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Abstract Three algorithms for efficient solution of
optimal control problems for high-dimensional sys-
tems are presented. Each bypasses the intermediate
(and, unnecessary) step of open-loop model reduction.
Each also bypasses the solution of the full Riccati
equation corresponding to the LQR problem, which is
numerically intractable for large n. Motivation for this
effort comes from the field of model-based flow
control, where open-loop model reduction often fails
to capture the dynamics of interest (governed by the
Navier—Stokes equation). Our minimum control
energy method is a simplified expression for the
well-known minimum-energy stabilizing control feed-
back that depends only on the left eigenvectors
corresponding to the unstable eigenvalues of the
system matrix A. Our Adjoint of the Direct-Adjoint
method is based on the repeated iterative computation
of the adjoint of a forward problem, itself defined to be
the direct-adjoint vector pair associated with the LQR
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problem. Our oppositely-shifted subspace iteration
(OSSI, the main new result of the present paper)
method is based on our new subspace iteration method
for computing the Schur vectors corresponding,
notably, to the m < n central eigenvalues (near the
imaginary axis) of the Hamiltonian matrix related to
the Riccati equation of interest. Prototype OSSI
implementations are tested on a low-order control
problem to illustrate its behavior.

Keywords Computational mechanics - Optimal
control - Minimum-energy control - Subspace iteration

1 Introduction and background

A primary difficulty of the linear feedback control
problem is that its computational complexity scales
poorly with problem size. Though it is quite routine
with modern computers to perform numerical simu-
lations of complex systems with state dimension
n>0(10°), itis rare to see a feedback control problem
solved directly on systems with state dimension larger
than O(10%). Instead, the most common strategy is a
two-step approach: first apply some sort of “balanced”
open-loop model reduction to the system [16, 19], then
solve a control problem based on this reduced-order
model. While this two-step approach proves to be
successful for some problems, it is problematical for
others.
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The reason for this difficulty is twofold. First,
though a balanced truncation of a system accounts for
the controllability and observability of the various
eigenmodes of the system (i.e., the matrices B and C in
the system model), such a truncation is inherently an
“open-loop” model reduction strategy, and does not
account for the closed-loop control objective (i.e., the
matrices Q and R in the cost function).

The second issue is related to the condition of
eigenvector nonorthogonality of the system matrix
A. In systems characterized by this condition, the
eigenvalues of the system matrix, and the controlla-
bility and observability of the corresponding eigen-
vectors, do not tell the whole story, and very large
transfer-function norms and transient energy growth
(ak.a. “peaking”) are possible even if all of the
eigenvalues of the system are stable and “well
damped”. The mechanism for such transient energy
growth is the possibility of initial destructive inter-
ference of multiple nonorthogonal eigenvectors of the
system [4, 6]; this destructive interference can reduce
substantially in time (as different modes decay at
different rates), leading to substantial energy growth in
the system, before ultimate energy decay due to the
stability of the corresponding eigenvalues. The energy
growth via such mechanisms can be several orders of
magnitude, and can thus lead quickly to nonlinear
(a.k.a. “secondary”) instability even when the initial
perturbations on the system are quite small. Eigen-
vector nonorthogonality thus reduces the relevance of
eigenmodes considered on their own, and model
reduction strategies based on retaining certain open-
loop eigenmodes from the spectrum, but not others,
can lead to significant problems, as the full set of
eigenvectors necessary to capture the transient energy
growth mechanisms present in the system are gener-
ally not contained by a model that has been reduced in
such a fashion [4, 13].

Finally, the two-step approach described above
appears to be an unfortunate duplication of effort: an
algorithm with the complexity of an eigenvalue
problem is first used to reduce the order of a model,
then another algorithm with the complexity of an
eigenvalue problem is used to solve a control problem
based on this reduced-order model. The central idea of
the present paper is to consider control formulations
which solve one such eigenvalue problem, not two.
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1.1 Brief review of the optimal control problem

As a point of reference for the derivations in the
sections to come, it is necessary to review concisely
the key equations and standard methods of solution of
the optimal control problem (written here in its
simplest form, which is sufficient for the discussion
that follows). This background material is broadly
known [3, 5, 16], and is leveraged heavily in the
following form in the sections that follow. In short, we
seek to minimize a finite-horizon cost function

J(x(u),u) = %/OT(XHQX + u”Ru) dt

1 (1
+5 x?(T)Qrx(T)

where 0>0, R >0, Q7 >0, and ()H denotes the
conjugate transpose, and where the state x = x(u) is
related to the control u via a linear (or, linearized)
time-varying (LTV), possibly complex system

dx/dt = Ax+ Bu with x(0) = xo. (2a)

Toward this end, we may define an adjoint field related
to the optimization problem of interest,

—dp/dt = A"p + Ox with p(T) = Qrx(T).
(2b)

For any initial condition X, the controlu on ¢ € [0, T
which minimizes J(x(u), u) may be found using (2a)—
(2b) by iterative state/adjoint computation, starting
from an initial guess u =0 on ¢ € [0,7] and at each
iteration updating the control u (using, e.g., a conju-
gate gradient or BFGS method) based on the gradient

DJ(x(u),u)/Du = B”p + Ru, (2¢)

computed using the adjoint field p.

To verify the relevance of the adjoint equation (2b)
for the minimization of J(x(u),u) in (1) when x is
related to u by (2a), consider a linear perturbation
analysis of (1) and (2a): replacing u+« u+w’,
X «—x+X, and J «— J +J' and keeping all terms
which are linear in the perturbation quantities gives

T
J= / ("X + u'Ru') di + X (T)OrX(T)  (3a)
0
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and a linear evolution equation for x’:
Lx'=Bd  with x'(0)=0 (3b)
where L=d/dt — A. (3¢)

Defining the inner product (a,b) = fOT a'’b dt, we may
express an adjoint identity

(p, Lx') = (L7p,X) +b. (3d)
Using integration by parts, it follows that

LY = —d/dt —AH, b= pHX’\,:T - pHX/|r:O'

(3e)

Using L£* to define an appropriate evolution equation
for p [which is equivalent to (2b)],

L'p=0x with p(T) = Qrx(T), (3f)

and substituting both (3b) and (3f) into the identity
(3d) allows us to rewrite (3a) as

T Trpj1*
J’:/ [BHp+Ru]Hu’dt:/ [D_u] o' dt,
0 0
(3g)

from which the gradient in (2c¢) is readily identified.
Rather than using an iterative vector-based method
tofindtheuont € [0, T] to minimize J(x(u), u) for the
initial condition Xy, leveraging (2a)—(2c) as described
above, we may instead enforce the condition that
DJ(x(u),u)/Du = 0 directly, thus reducing (2¢) to

u=—R"'Bfp. (4)

Substituting this condition into (2a) allows us to
rewrite the two-point boundary-value problem
(TPBVP) for the state/adjoint pair {x, p}, as listed in
(2a)—(2b), in the convenient combined matrix form

Ao R |
e e

with initial and terminal conditions

X = X, att =0,
{ N (5b)
p = 0rx att =T,

which may be solved for arbitrary initial conditions X
by the sweep method: assuming a relation exists
between the state vector x and adjoint vector p such
that

P= WX7 (SC)

inserting this assumed form of the solution into the
combined matrix form (5a) to eliminate p, combining
rows to eliminate dx/dt, factoring out x to the right,
and noting that this equation holds for all x, it follows
that the matrix W(f) > 0 itself obeys the differential
Riccati equation (DRE)

