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Abstract Three algorithms for efficient solution of

optimal control problems for high-dimensional sys-

tems are presented. Each bypasses the intermediate

(and, unnecessary) step of open-loop model reduction.

Each also bypasses the solution of the full Riccati

equation corresponding to the LQR problem, which is

numerically intractable for large n. Motivation for this

effort comes from the field of model-based flow

control, where open-loop model reduction often fails

to capture the dynamics of interest (governed by the

Navier–Stokes equation). Our minimum control

energy method is a simplified expression for the

well-knownminimum-energy stabilizing control feed-

back that depends only on the left eigenvectors

corresponding to the unstable eigenvalues of the

system matrix A. Our Adjoint of the Direct-Adjoint

method is based on the repeated iterative computation

of the adjoint of a forward problem, itself defined to be

the direct-adjoint vector pair associated with the LQR

problem. Our oppositely-shifted subspace iteration

(OSSI, the main new result of the present paper)

method is based on our new subspace iteration method

for computing the Schur vectors corresponding,

notably, to the m� n central eigenvalues (near the

imaginary axis) of the Hamiltonian matrix related to

the Riccati equation of interest. Prototype OSSI

implementations are tested on a low-order control

problem to illustrate its behavior.

Keywords Computational mechanics � Optimal

control �Minimum-energy control � Subspace iteration

1 Introduction and background

A primary difficulty of the linear feedback control

problem is that its computational complexity scales

poorly with problem size. Though it is quite routine

with modern computers to perform numerical simu-

lations of complex systems with state dimension

n�Oð106Þ, it is rare to see a feedback control problem
solved directly on systems with state dimension larger

than Oð103Þ. Instead, the most common strategy is a

two-step approach: first apply some sort of ‘‘balanced’’

open-loop model reduction to the system [16, 19], then

solve a control problem based on this reduced-order

model. While this two-step approach proves to be

successful for some problems, it is problematical for

others.
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The reason for this difficulty is twofold. First,

though a balanced truncation of a system accounts for

the controllability and observability of the various

eigenmodes of the system (i.e., the matrices B and C in

the system model), such a truncation is inherently an

‘‘open-loop’’ model reduction strategy, and does not

account for the closed-loop control objective (i.e., the

matrices Q and R in the cost function).

The second issue is related to the condition of

eigenvector nonorthogonality of the system matrix

A. In systems characterized by this condition, the

eigenvalues of the system matrix, and the controlla-

bility and observability of the corresponding eigen-

vectors, do not tell the whole story, and very large

transfer-function norms and transient energy growth

(a.k.a. ‘‘peaking’’) are possible even if all of the

eigenvalues of the system are stable and ‘‘well

damped’’. The mechanism for such transient energy

growth is the possibility of initial destructive inter-

ference of multiple nonorthogonal eigenvectors of the

system [4, 6]; this destructive interference can reduce

substantially in time (as different modes decay at

different rates), leading to substantial energy growth in

the system, before ultimate energy decay due to the

stability of the corresponding eigenvalues. The energy

growth via such mechanisms can be several orders of

magnitude, and can thus lead quickly to nonlinear

(a.k.a. ‘‘secondary’’) instability even when the initial

perturbations on the system are quite small. Eigen-

vector nonorthogonality thus reduces the relevance of

eigenmodes considered on their own, and model

reduction strategies based on retaining certain open-

loop eigenmodes from the spectrum, but not others,

can lead to significant problems, as the full set of

eigenvectors necessary to capture the transient energy

growth mechanisms present in the system are gener-

ally not contained by a model that has been reduced in

such a fashion [4, 13].

Finally, the two-step approach described above

appears to be an unfortunate duplication of effort: an

algorithm with the complexity of an eigenvalue

problem is first used to reduce the order of a model,

then another algorithm with the complexity of an

eigenvalue problem is used to solve a control problem

based on this reduced-order model. The central idea of

the present paper is to consider control formulations

which solve one such eigenvalue problem, not two.

1.1 Brief review of the optimal control problem

As a point of reference for the derivations in the

sections to come, it is necessary to review concisely

the key equations and standard methods of solution of

the optimal control problem (written here in its

simplest form, which is sufficient for the discussion

that follows). This background material is broadly

known [3, 5, 16], and is leveraged heavily in the

following form in the sections that follow. In short, we

seek to minimize a finite-horizon cost function

JðxðuÞ; uÞ ¼ 1

2

Z T

0

ðxHQxþ uHRuÞ dt

þ 1

2
xHðTÞQTxðTÞ

ð1Þ

where Q� 0, R[ 0, QT � 0, and ð�ÞH denotes the

conjugate transpose, and where the state x ¼ xðuÞ is
related to the control u via a linear (or, linearized)

time-varying (LTV), possibly complex system

dx=dt ¼ Axþ Bu with xð0Þ ¼ x0: ð2aÞ

Toward this end, we may define an adjoint field related

to the optimization problem of interest,

�dp=dt ¼ AHpþ Qx with pðTÞ ¼ QTxðTÞ:
ð2bÞ

For any initial condition x0, the control u on t 2 ½0; T�
which minimizes JðxðuÞ; uÞmay be found using (2a)–

(2b) by iterative state/adjoint computation, starting

from an initial guess u ¼ 0 on t 2 ½0; T � and at each

iteration updating the control u (using, e.g., a conju-

gate gradient or BFGS method) based on the gradient

DJðxðuÞ; uÞ=Du ¼ BHpþ Ru; ð2cÞ

computed using the adjoint field p.

To verify the relevance of the adjoint equation (2b)

for the minimization of JðxðuÞ; uÞ in (1) when x is

related to u by (2a), consider a linear perturbation

analysis of (1) and (2a): replacing u uþ u0,
x xþ x0, and J  J þ J0 and keeping all terms

which are linear in the perturbation quantities gives

J0 ¼
Z T

0

ðxHQx0 þ uHRu0Þ dt þ xHðTÞQTx
0ðTÞ ð3aÞ
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and a linear evolution equation for x0:

Lx0 ¼ Bu0 with x0ð0Þ ¼ 0 ð3bÞ

where L,d=dt � A: ð3cÞ

Defining the inner product ha; bi ¼
R T

0
aHb dt, we may

express an adjoint identity

hp;Lx0i ¼ hL�p; x0i þ b: ð3dÞ

Using integration by parts, it follows that

L� ¼ �d=dt � AH ; b ¼ pHx0jt¼T � pHx0jt¼0:
ð3eÞ

Using L� to define an appropriate evolution equation

for p [which is equivalent to (2b)],

L�p ¼ Qx with pðTÞ ¼ QTxðTÞ; ð3fÞ

and substituting both (3b) and (3f) into the identity

(3d) allows us to rewrite (3a) as

J0 ¼
Z T

0

BHpþ Ru
� �H

u0 dt ¼
Z T

0

DJ

Du

� �H
u0 dt;

ð3gÞ

from which the gradient in (2c) is readily identified.

Rather than using an iterative vector-based method

to find theu on t 2 ½0; T � to minimize JðxðuÞ; uÞ for the
initial condition x0, leveraging (2a)–(2c) as described

above, we may instead enforce the condition that

DJðxðuÞ; uÞ=Du ¼ 0 directly, thus reducing (2c) to

u ¼ �R�1BHp: ð4Þ

Substituting this condition into (2a) allows us to

rewrite the two-point boundary-value problem

(TPBVP) for the state/adjoint pair fx; pg, as listed in

(2a)–(2b), in the convenient combined matrix form

d

dt

x
p

� �
|ffl{zffl}

v

¼ A �BR�1BH

�Q �AH

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z

x
p

� �
|ffl{zffl}

v

ð5aÞ

with initial and terminal conditions

x ¼ x0 at t ¼ 0;

p ¼ QTx at t ¼ T;

�
ð5bÞ

which may be solved for arbitrary initial conditions x0
by the sweep method: assuming a relation exists

between the state vector x and adjoint vector p such

that

p ¼ Wx; ð5cÞ

inserting this assumed form of the solution into the

combined matrix form (5a) to eliminate p, combining

rows to eliminate dx=dt, factoring out x to the right,

and noting that this equation holds for all x, it follows

that the matrix WðtÞ� 0 itself obeys the differential

Riccati equation (DRE)

