithegwah (referred to as aven
array) or all odd (referred to as addarray),

e the overallh parity of the array [that is, the sum (mod 2) of theparity of the 6 pairs of
points] is even if the array even and odd if the array is odd, an

o the projection of the six columns of the array forms a codevedithe |6, 3,4]4 hexacode.

The union of all points corresponding to Type A arrays in ttaastruction forms theeech
half lattice H4 mentioned in 84.1.7, whereas the union of all points cowedmg to Type

B arrays forms its translatéj>4 +a. The Ho4 lattice can be further decomposed into all
points corresponding to even arrays, which formdtlech quarter lattice gy, and all points
corresponding to odd arrays, which forms its transl@®g,+ b. The/Ay4 lattice is then given
by the union 0fQ24, Q24+ b, Q24+ a, andQ24+ a+ b; this construction is exploited in §5.5
when presenting a remarkably efficient algorithm for quaation fromR?* to Aya.
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4.4. Decoding . The use of arin,k, d]q linear code (a.k.dinear block codgin practice
to communicate data over a noisy channel is straightforward

arrange the original data intdocksof lengthk over analphabetof q symbols;

codeeach resulting data vectdre Flé into a longer codeword € Fg viaw = Vinkdlqdi
transmit the corresponding codewavde F' over the noisy channel;

receive the (possibly corrupted) message Fj' on the other end;

decodethe received messag‘eleveraging—l[n.k,d]q; that is, find the most likely codeword
w corresponding to the received mességand the data vectat that generated it.

The decoding problem is quite rich; many creative schemes been proposed over the
years for decoding the various LCs that have been introdincedfar, as well as many others.
This subject goes a bit beyond the scope of the present relvigwe would be remiss if we
didn’t at least briefly introduce a few exemplary decodingtsgies.

For the purpose of fast decoding of an LC, it is useful to cd&sconvenient alternatives
to the systematic form. i andV are the parity-check and basis matrices ofrak,d|q LC
in systematic form, wittHV = 0 (onFg), then arequivalent_C, possibly not in systematic
form, is given by taking

H=HQ and V=Q'v. (4.21)

It follows immediately that, agairiV = 0 (onFg). In the simplest such transformatia@,

is a permutation matrix, and th@ ! = Q; this transformation corresponds to reordering
the rows oV and the corresponding columnstéf(that is, reordering the data bits and parity
bits in the corresponding LC). Other equivalent LCs may bestroicted in this manner by
relaxing the constraint th& be a permutation matrix, effectively taking linear combioas
(on Fq) of the rows ofV and the corresponding columnsidf Note further that reordering
the columns o¥ and/or the rows o leaves an LC unchanged.

4.4.1. Algebraic decoding . Certain LBCs may be decoded quickly by arranging the
columns of the parity-check matrix in a convenient order examining the binary number
given by the product of the parity-check matrix and the (fmgscorrupted) received mes-
sage. To illustrate, consider tfig 4, 3] binary Hamming code introduced in §4.1.3. Trans-
forming as described above with

001 000
000 010 0
000 00 1 0

Q=|0 0 0 0 0 0 1
000 1000
01 00000
1 0 0 0 0 O

results in a modified basis matik and a modified parity-check matrk arranged such that
the columns oH appear in binary order:

|:|[7,4,3] = ( 9 ) \7[7,4,3] =

Taking the matrixlfl[zm 12m_1-mg Of & binary Hamming code arranged in such a fash-
ion (in the above examplen = 3) times (mod 2) any of the codewords (generated via
W = Viom_ 12m-1-m3d whered F2"-1-m gives the zero vector. On the other hand, taking

the matr|xH[2m 12m_1-mg times (mod 2) any invalid vectat gives the nonzersyndrome

(4.22)

= OO
o o
PR o
[oNeN
R o
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vectors, of orderm = n— Kk, which may be interpreted as a nonzemndit binary number
called thesyndromedenoteds, of the received message. Conveniently, as a direct rekult o
the structure ofl used in this construction, the numisddentifies precisely which bit of the
received message vectdr arranged as shown above, must be flipped in order to determin
the nearest codeword, thereby performing single erroection (SEC).