—dW(t)/dt =A"W(t) + W(1)A

. (5d)
— W()BR'BIW(1) + 0

with terminal conditions
W(T) = Qr. (Se)

The solution W(f) of the DRE (5d)-(5e¢) may be
determined using any of a wide variety of well-known
time marching methods, such as any of those in the
Runge-Kutta family. By (4) and (5¢), the control may
then be determined according to the feedback rule

u=K(t)x where K(t)=-R'BYW(r). (5f)

Taking the limit as 7 — oo, assuming {A, B, O, R}
are constant and thus the problem is linear time
invariant (LTI), the DRE (5d) reduces to the contin-
uous-time algebraic Riccati equation (CARE)

0=A"W + WA — WBR™'BW + Q. (6a)
The solution W > 0 of the CARE may be found [12]

by taking an ordered Schur (or eigen)' decomposition
of the Hamiltonian matrix” Z in (5a):

Z=vrv! (6b)
where
w1 [0l
V:[P*}: vV v x|,
b (6¢)

i X!
VvV = il
)

and the eigenvalues of Z on the main diagonal of the
upper triangular (or diagonal) matrix 7 are enumerated

' Numerically, the Schur decomposition is the method of choice
for large-scale problems. In the analysis presented in Sect. 2,
however, it is more convenient to consider the eigen
decomposition.

2 A Hamiltonian matrix of this form satisfies a symmetric root
property: for every eigenvalue of Z in the LHP, A, there is a
corresponding eigenvalue of Z in the RHP, —1*, where (-)
denotes the complex conjugate.
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such that the LHP eigenvalues appear first, followed
by the RHP eigenvalues (that is, we assume that Z has
no eigenvalues on the imaginary axis). Defining
y=V~ly, it follows from (5a) and (6b) that
dy/dt = Ty. The stable solutions of y are spanned
by the first n columns of T (that is, they are nonzero
only in the first n elements of y). Since v = Vy, it
follows that the stable solutions of v are spanned by the
first n columns of V. To achieve stability of v via the
relation p = Wx for each of these directions, denoted
vl and decomposed as shown above, we must have
p' = Wx/ fori = 1...n. Assembling these equations in
matrix form, we have

L L
P p .- pP'| =
o .

(6d)

= P=WX = W=p°Px" (6e)

In order for this equation for W to be uniquely
solvable, X must be nonsingular. Note also in this
formulation that the evolution of v in (5a) is restricted
by the relation p = Wx [i.e., noting (4) and (5f), by
u = Kx] to the space spanned by the stable eigenmodes
of the matrix Z, and that the (LHP) eigenvalues
corresponding to these stable eigenmodes of Z are
exactly the eigenvalues of the closed-loop system
matrix (A + BK).

1.2 Chandrasekhar’s method

The DRE of interest for W = W,, in the optimal
control problem is given in (5d), and the correspond-
ing expression for the feedback gain matrix K = K«
is given in (5f). If n > m, which is typical in high-
dimensional systems, then solving a Riccati equation
for the enormous n X n matrix W only to extract a
transformed narrow “slice” of this matrix to deter-
mine the m X n matrix K is grossly inefficient.
Chandrasekhar’s method [11] addresses this ineffi-
ciency in a clever way, by simultaneously solving an
evolution equation for a low-rank factor F(¢) of (dW /
dr), and another evolution equation for K(#). Towards
this end, define

dW(t)/dt =F,(t)F(t) — Fo(t) F (1) = F(t) HF" (1)
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where

I 0
F=(F F,), H_<0 1>,

and the number of columns of the factors | and F, are
the number of positive and negative eigenmodes of
(dW [/ dt), respectively, retained in the approximation.
Differentiating (5d) with respect to time and inserting
dW /dt = FHF" assuming {A, B, Q, R} are LTI, it is
easily verified that the following set of equations are
equivalent to (5d), but much cheaper to compute if
both K and F each has a relatively small number of
columns:

dK(1)/dt = —R™'B" F (1) H F" (1),
dF(r)/dt = —[A + BK(1)"F(z),

with terminal conditions

K(T) = -R'B"Qy,

F(T)HF"(T) =aw(t)/dt| _,,

where dW /dt|,_; is determined from the original DRE
(5d) evaluated at t = T, and F(T) is determined by its
factorization. Chandrasekhar’s method may be used to
approximate the (time-accurate) solution of the DRE
(5d), or simply marched to steady state to approximate
the solution of the corresponding CARE (6a).

2 MCE: minimum control energy stabilization

Selecting Q = el, Qr = 0, and taking any R > O in the
derivation summarized in Sect. 1.1, and then taking e
small, puts the dominant weighting on the control
effort term (u”Ru) in the cost function J in (1). The
solution of the optimal control problem on the infinite
horizon (T — o0) in the limit that ¢ — 0 is referred to
as the minimum energy stabilizing control feedback.
Such feedback applies as little control effort as
possible in order to make J finite; in other words,
control applied in the ¢ — 0 limit leaves those modes
of the system which are already stable alone, and
swings the unstable eigenvalues of the system into the
LHP in a way that uses the minimum amount of
control effort. It is seen immediately from the form of
Z in (5a) that the stable eigenvalues of Z in this case
(with Q — 0) are given by the union of the
stable eigenvalues of A and the stable eigenvalues of
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—A" (that is, the reflection of the unstable eigenvalues
of A into the LHP across the imaginary axis); by the
last sentence of Sect. 1.1, this is where the eigenvalues
of (A+ BK) in the optimal control solution are as
well. This result is classical.

Since we know where the eigenvalues of the closed-
loop system matrix (A 4+ BK) are in this case, the
requisite feedback gain matrix K in this problem may
be computed by the process of pole assignment.
Applying this process to the equation governing the
dynamics of the unstable modes of the system in
modal form and transforming appropriately, this leads
to a simple expression for K, as shown below and
discussed in [14].

2.1 The pole assignment problem

Consider now the Hamiltonian matrix Z in (5a) and its
eigen decomposition in (6b). Defining a diagonal
matrix /. with the n desired (stable) eigenvalues A, of
the closed-loop system on the main diagonal, and the
corresponding eigenvectors of Z in the columns of V,
(which may be partitioned appropriately), the
stable components of the eigen decomposition of Z
satisfy
-1
[ A —BR BH} V.=V, A,
-0 —AH

z (7)
e v, [¥].

In a typical pole assignment problem, the closed-loop
eigenvalues 4. are prescribed in advance, then the
control feedback matrix K [equivalently, the off-
diagonal blocks of the matrix on the LHS of (7) in the
optimal control problem] is selected in order to put
these eigenvalues in the desired locations.

In the present pole assignment problem, however,
we happen to know both the closed-loop eigenvalues
/. and the off-diagonal blocks of Z in (7); all that
remains is for us to compute the corresponding
eigenvector matrix V.. Exactly as in (5f) and (6e),
once these eigenvectors are calculated, the desired
feedback rule is given by

u=Kx with K=-R'BfwW (8a)

where W =PX!. (8b)

Multiplying out (7), it follows immediately that

AX —BR7'BiP = XA, (9a)

—Q0X — AP =PA.. (9b)
Solving (9b) for X and substituting into (9a) gives

AQ ' (A"P + PA.) +BR'BP

10
=Q '(A"P+ PA) A, (102)

and
0X = —(A"P + PA,). (10b)

Note (10a) is linear in the unknown matrix P. Once a
nonsingular P is obtained from this equation, calcu-
lation of X is trivial using (10b) or, equivalently, (9a).