�dWðtÞ=dt ¼AHWðtÞ þWðtÞA
�WðtÞBR�1BHWðtÞ þ Q

ð5dÞ

with terminal conditions

WðTÞ ¼ QT : ð5eÞ

The solution W(t) of the DRE (5d)–(5e) may be

determined using any of a wide variety of well-known

time marching methods, such as any of those in the

Runge-Kutta family. By (4) and (5c), the control may

then be determined according to the feedback rule

u ¼ KðtÞx where KðtÞ ¼ �R�1BHWðtÞ: ð5fÞ

Taking the limit as T !1, assuming fA;B;Q;Rg
are constant and thus the problem is linear time

invariant (LTI), the DRE (5d) reduces to the contin-

uous-time algebraic Riccati equation (CARE)

0 ¼ AHW þWA�WBR�1BHW þ Q: ð6aÞ

The solution W[ 0 of the CARE may be found [12]

by taking an ordered Schur (or eigen)1 decomposition

of the Hamiltonian matrix2 Z in (5a):

Z ¼ VTV�1 ð6bÞ

where

V ¼ X�
P�

� �
¼

j j j
v1 v2 . . . vn �
j j j

2
4

3
5;

vi ¼ xi

pi

� �
;

ð6cÞ

and the eigenvalues of Z on the main diagonal of the

upper triangular (or diagonal) matrix T are enumerated

1 Numerically, the Schur decomposition is the method of choice

for large-scale problems. In the analysis presented in Sect. 2,

however, it is more convenient to consider the eigen

decomposition.
2 A Hamiltonian matrix of this form satisfies a symmetric root

property: for every eigenvalue of Z in the LHP, k, there is a

corresponding eigenvalue of Z in the RHP, �k�, where ð�Þ�
denotes the complex conjugate.
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such that the LHP eigenvalues appear first, followed

by the RHP eigenvalues (that is, we assume that Z has

no eigenvalues on the imaginary axis). Defining

y ¼ V�1v, it follows from (5a) and (6b) that

dy=dt ¼ Ty. The stable solutions of y are spanned

by the first n columns of T (that is, they are nonzero

only in the first n elements of y). Since v ¼ Vy, it

follows that the stable solutions of v are spanned by the

first n columns of V. To achieve stability of v via the

relation p ¼ Wx for each of these directions, denoted

vi and decomposed as shown above, we must have

pi ¼ Wxi for i ¼ 1. . .n. Assembling these equations in

matrix form, we have

j j j
p1 p2 . . . pn

j j j

2
4

3
5 ¼ W

j j j
x1 x2 . . . xn

j j j

2
4

3
5

ð6dÞ

) P ¼ WX ) W ¼ PX�1: ð6eÞ

In order for this equation for W to be uniquely

solvable, X must be nonsingular. Note also in this

formulation that the evolution of v in (5a) is restricted

by the relation p ¼ Wx [i.e., noting (4) and (5f), by

u ¼ Kx] to the space spanned by the stable eigenmodes

of the matrix Z, and that the (LHP) eigenvalues

corresponding to these stable eigenmodes of Z are

exactly the eigenvalues of the closed-loop system

matrix ðAþ BKÞ.

1.2 Chandrasekhar’s method

The DRE of interest for W ¼ Wn�n in the optimal

control problem is given in (5d), and the correspond-

ing expression for the feedback gain matrix K ¼ Km�n
is given in (5f). If n	 m, which is typical in high-

dimensional systems, then solving a Riccati equation

for the enormous n� n matrix W only to extract a

transformed narrow ‘‘slice’’ of this matrix to deter-

mine the m� n matrix K is grossly inefficient.

Chandrasekhar’s method [11] addresses this ineffi-

ciency in a clever way, by simultaneously solving an

evolution equation for a low-rank factor F(t) of (dW /

dt), and another evolution equation for K(t). Towards

this end, define

dWðtÞ=dt¼ F1ðtÞFH
1 ðtÞ�F2ðtÞFH

2 ðtÞ ¼ FðtÞHFHðtÞ

where

F ¼ F1 F2ð Þ; H ¼ I 0

0 � I

� 	
;

and the number of columns of the factors F1 and F2 are

the number of positive and negative eigenmodes of

(dW / dt), respectively, retained in the approximation.

Differentiating (5d) with respect to time and inserting

dW=dt ¼ FHFH , assuming fA;B;Q;Rg are LTI, it is
easily verified that the following set of equations are

equivalent to (5d), but much cheaper to compute if

both K and F each has a relatively small number of

columns:

dKðtÞ=dt ¼ �R�1BH FðtÞH FHðtÞ;
dFðtÞ=dt ¼ �½Aþ BKðtÞ�HFðtÞ;

with terminal conditions

KðTÞ ¼ �R�1BHQT ;

FðTÞH FHðTÞ ¼ dWðtÞ=dt



t¼T ;

where dW=dtjt¼T is determined from the original DRE

(5d) evaluated at t ¼ T , and F(T) is determined by its

factorization. Chandrasekhar’s method may be used to

approximate the (time-accurate) solution of the DRE

(5d), or simply marched to steady state to approximate

the solution of the corresponding CARE (6a).

2 MCE: minimum control energy stabilization

SelectingQ ¼ �I,QT ¼ 0, and taking any R[ 0 in the

derivation summarized in Sect. 1.1, and then taking �

small, puts the dominant weighting on the control

effort term ðuHRuÞ in the cost function J in (1). The

solution of the optimal control problem on the infinite

horizon (T !1) in the limit that �! 0 is referred to

as the minimum energy stabilizing control feedback.

Such feedback applies as little control effort as

possible in order to make J finite; in other words,

control applied in the �! 0 limit leaves those modes

of the system which are already stable alone, and

swings the unstable eigenvalues of the system into the

LHP in a way that uses the minimum amount of

control effort. It is seen immediately from the form of

Z in (5a) that the stable eigenvalues of Z in this case

(with Q! 0) are given by the union of the

stable eigenvalues of A and the stable eigenvalues of
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�AH (that is, the reflection of the unstable eigenvalues

of A into the LHP across the imaginary axis); by the

last sentence of Sect. 1.1, this is where the eigenvalues

of ðAþ BKÞ in the optimal control solution are as

well. This result is classical.

Since we knowwhere the eigenvalues of the closed-

loop system matrix ðAþ BKÞ are in this case, the

requisite feedback gain matrix K in this problem may

be computed by the process of pole assignment.

Applying this process to the equation governing the

dynamics of the unstable modes of the system in

modal form and transforming appropriately, this leads

to a simple expression for K, as shown below and

discussed in [14].

2.1 The pole assignment problem

Consider now the Hamiltonian matrix Z in (5a) and its

eigen decomposition in (6b). Defining a diagonal

matrix Kc with the n desired (stable) eigenvalues kc of
the closed-loop system on the main diagonal, and the

corresponding eigenvectors of Z in the columns of Vc

(which may be partitioned appropriately), the

stable components of the eigen decomposition of Z

satisfy

A �BR�1BH

�Q �AH

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Z

Vc ¼ Vc Kc

where Vc ¼
X

P

� �
:

ð7Þ

In a typical pole assignment problem, the closed-loop

eigenvalues kc are prescribed in advance, then the

control feedback matrix K [equivalently, the off-

diagonal blocks of the matrix on the LHS of (7) in the

optimal control problem] is selected in order to put

these eigenvalues in the desired locations.

In the present pole assignment problem, however,

we happen to know both the closed-loop eigenvalues

kc and the off-diagonal blocks of Z in (7); all that

remains is for us to compute the corresponding

eigenvector matrix Vc. Exactly as in (5f) and (6e),

once these eigenvectors are calculated, the desired

feedback rule is given by

u ¼ Kx with K ¼ �R�1BHW ð8aÞ

where W ¼ PX�1: ð8bÞ

Multiplying out (7), it follows immediately that

AX � BR�1BHP ¼ XKc; ð9aÞ

�QX � AHP ¼ PKc: ð9bÞ

Solving (9b) for X and substituting into (9a) gives

AQ�1ðAHPþ PKcÞ þ BR�1BHP

¼ Q�1ðAHPþ PKcÞKc

ð10aÞ

and

QX ¼ �ðAHPþ PKcÞ: ð10bÞ

Note (10a) is linear in the unknown matrix P. Once a

nonsingular P is obtained from this equation, calcu-

lation of X is trivial using (10b) or, equivalently, (9a).

