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ABSTRACT
Chaotic systems are characterized by long-term unprdilicia Existing methods designed to estimate and fore-
cast such systems, such as Extended Kalman filtering (aéséigli or “incremental” matrix-based approach) and
4DVar (a “variational” or “batch” vector-based approacie essentially based on the assumption that Gaussian un-
certainty in the initial state, state disturbances, andsmegment noise lead to uncertainty of the state estimasgeat |
times that is well described by a Gaussian model. This assomis not valid in chaotic systems with appreciable
uncertainties. A new method is thus proposed that combmespeed and LQG optimality of a sequential-based
method, the non-Gaussian uncertainty propagation of aengie-based method, and the favorable smoothing prop-
erties of a variational-based method. This new approadéérresl to as Ensemble Variational Estimation (EnVE), is
a natural extension of the Ensemble Kalman and 4DVar algost EnVE is a hybrid method leveraging sequential
preconditioning of the batch optimization steps, simwdtaurs backward-in-time marches of the system and its adjoint
(eliminating the checkpointing normally required by 4D\ax receding-horizon optimization framework, and adap-
tation of the optimization horizon based on the estimateettainty at each iteration. If the system is linear, EnVE
is consistent with the well-known Kalman filter, with all d§iwell-established optimality properties. The strength
of EnVE is its remarkable effectiveness in highly uncertamlinear systems, in which EnVE consistently uses and
revisits the information contained in recent observations with Ibdtbat is, variational) optimization steps, while

consistently propagating the uncertainty of the resulésgimate forward in time.

1 Introduction

The estimation and forecasting of chaotic, multiscale eanc
tain fluid systems is one of the most highly visible compoiaei
grand challenge problems of our generation. Specifichliy,dlass
of problems includes weather forecasting, climate foréegsand
flow control. The financial impact of a hurricane passing tigioa
major metropolitan center regularly exceeds a billion a&wsll Im-
proved forecasting techniques provide early and accurateings,
which are critical to minimize the impact of such events. @mger
time scales, the estimation and forecasting of changessiarocur-
rents and temperatures is essential for an improved uadhelisty
of changes to the earth’s weather systems. On shorter tiatessc
feedback control of fluid systems (for reasons such as mamgi
drag, maximizing harvested energy, etc.) in mechanicabspace,
environmental, and chemical engineering settings leadvariaty
of similar estimation problems. While this paper makes ranes
with regards to solving such important problems, it doeshice
a new hybrid ensemble/variational strategy for the estonaind
forecasting of such multiscale uncertain fluid systems thigght
well have a transformational effect in all of these areas.

Much of the research today in data assimilation for multi-
scale uncertain fluid systems is focused on medium to shoge
weather forecasting. To this end, the field of data assiioildtas
matured greatly in the past two decades. First, with theldpve
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ment of spatial (three-dimensional) variational dataragation
(3DVar)—see, e.g., Parrish & Derber (1992) and Lorenc (3986
consistent statistical framework was formed that could tiezed
for large-scale atmospheric systems. This was followed typa
of spatial/temporal (four-dimensional) variational dassimilation
(4DVar)—see, e.g., Le Dimet & Talagrand (1986) and Rabiei.et
(1998)—in which the consistent statistical framework wesreded
to include a time history of observations. It has been shoplni B
Navon (2001) that this spatial/temporal framework has ffeztof
conditioning the resulting estimate on all included dasad@es the
Kalman Smoother [see Rauch et al. (1965) and Cohn et al. J]L994

4DVar was developed in parallel, and largely independently
in the controls and weather forecasting communities. Inctbre
trols community, the technique is referred to as Moving Eami
Estimation (MHE), as discussed in Michalska & Mayne (1995).
MHE was developed with low dimensional ODE systems in mind;
implementations of MHE typically search for a small timeyiag
“state disturbance” or “model error” term in addition to tindial
state of the system in order reconcile the measurementstingth
model over the period of interest as accurately as pos<ibiear,
in contrast, was developed with high dimensional discatitns
of infinite-dimensional (PDE) systems in mind; in order ttare
numerical tractability, implementations of 4DVar typigatio not
search for such a time-varying model error term.

Another technique that has been introduced to accelerate
MHE/4DVar implementations is multiple shooting—see, ,&gaus
et al. (2006). With this technique, the horizon of interesilit into
two or more subintervals. The initial conditions (and, imoim-
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plementations, the time-varying model error term) for eshin-
terval are first initialized and optimized independenthert these
several independent solutions are adjusted so that trextoajes
coincide at the matching points between the subintervals.

The traditional Kalman [see Kalman (1960) and Kalman &
Bucy (1961)] and extended Kalman filtering ideas were exgulor
by Ghil et al. (1981) for atmospheric applications. Thes¢hods
require the computation of a reduced-rank approximatiothef
covariance matrix at the heart of the Kalman filter in ordebéo
tractable in high-dimensional systems. Such an approiomas

can be shown to be optimal, even for nonlinear systems with no
Gaussian uncertainties. Unfortunately, compared to th€HEthe

PF method requires excessive of computational resourcesilin
tiscale systems due to the relatively large number of gestice-
quired for adequate performance. Further, particle resatipn
strategies which “prune” particles with low weights frormetbket,

and then initialize new particles near the current besinegd, are
computationally intensive. Nevertheless, the Particléntéa Fil-

ter (PKF) method proposed by Hoteit et al. (2008), whichragits

to combine the PF and EnKF approaches in order to inherit the

now known as Chandresarkhar's method, and was introduced bynon-Gaussian uncertainty characterization of the PF nleémal

Kailath (1973).

The more recent development of the Ensemble Kalman Filter
(EnKF) [see, e.g., Evensen (1994), Houtekamer & Mitch&lb@),
Houtekamer & Mitchell (2001), Evensen (2003), and the exfees
contained therein] has focused much attention on an imoréa
finement of this sequential method in which the estimatiatistics
are intrinsically represented via the distribution of astéu or “en-
semble” of state estimates in phase space. The simultasgous
ulation of several perturbed trajectories of the staterest elimi-
nates the need to propagate the entire state covarianci alatrg
with the estimate as required by traditional Kalman and redeel
Kalman approaches. Instead, this covariance informasgiapprox-

the numerical tractability of the EnKF method, appears tguiee
promising; this method could potentially benefit directigrf a fur-
ther hybridization with the variational approach, as peapkere.

The two modern schools of thought in data assimilation for
multiscale uncertain systems (namely, 4DVar and EnKF) hiave
the most part, remained largely independent, despite simeitar
theoretical backgrounds. The data assimilation commuitay
has made considerable efforts to compare and contrast beth t
performance and the theoretical foundation of these twdoust
[see, e.g., Lorenc (2003), Caya et al. (2005), Kalnay ea0T),
and Gustaffson (2007)]. While these comparisons are e,
it is quite possible that the optimal data assimilation sofufor

imated based on the spread of the ensemble members in order tanany cases may well betgbrid combination of the two methods,

compute a Kalman-like sequential update at the measurdimess
(for further discussion, see Section 2.2).

Since its introduction, the EnKF has spawned many variation
and modifications that seek to improve both its performanma a
its numerical tractability. For example, Kalman squaretriters
update the analysis only once, in a manner different thatraug
tional perturbed observation method. Some square-roetiltro-
duced include the ensemble adjustment filter by Anderso@1(20
the ensemble transform filter by Bishop et al. (2001), andetie
semble square-root filter by Whitaker & Hamill (2002). Wor&ksh
also been done by, e.g., Kim et al. (2003), to further reladitrear
Gaussian assumptions with regards to the interpolatiomd®st the
observation and the background statistics. The unscerdddan
filter, first introduced by Wan & van der Merwe (2000), derizes
more accurate particle propagation of the estimate caveeigbut
requires far too many ensemble members to remain tractable f
multiscale systems. Another essential advancement inntipéet
mentation of the EnKF is the idea of covariance localizatias
discussed in Hamill et al. (2001) and Ott et al. (2004). With ¢
variance localization, spurious correlations of the utaiety co-
variance over large distances are reduced in an ad hoc fashio
order to improve the overall performance of the estimatigo-a
rithm. This adjustment is motivated by the rank-deficientyhe
ensemble approximation of the covariance matrix, andifatgks
parallel implementation of the resulting algorithm.

For nonlinear systems, the EnKF framework is suboptimal due
to its reliance on a Kalman-like measurement update fornTuies
update formula is, effectively, based on a Gaussian digdtdb of
the estimate uncertainty. The more general Particle KRE)} prop-
agates a set of “particles” representing several poteméigdctories
of the system in a very similar manner as the EnKF propogéges i
ensemble. In the PF method, however, each particle has an ass
ciated “weighting factor” that is used to compute a biasedme
and corresponding higher moment statistics. Unlike the FEra€
the measurement times, the particle filter uses the new bser
tions to update the weighting factor of each particle, withac-
tually updating the particle’s position in phase space. Assailt,
in the limit of an infinite number of particles, this updateastgy

as suggested by Gustaffson (2007). We have identified fiventec
attempts at such hybridization:

(i) the 3DVar/EnKF method of Hamill & Snyder (2000),
(i) the EnKS method of Evensen & van Leeuwen (2000),
(iii) the 4DEnKF method of Hunt et al. (2004),

(iv) the VAE method of Berre et al. (2007), and

(v) the EADVAR method of Zhang et al. (2007).

The 3DVar/EnKF algorithm introduced by Hamill & Snyder (200
utilizes the ensemble framework to propagate the estintatistics

in a nonlinear setting, but does not exploit the temporal atmo

ing characteristics of the 4DVar algorithm. The EnKS (Enislem
Kalman Smoother) method developed by Evensen & van Leeuwen
(2000) recomputes a new analysis, essentially from scrédchall
recent measurements upon the receipt of each new obsen\thi®
approach is computationally intractable for multiscalsteyns. The
4DENnKF (4D Ensemble Kalman Filter) introduced by Hunt et al.
(2004) provides a means for assimilating past (and noretmif
observations in a sequential framework, but does not sitraly
smooth the resulting estimate or fully implement the 4DVanfe-
work. The VAE (Variational Assimilation Ensemble) methofl o
Berre et al. (2007) runs a half dozen perturbed decoupledadDV
or 3DFgat assimilations in parallel to estimate error covariances,
but does not fundamentally integrate the EnKF and 4Dvar con-
cepts to obtain a hybrid method. The E4DVAR (Ensemble 4DVar)
method discussed by Zhang et al. (2007), which is the cl@sest
isting method to that proposed here, runs a 4DVar and EnKF in
parallel, sequentially shifting the mean of the ensembkedan

the 4DVar result and providing the background term of the dDV
algorithm based on the EnKF result; however, this method doé
attempt a tighter coupling of the EnKF and 4DVar approaches b
using an Ensemble Smoother to initialize better (and, theseler-
ate) the variational iteration.

1 Thatis, 3D First Guess at the Apprpriate Time (3DFgat), &erinediate
variational method with complexity somewhere between th@DVar and
4DVar [see Fisher (2002)].
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The proposed new algorithm, Ensemble Variational Estima- where the state disturbanegt) is a zero-mean, continuous-time

tion (EnVE), is, a consistent and tightly-coupled hybrid tbé
traditional sequential (EnKF) and variational (4DVar/MHfeth-
ods. EnVE uses the statistical properties of a sequentsreble
Kalman smoother (EnKS) to, from time to time, precondition a
variational assimilation step. In the earlier work done Igs¢ha
et al. (2007), the 4DVar/MHE framework was inverted, promot
ing “retrograde” time marches (that is, marching the stataeate
backward in time and the corresponding adjoiictward in time),
which facilitates anadaptive (i.e., multiscale-in-time) receding-
horizon optimization framework. The motivation behindstlorig-
inal work was sound, but the algorithm lacked the consistenc
necessary to account for the background estimate statistiith
the incorporation of the EnKF, creating the new EnVE aldnit
proposed here, it is possible to retain the adjustable dgdiion
horizons facilitated by this retrograde setting while sitaoeously
eliminating the typical storage problem associated wittet@nal
methods. Special significance is placed in this paper orcahe
sistency of EnVE; specifically, that the algorithm converges to the
optimal Kalman filter solution in the LQG setting.