Consider now the class (", 2™ — 1—m, 4] extended binary Hamming codes introduced
in 84.1.5. Define the syndrongeas in the corresponding binary Hamming code of length
(2™—1) as discussed above, neglecting the overall parity bit, @fidelp as the sum (mod
2) over all the bits, including the overall parity bit. Theaee zero bit errors is = p = 0,
there two bit errors (which may be detected but not uniquelyected) ifs# 0 andp = 0,
and there is a single bit error = 1 (in which case, ifs= 0, this error is in the overall
parity bit, and, ifs 0, this error is in one of the other bits and may be correctsgdans
just as in the corresponding binary Hamming code). Thidexgsathus performs single error
correction and double error detection (SECDED).

The extended binary Golay code introduced in 84.1.7 may lsedts via syndrome
computation in a similar fashion, though several more check involved, as the procedure
performs triple error correction and quadruple error deac(TECQED) on the received
messagev. Recall the definitions of, V, andP = PT for the [24,12,8] extended binary
Golay code in systematic form, as listed in (4.11). Note Yha = 0, and thud/T serves
as an alternative parity-check matrix for this code. Defini, (s) as the Hamming weight
(that is, the number of nonzero elements) of the vegtand defining' as the'th column of
P, € as the'th Cartesian unit vector, and 0 as the zero vector, we magaksk as follows:

sets=VTW, if wy(s) <3thenset=[s; 0], flag=0, return, end if (case A)
setr =Ps, if wy(r) <3thenset= {0; r|, flag=0, return, end if (case B)
fori=1:12
if wy(s+p') <2thenset= [s+p'; €], flag=0, return, endif (case C)
if wa(r+p') <2thenset=[€; r+p',flag=0, return, endif (case D)
end for
flag=1; return (4 total errors, can not be uniquely corrected

Upon return, assuming the received veatohas 4 or less bit errors, if flagr 0, then 3 or
fewer errors are detected and the corrected vectarsisw + c, whereas if flag= 1, then 4
errors are detected amdcan not be uniquely corrected. To verify this algorithmngthat
VTw = 0 for any codewordl, it is sufficient to analyze the algorithm far= 0 only. Block
partitioningw = [x; y} , consider the following 4 correctable cases:

Case A (0 parity bit errors, up to 3 data bit errors): Due to stracture ofP, parity bit
errors (that iswy (y) # 0) result inwy (s) > 6; if wy () is less than this, thep = 0 and
s=VTw=Ix=x.

Case B (0 data bit errors, up to 3 parity bit errors): Note Bat = H, and thus = HW. By
an analogous argument as that used in Case A, due to theustrofP, data bit errors (that
iS, WH (X) # 0) resultinwy (r) > 6; if wy (S) is less than this, then=0 andr =HW =1y =Y.

Case C (1 parity bit error, up to 2 data bit errors): In thisecage individually check each
of the (12) possible cases corresponding to a single patigrior, essentially repeating the
analysis of Case A, mutatis mutandis. That is, for eachke consider the possibility that
y =€, and thus = x+ p', and check to see ifiy (X) = wy (s+p') < 2.

Case D (1 data bit error, up to 2 parity bit errors): In thisezage individually check each
of the (12) possible cases corresponding to a single datxroit, essentially repeating the
analysis of Case B, mutatis mutandis (cf. Case C).
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4.4.2. Cyclic form . A cyclic codeis an LC that may be transformed [via (4.21)] into a
form in which all cyclic shifts of codewords are themselvis®aodewords. The basis matrix
V = Vhxk and parity-check matrixd = Hy,_y.n of any[n,K]q cyclic code may be written in
the standard form

Vo 0
Vi Vo
he ha ... ho 0 Vi
he her .0 ho . .
Hinkg = - - . - o Vikg=| Yok w0 (423
0 he he1 ... ho Vn—k - Vi
0 Vn.—k