2.2 Simplification of (8)–(10) in modal

coordinates

It is straightforward to transform the original system

(2a) into a modal representation and then to truncate

appropriately in order to develop a model of just the

unstable system dynamics. Performing an ordered

eigen decomposition A ¼ SKS�1, in which the unsta-

ble eigenvalues of A appear on the main diagonal of K
first, followed by the stable eigenvalues of A,

K ¼ Ku 0

0 Ks

� �
;

and multiplying (2a) from the left by S�1, we have

dv=dt ¼ Kvþ �Bu where v ¼ S�1x; B ¼ S�1B:

ð11Þ

Note that K is diagonal. Denoting the inverse of the

eigenvector matrix as3 YH ¼ S�1, the portion of (11)

governing the unstable dynamics of the system may

easily be written as

dvu=dt ¼ Kuv
u þ �Buu ð12Þ

where

Y ¼ Yu Ys½ �; �B ¼
�Bu

�Bs

� �
; �Bu ¼ YH

u B;

vu ¼ YH
u x:

3 The columns of Y are referred to as the left or adjoint

eigenvectors of A.
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The pole assignment process in the minimal-energy

stabilizing feedback control problem, as derived in

Sect. 2.1, can be simplified greatly when applied to the

equation for the unstable dynamics of the original

system inmodal form, as given in (12). AssumingA has

p unstable eigenvalues, taking A ¼ Ku, B ¼ �Bu,

Q ¼ �I, R[ 0, and4 Kc ¼ �KH
u in (10a), partitioning

P into its respective columns, P ¼ p1 p2 . . . pp ,

and applying the above relationships, it follows after

some simplifications5 that (10a) may be written in the

simple form

½��BuR
�1 �BH

u þ D�pk,Mkp
k ¼ 0 ð13Þ

for k ¼ 1; . . .; p, where D ¼ diagðdðkÞ1 ; . . .; d
ðkÞ
p Þ with

d
ðkÞ
i ¼

ðki þ k�kÞðk
�
i � k�kÞ for i 6¼ k

0 for i ¼ k;

�
ð14Þ

where, again, ð�Þ� denotes the complex conjugate.

Thus, the vectors pk lie in the nullspace ofMk, andmay

be found by the process of Gaussian elimination,

manipulating Mk to row-echelon form. In the limit

�! 0,Mk approaches a diagonal matrix with a zero in

the k’th diagonal element, and thus6 P! I. To avoid

taking the difference of two quantities which are

almost equal in the computation of X, we return to

(9a), which, in the �! 0 limit, may be written in the

form

KuX þ XKH
u ¼ �BuR

�1 �BH
u ,C ð15aÞ

) xij ¼ cij=ðki þ k�j Þ: ð15bÞ

With P ¼ I, it follows from (8b) that W ¼ X�1, and
thus, by (8a), the minimal-energy feedback control

that stabilizes (12) in the �! 0 limit is given by u ¼
�Kvu where �K ¼ �R�1 �BH

u X
�1. Writing this feedback in

terms of the original state variable x, we have u ¼ Kx

where K ¼ �KYH
u .

The solution for the minimum control energy

(MCE) controller derived above is now summarized:

Theorem 1 Consider a stabilizable system dx=dt ¼
Axþ Bu where A has no pure imaginary eigenvalues.

Determine the unstable eigenvalues and correspond-

ing left eigenvectors of A such that YH
u A ¼ KuY

H
u

(equivalently, determine the unstable eigenvalues and

corresponding right eigenvectors of AH such that

AHYu ¼ YuK
H
u ). Define

�Bu ¼ YH
u B and C ¼ �BuR

�1 �BH
u ,

and compute a matrix X with elements

xij ¼ cij=ðki þ k�j Þ. The minimal-energy stabilizing

feedback controller is then given by u ¼ Kx, where

K ¼ �R�1 �BH
u X
�1YH

u .

Note that any of a number of existing subspace

iteration methods (see, e.g., Sect. 4.1) may be used to

determine the unstable eigenvalues (that is, those

eigenvalues on the far right edge of the spectrum of

eigenvalues) and corresponding left eigenvectors of A;

the implicitly-restarted Arnoldi method [15] is a popular

choice.

2.3 Alternative derivation of the MCE method

The derivation of the MCEmethod given in Sects. 2.1,

2.2 is based on pole assignment in the Riccati equation

in the minimum control energy case. An alternative

derivation of this method based on analysis of the

corresponding state and adjoint vectors is now

presented; this alternative derivation foreshadows the

methods developed in Sects. 3 and 4, which are

similarly based on careful analysis of the state and

adjoint components of the Hamiltonian.

Taking Q ¼ �I in the limit that �! 0, the Hamil-

tonian system (5a) may be written

d

dt

x
p

� �
|ffl{zffl}

v

¼ A �BR�1BH

0 �AH

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z

x
p|{z}
v

; ð16aÞ

which may equivalently be written

dx=dt ¼ Axþ Bu; u ¼ �R�1BHp; ð16bÞ

dp=dt ¼ �AHp: ð16cÞ

Due to the block triangular structure of Z, the

eigenvalues of Z in this limit are simply the union of

4 We take Kc ¼ �KH
u following the first paragraph of Sect. 2,

noting that all eigenvalues in Ku are unstable.
5 IfK is diagonal, the productKV corresponds to scaling the i’th

row of V by ki for all i, whereas the product VK corresponds to

scaling the i’th column of V by ki for all i.
6 If all unstable eigenvalues of A are distinct, then d

ðkÞ
i 6¼ 0 for

i 6¼ k; P necessarily becomes diagonal in this case in the �! 0

limit, and its columns may be normalized such that P! I. If

some of the unstable eigenvalues of A are repeated, then there

are other solutions as well. However, P! I is a valid solution in

either case in the �! 0 limit.
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the eigenvalues of A (that is, kk for k ¼ 1; . . .; n) and

the eigenvalues of�AH (that is, �k�k for k ¼ 1; . . .; n).

Let p be the number of unstable eigenvalues of A,

denote by sk the eigenvectors of A (that is, Ask ¼ kksk),
and denote by yk the eigenvectors of AH (that is,

AHyk ¼ k�ky
k); note that the yk are also known as the

left eigenvectors of A [that is, ðykÞHA ¼ kkðykÞH], and
that the yi and sk vectors are orthogonal for i 6¼ k and

may be normalized such that

ðyiÞHsk ¼ dik: ð17Þ

Assuming that A has no pure imaginary eigenvalues,

the n eigenvectors vk of Z corresponding to the

stable eigenvalues of Z are given, for k ¼ 1; . . .; n, by

vk ¼ xk

pk

� �
¼

sk

0

� �
if <ðkkÞ\0;

f k

yk

� �
if <ðkkÞ[ 0

8>><
>>:

ð18Þ

where, by the first block row of (16a),

f k ¼ ðAþ k�kIÞ
�1
BR�1BHyk: ð19Þ

Let Is ¼ fall k j RðkkÞ\g and Iu ¼ fall k j
RðkkÞ[ g. Expanding the current state x in terms of

the xk components of the stable eigenmodes vk given

in (18), and expanding the corresponding adjoint p in a

compatible manner, we have

x ¼
X
k2 Is

skck þ
X
k2 Iu

f kdk; ð20aÞ

p ¼
X
k2 Iu

ykdk; ð20bÞ

for the as-yet undetermined coefficients ck for k 2 Is,

and dk for k 2 Iu, which we assemble into the vectors

c and d, respectively. Note in particular [in (20b)] that

the adjoint field p upon which the control u is based [in

(16b)] is itself based solely upon the coefficients dk. To

compute these coefficients, we simply premultiply

(20a) by ðyiÞH for all i 2 Iu and apply the orthogonality

(17):

ðyiÞH x ¼
X
k2 Is

skck þ
X
k2 Iu

f kdk

( )

) ðyiÞHx ¼
X
k2 Iu
ðyiÞHf kdk:

ð21Þ

Premultiplying (19) by ½ðyiÞHðAþ k�kIÞ� results in

ðyiÞHðAþ k�kIÞ f k ¼ ðyiÞ
H
BR�1BHyk;

and thus, since ðyiÞHA ¼ kiðyiÞH , it follows that

ðyiÞHf k ¼ ðy
iÞHBR�1BHyk

ki þ k�k
,xik: ð22aÞ

Collecting the vectors yi for i 2 Iu together as the

columns of a matrix Yu and noting the definition of the

elements of X in (22a), we may write (20b) and (21) in

matrix form as

p ¼ Yud and YH
u x ¼ Xd ) d ¼ X�1YH

u x

and thus, by (16b),

u ¼ Kx where K ¼ �R�1BHYuX
�1YH

u ; ð22bÞ

as summarized in Theorem 1.