Section 2 of this paper reviews briefly the general forms of
both the EnKF and 4DVar. The adjoint for a continuous-timeleio
with discrete-time measurements is fully derived, as mat-e
ing derivations deal with either the fully continuous [ses., Kim
& Bewley (2007)] or fully discrete [see, e.g., Bouttier & Qtiar
(2002)] formulations. Section 3 outlines the theoreticaurfda-
tions of the EnVE algorithm, and derives (apparently, fa finst
time) the backward-in-time Kalman filter “downdate” eqoati
which exactly inverts the classical discrete-time Kalmaterfiup-
date equation in a numerically tractable manner. Some ricater
considerations (with regards to implementation of EnVEniPI
setting) are then described in Section 4. The importancermdis-
tency, and how it relates to the EnVE algorithm, is furtheriel
fied in Section 5. The primary advantages of the EnVE forntat
are sumarized in Section 6. The full EnVE algorithm is demon-
strated on a simple example of chaos, the Lorenz system,dn Se
tion 7. Two follow-up papers [see Bewley et al. (2008a, 2Q0DP8b
detail the implementation of the EnVE algorithm on 1D, 2Dd an
3D chaotic PDE systems, and introduce a unique adaptiveabse
tion algorithm which builds directly upon the hybrid framenk of
the EnVE algorithm.

2 Background

Ensemble Variational Estimation (EnVE) is a consistent hy-
brid data assimilation method that combines the key idettsecfe-
quential Ensemble Kalman Filter (EnKF) method and the bétch
time) variational method known as 4DVar in the weather fastc
ing community and as Moving Horizon Estimation (MHE) in the
controls community. Thus, these methods are first brieflievesd
independently. Without loss of generality, the dynamic elaged
to introduce these methods is a continuous-time nonlindaE O
system with discrete-time measurements:

(1a)
Yk = h(x(tx)) + vk, (1b)
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random process with autocorrelation

Ru(T;t) = E{w(t+T)w" (1) } = Q&°(1), (22)
01\ — 1 —T12/(20?)
where  &°(1) o\/ﬁe , (2b)

with Q >0 and 0 < 0 < 1, and the measurement noiggis a
zero-mean, white, discrete-time random process with autela-
tion

R/(j;K) = E{Vk:j vl } = R0, ®3)

with ® > 0. Is also assumed that(t) andvy are uncorrelated.

The noisy measuremenyg are assumed to be taken at time
tx = kAt for a fixed sample periodt. For the purposes of analysis,
these observations are assumed available for a long historthe
past, up to and including the present time of the system besag
timated, which is often renormalized to be-tg = 0. It is useful
to think of the present time as the time of the most recentablai
measurement, so, accordingly, this measurement will betddn
Yo at the beginning of each analysis step. This sets the basis fo
the indexing notation used in this papke- 0 represents the index
of the most recent measuremekit O is the set of indices of all
available measurements, aad 0 indexes observations that are yet
to be taken. Continuous-time trajectories, suck (g (the “truth”
model), are defined for all time, but are frequently refeeshat the
observation times only. Hence, the following notation isdis

X(kAt) = X(t) = Xk “

2.1 Uncertainty Propagation in Chaotic Systems

Estimation, in general, involves the determination of ebgro
bility distribution. This probability distribution desibes the like-
lihood that any particular point in phase space matchesrtik t
model. That is, without knowing the actual state of a systesti;
mation strategies attempt to represent the probabilityngfgiven
state using only a time history of noisy observations of asstib
of the system and an approximate dynamic model of the system
of interest. Given this statistical distribution, estiemican be in-
ferred about the “most likely” state of the system, and howcimu
confidence should be placed in that estimate. Unfortunatethis
most general form, the estimation problem is intractablenost
systems. However, given certain justifiable assumptiowsitathe
nature of the model and its associated disturbances, $icagibns
can be applied with regards to how the probability distiiing are
modeled. Specifically, in linear systems with Gaussian uaigy
of the initial state, Gaussian state disturbances, and<eaumea-
surement noise, it can be shown that the probability distioin
of the optimal estimate is itself Gaussian [see, e.g., Asule&
Moore (1979)]. Consequently, the entire distribution & &stimate
in phase space can be represented exactly by its maad its sec-
ond moment about the mean (that is, its covarianejyhere

P=E[(x—x)(x-X)"]. (5)

This is the essential piece of theory that leads to the tosmit
Kalman Filter (KF), first introduced by Kalman (1960) and iain
& Bucy (1961).

Sequential data assimilation methods provide a method to

2 The case for infinitesimas is sometimes referred to as “continuous-time
white noise”, but presents certain technical difficultiBeyley (2008)].
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propagate the meanand covariance forward in time, making the
appropriate updates to both upon the receipt of each newureeas
ment. Under the assumption of a linear system and white Gauss
state disturbances and measurement noise, the uncedasitrtigu-
tion of the optimal estimate is itself Gaussian, and thusois-
pletely described by the mean estimateand the covariance?
propagated by the Kalman formulation. Itis useful to thifikhese
quantities, at any given tintg, as being conditioned on a subset of
the available measurements. The notaﬁgm represents the high-
est likelihood estimate at timg given measurements up to and in-
cluding timet;. Similarly, %, ; represents the corresponding covari-
ance of this estimate. In particulag, , and%,, , are often called
the prediction estimate and prediction covariance, wisetgaand
2, are often called the current estimate and the current covari
ance. Note thax,, ., , for someK > 0, is often called a smoothed
estimate, and may be obtained in the sequential setting layradt
smoother [see, Rauch et al. (1965) and Anderson & Moore (1979
For nonlinear systems with relatively small uncertaintias
common variation on the KF known as the Extended Kalman Fil-

30

20

« Path A Path B —»

ter (EKF) has been developed in which the mean and covarianceFigure 1. Non-Gaussian uncertainty propagation in the Lorenz systém

are propagated, to first-order accuracy, about a lineatiagettory
of the full system. Essentially, if a Taylor-series expansior the
nonlinear evolution of the covariance is considered, ahteahs
higher than quadratic are dropped, what is left is the difiéal
Riccati equation associated with the EKF covariance pratiaig.
Though this approach gives acceptable estimation perfurenfor
nonlinear systems when uncertainties are small as compathd
fluctuations of the state itself, EKF estimators often djeewhen
uncertainties are more substantial, and other techniqeesaded.
At its core, the linear thinking associated with the undatja

propagation in the KF and EKF breaks down in chaotic systems.

Chaotic systems are characterized by stable manifoldstoata

tors” in n-dimensional phase space. Such attractors are fractional-

dimensional subsets (a.k.a. “fractal” subsets) of theremhase-
space. Trajectories of chaotic systems are stable witlectsp the
attractor in the sense that initial conditions off the attioa con-
verge exponentially to the attractor, and trajectoriesherattractor
remain on the attractor. On the attractor, however, trajext of
chaotic systems are characterized byegponential divergence—

along the attractor—of slightly perturbed trajectoriebafTis, two
points infinitesimally close on the attractor at one timd dilerge
exponentially from one another as the system evolves eyl are
effectively uncorrelated.

Just as an individual trajectories diverge along the dtirac
so does the uncertainty associated with them. This unogytdli-
verges in a highly non-Gaussian fashion when such uncédsin
are not infinitesimal (see Figure 1). Estimation technighes at-
tempt to propagate probability distributions under lin€&aussian
assumptions fail to capture the true uncertainty of thenestt
in such settings, and thus improved estimation techniquesea
quired. The Ensemble Kalman Filter, in contrast, accourdapgrly
for the nonlinearities of the chaotic system when propagagisti-
mator uncertainty. This idea is a central component of thaitly
ensemble/variational method proposed in the present veordk,is
thus reviewed next.

2.2 Ensemble Kalman Filtering

The Ensemble Kalman Filter (EnKF) is a sequential data as-
similation method useful for nonlinear multiscale systewith
substantial uncertainties. In practice, it has been shepeatedly
to provide significantly improved state estimates in systdor

black point in the center shows a typical point located in Bsiire area
of this chaotic system’s attractor in phase space, repliegescurrent esti-
mate of the state. The thick black line represents the deolin time of the
trajectory from this estimate. If the uncertainty of thereste is modeled
as a very small cloud of points, centered at the originalvest with an
initially Gaussian distribution, then the additional magelines show the
evolution of each of these perturbed points in time. A Gaussnodel of
the resulting distribution of points is, clearly, complgt@valid.

which the traditional EKF breaks down. Unlike in the KF andiEK
the statistics of the estimation error in the EnKF are noppgated
via a covariance matrix, but rather are implicitly approated via
the appropriate nonlinear propagation of several pertuttsgec-
tories (“ensemble members”) centered about the ensemida,me
as illustrated in Figure 1. The collection of these ensemixen-
bers (itself called the “ensemble”), propagates the siedisf the
estimation error exactly in the limit of an infinite number ef-
semble members. Realistic approximations arise when tirdau
of ensemble memberbl, is (necessarily) finite. Even with a finite
ensemble, the propagation of the statistics is still coestswith
the nonlinear nature of the model. Conversely, the EKF prafes
only the lowest-order components of the second-momeristtat
about some assumed trajectory of the system. This differena
primary strength of the EnKF.

In practice, the ensemble memb&fsin the EnKF are initial-
ized with some known statistics about an initial mean edtma

The ensemble members are propagated forward in time using th

fully nonlinear model equation (1a), incorporating randfaming
w! (t) with statistics consistent with those of the actual staseudi
banceswv(t) [see (2)]:

dsl (t)

dt
At the timety (for integerk), an observationy is taken [see (1b)].
Each ensemble member is updated using this observatianpioc

rating random forcing'lj( with statistics consistent with those of the
actual measurement noisg,[see (3)]:

= (& ),w(t)). (6)

dj =y +Vi. @)
Given this perturbed observatidﬁ, each ensemble member is up-
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dated in a manner consisténtith the KF and EKF:

HA 4 )L, -H% ), ®

Klk—1

L H
Xl{\k :Xl!\k 1+T:\Bk 1H (H T:\Bk 1
whereH is the linearization of the output operatur) in (1b). Un-
like the EKF, in which the entire covariance matfiXs propagated
using the appropriate Riccati equation, the EnKF estimatari-

ance®® is computed “on the fly” using the second moment of the

ensembles from the ensemble mean:

(8X) (3X)H

P° =
N—1

, where 8X = [3%! 3%? 3N,

. . _ _ 1 .
g — gl _ — 4
ox! =x'—x, and x_NEJx, 9)
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the domain of the system. This problem can be significanthyirti
ished via the ad hoc method of “covariance localization” ticered
previously, which artificially suppresses these spuriarsatations
using a distance-dependent damping function.

