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ABSTRACT

Feedback control equations are developed and tested
using optimal control theory for two different flow con-
trol problems. In the first, wall-normal blowing and
suction distributions are computed to efficiently reduce
drag. The technique used to compute the control is the
minimization of a “cost functional” which 1s constructed
to represent some balance of the drag integrated over
the walls and the net control effort. Minimization of
this cost functional is achieved by utilizing an adjoint
problem to determine the sensitivity of the flow to con-
trol, then updating the control with a gradient algo-
rithm. A distribution of wall velocities is thus found
which minimizes the cost functional over a short time
interval based on current observations of the flow near
the wall.

Preliminary numerical simulations of this scheme ap-
plied to turbulent channel flow indicates it provides
approximately 17% drag reduction with small levels
of control input. The mechanism apparent when the
scheme is applied to a simplified flow is also discussed.

The second problem considered is the computation of
efficient internal forcing distributions to reduce pressure
fluctuations on the walls of a channel. The internal forc-
ing simulated is of a type which might be produced by
appropriately placed magnets and electrodes in a wall
acting on near-wall fluid, referred to in recent literature
as Electro-Magnetic Turbulence Control (EMTC). The
optimal formulation for this problem is similar to that
in the drag reduction by wall transpiration problem.
Computational results of this scheme, which were not
available at the time of printing, will be presented at
the conference.

1. INTRODUCTION

Wall-bounded turbulent flows are dominated in the
near-wall region by longitudinal vortex structures (Rob-
inson 1991). These vortex structures create inrushes
of high momentum fluid toward the wall, called sweep
events, and outward movement of low momentum fluid
near the wall back into the center of the channel, called
ejection events. Such phenomena result in several ef-
fects, including increased drag, increased heat trans-
fer to or from the wall, and wall-pressure fluctuations
which generate sound (which emanates into the fluid)
and structural vibrations. Depending on the particular
problem under consideration, these effects may be ben-
eficial or detrimental, and the control engineer is mo-
tivated to investigate methods to modify them. Wall
transpiration and EMTC forcing of near-wall fluid are
considered in this work as possible methods to modify
these near wall-structures in an active feedback config-
uration.

Section 2 will introduce the optimal control method
with a strategy for drag reduction by wall-transpiration.
The method developed there is described in Abergel
and Temam (1990) in a related situation and is also
discussed in Lions (1969). Section 3 will present pre-
liminary results of this scheme applied to a direct nu-
merical simulation of turbulent channel flow. Section
4 will discuss how the optimal control strategy may be
extended to the problem of reduction of wall-pressure
fluctuations by EMTC forcing.

In Sections 2 and 3, a small amount of wall-normal
blowing and suction is used to apply the control. With
a well-chosen scheme using wall transpiration only, it
has been shown that a turbulent flow may be smoothed
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out in a near-wall region, and the drag may be sub-
stantially reduced; for example, the ad hoc schemes of
Choi et al. (1994) reduced turbulent drag by as much as
20% by countering the vertical velocity slightly above
the wall with an equal but opposite control velocity at
the wall. The present work demonstrates how possibly
more efficient schemes may be derived by applying opti-
mal control theory, utilizing the equations of motion of
the fluid to reveal the dominant physics of the control
problem.

The forcing technique investigated in Section 4 has
received growing attention over the last few years due to
some interesting experiments with EMTC for the pur-
pose of turbulent drag reduction carried out at Prince-
ton (Nosenchuck and Brown, 1993). The forcing profile
used in the current work is a rough model of what might
be feasible using electromagnets and an array of elec-
trodes mounted on the wall which induce a Lorenz force
on an electrolytic fluid (like seawater) flowing above the
wall. In the present work, this control technique is used
in an active feedback configuration to interact with tur-
bulent structures directly.

The model problem we shall study is the turbulent
flow inside a small segment of a fully developed tur-
bulent channel (i.e. flow between two parallel walls, far
from the inlet), with periodic boundary conditions used
in the spanwise and streamwise directions and a con-
stant mass flux maintained by variation of the external
pressure gradient. This flow is governed by the same
vortical structures as a turbulent boundary layer flow
in the near-wall region, and is much less expensive to
simulate. The domain is chosen to be large enough that
the non-physical periodic boundary conditions do not
affect the nature of the turbulence (Kim et al. 1987).

