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Note: what follows is an appendix to the paper DNS-based predictive control of tur-
bulence: an optimal benchmark for feedback algorithms which won’t appear in the JFM
version of this paper. However, it does appear in the version of this article which was
included in the following:

BeEwLEY T.R. (1999) Optimal and robust control and estimation of transition, con-
vection, and turbulence. Stanford University thesis.

Appendix C. Details of numerical method for DNS of controlled
turbulent channel flow

The equation governing the flow in the present case (with the forcing in a form slightly
generalized from that in the text) is:
Ou;
N 6.Z'j O
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with periodic boundary conditions on the velocity on I‘ljE and th (the streamwise and
spanwise directions) and a wall-normal control velocity distributed over the walls

u = gi(¢) on Ty,

where n is the unit outward normal to the boundary 92, and prescribed initial conditions
on the velocity

u=uy att=0.

To solve this problem computationally, the continuous flow field must be approximated
on a discrete set of points in space. Further, the resulting approximate equation on this
finite set of points must be advanced in time using discrete time steps. To minimize the
expense of the computation, one desires to use as few spatial points as possible and as
large time steps as possible while maintaining accuracy (in both space and time) and
stability of the simulation. Since the flow is periodic in the streamwise direction, so
that there is no inflow or outflow, it is critical that the numerical errors due to spatial
and temporal discretization of the physical problem do not accumulate in a way which
causes the simulation to be unstable. Subject this restriction, a scheme with high spatial
accuracy is desired. Finally, with a particular spatial discretization, it is found that
certain terms of the governing equation have more restrictive time step limitations than
do others in the time-advancing algorithm. The most restrictive terms should be taken
implicitly to allow for stability at “large” time steps (which, however, must be kept small
enough to ensure accuracy of the computation), while other less restrictive terms may
be taken explicitly. These issues guide the choice of spatial and temporal discretizations
of the current problem, which are discussed in detail below.
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C.1. Spatial discretization

A grid must be chosen to discretize the flow quantities in space. This grid is chosen to be
equispaced and unstaggered in the streamwise (z1) and spanwise (z3) directions, allowing
Fourier transforms to be used to accurately and efficiently compute all derivatives in these
directions. A finite volume approach is used to determine discrete difference expressions
for the derivatives in the wall normal direction, which is discretized with a hyperbolic

tangent stretching function:
tanh (cs (% - 1))
(C1la)

€T =
2 tanh (C5) ’
with the integer n enumerating the grid in this direction. (A stretching parameter of
Cs = 1.75 results in a fairly smooth grid, and is used in the present computations.) Note
that n = 0 corresponds to the lower wall and n = NY corresponds to the upper wall.
With this as the base grid, we make the following definitions:

1
L2, _1/0 = 5 ("EZn + '732"—1) (C ]-b)
Azs, = T2, — T2, _, (C1c)
1
A$2n =2, 4170 T L2, 10 = 5 (A$2n+1/2 + A‘772n—1/2) (C 1d)

In this discussion, the subscript n is used to indicate gridpoints at integer zo locations,
and the subscript n — 1/2 is used to indicate the gridpoints between these points. The
wall-normal component of velocity us is discretized on the n family of gridpoints and
the streamwise and spanwise components of velocity u; and uz and the pressure p are
discretized on the n — 1/2 family of gridpoints. The motivation for staggering the wall-
normal component of velocity from the pressure is to couple the pressure at the nodes
with n even to the pressure at the nodes with n odd. This is a natural result of a staggered
grid, but is not the case in non-staggered configurations. The streamwise and spanwise
components of velocity must be discretized at the same x5 locations as the pressure in
order to solve the appropriate discretization of the continuity equation exactly in the
fractional step algorithm, as will be shown later in this Appendix.

