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Abstract

The application obptimal control theory to complex problems in fluid mechanics has proven to be quite effective when
complete state information from high-resolution numerical simulations is available [P. Moin, T.R. Bewley, Appl. Mech. Rev.,
Part 2 47 (6) (1994) S3-S13; T.R. Bewley, P. Moin, R. Temam, J. Fluid Mech. (1999), submitted for publication]. In this
approach, an iterative optimization algorithm based on the repeated computation of an adjoint field is used to optimize the
controls for finite-horizon nonlinear flow problems [F. Abergel, R. Temam, Theoret. Comput. Fluid Dyn. 1 (1990) 303—-325].

In order to extend this infinite-dimensional optimization approach to control externally disturbed flows in which the controls
must be determined based on limited noisy flow measurements alone, it is necessary that the controls computed be insensitive
to both state disturbances and measurement noise. For this rezagstcontrol theory, a generalization of optimal control

theory, has been examined as a technique by which effective control algorithms which are insensitive to a broad class of
external disturbances may be developed for a wide variety of infinite-dimensional linear and nonlinear problems in fluid
mechanics. An aim of the present paper is to put such algorithms into a rigorous mathematical framework, for it cannot be
assumed at the outset that a solution to the infinite-dimensional robust control problem even exists. In this paper, conditions
on the initial data, the parameters in the cost functional, and the regularity of the problem are established such that existence
and uniqueness of the solution to the robust control problem can be proven. Both linear and nonlinear problems are treated,
and the 2D and 3D nonlinear cases are treated separately in order to get the best possible estimates. Several generalizations
are discussed and an appropriate numerical method is proposed. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In its essence, robust control theory [14,18] may be summarized as Murphy’s law [9] taken seriously:

If a worst-case system disturbancandisrupt a controlled closed-loop systemwitl.
When designing a robust controller, therefore, one shplalidon a finite component of the worst-case disturbance
aggravating the system, and design a controller which is suited to handle even this extreme situation. A controller
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Fig. 1. Schematic of a saddle point representing the neighborhood of a solution to a robust control problem with one scalar disturbance variable
¥ and one scalar control varialile When the robust control problem is solved, the cost funcfiaa simultaneously maximized with respect to

¥ and minimized with respect tp, and a saddle point such @, $) is reached. The present paper formulates an infinite-dimensional extension

of this concept, where the castis related to a distributed disturbangeand a distributed contr@i through the solution of the Navier—Stokes
equation.

which is designed to work even in the presence of a finite component of the worst-case disturbance will also be
robust to a wide class of other possible disturbances which, by definition, are not as detrimental to the control
objective as the worst-case disturbance. Thus, the problem of finding a robust control is intimately coupled with the
problem of finding the worst-case disturbance in the spirit of a non-cooperative game.

To summarize briefly the robust control approach in the time domain, a cost funcffatedcribing the control
problem at hand is defined that weighs together the (distributed) disturljanite (distributed) contrap, and
the flow perturbation (v, ¢) in the domains2 over the time period of consideration, [D]. The cost functional
considered in the present work is of the form

T
j(w,¢>=3/ /|Clu|2dXd1+}/ |Cou(x, T)|? dx
2J)o Jo 2/)0

r du 1 20,2 2,2
—/ [ Cgv—-rdth+—/ [[z 1612 — 121w (2] dx dr. (1.1)
0o Joao = on 2Jo Jo

This cost functional is simultaneously maximized with respect to the disturbareoed minimized with respect
to the controlg, as illustrated in Fig. 1. The robust control problem is considered to be solved when a saddle
point (1, ¢) is reached; note that such a solution, if it exists, is not necessarily unique. The dependence of the cost
functional 7 on the flow perturbation = u(y, ¢) itself is treated in a fairly general form; four cases of particular
interest are:
1. C1 = d1 I andCz = C3 = 0= regulation of turbulent kinetic energy;
2. C1 = d2Vx and(C, = C3 = 0= regulation of the square of the vorticity;
3. C2 = d3l andC1 = C3 = 0 = terminal control of turbulent kinetic energy;
4. C3 = dy4l andC1 = C2 = 0= minimization of the time-average skin-friction in the directiomtegrated over
the boundary of the domain. Note thrats the unit outward normal vector X2 andr is a given unit vector
usually taken as the direction of the mean flow.
All four of these cases, and many others, may be considered in the present framework, and the extension to
other cost functionals is straightforward. The dimensional conséarftghich are the appropriate functions of the
kinematic viscosity, a characteristic lengthg, and a characteristic velocityp), as well ag andy, are included
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to make the cost functional dimensionally consistent and to account for the relative weight of each individual
term.

It cannot be assumed at the outset that a solution to the infinite-dimensional min/max problem described above
even exists. However, it is established in the present paper that for a sufficiently langereasonable requirements
on the regularity of the problem (described later in this section), a solution to this min/max problem indeed does
exist, with the (finite) magnitudes of the disturbance and the control governed by the scalar pararaptirsio
accomplish this, we will extend the optimal control setting of Abergel and Temam [1] to analyze the non-cooperative
differential game of the robust control setting in which a saddle p@i) is sought. Our approach is based on
the results of the existence and characterization of saddle-points in infinite dimensions as given, e.g., in [15].