For practical implementation, the solution to the op-
timal control problems may be approximated by schemes
which depend only on information which may be mea-
sured at the wall with an array of flush-mounted sen-
sors. These approximate schemes lead to adjoint prob-
lems which, through further approximations, may be
solved analytically. Such analytic approximations lead
to simple transfer functions which relate the measure-
ments made by sensors in an experimental implementa-
tion to the inputs of the actuators (Hill 1993). Methods
of implementing active turbulence control ideas, includ-
ing a discussion of several sensors and actuators appro-
priate for such problems, have recently been reviewed
by Moin and Bewley (1994).

2. DRAG REDUCTION BY WALL
TRANSPIRATION—FORMULATION

The problem under consideration in this section is

a turbulent channel flow with no-slip walls and wall-
normal control velocities ®. This problem is governed
by the unsteady, incompressible Navier-Stokes equation
and the continuity equation inside the domain Q and
appropriate boundary conditions on the walls w (pe-
riodic conditions are implied on the remainder of the
boundary of the domain T'):

Ou; Ju; 1 0%u; 1 dp
— tu— =555 +-5—=0
ot “0x;  Re 33:]- p Ow; (1a)
a
5u]~
—L -,
Jx;
with boundary conditions
u=®n; on walls (1b)
and prescribed initial conditions
u; = u;(to) at ¢ =g, (1e)

where x; is the streamwise direction, x5 is the wall-
normal direction, x3 is the spanwise direction, u; are
the corresponding velocities, p is the pressure, p is the
density, Re is the Reynolds number, § is the channel
half-width, and »n is a wall-normal unit vector directed
into the channel, as illustrated in Figure 1.

wall
periodic.
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Ficure 1. Flow configuration. Blowing and suction

is applied through holes drilled in the walls to control
the flow.

As mentioned in the abstract, the first step in solving
an optimal control problem is to represent the control
problem of interest as a cost functional, 7, to be mini-
mized. In the present problem, control is to be applied
to minimize the drag on a section of wall with area A
over a period of time 7" using the least amount of control
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effort possible. A relevant cost functional the present
problem is thus

E to+T

tU+T
/ / z—dtdS

The first term on the right hand side is a measure of the
magnitude of the control. The second term is a measure
of exactly that quantity we would like to reduce—in this
case, the drag. (Note the factor ns needed to account
for the orientation of the upper wall.) These quantities
are integrated over the wall sections under considera-
tion, of area A, and over the time period under consid-
eration, beginning at ¢ = ¢5 and of duration 7'. Finally,
they are weighted together with a factor ¢, which rep-
resents the price of the control. This quantity is small
if the control is “cheap” (which reduces the significance
of the first term on the right hand side and, in general,
results in larger control velocities), and large if applying
control is “expensive”
is similar for other flow control problems, as seen in
Section 4. Note that the integrand of the second term
on the right hand side is not a non-negative quantity; it
has been observed in the course of these investigations
that the most effective cost functional for a particu-
lar purpose incorporates exactly that term which one
would like minimized.

As derived in Abergel and Temam (1990) and inves-
tigated further by Choi et al. (1993), a procedure may
be developed using adjoint calculus to determine the
sensitivity of the cost functional J; to the control ®.
To do this, we define a flow state

U= (Ui(xl, T3, 963:15))

p($1, T2, ;Eg,t)

(2)

. The form of the cost functional

which is governed by (1), a differential state
7= (@@, wst)
p(z1, 22, 23,t) )’

where U is defined using a Fréchet differential (Vain-
berg, 1964) such that

which is governed by the Fréchet differential of (1), and
an adjoint state

7= wi(x1, T2, ¥3,1)
O\ Py, @2, 73, 1)

which is deﬁned by

. _ - -0
~a U, " Y%z,  Re 0z7 | pou;
N (3a)
6’[1]'
2 _q
. i Jx
with boundary conditions
- 1=1
;= . 11 b
i {0 otherwise on wals (38)
and initial conditions
u; =0 at t =1g+ 1. (3¢)

The equation governing U, which is found by taking
the Fréchet differential of (1a), is linear in the variable
U and may thus be written

AU = 0. (4a)

The equation governing U in (3a) is linear in U and
may be written

AU = 0. (4b)
The equation used to define the adjoint operator A* is
<AU,U>=<U, AU > +b (5)

where the inner product is defined
. ~ tD+T . ~
<U,U>:// U-UdtdV.
Q

Equation (5) may be simplified using (4a), (4b), and
the boundary and initial conditions on U and U such
that only a two of the boundary terms in b remain. The
resulting expression may be written as

to+T
/ / o % dt dS =

pAT

The Fréchet differential of the cost functional J; in (2)
may be rewritten using this expression and the gradient
extracted, which results in

9Jy(®) _ L o Re .