To interpolate these quantities to the adjacent gridpoints when necessary, the following
interpolation formula is used for us:

1
U2, ;5 = 5 (uzn + u2,,_1) (exactly second order)

and the following interpolation formula are used for u; and us:

1
Uy, = 3 (Ut pa)s +U1,_y)0) (quasi-second order)
o 1 .
i, = 5~ (Ax2n+1/2u1n+1/2 + A$2,._1/2U1n_1/2) (quasi-second order),
25
. 1
i, = 5 (Aza,_, pur, )0+ A2, a1, ) (exactly second order).
25
Interpolation for p is not required in the staggered grid formulation. Asz,, _, , is midway
between x5, and z,,_,, the interpolation formula for @, _, /2 is second-order accurate.

As x5, is not midway between z»_, , and z2, _,,, on the stretched grid, only the in-

terpolation formula for 4, is truly second-order accurate. The formula for @;, and i,
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are only second-order accurate in the sense that, as NY is increased with the stretching
function (C1a) fixed, Azs, ., ,/Az2,_,,, — 1, and all three forms approach a second
order form.

The motivation for using interpolation forms which are only second order accurate
in the sense described above stems from conservation issues, which are described in
the following section. Though the “proper” second-order interpolation formula %;, can
be used everywhere, the discretization error of such an interpolation formula results in
spurious sources and sinks of energy on a marginally-resolved stretched grid, which can
lead to numerical instabilities. Proper use of the above interpolation formulae prevents
discretization errors from contributing to the total energy of the flow. Note that a
sufficiently smooth grid stretching function is used to minimize the inaccuracies caused
by these interpolation formulae for reasonable values of NY'.

For the notational convenience of extending difference formulae to the cells adjacent
to the walls, we also make the following useful definitions:

Aoy = Toyy — Tany 12 Azy, = T2,,, — T2

Ulny i1/ = Ulny = Giny (9) ULy, = U1y = g1,(9)
Uyypr = W2y r/n = Uany = Gony (9) U2, =TUa_,,, = Uz, = g2,(0)
U3y 12 = UBny = G3ny (#) U3_y, = Uzy = 930(9).
Pny+1/2 = Pny = PNy -1/2 D—1/2 = Po = P1y2

With the spatial discretization of the flow quantities described above, the individual
momentum equations are solved at the corresponding velocity points and the continuity
equation is solved at the pressure points. The spatial discretization of the derivatives in
the governing equation are now made precise:

duj 0
_ &Uj n—1/2 _
oup 1) (U1Uj) 5271/1 5p P.
- — e iz + n—
ot T o, v oxi 0w fin-1729)
X 4 n—1/2 —
Ous 0 (u2u; ) 6%uy | Op (C2)
ot + 61_‘7_ v 61‘? + 81 f2n(¢)
(Ouy | S(uuy) oy 0p ]
| ot oz, oz; 0w | ne1/2 fan—12(¢)

All first and second derivatives in the z; and x3 directions are computed in Fourier space
according to:

5/s\q . 5/5\q . 5/2\q 2 ‘S/Q\q 2
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where the hat indicates the Fourier transform in the z; and x3 directions with corre-
sponding wavenumbers k, and k., g is an arbitrary flow quantity, and the s subscript
is used to emphasize that the derivative is evaluated spectrally. The convective terms
involving derivatives in the z, direction are computed with quasi-second-order accurate
formulae motivated by a finite volume analysis. Written out completely, the convective
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terms are:
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Note that the interpolation formulae chosen in the above expressions have been selected
deliberately in order to achieve energy conservation, as discussed in the following section.
The viscous terms involving derivatives in the x5 direction are evaluated with a second-
order accurate finite difference formula. Written out completely, the viscous terms are:

2
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The required derivatives of p are given by
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(The Laplacian of the pressure is required by the Poisson equation to update the pressure
in the fractional step algorithm.) Finally, the discretization of the continuity equation is

ou;
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C.1.1. Conservation of mass, momentum, and energy

An important check on the stability of an incompressible channel flow code is that
mass should be conserved to within machine round-off error, and spatial discretization
errors should not contribute to the momentum and energy of the flow integrated over
the channel volume.