A convenient construction which simplifies the analysismfrak]q cyclic code, as de-
fined above, is theyclic shiftoperatorz. The use of this operator as discussed here is akin to
its use in thez-transform analysis of discrete-time linear systems, withmajor difference
being that it is used here in a cyclic context g that is, arithmetic with polynomials in
z and coefficients irFq is performed as usual, except that the coefficients of eaalepof
z are combined via the arithmetic rules Bg (see the second paragraph of 84), and higher
powers ofZ are simplified via the cyclic condition

z'=1 (4.24)
In the deployment of afn, k] cyclic code, the operatarappears in

thedata polynomial dz) =do +d1z+...+ 17t

Vo +VaZ 4 ...+ V2K,
Wo+WizZ+ ... +Wno1Z" L,

thebasis polynomial (z)
the codeword polynomial 2)

thereceived-message polynomia{z) = Wo+Wiz+ ... +Wn_12"%, and
the parity-check polynomial (z) =ho +hiz+...+hZ

The basis polynomial(z) and parity-check polynomidi(z) are constructed in mutually-
orthogonal manner that, taken together, enforces thecoyahidition (4.24):

v(z)h(z) = (" 1), (4.25a)
which may also be written
[V(2)h(2)] mod (2" —1) =0; (4.25b)

note that the mod command used in (4.25b) means that thegrolghlv(z) h(z)] is divided
by the polynomial(z" — 1) and the remainder is equal to 0. One such factorizatida"of 1)
onFq, which exists for anyr andg, is

2 1=(z-)@ + 2+ +z+1); (4.26)

this leads to the single parity check cdden— 1, 2] if one takes/(z) = (z— 1) andh(z) equal

to the rest, and to the repetition cofthel, n|q if one takesh(z) = (z— 1) andv(z) equal to the
rest. Other cyclic codes oveg, for primeq may be built from the unique irreducible factors
of the polynomialz" — 1), grouping these factors appropriately to fovta) andh(z); a few
such factorizations for various valuesrtdire listed in Table 4 fog = 2 (in which—1=1) and
Table 5 forq = 3 (in which—1 = 2); others are easily found using Mathematica. Factoring
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—1=
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Table 4. Unique irreducible factors @' — 1) overF» for various values of.

Z—1=(z+2)(z+1)(2+1)
1= (242)(2+ 22+ 2 +22+2)(D+ L+ 28+ 2 +2)
1= (2+2)(B+ 2+ 2B+ 2 +2 B+ +2+2)(2+ 22 +22+2)

Table 5. Unique irreducible factors @' — 1) overF3 for various values of.

‘ 2-1=Z+wz+1)(Z+ w02 +wz+1) ‘

Table 6. A useful (though nonunique) factorization(af — 1) over F4; note that Table 4
provides an alternative factorization @ — 1) overF, which is also valid oveF.

| code | description | v(2) | h(z) |

[h,n—1,2» §4.1.1 z+1 21424zl

[n,1,n]2 §4.1.2 Ay 24 4z41 z+1

[7,4,3) §4.1.3 Z+z+1 24+2+z+1

[15,11,3); §4.1.3 Z+z+1 2B+ PR Azl
[31,26,3], §4.1.3 P+7+1 (B1-1)/(2+22+1) overF,
[63,57,3]> §4.1.3 Bzl (B%-1)/(Z+2z+1) overF,
[127,120,3), 84.1.3 7+ +1 (Z27—1)/(Z + 2 +1) overF,
[23127); §84.1.7 | 24P+ +B+D2+z+1 22420 1 AP Pzl
[n,n—1,2]3 §4.2.1 z+2 Ay 24 4z41

[n,1,n]3 §4.2.2 Ay 24 4z41 z+2

[13,10,3]3 §4.2.3 B+ 42 20428+ B4 28+ 2P+ A+ B+ 2+l
[11,6,5]3 §4.2.5 P+28+72+22+2 B2 428122 +22+1
[n,n—1,2]4 §4.3.1 z+1 21424zl

[n,1,n]4 §4.3.2 424zl z+1

5,3,3)4 §4.3.3 Z+wz+1 BrwZ+wz+1

[85,81,3]4 §4.3.3 Z+Z2+wz+1 (B°-1)/(Z+2 +wz+1) overFy

Table 7. Some small cyclic codes. Note that a cyclic form ef[th2,3]s, [40,36,3]3, and
[21,18,3], Hamming codes do not exist (that is, the bdsg|s, [40,36]3, and[21,184, codes
that may be cast in cyclic form hae= 2); in fact, a Hamming code of length= (q™ —
1)/(g— 1) overFq exists in cyclic form only ifmand(q— 1) are coprime (Blahut 2003).

