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Abstract

The application ofoptimalcontrol theory to complex problems in fluid mechanics has proven to be quite effective when
complete state information from high-resolution numerical simulations is available [P. Moin, T.R. Bewley, Appl. Mech. Rev.,
Part 2 47 (6) (1994) S3–S13; T.R. Bewley, P. Moin, R. Temam, J. Fluid Mech. (1999), submitted for publication]. In this
approach, an iterative optimization algorithm based on the repeated computation of an adjoint field is used to optimize the
controls for finite-horizon nonlinear flow problems [F. Abergel, R. Temam, Theoret. Comput. Fluid Dyn. 1 (1990) 303–325].
In order to extend this infinite-dimensional optimization approach to control externally disturbed flows in which the controls
must be determined based on limited noisy flow measurements alone, it is necessary that the controls computed be insensitive
to both state disturbances and measurement noise. For this reason,robustcontrol theory, a generalization of optimal control
theory, has been examined as a technique by which effective control algorithms which are insensitive to a broad class of
external disturbances may be developed for a wide variety of infinite-dimensional linear and nonlinear problems in fluid
mechanics. An aim of the present paper is to put such algorithms into a rigorous mathematical framework, for it cannot be
assumed at the outset that a solution to the infinite-dimensional robust control problem even exists. In this paper, conditions
on the initial data, the parameters in the cost functional, and the regularity of the problem are established such that existence
and uniqueness of the solution to the robust control problem can be proven. Both linear and nonlinear problems are treated,
and the 2D and 3D nonlinear cases are treated separately in order to get the best possible estimates. Several generalizations
are discussed and an appropriate numerical method is proposed. ©2000 Elsevier Science B.V. All rights reserved.

Keywords:Robust control; Fluid mechanics; Navier–Stokes

1. Introduction

In its essence, robust control theory [14,18] may be summarized as Murphy’s law [9] taken seriously:
If a worst-case system disturbancecandisrupt a controlled closed-loop system, itwill.

When designing a robust controller, therefore, one shouldplanon a finite component of the worst-case disturbance
aggravating the system, and design a controller which is suited to handle even this extreme situation. A controller
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Fig. 1. Schematic of a saddle point representing the neighborhood of a solution to a robust control problem with one scalar disturbance variable
ψ and one scalar control variableφ. When the robust control problem is solved, the cost functionJ is simultaneously maximized with respect to
ψ and minimized with respect toφ, and a saddle point such as(ψ̄, φ̄) is reached. The present paper formulates an infinite-dimensional extension
of this concept, where the costJ is related to a distributed disturbanceψ and a distributed controlφ through the solution of the Navier–Stokes
equation.

which is designed to work even in the presence of a finite component of the worst-case disturbance will also be
robust to a wide class of other possible disturbances which, by definition, are not as detrimental to the control
objective as the worst-case disturbance. Thus, the problem of finding a robust control is intimately coupled with the
problem of finding the worst-case disturbance in the spirit of a non-cooperative game.

To summarize briefly the robust control approach in the time domain, a cost functionalJ describing the control
problem at hand is defined that weighs together the (distributed) disturbanceψ , the (distributed) controlφ, and
the flow perturbationu(ψ, φ) in the domainΩ over the time period of consideration [0, T ]. The cost functional
considered in the present work is of the form

J (ψ, φ)= 1

2

∫ T

0

∫
Ω

|C1u|2 dx dt + 1

2

∫
Ω

|C2u(x, T )|2 dx

−
∫ T

0

∫
∂Ω

C3ν
∂u

∂n
· r dΓ dt + 1

2

∫ T

0

∫
Ω

[l2|φ|2 − γ 2|ψ |2] dx dt. (1.1)

This cost functional is simultaneously maximized with respect to the disturbanceψ and minimized with respect
to the controlφ, as illustrated in Fig. 1. The robust control problem is considered to be solved when a saddle
point (ψ̄, φ̄) is reached; note that such a solution, if it exists, is not necessarily unique. The dependence of the cost
functionalJ on the flow perturbationu = u(ψ, φ) itself is treated in a fairly general form; four cases of particular
interest are:
1. C1 = d1 I andC2 = C3 = 0⇒ regulation of turbulent kinetic energy;
2. C1 = d2∇× andC2 = C3 = 0⇒ regulation of the square of the vorticity;
3. C2 = d3I andC1 = C3 = 0 ⇒ terminal control of turbulent kinetic energy;
4. C3 = d4I andC1 = C2 = 0⇒ minimization of the time-average skin-friction in the directionr integrated over

the boundary of the domain. Note thatn is the unit outward normal vector to∂Ω andr is a given unit vector
usually taken as the direction of the mean flow.

All four of these cases, and many others, may be considered in the present framework, and the extension to
other cost functionals is straightforward. The dimensional constantsdi (which are the appropriate functions of the
kinematic viscosityν, a characteristic lengthL0, and a characteristic velocityU0), as well asl andγ , are included
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to make the cost functional dimensionally consistent and to account for the relative weight of each individual
term.

It cannot be assumed at the outset that a solution to the infinite-dimensional min/max problem described above
even exists. However, it is established in the present paper that for a sufficiently largeγ and reasonable requirements
on the regularity of the problem (described later in this section), a solution to this min/max problem indeed does
exist, with the (finite) magnitudes of the disturbance and the control governed by the scalar parametersγ andl. To
accomplish this, we will extend the optimal control setting of Abergel and Temam [1] to analyze the non-cooperative
differential game of the robust control setting in which a saddle point(ψ̄, φ̄) is sought. Our approach is based on
the results of the existence and characterization of saddle-points in infinite dimensions as given, e.g., in [15].

The optimization of interior forcing profiles(ψ, φ)will be examined in detail, first for the linearized Navier–Stokes
equation (Section 2), then for the full nonlinear Navier–Stokes equation (Section 3). We will then generalize to
the problems of boundary control (Section 4.1), with the possibility of corners in the boundary of the domainΩ,
and data assimilation (Section 4.2), in which the initial conditions are optimized to solve an estimation/forecasting
problem based on flow measurements on [0, T ]. Finally, a tractable numerical algorithm for solving all of the robust
control problems discussed herein is presented (Section 5).

The numerical approach proposed to solve the robust control problem is based on computations of an O(N)

adjoint field, whereN is the number of grid points used to resolve the continuous flow problem. Note thatN &
O(105) for problems of engineering interest today, and this number may be expected only to increase in the future.
Computation of the adjoint field is only as difficult as the computation of the flow itself, and thus is a numerically
tractable approach to the control problem whenever the computation of the flow itself is numerically tractable.
In contrast, control approaches based on the solution of O(N2) Riccati equations or Hamilton–Jacobi–Bellman
formulations have not been shown to be numerically tractable for discretizations withN > O(100), and thus
are, so far, inadequate to treat many of the problems of interest in fluid mechanics with a sufficient degree of
resolution.

1.1. An intuitive introduction to robust control theory

Consider the present problem as a differential game between an engineer seeking the “best” controlφ which
stabilizes the flow perturbation with limited control effort and, simultaneously, nature seeking the “maximally
malevolent” disturbanceψ which destabilizes the flow perturbation with limited disturbance magnitude [18]. The
parameterγ 2 factors into such a competition as a weighting on the magnitude of the disturbance which nature can
afford to offer, in a manner analogous to the parameterl2, which is a weighting on the magnitude of the control
which the engineer can afford to offer.

The parameterl2 may be interpreted as the “price” of the control to the engineer. Thel → ∞ limit corresponds
to prohibitively “expensive” control, and results inφ → 0 in the minimization with respect toφ for the present
problem. Reduced values ofl increase the cost functional less upon the application of a controlφ. A non-zero
control results whenever the controlφ can affect the flow perturbationu in such a way that the net cost functional
J is reduced.

The parameterγ 2 may be interpreted as the “price” of the disturbance to nature. Theγ → ∞ limit results in
ψ → 0 in the maximization with respect toψ , leading to the optimal control formulation of Abergel and Temam
[1] for φ alone. Reduced values ofγ decrease the cost functional less upon the application of a disturbanceψ . A
non-zero disturbance results whenever the disturbanceψ can affect the flow perturbationu in such a way that the
net cost functionalJ is increased.

Solving for the controlφ which is effective even in the presence of a disturbanceψ which maximally spoils
the control objective is a way of achieving system robustness. A control which works even in the presence of the
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Fig. 2. Schematic representation of the space–time domain over which the flow fieldu is defined. The arrow indicates the direction in time that
the p.d.e. is marched.

Fig. 3. Schematic representation of the space–time domain over which the adjoint fieldũ is defined. The arrow indicates the direction in time
that the p.d.e. is marched.

malevolent disturbanceψ will also be robust to a wide class of other possible disturbances. Put another way, the
introduction of the worst-case disturbance in the robust approach is a means of “detuning” the optimal controls.
It results in a set of controls which may have somewhat degraded performance when no disturbances are present.
However, much greater system robustness (i.e., better performance) is attained in cases for which unknown distur-
bances are present in the system, and thus the approach is relevant for applications in physical systems, in which
unpredictable disturbances are ubiquitous.

In the present systems, forγ < γ0 for some critical valueγ0 (an upper bound of which is established in this
paper), the non-cooperative game is not known to have a finite solution; essentially, the malevolent disturbance
wins. The controlφ corresponding toγ = γ0 results in a stable system even when nature is on the brink of making
the system unstable. However, the control determined withγ = γ0 is not always the most suitable, as it may result
in a very large control magnitude and degraded performance in response to disturbances with structure more benign
than the worst-case scenario. In the implementation, variation ofl andγ provides the flexibility in the control design
which is necessary to achieve the desired trade-offs between Gaussian and worst-case disturbance response and the
control magnitude required [8].

1.2. General framework

In Figs. 2 and 3, we identify all possible sources of forcing in the present control problem, which is shown in
Sections 2.2 and 3.3 to boil down to a two-point boundary-value problem for a coupled set of p.d.e.s: one for the
flow perturbationu and one for an adjoint1 field ũ. All three possible locations of forcing of the flow problem and
all three possible locations of forcing of the adjoint problem are considered in the present framework. By so doing,
we establish a general framework in which the robust control approach, discussed herein, can be applied to a wide
variety of problems in fluid mechanics.

1 Note that the adjoint field used in this work represents the sensitivity of the portion of the cost functionalJ which depends onu to modification
of the forcing(ψ, φ) of the flow problem.
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The possible regions of forcing in the system definingu are:
1. the right-hand side of the p.d.e., indicated with shading, representing flow control by interior volume forcing,

as discussed in Sections 2 and 3 (e.g., externally applied electromagnetic forcing by wall-mounted magnets and
electrodes);

2. the boundary conditions, indicated with diagonal stripes, representing flow control by boundary forcing, as
discussed in Section 4.1 (e.g., wall transpiration);

3. the initial conditions, indicated with checkerboard, representing optimization of the initial state in a data as-
similation framework, as discussed in Section 4.2 (e.g., the weather forecasting problem).

The possible regions of forcing in the system definingũ, corresponding exactly to the possible domains in which
the cost functionalJ can depend onu, are:
1. the right-hand side of the p.d.e., indicated with shading, representing regulation of an interior quantity (e.g.,

turbulent kinetic energy, cases 1 and 2 of Section 1);
2. the boundary conditions, indicated with diagonal stripes, representing regulation of a boundary quantity (e.g.,

wall skin-friction, case 4 of Section 1);
3. the terminal conditions, indicated with checkerboard, representing terminal control of an interior quantity (e.g.,

turbulent kinetic energy, case 3 of Section 1).
An interesting singularity arises when considering the terminal control of a boundary quantity such as wall
skin-friction. The (inhomogeneous) boundary conditions on the adjoint field for such a case are the same as in
the corresponding regulation problem with a delta function applied at timet = T .

1.3. Related literature

Robust control of infinite-dimensional linear systems is discussed in a fairly general operator-Riccati setting in
[4,16,26]. Though the systems considered in these references are linear (e.g., wave equations) and the issues raised
are primarily related to linear operators in infinite dimension, these references provide useful background material
for the present discussion; see also [37] for related work in the context of optimal control problems. Most of these
references consider the linear case and optimizations over the infinite time horizon, a setting that is effectively
analyzed in the frequency domain and referred to asH∞ control (with reference to the Hardy spaces on which they
are developed and theL∞-norms of the input–output transfer functions that they bound). The reader is referred
to [38] for details from this perspective in the finite-dimensional setting, and the above-mentioned references for
details in the infinite-dimensional setting. Of course, there is a wide body of literature concerning generally the
theory of control of systems governed by p.d.e.s, including the equations of fluid mechanics: for highlights, the
reader is referred for instance to the recent volumes compiled by Banks [2], Banks et al. [3], Gunzburger [19],
Lagnese et al. [28], and Sritharan [34].

