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ABSTRACT
Chaotic systems are characterized by long-term unpredictability. Existing methods designed to estimate and fore-

cast such systems, such as Extended Kalman filtering (a “sequential” or “incremental” matrix-based approach) and
4DVar (a “variational” or “batch” vector-based approach),are essentially based on the assumption that Gaussian un-
certainty in the initial state, state disturbances, and measurement noise lead to uncertainty of the state estimate at later
times that is well described by a Gaussian model. This assumption is not valid in chaotic systems with appreciable
uncertainties. A new method is thus proposed that combines the speed and LQG optimality of a sequential-based
method, the non-Gaussian uncertainty propagation of an ensemble-based method, and the favorable smoothing prop-
erties of a variational-based method. This new approach, referred to as Ensemble Variational Estimation (EnVE), is
a natural extension of the Ensemble Kalman and 4DVar algorithms. EnVE is a hybrid method leveraging sequential
preconditioning of the batch optimization steps, simultaneous backward-in-time marches of the system and its adjoint
(eliminating the checkpointing normally required by 4DVar), a receding-horizon optimization framework, and adap-
tation of the optimization horizon based on the estimate uncertainty at each iteration. If the system is linear, EnVE
is consistent with the well-known Kalman filter, with all of its well-established optimality properties. The strength
of EnVE is its remarkable effectiveness in highly uncertainnonlinear systems, in which EnVE consistently uses and
revisits the information contained in recent observations with batch (that is, variational) optimization steps, while
consistently propagating the uncertainty of the resultingestimate forward in time.

1 Introduction

The estimation and forecasting of chaotic, multiscale, uncer-
tain fluid systems is one of the most highly visible computational
grand challenge problems of our generation. Specifically, this class
of problems includes weather forecasting, climate forecasting, and
flow control. The financial impact of a hurricane passing through a
major metropolitan center regularly exceeds a billion dollars. Im-
proved forecasting techniques provide early and accurate warnings,
which are critical to minimize the impact of such events. On longer
time scales, the estimation and forecasting of changes in ocean cur-
rents and temperatures is essential for an improved understanding
of changes to the earth’s weather systems. On shorter time scales,
feedback control of fluid systems (for reasons such as minimizing
drag, maximizing harvested energy, etc.) in mechanical, aerospace,
environmental, and chemical engineering settings lead to avariety
of similar estimation problems. While this paper makes no claims
with regards to solving such important problems, it does introduce
a new hybrid ensemble/variational strategy for the estimation and
forecasting of such multiscale uncertain fluid systems thatmight
well have a transformational effect in all of these areas.

Much of the research today in data assimilation for multi-
scale uncertain fluid systems is focused on medium to short-range
weather forecasting. To this end, the field of data assimilation has
matured greatly in the past two decades. First, with the develop-
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ment of spatial (three-dimensional) variational data assimilation
(3DVar)–see, e.g., Parrish & Derber (1992) and Lorenc (1986)–a
consistent statistical framework was formed that could be utilized
for large-scale atmospheric systems. This was followed by atype
of spatial/temporal (four-dimensional) variational dataassimilation
(4DVar)–see, e.g., Le Dimet & Talagrand (1986) and Rabier etal.
(1998)–in which the consistent statistical framework was extended
to include a time history of observations. It has been shown by Li &
Navon (2001) that this spatial/temporal framework has the effect of
conditioning the resulting estimate on all included data, as does the
Kalman Smoother [see Rauch et al. (1965) and Cohn et al. (1994)].

4DVar was developed in parallel, and largely independently,
in the controls and weather forecasting communities. In thecon-
trols community, the technique is referred to as Moving Horizon
Estimation (MHE), as discussed in Michalska & Mayne (1995).
MHE was developed with low dimensional ODE systems in mind;
implementations of MHE typically search for a small time-varying
“state disturbance” or “model error” term in addition to theinitial
state of the system in order reconcile the measurements withthe
model over the period of interest as accurately as possible.4DVar,
in contrast, was developed with high dimensional discretizations
of infinite-dimensional (PDE) systems in mind; in order to retain
numerical tractability, implementations of 4DVar typically do not
search for such a time-varying model error term.

Another technique that has been introduced to accelerate
MHE/4DVar implementations is multiple shooting–see, e.g., Kraus
et al. (2006). With this technique, the horizon of interest is split into
two or more subintervals. The initial conditions (and, in some im-
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plementations, the time-varying model error term) for eachsubin-
terval are first initialized and optimized independently, then these
several independent solutions are adjusted so that the trajectories
coincide at the matching points between the subintervals.

The traditional Kalman [see Kalman (1960) and Kalman &
Bucy (1961)] and extended Kalman filtering ideas were explored
by Ghil et al. (1981) for atmospheric applications. These methods
require the computation of a reduced-rank approximation ofthe
covariance matrix at the heart of the Kalman filter in order tobe
tractable in high-dimensional systems. Such an approximation is
now known as Chandresarkhar’s method, and was introduced by
Kailath (1973).

The more recent development of the Ensemble Kalman Filter
(EnKF) [see, e.g., Evensen (1994), Houtekamer & Mitchell (1998),
Houtekamer & Mitchell (2001), Evensen (2003), and the references
contained therein] has focused much attention on an important re-
finement of this sequential method in which the estimation statistics
are intrinsically represented via the distribution of a cluster or “en-
semble” of state estimates in phase space. The simultaneoussim-
ulation of several perturbed trajectories of the state estimate elimi-
nates the need to propagate the entire state covariance matrix along
with the estimate as required by traditional Kalman and extended
Kalman approaches. Instead, this covariance information is approx-
imated based on the spread of the ensemble members in order to
compute a Kalman-like sequential update at the measurementtimes
(for further discussion, see Section 2.2).

Since its introduction, the EnKF has spawned many variations
and modifications that seek to improve both its performance and
its numerical tractability. For example, Kalman square-root filters
update the analysis only once, in a manner different than thetradi-
tional perturbed observation method. Some square-root filters intro-
duced include the ensemble adjustment filter by Anderson (2001),
the ensemble transform filter by Bishop et al. (2001), and theen-
semble square-root filter by Whitaker & Hamill (2002). Work has
also been done by, e.g., Kim et al. (2003), to further relax the linear
Gaussian assumptions with regards to the interpolation between the
observation and the background statistics. The unscented Kalman
filter, first introduced by Wan & van der Merwe (2000), derivesa
more accurate particle propagation of the estimate covariance, but
requires far too many ensemble members to remain tractable for
multiscale systems. Another essential advancement in the imple-
mentation of the EnKF is the idea of covariance localization, as
discussed in Hamill et al. (2001) and Ott et al. (2004). With co-
variance localization, spurious correlations of the uncertainty co-
variance over large distances are reduced in an ad hoc fashion in
order to improve the overall performance of the estimation algo-
rithm. This adjustment is motivated by the rank-deficiency of the
ensemble approximation of the covariance matrix, and facilitates
parallel implementation of the resulting algorithm.

For nonlinear systems, the EnKF framework is suboptimal due
to its reliance on a Kalman-like measurement update formula. This
update formula is, effectively, based on a Gaussian distribution of
the estimate uncertainty. The more general Particle Filter(PF) prop-
agates a set of “particles” representing several potentialtrajectories
of the system in a very similar manner as the EnKF propogates its
ensemble. In the PF method, however, each particle has an asso-
ciated “weighting factor” that is used to compute a biased mean
and corresponding higher moment statistics. Unlike the EnKF, at
the measurement times, the particle filter uses the new observa-
tions to update the weighting factor of each particle, without ac-
tually updating the particle’s position in phase space. As aresult,
in the limit of an infinite number of particles, this update strategy

can be shown to be optimal, even for nonlinear systems with non-
Gaussian uncertainties. Unfortunately, compared to the EnKF, the
PF method requires excessive of computational resources inmul-
tiscale systems due to the relatively large number of particles re-
quired for adequate performance. Further, particle re-population
strategies which “prune” particles with low weights from the set,
and then initialize new particles near the current best estimate, are
computationally intensive. Nevertheless, the Particle Kalman Fil-
ter (PKF) method proposed by Hoteit et al. (2008), which attempts
to combine the PF and EnKF approaches in order to inherit the
non-Gaussian uncertainty characterization of the PF method and
the numerical tractability of the EnKF method, appears to bequite
promising; this method could potentially benefit directly from a fur-
ther hybridization with the variational approach, as propsed here.

The two modern schools of thought in data assimilation for
multiscale uncertain systems (namely, 4DVar and EnKF) have, for
the most part, remained largely independent, despite theirsimilar
theoretical backgrounds. The data assimilation communitytoday
has made considerable efforts to compare and contrast both the
performance and the theoretical foundation of these two methods
[see, e.g., Lorenc (2003), Caya et al. (2005), Kalnay et al. (2007),
and Gustaffson (2007)]. While these comparisons are enlightening,
it is quite possible that the optimal data assimilation solution for
many cases may well be ahybrid combination of the two methods,
as suggested by Gustaffson (2007). We have identified five recent
attempts at such hybridization:

(i) the 3DVar/EnKF method of Hamill & Snyder (2000),
(ii) the EnKS method of Evensen & van Leeuwen (2000),
(iii) the 4DEnKF method of Hunt et al. (2004),
(iv) the VAE method of Berre et al. (2007), and
(v) the E4DVAR method of Zhang et al. (2007).

The 3DVar/EnKF algorithm introduced by Hamill & Snyder (2000)
utilizes the ensemble framework to propagate the estimate statistics
in a nonlinear setting, but does not exploit the temporal smooth-
ing characteristics of the 4DVar algorithm. The EnKS (Ensemble
Kalman Smoother) method developed by Evensen & van Leeuwen
(2000) recomputes a new analysis, essentially from scratch, for all
recent measurements upon the receipt of each new observation; this
approach is computationally intractable for multiscale systems. The
4DEnKF (4D Ensemble Kalman Filter) introduced by Hunt et al.
(2004) provides a means for assimilating past (and non-uniform)
observations in a sequential framework, but does not intrinsically
smooth the resulting estimate or fully implement the 4DVar frame-
work. The VAE (Variational Assimilation Ensemble) method of
Berre et al. (2007) runs a half dozen perturbed decoupled 4DVar
or 3DFgat1 assimilations in parallel to estimate error covariances,
but does not fundamentally integrate the EnKF and 4Dvar con-
cepts to obtain a hybrid method. The E4DVAR (Ensemble 4DVar)
method discussed by Zhang et al. (2007), which is the closestex-
isting method to that proposed here, runs a 4DVar and EnKF in
parallel, sequentially shifting the mean of the ensemble based on
the 4DVar result and providing the background term of the 4DVar
algorithm based on the EnKF result; however, this method does not
attempt a tighter coupling of the EnKF and 4DVar approaches by
using an Ensemble Smoother to initialize better (and, thus,acceler-
ate) the variational iteration.

1 That is, 3D First Guess at the Apprpriate Time (3DFgat), an intermediate
variational method with complexity somewhere between thatof 3DVar and
4DVar [see Fisher (2002)].

c© 0000 Tellus,000, 000–000



ENVE: ENSEMBLE VARIATIONAL ESTIMATION 3

The proposed new algorithm, Ensemble Variational Estima-
tion (EnVE), is, a consistent and tightly-coupled hybrid ofthe
traditional sequential (EnKF) and variational (4DVar/MHE) meth-
ods. EnVE uses the statistical properties of a sequential ensemble
Kalman smoother (EnKS) to, from time to time, precondition a
variational assimilation step. In the earlier work done by Cessna
et al. (2007), the 4DVar/MHE framework was inverted, promot-
ing “retrograde” time marches (that is, marching the state estimate
backward in time and the corresponding adjointforward in time),
which facilitates anadaptive (i.e., multiscale-in-time) receding-
horizon optimization framework. The motivation behind this orig-
inal work was sound, but the algorithm lacked the consistency
necessary to account for the background estimate statistics. With
the incorporation of the EnKF, creating the new EnVE algorithm
proposed here, it is possible to retain the adjustable optimization
horizons facilitated by this retrograde setting while simultaneously
eliminating the typical storage problem associated with variational
methods. Special significance is placed in this paper on thecon-
sistency of EnVE; specifically, that the algorithm converges to the
optimal Kalman filter solution in the LQG setting.