(' — 1) overF4 is more delicate, as the factorizations do not reduce tousnigeducible
forms; one such factorization is listed in Table 6. Based4®25a) and such factorizations, a
large number of cyclic codes may be constructed. Howevédy,afew such codes have both
favorable minimum distanceé and an available simple error dectection/correction se&)em
some such codes are listed in Table 7.

Given a data vectat € FE, the use of an LC in cyclic form is again straightforward:

o form a data polynomial(z) with thek elements ofl as coefficients;

e code dz) into a codeword polynomiak(z) leveraging the basis polynomia(z) [using
nonsystematic coding, one simply take) = d(z) v(2)];

e transmit the corresponding codewavd: Fqn over the noisy channel;

e receive the (possibly corrupted) messsage Fc;‘ on the other end;

e decodehe corresponding/(z) leveraging the parity-check polynomia(z).
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Cyclic coding. For the purpose of fast decoding, we now present two methatiswinich
the basis polynomial(z) may be leveraged to generate a codeword polynow({@lin sys-
tematic form [that is, rather than takimgz) = d(z) v(z)]. By convention, the systematic form

in the cyclic case usually shifts ttkedata symbols inl(z) to the end of the codeword, that is:
W(z) = b(2) + 2" d(z
(2 =b(z) +7*d(2) k - w27
=bo+biz+... 4 by 127K 4 do K iR e

If k/n < 0.5, a recursive approach may be used to determine the panityag inb(z).
By (4.25b) and the fact that each valid codeword polynomia) is itself a linear combina-
tion of the basis polynomialgz), it is seen that

u(z) mod(2'—1)=0 where u(z) £ h(2)W(z) = Up+ U1z+ UZ + ...

Initializing the lastk symbols ofw(z) as shown in (4.27), the remaining symbolsgf) may
thus be determined from the resulting convolution formditaies,_1 throughuy as follows:

Un—1=hoWn_1+...+hWnk 1=0 = Wy k1=—[hoWn-1+...+ M 1Wn_k_2]/hx,
Un—2=hoWn2+...+hiWhk 2=0 = Wyk2=—[hoWh_2+ ...+ 1Wn_k_3]/hx,
Uk =howx ...+ hwg =0 = w z—[hoWk + ...+ heawg ]/hk.

If kK/n> 0.5, a polynomial division approach to determine the paritymigls is more
efficient. This is accomplished by writing the shift of thea@laymbols as some multiple of
the basis polynomial(z) plus a remainder(z):

27%d(2) =q2v(2) +r(2) = [2"*d(2)] modv(z) =r(2),

where the mod command is interpreted as in (4.25b). Sincddfeee of/(z) is (n— k), the
maximum degree af(z) is (n— k—1). Calculating (z) as shown above, takingz) = —r(z),
and rearranging the above equations, it is seen that

w(2) = b(2) +2"d(2) = q(2)V(2),

thus verifying that the polynomial(z) so generated is in fact a valid codeword polynomial,
as it is a multiple of the basis polynomigkz).

Cyclic decoding. In single parity-check codes, single symbol errors are Baddth(z)W(z) #

0. In repetition codes, the symbolsw(z] may be corrected by simple majority vote.
Decoding of the binary Hamming and the extended binary Godales is introduced in

84.4.1. Such syndrome decoding methods extend easily ®sdadcyclic form, in which

the required syndrome computations are especially stieachlas now shown. Note that

any valid codeword polynomia¥(z) is a multiple of the basis polynomia(z); thesyndrome

polynomial $z) of the received-message polynomidk)is thus given by the remainder:

S(z) = W(z) modv(z).

Since the degree of(z) is (n— k), the maximum degree &fz) is (n—k— 1), and thus the
corresponding syndrome vectois of orderm = (n—Kk), as expected [see discussion after
(4.22)].