Robust control of the Navier–Stokes equation in the operator-Riccati (H∞) setting is discussed in detail by Barbu
and Sritharan [5]. In this work, a robust control problem (on the infinite time horizon) which isγ -suboptimal for the
linearized Navier–Stokes equation is stated as the solution of an algebraic Riccati equation, assuming appropriate
detectability and stabilizability constraints on the system; then it is shown that this solution is alsoγ -suboptimal
for the full (nonlinear) Navier–Stokes equation in a sufficiently small neighborhood of the origin.

The present analysis differs in several respects. One major difference is that, here, it is not assumed that the system
is stabilizable or detectable, a spectral hypothesis difficult to verify in practice. In fact, effective controls may be
found by the present non-cooperative optimization approach even if the turbulence may not be subdued entirely in
the flow of interest.

As mentioned previously, the robust control problem is solved in the present work by an iterative optimiza-
tion involving adjoint fields, a numerically tractable approach whenever the computation of the flow itself is
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numerically tractable (see, e.g., [10], handling 33× 106 modes in the optimal control framework). In contrast,
the largest control Riccati equations solved to date for flow control problems involved Schur decompositions
of 280× 280 matrices at very high numerical precision (corresponding to a control problem with 140 modes)
and relied on the special structure of the problem formulation (stabilization of laminar flow in a plane chan-
nel) in order to decouple the control problem at different spatial wave numbers in the two homogeneous di-
rections in the flow [7]; see also an 18× 18 Riccati system (corresponding to a control problem with nine
modes) in a closely related problem by Joshi et al. [24]. Furthermore, Riccati-based approaches do not extend
readily to other geometries (where such decoupling is not present) or to higher-dimensional optimization prob-
lems due to their very poor numerical conditioning for large systems. Thus, in the more general setting, iter-
ative adjoint-based control optimizations are preferred over Riccati-based approaches. When optimized over a
sufficiently long time horizonT in a receding-horizon predictive control framework, the performance of such
schemes (in the optimal control case) has proven to be excellent even in fully turbulent flows (see [10], where
the drag of a 3D channel flow is reduced to that of the laminar state from an initial state of fully developed
turbulence).

Finally, the present work treats a number of special cases separately (the linear case, the nonlinear 3D case, and the
nonlinear 2D case, with interior forcing, boundary forcing, or initial condition optimization) to get sharp estimates
on the regularity of the system required in order to be able to prove existence and uniqueness of the solution to an
appropriately stated robust control problem.

One of the several applications of the present work is the development of estimator-based feedback control
algorithms for flow systems. In order to make such algorithms implementable in hardware in real time, reduced-order
models of the flow system which are accurate in the controlled framework (i.e., not just for the uncontrolled system)
are a high priority. Much of the pioneering work in the development of reduced-basis representations of nonlinear
infinite-dimensional fluid systems is reviewed in the book by Holmes et al. [21]; a review in the context of application
to turbulence control is given by Lumley and Blossey [32]. Reduced-basis approaches for related problems are also
discussed by Burns and King [11], Cortelezzi and Speyer [12], and Cortelezzi et al. [13]. The latter reference obtains
a linear model reduction by truncating those linear eigenmodes with low observability or controllability from the
model and report, in their case, a drag reduction to 50% below the laminar level by application of a zero-net mass
flux linear controller to a 2D unsteady channel flow. An alternative model reduction strategy was proposed in [6],
where it was observed that in the highly non-orthogonal (i.e., nearly defective) situation often encountered in fluid
mechanics, model reduction schemes mindful of the transfer function of interest, such as thep, qMarkov covariance
equivalent realization [36] or optimal Hankel norm approximation [38], are well suited.

1.4. Governing equations

We begin with the Navier–Stokes equation for a flowU in an open domainΩ ⊂ R3 such that, inΩ × (0,∞),
we have

∂U

∂t
− ν1U + (U · ∇)U + ∇P = F, divU = 0, U = 0 on∂Ω, U = U0 at t = 0. (1.2)

In the bulk of this paper, we focus our attention on the case in which the forcing is applied by way of an interior
volume force on the right-hand side of the momentum equation. A stationary or non-stationary solutionU(x, t) to
this equation with a corresponding forcingF(x, t) will be referred to as the “target” flow for the control problem.
(If no target flow is known or given,U andF are taken as zero.)

We are interested in the robust regulation of the deviation of the flow from the desired target(U, F ). In Section
2, we consider the control of the linearized equation which models small perturbations(u, f ) to the target flow
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(U, F ) with Dirichlet boundary conditions and known initial conditions such that, inΩ × (0,∞), we have

∂u

∂t
− ν1u+ (u · ∇)U + (U · ∇)u+ ∇p = f, div u = 0, u = 0 on∂Ω, u = u0 at t=0. (1.3)

In Section 3, we consider the control of the full nonlinear equation which models large perturbations(u, f ) to the
target flow(U, F ) such that, inΩ × (0,∞), we have

∂u

∂t
− ν1u+ (u · ∇)U + (U · ∇)u+ (u · ∇)u+ ∇p = f,

div u = 0, u = 0 on ∂Ω, u = u0 at t = 0. (1.4)

In Section 4, we will generalize this setting to examine the optimization of boundary controls and the optimization
of initial conditions.

1.5. Mathematical setting

LetΩ be a bounded open set ofR3 with boundary∂Ω, and letn be the unit outward normal vector to∂Ω. We
denote byHs(Ω), for s ∈ R, the Sobolev spaces constructed onL2(Ω), and byHs

0(Ω), for s > 1/2, the closure
of C∞

0 (Ω) in Hs(Ω). Following [35], we setX = {
u ∈ (C∞

0 (Ω))
3; div u = 0

}
, and denote byH (resp.V ) the

closure ofX in (L2(Ω))3 (resp.(H 1(Ω))3); we have

H = {u ∈ (L2(Ω))3; div u = 0 in Ω,u · n = 0 on ∂Ω},
V = {u ∈ (H 1

0 (Ω))
3; div u = 0 in Ω}.

The scalar product onH is denoted by(u, v) = ∫
Ω
u · v dx, that onV is denoted by((u, v)) = ∫

Ω
∇u · ∇v dx, and

the associated norms are denoted by| · |L2(Ω) and‖ · ‖, respectively. We denote byA the Stokes operator, defined
as an isomorphism fromV onto the dualV ′ of V such that, foru ∈ V,Au is defined by

〈Au, v〉V ′,V = ((u, v)), ∀v ∈ V,
where〈·, ·〉V ′,V is the duality bracket betweenV ′ andV . The operatorA is extended toH as a linear unbounded
operator with domainD(A) = (H 2(Ω))3∩V when∂Ω is aC2 surface; the case of boundary forcing in a domainΩ

with corners is treated in Section 4.1. We also recall the Leray–Hopf projectorP, which is the orthogonal projector
of the non-divergence-free space(L2(Ω))3 onto the divergence-free spaceH . The Stokes operator is defined with
this projector such that

Au = −P (1u) , ∀u ∈ D(A). (1.5)

We shall denote by 0< λ1 ≤ λ2 ≤ · · · the increasing sequence of the eigenvalues ofA. Define the bilinear mapping
B by

B(u, v) = P ((u · ∇)v) , ∀u, v ∈ V. (1.6)

Note thatB is a bilinear mapping fromV into V ′. Define a continuous trilinear formb on V such that, with
u, v,w ∈ (H 1(Ω))3, we have

b(u, v,w) = 〈B(u, v), w〉V ′,V =
∫
Ω

(u · ∇)v · w dx =
∫
Ω

ui
∂vj

∂xi
wj dx,

where Einstein’s summation is assumed.
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1.6. Abstract form of governing equations

The operatorsA andB may be used to write the Navier–Stokes equation in the “abstract form” useful for
mathematical analysis. By application of the Leray projector to (1.3), noting (1.5), (1.6), and thatPu = u and
P(∇p) = 0, the linearized Navier–Stokes equation may be written in the form

du

dt
+ νAu+ B(u,U)+ B(U, u) = Pf, u ∈ V, u = u0 at t = 0, (1.7)

where the regularity required onf, u0, andU are

f ∈ L2(0, T ;L2(Ω)3), ∀T > 0; u0 ∈ V ; U ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)). (1.8)

Similarly, application of the Leray projector to the nonlinear form (1.4) gives

du

dt
+ νAu+ B(u,U)+ B(U, u)+ B(u, u) = Pf, u ∈ V, u = u0 at t = 0. (1.9)

1.7. Control framework

In the control framework, the interior forcingf is decomposed into a disturbanceψ ∈ L2(0, T ;L2(Ω)3) and
a controlφ ∈ L2(0, T ;L2(Ω)3), with T > 0, in the spirit of the non-cooperative game discussed in Section 1.1.
Thus, we writef as

f = B1ψ + B2φ, (1.10)

whereB1 andB2 are taken here as given bounded operators2 on (L2(Ω))3. Only the divergence-free part of the
forcingf will affect the evolution of the velocity fieldu, as seen on the right-hand side of the governing equations
(1.7) and (1.9). Thus, in the remainder of this paper, we consider only the divergence-free part of the forcing by
writing

Pf = P(B1ψ + B2φ) = B1ψ + B2φ, (1.11)

whereB1 = PB1 andB2 = PB2 are mappings from(L2(Ω))3 toH .
The differencef − Pf may be written as the gradient of a scalar and thus will only modify the pressurep

in (1.3) and (1.4). As the Navier–Stokes equation in the abstract form is implicitly confined to a divergence-free
submanifold of(L2(Ω))3, the pressurep may be neglected in the mathematical analysis.

1.8. Important identities and inequalities

We now recall some important properties of the nonlinear operatorb, which can be found, for instance, in
[27,30,36]. First, we have the orthogonality identity

b(u, v, v) = 0, ∀u, v ∈ V, (1.12)

as a consequence of divu = 0, as shown by integration by parts. Moreover, the continuity of the nonlinear mapping
in various functional spaces is expressed by the following classical inequalities: there exists a numerical coefficient
C0 = C0(Ω) such that

2 Note thatB1 andB2 quantify the profile of the forcing inside the domainΩ which results from modification of the disturbance and control
variablesψ andφ. Generally speaking,ψ andφ might be defined on a subdomain ofΩ.
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|b(u, v,w)| ≤ C0‖u‖‖v‖1/2|Av|1/2
L2 |w|L2, ∀u ∈ V, v ∈ D(A), w ∈ H,

|b(u, v,w)| ≤ C0|u|1/4L2 |Au|3/4
L2 ‖v‖|w|L2, ∀u ∈ D(A), v ∈ V, w ∈ H,

|b(u, v,w)| ≤ C0|u|1/4L2 ‖u‖3/4‖v‖|w|1/4
L2 ‖w‖3/4, ∀u ∈ V, v ∈ V, w ∈ V, (1.13)

whereC0 as well as theCi hereafter denote positive numerical coefficients whose values may be different in each
inequality.

Note that the mappingu 7→ B(u) = B(u, u) is differentiable fromV into V ′. Its differential is defined by

B ′(u)v = B(u, v)+ B(v, u) = P ((u · ∇)v + (v · ∇)u) ∀v ∈ V. (1.14)

LetB ′(u)∗ denote the adjoint ofB ′(u) for the duality betweenV andV ′. (Note that, sinceV is a Hilbert space and
therefore reflexive, the dual ofV ′ can be identified withV .) The adjoint operatorB ′(u)∗ is thus defined by

〈v, B ′(u)w〉V,V ′ = 〈
B ′(u)∗v,w

〉
V ′,V . (1.15)

It follows from integration by parts [1] that

〈
B ′(u)∗v,w

〉
V ′,V =

∫
Ω

(
∂ui

∂xj
vi − ∂vj

∂xi
ui

)
wj dx =

∫
Ω

((∇u)T · v − (∇v) · u) · w dx, (1.16)

where, again, Einstein’s summation is assumed.
The use of adjoint operators to define an appropriate O(N) adjoint field is central to the development of an efficient

numerical algorithm to solve the robust control problem. An iterative approach to the solution of a two-point boundary
value problem is presented in Section 5 such that, at each iterationk (on the entire time interval [0, T ]), a flow field
and a corresponding adjoint field are computed to determine the gradientsDJ /Dψ andDJ /Dφ in the vicinity of
(ψk, φk). The disturbanceψk and the controlφk (again, on the entire time interval [0, T ]) are then updated, based
on this gradient information, and new flow and adjoint fields are computed until the iteration ink converges and a
saddle point for the linear or the full nonlinear problem is reached.