Section 2 of this paper reviews briefly the general forms of
both the EnKF and 4DVar. The adjoint for a continuous-time model
with discrete-time measurements is fully derived, as most exist-
ing derivations deal with either the fully continuous [see,e.g., Kim
& Bewley (2007)] or fully discrete [see, e.g., Bouttier & Courtier
(2002)] formulations. Section 3 outlines the theoretical founda-
tions of the EnVE algorithm, and derives (apparently, for the first
time) the backward-in-time Kalman filter “downdate” equation,
which exactly inverts the classical discrete-time Kalman filter up-
date equation in a numerically tractable manner. Some numerical
considerations (with regards to implementation of EnVE in an MPI
setting) are then described in Section 4. The importance of consis-
tency, and how it relates to the EnVE algorithm, is further clari-
fied in Section 5. The primary advantages of the EnVE formulation
are sumarized in Section 6. The full EnVE algorithm is demon-
strated on a simple example of chaos, the Lorenz system, in Sec-
tion 7. Two follow-up papers [see Bewley et al. (2008a, 2008b)]
detail the implementation of the EnVE algorithm on 1D, 2D, and
3D chaotic PDE systems, and introduce a unique adaptive observa-
tion algorithm which builds directly upon the hybrid framework of
the EnVE algorithm.

2 Background

Ensemble Variational Estimation (EnVE) is a consistent hy-
brid data assimilation method that combines the key ideas ofthe se-
quential Ensemble Kalman Filter (EnKF) method and the batch(in
time) variational method known as 4DVar in the weather forecast-
ing community and as Moving Horizon Estimation (MHE) in the
controls community. Thus, these methods are first briefly reviewed
independently. Without loss of generality, the dynamic model used
to introduce these methods is a continuous-time nonlinear ODE
system with discrete-time measurements:

dx(t)
dt

= f (x(t),w(t)), (1a)

yk = h(x(tk))+vk, (1b)

where the state disturbancew(t) is a zero-mean, continuous-time
random process with autocorrelation

Rw(τ; t) = E{w(t + τ)wH (t)}= Q δσ(τ), (2a)

where δσ(τ) =
1

σ
√

2π
e−τ2/(2σ2), (2b)

with Q > 0 and2 0 < σ≪ 1 , and the measurement noisevk is a
zero-mean, white, discrete-time random process with autocorrela-
tion

Rv( j;k) = E{vk+ j vH
k }= R δ j0, (3)

with R > 0. Is also assumed thatw(t) andvk are uncorrelated.
The noisy measurementsyk are assumed to be taken at time

tk = k∆t for a fixed sample period∆t. For the purposes of analysis,
these observations are assumed available for a long historyinto the
past, up to and including the present time of the system beinges-
timated, which is often renormalized to bet = t0 = 0. It is useful
to think of the present time as the time of the most recent available
measurement, so, accordingly, this measurement will be denoted
y0 at the beginning of each analysis step. This sets the basis for
the indexing notation used in this paper:k = 0 represents the index
of the most recent measurement,k 6 0 is the set of indices of all
available measurements, andk > 0 indexes observations that are yet
to be taken. Continuous-time trajectories, such asx(t) (the “truth”
model), are defined for all time, but are frequently referenced at the
observation times only. Hence, the following notation is used:

x(k∆t) = x(tk) = xk. (4)

2.1 Uncertainty Propagation in Chaotic Systems

Estimation, in general, involves the determination of a proba-
bility distribution. This probability distribution describes the like-
lihood that any particular point in phase space matches the truth
model. That is, without knowing the actual state of a system,esti-
mation strategies attempt to represent the probability of any given
state using only a time history of noisy observations of a subset
of the system and an approximate dynamic model of the system
of interest. Given this statistical distribution, estimates can be in-
ferred about the “most likely” state of the system, and how much
confidence should be placed in that estimate. Unfortunately, in this
most general form, the estimation problem is intractable inmost
systems. However, given certain justifiable assumptions about the
nature of the model and its associated disturbances, simplifications
can be applied with regards to how the probability distributions are
modeled. Specifically, in linear systems with Gaussian uncertainty
of the initial state, Gaussian state disturbances, and Gaussian mea-
surement noise, it can be shown that the probability distribution
of the optimal estimate is itself Gaussian [see, e.g., Anderson &
Moore (1979)]. Consequently, the entire distribution of the estimate
in phase space can be represented exactly by its meanx̄ and its sec-
ond moment about the mean (that is, its covariance),P , where

P = E
[
(x− x̄)(x− x̄)H]

. (5)

This is the essential piece of theory that leads to the traditional
Kalman Filter (KF), first introduced by Kalman (1960) and Kalman
& Bucy (1961).

Sequential data assimilation methods provide a method to

2 The case for infinitesimalσ is sometimes referred to as “continuous-time
white noise”, but presents certain technical difficulties [Bewley (2008)].
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propagate the mean̄x and covarianceP forward in time, making the
appropriate updates to both upon the receipt of each new measure-
ment. Under the assumption of a linear system and white Gaussian
state disturbances and measurement noise, the uncertaintydistribu-
tion of the optimal estimate is itself Gaussian, and thus iscom-
pletely described by the mean estimatēx and the covarianceP
propagated by the Kalman formulation. It is useful to think of these
quantities, at any given timetk, as being conditioned on a subset of
the available measurements. The notationx̄k| j represents the high-
est likelihood estimate at timetk given measurements up to and in-
cluding timet j. Similarly,Pk| j represents the corresponding covari-
ance of this estimate. In particular,x̄k|k−1 andPk|k−1 are often called
the prediction estimate and prediction covariance, whereas x̄k|k and
Pk|k are often called the current estimate and the current covari-
ance. Note that̄xk|k+K , for someK > 0, is often called a smoothed
estimate, and may be obtained in the sequential setting by a Kalman
smoother [see, Rauch et al. (1965) and Anderson & Moore (1979)].

For nonlinear systems with relatively small uncertainties, a
common variation on the KF known as the Extended Kalman Fil-
ter (EKF) has been developed in which the mean and covariance
are propagated, to first-order accuracy, about a linearizedtrajectory
of the full system. Essentially, if a Taylor-series expansion for the
nonlinear evolution of the covariance is considered, and all terms
higher than quadratic are dropped, what is left is the differential
Riccati equation associated with the EKF covariance propagation.
Though this approach gives acceptable estimation performance for
nonlinear systems when uncertainties are small as comparedto the
fluctuations of the state itself, EKF estimators often diverge when
uncertainties are more substantial, and other techniques are needed.

At its core, the linear thinking associated with the uncertainty
propagation in the KF and EKF breaks down in chaotic systems.
Chaotic systems are characterized by stable manifolds or “attrac-
tors” in n-dimensional phase space. Such attractors are fractional-
dimensional subsets (a.k.a. “fractal” subsets) of the entire phase-
space. Trajectories of chaotic systems are stable with respect to the
attractor in the sense that initial conditions off the attractor con-
verge exponentially to the attractor, and trajectories on the attractor
remain on the attractor. On the attractor, however, trajectories of
chaotic systems are characterized by anexponential divergence–
along the attractor–of slightly perturbed trajectories. That is, two
points infinitesimally close on the attractor at one time will diverge
exponentially from one another as the system evolves until they are
effectively uncorrelated.

Just as an individual trajectories diverge along the attractor,
so does the uncertainty associated with them. This uncertainty di-
verges in a highly non-Gaussian fashion when such uncertainties
are not infinitesimal (see Figure 1). Estimation techniquesthat at-
tempt to propagate probability distributions under linear, Gaussian
assumptions fail to capture the true uncertainty of the estimate
in such settings, and thus improved estimation techniques are re-
quired. The Ensemble Kalman Filter, in contrast, accounts properly
for the nonlinearities of the chaotic system when propagating esti-
mator uncertainty. This idea is a central component of the hybrid
ensemble/variational method proposed in the present work,and is
thus reviewed next.

2.2 Ensemble Kalman Filtering

The Ensemble Kalman Filter (EnKF) is a sequential data as-
similation method useful for nonlinear multiscale systemswith
substantial uncertainties. In practice, it has been shown repeatedly
to provide significantly improved state estimates in systems for
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Figure 1. Non-Gaussian uncertainty propagation in the Lorenz system. The
black point in the center shows a typical point located in a sensitive area
of this chaotic system’s attractor in phase space, representing a current esti-
mate of the state. The thick black line represents the evolution in time of the
trajectory from this estimate. If the uncertainty of the estimate is modeled
as a very small cloud of points, centered at the original estimate with an
initially Gaussian distribution, then the additional magenta lines show the
evolution of each of these perturbed points in time. A Gaussian model of
the resulting distribution of points is, clearly, completely invalid.

which the traditional EKF breaks down. Unlike in the KF and EKF,
the statistics of the estimation error in the EnKF are not propagated
via a covariance matrix, but rather are implicitly approximated via
the appropriate nonlinear propagation of several perturbed trajec-
tories (“ensemble members”) centered about the ensemble mean,
as illustrated in Figure 1. The collection of these ensemblemem-
bers (itself called the “ensemble”), propagates the statistics of the
estimation error exactly in the limit of an infinite number ofen-
semble members. Realistic approximations arise when the number
of ensemble members,N, is (necessarily) finite. Even with a finite
ensemble, the propagation of the statistics is still consistent with
the nonlinear nature of the model. Conversely, the EKF propagates
only the lowest-order components of the second-moment statistics
about some assumed trajectory of the system. This difference is a
primary strength of the EnKF.

In practice, the ensemble membersx̂ j in the EnKF are initial-
ized with some known statistics about an initial mean estimate x̄.
The ensemble members are propagated forward in time using the
fully nonlinear model equation (1a), incorporating randomforcing
w j(t) with statistics consistent with those of the actual state distur-
bancesw(t) [see (2)]:

dx̂ j(t)
dt

= f (x̂ j(t),w j(t)). (6)

At the timetk (for integerk), an observationyk is taken [see (1b)].
Each ensemble member is updated using this observation, incorpo-
rating random forcingv j

k with statistics consistent with those of the
actual measurement noise,vk [see (3)]:

d j
k = yk +v j

k. (7)

Given this perturbed observationd j
k, each ensemble member is up-
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dated in a manner consistent3 with the KF and EKF:

x̂ j
k|k = x̂ j

k|k−1
+P e

k|k−1
HH (H P e

k|k−1
HH +R )−1(d j

k−H x̂ j
k|k−1

), (8)

whereH is the linearization of the output operatorh(·) in (1b). Un-
like the EKF, in which the entire covariance matrixP is propagated
using the appropriate Riccati equation, the EnKF estimate covari-
anceP e is computed “on the fly” using the second moment of the
ensembles from the ensemble mean:

P e =
(δX̂) (δX̂)H

N−1
, where δX̂ =

[
δx̂1 δx̂2 · · · δx̂N

]
,

δx̂ j = x̂ j− x̄, and x̄ =
1
N ∑

j
x̂ j, (9)

whereN is the number of ensemble members, and the time sub-
scripts have been dropped for notational clarity4.

Thus, like the KF and EKF, the EnKF is propagated with a
forecast step (6) and an update step (8). The ensemble members
x̂ j(t) are propagated forward in time using the system equations
[with state disturbancesw j(t)] until a new measurementyk is ob-
tained, then each ensemble memberx̂ j(tk) = x̂ j

k is updated to in-

clude this new information [with measurement noisev j
k]. The co-

variance matrix is not propagated explicitly, as its evolution is im-
plicitly represented by the evolution of the ensemble itself.

It is convenient to think of the various estimates during such
a data assimilation procedure in terms of the set of measurements
that have been included to obtain that estimate. Just as it ispossi-
ble to propagate the ensemble members forward in time accounting
for new measurements, ensemble members can also be propagated
backward in time, either retaining the effect of each measurements
or subtracting this information back off. In the case of a linear sys-
tem, the former approach is equivalent to the Kalman smoother,
while the later approach simply retraces the forward march of the
Kalman filter backward in time. In order to make this distinction
clear, the notation̂X j|k will represent the estimate ensemble at time
t j given measurements up to and including timetk. Similarly, x̄ j|k
will represent the corresponding ensemble mean; that is, the aver-
age of the ensemble and the “highest-likelihood” estimate of the
system.

While the EnKF significantly outperforms the more traditional
EKF for chaotic systems, further approximations need to be made
for multiscale systems such as atmospheric models. When assimi-
lating data for 3D PDEs, the discretized state dimensionn is many
orders of magnitude larger than the number of ensemble mem-
bersN that is computationally feasible (i.e.,N ≪ n). The conse-
quences of this are twofold. First, the ensemble covariancematrix
P e is guaranteed to be singular, which can lead to difficulty when
trying to solve linear systems constructed with this matrix. Sec-
ond, this singularity combined with an insufficient statistical sam-
ple size produces directions in phase space in which no information
is gained through the assimilation. This leads to spurious correla-
tions in the covariance that would cause improper updates across

3 Note that some authors [see, e.g., Evensen (2003)] prefer toreplaceR in
(8) with R e, where

R e =
(Vk)(Vk)

H

N−1
and Vk =

[
v1

k v2
k · · · vN

k

]
.

