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a b s t r a c t

Bayesian estimation strategies represent the most fundamental formulation of the state estimation
problem available, and apply readily to nonlinear systems with non-Gaussian uncertainties. The present
paper introduces a novel method for implementing grid-based Bayesian estimation which largely
sidesteps the severe computational expense that has prevented the widespread use of such methods.
The method represents the evolution of the probability density function (PDF) in phase space, px(x′, t),
discretized on a fixed Cartesian grid over all of phase space, and consists of two main steps: (i) between
measurement times, px(x′, t) is evolved via numerical discretization of the Kolmogorov forward
equation, using a Godunov method with second-order corner transport upwind correction and a total
variation diminishing flux limiter; (ii) at measurement times, px(x′, t) is updated via Bayes’ theorem.
Computational economy is achieved by exploiting the localized nature of px(x′, t). An ordered list of cells
with non-negligible probability, as well as their immediate neighbors, is created and updated, and the
PDF evolution is tracked only on these active cells.

Published by Elsevier Ltd
1. Introduction

Bayesian estimation strategies are the most general class of
solutions to the state estimation problem, and apply readily
to nonlinear systems where information about the state is
represented by a probability density function (PDF) of general
form. In this paper, we introduce a novel, computationally cheap
method for implementing grid-based Bayesian estimation that
exploits the fact that the PDF is usually negligible in most of
phase space, while avoiding many of the disadvantages of other
methods. The idea of grid-based Bayesian estimation dates back
at least to Stratonovich (1959, 1960). The equations underlying
the algorithm are laid out clearly in Jazwinski (1970, p. 164),
and are summarized below. However, numerical implementation
of these equations has only been attempted sporadically in
the half century since, for instance by Kramer and Sorenson
(1988), Terwiesch and Agarwal (1994) and Ungarala, Chen, and
Li (2006). Grid-based Bayesian methods typically suffer from the
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twin burdens of high computational cost and a finite domain
size; indeed, Arulampalam, Maskell, Gordon, and Clapp (2002),
in their otherwise insightful review of particle filter methods, all
but dismiss grid-based methods in Section IV.B. We believe that
this level of pessimism on this class of methods is unwarranted.
The algorithm developed, dubbed GBEES (Grid-based Bayesian
Estimation Exploiting Sparsity), provides a means of efficient
computation by building on an accurate integration scheme for
hyperbolic systems, and a novel gridding scheme over all of
phase space.

2. Grid-based Bayesian estimation exploiting sparsity

Consider the state estimation of the nonlinear system

dx
dt
= f(x,w), y = h(x, v). (1)

The grid-based Bayesian estimation method is best visualized as
an evolution of the PDF of the state estimate x̂ discretized on a
fixed grid over all of phase space Rn; assuming the state x develops
according to the nonlinear equation (1), the method consists of
two relatively straightforward steps (for details, see Jazwinski,
1970, p. 164):

(i) Between measurement times, the PDF itself, px(x′, t), is
marched via discretization of the Kolmogorov forward equation
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(also called the Fokker–Planck equation)

∂px(x′, t)
∂t

= −
∂ fi(x′, t) px(x′, t)

∂x′i
+

1
2

∂2qij px(x′, t)
∂x′i ∂x

′

j
, (2)

where summation over repeated indices is implied and qij is
the (i, j)th element of the spectral density, Q , of the state dis-
turbances (note that, in the special case that Q is diagonal and
the state disturbance is independent of x, this is just a diffu-
sion term). Risken (2002) reviews a number of methods for
solving this equation, including analytic methods for special
cases and eigenfunction expansions (focusing on the station-
ary solution), however state-space and timediscretization for a
non-stationary solution (as performed here) is onlymentioned
briefly, and assumed to apply only to finite domains. An accu-
rate numerical method for marching this equation in time in
the case that Q = 0 is outlined in Section 3; adding an appro-
priate term to this discretization to apply diffusion to the PDF
(to account for Gaussian state disturbances) is straightforward,
as discussed in Section 3.2.