The estimates developed in this work in order to prove the existence of a solution to the robust control problem
involve integration by parts and the following five fundamental inequalities, which are repeated here for review: the
Cauchy–Schwarz inequality|(u, v)| ≤ |u|L2|v|L2, Hölder’s inequality

∫
f1 · · · fn dx ≤ |f1|Lp1 · · · |fn|Lpn , |f |Lp =

(∫
|f |p dx

)1/p

,
1

p1
+ · · · + 1

pn
= 1,

the Poincaré inequalities|u|L2 ≤ λ
−1/2
1 ‖u‖ and‖u‖ ≤ λ

−1/2
1 |Au|L2, Young’s inequality in the form

ab ≤ ε

p
ap + ε−q/p

q
bq, ∀a, b, ε > 0, ∀p s.t. 1< p < ∞,

1

p
+ 1

q
= 1,

and Gronwall’s lemma

dy

dt
≤ gy + h, ∀t ≥ 0 ⇒ y(t) ≤ y(0)exp

(∫ t

0
g(τ)dτ

)
+
∫ t

0
h(s)exp

(∫ t

s

g(τ )dτ

)
ds, ∀t ≥ 0.
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2. Linear problem

As discussed in Section 1, the objective in the robust control problem is to find the best controlφ in the presence
of the disturbanceψ which maximally spoils the control objective. The cost functional considered in the present
work, in the mathematical setting described in Section 1.4, is given by

J (ψ, φ)= 1

2

∫ T

0
|C1u|2L2(Ω)

dt + 1

2
|C2u(T )|2L2(Ω)

−
∫ T

0

(
C3ν

∂u

∂n
, r
)
L2(∂Ω)

dt

+1

2

∫ T

0

[
l2|φ|2

L2(Ω)
− γ 2|ψ |2

L2(Ω)

]
dt, (2.1)

where the scalar control parametersγ andl are given,r is a known vector field on∂Ω, n is the unit outward normal

vector to∂Ω, andC∗
3r · n = 0. The operatorsC1 andC2 are unbounded operators on(L2(Ω))3 satisfying

|Civ|2L2(Ω)
≤ α|v|2

L2(Ω)
+ β‖v‖2 for i = 1,2, ∀v ∈ V, (2.2)

with α ≥ 0, β ≥ 0, andα + β > 0, andC3 is a bounded operator of(L2(∂Ω))3 so that by the trace theorem [31],
we have∣∣∣∣∣

(
C3ν

∂v

∂n
, r
)
L2(∂Ω)

∣∣∣∣∣ ≤ κν‖v‖H3/2(Ω) ≤ κ ′ν‖v‖1/2|Av|1/2
L2(Ω)

∀v ∈ D(A), (2.3)

whereκ andκ ′ depend uponr andΩ. Note that(∂/∂n) : u 7→ (∂u/∂n)|∂Ω is a mapping fromC∞(Ω̄) to C∞(∂Ω)
(whereΩ̄ is the closure ofΩ), which extends by continuity to a mapping fromHs(Ω) toHs−3/2(∂Ω) for s > 3/2
[31].

In this chapter, the flowu is assumed to be related to the disturbanceψ and the controlφ through the linearized
Navier–Stokes equation

du

dt
+ νAu+ B(u,U)+ B(U, u) = B1ψ + B2φ, u ∈ V, u = u0 at t = 0, (2.4)

which models small deviations of the flow perturbationu from the desired target flowU . The regularity required is
given by

(ψ, φ) ∈ L2(0, T ;L2(Ω)d)× L2(0, T ;L2(Ω)d); B1,B2 ∈ L(L2, H); u0 ∈ V ;
U ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)), (2.5)

where the Stokes operatorA, the bilinear mappingB, and other notations are described in Section 1.4. The robust
control problem to be solved is the following.

Definition 2.1. The disturbancēψ ∈ L2(0, T ;L2(Ω)d) and controlφ̄ ∈ L2(0, T ;L2(Ω)d), and the solution
ū = u(ψ̄, φ̄) to (2.4) associated with(ψ̄, φ̄) are said to solve the robust control problem when a saddle point(ψ̄, φ̄)

of the cost functionalJ defined in (2.1) is reached such that

J (ψ, φ̄) ≤ J (ψ̄, φ̄) ≤ J (ψ̄, φ) ∀(ψ, φ) ∈ L2(0, T ;L2(Ω)d)× L2(0, T ;L2(Ω)d). (2.6)

Note that, in this case,

J (ψ̄, φ̄) = Max
ψ∈L2(0,T ;L2)

Min
φ∈L2(0,T ;L2)

J (ψ, φ) = Min
φ∈L2(0,T ;L2)

Max
ψ∈L2(0,T ;L2)

J (ψ, φ).
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In this chapter, we will establish both existence and uniqueness of the solution to the robust control problem
stated in Definition 2.1, and identify this solution as a function of the unique solution of a two-point boundary value
problem for a linear flow/adjoint system on [0, T ].

2.1. Existence of a solution to the robust control problem

The proof of the existence of a solution(ψ̄, φ̄) to the robust control problem for the linear case is based on the
following existence result.

Proposition 2.2. LetJ be a functional defined onX×Y , where X and Y are non-empty, closed, unbounded, convex
sets. IfJ satisfies
1. ∀ψ ∈ X, φ 7→ J (ψ, φ) is convex lower semicontinuous,
2. ∀φ ∈ Y, ψ 7→ J (ψ, φ) is concave upper semicontinuous,
3. ∃ψ0 ∈ X such thatlim‖φ‖Y→+∞J (ψ0, φ) = +∞ ,
4. ∃φ0 ∈ Y such thatlim‖ψ‖X→+∞J (ψ, φ0) = −∞ ,

then the functionalJ has at least one saddle point(ψ̄, φ̄) and

J (ψ̄, φ̄) = Min
φ∈Y

Sup
ψ∈X
J (ψ, φ) = Max

ψ∈X
Inf
φ∈Y
J (ψ, φ).

Proof. The proof is given in [15]. �

We intend to apply Proposition 2.2 to the present problem (2.1) and (2.4) withX = Y = L2(0, T ;L2(Ω)d).
In order to establish conditions 1–4 of Proposition 2.2 for the present problem, we need to analyze the evolution
equation (2.4).

It can be proven [27,30,36] that givenu0 ∈ V , U ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)), and(ψ, φ) ∈ L2(0, T ;
L2(Ω)d)× L2(0, T ;L2(Ω)d), there exists a unique solutionu of (2.4) such that

u ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)) ∀T > 0.

The proof is based on the following a priori estimates. Multiplying (2.4) withu, noting the definitionPf =
B1ψ + B2φ in (1.11) and the orthogonality of (1.12), and applying the Cauchy–Schwarz, Poincaré, and Young’s
inequalities to the(Pf, u) term and (1.13) to theb(u,U, u) term, we can write

1

2

d

dt
|u|2

L2 + ν‖u‖2 = (Pf, u)− b(u,U, u) ≤ 1

2νλ1
|Pf |2

L2 + ν

2
‖u‖2 + C0‖U‖|u|1/2

L2 ‖u‖3/2,

and thus, again noting thatC0 absorbs numerical constants,

d

dt
|u|2

L2 + ν‖u‖2 ≤ 1

νλ1
|Pf |2

L2 + C0‖U‖|u|1/2
L2 ‖u‖3/2.

An additional application of Young’s inequality leads to

d

dt
|u|2

L2 + ν

2
‖u‖2 ≤ 1

νλ1
|Pf |2

L2 + C0

ν3
‖U‖4|u|2

L2. (2.7)

LetM0(t) = C0ν
−3
∫ t

0‖U‖4 dτ and thusM ′
0(t) = C0ν

−3‖U(t)‖4. Applying Gronwall’s lemma to (2.7), we have

|u(t)|2
L2 ≤ eM0(t)|u0|2L2 + eM0(t)

νλ1

∫ t

0
|Pf |2

L2 ds. (2.8)
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Also, by integrating (2.7) from 0 tot , multiplying by 2/(νt), and then substituting with the integral ofM ′
0(s) times

(2.8) from 0 tot , we have

1

t

∫ t

0
‖u‖2 ds ≤ 2

ν2λ1t

∫ t

0
|Pf |2

L2 ds + 2

νt

∫ t

0
M ′

0(s)|u(s)|2L2 ds + 2

νt
|u0|2L2

≤ 2eM0(t)

νt
|u0|2L2 + 2eM0(t)

ν2λ1t

∫ t

0
|Pf |2

L2 ds. (2.9)

Similarly, multiplying (2.4) withAu and applying the Cauchy–Schwarz and Young’s inequalities to the(Pf,Au)

term, we can write

1

2

d

dt
‖u‖2 + ν|Au|2

L2 = (Pf,Au)− b(u,U,Au)− b(U, u,Au)

≤ 1

2ν
|Pf |2

L2 + ν

2
|Au|2

L2 + |b(u,U,Au)| + |b(U, u,Au)|,

and thus, applying (1.13),

d

dt
‖u‖2 + ν|Au|2

L2 ≤ 1

ν
|Pf |2

L2 + C0‖U‖1/2|AU |1/2
L2 ‖u‖|Au|L2 + C0|U |1/4

L2 |AU |3/4
L2 ‖u‖|Au|L2.

Additional application of Young’s inequality leads to

d

dt
‖u‖2 + ν

2
|Au|2

L2 ≤ 1

ν
|Pf |2

L2 + C0

ν
(‖U‖|AU |L2 + |U |1/2

L2 |AU |3/2
L2 )‖u‖2.

LetM1(t) = C0ν
−1
∫ t

0(‖U‖|AU |L2 + |U |1/2
L2 |AU |3/2

L2 )dτ . Applying Gronwall’s lemma as done in (2.8), we have

‖u(t)‖2 ≤ eM1(t)‖u0‖2 + eM1(t)

ν

∫ t

0
|Pf |2

L2 ds, (2.10)

and with a derivation analogous to that leading to (2.9), we have

1

t

∫ t

0
|Au|2

L2 ds ≤ 2eM1(t)

νt
‖u0‖2 + 2eM1(t)

ν2t

∫ t

0
|Pf |2

L2 ds. (2.11)

The a priori estimates (2.8)–(2.11) allow us to characterize the mapping(ψ, φ) 7→ u(ψ, φ). Specifically, we have
the following lemma.

Lemma 2.3. TakeU ∈ L∞(0, T ;V )∩L2(0, T ;D(A)) and let u be the solution of(2.4).The mappings(ψ, φ) 7→
u(ψ, φ) fromL2(0, T ;L2(Ω)d) × L2(0, T ;L2(Ω)d) into L2(0, T ;V ) and (ψ, φ) 7→ u(ψ, φ)|T fromL2(0, T ;
L2(Ω)d) × L2(0, T ;L2(Ω)d) into V are affine and continuous. Foru0 ∈ V and (ψ, φ) ∈ L2(0, T ;L2(Ω)d) ×
L2(0, T ;L2(Ω)d), the mappings(ψ, φ) 7→ u(ψ, φ) and(ψ, φ) 7→ u(ψ, φ)|T have Ĝateau derivativesu′(ψ ′, φ′)
andu′(ψ ′, φ′)|T in every direction(ψ ′, φ′) ∈ L2(0, T ;L2(Ω)d)×L2(0, T ;L2(Ω)d).Finally, the Gâteau derivative
u′(ψ ′, φ′) solves the linear evolution equation

du′

dt
+ νAu′ + B ′(U)u′ = B1ψ

′ + B2φ
′, u′ ∈ V, u′ = 0 at t = 0, (2.12)

and it follows thatu′(ψ ′, φ′) ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)).
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Proof. The fact that(ψ, φ) 7→ u(ψ, φ) and (ψ, φ) 7→ u(ψ, φ)|T are affine and continuous follows from the
linearity of (2.4) and the a priori estimates (2.8)–(2.11). The existence of the Gâteau derivatives as well as their
characterization by (2.12) is proved in [1], to which we refer the reader for more details. �

Remark 2.4. The solutionu′(ψ ′, φ′) of (2.12) can be expressed as a function ofψ ′ and φ′ in terms of the
Green–Oseen’s kernelsGψ(x, t, x′, t ′) andGφ(x, t, x′, t ′) (see[27]); formally, we write

u′(x, t;ψ ′, φ′) =
∫ T

0

∫
Ω

(
Gψ(x, t, x

′, t ′)ψ ′(x′, t ′)+Gφ(x, t, x
′, t ′)φ′(x′, t ′)

)
dx′ dt ′ 4=Gψ · ψ ′ +Gφ · φ′.