Our current research has not revealed any clear advantage for using this
more computationally expensive form.
4 Note also that the factorN−1 (instead ofN) is used in (9) to obtain an
unbiased estimate of the covariance matrix [see Bewley (2008)].

the domain of the system. This problem can be significantly dimin-
ished via the ad hoc method of “covariance localization” mentioned
previously, which artificially suppresses these spurious correlations
using a distance-dependent damping function.

2.3 Variational Methods

For high-dimensional systems in which matrix-based methods
are computationally infeasible, vector-based variational methods
are preferred for data assimilation. 3DVar is a vector-based equiva-
lent to the KF. In both 3DVar and KF, the cost function being min-
imized is a (quadratic) weighted combination of the uncertainty in
the background term and the uncertainty in the new measurement.
If the system is linear, the optimal update to the state estimate can
be found analytically, though this solution requires matrix-based
arithmetic (specifically, the propagation of a Riccati equation), and
is the origin of the optimal update gain matrix for the KF. When
this matrix is too large for direct computation, a local gradient can
instead be found using vector-based arithmetic only; 3DVaruses
this local gradient information to determine the optimal update it-
eratively.

Similarly, 4DVar is the vector-based equivalent to the Kalman
Smoother. In 4DVar, a finite time window (or “batch process”)of a
history of measurements is analyzed together to improve theesti-
mate of the system at one edge of this window (and, thus, the corre-
sponding trajectory of the estimate over the entire window). Unlike
sequential methods, a smoother uses all available data overthis fi-
nite time window to optimize the estimates of the system. This has
the consequence of refining past estimates of the system based on
future measurements, whereas with sequential methods any given
estimate is only conditioned on the previous observations.

For analysis, let the variational window be defined ast ∈
[−T,0]. Additionally, let there beK + 1 measurements in this in-
terval, with measurement indices given by the set

M = {k | tk ∈ [−T,0]} ⇒ M = {−K , · · · ,−1 , 0}. (10)

Without loss of generality, it will be assumed that there aremea-
surements at both edges of the window (i.e.t−K =−T andt0 = 0).
Then, the cost functionJ (u) that 4DVar attempts to minimize (with
respect tou) is defined as follows:

J (u) =
1
2

(u− x̄−K|−K )H P−1
−K|−K

(u− x̄−K|−K )+

1
2

0

∑
k=−K

(
yk−H x̃k

)H
R −1(

yk−H x̃k
)
, (11)

where the “optimization variable”u is the initial condition on the
refined state estimatẽx on the interval[−T,0]; that is,

dx̃(t)
dt

= f (x̃(t),0), (12a)

x̃−K = u. (12b)

The first term in the cost function (11), known as the “background”
term, summarizes the fit ofu with the current probability distribu-
tion before the optimization (i.e., the effect of all past measurement
updates). Like with the KF,̄x−K|−K is the estimate at timet−K not
including any of the new measurements in the window, and the co-
varianceP−1

−K|−K
quantifies the second moment of the uncertainty

in that estimate. Assuming an a priori Gaussian probabilitydis-
tribution of this uncertainty, the background mean and covariance
exactly describe this distribution. The second term in the cost func-
tion (11) summarizes the misfit between the estimated systemtra-
jectory and the observations within the variational window. Thus,
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6 BEWLEY, CESSNA, & COLBURN

the solutionu to this optimization problem is the estimate that best
“fits” the observations over the variational window while also ac-
counting for the existing information from observations prior to the
variational window.

In practice, a 4DVar iteration is usually initialized with the
background mean,u = x̄−K|−K . Given this initial guess foru, the
trajectoryx̃(t) may be found using the full nonlinear equations for
the system (12). To find the gradient of the cost function (11), con-
sider a small perturbation of the optimization variable,u← u+u′,
and the resulting perturbed trajectory,x̃(t)← x̃(t)+ x̃′(t), and per-
turbed cost function,J (u)← J (u)+ J ′(u′). The local gradient of
(11),▽J (u), is defined here as the sensitivity of the perturbed cost
functionJ ′(u′) to the perturbed optimization variableu′:

J ′(u′) =
[
▽J (u)

]H u′. (13)

The following derivation illustrates how to writeJ ′(u′) in this sim-
ple form, leveraging the definition of an appropriate adjoint field.

The full derivation of the gradient▽J (u) is included here
due to the unusual setting considered (that is, of a continuous-time
system with discrete-time measurements). Perturbing the nonlinear
model equations (1a) and linearizing aboutx̃(t) gives:

dx̃′(t)
dt

= A x̃′(t) with x̃′−K
= u′ (14)

⇒ L x̃′ = 0 where L =
d
dt
−A. (15)

Similarly, the perturbed cost function is:

J ′(u′) =(u− x̄−K|−K )H P−1
−K|−K

u′−
0

∑
k=−K

(yk−H x̃k )H R −1 H x̃′k.

(16)

The perturbed cost function (16) is not quite in the form necessary
to extract the gradient, as illustrated in (13). However, there is an
implicitly defined linear relationship betweenu′ and x̃′(t) on t ∈
[−T,0] given by (14). To re-express this relationship, a set ofK
adjoint functionsr(k)(t) are defined over the measurement intervals
such that, for allk ∈ [1, K ], the adjoint functionr(k)(t) is defined
on the closed intervalt ∈

[
t−k , t1−k

]
. These adjoint functions will be

used to identify the gradient. To this end, a suitable duality pairing
is defined here as:

〈 r(k) , x̃′ 〉=
Z t1−k

t−k

(r(k))H x̃′ dt. (17)

Then, the necessary adjoint identity is given by

〈 r(k) , L x̃′ 〉= 〈 L∗ r(k) , x̃′ 〉+b(k). (18a)

Using the definition of the operatorL given by (15) and the appro-
priate integration by parts, it is easily shown that

L∗ r(k) =−dr(k)(t)
dt

−AH r(k)(t), (18b)

b(k) = (r(k)
1−k

)H x̃′
1−k
− (r(k)

−k
)H x̃′−k

. (18c)

Returning to the perturbed cost function, (16) can be rewritten as:

J ′(u′) =(u− x̄−K|−K )H P−1
−K|−K

u′−J ′1

−
−1

∑
k=−K

(yk−H x̃k )H R −1 H x̃′k, (19a)

J ′1 =
[
HH R −1(y0−H x̃0)

]H x̃′0. (19b)

Looking at the adjoint defined over the last interval,r(1)(t), the
following criteria is enforced:

L∗ r(1) = 0 ⇒ 〈 L∗ r(1) , x̃′ 〉= 0, (20a)

r(1)
0 = HH R −1 (y0−H x̃0 ). (20b)

Substituting (15) and (20a) into (18a) fork = 1 gives:

b(1) = 0

⇒ (r(1)
0 )H x̃′0− (r(1)

−1
)H x̃′−1

= 0,

⇒
[
HH R −1 (y0−H x̃0 )

]H x̃′0 = (r(1)
−1

)H x̃′−1
, (21)

which allows us to re-expressJ ′1 in (19b) as

J ′1 = (r(1)
−1

)H x̃′−1
. (22)

Note that (20a) and (20b) give the full evolution equation and start-
ing condition for the adjointr(1) defined on the intervalt ∈ [t−1,t0 ].
Hence, a backward march over this interval will lead to the term
r(1)
−1

contained in (22).
The perturbed cost function (19a) can now be rewritten such

that

J ′(u′) =(u− x̄−K|−K )H P−1
−K|−K

u′−J ′2

−
−2

∑
k=−K

(yk−H x̃k )H R −1H x̃′k, (23a)

⇒ J ′2 =
[

HH R −1(y−1 −H x̃−1 )+r(1)
−1

]H x̃′−1
. (23b)

Enforcing the following conditions [cf. (20)] for the adjoint on this
interval,r(2)(t),

L∗ r(2) = 0, (24a)

r(2)
−1

= HH R −1(y−1 −H x̃−1 )+r(1)
−1

, (24b)

it can be shown via a derivation similar to (21) that

J ′2 = (r(2)
−2

)H x̃′−2
, (25)

which is of identical form as (22). Thus, it follows that eachof the
adjoints can be defined in such a way as to collapse the sum in the
perturbed cost function (16) as above, until the last adjoint equation
r(K) reduces the perturbed cost function to the following:

J ′(u′) =(u− x̄−K|−K )H P−1
−K|−K

u′− (r(K)
−K

)H x̃′−K

− (y−K −H x̃−K )H R −1H x̃′−K
, (26)

with the adjoints over theK intervals being defined as:

dr(1)(t)
dt

=−AH r(1)(t), r(1)
0 = 0 +HH R −1 (y0−H x̃0 ),

dr(2)(t)
dt

=−AH r(2)(t), r(2)
−1

= r(1)
−1

+HH R −1 (y−1 −H x̃−1 ),

...
...

dr(K)(t)
dt

=−AH r(K)(t), r(K)
1−K

= r(K−1)
1−K

+HH R −1 (y1−K −H x̃1−K ).

(27)

Upon further examination, the system of adjoints (27) all have the
same form. Each adjoint variabler(k+1) is endowed with a starting
condition that is the final condition of the adjoint marchr(k) plus
a correction due to the discrete measurementy−k at the measure-
ment timet−k . Thus, the total adjoint march can be thought of as
one continuous-time march of a single adjoint variabler(t) back-
ward over the window[t−K ,t0 ], with discrete “jumps” inr at each
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ENVE: ENSEMBLE VARIATIONAL ESTIMATION 7

measurement timetk. That is, (27) can be rewritten as:

dr(t)
dt

=−AH r(t), (28a)

which is marched backward over the entire intervalt ∈ [t−K ,t0 ] with
r0 = 0. At the measurement times (tk for k ∈M) the adjoint is up-
dated such that

rk← rk +HH R −1 (yk−H x̃k ). (28b)

Note that this update is performed right at the beginning of the
march, att0, and also right at the end of the march, att−K , as well at
all the measurement times in between. Then, this definition of the
adjoint can be substituted into (26) to give:

J ′(u′) = (u− x̄−K|−K )H P−1
−K|−K

u′−rH
−K

x̃′−K
, (29)

⇒ J ′(u′) =

[
P−1
−K|−K

(u− x̄−K|−K )−r−K

]H

u′, (30)

where (30) is found by noting thatx̃′−K
= u′. Then finally, from (13)

and (30), the gradient sought may be written as:

▽J (u) = P−1
−K|−K

(u− x̄−K|−K )−r−K . (31)

The resulting gradient5 can then be used iteratively to update the
current estimate via a suitable minimization algorithm (steepest de-
scent, conjugate gradient, limited-memory BFGS, etc.).

Being vector based [see (28), (31)] makes 4DVar well suited
for multiscale problems, and as a result is currently used exten-
sively by the weather forecasting community. However, it has sev-
eral key disadvantages. Most significantly, upon convergence, the
algorithm provides an updated mean estimatex̄−K|0, but provides
no clear formula for computing the updated estimate uncertainty
covariance or its inverse,P−1

−K|0. That is, the statistical distribution
of the estimate probability is not contained in the output ofa tradi-
tional 4DVar algorithm. It can be shown that, upon full convergence
for a linear system, the resulting analysis covarianceP−K|0 is simply
the Hessian of the original cost function (11) [see, e.g., Bouttier &
Courtier (2002)]. However, this is merely an analytical curiosity;
computing the analysis covariance in this fashion requiresas much
matrix algebra as would be required to propagate a sequential filter
through the entire variational window, defeating the purpose of the
vector-based method.

Additionally, as posed above, the width of the variational win-
dow is fixed in the traditional 4DVar formulation. Thus, the cost
function and associatedn-dimensional minimization surface are
also constant throughout the iterations. For nonlinear systems, es-
pecially chaotic systems, this makes traditional 4DVar extremely
sensitive to initial conditions. Because of the nature of these sys-
tems, the optimization surfaces are highly irregular and fraught
with local minima. The gradient-based algorithms associated with
4DVar are only guaranteed to converge to local minima. Thus,if
the initial background estimate is located in the region of attraction
of one of these local minima, the solution of the 4DVar algorithm
will tend to converge to a suboptimal estimate.