2.2 Simplification of (8)—(10) in modal
coordinates

It is straightforward to transform the original system
(2a) into a modal representation and then to truncate
appropriately in order to develop a model of just the
unstable system dynamics. Performing an ordered
eigen decomposition A = SAS~!, in which the unsta-
ble eigenvalues of A appear on the main diagonal of A
first, followed by the stable eigenvalues of A,

Ay 0
=[5 )

and multiplying (2a) from the left by S~!, we have
dy/dt = Ay +Bu where y=S"'x, B=S"!B.
(11)

Note that A is diagonal. Denoting the inverse of the
eigenvector matrix as® Y¥ = §~!, the portion of (11)
governing the unstable dynamics of the system may
easily be written as

dy"/dt = A" + Bu (12)
where
Y=Y, Y, B:[I;“], B, =Y"B,

H
=Y,/

3 The columns of Y are referred to as the left or adjoint
eigenvectors of A.

@ Springer
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The pole assignment process in the minimal-energy
stabilizing feedback control problem, as derived in
Sect. 2.1, can be simplified greatly when applied to the
equation for the unstable dynamics of the original
system in modal form, as given in (12). Assuming A has
p unstable eigenvalues, taking A= A,, B= B,
O=¢e,R>0, and* A, = 7/15 in (10a), partitioning
P into its respective columns, P = p' p> ... p”,
and applying the above relationships, it follows after
some simplifications’ that (10a) may be written in the
simple form

[eB,R'BY + Dlp*2Mp* =0 (13)
fork=1,...,p, where D = diag(d\", . ..,dV) with

4% :{(iiwv,’;)(if — i) for ik

14
0 for i=k, (14)

where, again, (-)* denotes the complex conjugate.
Thus, the vectors pk lie in the nullspace of M}, and may
be found by the process of Gaussian elimination,
manipulating My to row-echelon form. In the limit
€ — 0, M} approaches a diagonal matrix with a zero in
the k’th diagonal element, and thus® P — I. To avoid
taking the difference of two quantities which are
almost equal in the computation of X, we return to
(9a), which, in the ¢ — 0 limit, may be written in the
form

AX +XA" =B, R 'B"2C (15a)

With P = I, it follows from (8b) that W = X!, and
thus, by (8a), the minimal-energy feedback control
that stabilizes (12) in the € — 0 limit is given by u =
K" where K = —R™'B”X~1. Writing this feedback in

4 We take A, = 7/15 following the first paragraph of Sect. 2,
noting that all eigenvalues in A, are unstable.

3 If A is diagonal, the product AV corresponds to scaling the i’th
row of V by 4; for all i, whereas the product VA corresponds to
scaling the i’th column of V by 4; for all i.

% If all unstable eigenvalues of A are distinct, then dfk) # 0 for
i # k; P necessarily becomes diagonal in this case in the ¢ — 0
limit, and its columns may be normalized such that P — [. If
some of the unstable eigenvalues of A are repeated, then there
are other solutions as well. However, P — [ is a valid solution in
either case in the € — 0 limit.
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terms of the original state variable x, we have u = Kx
where K = KY#.

The solution for the minimum control energy
(MCE) controller derived above is now summarized:

Theorem 1 Consider a stabilizable system dx/dt =
AX + Bu where A has no pure imaginary eigenvalues.
Determine the unstable eigenvalues and correspond-
ing left eigenvectors of A such that YAA = A,Y"
(equivalently, determine the unstable eigenvalues and
corresponding right eigenvectors of A" such that
Ay, = Y, A"). Define B, = Y!'B and C = B,R™'BY,
and compute a matrix X with elements
xij = cij/ (4 + 4;). The minimal-energy stabilizing
feedback controller is then given by u = KX, where
K =—-R'Bix-YH

Note that any of a number of existing subspace
iteration methods (see, e.g., Sect. 4.1) may be used to
determine the unstable eigenvalues (that is, those
eigenvalues on the far right edge of the spectrum of
eigenvalues) and corresponding left eigenvectors of A;
the implicitly-restarted Arnoldi method [15] is a popular
choice.

2.3 Alternative derivation of the MCE method

The derivation of the MCE method given in Sects. 2.1,
2.2 is based on pole assignment in the Riccati equation
in the minimum control energy case. An alternative
derivation of this method based on analysis of the
corresponding state and adjoint vectors is now
presented; this alternative derivation foreshadows the
methods developed in Sects. 3 and 4, which are
similarly based on careful analysis of the state and
adjoint components of the Hamiltonian.

Taking Q = el in the limit that ¢ — 0, the Hamil-
tonian system (5a) may be written

d x| [A —-BR'Bf| x
E |:p:| - |:O _AH :| p ’ (163)
—— —~
v 4 v
which may equivalently be written
dx/dt = Ax+ Bu, u=—R'Bp, (16b)
dp/dt = —A"p. (16¢)

Due to the block triangular structure of Z, the
eigenvalues of Z in this limit are simply the union of
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the eigenvalues of A (that is, A, for k =1,...,n) and
the eigenvalues of —A (that is, —Jpfork=1,....n).
Let p be the number of unstable eigenvalues of A,
denote by s* the eigenvectors of A (that is, As* = /,;s),
and denote by y* the eigenvectors of A” (that is,
Afyk = J7y%); note that the y* are also known as the
left eigenvectors of A [that is, (y*)"A = J(y*)"'], and
that the y’ and s* vectors are orthogonal for i # k and
may be normalized such that

(y)"s" = Si. (17)

Assuming that A has no pure imaginary eigenvalues,
the n eigenvectors vf of Z corresponding to the
stable eigenvalues of Z are given, for k = 1,...,n, by

1 i R(k) <0
‘ Xk |: 0 :| 1 ( Lk) <V,
V== k (18)
p f .
|: k:| if %()Lk) >0
y
where, by the first block row of (16a),
tX = (A + 4;1)"'BR™' By, (19)
Let [, ={allk|R(Ak)<} and [,={allk|

R(4) > }. Expanding the current state X in terms of
the x* components of the stable eigenmodes v¥ given
in (18), and expanding the corresponding adjoint p in a
compatible manner, we have

X = Z Ska + Z fkdk, (203.)

kel kel,

P=> Yy (20b)
kel,

for the as-yet undetermined coefficients ¢, for k € I,
and d; for k € I, which we assemble into the vectors
c and d, respectively. Note in particular [in (20b)] that
the adjoint field p upon which the control u is based [in
(16b)] is itself based solely upon the coefficients dy. To
compute these coefficients, we simply premultiply
(20a) by (y' )H forall i € I, and apply the orthogonality
(17):

(yi)H{X = Z st + Z fkdk}

kel kel,

= (v)'x =Y ()"t

kel,

(1)

Premultiplying (19) by [(y))” (A + /;1)] results in
(yi)H(A + ;VZI) fk — (yi)HBR—lBH k7
and thus, since (y')”A = 2;(y")", it follows that

i\H pp—1pHk
ka _ (Y) ABR *B y éxik' (223)
/Li+lk

(¥)
Collecting the vectors y' for i € I, together as the
columns of a matrix Y, and noting the definition of the
elements of X in (22a), we may write (20b) and (21) in
matrix form as

p=Yd and Yix=Xd = d=X"'Y
and thus, by (16b),
u=Kx where K=-R'BPY,x 'Y  (22b)

as summarized in Theorem 1.