Notationally, we will denoteGψ byDu/Dψ andGφ byDu/Dφ, and thusu′(ψ ′, φ′) = (Du/Dψ) ·ψ ′+(Du/Dφ) ·
φ′. Physically,u′(ψ ′, φ′)may be thought of as the linear approximation to the perturbation touwhen a perturbation
ψ ′ is added to the disturbanceψ and a perturbationφ′ is added to the controlφ.A finite dimensional discretization of
the Green–Oseen’s kernelGψ = Du/Dψ may be taken as the Jacobian of the discretization ofuwith respect to the
discretization ofψ , as suggested by this notation; an analogous interpretation may be attributed toGφ = Du/Dφ.
By causality,Gψ(x, t, x′, t ′) = Gφ(x, t, x

′, t ′) = 0 for t − t ′ < 0.

With Lemma 2.3 established, we are ready to prove that conditions 1–4 of Proposition 2.2 are satisfied for the
present robust control problem.

Lemma 2.5. Letu0 ∈ V . There existsγ1 such that, forγ ≥ γ1, we have
1. ∀ψ ∈ L2(0, T ;L2(Ω)d), φ 7→ J (ψ, φ) is convex lower semicontinuous,
2. ∀φ ∈ L2(0, T ;L2(Ω)d), ψ 7→ J (ψ, φ) is concave upper semicontinuous,
3. lim|φ|

L2(0,T ;L2(Ω)d )→+∞J (0, φ) = +∞,
4. lim|ψ |

L2(0,T ;L2(Ω)d )→+∞J (ψ,0) = −∞.

Proof. Condition1. By Lemma 2.3, the mapφ 7→ J (ψ, φ) is lower semicontinuous. Asφ 7→ u(ψ, φ) is affine,
the convexity ofφ 7→ J (ψ, φ) follows promptly.

Condition2. By Lemma 2.3, the mapψ 7→ J (ψ, φ) is upper semicontinuous. In order to prove concavity, it is
sufficient to show that

h(ρ) = J (ψ + ρψ ′, φ)

is concave w.r.t.ρ, i.e.,h′′(ρ) < 0. Takingu′(ψ ′,0) = (Du/Dψ) · ψ ′, we compute

h′(ρ)=
∫ T

0

(
C1u, C1u

′)
L2(Ω)

dt + (
C2u(T ), C2u

′(T )
)
L2(Ω)

−
∫ T

0

(
C3ν

∂u′

∂n
, r
)
L2(∂Ω)

dt − γ 2
∫ T

0

(
ψ + ρψ ′, ψ ′)

L2(Ω)
dt.

It is clear thatu′ is independent ofρ. Therefore,

h′′(ρ) =
∫ T

0
|C1u

′|2
L2(Ω)

dt + |C2u
′(T )|2

L2(Ω)
− γ 2

∫ T

0
|ψ ′|2

L2(Ω)
dt.

Note thatu′ = (Du/Dψ) ·ψ ′ satisfies (2.12) by Lemma 2.3, and thus the a priori estimates (2.8)–(2.11) also follow
upon substitution ofu′(ψ ′,0) for u(ψ, φ), mutatis mutandis. Upon making such a substitution to (2.2) and applying
(2.9) and the Poincaré and Cauchy–Schwarz inequalities, noting thatu′ = 0 att = 0, we find that
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0
|C1u

′|2
L2(Ω)

dt ≤ α
∫ T

0
|u′|2

L2(Ω)
dt + β

∫ T

0
‖u′‖2 dt ≤

(
α

λ1
+ β

)
2eM0(T )

ν2λ1

∫ T

0
|B1ψ

′|2
L2(Ω)

dt

≤
(
α

λ1
+ β

)
2eM0(T )

ν2λ1
|B1|2L(L2,H)

∫ T

0
|ψ ′|2

L2(Ω)
dt,

and similarly, by applying (2.2), (2.8) and (2.10) tou′(ψ ′,0),

|C2u
′(T )|2

L2(Ω)
≤
(
α

νλ1
eM0(T ) + β

ν
eM1(T )

)
|B1|2L(L2,H)

∫ T

0
|ψ ′|2

L2(Ω)
dt.

Now under the assumption that

γ 2 ≥ γ 2
1 = 2

[(
α

λ1
+ β

)
2eM0(T )

ν2λ1
+ α

νλ1
eM0(T ) + β

ν
eM1(T )

]
|B1|2L(L2,H)

, (2.13)

we haveh′′(ρ) < 0 for ρ ∈ R. Thus the functionh is concave, and the concavity ofψ 7→ J (ψ, φ) follows
immediately.

Condition3. Applying (2.3) to (2.1) and takingψ = 0, we can write

J (0, φ) ≥ l2

2

∫ T

0
|φ|2

L2(Ω)
dt − κ ′ν

∫ T

0
‖u‖1/2|Au|1/2

L2(Ω)
dt.

By the a priori estimates (2.8)–(2.11), it is straightforward to show that there exist constantsC0 = C0(T ,Ω, ‖u0‖)
andC1 = C1(T ,Ω, ‖u0‖) such that the latter term is bounded by an expression which is affine inφ, i.e.,

κ ′ν
∫ T

0
‖u‖1/2|Au|1/2

L2 dt ≤ C0|φ|L2(0,T ;L2) + C1,

and thus

J (0, φ) ≥ l2

2
|φ|2

L2(0,T ;L2)
− C0|φ|L2(0,T ;L2) − C1,

and condition 3 follows promptly.
Condition4. Upon substituting (2.9) into (2.2), as done for condition 2, and consideringu(ψ,0), it follows that∫ T

0
|C1u|2L2(Ω)

dt ≤
(
α

λ1
+ β

)
2eM0(T )

ν2λ1
|B1|2L(L2,H)

∫ T

0
|ψ |2

L2(Ω)
dt + C1,

whereC1 = C1(T ,Ω, ‖u0‖). Similarly, by (2.2), (2.8), and (2.10), we have

|C2u(T )|2L2(Ω)
≤
(
α

νλ1
eM0(T ) + β

ν
eM1(T )

)
|B1|2L(L2,H)

∫ T

0
|ψ |2

L2(Ω)
dt + C1.

Finally, we may bound the linear term inJ (ψ,0) by an expression which is affine inψ with a procedure analogous
to that used for condition 3 above. Thus, ifγ 2 ≥ γ 2

1 , we have

J (ψ,0)= 1

2

∫ T

0
|C1u|2L2(Ω)

dt + 1

2
|C2u(T )|2L2(Ω)

−
∫ T

0

(
C3ν

∂u

∂n
, r
)
L2(∂Ω)

dt − γ 2

2

∫ T

0
|ψ |2

L2(Ω)
dt

≤ −γ
2

4
|ψ |2

L2(0,T ;L2)
+ C0|ψ |L2(0,T ;L2) + C1,

which implies condition 4. �
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Putting the statements of this section together, we have established existence of a solution(ψ̄, φ̄) to the robust
control problem of Definition 2.1 for the linear case withγ > γ1.

Theorem 2.6(Existence of a solution to the robust control problem, linear case).Assume thatγ > γ1, where

γ 2
1 = 2

[(
α

λ1
+ β

)
2eM0(T )

ν2λ1
+ α

νλ1
eM0(T ) + β

ν
eM1(T )

]
|B1|2L(L2,H)

.

Then there exists a saddle point(ψ̄, φ̄) andu(ψ̄, φ̄) such that

J (ψ, φ̄) ≤ J (ψ̄, φ̄) ≤ J (ψ̄, φ), ∀(ψ, φ) ∈ L2(0, T ;L2(Ω)d)× L2(0, T ;L2(Ω)d).

Proof. The proof follows directly from Lemmas 2.3 and 2.5 and Proposition 2.2. �

It follows from Theorem 2.6 thatγ1 is an upper bound on the critical valueγ0 discussed in Section 1.1.

2.2. Identification of the unique solution to the robust control problem

The existence of a saddle point(ψ̄, φ̄) of the functionalJ , established in the previous section, implies that

DJ

Dψ
(ψ̄, φ̄) = 0 and

D

Dφ
(ψ̄, φ̄) = 0. (2.14)

Differentiation of (2.1) leads to expressions for these gradients in weak form:

DJ

Dψ
(ψ, φ) · ψ ′ =

∫ T

0

(
C1u, C1

Du

Dψ
· ψ ′

)
L2(Ω)

dt +
(
C2u(T ), C2

Du(T )

Dψ
· ψ ′

)
L2(Ω)

−
∫ T

0

(
C3ν

∂

∂n

Du

Dψ
· ψ ′, r

)
L2(∂Ω)

dt − γ 2
∫ T

0

(
ψ,ψ ′)

L2(Ω)
dt, (2.15)

DJ

Dφ
(ψ, φ) · φ′ =

∫ T

0

(
C1u, C1

Du

Dφ
· φ′
)
L2(Ω)

dt +
(
C2u(T ), C2

Du(T )

Dφ
· φ′
)
L2(Ω)

−
∫ T

0

(
C3ν

∂

∂n

Du

Dφ
· φ′, r

)
L2(∂Ω)

dt − l2
∫ T

0

(
φ, φ′)

L2(Ω)
dt. (2.16)

In order to determine the solution to the robust control problem, we define an adjoint state by the equation

−dũ

dt
+ νA∗ũ+ B ′(U)∗ũ = C∗

1C1u,

ũ(t) ∈ Vr = {v ∈ (H 1(Ω))3; divv = 0 in Ω, v = C∗
3r on ∂Ω}, t < T ,

ũ = C∗
2C2u ∈ H at t = T , (2.17)

whereA∗ is the unbounded operator onH ∩H 1 uniquely defined by

(
u′,A∗ũ

)
L2(Ω)

= (
Au′, ũ

)
L2(Ω)

+
(
∂u′

∂n
, ũ

)
L2(∂Ω)

for u′ ∈ D(A), ũ ∈ H ∩H 1.

We have the following lemma.
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Lemma 2.7. Letu(ψ, φ) be the solution of (2.4) with the regularity onψ, φ, u0, and U given in(2.5),letu′(ψ ′, φ′)
be the solution of(2.12)with (ψ ′, φ′) ∈ L2(0, T ;L2(Ω)d)×L2(0, T ;L2(Ω)d), and letũ be the solution of(2.17).
Then∫ T

0
(C∗

1C1u, u
′)L2(Ω) dt + (C∗

2C2u(T ), u
′(T ))L2(Ω) −

∫ T

0

(
C3ν

∂u

∂n
, r
)
L2(∂Ω)

dt

=
∫ T

0
[(B∗

1ũ, ψ
′)L2(Ω) + (B∗

2ũ, φ
′)L2(Ω)] dt (2.18)

whereB∗
1 andB∗

2 are the adjoints inL2(Ω) of the operatorsB1 andB2.

Proof. The proof follows from integration by parts and the regularity ofu, u′ andũ:∫ T

0
(C∗

1C1u, u
′)L2(Ω) dt + (C∗

2C2u(T ), u
′(T ))L2(Ω) −

∫ T

0

(
C3ν

∂u′

∂n
, r
)
L2(∂Ω)

dt

=
∫ T

0

([
−dũ

dt
+ νA∗ũ+ B ′(U)∗ũ

]
, u′
)
L2(Ω)

dt + (ũ(T ), u′(T ))L2(Ω) −
∫ T

0

(
ν
∂u′

∂n
, ũ

)
L2(∂Ω)

dt

=
∫ T

0

(
ũ,

[
du′

dt
+ νAu′ + B ′(U)u′

])
L2(Ω)

dt =
∫ T

0
(ũ, [B1ψ

′ + B2φ
′])L2(Ω) dt

=
∫ T

0
[(B∗

1ũ, ψ
′)L2(Ω) + (B∗

2ũ, φ
′)L2(Ω)] dt. �

Application of (2.18) to (2.15), withφ′ = 0 and takingψ ′ ∈ L2(0, T ;L2(Ω)d) as arbitrary, leads to an expression
for the gradientDJ /Dψ :

DJ

Dψ
(ψ, φ) = B∗

1 ũ− γ 2ψ. (2.19)

Similarly, application of (2.18) to (2.16), withψ ′ = 0 and takingφ′ ∈ L2(0, T ;L2(Ω)d) as arbitrary, leads to an
expression for the gradientDJ /Dφ:

DJ

Dφ
(ψ, φ) = B∗

2 ũ+ l2φ. (2.20)

Now we prove the following important theorem.

