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ABSTRACT

This paper introduces a novel architecture for hurricane monitoring aimed at maximizing the collection
of critical data to enhance the accuracy of weather predictions. The proposed system deploys a swarm of
controllable balloons equipped with meteorological sensors within the hurricane environment. A key challenge
in this setup is managing the trade-off between maximizing area coverage for data collection and maintaining
robust communication links among the balloons. To address this challenge, we propose a cost function with
two conflicting components: one prioritizes area coverage, and the other focuses on repositioning to maintain
communication. This cost function is optimized using an adaptive neural network-based model predictive
control strategy, which enables the system to dynamically balance these competing requirements in real-
time. Quantitative results from extensive simulations demonstrate the versatility and effectiveness of the
proposed architecture, showing that it can achieve comprehensive communication connectivity and increased
area coverage across various configurations, including different numbers of balloons and operational periods.

1. Introduction

On-site monitoring of extreme natural phenomena, particularly hur-
ricanes, plays a crucial role in acquiring essential data for accurate fore-
casting (Meneghello et al., 2016). Correctly anticipating such weather
conditions can enable preventive responses that effectively safeguard
lives (Bewley and Meneghello, 2016). Efficient on-site monitoring can
be achieved by deploying multiple Unmanned Aerial Vehicles (UAVs)
at the site of the occurrence (Cione et al., 2016; Stampa et al., 2021;
Mohsan et al., 2023). Utilizing Multi-Agent Systems (MAS) enhances
the volume of accessible information, including speed profiles, temper-
ature, pressure, and other sensor data, due to their expanded coverage
capacity (Floriano et al.,, 2021). For instance, numerous studies in
recent years have explored the use of UAV swarms for monitoring
wildfires or floods (Lin and Liu, 2018; Hu et al., 2022; Tzoumas et al.,
2023; Viseras et al.,, 2021; Afghah et al.,, 2019; Seraj et al., 2022;
Baldazo et al., 2019).

When it comes to monitoring hurricane-affected areas, recent stud-
ies have presented UAV solutions utilizing quadrotors. For example,
the impacts of Hurricanes Harvey and Irma in the United States in
2017 were accompanied by numerous studies investigating their effects
on roads, buildings, and cities (Greenwood et al., 2020; Yeom et al.,
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2019; Rojas et al., 2022; Congress et al., 2019). Similar investiga-
tions were conducted for other recent incidents, such as Hurricane
Willa (Vizcaya-Martinez et al., 2022) and Hurricane Maria (Schaefer
et al., 2020), employing these types of vehicles. However, as outlined
in the survey conducted by Mohsan et al. (2023), operating quadrotors
in adverse weather conditions like hurricanes remains a significant
challenge due to operational complexities and difficulties in obtaining
precise data. Furthermore, both quadrotors and fixed-wing aircraft
often face limitations in terms of flight duration due to their energy
requirements (Meneghello et al., 2016).

Our team has proposed to monitor hurricanes by employing low-
cost buoyancy-driven balloons equipped with sensors, enabling pro-
longed monitoring operations for several days (Meneghello et al.,
2017). Bewley and Meneghello (2016) proposed an innovative monitor-
ing system with a swarm of balloons assuming a pre-defined fixed orbit
for each balloon. Meneghello et al. (2018) proposed a simple three-level
control (TLC) rule which enables to place a single balloon in any desired
position in a hurricane area. However, an integrated system with an
efficient automatic positioning of several balloons is still missing.

One important aspect in designing a cooperative UAV system is the
communication between the UAVs. Note that the difference between a
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hurricane’s area (around a 200 km radius) (Holland et al., 2010) and
the range of long-range (LoRa) communication technology (up to 10
km) (Sanchez-Iborra and Cano, 2016) is significant. This difference
could jeopardize the UAV ability to maintain constant connectivity.
Several studies have explored multi-agent monitoring systems with in-
termittent communication (Hu et al., 2018; Shi et al., 2023; Wen et al.,
2014; Xiao and Dong, 2021; Zhang et al., 2021). However, to the best
of the authors’ knowledge, none have established a control architecture
to address the trade-off between area coverage and communication.

On the subject of intelligent updating processes, recent research in
artificial intelligence (AI) has significantly contributed to modeling nat-
ural phenomena (Sabir et al., 2024b,c). For instance, the work of Sabir
et al. (2024b,c) presents a neural network-based model to analyze the
dynamics of Zika virus transmission and its interactions with humans,
non-human primates, and mosquito vectors. Similarly, Al approaches
have also contributed to medical applications, such as surgeries (Sabir
et al., 2024d). The work of Sabir et al. (2024d) introduces a novel
approach to modeling corneal shape-based eye surgery, which is crucial
for understanding and addressing various visual impairments. Finally,
the capacity of neural networks is also demonstrated in works such
as Sabir et al. (2024a), which designed stochastic solvers for solving
the fifth-order Emden-Fowler system (FOEFS) of equations. This type
of solution has several applications in engineering and science.