(ii) At themeasurement times tk, the PDF is updated via Bayes’ the-
orem (Bayes, 1763),

px(x′, tk+) =
py(yk|x′) px(x′, tk−)

C
, (3)

where px(x′, tk+) denotes the a posteriori PDF (after account-
ing for the measurement yk), py(yk|x′) denotes the uncertainty
associated with the measurement (which may or may not be
Gaussian in x′), px(x′, tk−) denotes the a priori PDF (before ac-
counting for themeasurement yk), and C is an appropriate nor-
malization constant, which is selected for every measurement
update to normalize the discretization of px(x′, tk+) such that
its integral over phase space is unity.

To understand how the continuous state-space is discretized,
recall that the cumulative distribution function (CDF) of a random
real vector x, denoted fx(x), maps x ∈ Rn to the real interval [0, 1]
that monotonically increases in each of the components of x, and
is defined

fx(x) = P(x1 ≤ x1, x2 ≤ x2, . . . , xn ≤ xn),

where x is some particular value of the random vector x and
P(S) denotes a probability measure that the conditions stated in
S are true. For any random vector x whose CDF is differentiable
everywhere, the probability density function (PDF) px(x′) ≥ 0 is a
scalar function of x′ defined such that

fx(x) =
 x1

−∞

 x2

−∞

· · ·

 xn

−∞

px(x′) dx′1 dx
′

2 · · · dx
′

n,

⇔px(x′) =
∂n fx(x)

∂x1 ∂x2 · · · ∂xn


x=x′

.

For small |1x′|, the quantity px(x′)1x′1 1x′2 · · ·1x′n represents the
probability that the random vector x takes some value within a
small rectangular region centered at the particular value x′ and of
width 1x′i in each coordinate direction ei.

The method we have developed maintains a list of active
cells on the grid over all of phase space in order to limit
both the computational effort and the memory storage required
in the numerical simulation. This list includes all cells in the
discretization for which the PDF is greater than a given threshold,
as well as all cells which, though they may or may not themselves
exceed this threshold, are either one of the two immediate
neighbor cells, in each of the n coordinate directions, of those
cells which exceed the threshold, or are one of the four neighbor
cells, in each of the nC2 pairs of coordinate directions, which touch
a corner of the cells which exceed the threshold. At each time
step, cells are added to and removed from this list as appropriate,
and the fluxes initialized and updated on every interior boundary
between adjacent cells in the list. When performing a computation
restricted to an evolving list of active grid cells of this sort,
the relative position of the various cells in the list is needed
frequently. This may be determined efficiently by keeping in each
list record a pointer to the two immediate neighbor cells in each
coordinate direction in the list, if these neighbor cells are present
in the list, or to a null record if not, and updating these pointers
appropriately as records are added to and removed from the list.2
These pointers interconnecting the list facilitate rapid computation
of the numerical discretization given in (5) in the next section. The
most expensive step in maintaining this list of neighbor cells is
making the appropriate connectionswhen a new record is added to
the list. Though this may be accomplished by scanning the entire
list, this approach becomes prohibitively expensive as the length
of the list grows to thousands of cells. Instead, we keep the list
ordered by its indices (e.g., in a phase space with n = 3, ordered
first by i, then by j, then by k), and store the elements of the list as
a binary tree. This allows the time-limiting search step to proceed
at O(N logN) operations, where N is the number of list elements.
Conveniently, this list ordering and searching can be handled using
the C++ Standard Template Library map container.