Lastly, due to the complex nature of multiscale fluid systems,

5 Omitted in this gradient derivation is the substantial flexibility in the
choice of the gradient definition (13) and the duality pairing (17). There is
freedom in the choice of these inner products (e.g. by incorporating deriva-
tive and/or integral operators as well as weighting factors) that can serve
to better precondition the optimization problem at hand without affecting
its minimum points. This ability to precondition the adjoint problem is dis-
cussed at length in Protas et al. (2004).

the computation time required for full convergence of the fixed-
horizon 4DVar algorithm is usually non-negligible when compared
with the characteristic time scales of the system, even though many
of the largest purpose-built supercomputers ever built have been
fully dedicated to weather-forecasting problems. As iterations of
4DVar over a fixed horizon proceed, one is effectively solving more
and more accurately a problem which, as time bears on, one cares
less and less about. When the 4DVar algorithm finally converges,
the estimate so determined is for a time that has already slipped far
into the past, and is of reduced relevance for producing an accurate
forecast.

3 The EnVE Algorithm

The new Ensemble Variational Estimation (EnVE) algorithm
is now presented as a consistent hybrid of the two aforementioned
assimilation schemes, EnKF and 4DVar. A detailed description of
the theoretical aspects of EnVE is first given in Section 3. The prac-
tical implementation details of EnVE are then highlighted in Sec-
tion 4. As explored further in Sections 5 and 6, EnVE is a consis-
tent, receding-horizon, multiscale-in-time assimilation technique
which revisits past measurements in light of new data and keeps
track of the estimate uncertainty at each step of the algorithm.

Assume, without loss of generality, that an EnKF estimate
X̂− j|− j exists6 at some past timet− j . This ensemble represents an
estimate at timet− j based on measurements up to and includingy− j .
At this point, available measurements up tot0 are considered. The
EnVE algorithm is initialized via a traditional sequentialmarch of
the EnKF up to the time of the most recent measurement,t0 (see
Figure 2). This provides an ensemble estimate at the presenttime,
X̂0|0, and all of its corresponding implied statistics. The mean of
this estimate is denoted̄x0|0, and is found by taking the average of
all the ensemble members. This estimate at timet0 is based, in a
Kalman-like manner, on all measurements up to and includingthe
present time. Doing a traditional Kalman-like march of thissort
would, for an adequate number of ensemble members and a lin-
ear system, produce the optimal estimate att0. However, errors due
to the nonlinearity of the chaotic system and approximations due
to the finite size of the ensemble ultimately lead to a suboptimal
estimate via the EnKF approach.

For forecasting applications, the most important estimateis
the one at the most recent measurement time,t0, because it is this
which is used as an initial condition for any forecasting calcula-
tion. With a linear system, any type of smoothing at this stage in
the EnKF algorithm would have no effect on the estimate att0. The
smoother would simply reduce the error in the past estimates, for
times t < t0, using the information in the observations betweent
andt0. However, for a nonlinear system, smoothing affects the en-
tire estimate trajectory, even the most recent estimate att0. This is
due to the dependence of the evolution of the estimate uncertainty
on the trajectory of the estimate itself. For a linear system, the co-
variance propagation is independent of trajectory, but fora nonlin-
ear system, changes in a past estimate (via smoothing) will impact
the future trajectory of the estimate and its associated covariance.
This motivates the consistent revisiting of past measurements in
light of new data in order to improve the resulting forecast.

6 Upon, startup, a large initial spread of the ensembles should be used to
indicate substantial uncertainty of the initial condition. This can be accom-
plished by running the EnKF for a period of time open loop (that is, without
any feedback from the measurements).
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−0.6 −0.4 −0.2 0 0.2 0.4 0.6

x 0  0
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Figure 2. EnVE is initialized by marching a traditional EnKF forward
through the available observations, making the appropriate updates. This
provides an up-to-date estimate of the current state of the system,x̄0|0 , based
upon all available measurements. At this point, it may be beneficial to re-
visit past measurements to update the trajectory of the estimate in light of
the more recent measurements. For visualization purposes,EnVE is applied
here to the Lorenz equation with noisy measurements of one ofits three
components.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

x-K  0 x 0  0

x1

x2

x3

Figure 3. To determine the accuracy of the current estimate (that is, its
correlation with the recent measurements), the ensemble atthe present time
is marched backward using the system equations until the trajectory of the
ensemble mean is deemed significantly divergent from the observations.
This gives the current best estimate ¯x−K|0 at the past timet−K .

To this end, the ensemblêX0|0 is marched backward, using
only the model equations. In so doing, the estimate retains the in-
formation captured by the measurements during the forward EnKF
march. Thus, any point on this resulting trajectory is conditioned
on all available measurements. At the conclusion of this backward
march, the ensemble mean and implicit statistics are known at some
past time, sayt−K .

This retrograde ensemble march is monitored in such a way as
to define the width of the observation window for the subsequent
variational step of the EnVE algorithm. If the initial estimate att0 is
poor, then a lot of useful information may be deduced from a small
time window containing only a few observations. Including more

−0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.5

1

1.5

2

2.5

3

B

t →

B

t -K 

k 

t 0 

Figure 4. The accumulation of “bias” between the estimate trajectoryand
the observations is shown as the original estimate is marched backward.
Upon reaching a critical bias̄B, the retrograde march is stopped. This time
t−K defines the width of the subsequent variational window.

observations in this case is superfluous, and in fact unnecessarily
increases the complexity of the optimization surface. Conversely, if
the initial estimate att0 is very accurate, then a significantly longer
variational window can, and should, be included in the analysis.

The retrograde ensemble march is thus used to define the win-
dow width used in the subsequent variational step by lookingat the
correlation between the trajectory of the ensemble mean andthe
recent measurement history (see Figure 3). Poor estimates diverge
quickly from the measurements, and should be analyzed with short
optimization windows; conversely, accurate estimates march much
further back in time before they begin to diverge from the measure-
ments, and should be analyzed with longer optimization windows.
To quantify this divergence, a “bias” measure is calculatedduring
the backward march. Mathematically, this bias measureBk may be
defined as

Bk =

∥∥∥∥
−k

∑
j=0

(y j−H x̄ j|0)

∥∥∥∥
1

where
∥∥z

∥∥ = |z1| + · · · + |zn|,

(32)

and where the sum is computed by marchingX̂0|0 backward from
the present time,t0. Note that this bias measure does not square
its argument. As long as the misfit between each measurement and
the corresponding quantity in the model is as often positiveas it is
negative, the net contribution toBk is nearly zero, and the march
continues. Once this misfit is consistently one sign or the other, the
bias measure rather suddenly begins to grow (see Figure 4), and the
march is terminated. Through experimentation, a critical bias B̄ is
defined such that the trajectory of the ensemble mean is deemed
significantly divergent from the observations past this period. This
point defines the left edge of the variational window,t−K , as follows:

K = min{ k | Bk > B̄}. (33)

With the variational window[t−K ,t0 ] so defined, the initial
best smoothed estimate of the statex̄−K|0 is given as the mean of

the ensemblêX−K|0. At this point, variational methods are used to
improve this estimate in a consistent manner. To this end, the tra-
ditional 4DVar cost function is defined with a background estimate
and covariance att−K . The background term of the cost function
must now be defined carefully, as the correct background termis es-
sential for EnVE to be consistent. In other words, properly defining

c© 0000 Tellus,000, 000–000



ENVE: ENSEMBLE VARIATIONAL ESTIMATION 9
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Figure 5. In order to define fully the variational cost function, the back-
ground terms att−K must be recalled. This is done by marching the original

ensemblêX0|0 backward through the window, sequentially removing the ef-
fect of each measurement. This march results in a backgroundensemble
X̂−K|−K at t−K . From this ensemble, the background mean and covariance
can be inferred.

the background term in the variational cost function guarantees that
erroneous updates are not made by using an observation more than
once, and ensures that the result obtained reduces to that obtained
by the Kalman Filter in the special case that the system considered
happens to be linear.

The correct background term is determined by returning to the
original ensemble,̂X0|0, and marching it backward again tot−K , this
time removing the effects of the measurement updates along the
way (see Figure 5). As the EnKF is an approximation of the KF,
in order to derive this backward-in-time EnKF, the backward-in-
time KF first needs to be understood. To this end, the backward-
marching KF equations are now derived that remove the mea-
surement updates in a manner similar to the traditional forward-
marching KF equations, which add the measurement updates. Be-
cause the KF is considered here, non-singularity of the covariance
P is assumed in this derivation.

To begin, recall the standard KF update for the forward march
(both for the mean estimate and the covariance):

x̄k|k = x̄k|k−1 +Pk|k−1 HH(H Pk|k−1 HH +R )−1(yk−H x̄k|k−1), (34)

Pk|k = Pk|k−1−Pk|k−1 HH(H Pk|k−1 HH +R )−1H Pk|k−1. (35)

It is expected that the equation for the backward march will be of
similar form. Rearranging terms, and assuming that the measure-
mentyk ∈ range(H) (i.e. yk = H qk for someqk ∈ ℜn), gives the
following expression:

x̄k|k =
[

I−Pk|k−1 HH(H Pk|k−1 HH +R )−1H
]
x̄k|k−1

+Pk|k−1 HH(H Pk|k−1 HH +R )−1H qk. (36)

Note that the assumptionyk = Hqk for someqk is, in practice, not
a restrictive assumption, as it only requires thatH have linearly in-
dependent rows. In most physical systems of interest the measure-
ments are independent, and thus this assumption is valid. Towards
the goal of writing the estimate update in terms of the current co-
variancePk|k [as opposed to the form of (34), where the update is
written in terms of the prediction covariancePk|k−1], the identity

Pk|k−1

(
Pk|k−1

)−1
= I is inserted into (36). Rearranging terms gives:

x̄k|k =
[
Pk|k−1−Pk|k−1HH(HPk|k−1HH +R )−1HPk|k−1

](
Pk|k−1

)−1x̄k|k−1

+Pk|k−1 HH(H Pk|k−1 HH +R )−1H Pk|k−1

(
Pk|k−1

)−1 qk. (37)

Substituting for the updated covariance from (35) produces:

x̄k|k = Pk|k

(
Pk|k−1

)−1x̄k|k−1

+Pk|k−1 HH(H Pk|k−1 HH +R )−1H Pk|k−1

(
Pk|k−1

)−1 qk. (38)

Adding and subtractingPk|k−1

(
Pk|k−1

)−1 qk to the end of (38) and
rearranging gives a similar result for the second term, allowing for
a substitution for the updated covariance:

x̄k|k =Pk|k

(
Pk|k−1

)−1x̄k|k−1 +

=0︷ ︸︸ ︷
Pk|k−1

(
Pk|k−1

)−1qk−Pk|k−1

(
Pk|k−1

)−1qk

+Pk|k−1 HH (H Pk|k−1 HH +R )−1H Pk|k−1

(
Pk|k−1

)−1 qk

=Pk|k

(
Pk|k−1

)−1x̄k|k−1 + qk

−
[
Pk|k−1−Pk|k−1 HH(H Pk|k−1 HH +R )−1H Pk|k−1

](
Pk|k−1

)−1qk

=Pk|k

(
Pk|k−1

)−1x̄k|k−1 +
[

I−Pk|k

(
Pk|k−1

)−1]qk. (39)

Returning to (35), the matrix inversion lemma can be used to solve
for the backward covariance update:

(
Pk|k

)−1
=

(
Pk|k−1

)−1
+HH R −1H, (40)

(
Pk|k−1

)−1
=

(
Pk|k

)−1−HH R −1H, (41)

Pk|k−1 = Pk|k −Pk|k HH(H Pk|k HH −R )−1H Pk|k . (42)

Note the similarity between adding the measurement update in (35)
and removing the measurement update in (42). For the estimate
update, the following identity is determined via (41)

Pk|k

(
Pk|k−1

)−1
= I−Pk|k HH R −1H. (43)

Looking again at the estimate update (39), the identity (43)can be
substituted to simplify the right-hand side. The assumption yk =
H qk is then reinserted to produce a closed-form expression for the
update in terms of the updated covariance only:

x̄k|k =
[

I−Pk|k HH R −1H
]
x̄k|k−1 +Pk|k HH R −1H qk, (44)

x̄k|k =
[

I−Pk|k HH R −1H
]
x̄k|k−1 +Pk|k HH R −1yk, (45)

x̄k|k = x̄k|k−1 +Pk|k HHR −1(yk−H x̄k|k−1 ). (46)

The form given in (46) is useful because the updated covariance is
all that is available when the update is reversed. Additionally, note
the striking similarity of the update gain in (46) to the classical
continuous time Kalman filter update equation7. Now, (45) can be
solved directly for the estimate without the update.

x̄k|k−1 =
[

I−Pk|k HHR −1H
]−1( x̄k|k −Pk|k HH R −1yk

)
. (47)

7 It is worth noting that the measurement update equation in the form given
in (46) is equivalent to the standard discrete-time update equation (34) for
the KF and EKF. The difference is that (46) is written as a function of the
current covarianceP

k|k , as opposed to the typical update in (34) based on
the prediction covarianceP

k|k−1 . For the KF and EKF, it is not necessary
to update the estimate before the covariance, so a significant computational
savings can be realized by doing these updates opposite of the traditional
order: first update the covariance using the standard updateequation (35),
then update the estimate using (46).
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Using the matrix inversion lemma, (47) becomes:

x̄k|k−1 =
[

I−Pk|k HH(H Pk|k HH −R )−1H
]
( x̄k|k −Pk|k HH R −1yk ).