The optimization of interior forcing profile@, ¢) willbe examined in detail, first for the linearized Navier—Stokes
equation (Section 2), then for the full nonlinear Navier—Stokes equation (Section 3). We will then generalize to
the problems of boundary control (Section 4.1), with the possibility of corners in the boundary of the d@main
and data assimilation (Section 4.2), in which the initial conditions are optimized to solve an estimation/forecasting
problem based on flow measurements arf[P Finally, a tractable numerical algorithm for solving all of the robust
control problems discussed herein is presented (Section 5).

The numerical approach proposed to solve the robust control problem is based on computationg&j an O
adjoint field, whereV is the number of grid points used to resolve the continuous flow problem. Not&/tkat
O(10°) for problems of engineering interest today, and this number may be expected only to increase in the future.
Computation of the adjoint field is only as difficult as the computation of the flow itself, and thus is a numerically
tractable approach to the control problem whenever the computation of the flow itself is numerically tractable.
In contrast, control approaches based on the solution(df?PRiccati equations or Hamilton-Jacobi—Bellman
formulations have not been shown to be numerically tractable for discretizationsWwith O(100), and thus
are, so far, inadequate to treat many of the problems of interest in fluid mechanics with a sufficient degree of
resolution.

1.1. Anintuitive introduction to robust control theory

Consider the present problem as a differential game between an engineer seeking the “best® ashicbl
stabilizes the flow perturbation with limited control effort and, simultaneously, nature seeking the “maximally
malevolent” disturbanceé which destabilizes the flow perturbation with limited disturbance magnitude [18]. The
parametel 2 factors into such a competition as a weighting on the magnitude of the disturbance which nature can
afford to offer, in a manner analogous to the paramitewhich is a weighting on the magnitude of the control
which the engineer can afford to offer.

The parametei® may be interpreted as the “price” of the control to the engineer. Faeoco limit corresponds
to prohibitively “expensive” control, and results gn— 0 in the minimization with respect ¢ for the present
problem. Reduced values bfincrease the cost functional less upon the application of a cogtral non-zero
control results whenever the contgplcan affect the flow perturbatianin such a way that the net cost functional
J is reduced.

The parametep? may be interpreted as the “price” of the disturbance to nature.yThe oo limit results in
¥ — 0 in the maximization with respect 9, leading to the optimal control formulation of Abergel and Temam
[1] for ¢ alone. Reduced values pfdecrease the cost functional less upon the application of a disturljarse
non-zero disturbance results whenever the disturbgncen affect the flow perturbatianin such a way that the
net cost functionaly is increased.

Solving for the controlp which is effective even in the presence of a disturbapioghich maximally spoils
the control objective is a way of achieving system robustness. A control which works even in the presence of the
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Fig. 2. Schematic representation of the space—time domain over which the flow iediéfined. The arrow indicates the direction in time that
the p.d.e. is marched.
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Fig. 3. Schematic representation of the space—time domain over which the adjointiedéfined. The arrow indicates the direction in time
that the p.d.e. is marched.

malevolent disturbance will also be robust to a wide class of other possible disturbances. Put another way, the
introduction of the worst-case disturbance in the robust approach is a means of “detuning” the optimal controls.
It results in a set of controls which may have somewhat degraded performance when no disturbances are present.
However, much greater system robustness (i.e., better performance) is attained in cases for which unknown distur-
bances are present in the system, and thus the approach is relevant for applications in physical systems, in which
unpredictable disturbances are ubiquitous.

In the present systems, for < yp for some critical valueq (an upper bound of which is established in this
paper), the non-cooperative game is not known to have a finite solution; essentially, the malevolent disturbance
wins. The control corresponding ter = yp results in a stable system even when nature is on the brink of making
the system unstable. However, the control determined withyq is not always the most suitable, as it may result
in a very large control magnitude and degraded performance in response to disturbances with structure more benign
than the worst-case scenario. In the implementation, variatibarafy provides the flexibility in the control design
which is necessary to achieve the desired trade-offs between Gaussian and worst-case disturbance response and the
control magnitude required [8].

1.2. General framework

In Figs. 2 and 3, we identify all possible sources of forcing in the present control problem, which is shown in
Sections 2.2 and 3.3 to boil down to a two-point boundary-value problem for a coupled set of p.d.e.s: one for the
flow perturbatioru and one for an adjoirt field i. All three possible locations of forcing of the flow problem and
all three possible locations of forcing of the adjoint problem are considered in the present framework. By so doing,
we establish a general framework in which the robust control approach, discussed herein, can be applied to a wide
variety of problems in fluid mechanics.