To show that the total mass is conserved, the compressible continuity equation is
integrated over the volume under consideration (with the integrals on the right hand
side evaluated with a trapezoidal rule in the wall normal direction and spectral rules in
the Fourier directions), verifying that numerical errors do not contribute to net sources
of mass and thus the discretized system indeed conserves total mass exactly:

0 _ 4 pu;
5 pdV / 5z dv
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= (0 — Mass is conserved.

To show that total momentum is conserved in each direction z; for cases with f;(¢) =0
and g;(¢) = 0, each component of the momentum equation in (C2) is integrated over
the volume under consideration:
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In the limit that v — 0 with P, = 0, momentum is conserved in the z; and z3
directions. Note that the wall pressure terms may result in small variations in the
momentum in the zs direction, but non-physical spatial discretization errors do not
contribute to this variation. For cases in which v # 0, it is seen that choosing

1 Ulyy = Ulyy_1/2 Uty — Ul
P == - dz dz, C4
V ~/ac~/zy ( szNY Aw?o ) v ( )

where V' = 26 L, L, is the volume of the domain under consideration, maintains the x;
component of momentum (i.e. mass flux) constant by exactly balancing the skin friction
integrated over the walls with the force applied by the mean pressure gradient.

The viscous terms of the Navier-Stokes equation result in energy dissipation at the
small scales, which, in channel flow, is replenished by the action of the pressure gradi-
ent P, on the flow at the large scale. To show that energy is conserved in cases with
v = P, = fi(¢) = ¢i(¢) = 0, the momentum equation in (C2) is multiplied by u;
and integrated over the volume under consideration (underbraced sums “telescope” and
therefore cancel):
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=0 = energy is conserved.
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In the above derivation, it was assumed that integration by parts is valid in the spectral
directions. Strictly speaking, this is only true if these directions are fully resolved, so
that there is no possibility of aliasing. However, no calculation of a turbulent flow is ever
“fully resolved”. To make them affordable, direct numerical simulations are inevitably
conducted with as few modes as possible which still give accurate results. There are two
ways of handling the necessary truncation of the Fourier series representation of the flow
field under consideration: A) to allow the cascade of energy to higher wavenumbers (due
to the nonlinear products) to alias back to lower wavenumbers, hoping that the effect
of this aliasing will be minimal, or B) to zero out all higher-order variations resulting
from nonlinear products, using the 3/2 dealiasing rule. Method A creates spurious energy
sources, as the above derivation does not hold when the Fourier series are truncated (due
to the fact that integration by parts in the spectral directions is invalid), and thus can lead
to an unstable code. Method B constantly drains off the energy of all unresolved modes,
and thus energy is not conserved in this case either. However, method B guarantees that
no spurious numerical energy sources ever appear in the flow due to the Fourier series
truncation, and thus can not destabilize the code. Thus, all calculations presented in
this report are dealiased in the spectral directions.

Some additional algebra used in the energy conservation proof outlined above now
follows (no summation is implied on the subscripts a and ). The step involving the
integration by parts in a spectral direction 8 (neglecting the effects of truncation of the

Fourier series) is:
RTI dsu 6
/ua Balip dxg:/(ui >d:cg
ozg 3

0sUalUg 1 9 0sug
:>/ua 505 dzg = 2 /ua 525 dzg.

The z» derivatives in the convective terms of the z» momentum equation are written:
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Finally, the terms involving 1, are written:
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C.2. Temporal discretization of flow problem

The temporal discretization used in the present work is identical to that used by Akselvoll
& Moin (1995), and therefore will be written here with minimal explanation. The reader
is referred to Akselvoll & Moin (1995) for a clear description of the details of the derivation
of this temporal discretization.