The polynomial multiplications and divisions involved hetcyclic coding and decoding
algorithms described above are easy to code and efficieatdolate in either aapplication-
specific integrated circuifASIQ or afield-programmable gate arra(FPGA), in which re-
peated computations with shifted data may be performedkiyithe reduced storage asso-
ciated with the vector representation of the basis matriktae parity-check matrix in cyclic
form help to facilitate such implementations.
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4.4.3. Shannon’s theorem and turbo codes . The low-dimensional LBC, LTC, and
LQC constructions given above are now supplanted by the mamgplexturbo codes for
high performance coding applications such as 10GBasee€rFmthand deep space communi-
cation. Though these codes are generally much longer tleagirtiple codes discussed above,
they are built on the same fundamental principles, and gehaecoding efficiency over a
noisy channel that is very close to the celebrated Shannut(Shannon 1949). For more
information on such codes, the reader is referred to Gallélg¥63), Berrouwet al. (1993),
and Moon (2005). Note also that the study of ternary and goatg codes is far more than
a mathematical curiosity; new memory storage technologgepts leveraging, for example,
DNA-based storage, with a four-character alphgidef, G,C}, directly motivate the further
development of non-binary error-correcting coding styes.

4.4.4. Soft-decision decoding . The type of decoding discussed in 84.4.1-4.4.3,in which
the received vectol is assumed to be iﬁg, is known ashard-decision decoding

Another formulation of the decoding problem assumes agdeitwt € Fg, but thatw €
R". The decoding problem in this case, caltedt-decision decodings similar to that con-
sidered before (again, to find the most likely codewwrcbrresponding tev, and the original
data vectod that generated it), but is now based on finding the codewotttht minimizes
the Euclidian distance t@ rather than that which minimizes the Hamming distance.

For example, consider the soft-decision decoding of a iparity check code. Assume
that the transmitted codewovd e F5 (that is, the symbols being transmitted are binary, and
in this case rescaled to hil) but that the received messagye= R" (that is, the symbols
received are real). In this case, we may decode the receiesdage by initially takingy =
sign(w). If the resulting decoded vector fails the parity check, \mepdy take the decision
that we were least certain about (that is, the elemeiit thfat is closest to zero) and round it
the other direction; this is known &8agner’s decoding ruléSilverman & Balser 1954).

Many soft-decision decoding algorithms are essentiallyegalizations of Wagner’s de-
coding rule. Further, most soft-decision decoding altong may be framed as straightfor-
ward restrictions of a corresponding lattice quantizagilgorithm (see 85) to the appropriate
subset of the lattice in question.

5. Quantization onto lattices . We now introduce some methods for quantization from
an arbitrary poink in R" onto a poin& on a discrete lattice, which may be defined via integer
linear combination of the columns of the correspondingdastrixB. The solution to this
problem is lattice specific, and is thus treated lattice kjckain the subsections below. Note
that 85.1 through 85.4 are adapted from Conway & Sloane (1998 85.5 is adapted from
Vardy & Be’ery (1993). Note also that we neglect the problensaaling of the lattices in
this discussion, which is trivial to implement in code.

5.1. Quantization to Z". Quantize tdZ" simply by rounding each element »fto the
nearest integer.

5.2. Quantizationto Dp. Quantize tdy by roundingx two different ways:

e Round each element &fto the nearest integer, and call the regult

e Round each element afto the nearest integ@xceptthat element ok which is furthest
from an integer, and round that element the wrong way (thabisnd it down instead of
up, or up instead of down); call the resklt

Compute the suraof the individual elements &; the desired quantiziation &= X if is sis
even, andk = X if sis odd.

5.3. Quantization to A,. The A, lattice is defined in am-dimensional subspade of
Y = R™!, The subspac€ is spanned by tha columns of the corresponding basis matrix
Ba,, and the orthogonal complement Gfis spanned by the vectory,. Thus, the nearest
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point in the subspacg¢ € C, to any given poiny € Y is given by

yc =Y —(Y,na,) - Na,.