3 ADA: the Adjoint of the Direct-Adjoint

As described in the first paragraph (and verified in the

second paragraph) of Sect. 1.1, for any given x0,

adjoint optimization of u for minimization of

JðxðuÞ; uÞ in (1) (taking QT ¼ 0) proceeds as indi-

cated in Algorithm 1; when this algorithm converges,

DJðxðuÞ; uÞ=Du ¼ 0, and thus the following optimal-

ity condition holds:

u ¼ �R�1BHp on t 2 ½0;T�: ð23Þ

The input to this problem is x0, and we will focus for

now on the output u at time t ¼ 0, which we denote

here u0. If x ¼ xn�1 and u ¼ um�1 and we solve this

problem n times for n linearly independent values of x0
(e.g., the n columns of In�n), then we may write

u10 u20 . . . un0
� �

¼ K0 x10 x20 . . . xn0
� �

ð24Þ

and solve for K0, thus determining the feedback gain

matrix K at time t ¼ 0,

uð0Þ ¼ K0xð0Þ: ð25Þ

Note also that (25) taken together with (23), evaluated

at t ¼ 0, may be written

uð0Þ ¼ ½KH
0 �

Hxð0Þ ¼ ½�BR�1�Hpð0Þ: ð26Þ
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The approach described above requires n optimiza-

tions to set up (24), which may be solved to compute

the m� n matrix K0. If n	 m, it is much more

efficient to consider the adjoint of this problem, thus

leading to an algorithm requiring onlym optimizations

to compute K0, which can be achieved as described

below.

To frame the adjoint of the problem described

above in a manner analogous to the standard adjoint-

based optimization framework reviewed in (3a)–(3g),

we first introduce a bit of notation. Define

y ¼ p
x

� �
and L ¼ BR�1BH d=dt� A

�d=dt� AH �Q

� �

ð27aÞ

where Q� 0 and R[ 0, and note that the converged

solution of the ‘‘forward TPBVP’’ (2a)–(2b) with (4)

andQT ¼ 0, which may be calculated using Algorithm

1, may now equivalently be written

Ly ¼ 0 with
xð0Þ ¼ x0;

pðTÞ ¼ 0:

�
ð27bÞ

[Note that, in (27a), we have arranged the variables

and equations appropriately to include the d / dt

operator in the off-diagonal blocks of the linear

operator L, which simplifies and symmetrizes the

subsequent analysis. The antisymmetric bilinear form

in (27a) is also known as a symplectic product, and its

properties are expounded in the canonical-transfor-

mation theory of classical Hamiltonian mechanics.]

Defining as before the inner product

ha; bi ¼
R T

0
aHb dt, we may express the adjoint

identity

h~y;Lyi ¼ hL�~y; yi þ b where ~y ¼ ~p
~x

� �
: ð27cÞ

Using integration by parts, it follows immediately that

L� ¼ L (that is, the state/adjoint TPBVP considered as
a whole is itself self-adjoint), and that

b ¼ ð~pHx� ~xHpÞt¼T � ð~p
Hx� ~xHpÞt¼0: ð27dÞ

[Note the permutation (that is, ~pH multiplies x,

whereas ~xH multiplies p), which arises due to the

off-diagonal location of the d / dt terms inL.] We now

use L� to define an appropriate adjoint equation

L�~y ¼ 0 with
~xð0Þ ¼ ~x0;

~pðTÞ ¼ 0;

�
ð27eÞ

which may equivalently be written

d~x=dt ¼ A~xþ Bð�R�1BH ~p|fflfflfflfflfflffl{zfflfflfflfflfflffl}
,~u

Þ with ~xð0Þ ¼ ~x0;

ð28aÞ

�d~p=dt ¼ AH ~pþ Q~x with ~p ðTÞ ¼ 0: ð28bÞ

By (27a)–(27b), this TPBVP is exactly the same as that

given in (2a), (2b), and (4), it is just written in different

variables, and has a different interpretation given to

the ‘‘input’’ ~xð0Þ and the ‘‘output’’ ~pð0Þ. Thus, this
‘‘adjoint TPBVP’’ may also be solved using

Algorithm 1.

The key to relate the solution of the ‘‘adjoint

TPBVP’’ (27e) to the ‘‘forward TPBVP’’ (27b) is the

adjoint identity (27c), which reduces upon substitution

of (27d), (27b), and (27e) to

½~pð0Þ�Hxð0Þ ¼ ½~xð0Þ�Hpð0Þ: ð29Þ

Comparing (29) and (26), it is seen that, setting ~xð0Þ to
the first column of ½�BR�1� and solving the adjoint

TPBVP (27e) via Algorithm 1, the resulting value of

~pð0Þ is just the first column of KH
0 , etc. Thus, after

solving the adjoint TPBVP (27e) via Algorithm 1 just

m times (not n times!), the entire K0 is constructed

directly. Further, for an LTI system and T sufficiently

large, K0 approximates the LTI feedback gain K.

3.1 Interpretation of the ADA method

The optimality condition DJðxðuÞ; uÞ=Du ¼ 0 relat-

ing the state x to the control u is linear, as it is given by

the first derivative of a quadratic cost function

JðxðuÞ; uÞ with respect to u, where x is a linear

function of u via the state equation. The linearity of

Algorithm 1 Direct-adjoint problem for optimizing u,
framing (1) and (2a)-(2c) as a numerical algorithm (tak-
ing QT = 0).

Initialize i = 0, u(t) = 0 on t ∈ [0, T ], and the tolerance
loop

March dx/dt = Ax+ Bu with x(0) = x0 for t = 0 → T
Compute Ji = J(x(u),u) [see (1)]
if i > 0 and (Ji − Ji−1)/Ji then break end if
March dp/dt = −AHp−Qx with p(T ) = 0 for t = T →0
Compute gradient DJ(x(u),u)/Du = BHp+ Ru
Update u via gradient-based algorithm (CG, BFGS, . . . )

end loop
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this problem is sometimes obscured by the fact that

this relationship is usually solved by considering a

quadratic matrix equation (the Riccati equation); the

purpose for introducing this quadratic matrix equation

is simply to convert the TPBVP for the vector x and a

supplemental vector p at the core of this linear

problem into an initial value problem for a matrix

W that relates these two vectors.

For low-dimensional systems, this quadratic initial

value problem for the matrixW is easy to solve (in the

infinite-horizon LTI case, leveraging eigen- or Schur-

based analysis, as reviewed in Sect. 1.1). For high-

dimensional systems, however, computation of W is

intractable, and in certain situations it is useful to

reconsider to the optimality condition in its original

linear form.

Since the optimality condition is linear, it may be

considered in one of two directions, a ‘‘forward’’

analysis (itself based on iterative solution of a direct/

adjoint formulation), which as shown in Sect. 1.1

comes up naturally when examining the control

problem, and the ‘‘adjoint’’ of this analysis. If the

state x and the control u are roughly the same

dimension, both of these directions have similar

computational expense. However, if the dimension

of the state x is significantly larger than that of the

control u, the ‘‘adjoint’’ analysis of this problem is

significantly more efficient computationally.

Finally, since the state/adjoint pair at the core of the

‘‘forward’’ analysis is itself a self-adjoint system,

exactly the same numerical machinery may be used for

the ‘‘forward’’ and ‘‘adjoint’’ analyses, it is only the

inputs and outputs to these analyses that change.