76 AT pAT’

Thus, the sensitivity of the cost functional to con-
trol may be determined using the solution to an adjoint
problem. A feedback control strategy using a simple
gradient algorithm may now be proposed such that

k-1
%7 (6)
g
where k indicates the iteration step for the time interval
t € (to,to + T] and p is a parameter of descent which
governs how large an update is made at each iteration.
This algorithm attempts to update ® in the direction

to+T
pPdids.

@k _ (1>k—1 _
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of maximum decrease of J;. For small y as £k — oc,
the algorithm should converge to some local minimum
of Ji over the control space ®. Note that convergence
to a global minimum will not necessarily be attained.

To make the optimal control method practical for
implementation, we consider only very short time du-
rations 7" when considering the influence of the control;
we shall call this the suboptimal approximation. With
this approximation, we may “freeze” the flow field when
computing the adjoint, and the adjoint may be deter-
mined in a single computational time step. These steps
simplify the calculation of the control update signifi-
cantly. Without this approximation, an optimal scheme
has very large storage requirements. This is due to the
fact that the development of U over the entire time in-
terval T' is required by (3) to compute the adjoint.

By considering only small values of T', the control
algorithm gives the control which minimizes the cost
functional over some short time interval with reduced
computational and storage requirements. Note, how-
ever, that this method does not look ahead to anticipate
further development of the flow, and thus the solution
by this method does not necessarily correspond to the
solution by the optimal control method. Thus, posing
the problem in this suboptimal form is an approxima-
tion to the physical problem of interest. The accuracy
of this approximation, which may be determined only
by careful study of the results of both optimal and sub-
optimal control schemes, remains to be established.

3. DRAG REDUCTION BY WALL
TRANSPIRATION—RESULTS

Elementary drag reducing mechanisms

Choi et al. (1994) found that, by applying a con-
trol velocity equal and opposite to the vertical velocity
at yT = 10, a drag reduction of about 20% could be
achieved. Vertical transport of streamwise momentum
in the near-wall region (primarily due to longitudinal
vorticity) produces “sweep” events and thus local re-
gions of very high drag. Applying a countering control
velocity tends to reduce this effect.

In the transverse plane, countering the vertical veloc-
ity above the wall corresponds to the control sketched
in Figure 2. This type of control corresponds to blow-
ing where the drag is high, which decreases the high
velocity gradients at the wall and thus smoothes out
the flow in the near-wall region, as shown in Figure 3.

Figure 4 shows the application of the suboptimal con-
trol scheme to a simple flow configuration of longitu-
dinal vortices embedded in an initially parabolic flow.
A cross flow plane is shown. In regions below down-
ward moving fluid (sweep events) the streamwise (into

the page) drag is higher and blowing is applied. In re-
gions below upward moving fluid (ejection events), the
streamwise drag is lower and suction is applied.

Vortex
| -
2 7
¥ .
suction blowing
FIGURE 2. Stabilization mechanism in cross flow

plane.

Z v/ zz
suction blowing

Ficure 3. Stabilization mechanism in an z-y plane.
High drag is decreased by blowing at the expense of
suction in the regions of low drag, resulting in a net
smoothing of the near-wall velocity profiles.

Control velocities

al

F1GURE 4. Suboptimal control scheme applied to lon-
gitudinal vortices. Interior vectors are cross flow veloc-
ities and contours are of streamwise velocity, indicating
a sweep event between two near-wall vortices and ejec-
tion events outside of them. Control velocities shown
on the wall (not to scale) indicate blowing at the sweep
event and suction at the ejection events.
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Control of turbulent channel flow

The suboptimal scheme derived in Section 2 was tested
by applying it to a direct numerical simulation of tur-
bulent channel flow. A 17% drag reduction was seen as
compared to a flow with no control. Results are plot-
ted in Figure 5. This calculation was done in a flow
with Re = 1850 based on the mean centerline velocity
and the channel half width using the spectral method
of Kim et al. 1987.
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FiGURE 5. Dragreduction of suboptimal scheme com-

pared to the no-control and relaminarized cases. Drag
is normalized by percent of mean drag in the no-control
case. Time is in units of §/u, in the no-control case.
Parameters for suboptimal scheme are ¢ = 0.01, £ = 10,
T =1 wall unit.