1 Note that the adjoint field used in this work represents the sensitivity of the portion of the cost fungtishath depends om to modification
of the forcing(v, ¢) of the flow problem.
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The possible regions of forcing in the system definiraye:

1. the right-hand side of the p.d.e., indicated with shading, representing flow control by interior volume forcing,
as discussed in Sections 2 and 3 (e.g., externally applied electromagnetic forcing by wall-mounted magnets and
electrodes);

2. the boundary conditions, indicated with diagonal stripes, representing flow control by boundary forcing, as
discussed in Section 4.1 (e.g., wall transpiration);

3. the initial conditions, indicated with checkerboard, representing optimization of the initial state in a data as-
similation framework, as discussed in Section 4.2 (e.qg., the weather forecasting problem).

The possible regions of forcing in the system definingorresponding exactly to the possible domains in which
the cost functionaly can depend on, are:

1. the right-hand side of the p.d.e., indicated with shading, representing regulation of an interior quantity (e.g.,
turbulent kinetic energy, cases 1 and 2 of Section 1);

2. the boundary conditions, indicated with diagonal stripes, representing regulation of a boundary quantity (e.g.,
wall skin-friction, case 4 of Section 1);

3. the terminal conditions, indicated with checkerboard, representing terminal control of an interior quantity (e.g.,
turbulent kinetic energy, case 3 of Section 1).

An interesting singularity arises when considering the terminal control of a boundary quantity such as wall
skin-friction. The (inhomogeneous) boundary conditions on the adjoint field for such a case are the same as in
the corresponding regulation problem with a delta function applied atrtismé.

1.3. Related literature

Robust control of infinite-dimensional linear systems is discussed in a fairly general operator-Riccati setting in
[4,16,26]. Though the systems considered in these references are linear (e.g., wave equations) and the issues raised
are primarily related to linear operators in infinite dimension, these references provide useful background material
for the present discussion; see also [37] for related work in the context of optimal control problems. Most of these
references consider the linear case and optimizations over the infinite time horizon, a setting that is effectively
analyzed in the frequency domain and referred t&ascontrol (with reference to the Hardy spaces on which they
are developed and the>*-norms of the input—output transfer functions that they bound). The reader is referred
to [38] for details from this perspective in the finite-dimensional setting, and the above-mentioned references for
details in the infinite-dimensional setting. Of course, there is a wide body of literature concerning generally the
theory of control of systems governed by p.d.e.s, including the equations of fluid mechanics: for highlights, the
reader is referred for instance to the recent volumes compiled by Banks [2], Banks et al. [3], Gunzburger [19],
Lagnese et al. [28], and Sritharan [34].

Robust control of the Navier—Stokes equation in the operator-Ridgat) Getting is discussed in detail by Barbu
and Sritharan [5]. In this work, a robust control problem (on the infinite time horizon) whiefsisboptimal for the
linearized Navier—Stokes equation is stated as the solution of an algebraic Riccati equation, assuming appropriate
detectability and stabilizability constraints on the system; then it is shown that this solution js-aldmptimal
for the full (nonlinear) Navier—Stokes equation in a sufficiently small neighborhood of the origin.

The present analysis differs in several respects. One major difference is that, here, itis not assumed that the system
is stabilizable or detectable, a spectral hypothesis difficult to verify in practice. In fact, effective controls may be
found by the present non-cooperative optimization approach even if the turbulence may not be subdued entirely in
the flow of interest.

As mentioned previously, the robust control problem is solved in the present work by an iterative optimiza-
tion involving adjoint fields, a numerically tractable approach whenever the computation of the flow itself is
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numerically tractable (see, e.g., [10], handling330° modes in the optimal control framework). In contrast,

the largest control Riccati equations solved to date for flow control problems involved Schur decompositions
of 280 x 280 matrices at very high numerical precision (corresponding to a control problem with 140 modes)
and relied on the special structure of the problem formulation (stabilization of laminar flow in a plane chan-
nel) in order to decouple the control problem at different spatial wave numbers in the two homogeneous di-
rections in the flow [7]; see also an 818 Riccati system (corresponding to a control problem with nine
modes) in a closely related problem by Joshi et al. [24]. Furthermore, Riccati-based approaches do not extend
readily to other geometries (where such decoupling is not present) or to higher-dimensional optimization prob-
lems due to their very poor numerical conditioning for large systems. Thus, in the more general setting, iter-
ative adjoint-based control optimizations are preferred over Riccati-based approaches. When optimized over a
sufficiently long time horizoril in a receding-horizon predictive control framework, the performance of such
schemes (in the optimal control case) has proven to be excellent even in fully turbulent flows (see [10], where
the drag of a 3D channel flow is reduced to that of the laminar state from an initial state of fully developed
turbulence).

Finally, the present work treats a number of special cases separately (the linear case, the nonlinear 3D case, and the
nonlinear 2D case, with interior forcing, boundary forcing, or initial condition optimization) to get sharp estimates
on the regularity of the system required in order to be able to prove existence and uniqueness of the solution to an
appropriately stated robust control problem.