4 OSSI: oppositely-shifted subspace iteration

‘‘Subspace iteration’’ refers to the core framework of a

class of iterative eigenvalue solvers designed to

extract m� n eigenvalues, and the corresponding

eigenvectors or Schur vectors, from an n� nmatrix A

when n	 1. Two modern extensions of such solvers,

dubbed Arnoldi (for general matrices) and Lanczos

(for symmetric matrices), are today commonly applied

to sparse systems with n�Oð106Þ. There are a wide

variety of well-established techniques available for

accelerating the convergence of such algorithms,

including deflating and implicit restarting, which for

brevity will not be expounded upon here; some

reviews of this fascinating and now fairly mature

subject include [8, 15, 17, 20, 22].

In Sect. 4.1, we describe two ‘‘prototype’’ subspace

iteration algorithms, including an explicit form and an

implicit form, which demonstrate the essence of how

such algorithms may be used to extract a basis of the

eigenvectors and Schur vectors corresponding to them

most unstable eigenvalues of a matrix A. It is

important to note that the explicit form considered

needs access solely to a subroutine which computes

the matrix/vector product Av; it does not need access

to A�1, nor even to A itself. This is useful in many

complex applications with n�Oð106Þ, such as those

arising in the field of flow control, where a subroutine

which effectively computes the matrix/vector product

Av is often all that is available. An implicit form is also

considered, which is built around a subroutine

designed to efficiently solve ð1þ hAÞx ¼ v for x,

which is also sometimes available and numerically

tractable (and, when it is, can be leveraged to

significantly speed convergence of the subspace

iteration algorithm when A is stiff, meaning that it

has a large range of eigenvalues reaching far out into

the LHP, as is common in the spatial discretization of

PDE systems [9]). Significantly, many such implicit

solvers are only approximate, such as those based on

incomplete Cholesky factorization (for symmetric A),

or those on based on iterative solvers (such as the

multigrid algorithm) when such solvers are not driven

fully to convergence.7 Note also that the subroutine

which computes the matrix/vector product Av in the

explicit case, or the subroutine which solves ð1þ
hAÞx ¼ v for x in the implicit case, is called only

m times per iteration8 in the core algorithms presented;

this is important because these subroutines are typi-

cally computationally expensive.

In Sect. 4.2, we demonstrate how a simple modi-

fication, dubbed ‘‘opposite shifting’’, of these proto-

type subspace iteration algorithms may be used to

target the central eigenvalues (that is, those near the

imaginary axis) of a matrix Z of Hamiltonian structure.

The resulting oppositely-shifted subspace iteration

7 In future work, it would be valuable to consider the myriad of

subtle issues that arise when coupling the implicit OSSI

algorithm developed in Sect. 4.2 with approximate inverses

such as those arising in the multigrid setting.
8 That is, once per column of V being computed [see (31b) and

(39b)].
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(OSSI) algorithms are again developed in prototype

explicit and implicit forms, and are quite similar to the

explicit and implicit forms of the standard subspace

iteration algorithms upon which they are based. The

OSSI algorithms proposed again depend only on the

matrix/vector product Av in the explicit case, or on the

(possibly, approximate) solution of ð1þ hAÞx ¼ v for

x in the implicit case (that is, they do not require direct

access to, or storage of, A or A�1). Once the simple

‘‘opposite shifting’’ modification is made, the wide

variety of techniques available to accelerate the

convergence of such algorithms are again directly

applicable. (For brevity, we will not focus on such

acceleration techniques here.)

Finally, in Sect. 5, we discuss the application of

these prototype OSSI algorithms to the approximate

solution of large eigenvalue problems arising in

optimal control formulations while bypassing the

preparatory (and, sometimes, problematical) step of

open-loop model reduction, and briefly compare these

algorithms to the other strategies for the control of

large-scale systems discussed previously in this

article.

4.1 Prototype subspace iteration algorithms

To understand the basic idea of standard subspace

iteration methods, consider first the simple ODE

dv=dt ¼ Av; ð30Þ

and order the eigenvalues ki and corresponding eigen-

vectors si of A by the real parts of ki (that is, k1 is the
eigenvalue of Awith the greatest real part, and kn is the
eigenvalue of A with the least real part; note that high-

dimensional ODE systems arising from the spatial

discretization of diffusive PDE systems typically have

just a few unstable eigenvalues). The utility of

considering this ODE is that, as it evolves, it prefer-

entially amplifies the component of v in the direction

s1 as compared with the other components of v.

4.1.1 Subspace iteration via EE discretization of (30)

Based on the above discussion, we are motivated to

march (30) with a simple explicit Euler (EE) numer-

ical discretization,

vkþ1 ¼ ðI þ hAÞvk ¼ vk þ hA vk; ð31aÞ

while using as large a timestep h as possible to

accelerate the relative growth of the component of vk

in the direction s1 from one timestep to the next. Since

the EE method is conditionally stable,9 it is actually

the most stable eigenvalue, kn, that typically limits

how large a timestep h can be taken in this march while

not encountering the ‘‘numerical instability’’ caused

by j1þ hknj approaching and exceeding 1.

To find a basis for the first m[ 1 eigenvectors and

Schur vectors, rather than propagating a single direc-

tion v as in (31a), we instead simply propagate a set of

directions assembled as the columns of a matrix V,

V  V þ hAV: ð31bÞ

At the end of each iteration in the subspace iteration

algorithm, we orthogonalize and normalize the

columns of V via the QR decomposition using a

Modified Gram-Schmidt method performed in place10

[8], thus assuring that them directions so generated are

orthogonal:

V ¼ QR; V  Q; R RRR�1; ð32Þ

where the columns of the updated V are orthogonal-

ized and both R and the updatedR are upper triangular.

An alternative motivation for (31b) is a bit more

algebraic: for sufficiently small h, the largest (in

modulus) eigenvalues of the shifted matrix ðI þ hAÞ
are ð1þ hk1Þ through ð1þ hkmÞ, and the correspond-

ing eigenvectors are, again, s1 through sm. Thus, the

difference equation (31b), as it evolves, preferentially

amplifies the components of V in the directions s1

through sm as compared with the other components of

V. For sufficiently small h, the next largest eigenvalue

of ðI þ hAÞ is ð1þ hkmþ1Þ, and the rates at which the

components of V in the (resolved) directions s1

through sm emerge over the components in the

(unresolved) direction smþ1 are

1þ hk1
1þ hkmþ1










 through

1þ hkm
1þ hkmþ1










; ð33aÞ

9 Recall that the EE method is stable when all eigenvalues k,
scaled by h, are contained in a unit disk centered at �1 in the

complex plane of hk.
10 That is, in a manner immediately replacing V with Q.
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whereas the rate at which the components of V in the

direction smþ1 are amplified over the components in

the direction sn is

1þ hkmþ1
1þ hkn










: ð33bÞ

We desire to select h as large as possible, in order to

make the ratios in (33a) large, without making h so

large that the ratio in (33b) exceeds 1. As the ki are
typically unknown, optimizing the value of h for a

given problem in this manner often takes a modest

amount of trial and error.11

Another key step of a subspace iteration algorithm

is to extract the eigenvalues corresponding to the

emerging eigenvector subspace. There are a few

different options for this. In the case that m ¼ 1 and

A is symmetric, we may simply use the Rayleigh

quotient (see [8], p. 408): normalizing v at the end of

each iteration such that vHv ¼ 1 and denoting our

estimate of the eigenvalue corresponding to emerging

eigenvector in v as r, this may be written

r ¼ vH A v: ð34aÞ

As v converges towards a (normalized) eigenvector,

the value of r computed in this manner converges

quickly towards the corresponding eigenvalue.