3. Accurate numerical integration of the Kolmogorov forward
equation

The PDE governing the evolution of the PDF in the present
problem is given by (2). If Q = 0, the equation is hyperbolic; if
Q > 0, the equation, strictly speaking, changes type to elliptic.
In practice, however, Q is usually relatively small. It is thus fitting
to design a numerical method for accurate simulation of (2)
based on a proven algorithm for accurate simulation of hyperbolic
PDEs. Fortunately, the fluid mechanics community has focused on
the development of high performance computing techniques for
numerical simulation of such ‘‘convection-dominated’’ problems
for over 40 years, and these techniques are now quite refined
and well understood. The numerical method best suited to the
present problem is somewhat involved; a comprehensive review
of this class of methods is given in LeVeque (2002). To focus this
discussion, consider first the two-dimensional, linear, hyperbolic
PDE in conservation form

∂p(x, y, t)
∂t

= −
∂ u(x, y) p(x, y, t)

∂x
−

∂ v(x, y) p(x, y, t)
∂y

, (4)

noticing that higher-dimensional cases follow as an obvious
extension. Following Chapters 4, 6, 9, 19, and 20 of LeVeque (2002),
we implement a Godunov-type finite volume method by writing
(4) on a uniform Cartesian 2D mesh (with constant 1x and 1y) in
the form

pn+1ij − pnij
1t

= −
F n
i+1/2,j − F n

i−1/2,j

1x
−

Gn
i,j+1/2 − Gn

i,j−1/2

1y
, (5)

where the fluxes F n
i−1/2,j and Gn

i,j−1/2 are determined, for all i and j,
by first initializing

F n
i−1/2,j = u+i−1/2,jp

n
i−1,j + u−i−1/2,jp

n
i,j,

Gn
i,j−1/2 = v+i,j−1/2p

n
i,j−1 + v−i,j−1/2p

n
i,j,

2 The four neighbor cells, in each pair of coordinate directions, which touch the
corner of a given cell may be found by referencing the neighbor cell of a neighbor
cell.
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where u+ = max(u, 0), u− = min(u, 0), etc., then applying the
corner transport upwind (CTU) terms by updating, for all i and j,

F n
i−1/2,j−1 ← F n

i−1/2,j−1 −1t
u−i−1/2,j−1 v−i,j−1/2

2

1pni,j−1/2
1y

,

F n
i+1/2,j−1 ← F n

i+1/2,j−1 −1t
u+i+1/2,j−1 v−i,j−1/2

2

1pni,j−1/2
1y

,

F n
i−1/2,j ← F n

i−1/2,j −1t
u−i−1/2,j v

+

i,j−1/2

2

1pni,j−1/2
1y

,

F n
i+1/2,j ← F n

i+1/2,j −1t
u+i+1/2,j v

+

i,j−1/2

2

1pni,j−1/2
1y

,

Gn
i−1,j−1/2 ← Gn

i−1,j−1/2 −1t
v−i−1,j−1/2 u

−

i−1/2,j

2

1pni−1/2,j
1x

,

Gn
i−1,j+1/2 ← Gn

i−1,j+1/2 −1t
v+i−1,j+1/2 u

−

i−1/2,j

2

1pni−1/2,j
1x

,

Gn
i,j−1/2 ← Gn

i,j−1/2 −1t
v−i,j−1/2 u

+

i−1/2,j

2

1pni−1/2,j
1x

,

Gn
i,j+1/2 ← Gn

i,j+1/2 −1t
v+i,j+1/2 u

+

i−1/2,j

2

1pni−1/2,j
1x

,

where1pni−1/2,j = pnij−pni−1,j, 1pni,j−1/2 = pnij−pni,j−1, then applying
the high-resolution correction terms by updating, for all i and j,

F n
i−1/2,j ← F n

i−1/2,j +1t
|ui−1/2,j|

2


1x
1t
− |ui−1/2,j|


×

1pni−1/2,j
1x

φ(θn
i−1/2,j),

Gn
i,j−1/2 ← Gn

i,j−1/2 +1t
|vi,j−1/2|

2


1y
1t
− |vi,j−1/2|


×

1pni,j−1/2
1y

φ(θn
i,j−1/2),

where

θn
i−1/2,j =


1pni−3/2,j/1pni−1/2,j if ui−1/2,j ≥ 0,
1pni+1/2,j/1pni−1/2,j if ui−1/2,j < 0,

θn
i,j−1/2 =


1pni,j−3/2/1pni,j−1/2 if vi,j−1/2 ≥ 0,
1pni,j+1/2/1pni,j−1/2 if vi,j−1/2 < 0,

and the flux limiter function φ(θ) ∈ [0, 2] is selected as one
of several possible choices, including the monotonized central-
difference (MC) limiter and the van Leer limiter:

MC : φ(θ) = max{0,min[(1+ θ)/2, 2, 2θ ]},
van Leer : φ(θ) = (θ + |θ |)/(1+ |θ |).

Note that exact conservation of the discrete approximation of
the integral of p over phase space, as implied by the continuous
formulation in (4), follows immediately from (5).

3.1. Numerical analysis

In regions characterized by smooth variation of p, θ ≈ 1 and
φ(θ) ≈ 1, and the algorithm described in Section 3 is amenable to
straightforward numerical analysis. For simplicity, consider here
the 1D test problem

∂p
∂t
= −u

∂p
∂x

(6)

where u is a positive or negative constant. In this case, the
discretization described above reduces to
pn+1i − pni

1t
= −

F n
i+1/2 − F n

i−1/2

1x
where

F n
i−1/2 =

u
2
(pni + pni−1)−

u2

2
1t
1x

(pni − pni−1),

and thus
pn+1i − pni

1t
= −u

(pni+1 − pni−1)
21x

+
u2 1t
2

(pni+1 − 2pni + pni−1)
(1x)2

.

Now applying to this equation the multidimensional Taylor series
expansion,

yn+mi+k = yni +m1t


∂y
∂t

n

i

+ k1x


∂y
∂x

n

i

+
(m1t)2

2


∂2y
∂t2

n

i

+
(k1x)2

2


∂2y
∂x2

n

i

+m1t k1x


∂2y
∂x∂t

n

i

+ · · · ,

and rearranging appropriately, gives

(pt)ni = −u(px)
n
i −

1t
2

(ptt)ni +
u21t
2

(pxx)ni

+O((1t)2, (1x)2, 1x1t).
Differentiating (6) with respect to t and inserting (6) into the RHS
of the result, it is seen that the second and third terms on the RHS of
the above expression cancel. Thus, in regions of smooth variation
of p, the proposed scheme is second-order accurate in both space and
time.3 A similar analysis follows for problems in higher dimensions.

3.2. Accounting for diffusion

A diffusion term is easily added to the discretization given in
(5) in a second-order central finite difference fashion simply by
updating the fluxes such that, for all i and j,

F n
i−1/2,j ← F n

i−1/2,j + µ̄
1pni−1/2,j

1x
,

Gn
i,j−1/2 ← Gn

i,j−1/2 + µ̄
1pni,j−1/2

1y
,

where µ̄ is the coefficient of the diffusion term that is applied
numerically. The flux limiter functions mentioned at the end
of Section 3 are designed to reduce the algorithm, locally, to a
first-order spatial behavior while applying sufficient numerical
diffusion in regions of large local curvature of p on the grid,
to provide a total variation diminishing (TVD) solution (that
is, preventing spurious oscillations with new local minima and
maxima). We may compensate for the diffusion introduced by
the numerical discretization of the convective terms simply by
appropriately reducing the diffusion µ̄ applied in the numerical
simulation of (2).