One of the several applications of the present work is the development of estimator-based feedback control
algorithms for flow systems. In order to make such algorithms implementable in hardware in real time, reduced-order
models of the flow system which are accurate in the controlled framework (i.e., not just for the uncontrolled system)
are a high priority. Much of the pioneering work in the development of reduced-basis representations of nonlinear
infinite-dimensional fluid systems is reviewed in the book by Holmes et al. [21]; a review in the context of application
to turbulence control is given by Lumley and Blossey [32]. Reduced-basis approaches for related problems are also
discussed by Burns and King [11], Cortelezzi and Speyer [12], and Cortelezzi et al. [13]. The latter reference obtains
a linear model reduction by truncating those linear eigenmodes with low observability or controllability from the
model and report, in their case, a drag reduction to 50% below the laminar level by application of a zero-net mass
flux linear controller to a 2D unsteady channel flow. An alternative model reduction strategy was proposed in [6],
where it was observed that in the highly non-orthogonal (i.e., nearly defective) situation often encountered in fluid
mechanics, model reduction schemes mindful of the transfer function of interest, suclp ag Markov covariance
equivalent realization [36] or optimal Hankel norm approximation [38], are well suited.

1.4. Governing equations

We begin with the Navier-Stokes equation for a fléwin an open domais2 ¢ R3 such that, in2 x (0, c0),
we have

E;—lt]—vAU+(U-V)U+VP=F, divU =0, U=0 ond2, U=Uy att=0. (1.2)
In the bulk of this paper, we focus our attention on the case in which the forcing is applied by way of an interior
volume force on the right-hand side of the momentum equation. A stationary or non-stationary délutionto
this equation with a corresponding forcidtyx, #) will be referred to as the “target” flow for the control problem.
(If no target flow is known or givenl/ and F are taken as zero.)
We are interested in the robust regulation of the deviation of the flow from the desired(fdrgéx In Section
2, we consider the control of the linearized equation which models small perturbétiofis to the target flow
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(U, F) with Dirichlet boundary conditions and known initial conditions such thaf?ix (0, co), we have

9 .
a—b;—vAu+(u-V)U+(U~V)u+Vp:f, dvu=0 u=0 ondQ, u=uo atr=0. (1.3)

In Section 3, we consider the control of the full nonlinear equation which models large perturlgatigngo the
target flow(U, F) such that, in2 x (0, co), we have
ou
E—vAu+(u-V)U+(U~V)u+(u-V)u+Vp=f,
dvu=0, u=0o0ndf2, u=ugatt=0. (1.4)
In Section 4, we will generalize this setting to examine the optimization of boundary controls and the optimization
of initial conditions.

1.5. Mathematical setting

Let £2 be a bounded open setl&f with boundaryd £2, and letn be the unit outward normal vector &2. We
denote byH* (£2), for s € R, the Sobolev spaces constructedIcis2), and byH;($2), fors > 1/2, the closure
of C3°(£2) in H'(£2). Following [35], we setX = {u € (C§°(52))3; divu = 0}, and denote by{ (resp.V) the
closure ofX in (L2(£2))2 (resp.(H(£2))%); we have

H={ueL>R)%divu=0in 2,u-n=0 on 3},
V ={ue (H}2)3 divu =0 in 2}.

The scalar product oH is denoted by(u, v) = fgu -vdx, that onV is denoted by((u, v)) = f_QVu - Vuvdx, and
the associated norms are denoted by; 2, and|| - ||, respectively. We denote by the Stokes operator, defined
as an isomorphism frorif onto the duaV’ of V such that, fou € V, Au is defined by

(Au, v)V’,V = ((I/t, U)), Vv € Vv,

where(-, -)y+ v is the duality bracket betwean’ andV. The operator is extended td? as a linear unbounded
operator with domaii (A) = (H?(£2))2NV whend 2 is aC? surface; the case of boundary forcing in a donfain
with corners is treated in Section 4.1. We also recall the Leray—Hopf projBc¢tohich is the orthogonal projector
of the non-divergence-free spa@e?(£2))2 onto the divergence-free spatle The Stokes operator is defined with
this projector such that

Au = —P (Au), Vu e D(A). (1.5)

We shall denote by & 11 < A2 < --- the increasing sequence of the eigenvalues. @iefine the bilinear mapping
B by

Bu,v) =P (u-Vyv), Vu,velV. (1.6)
Note thatB is a bilinear mapping fronV into V'. Define a continuous trilinear forrh on V such that, with

u,v,w € (HX(£2))3, we have

ax,-

avj
b(u,v,w) = (B, v),w)yy= | w-Vv-wdx = | u;—w;dx,
2 Q

where Einstein’s summation is assumed.
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1.6. Abstract form of governing equations

The operatorsA and B may be used to write the Navier—Stokes equation in the “abstract form” useful for
mathematical analysis. By application of the Leray projector to (1.3), noting (1.5), (1.6), ar@:ithat u and
P(Vp) = 0, the linearized Navier—Stokes equation may be written in the form

du
dr
where the regularity required of) uo, andU are

+vAu+ B(u,U)+ B(U,u) =P/, ueVv, u=ug atr=0, .7

feL?0,T; L%2)%, VT >0; ug € V; U e L®0,T; V)NL%O0, T; D(A)). (1.8)

Similarly, application of the Leray projector to the nonlinear form (1.4) gives

d
d—L:—i—vAu—l—B(u,U)+B(U,u)+B(u,u) =Pf, ueV, u=ugatt=0. (1.9
1.7. Control framework

In the control framework, the interior forcing is decomposed into a disturbangee L2(0, T; L2(2)%) and
a controlg € L2(0, T; L2(2)%), with T > 0, in the spirit of the non-cooperative game discussed in Section 1.1.
Thus, we writef as

f = B1y + B¢, (1.10)

whereB; and B» are taken here as given bounded operatara (L2(£2))3. Only the divergence-free part of the
forcing f will affect the evolution of the velocity field, as seen on the right-hand side of the governing equations
(1.7) and (1.9). Thus, in the remainder of this paper, we consider only the divergence-free part of the forcing by
writing

Pf =PB1y + B2g) = B1y + B9, (1.11)

whereB; = PB1 andB> = P B, are mappings fromiL2(£2))3 to H.