In order to approximate the eigenvalues of the

emerging subspace in the more interesting case that A

is nonsymmetric and/or m[ 1, we may follow a

similar approach: orthogonalizing V at the end of each

iteration such that VHV ¼ I, we impose

R ¼ VH AV : ð34bÞ

To motivate this form, consider what happens when we

upper triangularize the (m� m) matrixR at each step of

the subspace iteration algorithm via the computation

of an ordered Schur decomposition ([8], p. 313)

R ¼ U T U
H
; ð35aÞ

where T ¼ Tm�m is upper triangular, with its diagonal

elements arranged in order of decreasing real part, and

U ¼ Um�m is unitary. [In the case that A is real, a real

Schur decomposition ([8], p. 341) should be used

instead at this step; rather than generating a complex

upper-triangular matrix T, the real Schur decomposi-

tion generates a real matrix T which is block upper

triangular, with 1� 1 blocks (corresponding to the

real eigenvalues) and 2� 2 blocks (corresponding to

the complex-conjugate eigenvalue pairs) on the

main diagonal.] Taking (34b) together with (35a) then

gives

U T U
H ¼ VH AV ) T ¼ ðVUÞH A ðVUÞ:

ð35bÞ

Note that updating

V  ðVUÞ and R T ð35cÞ

changes neither the subspace spanned by the columns

of V, nor the fact that V is unitary, nor the eigenvalues

of R, which in this triangularized form appear on the

main diagonal (or, in the real Schur case, may be

derived from the blocks on the main diagonal).

Further, as V converges towards the first m Schur

vectors of A via this process, R converges towards the

m� m leading principal submatrix of T in the full

Schur decomposition A ¼ UTUH .

For small n, overall convergence is not significantly

affected if the Schur decomposition of R is deferred

until after the end of the main loop; in this case, R is

left in a full form as the iteration proceeds, and

V converges toward an essentially arbitrary basis of

the first m Schur vectors.

Note in (33a) that leading Schur vectors tend to

converge faster than do subsequent Schur vectors. It is

generally wise to include the Schur decomposition

step (35a)–(35c), which triangularizes R and ‘‘un-

scrambles’’ the emerging Schur vectors in V, within

the main iteration loop of the subspace iteration

algorithm for large problems (though perhaps not at

every single iteration step), as this step helps to

separate the convergence of each of the Schur vectors

being computed. This separation is useful for two

reasons. The first is that it is sometimes necessary to

terminate the subspace iteration algorithm before the

last few Schur vectors being computed fully converge.

11 Various approaches are available to ‘‘stretch’’ the eigenvalue

spectrum of A in order to mitigate this timestep restriction. For

example, one may replace the matrix A to which the iteration is

applied with an appropriately-designed low-order polynomial

(of order p) in A; such a polynomial has the same eigenvectors as

A. This approach helps to increase the gap between km and kmþ1
[see (33a)] while decreasing the interval between kmþ1 and kn
[see (33b)], both of which facilitate faster convergence.

However, this approach also increases the number of function

evaluations Av that must be calculated per iteration by a factor of

p, and is thus generally not worthwhile unless the range of the

eigenvalue spectrum of A is, a priori, known fairly accurately.
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The second is that, as the first few Schur vectors begin

to converge, the problem being worked on may be

successively deflated (that is, the converged Schur

vectors may be removed from V), as these converged

vectors do not need to be worked on further by the

subspace iteration algorithm as it proceeds.12

As a significant refinement, we may apply a small

shift of �ðhVRÞ to (31b), thus marching

V  V þ h ðAV � VRÞ: ð36Þ

This shifted form has the same essential effect as

marching (31b) (that is, preferential focusing of the

columns of V in the direction of the leading Schur

vectors of A), with the benefit of ensuring that the

update to V itself approaches zero as V approaches a

basis of a set of Schur vectors, and thus ðAV � VRÞ
approaches zero. This is clearly seen in the m ¼ 1

case, where this shift makes the amplification of s1 at

each iteration unity, and (for sufficiently small h) the

amplification of all other directions smaller. In the

m[ 1 case, the effect of this small shift ðhVRÞ can be
thought of in terms its effect on the convergence of the

individual columns of V: the shift in the first column

makes the amplification of s1 at each iteration unity as

in the m ¼ 1 case, the shift in the second column

makes the amplification of s2 at each iteration unity,

etc. Geometrically, considering the convergence of the

i’th column of V, we may draw a circle in the complex

plane corresponding to the amplification of si due to

the iteration; for sufficiently small h, the radius of this

circle is close to unity, and the amplification of all

remaining directions siþ1 through sn are inside this

circle. The small shift ðhVRÞ simply adjusts the radius

of this circle to be exactly unity. Note that, though this

refinement is not necessary in the standard subspace

iteration approach, it is useful when we extend this

approach in Sect. 4.2.

In summary, the iterative explicit subspace iteration

algorithm, defined by (31b) or (36) (we use the latter),

(32), (34b), (35a), and (35c), and implemented in an

efficient order in Algorithm 2, converges (if h is

sufficiently small) toward the leading components of

the Schur decomposition

AV ¼ V R; ð37Þ

determining a unitary V ¼ Vn�m and upper-triangular

R ¼ Rm�m, with k1 through km on the main diagonal of

R. The residual rðiÞ ¼ normðAV� VRÞ measures

the degree to which (37) is not yet satisfied. Note that it

is trivial to now compute the corresponding compo-

nents of the eigen decomposition of A via the eigen

decomposition (if it exists) of R:

R ¼ S K S
�1 ) AS ¼ SK;

where S ¼ Sn�m ¼ VS and K ¼ Km�m is diagonal.

4.1.2 Computational efficiency

Note finally that the orthogonalization and Schur

decomposition steps in the main loop of Algorithm 2

may be made a bit more efficient by, instead of

computing theQR decomposition of V, computing the

Cholesky decomposition

Z ¼ GGH ofthe ðm�mÞ matrix Z ¼ VH V;

ð38aÞ

noting that, by construction, G is lower triangular.

Also,

V ¼ QR , Q ¼ VR�1; ð38bÞ

and thus

VHV ¼ RHQHQ R ¼ RHR ) R ¼ GH : ð38cÞ

As the solution of (37) is approached, it follows that

AðVG�HÞ ¼ ðVG�HÞ ðGH RG�HÞ: ð38dÞ

We may now compute the Schur decomposition [cf.

(35a)]

ðGH RG�HÞ ¼ U T U
H
; ð38eÞ

then update appropriately [cf. (35c)]

V  VðG�HUÞ and R T: ð38fÞ

After the computation of ðAVÞ, the computational cost

of which varies from problem to problem, the

computational cost per iteration (when n	 m	 1)

following the QR-based approach, as shown in

Algorithm 2, is 
 8nm2 flops. In contrast, the

12 Note, however, that those vectors still being worked on in

V still need to be orthogonalized at every iteration against the

converged Schur vectors that have been removed from the

iteration [10].
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Cholesky-based approach replaces the following two

expensive steps:

• computation of the V ¼ QR decomp. {
 2nm2

flops},

• computation of V U {
 2nm2 flops},

with the following two expensive steps:

• computation of VHV {
 nm2 flops},

• computation of VðG�HUÞ {
 2nm2 flops}.

Thus, neglecting the computational cost of the com-

putation of ðAVÞ, which is identical in the two

approaches, the Cholesky-based approach is 12.5 %

cheaper (
 7nm2 versus 
 8nm2).

4.1.3 Subspace iteration via IE discretization of (30)

Due to the restrictions on h inherent to the EE-based

approach applied to stiff systems, we are also moti-

vated to consider marching (30) with an Implicit Euler

(IE) numerical discretization [cf. (31a)],

ðI � hAÞvkþ1 ¼ vk; ð39aÞ

written again in a form that propagates a set of

directions assembled as the columns of a matrix V [cf.

(31b)],

ðI � hAÞVkþ1 ¼ Vk; ð39bÞ

which at each k may be solved for Vkþ1. As the IE

method is L stable [9], h may be made large without

encountering numerical instability in this form of the

march, which significantly improves the convergence

of this IE-based form with k as compared with the EE-

based form discussed previously. Note, however, that

increasing h will also generally slow the convergence

of an iterative solver used to solve (39b) for any given

k, as it reduces the diagonal dominance of the matrix

ðI � h AÞ. Increasing h also has a diminishing effect on

the convergence of the Schur vectors with k as

h becomes large.

One (again, of many) options of approximatingR at

each step in this case is given by premultiplying (39b)

by ðVkÞH , applying ðVkÞHVk ¼ I, and setting AVkþ1

equal to Vkþ1Rkþ1 [cf. (34b)], leading to:

Rkþ1 ¼ fI � ½ðVkÞHVkþ1��1g=h: ð39cÞ

As a refinement, we may apply a small shift ðhVRÞ to
(39b) at each iteration [cf. (36)], thus marching

Vkþ1 � hAVkþ1 ¼ Vk � hVkR: ð39dÞ

This has the same essential effect as marching (39b),

with the benefit of ensuring that the update to V

itself approaches zero as V approaches a basis of a set

of Schur vectors, and thus ðAV � VRÞ approaches
zero.