(48)
Expanding the product gives:

x̄k|k−1 =x̄k|k −Pk|k HH (H Pk|k HH −R )−1H x̄k|k −Pk|k HHR −1yk

+Pk|k HH(H Pk|k HH −R )−1H Pk|k HHR −1yk. (49)

The final two terms can be factored, simplified, and rearranged:

x̄k|k−1 = x̄k|k −Pk|k HH (H Pk|k HH −R )−1H x̄k|k

+Pk|k HH (H Pk|k HH −R )−1×
[
− (H Pk|k HH −R )+H Pk|k HH ]

R −1yk

= x̄k|k −Pk|k HH (H Pk|k HH −R )−1H x̄k|k

+Pk|k HH (H Pk|k HH −R )−1yk

= x̄k|k +Pk|k HH (H Pk|k HH −R )−1(yk−H x̄k|k). (50)

Note the striking similarity between the measurement “downdate”
equation (50) and the measurement update equation (34).

Note that (50) is the closed-form analytical expression forre-
moving the effect of a measurement update using the KF. This
“downdate” equation, coupled with (42) and the backward march-
ing state equations, can be used while marching the KF backward
in time, exactly removing the measurement updates along theway.
As (8) is the ensemble representation of (34) for the KF, a simi-
lar “downdating” EnKF can be found from the “downdating” KF
equation (50):

x̂ j
k|k−1

= x̂ j
k|k +P e

k|k HH (H P e
k|k HH −R )−1(d j

k−H x̂ j
k|k). (51)

This equation governs the “downdates” necessary to reversethe for-
ward march of the ensemblêX0|0 (determined using updates from
all measurements) in order to determine the background ensemble
X̂−K|−K representing, in the linear setting, the background estimate
and statistics att−K containing no information about the observa-
tions within the variational window. From this background ensem-
ble, the background mean̄x−K|−K and background covarianceP e

−K|−K

can be extracted.
In the ensemble implementation of the variational step there is

an additional somewhat subtle wrinkle to the 4DVar derivation pre-
sented in Section 2.3. Recall that the traditional 4DVar cost function
(11) measures the misfit between the measurements and the model
trajectoryx̃(t) with x̃−K = u. In contrast, during the variational it-
eration associated with the EnVE algorithm, this mean trajectory
is defined as the average of the ensemble trajectories over the win-
dow, and therefore is not itself necessarily even a trajectory of the
underlying model. That is, with EnVE,

dx̂ j(t)
dt

= f (x̂ j(t),w j(t)), x̃(t) =
1
N

N

∑
j=1

x̂ j(t). (52)

The corresponding cost functionJ (u) that is minimized (with re-
spect tou) by EnVE is defined in a similar manner as in traditional
4DVar:

J (u) =
1
2

(u− x̄−K|−K )H (
P e
−K|−K

)+
(u− x̄−K|−K )

+
1
2

0

∑
k=−K

(yk−Hx̃k )H R −1(yk−Hx̃k ), (53)

where the “optimization variable”u is the value of the refined state

estimatẽx, given as the average of the ensembles att−K ; that is,

x̃−K =
1
N

N

∑
j=1

x̂ j
−K|0 = u. (54)

Note that (53) is consistent with the 4DVar cost function (11).
In (53), however, the estimate covariance matrix is replaced by
the ensemble estimate covariance matrix. For the multiscale sys-
tems of interest, this background covariance is singular. Thus, the
pseudoinverse must be used instead. Because the backgroundterm
of the cost function is consistently defined (in that, in the lin-
ear setting, it incorporates no information from the observations
within the variational window), the correspondingn-dimensional
optimization surface is, in the linear case, identical to what would
have been used had no sequential march through those observations
been completed.

With the cost function defined appropriately in this manner,a
variational iteration can now be performed, similar to 4DVar. With
traditional 4DVar, the first iteration is typically initialized using the
background term,u = x̄−K|−K . However, with EnVE, a better es-
timate than this is already known, namely the smoothed ensemble
mean,u = x̄−K|0. This is one of the strengths of EnVE: it initializes
the variational iteration with an estimate that is known to be signif-
icantly better than the background. In either case, the optimization
surface is identical, but with EnVE, the initial ensemble estimate
for u is much closer to the global minimum than the original back-
ground term. Consequently, if any significant improvement can be
made upon this initial estimate, it will be discovered in thefirst vari-
ational iteration(s). Further, the initial estimate is more likely to be
in the region of attraction of the global minimum, so the probability
of erroneous convergence to spurious local minima can be substan-
tially reduced.

In minimizing the cost function, the goal is to shift the first
moment statistics of the ensemble without altering the higher mo-
ments. To this end, a simple translation of the ensemble as a whole
is desired. Consequently, the sensitivity of the cost function (53)
with respect to an ensemble translation is examined. As manyof
the adjoint derivation steps are similar to those describedin Sec-
tion 2.3, only modifications related to the new formulation will be
discussed here.

As the mean trajectory can not be perturbed directly, the cost
functionJ , the optimization variableu, and the ensemble trajecto-
ries x̂ j(t) are perturbed to give the perturbed cost functionJ ′(u′)
as:

J ′(u′) = (u− x̄−K|−K )H (P e
−K|−K

)+ u′

− 1
N

N

∑
j=1

[ 0

∑
k=−K

(yk−H x̃k )H R −1H x̂ j
k
′
]
. (55)

Importantly, the ensemble perturbationsx̂ j
k
′ are related tou′ due to

the assumption that, att−K , only a translation of the ensemble will
be allowed, i.e.,

x̂ j
−K
′ = u′ ∀ j ∈ [1,N]. (56)

The components of the outer summation in (55) over the ensem-
ble members can now be related by defining an individual adjoint
variabler j(t) for each ensemble member. Similar to 4DVar, the
inner summation over the measurement times can be re-expressed–
leveraging each adjointr j(t)–in a manner identical to Section 2.3,
in which a sequence of adjoints are defined over the measurement
intervals, and it is seen that the intervals can be compressed into
one continuous-time adjoint equation with discrete forcing at the
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ENVE: ENSEMBLE VARIATIONAL ESTIMATION 11

measurement times. In this manner, with the EnVE implementa-
tion, an “ensemble” ofN adjoints is defined over the window, with
each individual adjoint equation linearized about the trajectory of
its corresponding ensemble member as follows:

dr j(t)
dt

=−A
(
x̂ j(t)

)H r j(t), r j
0 = 0. (57)

At the measurement times, an identical discrete update is made to
each adjoint corresponding to the deviation of the ensemblemean
from the measurement; i.e., at the measurement times,

r j
k← r j

k +HH R −1 (yk−H x̃k ), where x̃k =
1
N

N

∑
j=1

x̂ j
k. (58)

Thus, a forward march of the ensemble estimate through the
variational window provides the trajectories that will be used to
drive theN adjoints backward through the window. At each mea-
surement time, the ensemble of adjoints are all translated by calcu-
lating the misfit between the ensemble mean and the corresponding
measurement. These parallel marches serve to re-express the inner
summation over the measurements in the perturbed cost function
(55). Finally using the perturbation equation (56) att−K , the gradi-
ent of the original cost function can be expressed [cf. (31)]as:

▽J (u) = (P e
−K|−K

)+(u− x̄−K|−K )− 1
N

N

∑
j=1

r−K . (59)

In other words, the component of the gradient due to the misfitof
the ensemble with the measurements is simply the average of the
contributions from each individual adjoint att−K . Note that, in the
linear setting, computing the gradient using multiple adjoints in this
manner is equivalent to forcing a single adjoint about the mean tra-
jectory, as–in this special case only–the trajectory of theensemble
mean is the same as the mean of the ensemble trajectories.

With 4DVar, as described previously, the estimateu = x̃−K

would be marched forward using the model over the variational
window. This trajectory needs to be stored or checkpointed,be-
cause it drives the subsequent backward march of the adjointover
the same window. For large systems, this presents a significant
computational challenge. With EnVE, however, this trajectory is
determined via a backward march of the ensemble (see Figure 3).
Since the background term and the width of the variational win-
dow do not need to be known before the adjoint march begins, this
facilitates a simultaneous march of all three systems (the ensem-
ble estimate without the measurement “downdates”, the ensemble
of adjoints, and the ensemble estimate with measurement “down-
dates”) fromt0 until the mean of the estimate diverges sufficiently
from the observations (att−K ), as defined by the bias measureBk
[see (32)]. The computational benefits of such parallel marches are
more fully examined in Section 6.3. Because they are marchedin
parallel, the ensemble member trajectories are immediately avail-
able to drive the adjoint computations “on the fly”, and the storage
challenge normally associated with adjoint-based methodsis elimi-
nated. At the conclusion of the backward march, the window width,
the appropriate background term, and the adjoint att−K are deter-
mined, and thus the gradient (59) of the variational cost function
may be extracted.

Note that the evaluation of this gradient requires the compu-
tation of the pseudoinverse of the ensemble background covari-
ance. Fortunately, exploiting the structure of the ensemble frame-
work, this pseudoinverse can be computed efficiently even for high-
dimensional systems (the specifics of this gradient calculation are
discussed in Section 4). This gradient, along with a suitable line

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

J

x  J   J 

x-K  0
x 0  0

x1

x2

x3

Figure 6. Upon completion of a variational step, the improved ensemble
estimateX̂−K|0 at t−K is propagated forward to the old present timet0. No
measurement updates are done during this march, as the observations have
already been accounted for. Upon reachingt0, the new ensemble estimate
X̂0|0 is marched sequentially forward using the EnKF to account for any
additional measurements received during the computation time required for
the previous variational step, and the algorithm is repeated.

minimization algorithm, is then used to update each ensemble
member (and consequently, the ensemble mean):

x̂ j
−K|0 ← x̂ j

−K|0−α▽J (u). (60)

Recall from (56) that the derivation above assumed that the
final estimate ensemble was obtained simply by shifting the ini-
tial (smoothed) estimate ensembleX̂−K|0. In fact, with an adjusted
estimate of this sort, a modified if not improved covarianceP e

−K|0
would be expected as well. However, as variational methods do not
appear to provide a means for tracking these changes, the EnVE
algorithm proposed here simply uses this shifted ensemble repre-
sentation, which is a bit conservative. Note, though, that this is a
significant improvement over 4DVar, in which rigorous methods to
marchP are essentially unavailable. In contrast, with EnVE, the
covariance associated with the original smoothed estimateis avail-
able, so it can be utilized. Though this is a conservative estimate
of the covariance that does not account for the correction tothe
estimate due to the variational step, it correctly capturesthe main
features of the covariance matrix, including the principledirections
of estimate uncertainty.

To cycle the algorithm, the updated ensemble is marched for-
ward tot0 (see Figure 6). Note that the ensemble already accounts
for the measurements in this window, so each ensemble memberis
propagated forward using the system equations only, with noaddi-
tional measurement updates. This gives an improved estimate att0,
X̂0|0. During the time taken to complete this variational step, some
new measurements{y1 · · · yJ} will usually become available. The
ensemblêX0|0 can thus be marched forward further now, using the
EnKF to account for these new measurements, until the new present
time tJ is reached. At this point, time is reset,t0← tJ , and the algo-
rithm is repeated.