The differencef — P f may be written as the gradient of a scalar and thus will only modify the pregsure
in (1.3) and (1.4). As the Navier—Stokes equation in the abstract form is implicitly confined to a divergence-free
submanifold of( L2(£2))3, the pressurg may be neglected in the mathematical analysis.

1.8. Important identities and inequalities

We now recall some important properties of the nonlinear opeiatarhich can be found, for instance, in
[27,30,36]. First, we have the orthogonality identity

b(u,v,v) =0, Vu,veV, (1.12)

as a consequence of div= 0, as shown by integration by parts. Moreover, the continuity of the nonlinear mapping
in various functional spaces is expressed by the following classical inequalities: there exists a numerical coefficient
Co = Co(£2) such that

2 Note thatB; and B> quantify the profile of the forcing inside the domaihwhich results from modification of the disturbance and control
variablesy and¢. Generally speakingy and¢ might be defined on a subdomain@t
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b, v, w)| < CollulllvIY|Av[ P w] 2, Vu e V,ve D(A), weH,
b, v, w)| < Colul Y5 Aul vlllwl 2. Vu e D(A),veV, weH,
b, v, w)| < Colul Nl ¥4 vl lwPwl®4, VueV.veV, weV, (1.13)

whereCg as well as the; hereafter denote positive numerical coefficients whose values may be different in each
inequality.
Note that the mapping — B(u) = B(u, u) is differentiable fromV into V’. Its differential is defined by

B'(w)v=Bu,v)+ B, u) =P (u-V)v+ (- -Viu) VYvelV. (1.14)

Let B’(u)* denote the adjoint oB’(u) for the duality betweef¥ andV’. (Note that, sincé is a Hilbert space and
therefore reflexive, the dual 6f’ can be identified wittv.) The adjoint operatoB’ (u)* is thus defined by

(v, B')w)y v = (B' @) v, )y, . (1.15)
It follows from integration by parts [1] that
N ou; v T
(B w)*v, w)v,’v = ; gvi - Eui w;dx = Q((Vu) -v—(Vv) - u) - wdx, (1.16)
J i

where, again, Einstein’s summation is assumed.

The use of adjoint operators to define an appropri@té)adjoint field is central to the development of an efficient
numerical algorithm to solve the robust control problem. An iterative approach to the solution of atwo-point boundary
value problem is presented in Section 5 such that, at each itekaf@mmthe entire time interval [(@']), a flow field
and a corresponding adjoint field are computed to determine the gratight®y andD.7 /D¢ in the vicinity of
(vk, ¢%). The disturbance* and the controp* (again, on the entire time interval,[0]) are then updated, based
on this gradient information, and new flow and adjoint fields are computed until the iterattaroimverges and a
saddle point for the linear or the full nonlinear problem is reached.

The estimates developed in this work in order to prove the existence of a solution to the robust control problem
involve integration by parts and the following five fundamental inequalities, which are repeated here for review: the
Cauchy-Schwarz inequalityu, v)| < |u|,2|v]; 2, HOlder’'s inequality

1/p 1 1
[ fi fuds <Al i, |f|m=(/|f|”dx> et

the Poincaré inequalitigs|; > < ){1/2||u|| and|u| < AIl/Z|Au|L2, Young's inequality in the form

e—4/p

1 1
abfiap—i— b, Va,b,e>0, Vpst l<p<oo, —+-=1,
P P

q

and Gronwall’s lemma

' ' t
2—? <gy+h Vt>=0= y@) <y exp(/o g(1) dr) +/O h(s) exp(/ g(0) dr> ds, Vvt =>0.
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2. Linear problem

As discussed in Section 1, the objective in the robust control problem is to find the best ¢anttbé presence
of the disturbance/ which maximally spoils the control objective. The cost functional considered in the present
work, in the mathematical setting described in Section 1.4, is given by

B TC , | 1C e T o du d
JW. ) =5 ; (Cttlo ) df + 51C2u (Dl 20) = 0 Fon! L2(392) t

1 T
+5 /O [12|¢|i2(9) —y2|w|§2(m] dr, (2.1)

where the scalar control parametgrand! are giveny is a known vector field 0a£2, n is the unit outward normal
vector tod$2, andC3r - n = 0. The operator€; andC, are unbounded operators Ob?(£2))2 satisfying

|c,-u|i2(g) < a|v|§2(g) +BvlI? for i=1,2 VveV, (2.2)

with o > 0, 8 > 0, anda 4+ 8 > 0, andCs is a bounded operator 61.2(352))° so that by the trace theorem [31],
we have

a0
<C3v s , I’)
on LZ(BQ)

wherex and«’ depend upon ands2. Note that(d/dn) : u — (du/dn)|sg is a mapping fron€>(£2) to C*(8£2)
(wheres2 is the closure of2), which extends by continuity to a mapping fraitt ($2) to H*~%/2(32) fors > 3/2
[31].