3 ADA: the Adjoint of the Direct-Adjoint

As described in the first paragraph (and verified in the
second paragraph) of Sect. 1.1, for any given X,
adjoint optimization of wu for minimization of
J(x(u),u) in (1) (taking Qr = 0) proceeds as indi-
cated in Algorithm 1; when this algorithm converges,
DJ(x(u),u)/Du = 0, and thus the following optimal-
ity condition holds:

u=-R'Bfp on tc[0,T]. (23)

The input to this problem is xg, and we will focus for
now on the output u at time ¢t = 0, which we denote
here uy. If x = x,,«; and u = u,,«; and we solve this
problem n times for n linearly independent values of x

(e.g., the n columns of I,.,), then we may write
[u(l) u} ug]:Ko[x}) X3 ... xg] (24)

and solve for Ky, thus determining the feedback gain
matrix K at time t = 0,

u(0) = Kox(0). (25)

Note also that (25) taken together with (23), evaluated
at t = 0, may be written

u(0) = [K3']"x(0) = [-BR™")"p(0). (26)
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Algorithm 1 Direct-adjoint problem for optimizing u,
framing (1) and (2a)-(2c) as a numerical algorithm (tak-
ing Qr =0).
Initialize ¢ = 0, u(t) = 0 on t € [0, T, and the tolerance €
loop
March dx/dt = Ax + Bu with x(0) = xo for t =0 — T
Compute J; = J(x(u),u) [see (1)]
if i >0 and (J; — J;—1)/Ji < € then break end if
March dp/dt = —AHp—Qx with p(T) = 0fort = T—0
Compute gradient D.J(x(u),u)/Du = B¥p + Ru
Update u via gradient-based algorithm (CG, BFGS, ...)
end loop

The approach described above requires n optimiza-
tions to set up (24), which may be solved to compute
the m x n matrix Ky. If n > m, it is much more
efficient to consider the adjoint of this problem, thus
leading to an algorithm requiring only m optimizations
to compute Ky, which can be achieved as described
below.

To frame the adjoint of the problem described
above in a manner analogous to the standard adjoint-
based optimization framework reviewed in (3a)—(3g),
we first introduce a bit of notation. Define

_|p | BRIBH  d/dt— A
y_[x] and E_[—d/dt—A“ -Q

(27a)

where O >0 and R > 0, and note that the converged
solution of the “forward TPBVP” (2a)—(2b) with (4)
and Q7 = 0, which may be calculated using Algorithm
1, may now equivalently be written

x(0) = xo,
p(T) =0.

[Note that, in (27a), we have arranged the variables
and equations appropriately to include the d/ dt
operator in the off-diagonal blocks of the linear
operator £, which simplifies and symmetrizes the
subsequent analysis. The antisymmetric bilinear form
in (27a) is also known as a symplectic product, and its
properties are expounded in the canonical-transfor-
mation theory of classical Hamiltonian mechanics.]
Defining as  before the inner  product

Ly =0 with { (27b)

(a,b) = fOT af’bdt, we may express the adjoint
identity

(¥,Ly) = (L'y,y) +b where y= E] (27¢)
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Using integration by parts, it follows immediately that
L* = L (that is, the state/adjoint TPBVP considered as
a whole is itself self-adjoint), and that

b= (I;HX - )ZHp)t:T - (ﬁHX - )ZHp)z:O‘ (27d)

[Note the permutation (that is, p” multiplies x,
whereas x multiplies p), which arises due to the
off-diagonal location of the d / dt terms in £.] We now
use L to define an appropriate adjoint equation
x(0) = Xo,
p(T) =0,

which may equivalently be written

L£y=0 with { (27¢)

dx/dt = AX+ B(—R™'B"p) with X(0) = X,
——

=u

(28a)
—dp/dt = A"p + O0x with p(T)=0. (28b)

By (27a)—(27b), this TPBVP is exactly the same as that
given in (2a), (2b), and (4), it is just written in different
variables, and has a different interpretation given to
the “input” x(0) and the “output” p(0). Thus, this
“adjoint TPBVP” may also be solved using
Algorithm 1.

The key to relate the solution of the “adjoint
TPBVP” (27e) to the “forward TPBVP” (27b) is the
adjoint identity (27c), which reduces upon substitution
of (27d), (27b), and (27¢) to

[6(0)]"x(0) = [%(0)]"p(0). (29)

Comparing (29) and (26), it is seen that, setting X(0) to
the first column of [~BR~'] and solving the adjoint
TPBVP (27¢) via Algorithm 1, the resulting value of
p(0) is just the first column of K, etc. Thus, after
solving the adjoint TPBVP (27¢) via Algorithm 1 just
m times (not n times!), the entire K, is constructed
directly. Further, for an LTI system and T sufficiently
large, K, approximates the LTI feedback gain K.

3.1 Interpretation of the ADA method

The optimality condition DJ(x(u),u)/Du = 0 relat-
ing the state x to the control u is linear, as it is given by
the first derivative of a quadratic cost function
J(x(u),u) with respect to u, where x is a linear
function of u via the state equation. The linearity of
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this problem is sometimes obscured by the fact that
this relationship is usually solved by considering a
quadratic matrix equation (the Riccati equation); the
purpose for introducing this quadratic matrix equation
is simply to convert the TPBVP for the vector x and a
supplemental vector p at the core of this linear
problem into an initial value problem for a matrix
W that relates these two vectors.

For low-dimensional systems, this quadratic initial
value problem for the matrix W is easy to solve (in the
infinite-horizon LTI case, leveraging eigen- or Schur-
based analysis, as reviewed in Sect. 1.1). For high-
dimensional systems, however, computation of W is
intractable, and in certain situations it is useful to
reconsider to the optimality condition in its original
linear form.

Since the optimality condition is linear, it may be
considered in one of two directions, a “forward”
analysis (itself based on iterative solution of a direct/
adjoint formulation), which as shown in Sect. 1.1
comes up naturally when examining the control
problem, and the “adjoint” of this analysis. If the
state X and the control u are roughly the same
dimension, both of these directions have similar
computational expense. However, if the dimension
of the state x is significantly larger than that of the
control u, the “adjoint” analysis of this problem is
significantly more efficient computationally.

Finally, since the state/adjoint pair at the core of the
“forward” analysis is itself a self-adjoint system,
exactly the same numerical machinery may be used for
the “forward” and “adjoint” analyses, it is only the
inputs and outputs to these analyses that change.

4 OSSI: oppositely-shifted subspace iteration

“Subspace iteration” refers to the core framework of a
class of iterative eigenvalue solvers designed to
extract m < n eigenvalues, and the corresponding
eigenvectors or Schur vectors, from an n X n matrix A
when n > 1. Two modern extensions of such solvers,
dubbed Arnoldi (for general matrices) and Lanczos
(for symmetric matrices), are today commonly applied
to sparse systems with 7> O(10°). There are a wide
variety of well-established techniques available for
accelerating the convergence of such algorithms,
including deflating and implicit restarting, which for
brevity will not be expounded upon here; some

reviews of this fascinating and now fairly mature
subject include [8, 15, 17, 20, 22].