This is also true in the context of multiple UAVs, where similar
techniques have been employed to tackle challenges related to cov-
erage, monitoring, and communication (Manoharan and Sujit, 2022;
Eshaghi et al., 2023; Day and Salmon, 2021; Puente-Castro et al., 2022;
Fuertes et al., 2023; Wu et al., 2023). These studies have explored
various aspects of UAV operations, including cooperative target defense
and coverage (Manoharan and Sujit, 2022), concurrent planning with
different objectives (Eshaghi et al., 2023), position allocation (Wu
et al., 2023), and path planning (Puente-Castro et al., 2022; Fuertes
et al., 2023). Additionally, swarm intelligence algorithms have been
recognized for their role in facilitating collaboration among multi-
ple UAVs (Tang et al., 2023). Al-based approaches, such as multi-
objective evolutionary optimization (Ramirez-Atencia and Camacho,
2019), have shown promise in addressing conflicting objectives and
enhancing mission planning. Furthermore, Al algorithms have been ap-
plied to MAS problems, effectively managing UAV trajectories, optimiz-
ing load distribution, and enabling targeted communication (Queralta
et al., 2020; Wang et al., 2020; Das et al., 2019). However, none of
these solutions have simultaneously addressed the issues of intermittent
communication while maximizing area coverage.

In terms of AI approaches for MAS applications, Neural Network
Model Predictive Control (NNMPC) has been introduced as an online,
multi-agent, single-objective solution (Floriano et al., 2022) The mo-
tivation behind using the proposed NNMPC method stems from its
adaptive capabilities and predictive strengths, which are well-suited to
address the dynamic and evolving nature of the problem. The NNMPC
framework is particularly advantageous because it allows the system
to continuously adjust to the ever-changing conditions as they occur
within the hurricane environment. The adaptive characteristics of the
neural network enable the control system to respond in real time to
fluctuations in both communication needs and area coverage demands.
Moreover, the predictive capacity of the Model Predictive Control
(MPC) component plays a key role in anticipating potential changes
and making informed decisions about the system’s future states. By
forecasting the evolution of the hurricane and the corresponding shifts
in areas of interest, the NNMPC can proactively manage the trade-offs
between coverage and communication. This forward-looking approach
ensures that the system is not merely reactive but is strategically
positioned to gather the most critical data while maintaining effective
communication links.

In our approach, we adapt Neural Network Model Predictive Control
(NNMPC) to manage the competing objectives of hurricane monitor-
ing. This real-time control system dynamically adjusts to continuously
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changing conditions, ensuring the best possible control decisions. To
handle the trade-off between communication and area coverage, we
propose a control architecture that utilizes a cost function that ef-
fectively balances these elements. Specifically, the area of interest is
updated over time using the Fokker—Planck equation, which tracks the
freshness of data from different regions. Meanwhile, communication
needs are addressed with a linear decay model to efficiently allocate re-
sources. This setup allows the system to respond flexibly and optimally
to evolving monitoring challenges.
To summarize, this paper contributes in the following:

« It expands the application of buoyancy-driven balloons in a strat-
ified flowfield, as explored by Meneghello et al. (2016, 2018)
(which was restricted to a single balloon), to multiple agents,
thereby increasing area coverage and data collection.

It extends the swarm architecture of Bewley and Meneghello
(2016) with fixed desired orbits by implementing a communi-
cation routing mechanism and establishing an intelligent control
strategy that chooses the best orbits for optimizing area coverage
and data flow.

It builds, specifically for hurricane-relevant data monitoring, a
weighted cost function for conflicting objectives to effectively
balance area coverage with repositioning for connectivity.
Establishes a constant restoring interest function, driven by the
Fokker-Planck equation, to characterize the need for updating
previously covered regions after a certain period.

Quantitative results from extensive simulations underscore the ef-
fectiveness of the proposed architecture, demonstrating comprehensive
communication connectivity and the ability to cover a significant pro-
portion of the targeted area across different operational windows and
varying numbers of balloons. These outcomes not only validate the
robustness of our approach but also highlight the system’s efficiency
in achieving the dual objectives of comprehensive data acquisition
and reliable information transmission. In the demanding and dynamic
environment of hurricane monitoring, where timely and accurate data
are critical, the demonstrated capabilities of our system represent a
significant advancement, offering a promising solution to the complex
challenges inherent in this field.

This paper is organized as follows: Section 2 describes the system
dynamics and the problem’s objectives; Section 3 details the control
architecture based on NNMPC optimization; Section 4 presents the
simulation results and evaluates the overall performance of the system;
and Section 5 provides concluding remarks.

2. Preliminaries and problem formulation
2.1. Monitoring system general configuration

We assume a hurricane monitoring system consisting of a swarm of
functionally heterogeneous UAVs navigating within a hurricane flow
field, as illustrated in Fig. 1.