Note that a significant computational burden can be avoided
by storing the updated estimate at the previous present time, X̂0|0.
This point can serve as a more convenient starting point for de-
termining the subsequent background term of the variational cost
function, as opposed to usinĝXJ|J. Depending on the relative
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12 BEWLEY, CESSNA, & COLBURN

widths of the subsequent variational window and the time elapsed
during the current variational step, starting from̂X0|0 instead of

X̂J|J will result in either a shorter backward EnKF march or pos-
sibly even a forward EnKF march to the left edge of the new varia-
tional window. This simple storage trick reduces the computational
cost of the algorithm significantly and shortens (or removesalto-
gether) one of the backward-in-time marches of the estimateen-
semble. Note that these backward-in-time marches are ill posed if
the ODE system is derived from a PDE with a diffusive compo-
nent. However, using appropriate regularization [see, e.g., Lattès &
Lions (1969), Protas et al. (2004)], such backward-in-timemarches
can be reasonably well approximated over short time horizons at
their larger length scales. Curiously, as a consequence of these
backward-in-time marches of the estimate called for by the algo-
rithm, EnVE appears to be most naturally suited forhigh-Reynolds
number systems (without a dominant diffusive component at the
length scales of interest).

For relatively small ODE systems of dimensionn with a rela-
tively large number of ensemble members,N > n, P e is invertible,
and the EnKF “downdate” (51) is well defined. For such small sys-
tems, the subsequent variational windows can in fact overlap, as
called for by the algorithm described above.

For high-dimensional discretizations of multiscale PDE sys-
tems, on the other hand, only a relatively few number of ensemble
members are numerically tractable (i.e.,N≪ n). For such systems,
the ensemble covariance matrix is rank deficient, and its singularity
leads to a breakdown in the derivation of (51). As a result, nofully
consistent backward EnKF march with measurement “downdates”
appears possible. By saving the estimate at the previous present
time,X̂0|0, a lower limit is thus set on the left edge of the subsequent
variational window, and the background term may instead be deter-
mined via aforward march fromX̂0|0. Hence, for the multiscale
systems of interest, it appears to be necessary that the variational
windows, from one iteration to the next, do not overlap.

The EnVE algorithm is now summarized:

(i) Given the estimate ensemble at some past time, each
ensemble member is marched forward to the present timet0 with
sequential updates at each measurement consistent with theEnKF
framework. At this point it is beneficial to revisit old measurements
to refine further the current estimatēx0|0, the ensemble mean.

(ii) The current ensemblêX0|0 is marched backward until the
mean trajectory (the average of the ensemble trajectory) diverges
significantly from the measurements. This march determines
the number of measurementsK in the variational window to be
used; poor estimates will have small windows, whereas accurate
estimates will have larger windows that incorporate a longer mea-
surement history. Concurrently, the appropriate adjoint ensemble is
also marched backward, with discrete forcing updates basedon the
misfit between the estimates and the corresponding observations.
In order to refine the ensemble-mean estimate of the system, a
variational iteration is now initialized to optimize this estimate at
t−K .

(iii) The current ensemblêX0|0 is marched backward again,
this time removing the measurement updates. This march is used
to determine the ensemble-averaged value of the “background
state” x̄−K|−K , as well as the “background covariance”P e

−K|−K
. As

in 4DVar, a cost function over the window of interest,[t−K , t0 ], is
defined with this background term to summarize the information

gleaned from measurements prior tot−K . This cost function is then
minimized using standard 4DVar-like techniques. Typically, only
one iteration step is performed: the gradient is determinedusing
the (previously calculated) adjoint, and a step size is determined
using a suitable line minimization algorithm.

(iv) The line minimization serves to shift the smoothed ensem-
ble estimatêX−K|0 around an improved mean att−K . This resulting
improved ensemble is propagated forward using the system model
without measurement updates. Once the old present timet0 has
been reached, new measurements are available, so the algorithm
is repeated from (i), marching the EnKF to the new present time tJ .
The ensemble estimatêX0|0 is saved to simplify computation of the
background term during the subsequent variational step.

4 Numerical Implementation in an MPI setting

Some of the numerical issues with regards to the implementa-
tion of EnVE are now addressed. The numerical methods available
for marching both the state and adjoint, though sometimes nontriv-
ial, are fairly standard. The regularization of the retrograde marches
of ill-posed problems (derived from diffusive PDEs) is an active
area of research [see Lattès & Lions (1969), Protas et al. (2004)],
and deserves even closer consideration in future work. Instead of
exploring these issues, this section will focus specifically on the
parallel implementation of the EnKF update equations usingthe
Message Passing Interface (MPI), allowing for uniform loaddis-
tribution on, and minimal communication between, the massively
parallel computational resources required to apply the EnVE algo-
rithm to multiscale systems.

In general, the ensemblêXi|k is comprised ofN ≪ n ensem-

ble members. Each of these ensemble membersx̂ j
i|k is located on its

own processor (or processors) with a corresponding processnum-
ber. In practice, for testing purposes, an additional process is also
used for the “truth” model simulation, which is done in parallel
with the EnKF march. Thus, the MPI environment is constructed
of N +1 processes, with processj denoted byp j. For convenience,
the “truth” model is run onp0, while each ensemble memberx̂ j

i|k is

run on its corresponding process,p j.
The EnKF consists of two main steps: a forward march of

the ensemble to predict the estimate at the next measurement, and
an appropriate update to the forecasted estimate due to eachmea-
surement. Recall that the discretized system of interest isgiven by
(1a) and (1b). The forecasting step of the EnKF is the march from
X̂k−1|k−1 to X̂k|k−1 (not including the measurement update). In the
MPI setting, this is done by simply marching each ensemble mem-
ber forward in time–using an appropriate time-stepping algorithm–
according to the governing equation:

dx̂ j(t)
dt

= f (x̂ j(t),w(t)). (61)

The disturbancesw(t) are modeled appropriately using a reversible
random-number generator [see Colburn & Bewley (2008)], and
each ensemble member is disturbed independently from the other
ensemble members. In an MPI setting, the computation time of
each process is assumed independent from the other processes.
Hence, the time required to propagate theN ensemble members
in this framework is equivalent to a single simulation on a single
processor.

Next, the measurement update at timetk must be performed.
To update the ensemblêXk|k−1 to reflect the newest measurement
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ENVE: ENSEMBLE VARIATIONAL ESTIMATION 13

(thereby givingX̂k|k ), a corresponding update must be done on each
individual ensemble member as follows:

x̂ j
k|k = x̂ j

k|k−1
+P e

k|k−1
HH(H P e

k|k−1
HH +R )−1(d j

k−H x̂ j
k|k−1

). (62)

To evaluate this equation, the three main components of the update
are first developed independently as:

x̂ j
k|k = x̂ j

k|k−1
+L(1)

k

(
L(2)

k

)−1 z j
k, (63)

L(1)
k = P e

k|k−1
HH L(1)

k ∈ℜn×m, (64)

L(2)
k = H P e

k|k−1
HH +R L(2)

k ∈ℜm×m, (65)

z j
k = d j

k−H x̂ j
k|k−1

z j
k ∈ℜm. (66)

Note that the matricesL(1)
k andL(2)

k depend upon the entire ensem-
ble.

First, examine the structure ofP e
k|k−1

. This covariance is built
up from the individual ensemble members such that:

P e
k|k−1

=
1

N−1

[
( x̂1

k|k−1
− x̄k|k−1) · · · ( x̂N

k|ik1
− x̄k|k−1)

]
×

[
( x̂1

k|k−1
− x̄k|k−1) · · · ( x̂N

k|k−1
− x̄k|k−1)

]H

=
1

N−1

[
δx̂1

k|k−1
· · · δx̂N

k|k−1

][
δx̂1

k|k−1
· · · δx̂N

k|k−1

]H
,

⇒ P e
k|k−1

=
1

N−1

N

∑
j=1

δx̂ j
k|k−1

(δx̂ j
k|k−1

)H . (67)

Note thatP e
k|k−1
∈ℜn×n; for high-dimensional systems, building up

this matrix is computationally intractable but, as shown below, un-
necessary in the implementation if the terms are computed inthe
appropriate order. As is seen in (67), the covariance can be com-
puted as a sum of outer products of the deviations of each ensem-
ble member from the ensemble mean (that is, of the ensemble state
perturbation vectorsδx̂ j

k|k−1
). Thus, (64) can be written:

L(1)
k =P e

k|k−1
HH

=
(

H P e
k|k−1

)H

=
1

N−1

(
H

N

∑
j=1

δx̂ j
k|k−1

(δx̂ j
k|k−1

)H)H

=
1

N−1

N

∑
j=1

δx̂ j
k|k−1

(H δx̂ j
k|k−1

)H ,

⇒ L(1)
k =

1
N−1

N

∑
j=1

δx̂ j
k|k−1

(δŷ j
k|k−1

)H , (68)

whereH δx̂ j
k|k−1

= δŷ j
k|k−1
∈ ℜm is the ensemble output perturba-

tion vector. The matrixH is the linearization of the output operator
h : ℜn → ℜm. Note that, for the multiscale chaotic systems of in-
terest,m≪ n (that is, the number of measurements is much smaller
than the dimension of the state), so the storage and communica-
tion of the output perturbation vectorsδŷ j

k|k−1
can be assumed to be

negligible compared to the storage and communication of thestate
and state perturbation vectors. At this point, locally on each process
p j, the ensemble state perturbationδx̂ j

k|k−1
must be computed along

with the ensemble output perturbationδŷ j
k|k−1

.

Similarly, the first term inL(2)
k , namelyH P e

k|k−1
HH , can be

computed in a manner consistent withL(1)
k , exploiting the structure

of the ensemble covariance matrix.

H P e
k|k−1

HH =H

(
1

N−1

N

∑
j=1

δx̂ j
k|k−1

(δx̂ j
k|k−1

)H
)

HH

=
1

N−1

N

∑
j=1

(H δx̂ j
k|k−1

)(H δx̂ j
k|k−1

)H ,

⇒ H P e
k|k−1

HH =
1

N−1

N

∑
j=1

δŷ j
k|k−1

(δŷ j
k|k−1

)H . (69)

This term is calculated as a sum over all the processes of the outer
product of the ensemble output perturbation with itself (recall that
this vector has already been computed on each process). In addition

to theH P e
k|k−1

HH term,L(2)
k contains the measurement covariance

matrix R . This matrix, in general, may be a function of time, but a
model forR is assumed to be known.

The structure of many MPI clusters facilitates reasonably ef-
ficient all-to-all communication (in which data is passed from ev-
ery node to every other node in the cluster at the same time). For
instance, in a cluster with a toroidal switchless interconnect, all-to-
all communication is only slightly more expensive than one-to-all
communication (in which one node sends data to ever other node).
This is because, in a switchless interconnect torus, duringone-to-
all communication the data is sent sequential from one node to the
next, down the line, while all the other nodes wait. Thus, thetime
required for a one-to-all communication is the time required for the
data to travel all the way down the line of nodes. However, during
all-to-all communication, data is cycled down the line fromevery
node. Thus, every node is always busy, but the total communication
time is still only the time it takes for data to travel once down the
line.

In the interest of minimizing data transfer, all the ensem-
ble output perturbation vectorsδŷ j

k|k−1
are thus transferred to ev-

ery node, whereL(2)
k can be computed locally. This requires only

one all-to-all communication call for the ensemble output perturba-

tion vectors. Conversely, if the summation components ofL(2)
k were

computed locally, an all-to-all communication of the entire matrix
would be necessary, increasing communication significantly while
decreasing computation only slightly.

In the EnKF framework, each individual ensemble member
is assimilated with a noisy measurement. The noisy measurement
on processp j is denotedd j

k and is found by adding random noise
on top of the original measurement (from the truth model), with
statistics consistent with the known properties of the sensors:

d j
k = yk +v j

k. (70)

The statistics of the added noise mirror the known measurement
noise of (1b). This gives the forcing to each ensemble memberes-
timatez j

k as

z j
k = d j

k−H x̂ j
k|k−1

= yk +v j
k− ŷ j

k|k−1
, (71)

whereŷ j
k|k−1

is the ensemble output vector on each process. Hence,
the calculation of this vector can be done locally; no message pass-
ing is required, other than to provide each process with the truth
model measurementyk.

At this point, a simple linear system needs to be solved [due

to the
(
L(2)

k

)−1
term] on each process. This solve is straightfor-

ward becauseL(2)
k ∈ℜm×m is both symmetric and relatively small.