In Sect. 4.1, we describe two “prototype” subspace
iteration algorithms, including an explicit form and an
implicit form, which demonstrate the essence of how
such algorithms may be used to extract a basis of the
eigenvectors and Schur vectors corresponding to the m
most unstable eigenvalues of a matrix A. It is
important to note that the explicit form considered
needs access solely to a subroutine which computes
the matrix/vector product Av; it does not need access
to A~!, nor even to A itself. This is useful in many
complex applications with n > 0(10°), such as those
arising in the field of flow control, where a subroutine
which effectively computes the matrix/vector product
Av is often all that is available. An implicit form is also
considered, which is built around a subroutine
designed to efficiently solve (1 +hA)x =v for x,
which is also sometimes available and numerically
tractable (and, when it is, can be leveraged to
significantly speed convergence of the subspace
iteration algorithm when A is stiff, meaning that it
has a large range of eigenvalues reaching far out into
the LHP, as is common in the spatial discretization of
PDE systems [9]). Significantly, many such implicit
solvers are only approximate, such as those based on
incomplete Cholesky factorization (for symmetric A),
or those on based on iterative solvers (such as the
multigrid algorithm) when such solvers are not driven
fully to convergence.” Note also that the subroutine
which computes the matrix/vector product Av in the
explicit case, or the subroutine which solves (1 +
hA)x = v for x in the implicit case, is called only
m times per iteration® in the core algorithms presented;
this is important because these subroutines are typi-
cally computationally expensive.

In Sect. 4.2, we demonstrate how a simple modi-
fication, dubbed “opposite shifting”, of these proto-
type subspace iteration algorithms may be used to
target the central eigenvalues (that is, those near the
imaginary axis) of a matrix Z of Hamiltonian structure.
The resulting oppositely-shifted subspace iteration

7 In future work, it would be valuable to consider the myriad of
subtle issues that arise when coupling the implicit OSSI
algorithm developed in Sect. 4.2 with approximate inverses
such as those arising in the multigrid setting.

8 That is, once per column of V being computed [see (31b) and
(39b)].
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(OSSI) algorithms are again developed in prototype
explicit and implicit forms, and are quite similar to the
explicit and implicit forms of the standard subspace
iteration algorithms upon which they are based. The
OSSI algorithms proposed again depend only on the
matrix/vector product Av in the explicit case, or on the
(possibly, approximate) solution of (1 + hA)x = v for
x in the implicit case (that is, they do not require direct
access to, or storage of, A or A’l). Once the simple
“opposite shifting” modification is made, the wide
variety of techniques available to accelerate the
convergence of such algorithms are again directly
applicable. (For brevity, we will not focus on such
acceleration techniques here.)

Finally, in Sect. 5, we discuss the application of
these prototype OSSI algorithms to the approximate
solution of large eigenvalue problems arising in
optimal control formulations while bypassing the
preparatory (and, sometimes, problematical) step of
open-loop model reduction, and briefly compare these
algorithms to the other strategies for the control of
large-scale systems discussed previously in this
article.

4.1 Prototype subspace iteration algorithms

To understand the basic idea of standard subspace
iteration methods, consider first the simple ODE

dv/dt = Av, (30)

and order the eigenvalues /; and corresponding eigen-
vectors s’ of A by the real parts of /; (that is, /; is the
eigenvalue of A with the greatest real part, and /,, is the
eigenvalue of A with the least real part; note that high-
dimensional ODE systems arising from the spatial
discretization of diffusive PDE systems typically have
just a few unstable eigenvalues). The utility of
considering this ODE is that, as it evolves, it prefer-
entially amplifies the component of v in the direction
s! as compared with the other components of v.

4.1.1 Subspace iteration via EE discretization of (30)
Based on the above discussion, we are motivated to

march (30) with a simple explicit Euler (EE) numer-
ical discretization,

V= (T + h AWV = vF + hAVF, (31a)
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while using as large a timestep h as possible to
accelerate the relative growth of the component of v¢
in the direction s' from one timestep to the next. Since
the EE method is conditionally stable,’ it is actually
the most stable eigenvalue, 4,, that typically limits
how large a timestep & can be taken in this march while
not encountering the “numerical instability” caused
by |1 + h4,| approaching and exceeding 1.

To find a basis for the first m > 1 eigenvectors and
Schur vectors, rather than propagating a single direc-
tion v as in (31a), we instead simply propagate a set of
directions assembled as the columns of a matrix V,

V—V+hAV. (31b)

At the end of each iteration in the subspace iteration
algorithm, we orthogonalize and normalize the
columns of V via the QR decomposition using a
Modified Gram-Schmidt method performed in place'®
[8], thus assuring that the m directions so generated are
orthogonal:

V=QR, V<Q, X—RIR" (32)

where the columns of the updated V are orthogonal-
ized and both R and the updated 2 are upper triangular.

An alternative motivation for (31b) is a bit more
algebraic: for sufficiently small 4, the largest (in
modulus) eigenvalues of the shifted matrix (I + hA)
are (1 4 hi;) through (1 + hl,,), and the correspond-
ing eigenvectors are, again, s' through s™. Thus, the
difference equation (31b), as it evolves, preferentially
amplifies the components of V in the directions s'
through s™ as compared with the other components of
V. For sufficiently small /4, the next largest eigenvalue
of I+ hA)is (1 + hlyy), and the rates at which the
components of V in the (resolved) directions s'
through s” emerge over the components in the
(unresolved) direction s"*! are

1+ hin

1+ hiy
_— — 33
‘ 1 +himi1| (33)

1+ Moy

through ‘

° Recall that the EE method is stable when all eigenvalues 4,
scaled by h, are contained in a unit disk centered at —1 in the
complex plane of hA.

10 That is, in a manner immediately replacing V with Q.
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whereas the rate at which the components of V in the
direction s"*! are amplified over the components in
the direction s” is

’1 + hlpy1 (33b)

1 4 hiy

We desire to select i as large as possible, in order to
make the ratios in (33a) large, without making % so
large that the ratio in (33b) exceeds 1. As the /; are
typically unknown, optimizing the value of & for a
given problem in this manner often takes a modest
amount of trial and error."'

Another key step of a subspace iteration algorithm
is to extract the eigenvalues corresponding to the
emerging eigenvector subspace. There are a few
different options for this. In the case that m = 1 and
A is symmetric, we may simply use the Rayleigh
quotient (see [8], p. 408): normalizing v at the end of
each iteration such that vf'v =1 and denoting our
estimate of the eigenvalue corresponding to emerging
eigenvector in v as o, this may be written

c=v1Av. (34a)

As v converges towards a (normalized) eigenvector,
the value of ¢ computed in this manner converges
quickly towards the corresponding eigenvalue.

In order to approximate the eigenvalues of the
emerging subspace in the more interesting case that A
is nonsymmetric and/or m > 1, we may follow a
similar approach: orthogonalizing V at the end of each
iteration such that V¥V = I, we impose

>=vaAv. (34b)

To motivate this form, consider what happens when we
upper triangularize the (m x m) matrix X at each step of
the subspace iteration algorithm via the computation
of an ordered Schur decomposition ([8], p. 313)

" Various approaches are available to “stretch” the eigenvalue
spectrum of A in order to mitigate this timestep restriction. For
example, one may replace the matrix A to which the iteration is
applied with an appropriately-designed low-order polynomial
(of order p) in A; such a polynomial has the same eigenvectors as
A. This approach helps to increase the gap between /,, and 4,1
[see (33a)] while decreasing the interval between Z,.; and 4,
[see (33b)], both of which facilitate faster convergence.
However, this approach also increases the number of function
evaluations Av that must be calculated per iteration by a factor of
P, and is thus generally not worthwhile unless the range of the
eigenvalue spectrum of A is, a priori, known fairly accurately.