3.3. Validation

A simple yet sensitive numerical test of the algorithm is given
in Fig. 1; this numerical test was taken with u = y and v = −x
in order to give simple solid body rotation about the origin, as
suggested by LeVeque (2002). If Q = 0, the exact solution of
the test problem considered in Fig. 1 at t = 2π , after a single
rotation of the system about the origin, is simply the initial condi-
tion. For the caseQ = 2µI whereµ is constant andpositive, the ex-
act solution of this problem at t = 2π may be obtained analytically
bymeans of Fourier transforms. As seen by comparing Fig. 1 to Fig-
ure 20.5 of LeVeque (2002), the result obtained via the GBEES ap-
proach is essentially identical to that obtained using the complete

3 Meaning that the error is bounded by a term proportional to (1x)2 in space and
(1t)2 in time, giving convergence of O(1/N2).
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Fig. 1. Computation of a sensitive test system (governed by (4) with u(x, y) = y
and v(x, y) = −x), using the method in Section 3, taking Q = 0, 1x = 0.01, 1t =
0.001, and a threshold of 10−3 (that is, tracking numerically only those cells with
p > 0.001 and their immediate neighbors). The distributions are compared in cross
section in the plane x = 0, with the black solid line denoting the exact solution at
t = 2π for Q = 0, the blue dashed line denoting the numerical solution at t = 2π
using Q = 0, 1x = 0.01, 1t = 0.001 and the red dot-dashed line denoting the
exact solution at t = 2π forQ = 8×10−5 . The leading-order error in the numerical
solution at t = 2π is a small amount of diffusion of p. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

grid when sufficiently small threshold, time step and state-space
discretization is used. The information loss due to the discretiza-
tion schememay be quantified via the Kullback–Liebler divergence
(Kullback & Liebler, 1951), DKL(P0, Pϵ), where a distribution Pϵ is
used to approximate the true distribution P0. The Kullback–Liebler
divergence using the simulation in Fig. 1 when compared to the
true analytic solution is 0.089 bits (with the distributions normal-
ized to integrate to unity), whereas the divergence from the true
case to the diffusion case calculated analytically for Q = 8× 10−5
is 0.085 bits.4 The divergence from the true solution to a simula-
tion using a truncation threshold of 10−16 (not shown) is almost
the same as the more aggressively truncated example and is visu-
ally indistinguishable. As evident by comparing the numerical so-
lution at t = 2π in Fig. 1 to the initial condition, the discretization
described in Section 3 introduces a small numerical error in regions
of high curvature. However, by comparing the numerical solution,
for µ = 0, 1y = 0.001 and 1x = 0.01, to the exact solution, for
µ = 4× 10−5, it is evident that the leading-order error of the nu-
merical discretization is just a bit of additional diffusion, the level
of which may be determined by a suitable minimization process.

4. Numerical results

A Bayesian approach is justified when the uncertainty of the
estimate is significantly non-Gaussian, such as in the estimation
of a nonlinear system with relatively large uncertainty, leaving us
with particle filtering or grid-based methods; what is perhaps still
uncertain is the numerical tractability of a grid-based approach
when one exploits the sparsity of the PDF in the manner described
in Section 2. Thus, in order to test the efficiency of the GBEES
algorithm, as well as to demonstrate how it can capture with
unprecedented accuracy the evolution of a non-Gaussian PDF, we
have applied the GBEES algorithm to the estimation of the three-
state Lorenz system

dx
dt
= f(x), x =

x1
x2
x3


, f(x) =


σ (x2 − x1)
−x2 − x1x3

−b x3 + x1x2 − b r



4 This value of Q was chosen so that the divergence from the true case to the
diffusion case was close to that of the true case to the numerical solution.
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Fig. 2. The rapid transformation of a PDF from Gaussian to highly non-Gaussian in
the Lorenz system, with no measurement updates. Visualized are p = 0.005, p =
0.0005, and p = 0.00005 isosurfaces of the PDF in phase space at t = 0 (in the
upper-right), t = 0.2, t = 0.4, t = 0.6, t = 0.8, and t = 1. The simulation was
performed with a variable time step 1t ≤ 0.001, a grid spacing of 1x = 0.25, and
a threshold of ϵ = 10−6 . This simulation required less than 40 s of computation
on a 2009 vintage Apple laptop computer (2.4 GHz Intel Core 2 Duo) using a single-
threaded C++ implementation of the present algorithm tracking about 50,000 active
cells (of 5.3 × 106 total cells in the domain shown) at t = 1. The modest memory
requirements are proportional to the number of cells.