Many algorithms exist for the efficient solution of such systems.
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Note that, with the assumptionR > 0, the matrixL(2)
k is, in gen-

eral, nonsingular, and thus the solution to the following system ex-
ists and is unique:

u j
k =

(
L(2)

k

)−1 z j
k⇒ L(2)

k u j
k = z j

k. (72)

With the computation ofu j
k done locally on each process, the

update equation (63) can again be rewritten as:

x̂ j
k|k = x̂ j

k|k−1
+L(1)

k u j
k. (73)

Substituting in the definition ofL(1)
k from (68), this update be-

comes:

x̂ j
k|k = x̂ j

k|k−1
+

[
1

N−1

N

∑
i=1

δx̂i
k|k−1

(δŷi
k|k−1

)H

]

u j
k

= x̂ j
k|k−1

+
N

∑
i=1

[
(δŷi

k|k−1
)H u j

k

N−1

]
δx̂i

k|k−1
,

⇒ x̂ j
k|k = x̂ j

k|k−1
+

N

∑
i=1

γi j
k δx̂i

k|k−1
(74a)

where γi j
k =

(δŷi
k|k−1

)H u j
k

N−1
. (74b)

In its final form, the measurement update equation (74) updates
each ensemble member via a linear combination of each ensem-
ble state perturbation vectorδx̂ j

k|k−1
. This form eliminates the need

for any additional storage arrays. The update can be computed in an
all-to-all round robin format, where the ensemble state perturbation
vector on each process is shifted one hop to the adjacent process.
Then, the corresponding update is computed on every process, and
the data is shifted again. Overall, the total communicationis equiv-
alent to a single all-to-all send of the ensemble state perturbation
vector, but because the computation is done in between each mes-
sage hop, there is no accumulating storage necessary.

In this manner, both the forward EnKF updates (8) and
the retrograde EnKF “downdates” (51) can be computed numer-
ically, even in large-scale systems. Left to compute are thead-
joint marches. These can be done in a similar manner as tradi-
tional 4DVar techniques, with the exception of the additional stor-
age/checkpointing required by 4DVar but not required by EnVE, as
discussed near the end of Section 3.

At the completion of the adjoint march, the gradient is cal-
culated from the adjoint ensemble att−K and the deviation from
the background term. For the background component of the cost
function, the pseudoinverse of the ensemble background covariance
(P e
−K|−K

)+ must be computed. In general, this is computationally in-
tensive, but here the intrinsic structure of the ensemble framework
can again be exploited to simplify this calculation. For clarity, the
time subscripts will be dropped. Recall from (9) that:

P e =
(δX̂) (δX̂)H

N−1
, where δX̂ =

[
δx̂1 δx̂2 · · · δx̂N

]
,

δx̂ j = x̂ j− x̄, and x̄ =
1
N ∑

j
x̂ j.

Define the reduced singular value decomposition (SVD) ofδX̂ as

δX̂ = U Σ V H . (75)

Note that, thougĥX is assumed to have full column rank (i.e., the
ensemble members are assumed to be linearly independent), the
process of determining the perturbations of these ensemblemem-
bers reduces the rank ofδX̂ by one (due to the subtraction of the

ensemble mean). Therefore, the reduced singular value decompo-
sition results inN−1 singular valuesσi that make up the diagonal
of the(N−1)× (N−1) matrixΣ. Using the reduced SVD ofδX̂ , the
background ensemble covariance can be expressed as:

P e =
(U Σ V H ) (U Σ V H )H

N−1
(76)

=
U Σ V H V Σ UH

N−1
, (77)

⇒ P e =
U Σ2 UH

N−1
, (78)

whereV H V = I. With P e in this SVD form, the pseudoinverse is
recognized immediately as

(P e)+ = (N−1) U Σ−2 UH . (79)

Thus, finding(P e)+ reduces to the problem of finding an orthonor-
mal basis for the column space ofδX̂ . To do this, recall that
δX̂ ∈ ℜn×N whereN ≪ n. Thus, it is more efficient to find first
an orthonormal basis for the row space ofδX̂ . This is done via an
eigendecomposition of the following matrix:

(δX̂)H (δX̂) =
[
V v

][
Σ2 0
0 0

][
V H

vH

]
, (80a)

⇒ V H = W =
[
w1 · · · wN

]
, (80b)

Σ2 = diag(σ2
1 , σ2

2 , · · · ,σ2
N−1), (80c)

σ1 > σ2 > · · · > σN−1 > 0, (80d)

where v is a vector representing the basis for the null space of
(δX̂)H (δX̂), due to the fact thatδX̂ is made rank deficient by sub-
tracting off its mean. Eachσ2

i is guaranteed real and positive by
construction. AsN is the number of ensemble members (on the or-
der of 102), many efficient algorithms exist for the computation of
this spectral decomposition. Once the row spaceV has been found,
it is easily shown from (75) that the column spaceU is given by

U = δX̂ V Σ−1 (81)

which, leveraging (80a), can be substituted directly back into (79)
to give:

(P e)+ = (N−1) δX̂ V Σ−4 V H δX̂H . (82)

Now, by defining the following vector

sT =
[
1/σ4

1 · · · 1/σ4
N−1

]
, (83)

the pseudoinverse (82) can be rewritten as:

(P e)+ = (N−1)

( N

∑
i=1

δx̂i (wi • s)H
)( N

∑
j=1

w j (δx̂ j)H
)

, (84)

wherea • b denotes the Schur product (element-wise multiplica-
tion) of the corresponding vectors. In practice, this matrix will
never be explicitly computed. Rather, this matrix is alwaysused
as a part of a matrix/vector product of the form

(P e)+z = (N−1)

( N

∑
i=1

δx̂i (wi • s)H
)( N

∑
j=1

w j (δx̂ j)H
)

z. (85)

Now noting that the general vectorz does not depend onj, it can
be brought inside the second summation, giving an inner product
(that results in a scalar) as follows:

(P e)+z = (N−1)

( N

∑
i=1

δx̂i (wi • s)H
)( N

∑
j=1

(zHδx̂ j)w j

)
. (86)
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Lastly, the second summation in (86) results in another vector (this
time independent ofi) that can be brought inside the first summa-
tion to give the final form implemented numerically:

(P e)+z =
N

∑
i=1

βi δx̂i, βi = (N−1)
N

∑
j=1

(zH δx̂ j)(wi • s)H w j.

(87)

Hence, the product of the ensemble covariance pseudoinverse
(P e)+ with any general vectorz is shown to be a simple linear
combination of the ensemble perturbation vectorsδx̂ j, as was the
case with the ensemble update formula (74). Unlike the update for-
mula (74), the weightingβi on each ensemble member perturbation
requires a sum over the whole of the ensemble. This sum is trivial,
though, as it requires simple all-to-all communication of the scalar
zH δx̂ j. It is assumed here that the eigenvector matrixV and the sin-
gular valuesσ have been computed in parallel on each ensemble,
and thus no additional communication is necessary to compute this
portion of the scalar sum. Then, to leading order, for each varia-
tional iteration, the pseudoinverse computations requireonly one
all-to-all send (of the ensemble state perturbations) to build up the
matrix (δX̂)H (δX̂), prior to the spectral decomposition, and one
round-robin all-to-all send (again, of the ensemble state perturba-
tions) for each matrix/vector product computation. No notable extra
storage is required for these computations.

5 EnVE Consistency

At a specific time, given a linear system, a background esti-
mate with known covariance, and a new measurement with known
noise characteristics, the Kalman estimate is the best linear un-
biased estimate (BLUE) that balances these two uncertainties to
minimize a corresponding cost function. For linear systems, it is
straightforward to think of the estimate at any time as beingfully
conditioned on a subset of measurements; thus the notationx̄i|k . It
is important to note that, even in the case in which the entirestate
is being measured, the optimal estimate is not simply the value of
the observation at that time. Thus the importance of the background
estimate, as it gives the existing estimate some “inertia”,avoiding
spurious updates due to outlying observations.

For LQG systems, one sequential forward march through a set
of observations gives the optimal estimate,x̄0|0, at the present time
t0. It is possible to smooth past estimates, say att−k , by march-
ing the current estimate backward and retaining the information
gained from all observations, giving the smoothed estimatex̄−k|0.
This smoothing march effectively conditions the past estimates on
the now known future observations{y1−k · · ·y0}. It does not change
the estimate based on any information from the past observations
{y j | j <−k}, as this information has already been included. Now,
given this smoothed estimatēx−k|0 and its associated covariance
P−k|0 , one could mistakenly run a KF forward again through the set
of measurements{y1−k · · ·y0}. This would be an attempt to recon-
dition the estimate on these measurements, and completely violates
the optimality of the estimate. In fact, it is easy to show that such
an approach, applied iteratively, would lead to an estimatethat con-
verges to the observations themselves, independent of the original
background terms. This is exactly the type of inconsistencythat
EnVE has been constructed carefully to avoid. In the linear set-
ting, it may seem obvious that a single observation must be used
only once, but, in a nonlinear setting, where suboptimal sequential
updates are performed and variational iterations are not taken com-

pletely to convergence, this issue becomes less obvious, and must
be handled with care.

To achieve consistency (that is, to ensure that the answer given
by the EnVE algorithm reduces to that given by the KF when the
system is linear and the ensemble sufficiently large), EnVE must
rigorously keep track of the background estimate. Ultimately, se-
quential methods (EnKF) and variational methods (4DVar) are used
to solve the same problem. Both methods work to minimize a cost
function to optimize the estimate att0 conditioned on all avail-
able measurements. Thus, when these cost functions are defined
appropriately, it is possible to switch back and forth between se-
quential and variational methods consistently, as EnVE does. For
a linear system with a set of measurements defined on[t−K , t0 ],
the smoothed KF estimate att−K , x̄−K|0 (found by marching a KF
forward through the observations and marching the resulting es-
timate backward tot−K ), is identical to the solution of a converged
4DVar algorithm with an appropriately defined background term. In
other words, the optimal smoothed KF estimatex̄−K|0 is the global
minimum of the 4DVar cost function in the case of a linear sys-
tem. For nonlinear systems, the optimal estimate att−K can not be
found directly via a sequential algorithm in this manner, though the
smoothed KF estimate is indeed an appropriate initial guessfor an
iterative (variational) algorithm.

This relationship is what EnVE attempts to exploit to improve
the estimate. Marching an Ensemble Kalman Smoother (EnKS)
will not produce the optimal smoothed estimatex̄−K|0 because of
the nonlinearities in the system and the approximations required
for the ensemble framework. However, by removing the effectof
the measurements and appropriately defining the 4DVar cost func-
tion background term, this sub-optimal smoothed estimate can be
used as an initial condition for the variational step. If thesmoothed
estimatēx−K|0 happens to be optimal (that is, if the system consid-
ered is essentially linear), then the variational iteration is already
converged and will produce a zero update to the estimate. Thus,
EnVE uses the EnKS to initialize the 4DVar optimization, butdoes
not reuse the information in the observations inconsistently. EnVE
therefore reduces to the expected optimal results of the Kalman
Smoother (KS) for a linear system.

A cartoon of the expected estimation error as EnVE progresses
for a typical chaotic system is shown in Figure 7. Due to the chaotic
nature of the system, any forward march of an estimate will lead to
exponential growth of the expected estimation error (shownlin-
early in semi-log coordinates). Each EnKF measurement update
creates a discrete drop in the expected estimation error. When a
variational iteration is performed, the estimate is marched back-
ward. This causes an exponential decrease in the expected error
as trajectories of the chaotic system converge (along the attractor)
during the backward march. Then, a variational update is made,
further reducing the expected error, and the resulting estimate is
propagated forward again to the next available measurement. Re-
call that with a linear system, the update due to the variational step
will have zero length, thus returning the estimate back to its origi-
nal state to continue the sequential march. This helps illustrate the
consistent nature of EnVE.

6 Advantages

By combining the statistical capabilities of the EnKF along
with the batch processing/smoothing capabilities of a variational
method, EnVE builds a better estimate of the system at a justifi-
able computational cost. Using the EnKF to initialize a 4DVar-like
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Figure 7. A cartoon illustrating the expected error for EnVE performed on a
chaotic system. Exponential growth (linear growth in semi-log coordinates)
in the expected error occurs during forward marches. Discrete reduction in
the expected error occurs at both the sequential updates andthe variational
updates. Note that, with a linear system, the variational updates are neces-
sarily zero, returning the estimates to their original values upon completion
of the variational steps.

iteration allows for fewer variational steps to be used, because the
initial condition for the variational iteration is much more accurate
than the background estimate alone, and full convergence isnot re-
quired. The intrinsic ability of the EnKF to represent the statistical
properties of the estimate allows EnVE to repeatedly and consis-
tently revisit past measurements and update the central trajectory
of the ensemble (about which the system can be linearized when
considering its covariance evolution) based on new measurements.

Two objectives in the development of EnVE were a
multiscale-in-time analysis and a receding horizon optimization
framework. The significance of these properties are highlighted in
the following two subsections. Combined, these two properties cre-
ate a dynamic optimization surface that tends to have desirable con-
vergence properties for complex nonlinear systems.