In this chapter, the flow is assumed to be related to the disturbapicand the controp through the linearized
Navier—Stokes equation

1/2

/ 1/2
< kvllvllgozgg) < € vIvIY3Av] 7 g,

Yo € D(A), (2.3)

du
dr

which models small deviations of the flow perturbatiofifom the desired target flo& . The regularity required is
given by

+vAu+ B, U)+ B(U,u) =By +B2¢p, ueV, u=ug att=0, (2.4)

(¥, ¢) € L?(0, T; L2(2)%) x L0, T; L2(22)?);  B1, Bz € L(L% H); ug € V;
UeL®0,T; V)NL%O0,T; D(A)), (2.5)

where the Stokes operatdr, the bilinear mappind, and other notations are described in Section 1.4. The robust
control problem to be solved is the following.

Definition 2.1. The disturbancey € L2(0, T; L%(£2)%) and controlp € L2(0, T; L?(£2)?), and the solution
i = u(y, ¢)to (2.4) associated withy, ¢) are said to solve the robust control problem when a saddle ppint)
of the cost functionaly defined in (2.1) is reached such that

TJW, ) <TW, ) <TW,¢) Y, ¢) e L0, T; L2(2)%) x L?(0, T; L?(2)%). (2.6)
Note that, in this case,

JW.¢)=  Max Min  J(,¢)=  Min Max T, o).
YeL2(0,T;L2)¢peL?(0,T;L2) ¢elL?(0,T;L2)yeL2(0,T;L?)
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In this chapter, we will establish both existence and uniqueness of the solution to the robust control problem
stated in Definition 2.1, and identify this solution as a function of the unique solution of a two-point boundary value
problem for a linear flow/adjoint system on, [D].

2.1. Existence of a solution to the robust control problem

The proof of the existence of a solutiofr, ¢) to the robust control problem for the linear case is based on the
following existence result.

Proposition 2.2. Let.7 be a functional defined aKi x Y , where X and Y are non-empty, closed, unbounded, convex
sets. IfJ satisfies

1. Vy e X, ¢ = T, ¢) is convex lower semicontinuous,

2. V¢ €Y, v — T, @) is concave upper semicontinuous,

3. Ao € X such thatim g, — 100 (Y0, $) = +00,

4. J¢o € Y such thaﬂimnwnx_)_;_oo,j(lﬁ, ¢o) = —00,
then the functionaly has at least one saddle poiat, ¢) and

T, )= 5{2?55}?7(1/1 @) = Mg?((tl)@;](w, ®).
Proof. The proofis given in [15]. |

We intend to apply Proposition 2.2 to the present problem (2.1) and (2.4)XvithY = L2(0, T; L2(2)%).
In order to establish conditions 1-4 of Proposition 2.2 for the present problem, we need to analyze the evolution
equation (2.4).

It can be proven [27,30,36] that givern € V, U € L0, T; V) N L2(0, T; D(A)), and(y, ¢) € L%(0, T;
L2(2)?) x L2(0, T; L%(£2)%), there exists a unique solutianof (2.4) such that

uelL®0,T;V)NL%0,T; D(A)) VT > 0.

The proof is based on the following a priori estimates. Multiplying (2.4) witmoting the definitionP f =
Biy + Bog in (1.11) and the orthogonality of (1.12), and applying the Cauchy—Schwarz, Poincaré, and Young's
inequalities to th&P f, u) term and (1.13) to theé(u, U, u) term, we can write

%%Iuliz +vlull® = (Pfou) — bu, U, u) < Tlhwmiz + guun2 + CollU | lul 72 1l ¥2,
and thus, again noting th&yp absorbs numerical constants,
L1l + vllal < =P £12, + CollU Nul X2l ¥
d L VA1 L L
An additional application of Young’s inequality leads to
%wiz + gnuu2 < v—ilmﬂiz - %uvn“w@z. 2.7)

Let Mo(t) = Cov=3[3|U ||* dz and thusM(t) = Cov~3||U (1)||*. Applying Gronwall's lemma to (2.7), we have

eMo(t) i
u()[5, < €MD ugl2, + o /O|Pf|izds. (2.8)
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Also, by integrating (2.7) from 0 tg multiplying by 2/(vt), and then substituting with the integral &f(s) times
(2.8) from 0 tor, we have

12 2 ' 2 2 (" 2 2, 2
o TP = [P ds+ | M) ds + ol

2eMo(1) oMot [t
ol + /0 P 12, ds. (2.9)

=

vt

Similarly, multiplying (2.4) withAu and applying the Cauchy—Schwarz and Young'’s inequalities tgRlye Au)
term, we can write

1d
éa||u||2 +v|Aul?, = (Pf, Au) — b(u, U, Au) — b(U, u, Au)

1 v
< o IPfIze + 5lAulz + b, U, Aw)| + |b(U, u, Aw)l,

and thus, applying (1.13),

d 1 1/2 1/4 3/4

gl vlAui?s < SIP £ 12+ ColUIMZIAU LS lull| Aulyz + ColU 1 | AU ull| Aul .
Additional application of Young’s inequality leads to

d v 1 Co 1/2 3/2

gl + 51AulZs < SIPFIZ, + —UUNAU 2 + U1 1AV L) ul.