The objective of the system is to cover a significant portion of the
hurricane-affected areas (to be defined later), collect sensor data such
as wind speed, pressure, and temperature, and transmit this data to a
satellite.

Considering that the maximum communication range between a
sender and a receiver is much smaller than the dimensions of the
hurricane area to be covered, multiple UAVs are deployed with func-
tionalities distributed among base stations, routers, or coverage-only
units. Due to the limited hardware capacity of small UAVs, equipping
all of them with the necessary gear for satellite communication is
impractical. Therefore, our communication goal is for all UAVs to
transmit their data to a central agent, referred to as the base station
or simply the base. The base station is a robust agent with enhanced
hardware that collects information from all UAVs and connects directly
to a satellite to transmit the collected data.
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Fig. 1. Description of the balloon swarm in a hurricane.

The geometrical distribution of the UAVs considers area coverage,
energy consumption, and communication capability. To enhance fuel
economy and long-term autonomy, we assume that balloons are used
as UAV units. Once a balloon is positioned within the hurricane, it
is naturally carried by the hurricane’s flow field, resulting in circular
trajectories and no fuel consumption, as illustrated in Fig. 1. In its ideal
geometric configuration, we assume the swarm has the base station
at the center of the hurricane. Surrounding the hurricane’s periphery
are coverage agents, focused solely on collecting sensor data within
their designated areas. Bridging these coverage agents and enabling
efficient data transmission are the routers—balloons equipped with
both coverage and routing capabilities. These routers facilitate the
transfer of information from the other balloons to the base station.

Any initially given swarm geometric configuration changes natu-
rally, as each balloon is carried along the hurricane’s flow trajectory at
different velocities. Consequently, the roles of the balloons as routers or
coverage units must adapt over time based on their positions. This role
adjustment is managed by a routing protocol detailed in Section 2.2.1.

To ensure timely coverage of the hurricane area, two potential
solutions are possible: deploying a significantly large number of UAVs
to maintain easy neighbor connectivity or designing a control strategy
that periodically brings the UAVs closer together to facilitate data
routing to the base station. The latter approach was chosen because
it requires fewer UAVs, thereby reducing costs. The radial distance
of each balloon from the base is automatically adjusted by a con-
trol subsystem embedded in the monitoring system, as described in
Section 3.

In summary, the proposed structure enables a relatively small num-
ber of cost-effective vehicles to efficiently share valuable information
with the satellite while maximizing area coverage and minimizing fuel
consumption.

2.2. Communication

The communication technology selected for the proposed hurricane
monitoring system is LoRa (Long Range), chosen for its low power
consumption, extensive range capability (Sanchez-Iborra and Cano,
2016), and proven effectiveness in UAV-based disaster monitoring
applications (Saraereh et al., 2020). LoRa’s low power consumption
is crucial for ensuring that the balloons remain cost-effective and can
operate for extended durations, thereby enabling broader coverage of
the hurricane area. Its extensive range, which can reach up to 10

km (Petajajarvi et al., 2015), is essential for covering the vast scale of
a hurricane, which can extend up to 200 km (Holland et al., 2010).

In the next subsection, we present our proposed routing protocol. By
accommodating changing communication graphs, the protocol lever-
ages established LoRa network practices from the literature (Ghazali
et al., 2021).

2.2.1. Routing protocol

A routing protocol is an algorithm that determines the configuration
of communication paths among the system’s agents. The choice of
protocol impacts the extent of long-range communication, the total area
covered, and power consumption. Inspired by the tree-based routing
protocol, which was designed as a power-aware protocol by Gong and
Jiang (2011), we propose a minimum-cost routing protocol, as detailed
in Algorithm 1.

In Algorithm 1, we assume that the communication range p > 0
between any two balloons is known. Balloon 1 is designated as the base
station (base), and the remaining balloons 2, ..., N are positioned along
several concentric circles around the base, as shown in Fig. 1. A balloon
j can only send data to an agent i that is closer to the base station than
itself. The protocol aims to establish a communication link for each
non-base balloon j, either directly to the base or to another balloon i
that is closer to the base and can function as a router to the base.

As input information, the algorithm uses the horizontal distance
between each pair of balloons

dij(t)z IIq,-(t)—qj(f)H, @

where g;(¢) represents the horizontal position of the ith balloon, as
detailed in (5). Note that a communication connection from j to i is
possible only when they are within the communication range,’ that
is, at time instants ¢ such that d; (0 < p. The algorithm prioritizes
establishing communication with the base for all balloons j within the
base station’s communication range p. For each balloon j that cannot
connect directly to the base station, the algorithm seeks a possible
router among balloons i that are closer to the base (i.e., d; < dy;)
and within the connectivity range, meaning d;; < p. To reduce the
number of communication nodes and energy consumption, the algo-
rithm selects as a router the balloon i with the lowest cost C;;. The
cost function C;; can be a general function relating to communication

1 We assume the range for the vertical position z is small compared to the
horizontal distances.
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Algorithm 1 Routing protocol