Theorem 2.8. Let (ψ̄, φ̄) be a solution to the robust control problem stated in Definition 2.1. Then

ψ̄ = 1

γ 2
B∗

1 ũ and φ̄ = − 1

l2
B∗

2 ũ, (2.21)

whereũ is found from the solution(u, ũ) of the following coupled system:

du

dt
+ νAu+ B(u,U)+ B(U, u) =

(
1

γ 2
B1B

∗
1 − 1

l2
B2B

∗
2

)
ũ, −dũ

dt
+ νA∗ũ+ B ′(U)∗ũ = C∗

1C1u,

u ∈ V, ũ(t) ∈ Vr = {v ∈ (H 1(Ω))3; div v = 0 inΩ, v = C∗
3r on∂Ω},

t < T , u(0) = u0 and ũ(T ) = C∗
2C2u(T ), (2.22)

which admits a unique solution for sufficiently largeγ . In other words, u and̃u are solutions of (2.17) and (2.4)
with (ψ, φ) replaced by(ψ̄, φ̄).
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Proof. The existence of a solution to the robust control problem is established by Theorem 2.6 forγ > γ1.
A necessary condition for(ψ̄, φ̄) to be a saddle point of the functionalJ is given by (2.14). Thus, (2.19) and

(2.20) imply that (2.21) follows from the definition of the coupled system developed in this section and summarized
in (2.22).

The uniqueness of the solution of the coupled system (2.22) is classical. Forγ > γ2(|B1|L(L2,H), |B2|L(L2,H), l),
it is clear thatD = −(γ−2B1B∗

1 − l−2B2B∗
2) is positive definite. The proof of uniqueness then follows by taking

the difference(u3, ũ3) of two solutions(u1, ũ1) and(u2, ũ2), multiplying theu3 equation bỹu3 and theũ3 equation
by u3, integrating between 0 andT , and then subtracting the two resulting equations. This results in

(u3(T ), ũ3(T ))− (u3(0), ũ3(0))+
∫ T

0
[(Dũ3(t), ũ3(t))+ (C∗

1C1u3(t), u3(t))] dt = 0,

with u3(0) = 0 andũ3(T ) = C∗
2C2 u3(T ), from which we conclude thatu3 = ũ3 = 0, and thus the solution is

unique. �

To summarize Section 2, forγ > max(γ1, γ2), a solution to the robust control problem stated in Definition 2.1
exists, is unique, and is given by (2.21).

3. Nonlinear problem

In this chapter, we apply the analysis of the previous chapter to the 2D and 3D nonlinear problems written in
the form (1.4) or, equivalently, in the abstract form (1.9). We consider the same cost functional as in the previous
chapter,

J (ψ, φ)= 1

2

∫ T

0
|C1u|2L2(Ω)

dt + 1

2
|C2u(T )|2L2(Ω)

−
∫ T

0

(
C3ν

∂u

∂n
, r
)
L2(∂Ω)

dt

+1

2

∫ T

0

[
l2|φ|2

L2(Ω)
− γ 2|ψ |2

L2(Ω)

]
dt. (3.1)

Recall that the operatorsC1, C2, andC3 satisfy (2.2), (2.3), andC∗
3r ·n = 0, and note thatr is as discussed in Section

1. Assume now thatu satisfies the nonlinear Navier–Stokes equation (1.9) with (1.11) such that

du

dt
+ νAu+ B(u,U)+ B(U, u)+ B(u, u) = B1ψ + B2φ, u ∈ V, u = u0 at t = 0, (3.2)

which models large deviations of the flow perturbationu from the desired target flowU . The regularity required on
ψ , φ, B1, B2, u0, andU are the same as in (2.5) except with(ψ, φ) now confined to non-empty, closed, bounded,
convex subsets ofL2(0, T ;L2(Ω)d).

The robust control problem to be solved in the nonlinear case is as follows.

Definition 3.1. LetX andY be non-empty, closed, bounded, convex subsets ofL2(0, T ;L2(Ω)d). The disturbance
ψ̄ ∈ X and controlφ̄ ∈ Y, and the solution̄u = u(ψ̄, φ̄) to (3.2) associated with(ψ̄, φ̄) are said to solve the robust
control problem when a saddle point(ψ̄, φ̄) of the cost functionalJ defined in (3.1) is reached such that

J (ψ, φ̄) ≤ J (ψ̄, φ̄) ≤ J (ψ̄, φ) ∀(ψ, φ) ∈ X × Y . (3.3)

The robust control problem on the bounded domain(ψ, φ) ∈ X × Y given in Definition 3.1 is closely related to
the robust control problem on the unbounded domain(ψ, φ) ∈ L2(0, T ;L2(Ω)d) × L2(0, T ;L2(Ω)d) given in
Definition 2.1.
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In this section, we will establish existence of a solution to the robust control problem for the case in which the
flow perturbationu is related to the disturbanceψ and the controlφ through the nonlinear Navier–Stokes equation
(3.2). The analysis is similar to that for the linear problem in the previous chapter. Note that Section 3.1 will consider
the 3D case, and Section 3.2 will focus specifically on the 2D case, for which stronger results may be established;
this is due to the well-known fact that the theory of the Navier–Stokes equation is complete in space dimension 2,
which is not the case in space dimension 3.

3.1. Existence of a solution to the robust control problem, 3D case

The proof of existence in this section is similar to that for the linear problem, but is restricted to cases of either
“small data” or “smallT ”. The former assumption is valid when attempting to delay transition to turbulence (i.e.,
keeping a laminar flow laminar) in an externally disturbed flow that is linearly stable but nonlinearly unstable, and is of
important engineering significance [7,25]. The latter assumption has been termed the “suboptimal” approximation in
earlier work, and has been shown to deliver simple control strategies with reduced long-term performance [6,20,29].
The restrictions used to prove existence of a solution to the robust control problem in the present case are due simply
to the current lack of regularity results for the 3D Navier–Stokes equation, not to a shortcoming of the present analysis
of the robust control framework.

To proceed under the constraint of a small data condition, we restrict the bounded setX×Y ofL2(0, T ;L2(Ω)d)×
L2(0, T ;L2(Ω)d) by the condition that, for any(ψ, φ) in X × Y, we have

|B1ψ |2
L2(0,T ;H) + |B2φ|2

L2(0,T ;H) ≤ C1λ
1/2
1 ν3.

We will mention by way of two remarks that this restriction onX × Y may be lifted in the existence proof ifT is
sufficiently small. The proof of the existence of a solution(ψ̄, φ̄) onX × Y for the nonlinear, 3D case is based on
the following existence result.

Proposition 3.2. LetJ be a functional defined onX ×Y , whereX andY are non-empty, closed, bounded, convex
sets. IfJ satisfies
1. ∀φ ∈ Y, ψ 7→ J (ψ, φ) is concave upper semicontinuous,
2. ∀ψ ∈ X , φ 7→ J (ψ, φ) is convex lower semicontinuous,

then the functionalJ has at least one saddle point(ψ̄, φ̄) onX × Y , which is defined by

J (ψ̄, φ̄) = Min
φ∈Y

Max
ψ∈X
J (ψ, φ) = Max

ψ∈X
Min
φ∈Y
J (ψ, φ).

Proof. The proof is given in [15]. �

We intend to apply Proposition 3.2 to the present problem (3.1) and (3.2) on the bounded domain(ψ, φ) ∈ X ×Y.
In order to establish conditions 1 and 2 of Proposition 3.2 for the present problem, we need to analyze the evolution
equation (3.2).

It can be proven (following the framework of Ladyzhenskaya [27], Lions [30] and Temam [35]) that there exists
anR > 0 such that, givenu0 ∈ V , U ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)), and the small data constraints

‖u0‖ ≤ R and (ψ, φ) ∈ X × Y, (3.4)

there exists a unique solutionu of (3.2) such that

u ∈ L2(0, T ;D(A)) ∩ L∞(0, T ;V ) ∀T > 0.
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The proof is based on the following a priori estimates. Multiplying (3.2) withu and noting by (1.12) thatb(u, u, u) =
0, the estimates (2.8) and (2.9) follow as in the linear case; specifically,

|u(t)|2
L2 ≤ eM0(t)|u0|2L2 + eM0(t)

νλ1

∫ t

0
|Pf |2

L2 ds (3.5)

and

1

t

∫ t

0
‖u‖2 ds ≤ 2eM0(t)

νt
|u0|2L2 + 2eM0(t)

ν2λ1t

∫ t

0
|Pf |2

L2 ds, (3.6)

whereM0(t) = C0ν
−3
∫ t

0‖U‖4 dτ .
Also, multiplying (3.2) withAu and following a line of reasoning similar to the linear case, we can write

d

dt
‖u‖2 + ν|Au|2

L2 ≤ 1

ν
|Pf |2

L2 + C0(‖U‖1/2|AU |1/2
L2 + |U |1/4

L2 |AU |3/4
L2 )‖u‖|Au|L2 + C1‖u‖3/2|Au|3/2

L2 .

Application of Young’s inequality to the first line and the Poincaré inequality to the second line leads to

d

dt
‖u‖2 + ν

2
|Au|2

L2 ≤ 1

ν
|Pf |2

L2 + C2

ν
(‖U‖|AU |L2 + |U |1/2

L2 |AU |3/2
L2 )‖u‖2 + C3λ

−1/4‖u‖|Au|2
L2. (3.7)

For the remainder of this derivation, we will fix the coefficientsC2 andC3 in (3.7) not allowing them to further
absorb numerical constants.

Now prescribe that the initial conditionsu0, the target flowU , and the forcingPf = B1ψ + B2φ be small,
specifically

‖u0‖ ≤ νλ
1/4
1

16C3
, (‖U(t)‖|AU(t)|L2 + |U(t)|1/2

L2 |AU(t)|3/2
L2 ) ≤ ν2λ1

8C2
∀t,∫ t

0
|Pf |2

L2 ds ≤ 2ν‖u0‖2 ∀t. (3.8)

Assumet∗ is the maximal time such that

‖u(t)‖ ≤ 2‖u0‖ for 0 ≤ t ≤ t∗; (3.9)

by continuity, this implies that equality is achieved att = t∗ such that

‖u(t∗)‖2 = 4‖u0‖2. (3.10)

We shall show that this assumption leads to a contradiction, which implies thatt∗ is instead unbounded, and thus
that (3.9) is valid for allt when the conditions of (3.8) are met. Applying conditions (3.9) and (3.8) to (3.7) and
using the Poincaré inequality, it follows that

d

dt
‖u‖2 + ν

4
|Au|2

L2 ≤ 1

ν
|Pf |2

L2 for 0 ≤ t ≤ t∗. (3.11)

Hence, by the Poincaré inequality and Gronwall’s lemma,

‖u(t)‖2 ≤ e−νλ1t/4‖u0‖2 + 1

ν

∫ t

0
|Pf |2

L2 ds for 0 ≤ t ≤ t∗,

and thus

‖u(t)‖2 ≤ 3‖u0‖2 for 0 ≤ t ≤ t∗.
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We have arrived at a contradiction with (3.10), and therefore our assumption thatt∗ is bounded must be false. Thus,
given the small data conditions of (3.8), it follows thatt∗ is unbounded and thus

‖u(t)‖2 ≤ e−νλ1t/4‖u0‖2 + 1

ν

∫ t

0
|Pf |2

L2 ds ∀t, (3.12)

and from integration of (3.11),

1

t

∫ t

0
|Au|2

L2 ds ≤ 4

νt
‖u0‖2 + 4

ν2t

∫ t

0
|Pf |2

L2 ds ∀t. (3.13)

Remark 3.3. The estimates(3.12) and (3.13)also follow without prescribing constraints onu0, U , or Pf but
instead prescribing small time, specifically

t∗ < t∗0 =
(

1

ν

∫ T

0
|Pf |2

L2 ds +M ′
1 + C0

ν3
(1 + ‖u0‖2)2

)−1

. (3.14)

As opposed to the linearized problem studied in Section 2, the mappings(ψ, φ) 7→ u(ψ, φ)and(ψ, φ) 7→ u(ψ, φ)|T
here are not affine. We have only the following.