An orthogonal basiéAn of C may easily be determined froBp, via Gram Schmidt orthog-
onalization. With this orthogonal basis, the vectors R" comprising theA, lattice may be
related to the corresponding vectgrse C C Y (that is, on am-dimensional subspace of
R"1) via the equation

yc = Bax. (5.1a)

Thus, starting from some poirte R" but not yet quantized onto the lattice, we can easily de-
termine the correspondir{g+ 1)-dimensional vectoyc which lies within then-dimensional
subspac€ of R™1 via (5.1a). Given this value ofc € C, we now need to quantize onto the
lattice. We may accomplish this with the following simpless:

e Round each component g to the nearest integer, and call the regulDefine the defi-
ciencyA = 3, Vi, which quantifies the orthogonal distance of the pgifiom the subspace

e If A=0, theny =¥. If not, defined = yc — ¥, and distribute the integers.0.,n among
the indicedy,...,in such that

~1/2<d(i,) <d)y) < ... <d(§,) <1/2

If A > 0, then nudg§ back onto theC subspace by defining, = { 7% 1 k<a,
ik otherwise
Vi. +1 K A

If A <0, then nudgg back onto theC subspace by defining, = ¥'k * = n+. '
ik otherwise

Back inn-dimensional parameter space, the quantized iala€ corresponds to

% =B} §. (5.1b)

5.4. Quantization to the union of cosets . The dual latticeD};, andA;,, the triangular
lattice A2, and the packindd;j (including the latticeEg = Ej = Dg) are described via the
union of simple, real cosets in (2.4a), (2.7a), (2.6¢), &h8)( respectively. The latticds;
andE7 may be built via the union of simple, real cosets via ConsioacA [see (4.4a)],
with coset representativaémk’d] defined in (4.8) and (4.9) respectively. To quantize a lattic
described in such a manner (as a union of simple cosets), apeguantize to each coset in-
dependently, then select from these individual quantipatthat lattice point which is nearest
to the original poink.

The latticesEs andEg may be built via the union of complex cosets [which are scaled
and shifted comple¥ latticesZ[w]®] via ConstructionA} [see (4.5a)], with coset represen-
tativeswi[nykd} given in (4.13) and (4.12) respectively. Following Conwayséane (1984),
to discretize a point to coset in these cases:

e Determine the complex vectare C3 corresponding tox € R®. Shift and scale such that
z2=(z—a)/6.

¢ Determine the real vectdre R® corresponding t@ € C3. Quantize the first, second, and
third pairs of elements d¥ to the real triangula@; lattice to create the quantized vecfor

e Determine the complex vectére C3 corresponding t& € R®. Unscale and unshift such
that? = 67 + a.

¢ Determine the real vectére R® corresponding té@ € C3.
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5.5. Quantizationto A24. We now jump to the Leech lattice in dimensioa= 24. Re-
call from 82.6 that the best lattices in dimensians 9 to n = 23 may all be determined as
lower-dimensional cross-sections/vis; once the (difficulth = 24 case is mastered, quanti-
zation to these intermediate dimensions is relativelyigiitéorward.

Efficient quantization t@\,4 is a problem that received intense scrutiny in the 1980s and
early 1990s. The best algorithm described in the literatdue to Vardy & Be’ery (1993),
is based on the construction &4 described in the last paragraph of 84.3.5, and essentially
represents a culmination of the previous efforts that leidl tdhis remarkable algorithm re-
quires only about 3000 to 3600 floating-point operations@mdparisons, and a comparable
number of integer operations and comparisons, to compatpdit of theA,4 lattice that is
closest to any given pointc R?4. The algorithm leverages effectively many of the fundamen-
tal symmetries inherent iN4, including its close relationships with both carefullyesten
subsets of th®; lattice (Figure 4.5) as well as thé, 3,4]4 hexacode (8§84.3.5).

Though it was proposed in 1993, the logic inherent to thisttlgm is so intricate that,
as of the writing of this review, an executable version ofidt @ot appear to be readily avail-
able in the literature. We have thus written an effici@iortran90 implementation of this
algorithm, which is available online at:

http://renaissance.ucsd.edu/software/DecodeLeech.tg z
This implementation is thoroughly commented, and is wrmiite a notation consistent with
that of Vardy & Be’ery (1993). Thus, in addition to being a fudecode for new practical
applications of the Leech lattice in science and engingeiiris hoped that this executable
code can itself be a helpful guide in the understanding af¢cbimplex algorithm.