1: Input: d;; [distance between the balloons i, j € {1,...,N}]

2: Parameter: p > 0 [communication range]

3: Initialization: I;=0Vvi, je(l,...,N}

4: for j=2,...,N do

5: if dj; < p then

6: I « -1 [balloon j within the base range is connected to

the base]

7: else

8 Chinj = dy;

9: p = 0 [p is the balloon outside base range that is closest to

Jl

10: fori=2,...,N,i #j do

11: if d;; < p then

12: C; < d;

13: if (dy; < d,)&(C;; < C,,, ;) then

14: Cpiny < Cij

15: p < i [p must be closer to the base than ;]
16: end if

17: end if

18: end for

19: if p # 0 then
20: Ly<=-1[is connected to p]
21: end if
22: end if
23: end for

24: fori=1,...,N do
N

25: Iy <——Zj=1 l;;

26: end for

27: Return: L = (/; ;)

parameters between balloons j and i, such as distance or energy. For
simplicity, Algorithm 1 uses the cost C;; = d;;, as this is sufficient for
demonstrating that data will be sent to the nearest balloon. An effective
communication link from j to i is indicated by /;; = —1. Algorithm
1 returns a communication architecture represented by the Laplacian
matrix of the communication network, L = (/;). By construction,
the communication graph is directed, meaning that the existence of
communication from j to i does not imply that communication from
i to j also exists.

2.2.2. Data storage for message forwarding

When a balloon establishes a connection with a neighboring bal-
loon, it gains the ability to both receive and transmit data. To achieve
one of the objectives outlined in Section 3.1 — ensuring maximum
data accessibility for the base station - it is necessary to differentiate
the roles of each balloon. To address this, we propose the concept
of routing balloons, which form a distinct group of agents capable of
receiving and storing data from other balloons. These routing balloons
can then efficiently forward the accumulated data to the base station.
This approach ensures that information reliably reaches its intended
destination without compromising coverage.

Since we are using predictive control (explained in detail in Sec-
tion 3.4), the system can plan ahead and determine which balloon
will act as the router. This means the selected agent will handle the
transmission of data either from one neighbor to another or directly to
the base station

Therefore, a mathematical variable is needed to characterize the cu-
mulative behavior of the data transmitted and stored between balloons.

Let L(q(r),t) € RN be a cumulative Laplacian matrix. It differs from
L(q(1)), which represents only the instantaneous communication graph.
Instead, L(q(?),?) characterizes a cumulative graph that represents both
past and present communication. In this sense, after a disconnection
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between i and j, the entry [;; retains a non-zero value (indicating a
past connection), while /;; drops to zero immediately.

As the system is designed to operate over extended periods, a key
consideration is the potential outdatedness of data stored in the routers.
By the time the data reaches the base station, it may no longer be
relevant or reflective of current conditions. To address this challenge
and ensure periodic updating, we propose incorporating a decay factor
into the cumulative Laplacian matrix. This decay factor represents the
gradual degradation of stored data over time, signifying the diminish-
ing relevance of outdated information. Consequently, the evolution of
I, ; can be modeled to capture the temporal dynamics and mitigate the
impact of outdated data on the overall system performance, as follows

L@, = {1,. (@), ifr, <t<t,

. 2
L@ DA =1y, ift>1,

where A(7) is a decay function, and 7, and ¢, represent the connection
and disconnection times, respectively. Given that the communication
decay is slow enough to allow information to be stored for hours, A(r)
can be modeled as a linear decay with a period T, i.e.

-4, ifo<r<T
M) = Tee o 3
0, otherwise.

Finally, if at the moment of connection between i (the recipient)
and j (the sender), balloon j holds information from another balloon
k (k # i,j), meaning l_jk # 0, then balloon j can forward this data to
balloon i. In other words, /;, = I.

3. Control architecture

This section details the architecture of the proposed control sys-
tem. The primary objective of this architecture is to achieve the sys-
tem’s goals as outlined earlier. Specifically, it is designed to manage a
swarm of balloons within a hurricane zone, as described in Section 2.1,
regardless of their initial geometrical distribution.

We can state the objective of the control protocol as follows:

» Cover a significant portion of the hurricane-affected areas.

» Periodically reposition the balloons to ensure they remain within
communication range of each other, thereby enabling reliable
data routing.

 Route the information from the balloons until it reaches the base
station.

To achieve these objectives, we propose a control system architec-
ture as depicted in Fig. 2. The communication network is established
using the routing protocol discussed in Section 2.2. In this context, the
communication graph defines the path through which data flows, based
on the current position of each balloon, g;(7).