2.3 \Variational Methods

For high-dimensional systems in which matrix-based method
are computationally infeasible, vector-based variationathods
are preferred for data assimilation. 3DVar is a vector-ba&spiiva-
lent to the KF. In both 3DVar and KF, the cost function beingimi
imized is a (quadratic) weighted combination of the unéetyan
the background term and the uncertainty in the new measumteme
If the system is linear, the optimal update to the state edérnan

whereN is the number of ensemble members, and the time sub- e found analytically, though this solution requires mabrased

scripts have been dropped for notational cldity

arithmetic (specifically, the propagation of a Riccati eprg, and

Thus, like the KF and EKF, the EnKF is propagated with a s the origin of the optimal update gain matrix for the KF. Whe
forecast step (6) and an update step (8). The ensemble memberhis matrix is too large for direct computation, a local gead can
%! (t) are propagated forward in time using the system equations jnstead be found using vector-based arithmetic only; 3D\éas

[with state disturbancew! (t)] until a new measuremery is ob-
tained, then each ensemble mempkty) = X;, is updated to in-
clude this new information [with measurement noiék The co-

variance matrix is not propagated explicitly, as its evioluis im-
plicitly represented by the evolution of the ensemble fitsel

It is convenient to think of the various estimates duringhsuc

a data assimilation procedure in terms of the set of meastsm
that have been included to obtain that estimate. Just apdsisi-

ble to propagate the ensemble members forward in time atiogun

this local gradient information to determine the optimatiafe it-
eratively.

Similarly, 4DVar is the vector-based equivalent to the Kam
Smoother. In 4DVar, a finite time window (or “batch process’a
history of measurements is analyzed together to improveskie
mate of the system at one edge of this window (and, thus, tlie-co
sponding trajectory of the estimate over the entire winddimjike
sequential methods, a smoother uses all available datatogdi-
nite time window to optimize the estimates of the systemsTiais

for new measurements, ensemble members can also be prgpagat the consequence of refining past estimates of the systerd base
backward in time, either retaining the effect of each measurements future measurements, whereas with sequential methodsiegy g

or subtracting this information back off. In the case of @#nsys-

tem, the former approach is equivalent to the Kalman smaoothe

while the later approach simply retraces the forward mafdhe
Kalman filter backward in time. In order to make this distiaot

clear, the notatioﬁ”k will represent the estimate ensemble at time

tj given measurements up to and including tieSimilarly, Yj‘k
will represent the corresponding ensemble mean; thatésavlr-
age of the ensemble and the “highest-likelihood” estimétthe
system.

While the EnKF significantly outperforms the more tradigbn
EKF for chaotic systems, further approximations need to bdem

for multiscale systems such as atmospheric models. Whéniass

lating data for 3D PDEs, the discretized state dimensimmany

orders of magnitude larger than the number of ensemble mem-

bersN that is computationally feasible (i.eN < n). The conse-
quences of this are twofold. First, the ensemble covariamatix

P& is guaranteed to be singular, which can lead to difficulty nvhe

trying to solve linear systems constructed with this mat8ec-
ond, this singularity combined with an insufficient statiat sam-
ple size produces directions in phase space in which norretion
is gained through the assimilation. This leads to spuriarseta-
tions in the covariance that would cause improper updatessc

3 Note that some authors [see, e.g., Evensen (2003)] prefeplaceR_ in

(8) with R &, where

ge= W (Vio"
N-1

Our current research has not revealed any clear advantagssiftg this

more computationally expensive form.

4 Note also that the factdi — 1 (instead olN) is used in (9) to obtain an

unbiased estimate of the covariance matrix [see Bewley@200

and Vi=[vi v - W]

(© 0000 Tellus 000, 000000

estimate is only conditioned on the previous observations.

For analysis, let the variational window be definedtas
[—T,0]. Additionally, let there b& + 1 measurements in this in-
terval, with measurement indices given by the set

M:{k|tk€[7T70}} = M:{va’“77170}' (10)

Without loss of generality, it will be assumed that there rauea-
surements at both edges of the window (i.e.= —T andtp = 0).
Then, the cost functiori(u) that 4DVar attempts to minimize (with
respect tay) is defined as follows:

1 _

j(u) =5 (U Xk«

Hp-1 -
2 )

CK|-K (u - X—K\—K )+

12 . _ .
53 (eHX) R (- HX), (D)
k=—K

where the “optimization variablel is the initial condition on the
refined state estimateon the interval —T,0]; that is,

%ﬁt) = f(X(t),0), (12a)
%, =u. (12b)

The first term in the cost function (11), known as the “bacligy
term, summarizes the fit of with the current probability distribu-
tion before the optimization (i.e., the effect of all pastamgrement
updates). Like with the KI%ZKH( is the estimate at time, not
including any of the new measurements in the window, and ke c
varianceleiK guantifies the second moment of the uncertainty
in that estimate. Assuming an a priori Gaussian probabdlisy
tribution of this uncertainty, the background mean and devae
exactly describe this distribution. The second term in thet €unc-
tion (11) summarizes the misfit between the estimated system
jectory and the observations within the variational wind@us,
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the solutionu to this optimization problem is the estimate that best
“fits” the observations over the variational window whils@lac-
counting for the existing information from observation®opto the
variational window.

In practice, a 4DVar iteration is usually initialized withet
background meany = x_, . Given this initial guess fou, the
trajectoryX(t) may be found using the full nonlinear equations for
the system (12). To find the gradient of the cost function,(¢d-
sider a small perturbation of the optimization variabie;- u+u’,
and the resulting perturbed trajectakyt) « X(t) + X/ (t), and per-
turbed cost functiony(u) «— 7(u) + 7’(u’). The local gradient of
(11),79(u), is defined here as the sensitivity of the perturbed cost
function 7’(u’) to the perturbed optimization variahlé&

7y =[] (13)
The following derivation illustrates how to writg (U’) in this sim-
ple form, leveraging the definition of an appropriate adjdield.

The full derivation of the gradienty7(u) is included here
due to the unusual setting considered (that is, of a contisxione
system with discrete-time measurements). Perturbingahénear
model equations (1a) and linearizing ab&(tf) gives:

%t
dxdt( ) _ax@t) with %, =u (14)
= LX =0 where L= %—A. (15)
Similarly, the perturbed cost function is:
0
J'W) =(u=x, NPt u’—k ZK(yk— H )M R TH.
(16)

The perturbed cost function (16) is not quite in the form isseey

to extract the gradient, as illustrated in (13). Howevegr¢his an
implicitly defined linear relationship between and%/(t) ont €
[—T,0] given by (14). To re-express this relationship, a seKof
adjoint functiong (¥)(t) are defined over the measurement intervals
such that, for alk € [1, K], the adjoint functiorr ¥ (t) is defined
onthe closed intervale [t_, ,t, , |. These adjoint functions will be
used to identify the gradient. To this end, a suitable dyglitiring

is defined here as:

t
<r<k>,>~<’>—/l’k(r(@)Hx’dt 7)
t k
Then, the necessary adjoint identity is given by
(r® oy = (™ %y 40K, (18a)

Using the definition of the operatar given by (15) and the appro-
priate integration by parts, it is easily shown that

(k)
£l = J’rd_t“) CHC (18b)
Kk k I %% o
bW = (rkhH g —(rkhH g . (18c)

Returning to the perturbed cost function, (16) can be résvrias:

I =(u=X, Pl U -
-1
- 3 (—HX)TRTTHK, (192)
k=—K
A =[H" R (yo—H%0)]" % (19b)

Looking at the adjoint defined over the last intervdl) (), the
following criteria is enforced:

=0 = (70 ¥)=0, (20a)
rg? =H" R~ (yo—H o). (20b)
Substituting (15) and (20a) into (18a) for= 1 gives:
b =0
= (g %)%, =0,
- o \H o o
= H'R Myo—H%0)] %o = (DK, (21)
which allows us to re-expresy in (19b) as
=D (22)

Note that (20a) and (20b) give the full evolution equatiod atart-
ing condition for the adjointY) defined on the intervale [t ,,to].
Hence, a backward march over this interval will lead to thente
rU contained in (22).

The perturbed cost function (19a) can now be rewritten such
that

I =(u=% )P

! !
kU2

-2

- ¥ (—Hx)T RTTHK, (232)
k=-K

= B=[H"R Ty, —Hx )+rD]" % .

Enforcing the following conditions [cf. (20)] for the adjdion this
interval,r (@ (t),

(23b)

£r@ =, (24a)
@ =HA Ry, —H% )+, (24b)

it can be shown via a derivation similar to (21) that
=0 (25)

which is of identical form as (22). Thus, it follows that eaufthe
adjoints can be defined in such a way as to collapse the sure in th

perturbed cost function (16) as above, until the last atigzgation

r %) reduces the perturbed cost function to the following:

Iy =(u=x, Mt o=t

(Y —HX )T RTIHY
with the adjoints over th& intervals being defined as:
dr® (1)

K

(26)

g = AT =0 +HRR H(yo—H%),
dr@(t - 3

G =AY, @ Ry, HE ),
dr®(t _ - 3

dt( : =-A" r(K)(t)’ I'<1If|)< = r:(l'fK ViHtR 1(y14< —HX ).

@7

Upon further examination, the system of adjoints (27) allehthe
same form. Each adjoint variabl&t?) is endowed with a starting
condition that is the final condition of the adjoint manck plus

a correction due to the discrete measurenyeptat the measure-
ment timet_,. Thus, the total adjoint march can be thought of as
one continuous-time march of a single adjoint variaiflg back-
ward over the windowt , ,tg], with discrete “jumps” irr at each
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measurement timig. That is, (27) can be rewritten as:

dr(t)
dt
which is marched backward over the entire intehvalt , ,to] with
ro = 0. At the measurement timet for k € M) the adjoint is up-
dated such that

Me— e+ HT R (ye— H ). (28b)

Note that this update is performed right at the beginninghef t
march, atp, and also right at the end of the marcht at as well at
all the measurement times in between. Then, this definitidhe
adjoint can be substituted into (26) to give:
(W)= (u=x )" ngK‘{K u-rt % . (29)
H

= ]/(U/) = TjK:‘L,K (U _)?—K\—K) -k U/, (30)

=—Ar(t), (28a)

where (30) is found by noting thét, = u’. Then finally, from (13)
and (30), the gradient sought may be written as:

V](U) = EPjK:‘L,K (U _)?4(\4() T (31)

The resulting gradieftcan then be used iteratively to update the

current estimate via a suitable minimization algorithneé¢stest de-
scent, conjugate gradient, limited-memory BFGS, etc.).

Being vector based [see (28), (31)] makes 4DVar well suited

for multiscale problems, and as a result is currently usddrex
sively by the weather forecasting community. However, & bav-
eral key disadvantages. Most significantly, upon convargethe
algorithm provides an updated mean estimél;gb, but provides
no clear formula for computing the updated estimate unicgyta
covariance or its inverse? —T<:\I:J' That is, the statistical distribution
of the estimate probability is not contained in the outpua tfadi-
tional 4DVar algorithm. It can be shown that, upon full corgence
for a linear system, the resulting analysis covariafgg, is simply
the Hessian of the original cost function (11) [see, e.gutBer &
Courtier (2002)]. However, this is merely an analyticaliosity;
computing the analysis covariance in this fashion requisasiuch
matrix algebra as would be required to propagate a sequéhéa
through the entire variational window, defeating the pgipof the
vector-based method.

Additionally, as posed above, the width of the variationad-w
dow is fixed in the traditional 4DVar formulation. Thus, thest
function and associateg-dimensional minimization surface are
also constant throughout the iterations. For nonlineatesys, es-
pecially chaotic systems, this makes traditional 4DVaresrely
sensitive to initial conditions. Because of the nature efthsys-
tems, the optimization surfaces are highly irregular araight
with local minima. The gradient-based algorithms assediatith
4DVar are only guaranteed to converge to local minima. THus,
the initial background estimate is located in the regionttvhation
of one of these local minima, the solution of the 4DVar altori
will tend to converge to a suboptimal estimate.