In short, using the notation introduced at the end of §418Bi5,algorithm first splits the
problem of quantizating a poimte R?* to the nearesh,4 point into two subproblems:

e quantizing toHy4; that is, when forming the original vectorc R?* into a 2x 6 array of
pointsry, € R? for h=0,1 andn=0,...,5, quantizing eachp, to the bestjk points in
the Ungerboeck partitioning @, such that the overal parity of the array is even, while
the projection of the X 6 array of points forms a codeword of tf& 3, 4], hexacode; and

e quantizing toHz4 + a; that is, quantizing to the beBjk points in the Ungerboeck parti-
tioning of D, such that the overakl parity of the array is odd, while, again, the projection
of the 2x 6 array of points forms a codeword of tf& 3, 4]4 hexacode.

The best of the two lattice points selected by these subgnabls then returned.

During the execution of each of these two subproblems, th&esk point ta, in each
Ajjk family (in the even overak parity case) or in eadh;jx family (in the odd overalk parity
case) is first identified, and ttegjuared Euclidian distanc(SED) to each of these points is
calculated. For eachand j, the “preferred” value ok (that is, the one that leads to the
least SED for that point) is determined, and the SED per@afty chosing the other value
of kis computed. The algorithm then further splits the quatibmeto Ho4 (and, similarly to
Hz4+ @) into two smaller sub-subproblems:

e (uantizing taQ.g4; that is, to arrays with the specified ovetafiarity such that, additionally,
the overallh parity is even; and

e quantizing toQ24+ b; that is, to arrays with the specified overalpbarity such that, addi-
tionally, the overalh parity is odd.

The best of the two lattice points selected by these subreblgms is then returned.

300ur implementation of this algorithm executes in about Oifiseconds on a 2008 vintage laptop (2.53GHz
Intel Core 2 Duo), which is sufficiently fast for many appticas. It is also trivial to parallelize this code efficigntl
over four separate computational threads, as quantizatieach Leech quarter lattice is handled independently.
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The quantization t®,4 and its 3 translates is, in turn, decomposed into 5 distiegtss

1. Only two sets of indicesio, jo,i1, j1} project to each symbgi € F4; in this step, for each
symbolp and for each column of the 2x 6 array, we identify the “preferred represen-
tation” as that set which, when taken together with theiregponding preferred values
of kg andk;, minimize the SED of the column, and the other set, refemesktthe “non-
preferred representation”; we also calculate the SED peaabociated with chosing the
non-preferred representation. Conveniently, it turnstbat the preferred representation
and the non-preferred representation necessarily hawesipp parity.

2. Thethree lists of penalties associated with changingdhenn-wisek parities (case 0), the
column-wiseh parities (case 1), or both (case 2) are then sorted (our imgaigation uses
mergesorts, due to their cache efficiency; heapsorts okspiits are viable alternatives).

3. The SED for each preferred “block” (that is, each pair dioms) is then computed.

4. For each of the 64 codewords of the hexacode [see (4.28)hen find the smallest pos-
sible correction(s) to the set of preferred representatsoich that the totdd parity and the
total h parity match the specified values required for the particuénslate 0fQ24 being
considered (of 4 possible cases). This step leverages ttesldists computed in step 2.

5. For each of 16 sets of symbols [givenwy € F4 andw; € F4], calculate the total SED of
corrected representations, determined in step 4, comelépgto the 4 valid codewords of
the hexacode [given by, € F4 and{ws, w4, Ws} selected according g 3 4, defined in
(4.20)]. We then find the minimum total SED amongst these tfected representations,
and return the corresponding lattice point.

6. Enumerating nearest-neighbor lattice points . In the practical use of lattices in en-
gineering applications, in addition to effective quantiza methods (85), one occasionally
needs to generate a list of all lattice points that are neastghbors to a given lattice point.
It is sufficient to generate a list of all lattice points tha¢ @mearest neighbors of the origin,
then to shift these points as necessary to the vicinity ofahgr lattice point. The present
section describes two methods to generate such lists oésteagighbors on a lattice.