As indicated in Fig. 2, based on the current positions of all balloons
q(1), the NNMPC block provides each balloon with a control signal u;(r)
that directs it to a new position. Following the three-level control (TLC)
rule suggested by Meneghello et al. (2016, 2018), the balloon altitude
must always be within one of three possible values: Z = {-z,0,z}.
Here, 0 represents the reference altitude, and z is the maximum altitude
gap. The control signal u;(r) determines the balloon’s altitude based
on current needs. By adjusting its altitude, the balloon also modifies
its radial position due to its dynamics, as described in Egs. (4a) and
(4b). The selection of the appropriate value for u;(f) at each time
instant is managed by a neural network-based model predictive control
(NNMPC) system, as introduced by Floriano et al. (2022) and detailed
in Section 3.4.

For controller tuning, we first present the dynamic law of each
balloon and then develop cost functions that represent the goals of
coverage and communication.
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Fig. 2. Block diagram of the control architecture of the ith balloon.

3.1. Balloon dynamics

The continuous-time dynamics of the ith buoyancy-driven balloon
(i € 1,...,N, where i = 1 represents the base station), adapted

from Meneghello et al. (2018), are given by the following equations

F=az; + &, (4a)

z; = u;, (4b)

6=, (40)
-

<

()= - (3)])

where r;, z;, and 6, denote the radial, vertical, and angular positions
of the ith balloon, respectively. The variable « represents the time-
averaged vertical gradient of the radial velocity. The white Gaussian
noise ¢; accounts for fluctuations in the radial velocity due to hurricane
turbulence, with zero mean and variance ¢2. The control signal is de-
noted by u;(¢). Eq. (4c) indicates that the angular velocity is a function
of the tangential velocity v; and the radial position r;. Eq. (4d) shows
that the tangential velocity v; depends on the balloon’s position within
the hurricane. In this equation, V,, represents the maximum tangential
wind speed, Ry is the radius at which V,, is attained, ¢ is a shape
parameter defining the proportion of pressure near the maximum wind
radius, and the exponent variable y accounts for both the maximum
wind values and the data in the outer circulation. Eq. (4d) is obtained
from the hurricane model, and for this work, we use the H10 model
described by Holland et al. (2010), known for its low sensitivity to
observing system errors.

Note from Eq. (4b) that the control variable u;(r) directly affects
the vertical position of the balloon. This, in turn, influences the radial
position of the balloon as described by Eq. (4a). The challenge is to
determine an appropriate function ;(¢) for each balloon in the swarm
to achieve the objectives of the control protocol.

3.2. Relevant area coverage

The first objective of the system is to ensure relevant area coverage,
meaning that the balloons should cooperatively cover the maximum
area affected by the hurricane to collect the most pertinent data.
To achieve this, an interest function must be defined - a function
of the geographical coordinates that determines the relevance of the
information to be measured at time ¢ for every position within the
hurricane.

The 2D coordinate g;(t) € R? of the ith balloon at time ¢ is given by

_ |ri(® cos(0;(n))
0= [r,-m sin(6,(1)) )
The vector of all balloons’ positions is defined as
q(t) = [ql(t) qN(t)]T. (6)

Let I'(q(?), ,7) : R? - R be the interest function of the hurricane at
time ¢, given the balloons’ positions q(¢). The initial distribution along
T . L
x=[x; x| €R? for the interest function is given by

_ 1 1 T el 2
F(q(O),x,O)—Wexp[ 2((x p) = (x ,4))], @)

T . -, -
where pu = [0 0] is the position of the hurricane’s center, and

1 0 . . . e
Y = o2 e where ¢ is the interest radius. The initial interest

distribution indicates that the data closer to the hurricane’s center
provides the most relevant data, and the interest for the data from a
particular location x decreases according to its radial distance to the
center.

3.2.1. Interest function update

The interest function indicates to the controller where it is most ben-
eficial to allocate the balloon for the next time step. To avoid assigning
a balloon to a region where another balloon is already collecting data,
the interest function must be adjusted according to the locations of the
balloons. Dynamically, as a balloon approaches a given position, the
value of the interest function at that point is expected to decrease. After
the balloon has passed, the value should return to its original state. This
time-evolution behavior of the interest function I'(q(¢), x, t) is captured
by the following update law:

W = ¥(q(1), x,1)

2 2,
+ Z 2z x? X, [Dy; (0T (q(), x,1)] ,

g,(x)r(q(f) X, t)] (8)

;“@

where the first component, ¥(q(?), x, ), updates I'(q(?), x,?) based on
the detection of the balloons’ positions, and the second and third
components focus on restoring the interest function to its initial value,
as described by Eq. (7), where the balloons’ influence is no longer
present. This restoration law is known as the two-dimensional Fokker—
Planck equation. In Eq. (8), g;(x) is the ith component of the drift vector
g(x), and D, (%) is the (i, j)-th component of the diffusion tensor D(x).