Lastly, due to the complex nature of multiscale fluid systems

5 Omitted in this gradient derivation is the substantial féity in the
choice of the gradient definition (13) and the duality par{d7). There is
freedom in the choice of these inner products (e.g. by irmmatpng deriva-
tive and/or integral operators as well as weighting fagttinat can serve
to better precondition the optimization problem at hancheiit affecting
its minimum points. This ability to precondition the adjpproblem is dis-
cussed at length in Protas et al. (2004).
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the computation time required for full convergence of thedix
horizon 4DVar algorithm is usually non-negligible when quared
with the characteristic time scales of the system, evenghooany
of the largest purpose-built supercomputers ever buileHzeen
fully dedicated to weather-forecasting problems. As tiers of
4DVar over a fixed horizon proceed, one is effectively savimore
and more accurately a problem which, as time bears on, oes car
less and less about. When the 4DVar algorithm finally coregrg
the estimate so determined is for a time that has alreadyeslifar
into the past, and is of reduced relevance for producing enrate
forecast.

3 TheEnVE Algorithm

The new Ensemble Variational Estimation (EnVE) algorithm
is now presented as a consistent hybrid of the two aforeoreedi
assimilation schemes, EnKF and 4DVar. A detailed desonipbf
the theoretical aspects of EnVE is first given in Section & pitac-
tical implementation details of EnVE are then highlightadSec-
tion 4. As explored further in Sections 5 and 6, EnVE is a c®nsi
tent, receding-horizon, multiscale-in-time assimilatitechnique
which revisits past measurements in light of new data angkee
track of the estimate uncertainty at each step of the alguarit

Assume, without loss of generality, that an EnKF estimate
)?_”_]- exist§ at some past time . This ensemble represents an
estimate attimé ; based on measurements up to and inclugting
At this point, available measurements ugd@re considered. The
EnVE algorithm is initialized via a traditional sequentimarch of
the EnKF up to the time of the most recent measurentgrisee
Figure 2). This provides an ensemble estimate at the préssst
)?0‘0, and all of its corresponding implied statistics. The mean o
this estimate is denoteam, and is found by taking the average of
all the ensemble members. This estimate at tignis based, in a
Kalman-like manner, on all measurements up to and inclutlieg
present time. Doing a traditional Kalman-like march of thast
would, for an adequate number of ensemble members and a lin-
ear system, produce the optimal estimatty.atlowever, errors due
to the nonlinearity of the chaotic system and approximatidne
to the finite size of the ensemble ultimately lead to a subwgti
estimate via the EnKF approach.

For forecasting applications, the most important estiniste
the one at the most recent measurement ttgydyecause it is this
which is used as an initial condition for any forecastingcald-
tion. With a linear system, any type of smoothing at this stag
the EnKF algorithm would have no effect on the estimatg.athe
smoother would simply reduce the error in the past estimé&bes
timest < tp, using the information in the observations betweéen
andtp. However, for a nonlinear system, smoothing affects the en-
tire estimate trajectory, even the most recent estimaig @his is
due to the dependence of the evolution of the estimate wiosrt
on the trajectory of the estimate itself. For a linear systéma co-
variance propagation is independent of trajectory, buafoonlin-
ear system, changes in a past estimate (via smoothing)mpt¢t
the future trajectory of the estimate and its associatedrznce.
This motivates the consistent revisiting of past measunesnia
light of new data in order to improve the resulting forecast.

6 Upon, startup, a large initial spread of the ensembles shoelused to
indicate substantial uncertainty of the initial conditidrnis can be accom-
plished by running the EnKF for a period of time open loop t{teawithout
any feedback from the measurements).
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Figure 2. EnVE is initialized by marching a traditional EnKF forward
through the available observations, making the apprapugdates. This
provides an up-to-date estimate of the current state ofyters ,)?0‘0, based
upon all available measurements. At this point, it may besbelal to re-
visit past measurements to update the trajectory of theastiin light of
the more recent measurements. For visualization purpEs&4 is applied
here to the Lorenz equation with noisy measurements of onts dfiree
components.
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Figure 3. To determine the accuracy of the current estimate (thatss, i
correlation with the recent measurements), the ensembile gresent time
is marched backward using the system equations until tfectoay of the
ensemble mean is deemed significantly divergent from thergagons.
This gives the current best estimagq‘;at the past time .

To this end, the ensemblﬁ)m is marched backward, using
only the model equations. In so doing, the estimate rethi@sr-
formation captured by the measurements during the forwakKiFe
march. Thus, any point on this resulting trajectory is ctoded
on all available measurements. At the conclusion of thikwacd
march, the ensemble mean and implicit statistics are knosorae
past time, say , .

wl

Figure 4. The accumulation of “bias” between the estimate trajectorgt
the observations is shown as the original estimate is mdrblaekward.
Upon reaching a critical biaB, the retrograde march is stopped. This time
t . defines the width of the subsequent variational window.

observations in this case is superfluous, and in fact unsadbs
increases the complexity of the optimization surface. @os®ly, if
the initial estimate & is very accurate, then a significantly longer
variational window can, and should, be included in the asialy

The retrograde ensemble march is thus used to define the win-
dow width used in the subsequent variational step by loo&irthe
correlation between the trajectory of the ensemble meanttand
recent measurement history (see Figure 3). Poor estimategel
quickly from the measurements, and should be analyzed Wit s
optimization windows; conversely, accurate estimatesmaruch
further back in time before they begin to diverge from the soee-
ments, and should be analyzed with longer optimization wivsd
To quantify this divergence, a “bias” measure is calculatedng
the backward march. Mathematically, this bias mea8ymmay be
defined as
—k

J;(yi —H )71\0)

and where the sum is computed by march)'?@g) backward from

the present timetp. Note that this bias measure does not square
its argument. As long as the misfit between each measuremént a
the corresponding quantity in the model is as often pos#é is
negative, the net contribution 8y is nearly zero, and the march
continues. Once this misfit is consistently one sign or themthe
bias measure rather suddenly begins to grow (see Figuradihe
march is terminated. Through experimentation, a critica$ B is
defined such that the trajectory of the ensemble mean is dkeme
significantly divergent from the observations past thisquerThis
point defines the left edge of the variational windoyy, as follows:

K = min{ k | B, > B}. (33)

With the variational window(t , ,tg] so defined, the initial
best smoothed estimate of the statg,, is given as the mean of

the ensembl&_K‘o. At this point, variational methods are used to

By =

‘ where |z =|z| + - + |zl,
1

(32

This retrograde ensemble march is monitored in such a way asimprove this estimate in a consistent manner. To this eredirt

to define the width of the observation window for the subsatjue
variational step of the EnVE algorithm. If the initial estite atg is
poor, then a lot of useful information may be deduced from albm
time window containing only a few observations. Includingre

ditional 4DVar cost function is defined with a backgroundreate
and covariance &t ,. The background term of the cost function
must now be defined carefully, as the correct backgrounditees:
sential for EnVE to be consistent. In other words, propeéfjring
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Figure 5. In order to define fully the variational cost function, thecka
ground terms &t , must be recalled. This is done by marching the original
ensemble)?o‘o backward through the window, sequentially removing the ef-
fect of each measurement. This march results in a backgrensdmble
)?,K‘,K att_g. From this ensemble, the background mean and covariance
can be inferred.

the background term in the variational cost function guesthat
erroneous updates are not made by using an observation naore t
once, and ensures that the result obtained reduces to tfaaned
by the Kalman Filter in the special case that the system deresil
happens to be linear.

The correct background term is determined by returningeo th
original ensemble),?o‘o, and marching it backward againttq , this
time removing the effects of the measurement updates along the
way (see Figure 5). As the EnKF is an approximation of the KF,
in order to derive this backward-in-time EnKF, the backwird
time KF first needs to be understood. To this end, the backward
marching KF equations are now derived that remove the mea-
surement updates in a manner similar to the traditional dotw
marching KF equations, which add the measurement updages. B
cause the KF is considered here, non-singularity of thercvee
 is assumed in this derivation.

To begin, recall the standard KF update for the forward march
(both for the mean estimate and the covariance):

HY + R) "y —HXy ), (34)
HY+®)H 2 (35)

Klk—1°

X = X%

P

Kk —

Kk—1

P

Klk—1

+2,  H(

Klk—1

—B,  H(

Klk—1

HP

Klk—1

HP

Klk—1

It is expected that the equation for the backward march weilbb
similar form. Rearranging terms, and assuming that the umeas
mentyy € rangd€H) (i.e. yx = H qx for someqy € O"), gives the
following expression:

:[|,

+ 7

Klk—1

He, HH

Klk—1

Hg,  HP

Klk—1

Tk\k—l HH(

HH (

Xk\k

+R)HIX,

+R)H k. (36)

Note that the assumptiofx = Hqy for someqy is, in practice, not
a restrictive assumption, as it only requires tHatave linearly in-
dependent rows. In most physical systems of interest thesunea
ments are independent, and thus this assumption is valdarts

the goal of writing the estimate update in terms of the curocen

variancef,, [as opposed to the form of (34), where the update is
written in terms of the prediction covariane®, ], the identity

(© 0000 Tellus 000, 000000

ENVE: ENSEMBLE VARIATIONAL ESTIMATION 9

B (fl’k‘kfl)fl = | is inserted into (36). Rearranging terms gives:

N H H -1 -1
Xk\k = [Epk\k—l - ?k\k—l H (H ?k\k—l H™ + R») H EPk\k—l:I (Epk\k—l) Xk\k—l
_ -1
+ Q‘i\k—l HH ( H Tk\k—l HH + R) lH Q‘i\k—l (Tk\k—l) Ok- (37)
Substituting for the updated covariance from (35) produces
— —1—
Xk = Tk\k (?k\k—l) X1
_ -1
+ Q‘i\k—l HH ( H Tk\k—l HH + R) lH Q‘i\k—l (Tk\k—l) Qk- (38)

Adding and subtracting’k‘kfl(Tk‘kfl)_lqk to the end of (38) and
rearranging gives a similar result for the second termyaitig for
a substitution for the updated covariance:

=0
_ -1
Xk (Tk\k—l) Ok — Tk\k—l (Q)k\k4

He, , (2,,) e

Kik—1 \Frjk—1

1 1
:Tk\k (%\k—l) X + 2, ) Ak

klk—1 klk—1

HE, HY+R)

Klk—1

+£Pk\k 1HH(
=2, (%,

Kk \Fijk—1

P

Kk—1

_1—
) X1 + Ok
HH (H 2

Klk—1

P

Kk

,[g)

Kk-1

(7,

Klk—1

HH + K)_lH Tk\k—l] (Tk\kfl)_l
(7 )_l] Qk-

Klk—1
Returning to (35), the matrix inversion lemma can be useolges
for the backward covariance update:

Ak

—p (39)

Kk

)_1)?k\k 1+ [I -

1 -1 _
(IZ"L“() = (Tk\k 1) +HHR le (40)
-1 -1 _
(?k\k 1) = (?k\k) - HHK 1H7 (41)
P :Tk\kiTk\kHH(HTk\kHH *R)_lH Py (42)

Note the similarity between adding the measurement updd85)

and removing the measurement update in (42). For the estimat
update, the following identity is determined via (41)

oo

2, (B, ,) k‘kHHK‘lH.

Kk \Fkjk-1

(43)

Looking again at the estimate update (39), the identity ¢&3) be
substituted to simplify the right-hand side. The assunmpyip =

H gy is then reinserted to produce a closed-form expressiothéor t
update in terms of the updated covariance only:

)Tk\k = [I _fpk\kHHRilH])?k\k 1+£Pk\kHHK71H Oks (44)
)?k\k = [ — By HU R tH ])?k\k—l + By H" K_lyka (45)
)Tk\k:ik\k 1+£Pk\kHHR»71(yk_H)Tk\k 1)~ (46)

The form given in (46) is useful because the updated coveein
all that is available when the update is reversed. Additignaote
the striking similarity of the update gain in (46) to the diasl
continuous time Kalman filter update equafioNow, (45) can be
solved directly for the estimate without the update.