6.1. Cases wittm < 8. Noting first (see §2.1) that a basis matBf ann-dimensional
lattice might itself have more thanrows, the following algorithm is found to be effective for
all lattices up to about = 8:

0. Initializep=1.

1. Define a distribution of poinf such that each element of each of these vectors is selected
from the set of integer§—p,...,0,..., p}, and thatll possible vectorthat can be created
in such a fashion, except the origin, are present (withoptidation) in this distribution.

2. Compute the distance of each transformed pgiat BZ in this distribution from the ori-
gin, and eliminate those points in the distribution thatfaréher from the origin than the
minimum distance computed in the set.

3. Countthe number of points remaining in the distributidthis number equals the (known)
kissing number of the lattice under consideration, asdigteTables 2-3, then determine
an orthogonaB from B via Gram Schmidt orthogonalization, sét= BT§' for all i, and
exit; otherwise, incremerg and repeat from step 1.

Though this simple algorithm is not at all efficient, fior< 8 it really need not be, as the
nearest neighbor distribution is identical around evettyck point, and thus this algorithm
need only be run once for any given lattice.

6.2. Cases witm> 8. Forn > 8, the algorithm described above is prohibitively expen-
sive. We thus focus here on an efficient manner of obtainiedl86,560 nearest neighbors
to the origin of the Leech latticA24, then on the restriction of this set of neighbors, one
dimension at a time, down to=9.

To proceed, it is first necessary to enumerate the codewdrithe dinary Golay code
following the approach described in §4.1.7. Recall thatathagis matrix of the binary Golay
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code has dimension 2412; thus, the ¥ = 4096 codewords of the binary Golay code follow
immediately as a binary linear combination (that is, as edimcombination, mod 2, with
binary coefficients) of the columns of this matrix.

Then, in order to identify all of the nearest neighbors ofltkeech lattice, we may pro-
ceed (following Conway & Sloane 1998) by constructing thdestinct sets of points:

e The first set, consisting of 9804 points, is obtained using the binary Golay codewords
discussed above. Construct first ax224 matrix A with —3 everywhere along the main
diagonal and 1 everywhere else. Then, take each codewole dfinary Golay code, one

at a time, replace each 0 withl, and perform elementwise multiplication of this modified
codeword to each column & thereby generating 24 points for each of thé@nary Golay
codewords, or 2. 24 = 98,304 points.

e The next set, consisting of 104 points, is composed of vectors with 22 zero elements
and two elements that are either 4-of. As there are 276 ways to select the locations of the
nonzero elements, and 2 4 valid ways to populate them, we obtamh 276= 1,104 points.

e The third set, consisting of 9752 points, is obtained using the 759 vectors of the Witt
design, which are just the 759 binary Golay codewords (dised above) of weight 8. Note
that each of these vectors has 8 ones and 16 zeros. Constr8igt B28 matrixC such that
each element of each column is either a 2@, with an even number of minus signs in each
column (note that there aré 2 128 such columns possible). We then distribute the elements
in each of the 128 columns &finto each of 8 positions where the ones sit in each of the 759
vectors of the Witt design, thereby obtaining the remairlig§- 759= 97,152 points.

The 98304+ 1,104+ 97,152= 196,560 points so generated are the nearest neighbors
to the origin ofA24. Then, throwing out those poinzgor whichz-np,, # 0 (see §2.6) leaves
the 93,150 neighbors d@f,3; additionally throwing out those poinisfor whichz- np,, # 0
leaves the 49,896 neighbors/ify; etc.

7. Conclusions . In short, 82 of this paper is about generalizing to higheredigions
the familiar triangular, BCC, and FCC lattices, which areskalternatives to the Cartesian
lattice with reduced nonuniformity, whereas 83 of this papa@bout generalizing to higher
dimensions a few (specifically, the most regular) of the mfanyiliar nets arising in biology
and crystallography, such as the honeycomb, diamond, aadzoqgraphs, which are rare al-
ternatives to the Cartesian lattice with reduced coor@inatumber. The primary successful
application on-dimensional sphere packing theory to date is in codingriheas reviewed in
84. A working understanding of this material, including htmwquantize to such lattices, as
summarized in 85, and how to enumerate nearest neighborscbriatices, as summarized
in 86, is essential for new practical applications of splpareking theory, such at those stud-
ied in Parts Il and Il of this work, both of which leverage kiyathe foundational material
discussed here.
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