Let M1(¢) = Cov_lfé(HUH |AU |2 + |U|i/22|AU|i/22) dr. Applying Gronwall's lemma as done in (2.8), we have
M) pi
lu(@))1? < e"1Ojug|? + - /O IPfIZ,ds, (2.10)

and with a derivation analogous to that leading to (2.9), we have

1/t|A 2,d5 < 2200 g2 4 220
- u A) u
() R = Ty e V2

/l P12, ds. (2.11)
0

The a priori estimates (2.8)—(2.11) allow us to characterize the magping) — u (¥, ¢). Specifically, we have
the following lemma.

Lemma 2.3. TakeU € L>(0, T; V)N L2(0, T; D(A)) and let u be the solution ¢2.4). The mappings$y, ¢) —
u(y, ¢) from L2(0, T; L2(2)%) x L2(0, T; L?(£2)?) into L2(0, T; V) and (¥, ¢) +— u(yr, ¢)|r from L2(0, T’;
L2(£2)?) x L2(0, T; L%(£2)%) into V are affine and continuous. Fagp € V and (¥, ¢) € L2(0, T; L2(2)4) x
L2(0, T; L%(£2)?), the mappingsy, ¢) — u(y, ¢) and (¥, ¢) — u(¥, ¢)|r have Giteau derivatives:/(v/, ¢')
andu’ (v, ¢')| ineverydirectiony’, ¢') € L2(0, T; L?(£2)?)x L?(0, T; L%(£2)?). Finally, the Gateau derivative
u'(y', ¢’) solves the linear evolution equation

du’

o +vAu + B (U =By’ + B¢/, u' eV, u=0atr=0, (2.12)

and it follows that/ (v, ¢) € L0, T; V) N L2(0, T; D(A)).
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Proof. The fact that(y, ¢) — u(y, ¢) and (v, ¢) — u(y, ¢)|7 are affine and continuous follows from the
linearity of (2.4) and the a priori estimates (2.8)—(2.11). The existence of the Gateau derivatives as well as their
characterization by (2.12) is proved in [1], to which we refer the reader for more details. O

Remark 2.4. The solutionu’(v/’, ¢’) of (2.12) can be expressed as a function vf and ¢’ in terms of the
Green—Oseen’s kernefy (x, 7, x’,t') and Gy (x, t, x', 1) (se€[27]); formally, we write

T
Wty ¢) = / f (Gy (o .2 W 1)+ Gyl 1, 5. ) (1)) A A 2Gy '+ Gy - .
0 J@

Notationally, we will denot€& ., by Du /Dy andG4 by Du /D¢, and thusd' (', ¢') = (Du/Dy) -’ + (Du/De) -
¢’. Physicallyu’ (v, ") may be thought of as the linear approximation to the perturbatientten a perturbation
Y’ is added to the disturbanaieand a perturbatior’ is added to the contra}. A finite dimensional discretization of
the Green—-Oseen’s kern@l, = Du/Dy may be taken as the Jacobian of the discretizationwith respect to the
discretization ofr, as suggested by this notation; an analogous interpretation may be attributgg & Du/D¢.
By causality Gy (x, 1, x",t") = Ggy(x,t,x',t') =0fort — 1t < 0.

With Lemma 2.3 established, we are ready to prove that conditions 1-4 of Proposition 2.2 are satisfied for the
present robust control problem.

Lemma 2.5. Letug € V. There existg; such that, fory > y1, we have

1. Yy € L2(0, T; L2(2)%), ¢ — T (¥, ¢) is convex lower semicontinuqus
2. V¢ € L2(0, T; L2(2)%), ¥ — J (¥, ¢) is concave upper semicontinugus
8- Mgl 2.0 7,120yt +00T (0, ) = +00,

A NiMy 20671200, +ood (¥, 0) = —oc.

Proof. Condition1. By Lemma 2.3, the map — J (v, ¢) is lower semicontinuous. A¢ — u(y, ¢) is affine,
the convexity ofp — J (v, ¢) follows promptly.