Lemma 3.4. Let u be the solution of(3.2) with u0 ∈ V , T > 0 , U ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)), and
(ψ, φ) in the interior ofX × Y such that the small data conditions of(3.8)are satisfied. The mappings(ψ, φ) 7→
u(ψ, φ) and(ψ, φ) 7→ u(ψ, φ)|T have Ĝateau derivativesu′(ψ ′, φ′) andu′(ψ ′, φ′)|T in every direction(ψ ′, φ′) ∈
L2(0, T ;L2(Ω)d) × L2(0, T ;L2(Ω)d). Further, the Gâteau derivativeu′(ψ ′, φ′) solves the linear evolution
equation

du′

dt
+ νAu′ + B ′(U + u)u′ = B1ψ

′ + B2φ
′, u′ ∈ V, u′ = 0 at t = 0, (3.15)

and it follows thatu′(ψ ′, φ′) ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)).

Proof. The existence of the Gâteau derivatives as well as their characterization by (2.12) follows as in [1], to which
we refer the reader for more details. �

Remark 3.5. By Remark 3.3, Lemma 3.4 also holds when a condition of small time is satisfied(i.e., T < t∗0) in lieu
of the small data condition of(3.8).

Lemma 3.6. Letu0 ∈ V satisfying (3.8). There existsγ0 = γ0(‖u0‖, ν, T ) such that, forγ ≥ γ0 , we have
1. ∀φ ∈ Y, ψ 7→ J (ψ, φ) is strictly concave upper semicontinuous,
2. ∀ψ ∈ X , φ 7→ J (ψ, φ) is strictly convex lower semicontinuous.

Proof. First, we note that by Lemma 3.4, and since the norm is lower semicontinuous, the mapψ 7→ J (ψ, φ) is
upper semicontinuous, while the mapφ 7→ J (ψ, φ) is lower semicontinuous.

Condition1. By Lemma 3.4, and since the norm is lower semicontinuous, the mapψ 7→ J (ψ, φ) is upper
semicontinuous. In order to prove concavity, it is sufficient to show that

h(ρ) = J (ψ + ρψ ′, φ)

is concave w.r.t.ρ nearρ = 0, i.e.,h′′(0) < 0. Takingu′(ψ ′,0) = (Du/Dψ) · ψ ′, we compute
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h′(ρ)=
∫ T

0
(C1u, C1u

′)L2(Ω) dt + (C2u(T ), C2u
′(T ))L2(Ω) −

∫ T

0

(
C3ν

∂u′

∂n
, r
)
L2(∂Ω)

dt

−γ 2
∫ T

0
(ψ + ρψ ′, ψ ′)L2(Ω) dt.

Note by (3.15) thatu′ is a solution of

du′

dt
+ νAu′ + B(U + u, u′)+ B(u′, U + u) = B1ψ

′, u′ ∈ V, u′ = 0 at t = 0.

Noting the similarity to the linear equation (2.4), and following the derivations leading to (2.8)–(2.11), we have the
following a priori estimates onu′:

|u′(t)|2
L2 ≤ eM2(t)

νλ1

∫ t

0
|B1ψ

′|2
L2 ds,

∫ t

0
‖u′‖2 ds ≤ 2eM2(t)

ν2λ1

∫ t

0
|B1ψ

′|2
L2 ds,

‖u′(t)‖2 ≤ eM3(t)

ν

∫ t

0
|B1ψ

′|2
L2 ds,

∫ t

0
|Au′|2

L2 ds ≤ 2eM3(t)

ν2

∫ t

0
|B1ψ

′|2
L2 ds,

with

M2(t) = C0ν
−3
∫ t

0
‖U + u‖4 dτ,

M3(t) = C0ν
−1
∫ t

0
(‖U + u‖|A(U + u)|L2 + |U + u|1/2

L2 |A(U + u)|3/2
L2 )dτ.

Similarly, u′′ = (D2u/Dψ2) · ψ ′ · ψ̂ ′ is a solution of

du

dt
+ νAu′′ + B(U + u, u′′)+ B(u′′, U + u) = F, u′′ ∈ V, u′′ = 0 at t = 0,

where, takingu′ = (Du/Dψ) · ψ ′ andû′ = (Du/Dψ) · ψ̂ ′,

F = −B(û′, u′)− B(u′, û′).

The a priori estimates foru′′ follow as foru′ by replacingB1ψ with F .
Takingψ̂ ′ = ψ ′, and thuŝu′ = u′, we now write

h′′(ρ)=
∫ T

0
|C1u

′|2
L2(Ω)

dt +
∫ T

0
(C1u, C1u

′′)L2(Ω) dt + |C2u
′(T )|2

L2(Ω)
+ (C2u(T ), C2u

′′(T ))L2(Ω)

−
∫ T

0

(
C3ν

∂u′′

∂n
, r
)
L2(∂Ω)

dt − γ 2
∫ T

0
|ψ ′|2

L2(Ω)
dt.

We will show that for sufficiently largeγ , the last term dominates in this expression and thush′′(0) < 0 when
(ψ, φ) ∈ X × Y. First notice by (1.13) that|F |L2 ≤ C0‖u′‖3/2|Au′|1/2, and thus that

|F |2
L2(0,t,L2(Ω))

≤ C0 e[3M3(t)+M2(t)]/2

ν3λ
1/2
1

(|B1|2L(L2,H)
)2(|ψ ′|2

L2(0,t;L2(Ω))
)2 = M4(t)(|ψ ′|2

L2(0,t;L2(Ω))
)2.

Then, given (2.2) and (2.3), and our a priori estimates foru, u′, andu′′, we have

|C1u
′|2
L2(0,T ;L2(Ω))

≤
(
α

λ1
+ β

)
2eM2(T )

ν2λ1
|B1|2L(L2,H)

|ψ ′|2
L2(0,T ;L2(Ω))

= D1|ψ ′|2
L2(0,T ;L2(Ω))

,
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|(C1u, C1u
′′)L2(0,T ;L2(Ω))| ≤ (|C1u|2L2(0,T ;L2(Ω))

)1/2(|C1u
′′|2
L2(0,T ;L2(Ω))

)1/2

≤
(
α

λ1
+ β

)
(3T ‖u0‖2)1/2

(
2eM2(T )

ν2λ1
M4(T )

)1/2

|ψ ′|2
L2(0,T ;L2(Ω))

= D2|ψ ′|2
L2(0,T ;L2(Ω))

,

|C2u
′(T )|2

L2(Ω)
≤
(
α

λ1
+ β

)
eM3(T )

ν
|B1|2L(L2,H)

|ψ ′|2
L2(0,T ;L2(Ω))

= D3|ψ ′|2
L2(0,T ;L2(Ω))

,

|(C2u(T ), C2u
′′(T ))L2(Ω)| ≤ (|C2u|2L2(Ω)

)1/2(|C2u
′′|2
L2(Ω)

)1/2

≤
(
α

λ1
+ β

)
(3‖u0‖2)1/2

(
eM3(T )

ν
M4(T )

)1/2

|ψ ′|2
L2(0,T ;L2(Ω))

= D4|ψ ′|2
L2(0,T ;L2(Ω))

,

∣∣∣∣∣
(
C3ν

∂u′′

∂n
, r
)
L2(0,T ;L2(∂Ω))

∣∣∣∣∣ ≤ κ ′νT 1/2|u′′|1/2
L2(0,T ;V )|u′′|1/2

L2(0,T ;D(A))

≤ κ ′(2T )1/2 e[M2(T )+M3(T )]/4

λ
1/4
1

M
1/2
4 (T )|ψ ′|2

L2(0,T ;L2(Ω))
= D5|ψ ′|2

L2(0,T ;L2(Ω))
.

Thus, under the assumption that

γ 2 > γ 2
3 = D1 +D2 +D3 +D4 +D5, (3.16)

we have

h′′(0) ≤ (γ 2
3 − γ 2)|ψ ′|2

L2(0,T ;L2(Ω))
< 0 ∀ψ ′ 6= 0. (3.17)

The strict concavity ofψ 7→ J (ψ, φ) follows immediately.
Condition 2. By Lemma 3.4, and since the norm is lower semicontinuous, the mapφ 7→ J (ψ, φ) is upper

semicontinuous. In order to prove convexity, it is sufficient to show that

g(ρ) = J (ψ, φ + ρφ′)

is convex w.r.t.ρ nearρ = 0, i.e.,g′′(0) > 0. Note that

g′′(ρ)=
∫ T

0
|C1u

′|2
L2(Ω)

dt +
∫ T

0
(C1u, C1u

′′)L2(Ω) dt + |C2u
′(T )|2

L2(Ω)
+ (C2u(T ), C2u

′′(T ))L2(Ω)

−
∫ T

0

(
C3ν

∂u′′

∂n
, r
)
L2(∂Ω)

dt + l2
∫ T

0
|φ′|2

L2(Ω)
dt.

Also note that the a priori estimates onu′ = (Du/Dφ) · φ′ andu′′ = (D2u/Dφ2) · φ′ · φ̂′ and the bounds on the
various terms ofg′′(ρ) follow immediately as in the proof of condition 1 withB2φ

′ replacingB1ψ
′ everywhere.

Thus, under the assumption that

l2 > l21 = D2 +D4 +D5, (3.18)

we have

g′′(0) ≥ (l2 − l21)|φ′|2
L2(0,T ;L2(Ω))

> 0 ∀φ′ 6= 0. (3.19)

The strict convexity ofφ 7→ J (ψ, φ) follows immediately. �
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Putting the statements of this section together, we have established existence of a solution(ψ̄, φ̄) to the robust
control problem of Definition 3.1 for the 3D nonlinear case with sufficiently largeγ andl and sufficiently small
data or sufficiently smallT .

Theorem 3.7(Existence of a solution to the robust control problem, nonlinear 3D case).Assume thatγ > γ3 and
l > l1 , whereγ3 is defined as in(3.16)and l1 is defined as in(3.18),and that either the small T constraint is
satisfied, T < t∗0 , or that u0, U, andPf are sufficiently small such that the small data constraints in(3.8) are
satisfied. Then there exists a saddle point(ψ̄, φ̄) onX × Y and an associated̄u = u(ψ̄, φ̄) such that

J (ψ, φ̄) ≤ J (ψ̄, φ̄) ≤ J (ψ̄, φ) ∀(ψ, φ) ∈ X × Y .

Proof. The proof follows promptly from Lemmas 3.4 and 3.6 and Proposition 3.2. �

3.2. Existence of a solution to the robust control problem, 2D case

The proof of the existence of a robust control solution(ψ̄, φ̄) for the nonlinear problem in the 2D case is similar
to that for the 3D case in the previous section with no small data or smallT restriction. The improvement is due to
the existence of improved versions of the inequalities (1.13) in the 2D case; specifically, we have

|b(u, v,w)| ≤ C0|u|1/2‖u‖1/2‖v‖1/2|Av|1/2
L2 |w|L2, ∀u ∈ V, v ∈ D(A), w ∈ H,

|b(u, v,w)| ≤ C0|u|1/2L2 |Au|1/2
L2 ‖v‖|w|L2, ∀u ∈ D(A), v ∈ V, w ∈ H,

|b(u, v,w)| ≤ C0|u|1/2L2 ‖u‖1/2‖v‖|w|1/2
L2 ‖w‖1/2, ∀u ∈ V, v ∈ V, w ∈ V.

We have, as in the 3D case (without any small data restriction),

|u(t)|2
L2 ≤ eM0(t)|u0|2L2 + eM0(t)

νλ1

∫ t

0
|Pf |2

L2 ds,

1

t

∫ t

0
‖u‖2 ds ≤ 2eM0(t)

νt
|u0|2L2 + 2eM0(t)

ν2λ1t

∫ t

0
|Pf |2

L2 ds,

whereM0(t) = C0ν
−3
∫ t

0‖U‖4 dτ . Multiplying (3.2) withAu, we now have

d

dt
‖u‖2 + ν|Au|2

L2 ≤ 1

ν
|Pf |2

L2 + C0(|U |1/2|AU |1/2
L2 + |U |1/2

L2 |AU |1/2
L2 )‖u‖|Au|L2 + C1|u|1/2‖u‖|Au|3/2L2 .