The drift vector g(x) is given by

__ D s
81(%) = ——llx||” cos &, (9a)
[0}

D
8(x) = ——=||x||* sin ¢, (9b)
o

where ¢ = tan‘l(xz) The drift vector tells us the average direction and
speed at which the function I'(q(7), x,?) is “moving” at each point x. In
the context of the hurricane application, it describes how this function
changes over time, i.e., how fast it returns to its initial condition.
Accordingly, the drift vector depends on the diffusion tensor D(x)
because it expresses how the interest function diffuses over time in
different directions at a specific position x. Therefore, defining g, (x)
and g,(x) as shown in Eq. (9) ensures that as 1 — oo, I'(q(¥), x,1)
approaches its steady-state, balloon-free value.
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In more detail, the first updating component of the interest function,
which is related to the coverage of the balloons, is given by

N

P(q(), x,1) = = ) Bi(q;(1), %) 0
i=1

in which, @,(q;(r), x) is the ith balloon’s coverage influence, described

by:

®,(q,(1), %) = exp -2 ((x-a0) B (x-qm))]. an

1
Qz|H D2

1 0 . . .
where H; = ;1,,2 , and #; is the radius of each observation area,

0 1
i.e., the area within which each balloon can detect and collect data.

Note that the ith balloon’s coverage influence, given by Eq. (10), is
greater at the balloon’s location g,(r) and decreases as the position x is
farther from gq;(r).

Finally, the solution of Eq. (8) is normalized at each time instant to
ensure that the interest function values always remain between 0 and
1.

3.3. Cost function

The design of the cost function is fundamental, as it will guide
the controller in achieving the system’s goals. Since the objectives are
anchored in both area coverage and communication requirements, two
components must be created.

The cost energy, V,.(q(1),t), associated with the area coverage re-
quirement can be expressed as

A ’
Voe(@(0).0) = fye ( M) ’

™ 12)

where A,(q(1),1) = |,

e T(q(t), x,1)dx is the remaining interest of the
area covered by all the agents, and A; = |

e T(q(®), x,0)dx is the total
interest of the area, where X C R? is the studied region. The parameter
B, is the weight of the area coverage component in the cost function.

The communication component, denoted by V,.(q(?),?), should re-
flect the communication requirement, specifically that the base station
receives data from the maximum number of balloons. To mathemati-
cally express this requirement, we utilize the cumulative communica-
tion matrix L(q(?),?) = (I; s which records all past interactions between
the balloons. The communication component is defined as:

Vee(@®), 1) = =B, <l“(q(t), n+y Z Li(q), t)>, 13
ieM
where f..(t) is the time-dependent weight of V,.(q(t).) in the cost
function, reflecting the increasing urgency for the system to remain
connected. M C 1, ..., N is the set of balloons designated as routers.
Finally, both requirements can be stacked in a single energy vector

Vg, 1) = H I:Iljcc(q(l)st)] H 14)

ac(q(0). 1)

3.4. Neural-Network-based MPC (NNMPC)

The control protocol chosen to achieve area coverage and communi-
cation is the neural-network-based model predictive control (NNMPC)
designed by Floriano et al. (2022). This method has the advantage of
operating in random processes and handling unknown external distur-
bances due to its online learning feature. Additionally, it is designed to
work effectively in applications with limited communication capacities.

Due to the presence of stochastic fluctuations, Eq. (14) is stochastic.
By taking its expected value and assuming a time horizon H, the MPC
cost is

H
J(t)=/ E[V(qit+71),t+71)]dr. (15)
=0
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For easier computation, we propose solving the discrete-time ver-
sion of the problem using the neural network approach. Specifically, at
each sample time #,, and assuming a horizon h, we select u(t,) € ZV
from the sequence u(ty), ..., u(ty,,) € ZV " that minimizes the cost
function

h
Jt) = Y E V@) tirs)] (16)
£=0
while satisfying the discrete-time implementation of dynamical
Egs. (4a)—(4d).

4. Simulation experiments

The codes and results used in this study are available online.>

All simulations were conducted over a time span of ¢,,,, = 48 h,
using 501 time samples and 61 spatial steps per dimension within a grid
covering a range of 200 km.

The communication range of the balloons was set to p = 10 km,
consistent with the capabilities of LoRa as detailed in Section 3.1.

In terms of area coverage, we set ¢ = 100 km and #; = 10 km for all
i €1,...,N. In the Fokker-Planck equation, D;; = D), = 1.

The hurricane parameters used in Eq. (4d) were set as ¢ = 1.8,
x =05, V, =60 m/s, and R, = 20 km, based on a baseline profile
described by Holland et al. (2010).

The control parameters were set with a level height z = 558.3 m,
consistent with the three-level control described by Meneghello et al.
(2016, 2018). Additionally, « = 1073 s71, ¢ = 1500 m?/s, f,. = 1, and
B.. = 1 were used. Finally, a predictive horizon of 4 = 10 was selected
for the control strategy.

Regarding the neural network architecture employed in the control
framework, several strategic choices were made to balance perfor-
mance and efficiency. A feed-forward neural network with a single
hidden layer was utilized. This structure provides a suitable balance be-
tween model complexity and computational demands, ensuring the net-
work can capture essential patterns without overfitting or introducing
unnecessary delays in real-time processing.