Let the operator A; represent the terms treated explicitly (third order Runge-Kutta)
and B; represent the terms treated implicitly in the Navier Stokes equation (C 2):

“f - “f_l k k-1 k—1 k—2
X Br (Bi(uf) + Bi(u;™")) + medi(uj™") + GeAi(uj ™)
K} k
+ 26 (— 5p — 01 Py + fi(¢k_1))
Z;
Sul
(5:!2,' N 07

where the explicit and implicit operators are given, as in Akselvoll & Moin (1995), by:
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The Runge-Kutta coefficients used in the present computations are:

4 1 1
ﬂl_ﬁa /62_1_57 /63 67
_8 _5 _3
71—155 72—127 73_47
17 )
G =0, G = ~ 60’ (3= 1

An important key to the success of the present approach is that wall-normal derivatives
may be linearized (without loss of overall accuracy of the method) according to

— ) [ %] B 6u§_1u’§+5u§_1u§_1
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The fractional step method for the flow problem may now be written out (in order of
computation in the actual code) as follows. The right hand sides, containing all terms
computed explicitly, are first computed:

5 1 subTly  sublub!
R, = ul —|—,@kAt (6.’1} [V ]

(5.’1)2 (5.732

k—1
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1
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+ 'ykAtA2(u§_1) + (rAtAs (Uf_z) + 28, At (— op + f2(¢k_1)>

(5:82
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(5182 (5332
k—1 k—2 spht k—1
Note that the pressure is accounted for explicitly in the above expressions. With the right
hand sides computed, the implicit (tridiagonal) problem for the x2 component of a (non-
divergence-free) intermediate field @ may be solved based on the linearized treatment of
the implicit wall-normal derivatives:

51 o sus™t | .
{l—ﬂkAt(s—I:V(s—]—{—Q,BkAt 52a }U2—R2.

With 42 computed, the implicit problems for the z; and z3 components of @ may be
solved:

1— B At— lv—| + BrAt—=— > 41 =
{ Bk t52[U5 2] Bk t62}u1 Ry

1) 5 (SUQ
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{ Br 524 | 52y + BrA 32 }U3 3
Finally, a Poisson equation for the pressure update ¢ = p* — p¥~1 is computed based on
the divergence of this intermediate field:

(5(,0 1 (Sﬂz

(530,63:1 n QﬁkAt 5_x,

The pressure update term ¢ is then used both to project the intermediate velocity field
1 onto a divergence free field u*

uk = d; — 2B At ;590

and, of course, to update the pressure p* itself

Pr=p"" 1+
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C.3. Temporal Discretization of Adjoint Problem

The temporal discretization for the adjoint problem follows closely that of the flow prob-
lem developed in the previous section. The equation governing the adjoint is

Na) a” = _6u;-* B (au
ot Oz,

Bu;f 0
Oz = in Q
3U;’) B 0?u} _op* I
ox; 63:? 0x; i

with boundary conditions, initial conditions, and interior forcing terms f;* which vary
from case to case, as outlined in the main text. In order to simplify the notation for the
remainder of this appendix, in which superscripts indicate the Runge-Kutta substep, the
tilde notation (7) will be adopted for the adjoint field rather than the asterisk notation

(*)-

Let the operator A; represent the terms treated explicitly (third order Runge-Kutta)
and B; represent the terms treated implicitly in the adjoint equation (above):

af_izf—l = Bi (Bi(@}) + Bi(@§™)) + yeAs(@) ™) + G Au(@; %)
+ 20 (gi]: N‘)
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where the explicit and implicit operators are given by :
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The fractional step method for adjoint problem may now be written out (in order of
computation in the actual code) as follows. The right hand sides, containing all terms
computed explicitly, are first computed:
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With the right hand sides computed, the implicit (tridiagonal) problems for a (non-
divergence-free) intermediate field it may be solved:

) J- & J- .=
{1 + Bl [VE] + ﬁkmqu} a1 = Ry

{14—ﬂkﬁiii—

J- k J- .=
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Finally, a Poisson equation for the adjoint pressure update ¢ = pF — ﬁk_l
based on the divergence of this intermediate field:
é0op 16Uy
(530,63:1 n QﬁkAt (530, )

is computed

The adjoint pressure update term (3% —p*~1) is then used both to project the intermediate
velocity field 1 onto a divergence free field @*

and, of course, to update the adjoint pressure p* itself

P=5" 4o