[I _Tk\kHHK?lH]il(Yk\k_?k\kHHRi:LYk)

X1 =

(47)

7 Itis worth noting that the measurement update equationeifichm given

in (46) is equivalent to the standard discrete-time updgteton (34) for
the KF and EKF. The difference is that (46) is written as a fiamcof the
current covarianc&’k‘k, as opposed to the typical update in (34) based on
the prediction covariancé’k‘kil. For the KF and EKEF, it is not necessary
to update the estimate before the covariance, so a sigrificamputational
savings can be realized by doing these updates opposite dfatiitional
order: first update the covariance using the standard ugdgtation (35),
then update the estimate using (46).
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Using the matrix inversion lemma, (47) becomes:

X1 = [I 7Tk\kHH(H Tk\kHH 7K')_1H:|()?k\k 7Tk\kHHR_l¥Z%')

Expanding the product gives:

e s =X — By HH (H B, HY — R) T THX — 3, HH R Ty,
+ B HY(H B HY —R) TH B HIR "ty (49)
The final two terms can be factored, simplified, and rearrdnge
X1 =X~ Py HY (H B HI — R)“H X,
+B, HY (HB, HY — %)~ x
[~ (HB HY —R)+HE, HT Ry,
=X — Py H" (H B HY —R)H X
+ B, HY(H B, HY —R) 1y,
=X+ By HH (HB HY —R) Yy —HX,).  (50)

Note the striking similarity between the measurement “diara”
equation (50) and the measurement update equation (34).

Note that (50) is the closed-form analytical expressiorréer
moving the effect of a measurement update using the KF. This
“downdate” equation, coupled with (42) and the backwardaimar
ing state equations, can be used while marching the KF badkwa
in time, exactly removing the measurement updates alongalye
As (8) is the ensemble representation of (34) for the KF, a-sim
lar “downdating” EnKF can be found from the “downdating” KF
equation (50):
=) 428 HH(

)
X Kk Kk

Klk—1

Hee HY —R)"(dk—HK)).  (51)
This equation governs the “downdates” necessary to reteeder-
ward march of the ensemb}%‘o (determined using updates from
all measurements) in order to determine the backgroundrdriee
)?_K|_K representing, in the linear setting, the background eséima
and statistics att , containing no information about the observa-
tions within the variational window. From this backgrountsem-
ble, the background mean,, . and background covariand?—fKH
can be extracted.

In the ensemble implementation of the variational stepetiser
an additional somewhat subtle wrinkle to the 4DVar deroratire-
sented in Section 2.3. Recall that the traditional 4DVat frogction
(11) measures the misfit between the measurements and the¢ mod
trajectoryX(t) with X_, = u. In contrast, during the variational it-
eration associated with the EnVE algorithm, this mean ¢tajg
is defined as the average of the ensemble trajectories avevith
dow, and therefore is not itself necessarily even a trajgcibthe
underlying model. That is, with EnVE,

K|-K

dsl (t)
dt

—IROWI), 0= L3I0, 62
=1

The corresponding cost functigh(u) that is minimized (with re-
spect tou) by EnVE is defined in a similar manner as in traditional
4DVar:

1 _ _
I =5 (u=% (5 )T (UK, )
0
F2Y - HROP R (y-HR). (53)
k=—K

where the “optimization variablel is the value of the refined state

estimateX, given as the average of the ensemblds jat that is,

g 1N
Xe=N jzlx{mo =u. (54)

Note that (53) is consistent with the 4DVar cost function)(11
In (53), however, the estimate covariance matrix is remlaog
the ensemble estimate covariance matrix. For the muléssgd-
tems of interest, this background covariance is singulausT the
pseudoinverse must be used instead. Because the backgesomd
of the cost function is consistently defined (in that, in the |
ear setting, it incorporates no information from the obatons
within the variational window), the correspondimgdimensional
optimization surface is, in the linear case, identical t@atwvould
have been used had no sequential march through those dixsesva
been completed.

With the cost function defined appropriately in this manaer,
variational iteration can now be performed, similar to 4DWalith
traditional 4DVar, the first iteration is typically initiaed using the
background termy = >1|<|7|<- However, with EnVE, a better es-
timate than this is already known, namely the smoothed elnlgem
meanu = X_g o- This is one of the strengths of EnVE: it initializes
the variational iteration with an estimate that is known eécsignif-
icantly better than the background. In either case, theropation
surface is identical, but with EnVE, the initial ensembléraate
for u is much closer to the global minimum than the original back-
ground term. Consequently, if any significant improvemet be
made upon this initial estimate, it will be discovered infingt vari-
ational iteration(s). Further, the initial estimate is ebkely to be
in the region of attraction of the global minimum, so the @ioitity
of erroneous convergence to spurious local minima can betaoh
tially reduced.

In minimizing the cost function, the goal is to shift the first
moment statistics of the ensemble without altering the drigho-
ments. To this end, a simple translation of the ensemble doéew
is desired. Consequently, the sensitivity of the cost fionc{53)
with respect to an ensemble translation is examined. As mény
the adjoint derivation steps are similar to those describe8ec-
tion 2.3, only modifications related to the new formulatioiti tve
discussed here.

As the mean trajectory can not be perturbed directly, the cos
function 7, the optimization variable, and the ensemble trajecto-
ries%(t) are perturbed to give the perturbed cost functiofu’)
as:

]/(U/) = (U _ifK\fK)H (??K\—K)+ U/
N 0 H 1 )
N > (—H%)" RTIHK (55)
j=1 L k="K

Importantly, the ensemble perturbatiodé are related ta’ due to
the assumption that, &tk , only a translation of the ensemble will
be allowed, i.e.,

sl 1

= Vj e [LN]. (56)

The components of the outer summation in (55) over the ensem-
ble members can now be related by defining an individual atjoi
variableri(t) for each ensemble member. Similar to 4DVar, the
inner summation over the measurement times can be re-eggres
leveraging each adjoimt (t)—in a manner identical to Section 2.3,

in which a sequence of adjoints are defined over the measateme
intervals, and it is seen that the intervals can be compdeiste

one continuous-time adjoint equation with discrete fogcat the
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measurement times. In this manner, with the EnVE implementa
tion, an “ensemble” oN adjoints is defined over the window, with
each individual adjoint equation linearized about theettgry of
its corresponding ensemble member as follows:
dri(t) ci\H
=—AX @) rit
At the measurement times, an identical discrete update i

each adjoint corresponding to the deviation of the ensemielan
from the measurement; i.e., at the measurement times,

rl=o (57)

o N
M et HY R (y—HR),  where S‘(kZ%Z)A(H(. (58)
=1

Thus, a forward march of the ensemble estimate through the
variational window provides the trajectories that will beed to
drive theN adjoints backward through the window. At each mea-
surement time, the ensemble of adjoints are all translatedlou-
lating the misfit between the ensemble mean and the corrdsypn
measurement. These parallel marches serve to re-expeesstdr
summation over the measurements in the perturbed costdanct
(55). Finally using the perturbation equation (56)_at, the gradi-
ent of the original cost function can be expressed [cf. (a%)]

vI(u) = (25

K (59)
In other words, the component of the gradient due to the nakfit
the ensemble with the measurements is simply the averadeof t
contributions from each individual adjoint fatk . Note that, in the
linear setting, computing the gradient using multiple adpin this
manner is equivalent to forcing a single adjoint about thamtea-
jectory, as—in this special case only—the trajectory ofathgemble
mean is the same as the mean of the ensemble trajectories.

With 4DVar, as described previously, the estimate= X
would be marched forward using the model over the variationa
window. This trajectory needs to be stored or checkpoinbed,
cause it drives the subsequent backward march of the adjoént
the same window. For large systems, this presents a sigmifica
computational challenge. With EnVE, however, this trajegtis
determined via a backward march of the ensemble (see Figure 3
Since the background term and the width of the variational- wi
dow do not need to be known before the adjoint march begiiss, th
facilitates a simultaneous march of all three systems (tisem-
ble estimate without the measurement “downdates”, thenebiee
of adjoints, and the ensemble estimate with measurememtri:do
dates”) fromtg until the mean of the estimate diverges sufficiently
from the observations (at, ), as defined by the bias measBge
[see (32)]. The computational benefits of such parallel mes@re
more fully examined in Section 6.3. Because they are marghed
parallel, the ensemble member trajectories are immegiatalil-
able to drive the adjoint computations “on the fly”, and theage
challenge normally associated with adjoint-based metrsoelami-
nated. At the conclusion of the backward march, the windogthyi
the appropriate background term, and the adjoint @tare deter-
mined, and thus the gradient (59) of the variational costtion
may be extracted.

Note that the evaluation of this gradient requires the compu
tation of the pseudoinverse of the ensemble backgroundricova
ance. Fortunately, exploiting the structure of the ensenfitaime-
work, this pseudoinverse can be computed efficiently evehif-
dimensional systems (the specifics of this gradient cdiculare
discussed in Section 4). This gradient, along with a suétdible
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Figure 6. Upon completion of a variational step, the improved ensembl
estimate)?_,qo att_g is propagated forward to the old present titpeNo
measurement updates are done during this march, as the/atiises have
already been accounted for. Upon reachifighe new ensemble estimate
)A(O‘o is marched sequentially forward using the EnKF to accountafyy
additional measurements received during the computatioarequired for
the previous variational step, and the algorithm is repgkate

minimization algorithm, is then used to update each ensembl
member (and consequently, the ensemble mean):

%o —& —avi(u) (60)

Recall from (56) that the derivation above assumed that the
final estimate ensemble was obtained simply by shifting ttie i
tial (smoothed) estimate ensemb?g‘o. In fact, with an adjusted
estimate of this sort, a modified if not improved covariaﬂ?,f’%o
would be expected as well. However, as variational methodwd
appear to provide a means for tracking these changes, th& EnV
algorithm proposed here simply uses this shifted enseneiplees
sentation, which is a bit conservative. Note, though, that is a
significant improvement over 4DVar, in which rigorous mettdo
march? are essentially unavailable. In contrast, with EnVE, the
covariance associated with the original smoothed estimateail-
able, so it can be utilized. Though this is a conservativenese
of the covariance that does not account for the correctiotineo
estimate due to the variational step, it correctly capttinesmain
features of the covariance matrix, including the princititections
of estimate uncertainty.

To cycle the algorithm, the updated ensemble is marched for-
ward totg (see Figure 6). Note that the ensemble already accounts
for the measurements in this window, so each ensemble mamber
propagated forward using the system equations only, withdud-
tional measurement updates. This gives an improved estiatit
)?0‘0. During the time taken to complete this variational stepneo
new measurementg/y ---y, } will usually become available. The
ensemble)?o‘o can thus be marched forward further now, using the
EnKF to account for these new measurements, until the nesepte
timet, is reached. At this point, time is resgf— t,, and the algo-
rithm is repeated.

Note that a significant computational burden can be avoided
by storing the updated estimate at the previous present f(m;e
This point can serve as a more convenient starting point éer d
termining the subsequent background term of the variatioost
function, as opposed to usin&]p. Depending on the relative
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widths of the subsequent variational window and the timpssd
during the current variational step, starting frofgo instead of

)?J‘J will result in either a shorter backward EnKF march or pos-
sibly even a forward EnKF march to the left edge of the newavari
tional window. This simple storage trick reduces the corapanhal
cost of the algorithm significantly and shortens (or remaosits-
gether) one of the backward-in-time marches of the estireate
semble. Note that these backward-in-time marches areskgadf
the ODE system is derived from a PDE with a diffusive compo-
nent. However, using appropriate regularization [see, eagtes &
Lions (1969), Protas et al. (2004)], such backward-in-tmagches
can be reasonably well approximated over short time hosizin
their larger length scales. Curiously, as a consequencéeset
backward-in-time marches of the estimate called for by the-a
rithm, EnVE appears to be most naturally suitedHigh-Reynolds
number systems (without a dominant diffusive componenthat t
length scales of interest).