with σ = 4, b = 1, and r = 48. For these parameter values,
the system is chaotic, and the attractor takes the familiar form
indicated by the green line in Fig. 2. Also illustrated in this Fig. 2
is the evolution of an initially (at t = 0) Gaussian PDF px(x′, t), the
evolution of which is governed by the Kolmogorov equation (2),
with nomeasurement updates applied and no added process noise
(diffusion). The distribution narrows significantly in the direction
normal to the attractor, and spreads out rapidly in the direction
of the maximum local Lyapunov exponent along the attractor; by
t = 1, the PDF is highly non-Gaussian. Note also in the t = 0.8
and t = 1 isosurfaces the remarkable division of the PDF into two
distinct lobes in the vicinity of the x3 axis (the vertical coordinate
axis in the figures), which is invariant and unstable in the Lorenz
system.

Fig. 3 represents the evolution of the PDF when measurements
(with Gaussian uncertainty) of x3 are taken at every time
step. Computationally, the problem addressed in the figure is
significantly easier than the ‘‘open-loop’’ problem illustrated in
Fig. 2, as the number of active cells by t = 1 is reduced from
50,000 to only 4000; the computation time for this simulation
is also reduced accordingly, from 40 to 4 s for the time interval
shown. The PDF at time t = 1 splits into two concentrated regions
on the left and right sides of the figure. Futuremeasurementsmight
reveal in which region the state really is; until suchmeasurements
are received, the GBEES algorithm is perfectly capable of following
both. A plain Kalman filter, which assumes a central estimate,
would necessarily fail to model such a splitting.

5. Analysis and conclusions

A novel algorithm is introduced in this paper to exploit the
remarkable sparsity of the evolving PDF in phase space, thereby,
for the first time, making high-resolution grid-based Bayesian
estimation computationally tractable for nontrivial systems. The
method generalizes straightforwardly to any number dimensions,
with computational cost expected to be a trade-off between
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Fig. 3. The same simulation as Fig. 2 but with measurements of x3 (vertical axis),
with Gaussian uncertainty, at every time step. The black line is the ‘true’ state
which generates the measurements. Note that, by t = 1, the PDF splits into two
concentrated regions. This simulation required about 4 s of computation with the
same hardware, tracking about 4000 active cells (of 5.3 × 106 total cells in the
domain shown) at t = 1.

the curse of dimensionality and the increased sparseness of the
PDF. In application, the algorithm developed is shown to track,
with unprecedented fidelity, the completely non-Gaussian PDF
of the estimate of a Lorenz system, both with and without
measurement updates. The simulation exhibits a competition
between information loss due to the random state disturbances
and stretching of the PDF in the unstable directions of the system,
and information gain from measurements.

Grid-based Bayesian estimation algorithms are sometimes
referred to as approximate grid-based methods. We point out that
the numerical analysis of Section 3.1 establishes that the numerical
method used to propagate the Kolmogorov equation in the present
grid-based estimation algorithm is second-order accurate in both
space and time; this compares favorably to the (slower than linear)
O(1/
√
N) convergence rate of particle methods applied to the

Kolmogorov equation (see Bernard, Talay, & Tubaro, 1994).
Finally, Lagrangian (that is, particle-based) simulation tech-

niques have been explored for decades in the field of fluid me-
chanics, but for n > 2 remain mostly a research novelty. On
the other hand, grid-based methods (often with adaptive grids to
focus the computational effort where it is needed) have proven im-
mensely successful in a variety of complex situations in fluid me-
chanics, such as in the characterization of fluid turbulence and in
the design of commercial airliners, where computational methods
have largely supplanted repetitive wind-tunnel testing. There ap-
pears to be no reason why the same success of grid-based meth-
ods will not also be realized in Bayesian estimation approaches,
once the community working on such problems fully appreciate
how the remarkable sparsity of the PDF in such problems may
be exploited.
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