T=TTT", (35a)

where T = T, is upper triangular, with its diagonal
elements arranged in order of decreasing real part, and
U = U, is unitary. [In the case that A is real, a real
Schur decomposition ([8], p. 341) should be used
instead at this step; rather than generating a complex
upper-triangular matrix 7, the real Schur decomposi-
tion generates a real matrix T which is block upper
triangular, with 1 x 1 blocks (corresponding to the
real eigenvalues) and 2 x 2 blocks (corresponding to
the complex-conjugate eigenvalue pairs) on the
main diagonal.] Taking (34b) together with (35a) then
gives

UTT" =viAV = T=W0)"A(VD).
(35b)

Note that updating

V— (VU) and X<T (35¢)

changes neither the subspace spanned by the columns
of V, nor the fact that V is unitary, nor the eigenvalues
of X, which in this triangularized form appear on the
main diagonal (or, in the real Schur case, may be
derived from the blocks on the main diagonal).
Further, as V converges towards the first m Schur
vectors of A via this process, 2 converges towards the
m x m leading principal submatrix of T in the full
Schur decomposition A = UTU".

For small n, overall convergence is not significantly
affected if the Schur decomposition of X is deferred
until after the end of the main loop; in this case, X is
left in a full form as the iteration proceeds, and
V converges toward an essentially arbitrary basis of
the first m Schur vectors.

Note in (33a) that leading Schur vectors tend to
converge faster than do subsequent Schur vectors. It is
generally wise to include the Schur decomposition
step (35a)—(35c), which triangularizes X and “un-
scrambles” the emerging Schur vectors in V, within
the main iteration loop of the subspace iteration
algorithm for large problems (though perhaps not at
every single iteration step), as this step helps to
separate the convergence of each of the Schur vectors
being computed. This separation is useful for two
reasons. The first is that it is sometimes necessary to
terminate the subspace iteration algorithm before the
last few Schur vectors being computed fully converge.
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The second is that, as the first few Schur vectors begin
to converge, the problem being worked on may be
successively deflated (that is, the converged Schur
vectors may be removed from V), as these converged
vectors do not need to be worked on further by the
subspace iteration algorithm as it proceeds.'?

As a significant refinement, we may apply a small
shift of —(hVZX) to (31b), thus marching

Ve Vih(AV - V). (36)

This shifted form has the same essential effect as
marching (31b) (that is, preferential focusing of the
columns of V in the direction of the leading Schur
vectors of A), with the benefit of ensuring that the
update to V itself approaches zero as V approaches a
basis of a set of Schur vectors, and thus (AV — V)
approaches zero. This is clearly seen in the m = 1
case, where this shift makes the amplification of s at
each iteration unity, and (for sufficiently small &) the
amplification of all other directions smaller. In the
m > 1 case, the effect of this small shift (hVX) can be
thought of in terms its effect on the convergence of the
individual columns of V: the shift in the first column
makes the amplification of s! at each iteration unity as
in the m = 1 case, the shift in the second column
makes the amplification of s> at each iteration unity,
etc. Geometrically, considering the convergence of the
i’th column of V, we may draw a circle in the complex
plane corresponding to the amplification of s’ due to
the iteration; for sufficiently small /4, the radius of this
circle is close to unity, and the amplification of all
remaining directions s'"! through s" are inside this
circle. The small shift (hVY) simply adjusts the radius
of this circle to be exactly unity. Note that, though this
refinement is not necessary in the standard subspace
iteration approach, it is useful when we extend this
approach in Sect. 4.2.

In summary, the iterative explicit subspace iteration
algorithm, defined by (31b) or (36) (we use the latter),
(32), (34b), (35a), and (35¢), and implemented in an
efficient order in Algorithm 2, converges (if & is

12 Note, however, that those vectors still being worked on in
V still need to be orthogonalized at every iteration against the
converged Schur vectors that have been removed from the
iteration [10].
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sufficiently small) toward the leading components of
the Schur decomposition

AV=VZ, (37)

determining a unitary V = V,,,, and upper-triangular
2 = X,xm»> With 2 through 4, on the main diagonal of
2. The residual r(i) = norm(AV — VZX) measures
the degree to which (37) is not yet satisfied. Note that it
is trivial to now compute the corresponding compo-
nents of the eigen decomposition of A via the eigen
decomposition (if it exists) of 2:

T=SAS"' = AS=s4,

where S = S,x,, = VS and A = A,,,, is diagonal.
4.1.2 Computational efficiency

Note finally that the orthogonalization and Schur
decomposition steps in the main loop of Algorithm 2
may be made a bit more efficient by, instead of
computing the Q R decomposition of V, computing the
Cholesky decomposition
Z=GG" ofthe (m x m) matrix Z= V"V,

(38a)
noting that, by construction, G is lower triangular.
Also,

V=QR & Q=VR', (38b)

and thus

ViV =R"Q"QR=R"R = R=G". (38)

As the solution of (37) is approached, it follows that
A(VG™) = (vG ™) (G" 2 G™H). (38d)
We may now compute the Schur decomposition [cf.
(35a)]

GG Hy=UTT", (38e)
then update appropriately [cf. (35¢)]

V—VG"U) and X —T. (38f)
After the computation of (A V), the computational cost
of which varies from problem to problem, the

computational cost per iteration (when n > m > 1)
following the Q R-based approach, as shown in

Algorithm 2, is ~ 8nm? flops. In contrast, the
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Algorithm 2 Prototype explicit subspace iteration al-
gorithm to find the m least-stable eigenvalues (on the
main diagonal of X'), the corresponding Schur vectors
(in V), and the corresponding eigenvectors (in S) of an
n X n matrix A for n > m > 1.

determine [n,n] = size(A)

set m as the number of eigenvalues to compute

set V = randn(n, m), orthogonalize V/

for i =1 to imax do

set L=AV ............... {flops: problem dependent}
set X =VHL {~ 2nm? flops}
set L— L—VX ... {~ 2nm? flops}

set (i) = norm(L)
set V «— V + hL
compute V = Q R decomposition, ..... {~ 2nm? flops}
set V « Q, Y — RXR !
compute ¥ =U T [0 (Schur /real Schur) decomp.,
set ST, Ve—VU ............ {~ 2nm? flops}
if r(i¢) < e then break end if
end for
{optional: compute eigenvectors S of X; set S =V S}

Cholesky-based approach replaces the following two
expensive steps:

e computation of the V = QR decomp. { ~2nm?
flops},
e computation of VU { ~2nm? flops},

with the following two expensive steps:

e computation of VZV { ~nm? flops},
e computation of V(G HT) { ~2nm? flops}.

Thus, neglecting the computational cost of the com-
putation of (AV), which is identical in the two
approaches, the Cholesky-based approach is 12.5 %
cheaper (~ 7nm? versus ~ 8nm?).

4.1.3 Subspace iteration via IE discretization of (30)

Due to the restrictions on % inherent to the EE-based
approach applied to stiff systems, we are also moti-
vated to consider marching (30) with an Implicit Euler
(IE) numerical discretization [cf. (31a)],

(I — hAV! = vk, (39a)

written again in a form that propagates a set of
directions assembled as the columns of a matrix V [cf.
(31b)],

(I —hA)VH! = VE (39b)

which at each k may be solved for VA*!. As the IE
method is L stable [9], 2 may be made large without
encountering numerical instability in this form of the
march, which significantly improves the convergence
of this IE-based form with k as compared with the EE-
based form discussed previously. Note, however, that
increasing i will also generally slow the convergence
of an iterative solver used to solve (39b) for any given
k, as it reduces the diagonal dominance of the matrix
(I — hA). Increasing h also has a diminishing effect on
the convergence of the Schur vectors with k as
h becomes large.