6.1 Multiscale in Time

Because the variational window in EnVE is defined from the
right (present time) by marching the current estimate backward
until divergence, the width of this window can be selected dur-
ing the iteration. In contrast, with traditional 4DVar, this window
width must be specified in advance. The variable variationalwin-
dow width of EnVE can be used to precondition the optimization
problem appropriately by coordinating this width with the accu-
racy of the initial estimate, as discussed previously and illustrated
graphically in Figure 8.

Due to the noise in the measurements, a short window con-
taining only a few observations is prone to inaccuracy. Thatis, the
global minimum of the cost function defined over only a few obser-
vations is likely to deviate significantly from the “truth”.However,
because only a few measurements are included in this short win-
dow (with corresponding short marches of the chaotic system), this
optimization surface tends to be fairly regular, with a large region
of attraction to the global minimum. The size of the region ofat-
traction is important when using gradient-based algorithms, as such
algorithms are prone to converge to local minima.

As the estimate improves, longer windows with more included
observations are utilized by EnVE. This tends to make the opti-
mization surface more irregular, and to shrink the region ofat-
traction to the global minimum. Thus, this extension of the vari-
ational window needs to be done gradually enough that the im-
proved estimate remains in this reduced region of attraction. Be-
cause more measurements are included in such longer windows,
the effect of sensor noise is diminished (as compared to the shorter
windows), making the global minimum more accurate with respect
to the “truth” as the window length is increased.

6.1.1 Example: Multiscale Preconditioning of a 1D Optimization
To further understand the effect of varying the variationalwin-

dow width on the optimization surface and convergence, consider
the (cartoonish) 1D example indicated in Figure 9. The toy system
considered is an estimation problem based on a Lorenz system(see
Section 7) in which two of the three components of the initialstate,
x1(0) and x3(0), are assumed to be known; however, the precise
details of this toy system are relatively unimportant for the purpose
of the present discussion. For the purpose of illustration,discrete
noisy measurements are taken at a constant sampling rate andthen
smoothed to create a continuous-time measurement signaly(t).

A simple cost function in then defined as the misfit between
the measurement signaly(t) and the evolution of the nonlinear sys-
tem:

J (u) =
Z T

0
‖y(t)−x2(t)‖2 dt. (88)

This cost function is a function of the initial conditionu = x2(0)
at the left edge of the window (here renormalized to bet = 0), and
is parameterized by the width of the variational windowT . For a
given window widthT , the estimateu at the left edge of the win-
dow is varied to determine the complete optimization surface of
this toy system, the global minimum of this optimization surface,
the distance of this global minimum from the “truth” (that is, dis-
tance of the global minimum from the value ofx2(0) in the “truth”
simulation used to generate the measurements), and the region of
attraction to the global minimum (assuming that a gradient-based
search algorithm is to be used to find it). This global minimumis
tracked in Figure 10, along with the upper and lower bounds of
the region of attraction, as a function of the window widthT . It
is seen that the global minimum converges to the optimal “truth”
model, as expected, asT is increased. However, the curves outlin-
ing the region of attraction to this global minimum are important
to understand and appreciate. For small windows (T < 0.5), due to
the lack of complexity in this 1D example, the optimization surface
is convex. Thus, any initial condition will converge to the global
minimum. For longer windows (T > 0.5) the region of attraction
shrinks, requiring increasing precision of the initial estimate. This
is especially true for the upper bound, where even a slight error will
cause erroneous convergence to a local minimum.

To clarify this effect even further, Figure 11 shows two op-
timization surfaces for particular fixedT . In the top subfigure
(T = 0.5), the surface is just beginning to lose its convexity. In
the bottom subfigure (T = 1.0), the optimization surface has a very
accurate global minimum, but it is clear here, with such a small re-
gion of attraction, how initial estimates with too much error could
easily converge to poor local minima.

In a typical high-dimensional chaotic system, the optimization
surfaces will necessarily be much more complicated, but thetrends
(with respect to the accuracy of the global minimum and the re-
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Figure 8. Representative plots illustrating the change in complexity of the
optimization surfaces for a short (T = 20) variational window (top) and a
long (T = 200) variational window (middle andbottom) for a test estima-
tion problem related to the Lorenz equation (Section 7). Also shown is the
known global minimum of the truth model, which is much closerto the
global minimum of the highly irregular optimization surface of the longer
window than it is to the minimum of the smoother surface of theshorter
window.
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Figure 9. The second state,x2(t), of a Lorenz model (gray), and an (artifi-
cially perturbed) measurement signal generated from noisymeasurements
of this state (green dots). Given these measurements, and (for demonstra-
tion purposes only) knowledge ofx1(0) andx3(0), we consider in Section
6.1.1 the scalar optimization problem of findingu = x2(0) in order to rec-
oncile the trajectory of the estimate with the measurementsover horizons
of various widthsT .
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Figure 10. The global minimum (blue) of the cost functionJ(u), plotted
as a function of the window widthT used to define the cost function. As
theT increases, so does the proximity of this global minimum to the truth
(dashed); however, the region of attraction to this global minimum (between
the red and green curves) is also greatly reduced.

gion of attraction) are consistent with this 1D example. Thus, it is
clear how a strategy that uses short variational windows forpoor
estimates and longer windows to further refine accurate estimates
is indeed well founded.

6.2 Receding Horizon

A receding-horizon approach is defined by nudging the varia-
tional window forward in time to incorporate the most recentmea-
surements obtained during each step of a variational optimization.
Simplistic approaches to variational data assimilation leave the op-
timization window fixed until convergence. In contrast, EnVE rede-
fines the optimization problem slightly at each iteration, updating it
to include the newly-obtained measurements. As this modification
causes the optimization surface to constantly shift, the algorithm
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Figure 11. Optimization surfaces are shown for two variational window
widths. Note the increase in complexity, even for a simple 1Dproblem, as
this window width is increased. The lower plot indicates that the global
minimum is very accurate, but that traditional gradient-based algorithms
will only converge to this global minimum if the initial estimate is within a
small region of attraction. This motivates the idea of increasing the window
width gradually as convergence is approached.

never completely converges. However, the receding-horizon opti-
mization framework updates the current estimate at each iteration
with maximal efficiency, as it is constantly using the most up-to-
date information available. Further, the resulting dynamic evolution
of the optimization surface in fact helps to nudge the estimate out
of the local minima into which it might otherwise settle.

A typical contrast between two forecasts [one generated with
a fixed-horizon 4DVar algorithm and the other with the receding-
horizon EnVE algorithm] is shown in Figures 12-13. Unlike EnVE,
due to the computation time required for convergence of the fixed-
horizon 4DVar algorithm, the corresponding variational window
over which the optimization was performed has slipped far into
the past. Due to the chaotic nature of the system of interest,any
forecast diverges exponentially when marched into the future. Con-
sequently, much of the relevant range of the fixed-horizon 4DVar
forecast is wasted predicting events that have in fact already taken
place. EnVE avoids this effect by keeping the variational window
current, updating it at every iteration.

−4 −2 0 2 4 6
Time

x1

x2

x3

Figure 12. Two forecasts of a Lorenz system (light gray) with noisy mea-
surements (small black dots). The red forecast is from a converged estimate
of a fixed-horizon 4DVar algorithm, where the variational window consid-
ered has shifted far into the past during the time spent completing the com-
putational iterations required to solve the optimization problem. The blue
forecast is from an estimate computed using the receding-horizon EnVE
framework. The fixed-horizon 4DVar forecast (red) visibly diverges from
the truth (light grey, underneath the blue curve for much of the plot) near
t = 2; the receding-horizon EnVE forecast (blue) visibly diverges from the
truth (light grey) neart = 6.
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Figure 13. The integral in time of the square of the forecast errors from
Figure 12 are shown. Note the difference in the accumulated errors of each
of forecast is due in large part to the time the forecast is ahead of the lat-
est variational window used during its optimization. As this time is signifi-
cantly reduced in the receding-horizon framework, forecasts made a certain
amount of time into the future are greatly improved.

6.3 Parallel State/Adjoint Marches

As already mentioned, another advantage of posing the vari-
ational optimization problem in a retrograde setting dealswith
the numerical implementation of EnVE. The adjoint equationis
marched backward in time (fromt0 to t−K ), forced using the trajec-
tory x̃(t). Typically, this trajectory is found by marching the initial
condition x̃−K = u forward through the window (fromt−K to t0).
Especially for the multiscale systems of interest, this poses a large
storage constraint on the problem, because the adjoint is forced by
the whole trajectory, but in reverse order. In other words, the tra-
jectory of x̃(t) needs to be computed and saved over the entire in-
terval before the adjoint march can begin. Attempts to circumvent
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this problem for large atmospheric-scale systems include the check-
pointing algorithm, in which the trajectory is stored only on coarse
time grid points, and then, as necessary, is either recomputed or
linearly interpolated onto the fine (in time) grid used for timestep-
ping the adjoint calculation. Checkpointing requires a substantial
amount of storage and significantly increases the computation re-
quired to compute the adjoint.

Note that, with EnVE, this required estimate trajectory is de-
termined backward in time rather than forward in time. Thus,the
corresponding adjoint may be computed simultaneously, eliminat-
ing this storage problem altogether.

7 EnVE Test Case: Lorenz

As a simple first test case, the EnVE algorithm is implemented
on the chaotic Lorenz system, first introduced by Lorenz (1963).
For the Lorenz system, a three-dimensional ODE model is used
with very noisy measurements of only the second state. Figure 14
represents a time history of all three states with the truth model
shown in grey, the forecast shown in blue, and the present time rep-
resented by the thick, vertical, black line. The yellow box shows the
variational window that is currently being revisited. Evenwith such
a simple system, the results of the EnVE algorithm are very promis-
ing. This example illustrates the benefit of the multiscale variational
window combined with the receding horizon framework to produce
an accurate estimate of the present time.

8 Summary and Conclusions

In this paper, a new hybrid data assimilation method is intro-
duced: Ensemble Variational Estimation (EnVE). The new method
leverages the nonlinear statistical propagation properties of the se-
quential EnKF/EnKS to initialize and properly define an appro-
priate variational iteration, similar to 4DVar. This variational it-
eration is posed in such a way as to allow for a multiscale-in-
time, receding-horizon optimization framework. The smoothed es-
timate from the EnKF is used as an accurate initial condition
for the variational iteration, thus improving its overall perfor-
mance. A multiscale-in-time framework is achieved via a retro-
grade march of the current estimate over the available observations.
This multiscale-in-time framework appropriately preconditions the
variational step. It also allows for a concurrent, parallelmarch of
the appropriate adjoint equation, which is forced by the backward
march of the estimate. Thus, no additional storage is required for
the gradient computation, in sharp contrast with the significant ad-
ditional storage typically required by a 4DVar implementation. Be-
cause the variational window width is a function of the accuracy
of the estimate, EnVE tends to update poor estimates with short
windows and more accurate estimates with longer windows.

An EnVE implementation on a simple Lorenz system was
considered as a first application. Current work is focused onim-
plementing EnVE on more complicated chaotic PDE systems. Pre-
liminary results show a definite improvement using EnVE (over ei-
ther EnKF or 4DVar alone) for assimilating data related to a passive
scalar release in a complex unsteady 2D flowfield.

In summary, EnVE is a convenient and consistent hybrid of
the basic EnKF and 4DVar algorithms already in wide use. Muchof
the current work on the EnKF and 4DVar may be applied directlyto
the EnVE algorithm while maintaining EnVE’s consistency and de-
sirable numerical properties. With such combined efforts,it might
well be possible to develop significantly improved large-scale data
assimilation algorithms in the years to come.
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Figure 14. The EnVE algorithm demonstrated on a simple chaos model,
the Lorenz system, with very noisy measurements (marked as green dots).
(top) Initially, the estimate is fairly poor, as easily seen by the quickly di-
verging forecast (blue) from the truth model (black). The optimization win-
dow determined by EnVE for this iteration is fairly short, using only a few
measurements to update the current estimate. (center) As the estimate is
improved, the variational window selected by EnVE expands,helping to re-
duce further the error in the forecast. (bottom) Finally, with the expanded
window, the estimate converges very accurately to the global minimum. At
this point, the estimate tends to track the global minimum quite well. Oc-
casionally, due to the chaotic nature of the system, the estimate may begin
to diverge from the truth model. The spread of the ensemble indicates this
increased uncertainty, and the EnVE algorithm responds by shortening the
variational window used to again refine the estimate as quickly as possible.
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