For relatively small ODE systems of dimensiomvith a rela-
tively large number of ensemble membeXs;> n, 7€ is invertible,
and the EnKF “downdate” (51) is well defined. For such smadl sy
tems, the subsequent variational windows can in fact opeda
called for by the algorithm described above.

For high-dimensional discretizations of multiscale PDE-sy
tems, on the other hand, only a relatively few number of eféem
members are numerically tractable (iM.<< n). For such systems,
the ensemble covariance matrix is rank deficient, and itpamity
leads to a breakdown in the derivation of (51). As a resulfuly
consistent backward EnKF march with measurement “dowstlate
appears possible. By saving the estimate at the previolsemre
time,)A(o|0, a lower limitis thus set on the left edge of the subsequent
variational window, and the background term may insteaddberel
mined via aforward march from)?om. Hence, for the multiscale
systems of interest, it appears to be necessary that tretivasl
windows, from one iteration to the next, do not overlap.

The EnVE algorithm is now summarized:

gleaned from measurements priott tp. This cost function is then
minimized using standard 4DVar-like techniques. Typigatinly
one iteration step is performed: the gradient is determingdg
the (previously calculated) adjoint, and a step size isrdeéted
using a suitable line minimization algorithm.

(iv) The line minimization serves to shift the smoothed emse
ble estimat@?ﬁm around an improved mean faf,. This resulting
improved ensemble is propagated forward using the systedeimo
without measurement updates. Once the old present tjnhas
been reached, new measurements are available, so thetfaigori
is repeated from (i), marching the EnKF to the new presergtjm
The ensemble estimaf(g‘0 is saved to simplify computation of the

background term during the subsequent variational step.

4 Numerical Implementation in an MPI setting

Some of the numerical issues with regards to the implementa-
tion of EnVE are now addressed. The numerical methods &laila
for marching both the state and adjoint, though sometimagine
ial, are fairly standard. The regularization of the reteafir marches
of ill-posed problems (derived from diffusive PDES) is aniae
area of research [see Lattes & Lions (1969), Protas et @042,
and deserves even closer consideration in future workedasof
exploring these issues, this section will focus specifjcah the
parallel implementation of the EnKF update equations usiireg
Message Passing Interface (MPI), allowing for uniform latst
tribution on, and minimal communication between, the meatgi
parallel computational resources required to apply the EEalgo-
rithm to multiscale systems.

In general, the ensembﬁ;‘k is comprised ofN < n ensem-
ble members. Each of these ensemble mem‘lj‘gis located on its
own processor (or processors) with a corresponding prouass
ber. In practice, for testing purposes, an additional psds also
used for the “truth” model simulation, which is done in p&ehl
with the EnKF march. Thus, the MPI environment is constrdicte

() Given the estimate ensemble at some past time, eachof N+ 1 processes, with procegslenoted byo!. For convenience,

ensemble member is marched forward to the presenttgjméth

sequential updates at each measurement consistent wiin&ie
framework. At this point it is beneficial to revisit old measments
to refine further the current estimaT@o, the ensemble mean.

(ify The current ensembIeA(D‘0 is marched backward until the
mean trajectory (the average of the ensemble trajectovgrgies

the “truth” model is run orp?, while each ensemble memb?lé"[ is

run on its corresponding process,

The EnKF consists of two main steps: a forward march of
the ensemble to predict the estimate at the next measureameht
an appropriate update to the forecasted estimate due toneseh
surement. Recall that the discretized system of interegvén by
(1a) and (1b). The forecasting step of the EnKF is the maimm fr

significantly from the measurements. This march determines )?H‘H to >/<\k\k—1 (not including the measurement update). In the

the number of measuremeritsin the variational window to be
used; poor estimates will have small windows, whereas ateur
estimates will have larger windows that incorporate a longea-
surement history. Concurrently, the appropriate adjaiseenble is
also marched backward, with discrete forcing updates basé¢ide
misfit between the estimates and the corresponding obgersat

MPI setting, this is done by simply marching each ensembl@&me
ber forward in time—using an appropriate time-steppingtigm—
according to the governing equation:

dl (1)

= (% (1), w(t)).

(61)

In order to refine the ensemble-mean estimate of the system, aThe disturbances(t) are modeled appropriately using a reversible

variational iteration is now initialized to optimize thisteanate at
t,.
(i) The current ensemble)A(D‘O is marched backward again,
this time removing the measurement updates. This marchei$ us
to determine the ensemble-averaged value of the “backdroun
state”x_,, ., as well as the “background covarianc@f‘K‘?K. As
in 4DVar, a cost function over the window of intereft,, , to], is
defined with this background term to summarize the inforomati

random-number generator [see Colburn & Bewley (2008)], and
each ensemble member is disturbed independently from tes ot
ensemble members. In an MPI setting, the computation time of
each process is assumed independent from the other precesse
Hence, the time required to propagate theensemble members
in this framework is equivalent to a single simulation on rg&
processor.

Next, the measurement update at titpenust be performed.
To update the ensembfé@kfl to reflect the newest measurement
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(thereby giving)?k‘k), a corresponding update must be done on each
individual ensemble member as follows:

H2°

ol ¢l e H
Xk\kixk\k 1+£Pk\k 1H ( klk—1

HY -+ &)1 (d}—H&), ). (62)

To evaluate this equation, the three main components offitiata
are first developed independently as:

)

&, =%, L (1) (63)
L =22, R L eomm (64)
LY =Hee Hiir L@ eomm  (65)

2 =d)—H%}, zl e O™ (66)

Note that the matricelsf(l) and Lf(z)
ble.

First, examine the structure @[‘EH. This covariance is built
up from the individual ensemble members such that:

depend upon the entire ensem-

e 1

o1 _ N _
Kkl N—1 [(Xk\k,l - Xk\k—l) T (Xk\lkl - Xk\k—l)] X
1 o N o\ qH
[(Xk\k 1 7xk\k—1) (Xk‘k . *Xk‘k,l)]
1 ol oN ol oN H
“N-1 [6Xk\k—1 6Xk\k—1] [axk\k—l 6Xk\k—1] )
e 1 N i i H
= ?k\k 17 N—-1 Zl 6Xl£\k 1(6Xl£\k 1) . (67)
J:

Note thatg® < 0™, for high-dimensional systems, building up
this matrix is computationally intractable but, as showlobeun-
necessary in the implementation if the terms are computedein
appropriate order. As is seen in (67), the covariance carobe ¢
puted as a sum of outer products of the deviations of eachrense
ble member from the ensemble mean (that is, of the ensenabte st
perturbation vectoréf(ki‘ki ,)- Thus, (64) can be written:

(1) H
I‘k 7£Pk(\ak—1H
H
:(H 1)1<ka1)
1 N N HAH
“N_1 (H Z 6Xl£\k—1(6Xl£\k—1) )
1 N o \H
=1 Zl éxi‘k (H éxi‘k DU
J:
N
w__ 1 i (sl M
= Lo=y1 léx:‘“(éylf‘kl) , (68)
=
whereHd%) =&yl e O™ is the ensemble output perturba-

tion vector.kLkI:ﬁe matkr‘ik)i-ll is the linearization of the output operator
h: 0" — O™ Note that, for the multiscale chaotic systems of in-
terestm < n (that is, the number of measurements is much smaller
than the dimension of the state), so the storage and comatunic
tion of the output perturbation vectoﬁ'g?ki‘k , can be assumed to be
negligible compared to the storage and communication otiue
and state perturbation vectors. At this point, locally ochearocess

pl, the ensemble state perturbatiﬁfq"k , must be computed along
with the ensemble output perturbatiéi?ﬂ‘kfl.

(2)

Similarly, the first term inL,~", namelyH kafkilHH, can be

computed in a manner consistent V\m&%), exploiting the structure
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of the ensemble covariance matrix.

1 N -
H _ & & H H
H ?k\ek—l H™ =H ( N—1 ]Zl axlf\kfl (6X|:\k—1) ) H
N . O
=1 .zl (Ho%), J(Ha% )M,
=
e H 18 o \H
= HEL HY =S -21 89}, (89!, ) (69)
]:

This term is calculated as a sum over all the processes ofutiee o
product of the ensemble output perturbation with itsel€gtkethat
this vector has already been computed on each processyitioad

to theH sz‘fkil HH term,Ll((2> contains the measurement covariance
matrix ®.. This matrix, in general, may be a function of time, but a
model forR is assumed to be known.

The structure of many MPI clusters facilitates reasonably e
ficient all-to-all communication (in which data is passeahfrev-
ery node to every other node in the cluster at the same tinoe). F
instance, in a cluster with a toroidal switchless interamtpall-to-
all communication is only slightly more expensive than oowed|
communication (in which one node sends data to ever othe¥)nod
This is because, in a switchless interconnect torus, duwirggto-
all communication the data is sent sequential from one nodeet
next, down the line, while all the other nodes wait. Thus,ttime
required for a one-to-all communication is the time recliiie the
data to travel all the way down the line of nodes. Howeverirdur
all-to-all communication, data is cycled down the line fresrery
node. Thus, every node is always busy, but the total comratiaic
time is still only the time it takes for data to travel once dothe
line.

In the interest of minimizing data transfer, all the ensem-

ble output perturbation vectow?:s]l{‘k?1 are thus transferred to ev-
)

ery node, Where};l((2 can be computed locally. This requires only
one all-to-all communication call for the ensemble outpartyprba-

tion vectors. Conversely, if the summation componenlq&%fwere
computed locally, an all-to-all communication of the eatinatrix
would be necessary, increasing communication signifigamiiile
decreasing computation only slightly.

In the EnKF framework, each individual ensemble member
is assimilated with a noisy measurement. The noisy measurem
on proces9! is denotedjlj( and is found by adding random noise
on top of the original measurement (from the truth modelthwi
statistics consistent with the known properties of the sens

dj =Yk +Vi. (70)
The statistics of the added noise mirror the known measureme
noise of (1b). This gives the forcing to each ensemble member
timatez) as

_HxI
H Xk\k—l -

le< = dIJ< Y+ vl]< - 93\1«1’ (71)

Whereyl{"kf1 is the ensemble output vector on each process. Hence,
the calculation of this vector can be done locally; no messags-
ing is required, other than to provide each process with rinign t
model measuremet.

At this point, a simple linear system needs to be solved [due

to the (L|<(2))_l term] on each process. This solve is straightfor-

ward becausel((z) € O™M s both symmetric and relatively small.

Many algorithms exist for the efficient solution of such syss.
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Note that, with the assumptioR > 0, the matrifo(Z) is, in gen-
eral, nonsingular, and thus the solution to the followingteyn ex-
ists and is unique:

j 2)\— 2
=) A= 1

1zlj< = Ly ulj< = zlj(. (72)
With the computation oﬂlj( done locally on each process, the
update equation (63) can again be rewritten as:

i —<i @),
Xk\k - Xk\k—l + Lk uk'

(73)

Substituting in the definition otl((l) from (68), this update be-
comes:

$lo=sl

Kk — Tkk-1

LS s sd M|
N—1 i; 6X:<\k 1(6y:<\k 1) :|uk

g \Hyl
(6yk\k 1) uk:| 5)A(i

—xl
=X k-1

N
Kk—1 + Z\
i=

N-1

N
i o | xoi
= Xl{\k - X:\k—l + Z ylk éx:qk,l (74a)
i=
- 69i H Uj
where v = % (74b)

In its final form, the measurement update equation (74) @sdat

each ensemble member via a linear combination of each ensem-

ble state perturbation vectéﬁg‘kfl. This form eliminates the need
for any additional storage arrays. The update can be computa
all-to-all round robin format, where the ensemble statépbation
vector on each process is shifted one hop to the adjacentgsoc
Then, the corresponding update is computed on every prozeds
the data is shifted again. Overall, the total communicaigaquiv-

alent to a single all-to-all send of the ensemble state pwation

vector, but because the computation is done in between eash m

sage hop, there is no accumulating storage necessary.