The other steps in the IE-based approach are

analogous to those in the EE-based approach, and

are implemented in Algorithm 3; note that imax and �

define the stopping criterion of both algorithms. Note

that an approximate form for the residual rðiÞ ¼
normðAV� VRÞ is implemented in this case in order

to avoid an (expensive) computation of AV ; strictly

speaking, the approximate form implemented is valid

only if h is sufficiently small that IE acts like EE, but

this form is found to be adequate even for larger h, as it

is only used to check convergence.

4.2 Prototype OSSI algorithms

Our primary interest in subspace iteration methods in

this paper is on how to extend such methods, as

illustrated above in simplified prototype form, to find

the central eigenvalues of a very large [e.g.,

n�Oð106Þ] Hamiltonian matrix

Algorithm 2 Prototype explicit subspace iteration al-
gorithm to find the m least-stable eigenvalues (on the
main diagonal of Σ), the corresponding Schur vectors
(in V ), and the corresponding eigenvectors (in S) of an
n × n matrix A for n m 1.

determine [n, n] = size(A)
set m as the number of eigenvalues to compute
set V = randn(n, m), orthogonalize V
for i = 1 to imax do

set L = A V . . . . . . . . . . . . . . . {flops: problem dependent}
set Σ = V HL . . . . . . . . . . . . . . . . . . . . . . . . .{∼ 2nm2 flops}
set L ← L − V Σ . . . . . . . . . . . . . . . . . . . . . .{∼ 2nm2 flops}
set r(i) = norm(L)
set V ← V + hL
compute V = Q R decomposition, . . . . . {∼ 2nm2 flops}

set V ← Q, Σ ← R Σ R−1

compute Σ = U T U
H (Schur/real Schur) decomp.,

set Σ ← T , V ← V U . . . . . . . . . . . . . {∼ 2nm2 flops}
if r(i) then break end if

end for
{optional: compute eigenvectors S of Σ; set S = V S}
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Z ¼ A �BR�1BH

�Q �AH

� �
: ð40aÞ

Such matrices arise, e.g., in optimal control problems

[see (5a)], and have an eigenvalue structure that is

symmetric across the imaginary axis.

The key idea is to determine the least-stable LHP

Schur vectors V (i.e., the Schur vectors of Z corre-

sponding to eigenvalues with negative real part that

are closest to the imaginary axis), to partition these

closed-loop Schur vectors into their state and adjoint

components

V ¼ X

P

� �
; ð40bÞ

then to approximate, leveraging the Moore–Penrose

pseudoinverse Xþ of the matrix X, the resulting

feedback gain matrix [cf. (5f) and (6e)]:

K ¼ �R�1BHðPXþÞ: ð40cÞ

The motivation for this idea is that, if the (neglected)

closed-loop Schur vectors of Z are well damped, they

likely play a reduced role in the full computation of K.

Note that this idea was recently explored by [1, 2] and

found to be promising. Use of this closed-loop

reduction technique might in practice, for n	 1,

prove to be superior to the use of open-loop model

reduction strategies, which typically fail to account for

the control objective in the model reduction process.

Note again that, to date, all implementations of

subspace iteration methods and their variants that we

are aware of converge to extremal eigenvalues.

Convergence to the central eigenvalues of Z (that is,

those eigenvalues near the imaginary axis), using

existing algorithms, requires a code that computes

Z�1v (or, via the Matrix Inversion Lemma, several

calculations of A�1x), which is typically prohibitively

slow. We thus seek a method to calculate the central

Schur vectors of Z without access to the computation

of either Z�1v or A�1x. We have discovered a

remarkably simple modification to Algorithms 2 and

3 which accomplishes this. To explain this modifica-

tion, consider first what happens when, as in the MCE

case, one of the off-diagonal terms of Z is zero. In this

case, Algorithm 2 or 3 may be applied to compute

(a) the least-stable eigenvalues of A, and

(b) the least-stable eigenvalues of �AH .

For the control of a system with a few unstable eigenval-

ues andmany stable eigenvalues extending into the LHP,

we need to know (a), which are the eigenvalues of A near

the imaginary axis, but, rather than calculating (b), we

instead need to find the most-stable eigenvalues of�AH

(that is, the eigenvalues of �AH near the imaginary

axis). It is a straightforward matter to find these

eigenvalues simply by changing the sign of the related

march of P (that is, in the march related to �AH).

The eigenvalues of Z vary continuously as its

elements are varied. If both Q and BR�1BH are

nonzero but the norm of their product is small (that is,

a modest generalization from the MCE limit), appli-

cation of a slightly modified form of Algorithm 2 or 3

to Z, as motivated above, returns those eigenvalues of

Z near the least stable eigenvalues of A together with

those eigenvalues of Z near themost stable eigenvalues

of �AH , which are precisely the eigenvalues we seek.

4.2.1 OSSI via an EE discretization

The idea laid out above is implemented in Algorithm

4, which is essentially just Algorithm 2 applied to a

matrix Z with the block structure given in (40a), with

the sign modification on the shift discussed above and

carefully-chosen formula implemented for the com-

putation ofR, discussed below. In principle, the update
to X and P may be split into two parts, with a positive

sign in the shift of X, and a negative sign in the shift of

P:

X  Xþ hX1; P P� hP1 ð41aÞ

Algorithm 3 Prototype implicit subspace iteration al-
gorithm [cf. Algorithm 2].

determine [n, n] = size(A)
set m as the number of eigenvalues to compute
set V = randn(n, m), orthogonalize V
for i = 1 to imax do

solve (I − hA)L = V for L {flops: problem dependent}
set Σ = [I − (V HL)−1]/h . . . . . . . . . . . . .{∼ 2nm2 flops}
set L ← L − hLΣ . . . . . . . . . . . . . . . . . . . . .{∼ 2nm2 flops}
set r(i) = norm(L − V )/h . .{note: approximate form}
compute L = Q R decomposition, . . . . . {∼ 2nm2 flops}

set L ← Q, Σ ← R Σ R−1

compute Σ = U T U
H (Schur/real Schur) decomp.,

set Σ ← T , V ← L U . . . . . . . . . . . . . .{∼ 2nm2 flops}
if r(i) then break end if

end for
{optional: compute eigenvectors S of Σ; set S = V S}
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where

X1 ¼ AX � ðBR�1BHÞP; P1 ¼ �QX � AHP:

ð41bÞ

To make such an iteration consistent, we may, in a

manner analogous to that introduced in (36), apply

small shifts to (41a) by marching

X  X þ hðX1 � XRÞ; P P� hðP1 � PRÞ:
ð41cÞ

This approach is referred to as opposite shifting.

As convergence is approached, fX;Pg approach a

basis of the desired Schur vectors, and thus

ZV � VR , A �BR�1BH

�Q �AH

� �
X

P

� �
� X

P

� �
R:

ð42Þ

As before, there are various options for computing R.
A simple option which we have found to be effective is

determined by multiplying the first block row of (42)

times XH and solving for R [that is, ignoring

completely the second block row of (42)], resulting in

R ¼ ðXHXÞ�1ðXHX1Þ: ð43Þ

This option is thus analogous to (34b); note that the

normalization factor ðXHXÞ�1 may be skipped if X,

rather than V, is orthogonalized via QR decomposi-

tion. This option is found in practice (see Sect. 5) to

converge to the eigenvalues of Z just to the left of the

imaginary axis, which are exactly those sought for the

purpose of feedback control design [see (40)]. This

method is implemented in Algorithm 4.