The network consisted of M = 6 neurons in the hidden layer, a con-
figuration that provides sufficient representational capacity to model
the system’s underlying dynamics while keeping the model lightweight
and responsive. The hyperbolic tangent (tanh) activation function was
selected for its smooth, non-linear properties, which are particularly
effective for handling varied input data and enhancing the network’s
ability to generalize well across different scenarios.

Finally, the stopping criterion for the training process was set to J in
Eq. (16) being less than or equal to 10. This ensured that the model met
the required performance standards without excessive training time.
This criterion was established to maintain a high level of accuracy while
also allowing the network to adapt quickly to the dynamic conditions
presented by the control problem.

4.1. Simulation with N =9

In this subsection, a total of N = 9 balloons were employed
(including the base station). The simulation was conducted with 7, =
T = 6 h. Fig. 3 displays 6 instances of the simulation, each sepa-
rated by 100 time steps. Each subfigure presents a heatmap of the
interest function at that specific time, with each point representing
one of the ith balloons. Observe the contrasting patterns in the fig-
ures: some depict the balloons in clusters, while others show them
dispersed across the hurricane’s area. This variation directly reflects
the coverage/communication trade-off. The balloons periodically and
interchangeably gather to establish communication links and then dis-
perse to extend the covered area. This dynamic adaptation allows the

2 Available at https://github.com/brunofloriano/NN_MPC_application.
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(a) k = 0, initial condition (b) k = 100, spread

(c) k = 200, spread (d) & = 300, spread

(e) k = 400, clustered (f) k = 500, final state, clustered

Fig. 3. Interest function at different time steps. Compare the differences when the balloons are: clustered (indicating the communication priority) or spread (area coverage priority).

system to address each objective according to the specific needs at each Table 1
Communication relative size, E..(q(t,),t,), at each time step k. The maximum value

moment. occurs when the balloons are spread.

In addition to Fig. 3, Table 1 provides complementary information. Time step k Eee(qlt): 1) Situation

. . . o s . 0 —0.0330 Initial condition
For each time step shown in the figure, a communication relative 100 ~0.1991 Spread
size is given by a numerical value. This parameter, referred to as 200 -0.2126 Spread
s . . 300 —-0.1481 Spread

the communication relative energy, represents the proportion of the 400 -0.3053 Clustered
communication energy V,.(q(1),?) relative to the total energy vector 500 -0.4051 Clustered

V(q(1),1). It is calculated as follows

Vee(g(®). )

Ecc(q(t)at)= V(q(t) P) .

17
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Fig. 4. Cumulative area covered by the system, A, (solid line), and communication energy, V,, (dashed line), over time with 7,. = 6 h. Notice the periodicity in both curves,

indicating the compromise between area coverage and communication.

A smaller value indicates that the balloons are positioned closer to-
gether, prioritizing the establishment of communication links. Con-
versely, higher values correspond to situations where the balloons are
spread out, emphasizing area coverage. In this paper, we define a
threshold of E,.(q(1),t) = —0.25 to categorize the scenarios: values
above this threshold indicate that the system is in a scattering situation
(agents are spread out), while values below it signify a clustered
situation (agents are closer together). An exception occurs at k = 0
(the initial condition), where the system is in its early stage, and both
coverage and communication may have similar priorities due to their
low achievement levels at this point.

In order to perform a correct analysis of the area coverage cycles,
let the cumulative interest be given by

A,(q(1), 1) = min A,(q(z), 7), (18)

where z € [t—-T,, ] and T, is the area coverage period. Then, the
cumulative area covered can be defined as
A,(q(), 1)

ym 19)

Aq.n =1~

Therefore, our analysis will focus on cycles of the same duration,
i.e., T,, = T,.. Fig. 4 shows the cumulative area covered, Ac, and the
communication relative energy, E,., with T,. = T,, = 6h, by the system
over time.

Notice the oscillating tendency of both curves. This oscillation is
due to the restoring cost function, influenced by the linear decay in
the communication component of Eq. (13), and the dynamics of the
interest function governed by the Fokker-Planck equation described
in Section 3.2.1. This combination causes the interest function to
gradually return to its initial state.

As expected, both curves follow a similar pattern. As the balloons
cover the interest area, A,(q(t),?) increases. However, this increase also
elevates the communication energy, because past connections become
significantly degraded. The communication energy decreases when the
agents reposition to establish connections, but this comes at the cost of
losing previously covered areas.

As an illustration, refer to Fig. 5. It depicts the exact moment when
the communication energy is at its minimum (step 418). At this point,
you can observe how the balloons are clustered: agents 1, 4, 5, 6, and
8 form one cluster, while 3, 7, and 9 form another, with agent 2 being
isolated. This configuration highlights the system’s focus on enhancing

t =40.032 hours

150

200
-200 -150  -100 -50 0 50 100 150 200

X(km)

Fig. 5. Interest function when communication energy is at a minimum. Notice how
the balloons are gathered in clusters, indicating they are prioritizing communication.

communication at the expense of area coverage. Following this step, the
system reorganizes, and the balloons disperse to resume area coverage.