Applying Young’s inequality,

d

dt
‖u‖2 + ν|Au|2

L2 ≤ 1

ν
|Pf |2

L2 + C0

ν
(|U ||AU |L2 + |U |L2|AU |L2)‖u‖2 + C1

ν3
|u|2‖u‖4.

Setg(t) = (C0/ν)(|U ||AU |L2 + |U |L2|AU |L2)+ (C1/ν
3)|u|2‖u‖2 and note that

∫ t

0
g(τ)dτ ≤ M6(t)+ sup

0≤τ<t
|u(τ)|2

L2

∫ t

0
‖u‖2 ds ≤ M6(t)

+ 2

ν

(
eM0(t)|u0|2L2 + eM0(t)

νλ1

∫ t

0
|Pf |2

L2 ds

)2

= M5(t),
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whereM6(t) = C0/ν
∫ t

0(|U ||AU |L2 + |U |L2|AU |L2)ds. It follows by Gronwall’s lemma that

‖u(t)‖2 ≤ eM5(t)‖u0‖2 + eM5(t)

ν

∫ t

0
|Pf |2

L2 ds.

Using this estimate of‖u(t)‖2, which has been established with no small data or smallT constraint, sufficient
conditions onγ andl for the existence of a solution to the robust control problem follow immediately as in the 3D
case.

Theorem 3.8 (Existence of a solution to the robust control problem, nonlinear 2D case).Assume thatX and
Y are non-empty, closed, bounded, convex subsets ofL2(0, T ;L2(Ω)d) and thatγ > γ4 and l > l2 , whereγ4 =
γ4(X ,Y) and l2 = l2(X ,Y) are defined with a procedure identical to that in the 3D case but with the modi-
fied estimates given above. Then there exists a saddle point(ψ̄, φ̄) on X × Y and an associated̄u = u(ψ̄, φ̄)

such that

J (ψ, φ̄) ≤ J (ψ̄, φ̄) ≤ J (ψ̄, φ) ∀(ψ, φ) ∈ X × Y .

Proof. Follows promptly as in the 3D case with the modified estimates given above. �

3.3. Identification of the gradients to determine the unique solution

Now we prove the main result of this chapter.

Theorem 3.9. For sufficiently largeγ andl, the solution to the robust control problem stated in Definition 3.1 exists
and is unique. Further, the gradients of the cost functionalJ (ψ, φ) in (3.1) for any(ψ, φ) ∈ X × Y are given by

DJ

Dψ
(ψ, φ) = B∗

1 ũ− γ 2ψ and
DJ

Dφ
(ψ, φ) = B∗

2 ũ+ l2φ, (3.20)

whereũ is found from the solution(u, ũ) of the following coupled system:

du

dt
+ νAu+ B(u,U)+ B(U, u)+ B(u, u) = B1ψ + B2φ, −dũ

dt
+ νA∗ũ+ B ′(U + u)∗ũ = C∗

1C1u,

u ∈ V, ũ(t) ∈ Vr = {v ∈ (H 1(Ω))3; div v = 0 inΩ, v = C∗
3r on∂Ω}, t < T ,

u(0) = u0 and ũ(T ) = C∗
2C2 u(T ). (3.21)

Proof. The existence of a robust control solution to the nonlinear problem was proved in Section 3.1 for the 3D
case, subject to a small data constraint or a smallT constraint, and in Section 3.2 for the 2D case, with no such
constraint.

As in the linear case, the gradientsDJ /Dψ andDJ /Dφ may be determined by computation of the coupled
system (3.21), from whence (3.20) follows.

Uniqueness in the nonlinear case is proved by contradiction as follows: assume that(ψ̄, φ̄) and(ψ̃, φ̃) are two
distinct saddle points inX ×Y. It follows from the statements of strict concavity (3.17) and strict convexity (3.19)
that

J (ψ̃, φ̃) < J (ψ̃, φ̄) < J (ψ̄, φ̄) and J (ψ̄, φ̄) < J (ψ̄, φ̃) < J (ψ̃, φ̃).

This is a contradiction, and thus the saddle point(ψ̄, φ̄) is unique. �
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Remark 3.10. For the robust control problem on the bounded domain(ψ, φ) ∈ X × Y as stated in Definition 3.1
(and for which the gradientsDJ /Dψ andDJ /Dφ are identified in Theorem 3.9), solutions(ψ̄, φ̄) to the robust
control problem may not necessarily satisfy(DJ /Dψ)(ψ̄, φ̄) = (DJ /Dφ)(ψ̄, φ̄) = 0, as they may be located on
the boundary of the domainX × Y. These equalities hold, however, if(ψ̄, φ̄) is in the interior ofX × Y and, in
particular, if X andY are all ofL2(0, T ;L2(Ω)d).

To summarize Section 3, for sufficiently largeγ andl in both the 2D case and the 3D case (the latter of which is
confined in the analysis either by a small data or a smallT constraint), a solution to the robust control problem
stated in Definition 3.1 exists and is unique. Further, the gradientsDJ /Dψ andDJ /Dφ, which may be used to
determine this solution with a numerical algorithm such as that proposed in Section 5, may be identified as a simple
function of an appropriately defined adjoint field.

4. Generalizations

We now consider two straightforward generalizations of the robust control framework laid out in Sections 2 and
3, first for the problem of boundary control (Section 4.1), then for the problem of data assimilation (Section 4.2).

4.1. The boundary control problem in a domain with corners

In this section, we will discuss the robust control problem assuming that the controlφ now acts upon the flow by
modification of the boundary conditions on the velocityu. It will be shown that the effect of boundary forcing on
the flow velocity inside the domainΩ may be accounted for by a “lifting” procedure which constructs an equivalent
interior forcing profile to account for the boundary forcing [22]. With such a construction, the proofs of existence
and uniqueness of the robust control problem follow as in the previous sections with slight modifications. Further,
the identification of the gradientsDJ /Dψ andDJ /Dφ is, again, straightforward. In the present work we treat
domains with corners, avoiding the smoothing of the boundary used in [1].

The cost functional considered in this section is analogous to that used in previous sections

J (ψ, φ)= 1

2

∫ T

0
|C1u|2L2(Ω)

dt + 1

2
|C2u(T )|2L2(Ω)

−
∫ T

0

(
C3ν

∂u

∂n
, r
)
L2(∂Ω)

dt

+1

2

∫ T

0
[l2|φ|2

L2(∂Ω)
− γ 2|ψ |2

L2(Ω)
] dt, (4.1)

where the flow is governed by

∂u

∂t
− ν1u+ (u · ∇)U + (U · ∇)u+ (u · ∇)u+ ∇p = B1ψ, div u = 0, u = B2φ on∂Ω,

u = u0 at t = 0, (4.2)

where we restrictφ ∈ H 1(0, T ; (L2(∂Ω))3), C∗
3r ·n = 0, andB2 to be a mapping from(L2(∂Ω))3 to(H 3/2+ε(∂Ω))3,

ε > 0, such that(B2φ,n)L2(∂Ω) = ∫
∂Ω
B2φ · n dΓ = 0, wheren is the unit outward normal vector to∂Ω. Note the

control forcingϕ = B2φ, which is allowed on all three velocity components, is confined to the boundary∂Ω of the
domain in the present section.

4.1.1. Transformation of problem to the interior forcing framework
For simplicity, let us assume a rectangular two or three-dimensional domainΩ = ∏m

i=1(−Li, Li), wherem = 2
or 3, as depicted in Fig. 4. Suppose that the boundary forcing belongs to the closure, in an appropriate Sobolev
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Fig. 4. Cornered domains considered for the problem of boundary forcing in Section 4.1.1. The analysis of the flow control problem in these 2D
and 3D “driven cavities” is easily generalized to account for periodicity in one or two directions (i.e., channel flow and duct flow), and more
generally, for domains of any convex shape.

space, of infinitely differentiable functions with compact support on each smooth component of∂Ω. Specifically,
the boundary ofΩ is given by

∂Ω =
n⋃
i=1

(Γ +
i ∪ Γ −

i ) and Γ ±
i = {(x1, . . . , xn) ∈ ∂Ω; xi = ±Li},

and the boundary controlsϕ±
i on each faceΓ ±

i of Ω satisfy

ϕ±
i ∈ H 1(0, T ;H 3/2+ε

0 (Γ ±
i )), where ε > 0.

Using [39], there existsΦ ∈ H 1(0, T ;H 2(Ω)) such that

∂φ

∂t
− ν1φ + ∇π = 0, div φ = 0, φ = ϕ±

i on Γ ±
i , φ = u0 at t = 0.

Furthermore, making use ofΦ as an intermediate lifting, Hopf’s technique3 [22,30,36] may be used to determine
aΘ ∈ H 1(0, T ;H 2(Ω)) such that

divΘ = 0, Θ = ϕ±
i on Γ ±

i ,

whereΘ is constructed such that

b(u,Θ, u) ≤ ν

4
‖u‖2. (4.3)

Now setv = u−Θ. As v, by construction, has homogeneous boundary conditions, we may return to the familiar
abstract form

dv

dt
+ νAv + B(v,U +Θ)+ B(U +Θ, v)+ B(v, v) = F, v ∈ V, v = u0 −Θ(0) at t = 0, (4.4)

where

F = B1ψ − dΘ

dt
− νAΘ − B(Θ,Θ)− B(U,Θ)− B(Θ,U).

3 Note that the support of the liftingΘ of the boundary forcingϕ determined by Hopf’s approach is included in a neighborhood of the boundary.
Note also that Hopf’s technique can be easily generalized to work for the rectangular domainsΩ of Fig. 4 and, in fact, for any convex domain.
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Note thatF ∈ L2(0, T ;H) and that

‖F‖L2(0,T ;H) ≤ C0

n∑
i=1

‖ϕ±
i ‖

H1(0,T ;H3/2+ε
0 (Γ ±

i ))
+ ‖B1ψ‖L2(0,T ;H). (4.5)

Theorem 4.1. Existence and uniqueness of the solution to the robust control problems posed in Sections 2 and 3
extend directly to the case of boundary forcing.

Proof. Noting the estimates (4.3) and (4.5), the existence and uniqueness ofv follow promptly from the develop-
ments in Sections 2 and 3 applied to (4.4), withU + Θ replacingU andF replacingPf , mutatis mutandis. The
existence and uniqueness ofu = v +Θ follow directly. �

4.1.2. Identification of gradients
The existence and uniqueness of a robust control solution for the problem with boundary control were proved

in Section 4.1.1 by reducing it to the interior forcing problem, which has already been considered thoroughly in
Sections 2 and 3. We now identify the gradientsDJ /Dψ andDJ /Dφ necessary to find a solution to the robust
data assimilation problem with the algorithm of Section 5 by coupling the flow system (4.2) with an adjoint system
defined by

−∂ũ
∂t

− ν1ũ+ (∇[U + u])T · ũ− (∇ũ) · [U + u] + ∇p̃ = C∗
1C1u, div ũ = 0, ũ = C∗

3r on ∂Ω,

ũ = C∗
2C2u at t = T . (4.6)

Since∫ T

0
(C∗

1C1u, u
′)L2(Ω) dt + (C∗

2C2u(T ), u
′(T ))L2(Ω) −

∫ T

0

(
C3ν

∂u′

∂n
, r
)
L2(∂Ω)

dt

=
∫ T

0

([
−∂ũ
∂t

− ν1ũ+ (∇[U + u])T · ũ− (∇ũ) · [U + u] + ∇p̃
]
, u′
)
L2(Ω)

dt

+(ũ(T ), u′(T ))L2(Ω) −
∫ T

0

(
ν
∂u′

∂n
, ũ

)
L2(∂Ω)

dt

=
∫ T

0

(
ũ,

[
∂u′

∂t
− ν1u′ + ([U + u] · ∇)u′ + (u′ · ∇)[U + u] + ∇p′

])
L2(Ω)

dt

+
∫ T

0

[
(p̃, u′ · n)L2(∂Ω) − (p̃,∇ · u′)L2(Ω) + (p′,∇ · ũ)L2(Ω) − (p′, ũ · n)L2(∂Ω)

−
(
ν
∂ũ

∂n
, u′
)
L2(∂Ω)

− ((ũ · n)[U + u], u′)L2(∂Ω)

]
dt

=
∫ T

0
(ũ,B1ψ

′)L2(Ω) dt +
∫ T

0

([
−ν ∂ũ

∂n
+ p̃n

]
,B2φ

′
)
L2(∂Ω)

dt

=
∫ T

0
(B∗

1ũ, ψ
′)L2(Ω) dt +

∫ T

0

(
B∗

2

[
−ν ∂ũ

∂n
+ p̃n

]
, φ′
)
L2(∂Ω)

dt,

it follows that

DJ

Dψ
(ψ, φ) = B∗

1ũ− γ 2ψ and
DJ

Dφ
(ψ, φ) = B∗

2

[
−ν ∂ũ

∂n
+ p̃n

]
+ l2φ.
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The appearance of̃p in this derivation is due to the fact that we have allowedB2φ · n 6= 0, i.e., we have allowed
the case of boundary forcing by wall transpiration (blowing/suction). If we restrict the problem to wall-tangential
control velocities only (i.e.,B2φ · n = 0), then thep̃ term will disappear from the expression for the gradient.
Conversely, if we restrict the problem to wall-normal control velocities only, withC∗

3r constant over the walls, then
the∂ũ/∂n term will disappear from the expression for the gradient.