One (again, of many) options of approximating X at
each step in this case is given by premultiplying (39b)
by (VK)", applying (V¥)?VF = I, and setting A V**!
equal to VA1 XK1 [cf. (34b)], leading to:

T = {1 = [(VHTVE T . (39)

As a refinement, we may apply a small shift (hVX) to
(39b) at each iteration [cf. (36)], thus marching

VK pA VI = VR pvE s, (39d)

This has the same essential effect as marching (39b),
with the benefit of ensuring that the update to V
itself approaches zero as V approaches a basis of a set
of Schur vectors, and thus (AV — VZX) approaches
ZEero.

The other steps in the IE-based approach are
analogous to those in the EE-based approach, and
are implemented in Algorithm 3; note that imax and e
define the stopping criterion of both algorithms. Note
that an approximate form for the residual r(i) =
norm(A V — V X) is implemented in this case in order
to avoid an (expensive) computation of A V; strictly
speaking, the approximate form implemented is valid
only if % is sufficiently small that IE acts like EE, but
this form is found to be adequate even for larger 4, as it
is only used to check convergence.

4.2 Prototype OSSI algorithms

Our primary interest in subspace iteration methods in
this paper is on how to extend such methods, as
illustrated above in simplified prototype form, to find
the central eigenvalues of a very large [e.g,
n>0(10°)] Hamiltonian matrix
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Algorithm 3 Prototype implicit subspace iteration al-
gorithm [cf. Algorithm 2].

determine [n,n| = size(A)
set m as the number of eigenvalues to compute
set V = randn(n, m), orthogonalize V/
for i = 1 to imax do
solve (I —hA)L =V for L {flops: problem dependent}

set X=[I—(VHL)"Y/h ... {~ 2nm? flops}
set L— L—hLY ..................... {~ 2nm? flops}
set r(i) = norm(L — V))/h ..{note: approximate form}
compute L = Q R decomposition, ..... {~ 2nm? flops}

set L Q, ¥« RYR™?
compute ¥ =U T [0 (Schur/real Schur) decomp.,

set ST, V—LU ... {~ 2nm? flops}
if r(i) < e then break end if
end for

{optional: compute eigenvectors S of X; set S = V S}

A —BR'BH

Z:
-0 —_AH

(40a)
Such matrices arise, e.g., in optimal control problems
[see (5a)], and have an eigenvalue structure that is
symmetric across the imaginary axis.

The key idea is to determine the least-stable LHP
Schur vectors V (i.e., the Schur vectors of Z corre-
sponding to eigenvalues with negative real part that
are closest to the imaginary axis), to partition these
closed-loop Schur vectors into their state and adjoint
components

X
V= [ P} , (40b)
then to approximate, leveraging the Moore—Penrose
pseudoinverse X of the matrix X, the resulting
feedback gain matrix [cf. (5f) and (6e)]:

K = —R'B¥(PX™). (40c)

The motivation for this idea is that, if the (neglected)
closed-loop Schur vectors of Z are well damped, they
likely play a reduced role in the full computation of K.
Note that this idea was recently explored by [1, 2] and
found to be promising. Use of this closed-loop
reduction technique might in practice, for n > 1,
prove to be superior to the use of open-loop model
reduction strategies, which typically fail to account for
the control objective in the model reduction process.
Note again that, to date, all implementations of
subspace iteration methods and their variants that we
are aware of converge to extremal eigenvalues.
Convergence to the central eigenvalues of Z (that is,
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those eigenvalues near the imaginary axis), using
existing algorithms, requires a code that computes
Z~ v (or, via the Matrix Inversion Lemma, several
calculations of A~'x), which is typically prohibitively
slow. We thus seek a method to calculate the central
Schur vectors of Z without access to the computation
of either Z7'v or A~'x. We have discovered a
remarkably simple modification to Algorithms 2 and
3 which accomplishes this. To explain this modifica-
tion, consider first what happens when, as in the MCE
case, one of the off-diagonal terms of Z is zero. In this
case, Algorithm 2 or 3 may be applied to compute

(a) the least-stable eigenvalues of A, and
(b) the least-stable eigenvalues of —A".

For the control of a system with a few unstable eigenval-
ues and many stable eigenvalues extending into the LHP,
we need to know (a), which are the eigenvalues of A near
the imaginary axis, but, rather than calculating (b), we
instead need to find the most-stable eigenvalues of —A*
(that is, the eigenvalues of —A near the imaginary
axis). It is a straightforward matter to find these
eigenvalues simply by changing the sign of the related
march of P (that is, in the march related to —A").
The eigenvalues of Z vary continuously as its
elements are varied. If both Q and BR™'BY are
nonzero but the norm of their product is small (that is,
a modest generalization from the MCE limit), appli-
cation of a slightly modified form of Algorithm 2 or 3
to Z, as motivated above, returns those eigenvalues of
Z near the least stable eigenvalues of A together with
those eigenvalues of Z near the most stable eigenvalues
of —A", which are precisely the eigenvalues we seek.

4.2.1 OSSI via an EE discretization

The idea laid out above is implemented in Algorithm
4, which is essentially just Algorithm 2 applied to a
matrix Z with the block structure given in (40a), with
the sign modification on the shift discussed above and
carefully-chosen formula implemented for the com-
putation of 2, discussed below. In principle, the update
to X and P may be split into two parts, with a positive
sign in the shift of X, and a negative sign in the shift of
P:

X — X+hX,, P—P—hP (41a)
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Algorithm 4 Prototype explicit oppositely-shifted
subspace iteration (OSSI) algorithm for computing the
least-stable of the LHP eigenvalues and the correspond-
ing Schur vectors of a Hamiltonian matrix Z.

determine [n,n] = size(A)
set m as the number of eigenvalues of Z to compute
set X = randn(n, m), P = randn(n, m)
orthogonalize X
for : = 1 to tmax do
set X1 = AX — (BR™'BH)P, P, =-QX - AHP
set ¥ = XHX,
set X4 «— X1 — XY, P — P, —PXY

1, P s — Xl

set (1) = norm( [PJ )

set X «— X + hX1, P« P — hP; {opposite shift!}

compute X = @ R decomposition,
set X «— Q, P« PR™' Y« RXR!

compute X iU TU" (Schur/real Schur) decomp.,
set ¥ —T, X — XU, P—PU

if r(i) < e then break end if

end for

where

X, =AX — (BR™'B")P, P, = —0Xx — A"P.
(41b)

To make such an iteration consistent, we may, in a
manner analogous to that introduced in (36), apply
small shifts to (41a) by marching

X—X+hX, —XX), P<—P—h(P —P).

(41c¢)

This approach is referred to as opposite shifting.
As convergence is approached, {X, P} approach a
basis of the desired Schur vectors, and thus

A —BR'BH][X X
wevs o [A PR E) <Kk

(42)

As before, there are various options for computing 2.
A simple option which we have found to be effective is
determined by multiplying the first block row of (42)
times X and solving for X [that is, ignoring
completely the second block row of (42)], resulting in

> = (x"x)"'(x"x)). (43)

This option is thus analogous to (34b); note that the
normalization factor (X#X)™' may be skipped if X,
rather than V, is orthogonalized via Q R decomposi-

tion. This option is found in practice (see Sect. 5) to

converge to the eigenvalues of Z just to the left of the
imaginary axis, which are exactly those sought for the
purpose of feedback control design [see (40)]. This
method is implemented in Algorithm 4.