Fig. 6 shows the cumulative area covered, Ac, and the communica-
tion relative energy, E,.., with T,, = T, = 12h over time. The extended
time period enhances the visualization of the synchronization between
the two objectives.

4.2. Simulation with N = 4

For the next portion, we will reduce the number of agents to
more clearly illustrate the message routing process. This adjustment
will allow us to better visualize how the agents redirect messages
when necessary. With fewer agents, the demonstration becomes more
straightforward and illustrative. We will use the same parameters as
before, except with N = 4 and T,, = 6h. Here, we introduce the
concept of a “connection frame”, which is the time window during
which a connection retains more than 60% of its strength. Specifically,
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Fig. 6. Cumulative area covered by the system, A, (solid line), and communication energy, V.. (dashed line), over time with 7,, = 12 h. Notice the synchronization between the
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Fig. 7. Entries [;; of the cumulative Laplacian matrix L(q(1), ). Notice how the router j = 4 is mostly connected to the base station (i = 1) and have intermittent connections with

other agents.

I;; remains between —0.6 and —1. This interval indicates the steadiness
of the connection between agents i and j, providing insight into the
consistency of their communication link.

Fig. 7 shows the entries I_,-j of the cumulative Laplacian matrix
L(q(®),1). In this example, agent j = 4 acts as the routing agent,
which is why its connection to the base station (represented by 7,)
remains almost constant, as seen in the top graph. During most of
the simulation, 7,, stays within the connection frame. Additionally,
the bottom graph shows that agents 2 and 3, which are coverage-only
balloons, have intermittent connections with agent 4 to periodically
send their data. This setup ensures that the data ultimately reaches the
base station, demonstrating how messages are forwarded between the
balloons to guarantee that all observations are sent to the base station.

4.3. Discussion

The results from the proposed Neural Network Model Predictive
Control (NNMPC) system provide several key insights into its effec-
tiveness for hurricane monitoring. Observations from the simulations
reveal distinct patterns in the balloons’ positions, with some configura-
tions forming clusters and others being more dispersed. This variation
underscores the system’s ability to dynamically balance the trade-off
between communication and area coverage. The balloons periodically
regroup to establish strong communication links and then spread out
to maximize area coverage, effectively addressing each objective based
on current needs.
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The oscillatory nature of the coverage and communication curves
can be attributed to the dynamics of the cost function. This cost func-
tion is influenced by the linear decay in the communication component
and the Fokker-Planck equation that governs the area of interest,
leading to periodic adjustments. This behavior reflects the system’s
efforts to balance the competing goals of communication efficiency and
coverage optimization. The Fokker-Planck equation models the recency
of information, allowing the interest function to revert to its initial state
and contributing to the observed oscillations.

A complementary relationship between coverage and communica-
tion energy is evident from the results. As the balloons cover a larger
portion of the target area, the coverage metric increases, which typi-
cally leads to a rise in communication energy due to the degradation of
previously established connections. The system mitigates this by reduc-
ing communication energy when the balloons reposition to reestablish
connections, although this results in a temporary reduction in covered
areas. This balance highlights the system’s efficiency in managing the
trade-off between data acquisition and communication.

Overall, the results confirm the effectiveness of the NNMPC ap-
proach in balancing the complex trade-off between coverage and com-
munication. The system’s ability to adapt in real-time and make proac-
tive adjustments based on current and predicted conditions is crucial
for successful operation in the challenging environment of hurricane
monitoring.

5. Conclusion

This paper introduces a multi-agent control architecture for a swarm
of heterogeneous, low-cost buoyancy-driven balloons designed to mon-
itor and collect weather data on hurricanes. The proposed method
features two continuously restoring cost function components: one
representing communication energy and the other representing area
coverage energy. The control scheme utilizes neural-network-based
model predictive control (MPC) and three-level control (TLC) to create
an adaptive multi-agent framework that optimizes the cost function.

The proposed method was tested in a simulated environment over
two distinct periods, each lasting 48 h. In both cases, clear cycles
and expected synchronization between area coverage and communica-
tion were observed. The trade-off between these conflicting objectives
was effectively managed, as the multi-agent system (MAS) adaptively
switched between them to better address the problem.

Future research directions include validating the proposed protocol
on real platforms to evaluate its performance with actual vehicles.
Additional investigations could focus on adapting the system to various
initial conditions, examining how balloons are deployed within the
hurricane and retrieved after measurements are completed. Moreover,
enhancing the current system might involve integrating a robust adap-
tation component into the neural network learning process to improve
scalability and adaptability, optimizing communication protocols, and
refining algorithmic parameters. Finally, exploring the use of deep
learning and other artificial intelligence techniques is recommended to
expand the range of solutions for the current problem. These research
efforts collectively aim to enhance the reliability, adaptability, and
practical applicability of the proposed protocol.
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