4.2.2 OSSI via an IE discretization

It is also straightforward to develop an implicit form of

the OSSI algorithm described above, in an analogous

manner to the development of the implicit form of the

standard subspace iteration algorithm described in

Sect. 4.1. In order to not invert Z and to leverage

existing solvers for A, we actually only take the

diagonal blocks of Z implicitly, and account for the

off-diagonal blocks of Z explicitly. The update to R
that we have chosen in this case is based on the

relationship dV=dt ¼ ZV discretized via IE with a

shift; setting ZVnþ1 ¼ Vnþ1Rnþ1, this results in

Vnþ1�Vn

h
¼ JðZVnþ1�Vnþ1Rn|fflfflffl{zfflfflffl}

shift

Þ¼ JVnþ1ðRnþ1�RnÞ

where J¼ I 0; 0 �I½ �. Looking at only the first block
row of this result and premultiplying by XH

nþ1 gives

Rnþ1 ¼ Rn þ ðXH
nþ1Xnþ1Þ�1XH

nþ1ðXnþ1 � XnÞ=h:

Again, the normalization factor ðXHXÞ�1 may be

skipped if X is orthogonalized at each iteration via QR

decomposition. This method is implemented in Algo-

rithm 5.

5 Test on a representative LQR problem

A ‘‘representative’’ randomly-generated infinite-hori-

zon LQR problem [see Sect. 1.1] may be created with

A, Q[ 0, R ¼ I and �B ¼ BR�1BH � 0 defined via

A1 ¼ randnðn; nÞ; A ¼ �A1 A
H
1 þ randnðn; nÞ;

Q1 ¼ randnðn; nÞ; Q ¼ aQ1 Q
H
1 ;

�B1 ¼ randnðn;mÞ; B ¼ bB1 B
H
1 ;

where randnðn;mÞ denotes a random n� m matrix

whose elements have zero mean and a Gaussian

distribution with unit variance. The system matrix so

created has both real and complex conjugate pairs of

eigenvalues extending into the LHP, and usually has

only a few unstable eigenvalues, which is typical in

many problems of interest derived from well-posed

Algorithm 4 Prototype explicit oppositely-shifted
subspace iteration (OSSI) algorithm for computing the
least-stable of the LHP eigenvalues and the correspond-
ing Schur vectors of a Hamiltonian matrix Z.

determine [n, n] = size(A)
set m as the number of eigenvalues of Z to compute
set X = randn(n, m), P = randn(n, m)
orthogonalize X
for i = 1 to imax do

set X1 = AX − (BR−1BH)P , P1 = −QX − AHP
set Σ = XHX1
set X1 ← X1 − XΣ, P1 ← P1 − PΣ

set r(i) = norm
X1
P1

set X ← X +++ hX1, P ← P −−− hP1 {opposite shift!}
compute X = Q R decomposition,

set X ← Q, P ← P R−1, Σ ← R Σ R−1

compute Σ = U T U
H (Schur/real Schur) decomp.,

set Σ ← T , X ← X U , P ← P U
if r(i) then break end if

end for
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PDEs. Several realizations of such randomly-gener-

ated LQR problems were studied when testing the

methods described herein.

All of the algorithms converge to the expected

results when the parameters are selected appropriately

(sufficiently small h, etc.). For a typical example,

taking n ¼ 10, m ¼ 4, a ¼ 0:1, and b ¼ 0:01, and

approximately the optimal h in each case (found by a

minor amount of trial and error), the convergence of

Algorithms 2, 3, 4, and 5 are depicted in Figures 1

and 2.

Note that we have kept n small in the numerical

tests reported here, as we have thus far only developed

what we have referred to as ‘‘prototype’’ implemen-

tations of our new algorithms. Various standard

acceleration techniques (deflating, implicit restarting,

etc.) must be applied to the prototype subspace

iteration algorithms reported here, in an analogous

manner to how they have been applied to standard

eigenvalue problems, before these new algorithms will

be ready for application to control problems with large

n (see, e.g., [15], and its numerical implementation in

ARPACK).

6 Conclusions

This paper considers four methods for the efficient

solution of optimal control problems for high-dimen-

sional systems which bypass the intermediate and

sometimes problematical step of open-loop model

reduction.Chandrasekhar’s method, reviewed in Sect.

1.2, is classical. The other three methods presented

(MCE, ADA, OSSI) have been developed much more

recently by our team.

The fact that the continuous-time stabilizing LQR

controller in the minimum control energy (MCE) limit

simply reflects the unstable eigenvalues into the LHP

is also classical. However, the algorithm reviewed in
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Fig. 2 Convergence of (dashed) the explicit form given in

Algorithm 4, and (solid) the implicit form given in Algorithm 5,

of the subspace iteration algorithm for the least-unstable LHP

Schur vectors of the Hamiltonian matrix Z. The dotted lines

indicate the convergence of individual modes
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Fig. 1 Convergence of (dashed) the explicit form given in

Algorithm 2, and (solid) the implicit form given in Algorithm 3,

of the subspace iteration algorithm for the leading Schur vectors

of the state matrix A. The dotted lines indicate the convergence

of individual modes

Algorithm 5 Prototype implicit oppositely-shifted
subspace iteration (OSSI) algorithm [cf. Algorithm 4].

determine [n, n] = size(A)
set m as the number of eigenvalues of Z to compute
set X = randn(n, m), P = randn(n, m), Σ =
zeros(m, m)
orthogonalize X
for i = 1 to imax do

solve (I−hA)X1 = X+++h[−XΣ−(BR−1BH)P ] for X1,
(I − hAH)P1 = P −−− h[−PΣ − QX ] for P1
. . . . . . . . . . . . . . . . . . . . . . . . . {note opposite shift!}

set Σ ← Σ + XH
1 (X1 − X)/h

set r(i) = norm X1
P1

− X
P

/h

compute X1 = Q R decomposition,
set X1 ← Q, P1 ← P1 R−1, Σ ← R Σ R−1

compute Σ = U T U
H (Schur/real Schur) decomp.,

set Σ ← T , X ← X1 U , P ← P1 U
if r(i) then break end if

end for
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Sect. 2 to efficiently solve the LQR problem in the

MCE limit in large-scale systems was apparently first

identified only recently, in [14], and hasn’t been

widely recognized since. This algorithm requires only

the eigenvalues and left eigenvectors of the unsta-

ble modes of the system matrix A, which may be

determined via a subspace iteration method, such as

those discussed in Sect. 4.1.

When the system of interest has open-loop eigen-

values that are near the imaginary axis, the perfor-

mance of the controlled system in the MCE limit is

sometimes inadequate, and a more aggressive control

solution is desired. The remaining two approximate

methods discussed in this paper provide attractive

distinct alternatives to Chandrasekhar’s method for

the numerically-tractable approximate solution of

high-dimensional optimal control problems outside

of the MCE limit while bypassing open-loop model

reduction.

The Adjoint of the Direct-Adjoint (ADA) algorithm

of Sect. 3 was first introduced in [18]. It was also tested

in [21] and [7]. Note also that the ADA method is a

finite-horizon formulation (though the horizon

selected may be taken as large), whereas MCE and

OSSI are infinite-horizon formulations.

As mentioned previously, the utility of using the

several least-stable of the stable Schur vectors of the

Hamiltonian Z of the LQR problem in order to

approximate the feedback gain K of the LQR problem

was explored in some depth in [1, 2]. The discovery of

the efficient oppositely-shifted subspace iteration

(OSSI) method of Sect. 4.2 to actually find these

Schur vectors in high-dimensional systems is intro-

duced for the first time in the present paper, and is

motivated by the ideas behind the MCE and ADA

methods.

The performance of explicit and implicit prototype

OSSI algorithms on a model low-order control prob-

lem (see Sect. 5) is encouraging; their performance on

high-dimensional discretizations of PDE control prob-

lems will be considered in future work.

As a matter of philosophy, the present work is the

result of an integration of the perspectives of

(a) the motivating fluid-mechanical applications,

which are characterized by significant eigen-

vector nonorthogonality and are thus not readily

amenable to accurate model reduction for the

purpose of feedback control design simply by

retaining select controllable and observable

eigenmodes,

(b) the optimization, control, and model reduction

problems, and how they are related, and

(c) the advanced numerical methods required to

approximate solutions to the problems in (b) for

large n, and how they may be combined and

extended.

The algorithms presented in this article for the

feedback control of complex systems with

n�Oð106Þ provide an attractive alternative to the

two-step approach typically used, as described in the

introduction. These algorithms arise, and may be

further refined, only via an integration of three distinct

and often unrelated traditional disciplines: system

modeling, control theory, and numerical methods.
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