To summarize Section 4.1, for sufficiently largeγ , a solution to the robust control problem for the case of boundary
forcing exists and is unique. Further, the gradientsDJ /Dψ andDJ /Dφ, which may be used to determine this
solution with a numerical algorithm such as that proposed in Section 5, may be identified as a simple function of
an appropriately defined adjoint field.

4.2. The data assimilation problem

In this section, we will discuss a robust estimation problem wherein the “control” to be determined is, in fact, the
initial condition on the velocity field, i.e.,u0 = B2φ. This framework is useful in data assimilation problems: given
a set of measurements of some actual flowv on [0, T ], determine a “best” estimate as to the initial stateu0 in the
modelu that leads to the observed system behavior, while simultaneously forcing the model system with a small
component of the worst-case disturbanceψ which perturbsu away from the observed system behavior. Chaotic
problems, such as weather systems, are highly susceptible to the small disturbances present in all physical systems.
Thus, this robust estimation framework should help to reduce the component of the initial state most susceptible to
external disturbances and thereby prove to be a valuable tool for improving the fidelity of such estimates.

Definew = u − v as the amount the estimated flowu differs from the actual flowv. A cost functional may be
defined as in the previous problems, but now forced by themeasurement errorsC1w, C2w(T ), andC3ν(∂w/∂n)|∂Ω
on the interior, at the final time, and at the boundaries, respectively, such that

J (ψ, φ)= 1

2

∫ T

0
|C1w|2

L2(Ω)
dt + 1

2
|C2w(T )|2L2(Ω)

+ 1

2

∫ T

0

∣∣∣∣C3ν
∂w

∂n

∣∣∣∣
2

L2(∂Ω)

dt + l2

2
|φ|2

L2(Ω)

−γ
2

2

∫ T

0
|ψ |2

L2(Ω)
dt, (4.7)

whereC∗
3C3ν(∂w/∂n) · n = 0. The measurements of the actual flowC1v, C2v(T ), andC3ν(∂v/∂n)|∂Ω are assumed

to be given. In order to find the best estimateu of the actual flowv, we seek the best initial conditionsφ, subject to
the worst disturbance forcingψ , such thatJ is minimized, where the estimateu is governed by

du

dt
+ νAu+ B(u,U)+ B(U, u)+ B(u, u) = B1ψ, u ∈ V, u = B2φ at t = 0, (4.8)

whereφ ∈ (L2(Ω))3 andB2 is a mapping from(L2(Ω))3 to V .

Theorem 4.2. Existence and uniqueness of the solution to the robust control problems posed in Sections 2 and 3
extend directly to the data assimilation framework.

Proof. The development of Sections 2 and 3 extend directly to the present case with no further estimates
required. �

4.2.1. Identification of gradients
The existence and uniqueness of a robust solution for the data assimilation problem were found by appealing

directly to the interior forcing problem, which has already been considered thoroughly in Sections 2 and 3. We now
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identify the gradientsDJ /Dψ andDJ /Dφ necessary to find a solution to the robust data assimilation problem
with the algorithm of Section 5. The derivation is very similar to those encountered earlier.

Differentiation of (4.7) leads to expressions for the gradients in weak form:

DJ

Dψ
(ψ̄, φ̄) · ψ ′ =

∫ T

0

(
C1w, C1

Du

Dψ
· ψ ′

)
L2(Ω)

dt +
(
C2w(T ), C2

Du(T )

Dψ
· ψ ′

)
L2(Ω)

+
∫ T

0

(
C3ν

∂w

∂n
, C3ν

∂

∂n

Du

Dψ
· ψ ′

)
L2(∂Ω)

dt − γ 2
∫ T

0
(ψ̄, ψ ′)L2(Ω) dt, (4.9)

DJ

Dφ
(ψ̄, φ̄) · φ′ =

∫ T

0

(
C1w, C1

Du

Dφ
· φ′
)
L2(Ω)

dt +
(
C2w(T ), C2

Du(T )

Dφ
· φ′
)
L2(Ω)

+
∫ T

0

(
C3ν

∂w

∂n
, C3ν

∂

∂n

Du

Dφ
· φ′
)
L2(∂Ω)

dt + l2(φ̄, φ′)L2(Ω).

In order to determine a solution to the robust data assimilation problem, we define an adjoint state by the equation

−dũ

dt
+ νA∗ũ+ B ′(U + u)∗ũ = C∗

1C1w,

ũ(t) ∈ Vw =
{
v ∈ (H 1(Ω))3; div v = 0 inΩ, v = −C∗

3C3ν
∂w

∂n
on∂Ω

}
,

t < T , ũ = C∗
2C2w ∈ H at t = T ,

whereA∗ is defined by

(u′,A∗ũ)L2(Ω) = (Au′, ũ)L2(Ω) +
(
∂u′

∂n
, ũ

)
L2(∂Ω)

for u′ ∈ D(A) and ũ ∈ Vw.

Note again thatC∗
3C3ν(∂w/∂n) ·n = 0. Note that the adjoint state is forced by the measurement errorsC1w,C2w(T ),

andC3ν(∂w/∂n)|∂Ω . From integration by parts and the regularity ofu, u′ andũ, which follows as in the previous
sections, we have

∫ T

0
(C∗

1C1w, u
′)L2(Ω) dt + (C∗

2C2w(T ), u
′(T ))L2(Ω) +

∫ T

0

(
C∗

3C3ν
∂w

∂n
, ν
∂u′

∂n

)
L2(∂Ω)

dt

=
∫ T

0

([
−dũ

dt
+ νA∗ũ+ B ′(U + u)∗ũ

]
, u′
)
L2(Ω)

dt

+(ũ(T ), u′(T ))L2(Ω) −
∫ T

0

(
ũ, ν

∂u′

∂n

)
L2(∂Ω)

dt

=
∫ T

0

(
ũ,

[
du′

dt
+ νAu′ + B ′(U + u)u′

])
L2(Ω)

dt + (ũ(0), u′(0))L2(Ω)

=
∫ T

0
(ũ,B1ψ

′)L2(Ω) dt + (ũ(0),B2φ
′)L2(Ω)

=
∫ T

0
(B∗

1ũ, ψ
′)L2(Ω) dt + (B∗

2ũ(0), φ
′)L2(Ω).



T.R. Bewley et al. / Physica D 138 (2000) 360–392 389

Thus, (4.9), withφ′ = 0 and takingψ ′ ∈ L2(0, T ;L2(Ω)d) as arbitrary, leads to an expression for the gradient
DJ /Dψ :

DJ

Dψ
(ψ̄, φ̄) = B∗

1ũ− γ 2ψ.

Similarly, withψ ′ = 0 and takingφ′ ∈ L2 as arbitrary,

DJ

Dφ
(ψ̄, φ̄) = B∗

2ũ(0)+ l2φ.

To summarize Section 4.2, for sufficiently largeγ and l, a solution to the robust setting of the data assimilation
problem exists and is unique. Further, the gradientsDJ /Dψ andDJ /Dφ, which may be used to determine this
solution with a numerical algorithm such as that proposed in Section 5, may be identified as a simple function of
an appropriately defined adjoint field.

5. Numerical algorithm for determination of robust control solution

A selected number of important linear robust control problems may be derived from the Navier–Stokes equation
and discretized accurately with a system of small state dimension [N < O(100)]. For such problems, the two-point
boundary-value problem of (2.22) may be stated and solved as a Riccati problem, as demonstrated by Bewley and
Liu [8] for the problem of stabilization of plane channel flow. For nonlinear robust control problems of fairly low
state dimension, the two-point boundary-valued problem may be stated as the Hamilton–Jacobi–Bellman inequality
and solved via the notions ofL2 gain, passivity, and control Lyapunov functions, as described by Isidori [23], van
der Schaft [33] and Freeman and Kokotovic [17].

The majority of linear and nonlinear problems in fluid mechanics, however, require quite a large state dimension
for adequate resolution [N > O(105)]. For such problems, a computational approach which does not rely on the
computation and storage of O(N2) fields is an absolute necessity. As suggested for the optimal case by Abergel
and Temam [1], an iterative numerical algorithm is now proposed to find a saddle-point solution to the two-point
boundary value problem of both linear and nonlinear robust control problems based on the repeated computation
of an O(N) adjoint field.

Algorithm 1.
1. Initialize k = 0 and(ψ0, φ0) = 0 on t ∈ [0, T ], wherek is the iteration index and(ψk, φk) is the numerical

approximation of the disturbance and the control during the kth iteration of the algorithm.
2. Determine the stateuk on [0, T ] from the state equation (Navier–Stokes) based on the initial conditionsu0 and

with the forcing(ψk, φk).
3. Determine the adjoint̃uk on [0, T ] from the adjoint equation based on the stateuk.
4. Determine local expressions for the gradients

DJ

Dψ
(ψk, φk) and

DJ

Dφ
(ψk, φk)

based on the adjoint̃uk.
5. Determine the updated disturbanceψk+1 with

ψk+1 = ψk + αk
DJ

Dψ
(ψk, φk),

where0< C1 ≤ αk ≤ C2 < 1, whereC1 andC2 depend on the second derivative ofJ .
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6. Determine the updated controlφk+1 with

φk+1 = φk − βk
DJ

Dφ
(ψk, φk),

where0< C1 ≤ βk ≤ C2 < 1.
7. Increment index: k = k + 1. Repeat from step2 until converged.

The proof of the convergence of Algorithm 1 is currently under development and will appear elsewhere.
In order to arrive at an algorithm which is numerically efficient, but for which a proof of convergence is

not available,αk and βk themselves may be determined by an iterative procedure, specifically as given
below.

Algorithm 2. Follow the same procedure as in Algorithm 1, but now:
• Letαk be selected by a numerically robust line maximization algorithm, based on repeated “trial” computations

ofψk+1 for various different choices ofαk and computing the resulting effect on the cost functionalJ (ψk+1, φk).
Such an approach guarantees local line maximization ofJ in the direction of the gradient[DJ /Dψ ](ψk, φk)
from the point(ψk, φk) even for nonlinear problems. Efficient numerical algorithms for such a line maximization
(i.e., optimization of the single scalar parameterαk) are well established. Note thatαk is chosen while holding
the controlφk fixed.

• Letβk be selected by a line minimization algorithm, based on repeated “trial” computations ofφk+1 for various
different choices ofβk and computing the resulting effect on the cost functionalJ (ψk, φk+1), in a manner
analogous to that forαk. Note thatβk is chosen while holding the disturbanceψk fixed.

Note that Algorithm 2 may be modified by settingαk = 0 (i.e.,ψk+1 = ψk) for k odd and settingβk = 0
(i.e.,φk+1 = φk) for k even. Note also that, for the purpose of numerical computation, it is often most efficient
to compute the line minimizations only approximately, in order to reduce the number of computations required to
selectαk andβk.

6. Conclusions

A framework for robust control has been developed for problems governed by the Navier–Stokes equation.
Existence and uniqueness of the solution to the robust control problem have been proven, and upper bounds on
the minimum value ofγ0 for which a solution exists have been established. Cost functionals which account for
both the regulation and the terminal control of both interior quantities and boundary quantities have been accounted
for. Interior forcing, boundary forcing, and the optimization of the initial state (i.e., data assimilation) have been
considered. Together, this set of problems constitutes a complete family of problems governed by the flow/adjoint
two-point boundary value problem. Finally, a tractable numerical algorithm (based on repeated computations of an
adjoint field) to solve the robust control problem has been proposed.
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