The adjoint analysis utilizes all the information pre-
sent in the channel to extract the sensitivity of the in-
stantaneous drag to the variation of the control. How-
ever, only information in a thin layer near the wall is
significant in computing the adjoint for the suboptimal
problem. Thus, the suboptimal scheme may be reduced
to an approximate problem relying only on wall infor-
mation by approximating the near-wall velocities using
a Taylor’s series extrapolation of the velocity gradients
at the wall. This approximation may be solved ana-
lytically, resulting in simple control laws which depend
only on information which may actually be measured
experimentally at the wall. Such practical schemes are

discussed further by Hill (1993).

4. WALL-PRESSURE FLUCTUATION
REDUCTION BY EMTC—FORMULATION

The problem under consideration in this section is a
turbulent channel flow with solid, no-slip walls and in-
ternal control forcing. This problem is governed by the
forced Navier-Stokes equation and the continuity equa-
tion inside the domain € and homogeneous boundary

conditions on the walls w:

Ou; Ou; 1 0%u; 1 dp

. _ z = (P
ot T Jx;  Re 633]2» p Ox; fi(®)
(7a)
8u7
— —,
Jx;
with boundary conditions
u; =0 on walls (7b)
and prescribed initial conditions
u; = u;i(to) at ¢ =g, (7¢)

where f;(®) is the internal control forcing per unit vol-
ume, which is a function of the wall potential distri-
bution ®. We shall consider a configuration similar to
that in Section 2, as illustrated in Figure 6.

wall

periodié"- )
R
—— \ Xl
flow : g
X}

“.. periodic

FIGURE 6. Flow configuration. Spanwise-varying wall
currents (indicated by the arrows on the walls) provide
a steady magnetic field B; in the channel, and electrodes
(indicated by the +/— symbols) provide an unsteady
current distribution j; in the channel.

The control forcing term f;(®) is a Lorenz force due to
electric and magnetic fields acting on the fluid. Elec-
trodes are distributed continuously on the lower wall
(insulated from each other but not from the flow), pro-
viding an arbitrary potential distribution on this wall.
The surface of the upper wall is coated with a grounded
conductor. (Control may also be applied at the upper
wall, as the electric field may be determined by super-
position, but for simplicity of notation we will consider
control of only the lower wall.) The channel is also
subjected to a magnetic field in the cross-flow plane,
which is created by spanwise-varying currents through
streamwise-oriented wires placed beneath the array of
electrodes on the lower wall, as shown in Figure 6. The
steady magnetic field for a particular realization of this

225 Bewley & Moin



configuration may easily be computed, and will be de-
noted B;.

The fluid is assumed to be only weakly conducting,
like seawater. With this assumption, we can neglect
the dynamics of the fluid and the small electric cur-
rents when computing the influence of the wall charge
distribution on the electric field inside the channel, and
may thus compute the electric potential ¢ inside the
channel using Laplace’s equation:

5%¢
5 =0 Vi =0).
The boundary condition at the lower wall is a potential
®, which is provided by applying a voltage distribution
to the electrodes on the lower wall, and the boundary
condition at the upper wall is homogeneous:

o= at o =0
¢):0 atx2:2§.

This equation may, of course, be solved analytically by
considering individual Fourier modes. For this purpose,
the hat notation is used to indicate the Fourier trans-
form in the #; and z3 directions. The resulting poten-
tial distribution in the channel is easily found:

o=@ (8)
where g = (e7%2F — Be®2%) /(1 - B), k = \/k? + k2, and

6 — 6—4610‘

A conduction current with density j; will flow in a
direction parallel to the electric field, which may be
found by taking the gradient of the potential field, in
proportion to the conductivity o of the fluid:

99
=0 g

(= 7 V0. (9)
For seawater at an average salinity, o &~ 4 (ohm m)~1.
As the current density j; is not coincident with the mag-
netic field B;, a Lorenz force is exerted on the fluid in
proportion to their cross product:

fi = €mn jm Bn (f :j X B) (10)

Combining (8). (9), and (10), we arrive at a linear “in-

fluence parameter” h; which expresses the coupling be-
tween the variable that we control, @, and the resulting
force on the fluid, f;, in transform coordinates:

filky, o, ka, t) = hi(ky, 2o, k3) ®(k1, ks, ).