In this manner, both the forward EnKF updates (8) and
the retrograde EnKF “downdates” (51) can be computed numer-

ically, even in large-scale systems. Left to compute areaithe

joint marches. These can be done in a similar manner as tradi-

tional 4DVar techniques, with the exception of the addiiostor-
age/checkpointing required by 4DVar but not required by Enas
discussed near the end of Section 3.

At the completion of the adjoint march, the gradient is cal-

culated from the adjoint ensemble taf and the deviation from

the background term. For the background component of the cos

function, the pseudoinverse of the ensemble backgrouratiemce
(P,

—K|-K
tensive, but here the intrinsic structure of the ensemialméwork
can again be exploited to simplify this calculation. Foritjathe

time subscripts will be dropped. Recall from (9) that:

(8X) (3X)H
N—1

. . _ _ 1 .
gl — — %!
X! =X X, and X= N EJ X7,

Pe = , Where 8X = [3%! 3%? 3N,

Define the reduced singular value decomposition (SV[B)AOHS
d3X=UzVvH. (75)

) must be computed. In general, this is computationally in-

ensemble mean). Therefore, the reduced singular valuengeEeo
sition results ilN — 1 singular values; that make up the diagonal
of the (N — 1) x (N— 1) matrix X. Using the reduced SVD @, the
background ensemble covariance can be expressed as:

(UzvH) U zvHhH

Pe = N1 (76)
uszvHvsuH
TN 77
U z2uH
= ?e:ﬁ, (78)

whereVH V = 1. With ¢ in this SVD form, the pseudoinverse is
recognized immediately as

(P& =(N-1) U z2u". (79)

Thus, finding(?®)* reduces to the problem of finding an orthonor-
mal basis for the column space oK. To do this, recall that
dX € O™N whereN < n. Thus, it is more efficient to find first
an orthonormal basis for the row spacedf. This is done via an
eigendecomposition of the following matrix:

@M @)=V V] FOZ g} R:} (80a)
= VA =w = [w; W] , (80b)
32 — diag 07,03, ,0% 1), (80c)
01 > 02> -+ 2 0N_g >0, (80d)

wherev is a vector representing the basis for the null space of
(8X)H (8X), due to the fact thalX is made rank deficient by sub-
tracting off its mean. Eack:ri2 is guaranteed real and positive by
construction. AN is the number of ensemble members (on the or-
der of 1%), many efficient algorithms exist for the computation of
this spectral decomposition. Once the row spades been found,
itis easily shown from (75) that the column spatés given by

U=38xvz1 (81)

which, leveraging (80a), can be substituted directly baoi (79)
to give:

(P =(N-1) 83XV =z~4VvH sxH. (82)
Now, by defining the following vector
s' =[1/0f 1/0%_4] (83)

the pseudoinverse (82) can be rewritten as:
N N )
(P%)t =(N-1) ( Zi&' (wj o)™ )( S wi(3%)" ) (84)
i= =1
whereae b denotes the Schur product (element-wise multiplica-
tion) of the corresponding vectors. In practice, this nxatxill

never be explicitly computed. Rather, this matrix is alwaged
as a part of a matrix/vector product of the form

(P Fz=(N-1) (iiaﬁi (wj o) > < j%le (3%))H ) z. (85)

Now noting that the general vectardoes not depend op it can
be brought inside the second summation, giving an innerymtod

Note that, thougX is assumed to have full column rank (i.e., the (that results in a scalar) as follows:

ensemble members are assumed to be linearly independeat), t

process of determining tﬂe perturbations of these enseméie-
bers reduces the rank 6K by one (due to the subtraction of the

(P®)Tz=(N-1) <§5>“<i (wios)H>< %(z“éﬁhw,—). (86)

=1
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Lastly, the second summation in (86) results in anotherovethis
time independent af) that can be brought inside the first summa-
tion to give the final form implemented numerically:

N
(P°)*+ Z—ZB.ESX Bi=(N—1) z (Zo%)) (wi e 9)H wj.
) (87)

Hence, the product of the ensemble covariance pseudo@vers
(P®)* with any general vectoz is shown to be a simple linear
combination of the ensemble perturbation vectixk as was the
case with the ensemble update formula (74). Unlike the epidet
mula (74), the weightin@; on each ensemble member perturbation
requires a sum over the whole of the ensemble. This sum ialfriv
though, as it requires simple all-to-all communicationraf scalar
Z13%I. Itis assumed here that the eigenvector matrand the sin-
gular valuess have been computed in parallel on each ensemble,
and thus no additional communication is necessary to caerthig
portion of the scalar sum. Then, to leading order, for eactava
tional iteration, the pseudoinverse computations reqoiitg one
all-to-all send (of the ensemble state perturbations) thl o the
matrix (3X)H (8X), prior to the spectral decomposition, and one
round-robin all-to-all send (again, of the ensemble stattupba-
tions) for each matrix/vector product computation. No bégaxtra
storage is required for these computations.

5 EnVE Consistency

At a specific time, given a linear system, a background esti-
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pletely to convergence, this issue becomes less obviodsnaist
be handled with care.

To achieve consistency (that is, to ensure that the answen gi
by the EnVE algorithm reduces to that given by the KF when the
system is linear and the ensemble sufficiently large), En\IStm
rigorously keep track of the background estimate. Ultityatse-
guential methods (EnKF) and variational methods (4DVar)eed
to solve the same problem. Both methods work to minimize & cos
function to optimize the estimate & conditioned on all avail-
able measurements. Thus, when these cost functions aredlefin
appropriately, it is possible to switch back and forth betwee-
guential and variational methods consistently, as EnVEdber
a linear system with a set of measurements definedt gn to],
the smoothed KF estimate faty, imo (found by marching a KF
forward through the observations and marching the regukis
timate backward to , ), is identical to the solution of a converged
4DVar algorithm with an appropriately defined backgrounditédn
other words, the optimal smoothed KF estimﬁ;go is the global
minimum of the 4DVar cost function in the case of a linear sys-
tem. For nonlinear systems, the optimal estimate @tcan not be
found directly via a sequential algorithm in this manneough the
smoothed KF estimate is indeed an appropriate initial gfersan
iterative (variational) algorithm.

This relationship is what EnVE attempts to exploit to improv
the estimate. Marching an Ensemble Kalman Smoother (EnKS)
will not produce the optimal smoothed estimatg , because of
the nonlinearities in the system and the approximationsired
for the ensemble framework. However, by removing the efédct
the measurements and appropriately defining the 4DVar oaost f
tion background term, this sub-optimal smoothed estimatete

mate with known covariance, and a new measurement with known used as an initial condition for the variational step. If sneoothed

noise characteristics, the Kalman estimate is the besarlina-
biased estimate (BLUE) that balances these two uncesaindi
minimize a corresponding cost function. For linear systeinis
straightforward to think of the estimate at any time as bédully
conditioned on a subset of measurements; thus the nolﬁgoh
is important to note that, even in the case in which the estate
is being measured, the optimal estimate is not simply theevef
the observation at that time. Thus the importance of thedracind
estimate, as it gives the existing estimate some “inertiadjding
spurious updates due to outlying observations.

estimatt{’(‘0 happens to be optimal (that is, if the system consid-
ered is essentially linear), then the variational iterai® already
converged and will produce a zero update to the estimates,Thu
EnVE uses the EnKS to initialize the 4DVar optimization, daes
not reuse the information in the observations inconsiteBhVE
therefore reduces to the expected optimal results of then&ial
Smoother (KS) for a linear system.

A cartoon of the expected estimation error as EnVE progsesse
for a typical chaotic system is shown in Figure 7. Due to theotic
nature of the system, any forward march of an estimate veitl I

For LQG systems, one sequential forward march through a set €xponential growth of the expected estimation error (shéwn

of observations gives the optimal estima?tﬁ,, at the present time
tp. It is possible to smooth past estimates, say gtby march-
ing the current estimate backward and retaining the inftiona
gained from all observations, giving the smoothed estirﬁggg.
This smoothing march effectively conditions the past eatés on
the now known future observatiogy, , ---yo}. It does not change
the estimate based on any information from the past obsengat
{yjli < —k}, as this information has already been included. Now,
given this smoothed estimate,, and its associated covariance
P - One could mistakenly run a KF forward again through the set
of measurement§y, , ---yo}. This would be an attempt to recon-
dition the estimate on these measurements, and complétédyes
the optimality of the estimate. In fact, it is easy to showt thach

an approach, applied iteratively, would lead to an estirttetecon-
verges to the observations themselves, independent ofitjiaad
background terms. This is exactly the type of inconsistethey
EnVE has been constructed carefully to avoid. In the lineg+ s
ting, it may seem obvious that a single observation must bé us
only once, but, in a nonlinear setting, where suboptimalisatjal
updates are performed and variational iterations are kehteom-
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early in semi-log coordinates). Each EnKF measurementtapda
creates a discrete drop in the expected estimation erroenvéh
variational iteration is performed, the estimate is madchack-
ward. This causes an exponential decrease in the expectad er
as trajectories of the chaotic system converge (along thectar)
during the backward march. Then, a variational update isemad
further reducing the expected error, and the resultingredé is
propagated forward again to the next available measurerRent
call that with a linear system, the update due to the vanatistep
will have zero length, thus returning the estimate backd®itgi-

nal state to continue the sequential march. This helpgrititesthe
consistent nature of EnVE.

6 Advantages

By combining the statistical capabilities of the EnKF along
with the batch processing/smoothing capabilities of aatemnal
method, EnVE builds a better estimate of the system at dijusti
able computational cost. Using the EnKF to initialize a 4DNie
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EnKF updates
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EnKF updates

1 P

log(E{lIx-xl,})

variational update

variational update

time =»

Figure7. A cartoon illustrating the expected error for EnVE perfochoa a
chaotic system. Exponential growth (linear growth in séwgicoordinates)
in the expected error occurs during forward marches. Disgegluction in
the expected error occurs at both the sequential updatethandriational
updates. Note that, with a linear system, the variationdatgs are neces-
sarily zero, returning the estimates to their original ealupon completion
of the variational steps.

iteration allows for fewer variational steps to be usedaose the
initial condition for the variational iteration is much neaccurate
than the background estimate alone, and full convergenuat ise-
quired. The intrinsic ability of the EnKF to represent thatistical
properties of the estimate allows EnVE to repeatedly andisen
tently revisit past measurements and update the centjattoay
of the ensemble (about which the system can be linearizeth whe
considering its covariance evolution) based on new measmnts.
Two objectives in the development of EnVE were
multiscale-in-time analysis and a receding horizon opation
framework. The significance of these properties are higtdigd in
the following two subsections. Combined, these two progerdre-
ate a dynamic optimization surface that tends to have dgsican-
vergence properties for complex nonlinear systems.

a

6.1 Multiscalein Time

Because the variational window in EnVE is defined from the
right (present time) by marching the current estimate bac&w
until divergence, the width of this window can be selected du
ing the iteration. In contrast, with traditional 4DVar, shvindow
width must be specified in advance. The variable variationa}
dow width of EnVE can be used to precondition the optimizatio
problem appropriately by coordinating this width with theca-
racy of the initial estimate, as discussed previously andtiated
graphically in Figure 8.

Due to the noise in the measurements, a short window con-
taining only a few observations is prone to inaccuracy. T$ahe
global minimum of the cost function defined over only a fewerbs
vations is likely to deviate significantly from the “truthFlowever,
because only a few measurements are included in this short wi
dow (with corresponding short marches of the chaotic sygtis
optimization surface tends to be fairly regular, with a targgion
of attraction to the global minimum. The size of the regioratf
traction is important when using gradient-based algorithas such
algorithms are prone to converge to local minima.