4.2.2 OSSI via an IE discretization

Itis also straightforward to develop an implicit form of
the OSSI algorithm described above, in an analogous
manner to the development of the implicit form of the
standard subspace iteration algorithm described in
Sect. 4.1. In order to not invert Z and to leverage
existing solvers for A, we actually only take the
diagonal blocks of Z implicitly, and account for the
off-diagonal blocks of Z explicitly. The update to »
that we have chosen in this case is based on the
relationship dV /dt = ZV discretized via IE with a
shift; setting ZV,,. 1 = V412,11, this results in

Vn+1 - Vn

A :J(ZVn+1 - Vn+12n) :JVn+1 (ZnJrl - Zn)
——

shift

where J =[I 0; 0 —I]. Looking at only the first block

row of this result and premultiplying by X7, | gives

Zl’l+1 = Zn + (X5+1Xn+l)_le7+l(xn+l - Xn)/h

Again, the normalization factor (X”X)™' may be
skipped if X is orthogonalized at each iteration via Q R
decomposition. This method is implemented in Algo-
rithm 5.

5 Test on a representative LQR problem

A “representative” randomly-generated infinite-hori-
zon LQR problem [see Sect. 1.1] may be created with
A, Q0 >0,R=1and B= BR 'B” >0 defined via

A = —A; AT 4 randn(n, n);
Q=2QiQ};

B = B, B,

A, = randn(n, n);
Q1 = randn(n, n);

By = randn(n, m);

where randn(n, m) denotes a random n X m matrix
whose elements have zero mean and a Gaussian
distribution with unit variance. The system matrix so
created has both real and complex conjugate pairs of
eigenvalues extending into the LHP, and usually has
only a few unstable eigenvalues, which is typical in
many problems of interest derived from well-posed
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Algorithm 5 Prototype implicit oppositely-shifted
subspace iteration (OSSI) algorithm [cf. Algorithm 4].

determine [n,n| = size(A)
set m as the number of eigenvalues of Z to compute
set X = randn(n,m), P = randn(n,m), ¥ =
zeros(m, m)
orthogonalize X
for i = 1 to imax do
solve (I—hA) X1 = X+ h[-XX—(BR™'BH)P] for X,
(I — RAH) P, = P— h[-PY — QX] for P,
......................... {note opposite shift!}
set X — X+ X{(X1 - X)/h

set (i) = norm( ﬁgj - [)}g] )/

compute X1 = @ R decomposition,
set X1 - Q, PP~ P R' Y—RYR!
compute X =T T U™ (Schur/real Schur) decomp.,
set ¥ «—T, X — XU, P—P,U
if 7(7) < ¢ then break end if
end for

PDEs. Several realizations of such randomly-gener-
ated LQR problems were studied when testing the
methods described herein.

All of the algorithms converge to the expected
results when the parameters are selected appropriately
(sufficiently small 4, etc.). For a typical example,
taking n =10, m =4, « =0.1, and = 0.01, and
approximately the optimal % in each case (found by a
minor amount of trial and error), the convergence of
Algorithms 2, 3, 4, and 5 are depicted in Figures 1
and 2.

10° Tt

10-2 2 \\\\ i
10° F : . \\\\ 1
10°F - ) T ]
10° 1 ‘ e 1
10710 \\\
107k B
107"t 1
107"°F : B

L i L L L L
0 10 20 30 40 50 60

Fig. 1 Convergence of (dashed) the explicit form given in
Algorithm 2, and (solid) the implicit form given in Algorithm 3,
of the subspace iteration algorithm for the leading Schur vectors
of the state matrix A. The dotted lines indicate the convergence
of individual modes
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Fig. 2 Convergence of (dashed) the explicit form given in
Algorithm 4, and (solid) the implicit form given in Algorithm 5,
of the subspace iteration algorithm for the least-unstable LHP
Schur vectors of the Hamiltonian matrix Z. The dotted lines
indicate the convergence of individual modes

Note that we have kept n small in the numerical
tests reported here, as we have thus far only developed
what we have referred to as “prototype” implemen-
tations of our new algorithms. Various standard
acceleration techniques (deflating, implicit restarting,
etc.) must be applied to the prototype subspace
iteration algorithms reported here, in an analogous
manner to how they have been applied to standard
eigenvalue problems, before these new algorithms will
be ready for application to control problems with large

n (see, e.g., [15], and its numerical implementation in
ARPACK).

6 Conclusions

This paper considers four methods for the efficient
solution of optimal control problems for high-dimen-
sional systems which bypass the intermediate and
sometimes problematical step of open-loop model
reduction. Chandrasekhar’s method, reviewed in Sect.
1.2, is classical. The other three methods presented
(MCE, ADA, OSSI) have been developed much more
recently by our team.

The fact that the continuous-time stabilizing LQR
controller in the minimum control energy (MCE) limit
simply reflects the unstable eigenvalues into the LHP
is also classical. However, the algorithm reviewed in



Meccanica

Sect. 2 to efficiently solve the LQR problem in the
MCE limit in large-scale systems was apparently first
identified only recently, in [14], and hasn’t been
widely recognized since. This algorithm requires only
the eigenvalues and left eigenvectors of the unsta-
ble modes of the system matrix A, which may be
determined via a subspace iteration method, such as
those discussed in Sect. 4.1.

When the system of interest has open-loop eigen-
values that are near the imaginary axis, the perfor-
mance of the controlled system in the MCE limit is
sometimes inadequate, and a more aggressive control
solution is desired. The remaining two approximate
methods discussed in this paper provide attractive
distinct alternatives to Chandrasekhar’s method for
the numerically-tractable approximate solution of
high-dimensional optimal control problems outside
of the MCE limit while bypassing open-loop model
reduction.

The Adjoint of the Direct-Adjoint (ADA) algorithm
of Sect. 3 was first introduced in [18]. It was also tested
in [21] and [7]. Note also that the ADA method is a
finite-horizon formulation (though the horizon
selected may be taken as large), whereas MCE and
OSSI are infinite-horizon formulations.

As mentioned previously, the utility of using the
several least-stable of the stable Schur vectors of the
Hamiltonian Z of the LQR problem in order to
approximate the feedback gain K of the LQR problem
was explored in some depth in [1, 2]. The discovery of
the efficient oppositely-shifted subspace iteration
(OSSI) method of Sect. 4.2 to actually find these
Schur vectors in high-dimensional systems is intro-
duced for the first time in the present paper, and is
motivated by the ideas behind the MCE and ADA
methods.

The performance of explicit and implicit prototype
OSSI algorithms on a model low-order control prob-
lem (see Sect. 5) is encouraging; their performance on
high-dimensional discretizations of PDE control prob-
lems will be considered in future work.

As a matter of philosophy, the present work is the
result of an integration of the perspectives of

(a) the motivating fluid-mechanical applications,
which are characterized by significant eigen-
vector nonorthogonality and are thus not readily
amenable to accurate model reduction for the
purpose of feedback control design simply by

retaining select controllable and observable
eigenmodes,

(b) the optimization, control, and model reduction
problems, and how they are related, and

(c) the advanced numerical methods required to
approximate solutions to the problems in (b) for
large n, and how they may be combined and
extended.

The algorithms presented in this article for the
feedback control of complex systems with
n>0(10°) provide an attractive alternative to the
two-step approach typically used, as described in the
introduction. These algorithms arise, and may be
further refined, only via an integration of three distinct
and often unrelated traditional disciplines: system
modeling, control theory, and numerical methods.
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