In the present problem, control is to be applied to
minimize the pressure fluctuation intensity on a section
of wall with area A over a period of time T using the

least amount of control effort possible. A relevant cost
functional the present problem is thus

i totT 1
P)=— i s —dt dV
Tp(®) QAT/Q/W Ji Ji = +

1 to+T 5
w Jig

where p’ is the spatially-fluctuating component of the
pressure and w now refers to just the lower wall. The
first term on the right hand side is a measure of the
power dissipated in the electric currents in the channel—
note the integrand is of the form P = I?R. The second
term 1s a measure of the wall-pressure fluctuation in-
tensity. Again, £ is a weighting factor which represents
the expense of applying the control a number which
is small if the control is cheap (relative to the impor-
tance placed on the pressure fluctuations) and large if
it 1s expensive. Note that this problem is significantly
different than the problem studied in Sections 2 and 3:
the pressure fluctuations may not be closely correlated
to sweep and ejection events. In such a situation in
which physical intuition fails to guide us to an effective
scheme, the idea of appealing to control schemes which
are mathematically based on the control objective is
especially attractive.

The flow state U is now governed by (7), the differen-
tial state U is governed by the Fréchet differential of (7),
and the adjoint state U is defined by

(11)

—— 4 u, == — uy - — - =
ot POx; 7 0x;  Re 0x}  p O
N (12a)
6’[17'
6x]'
with boundary conditions on the walls
iy = {p' 1= 2, lpwer wall (120)
0 otherwise
and initial conditions
u; =0 at t =tg+ 7. (12¢)

The equation governing U/, which is found by taking
the differential of (7a), is linear in the variable U and

may be written
AU = (fi%q’)) . (13a)

The equation governing U in (12a) is linear in U and
may be written

AT = 0. (13b)

As in Section 2, the equation used to define the adjoint
operator A* is

<AU,U>=<U, AU > +b. (14)
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Equation (14) may be simplified using (13a), (13b), and
the boundary and initial conditions on U and U such
that the resulting expression is

1 to+T )
w Jitg

p to+T
- — HaedtdS
il ),

where H may be found by integrating the product of
the adjoint velocity field @; with influence parameter h;
in transform coordinates:

~ 26 ~ ~
J0

The Fréchet differential of the cost functional 7, in (11)
may be rewritten using this expression and the gradient
extracted, which results in

73,(®) _

7P

to 9o p

CATody AT

With this gradient information, we may formulate a
control strategy for the update of ® as before with
equation (6). Implementation of this scheme in a di-
rect numerical simulation of turbulent channel flow is
currently being investigated.

It is important to note that an inhomogeneous mag-
netic field is required in such a configuration to acceler-
ate the fluid. Consider, for the moment, a configuration
as in Figure 6 but with no spanwise variation of the wall
currents. The magnetic field created in the channel in
this case i1s uniform in space. In such a situation, the
forcing can be written as the gradient of some scalar
function ¢. As seen in (7a), such a force is entirely bal-
anced by a modification of the pressure field, and will
not accelerate the flow. When designing flow control
configurations, it must be kept in mind that any forc-
ing profile f; may be broken down using Helmholtz’ rep-
resentation into irrotational and solenoidal parts such
that

f=Vi+Vx(pVX)

where ¢, ¢, and X are scalar functions. Only the sole-
noidal component will accelerate the fluid.

It is also important to note that back EMF was not
included in this analysis. The forces on the current-
carrying wires of the electromagnets by the magnetic
field induced by the other electric currents in the system
are significant. Such back EMF forces are dependent on
the geometry of the wires leading to the individual elec-
trodes and must be taken into account very carefully.

227

4. CONCLUSIONS

Optimal control theory has been successfully applied
to the problem of drag reduction by wall transpiration
in turbulent channel flow. Significant drag reduction
has been obtained in a direct numerical simulation of
this method. The optimal control technique is easily
extended to the problem of reduction of wall-pressure
fluctuations by EMTC forcing.
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