As the estimate improves, longer windows with more included
observations are utilized by EnVE. This tends to make thé opt
mization surface more irregular, and to shrink the regioraif
traction to the global minimum. Thus, this extension of tlagi-v
ational window needs to be done gradually enough that the im-
proved estimate remains in this reduced region of attract®-
cause more measurements are included in such longer windows
the effect of sensor noise is diminished (as compared tohtwtes
windows), making the global minimum more accurate with eetp
to the “truth” as the window length is increased.

6.1.1 Example: Multiscale Preconditioning of a 1D Optimization
To further understand the effect of varying the variatiowai-
dow width on the optimization surface and convergence, idens

the (cartoonish) 1D example indicated in Figure 9. The tsten
considered is an estimation problem based on a Lorenz syseam
Section 7) in which two of the three components of the initate,
x1(0) andx3(0), are assumed to be known; however, the precise
details of this toy system are relatively unimportant far furpose

of the present discussion. For the purpose of illustratitiegrete
noisy measurements are taken at a constant sampling ratbeand
smoothed to create a continuous-time measurement signal

A simple cost function in then defined as the misfit between
the measurement signgl) and the evolution of the nonlinear sys-
tem:

T

90 = [ 1y0 (0], dt (88)
This cost function is a function of the initial conditian= x3(0)
at the left edge of the window (here renormalized ta be0), and
is parameterized by the width of the variational winddwFor a
given window widthT, the estimate at the left edge of the win-
dow is varied to determine the complete optimization serfat
this toy system, the global minimum of this optimizationfage,
the distance of this global minimum from the “truth” (that is-
tance of the global minimum from the valuexf(0) in the “truth”
simulation used to generate the measurements), and tranrefi
attraction to the global minimum (assuming that a gradissed
search algorithm is to be used to find it). This global minimism
tracked in Figure 10, along with the upper and lower bounds of
the region of attraction, as a function of the window widthlt
is seen that the global minimum converges to the optimatHhtru
model, as expected, dsis increased. However, the curves outlin-
ing the region of attraction to this global minimum are intpot
to understand and appreciate. For small windows:(0.5), due to
the lack of complexity in this 1D example, the optimizatiamface
is convex. Thus, any initial condition will converge to thielggl
minimum. For longer windowsT( > 0.5) the region of attraction
shrinks, requiring increasing precision of the initialiestte. This
is especially true for the upper bound, where even a slight eill
cause erroneous convergence to a local minimum.

To clarify this effect even further, Figure 11 shows two op-
timization surfaces for particular fixed. In the top subfigure
(T = 0.5), the surface is just beginning to lose its convexity. In
the bottom subfigurel( = 1.0), the optimization surface has a very
accurate global minimum, but it is clear here, with such alkraa
gion of attraction, how initial estimates with too much ercould
easily converge to poor local minima.

In a typical high-dimensional chaotic system, the optiriara
surfaces will necessarily be much more complicated, butrtels
(with respect to the accuracy of the global minimum and the re
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Figure 8. Representative plots illustrating the change in complesitthe

optimization surfaces for a shofT ( 20) variational window top) and a
long (T = 200) variational window rfiddle and bottom) for a test estima-
tion problem related to the Lorenz equation (Section 7)oAlsown is the
known global minimum of the truth model, which is much closerthe

global minimum of the highly irregular optimization suréof the longer
window than it is to the minimum of the smoother surface of sherter
window.
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Figure 9. The second statep(t), of a Lorenz model (gray), and an (artifi-
cially perturbed) measurement signal generated from noisgsurements
of this state (green dots). Given these measurements, andgmonstra-
tion purposes only) knowledge &f(0) andxs(0), we consider in Section
6.1.1 the scalar optimization problem of finding= x2(0) in order to rec-
oncile the trajectory of the estimate with the measuremewnts horizons
of various widthsT .

Global Minimizer as a Funtion of Window Width (T)
T T T T T

optimal x

Truth
= Global Minimum
~—— ROA Upper Bound
~———— ROA Lower Bound

I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 10. The global minimum (blue) of the cost functidifu), plotted
as a function of the window widtfi used to define the cost function. As
the T increases, so does the proximity of this global minimum wttiath
(dashed); however, the region of attraction to this globaimum (between
the red and green curves) is also greatly reduced.

gion of attraction) are consistent with this 1D example. § hitis
clear how a strategy that uses short variational windowsp&ar
estimates and longer windows to further refine accuratenagtis
is indeed well founded.

6.2 Receding Horizon

A receding-horizon approach is defined by nudging the varia-
tional window forward in time to incorporate the most recera-
surements obtained during each step of a variational ogditioin.
Simplistic approaches to variational data assimilati@véethe op-
timization window fixed until convergence. In contrast, Ehkéde-
fines the optimization problem slightly at each iteratigodating it
to include the newly-obtained measurements. As this medifio
causes the optimization surface to constantly shift, tigerdhm
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Costvsu=x3(0) (T =0.5)

70

S region of attraction

region of attraction

x

Figure 11. Optimization surfaces are shown for two variational window
widths. Note the increase in complexity, even for a simplept@blem, as
this window width is increased. The lower plot indicatest ttree global
minimum is very accurate, but that traditional gradiengdzh algorithms
will only converge to this global minimum if the initial estate is within a
small region of attraction. This motivates the idea of iasiag the window
width gradually as convergence is approached.

never completely converges. However, the receding-horoguti-
mization framework updates the current estimate at eacdtioe
with maximal efficiency, as it is constantly using the mosttop
date information available. Further, the resulting dyraeviolution
of the optimization surface in fact helps to nudge the egénoait
of the local minima into which it might otherwise settle.

A typical contrast between two forecasts [one generated wit
a fixed-horizon 4DVar algorithm and the other with the rengdi
horizon EnVE algorithm] is shown in Figures 12-13. Unlike\E
due to the computation time required for convergence of Helfi
horizon 4DVar algorithm, the corresponding variationahgaw
over which the optimization was performed has slipped féo in
the past. Due to the chaotic nature of the system of inteaest,
forecast diverges exponentially when marched into theéuton-
sequently, much of the relevant range of the fixed-horizoWa¢D
forecast is wasted predicting events that have in fact djréaken
place. EnVE avoids this effect by keeping the variationaideiwv
current, updating it at every iteration.

Xor4--

” = 0 2 4 6

Time
Figure 12. Two forecasts of a Lorenz system (light gray) with noisy mea-
surements (small black dots). The red forecast is from aerged estimate
of a fixed-horizon 4DVar algorithm, where the variationahdow consid-
ered has shifted far into the past during the time spent cetingl the com-
putational iterations required to solve the optimizationlgem. The blue
forecast is from an estimate computed using the recedinigdmo EnVE
framework. The fixed-horizon 4DVar forecast (red) visiblyetges from
the truth (light grey, underneath the blue curve for muchhef plot) near
t = 2; the receding-horizon EnVE forecast (blue) visibly dges from the
truth (light grey) neat = 6.

Forecast Error

0.8

0.6

Error

0.4t

s = o 2 3 G

Time
Figure 13. The integral in time of the square of the forecast errors from
Figure 12 are shown. Note the difference in the accumulatendseof each
of forecast is due in large part to the time the forecast imdiaf the lat-
est variational window used during its optimization. Assttime is signifi-
cantly reduced in the receding-horizon framework, forecasmde a certain
amount of time into the future are greatly improved.

6.3 Parallel State/Adjoint Marches

As already mentioned, another advantage of posing the vari-
ational optimization problem in a retrograde setting deith
the numerical implementation of EnVE. The adjoint equati®n
marched backward in time (frotp tot_, ), forced using the trajec-
tory X(t). Typically, this trajectory is found by marching the inltia
conditionX_, = u forward through the window (frorh , to tp).
Especially for the multiscale systems of interest, thisegas large
storage constraint on the problem, because the adjointdeddoy
the whole trajectory, but in reverse order. In other wortls, tta-
jectory ofX(t) needs to be computed and saved over the entire in-
terval before the adjoint march can begin. Attempts to cineent
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this problem for large atmospheric-scale systems inclueeheck-
pointing algorithm, in which the trajectory is stored only coarse
time grid points, and then, as necessary, is either recadport
linearly interpolated onto the fine (in time) grid used faondistep-
ping the adjoint calculation. Checkpointing requires assaitial
amount of storage and significantly increases the computaé-
quired to compute the adjoint.

Note that, with EnVE, this required estimate trajectoryes d
termined backward in time rather than forward in time. Thhs,
corresponding adjoint may be computed simultaneouslyiedit-
ing this storage problem altogether.

7 ENnVE Test Case: Lorenz

As a simple first test case, the EnVE algorithm is implemented
on the chaotic Lorenz system, first introduced by Lorenz 8196
For the Lorenz system, a three-dimensional ODE model is used
with very noisy measurements of only the second state. Eigjdr
represents a time history of all three states with the trutideh
shown in grey, the forecast shown in blue, and the preseatrimp-
resented by the thick, vertical, black line. The yellow bbg\ss the
variational window that is currently being revisited. Eweith such
a simple system, the results of the EnVE algorithm are vesgns-
ing. This example illustrates the benefit of the multiscaleational
window combined with the receding horizon framework to roel
an accurate estimate of the present time.

8 Summary and Conclusions

In this paper, a new hybrid data assimilation method is intro
duced: Ensemble Variational Estimation (EnVE). The newhoet
leverages the nonlinear statistical propagation progedf the se-
guential EnKF/EnKS to initialize and properly define an appr
priate variational iteration, similar to 4DVar. This vai@al it-
eration is posed in such a way as to allow for a multiscale-in-
time, receding-horizon optimization framework. The snneat es-
timate from the EnKF is used as an accurate initial condition
for the variational iteration, thus improving its overalérfor-
mance. A multiscale-in-time framework is achieved via aaet
grade march of the current estimate over the available vhisens.
This multiscale-in-time framework appropriately preciiamhs the
variational step. It also allows for a concurrent, paratherch of
the appropriate adjoint equation, which is forced by thekbecd
march of the estimate. Thus, no additional storage is redufior
the gradient computation, in sharp contrast with the sigguifi ad-
ditional storage typically required by a 4DVar implemeiuat Be-
cause the variational window width is a function of the aecyr
of the estimate, EnVE tends to update poor estimates witht sho
windows and more accurate estimates with longer windows.

An EnVE implementation on a simple Lorenz system was
considered as a first application. Current work is focusedhon
plementing EnVE on more complicated chaotic PDE systengs. Pr
liminary results show a definite improvement using EnVE (a@ie
ther EnKF or 4DVar alone) for assimilating data related tassive
scalar release in a complex unsteady 2D flowfield.

In summary, EnVE is a convenient and consistent hybrid of
the basic EnKF and 4DVar algorithms already in wide use. Mafch
the current work on the EnKF and 4DVar may be applied dirdotly
the EnVE algorithm while maintaining EnVE’s consistency ae-
sirable numerical properties. With such combined effattsiight
well be possible to develop significantly improved largalsadata
assimilation algorithms in the years to come.
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Figure 14. The EnVE algorithm demonstrated on a simple chaos model,
the Lorenz system, with very noisy measurements (markedeznglots).
(top) Initially, the estimate is fairly poor, as easily seen bg tjuickly di-
verging forecast (blue) from the truth model (black). Théraation win-
dow determined by EnVE for this iteration is fairly shortjngsonly a few
measurements to update the current estimagtef) As the estimate is
improved, the variational window selected by EnVE expahéfping to re-
duce further the error in the forecasboftom) Finally, with the expanded
window, the estimate converges very accurately to the gloi@mum. At

this point, the estimate tends to track the global minimuritequell. Oc-
casionally, due to the chaotic nature of the system, thenatti may begin

to diverge from the truth model. The spread of the ensemidieartes this
increased uncertainty, and the EnVE algorithm respondsibstening the
variational window used to again refine the estimate as uakpossible.
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