Condition2. By Lemma 2.3, the map +— J (v, ¢) is upper semicontinuous. In order to prove concavity, it is
sufficient to show that

h(p) =T W+ p¥', ¢)

is concave W.r.tp, i.e.,h”(p) < 0. Takingu'(¥’, 0) = (Du/Dv) - ', we compute
T
W)= [ (€ Cur) g U+ (Cn(D), o (1) 2

/T (c ou’ r) dt 2/T(lwr VW) 2 Ot
- 3V—, —y oy, :
0 n - )20 0 L@

Itis clear thatu’ is independent op. Therefore,

T T
H'(p) = /0 (Cat oy, Gt + [Cat ()25, — 72 /O 19/ g g

Note thatu’ = (Du/Dv) - ¢’ satisfies (2.12) by Lemma 2.3, and thus the a priori estimates (2.8)—(2.11) also follow
upon substitution of’ (v, 0) for u (v, ¢), mutatis mutandis. Upon making such a substitution to (2.2) and applying
(2.9) and the Poincaré and Cauchy—Schwarz inequalities, noting’tea® at: = 0, we find that



T.R. Bewley et al./Physica D 138 (2000) 360-392 373

T T T eMo(T)
"2 12 2 o 2
\/(; |C1M |L2(.Q) dt 5 a/(_) |u |L2(_Q) dt + ﬂ/o ||I/l ” dt S <)\,_1 + :3) Vz)»]_ /0 |Bl¢ |L2(.Q)

o 2eMo(T)
= ()\_1 + ﬂ) —| l|£(L2 H)/ h///'%Z(_Q) dr

and similarly, by applying (2.2), (2.8) and (2.10)uqv’, 0),

@ Mo(T) B eM1(T) 2 /
|C2M (T)lLZ(_Q) < )\’1 0 + ! |Bl|£(L2,H) I‘(// |L2(.Q)

Now under the assumption that

o 2eMo(T) o B
y2>yf=2 [(— + ﬁ) t+ —— oM ST IBZ o ) (2.13)

v2hq VA1

we haveh”(p) < 0 for p € R. Thus the functiom: is concave, and the concavity ¢f — 7 (v, ¢) follows
immediately.
Condition3. Applying (2.3)to (2.1) and taking = 0, we can write

1/2 1/2

By the a priori estimates (2.8)—(2.11), it is straightforward to show that there exist corGgant€o (T, 2, |lugll)
andCy = C1(T, £2, |lug|)) such that the latter term is bounded by an expression which is affing .,

1/2
K v/ |2 Aul}y dr < Col¢l 20,7 12) + C1.

and thus
2 5
JO,¢) > E|¢|L2(O,T;L2) = Coldl2(0,7:12) — C1,

and condition 3 follows promptly.
Condition4. Upon substituting (2.9) into (2.2), as done for condition 2, and considetifg0), it follows that

T 2eMo(T)
/0 C1ul75 ) df < ( +/3) o Bilzazm / V1720, dr + C1,
whereC1 = C1(T, £2, |luol)). Similarly, by (2.2), (2.8), and (2.10), we have

‘B T
1Cou(T) 720, < ( oMol 1+ =M ) 1B1f7, 12 ) fo V1720, df + C1.

Finally, we may bound the linear term jii(y,, 0) by an expression which is affine #a with a procedure analogous
to that used for condition 3 above. Thusy# > y2, we have

0= [ lcw,,, di+ Sicum? " (ea?™ a2 [
..7(1#7 )_E o | lu|L2(Q) t+§| 2”( )lLZ(Q)_ o 3va_nr LZ(aQ) t_7 o |¢|L2(.Q)

2
Y 2
= _Zh[/lLZ(O,T;LZ) + CO|I//|L2(O,T;L2) + Clv

which implies condition 4. |
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Putting the statements of this section together, we have established existence of a gglufipto the robust
control problem of Definition 2.1 for the linear case wjth> y;.

Theorem 2.6(Existence of a solution to the robust control problem, linear cagsjume thay > y1, where

V2

2eMo(T)
v =2 [(% + ﬁ) + %le’”om + %e’”ﬂ“} B1IZ 2. 1)
Then there exists a saddle point, ¢) andu(yr, ¢) such that
TJW, ) <TW, ) <TW,¢), YW, ) e L3O, T; L3(2)?) x L0, T; L*(£2)9).

Proof. The proof follows directly from Lemmas 2.3 and 2.5 and Proposition 2.2. O

It follows from Theorem 2.6 that; is an upper bound on the critical valygdiscussed in Section 1.1.
2.2. ldentification of the unique solution to the robust control problem

The existence of a saddle poiit, ¢) of the functional7, established in the previous section, implies that

D - -
W(w ¢)=0 and 1)—¢(1/f,¢) =0. (2.14)
Differentiation of (2.1) leads to expressions for these gradients in weak form:
Du(T) ,
(w ¢)-v' = / <C1u Cl_ 1//) dr + (Czu(T),Cz '1ﬂ>
ll’ Dy L2(92) Dy L2(2)
r d Du r
- Cav—— Y, I dr — 2/ RV dr, 2.15
[ (g v )Lz(m) v [0 e (2.15)
Du(T) ,
(W ¢)-¢' = f (Clu C1— ¢> dr + (Czu(T),Cz -¢>
D¢’ Do /2 D¢ 1292)
T 9 Du T
— Cav—— dr — 12/ ¢ dr. 2.16
/(; ( s on D¢ d) )LZ(aQ) 0 (d) ? )LZ(Q) ( )
In order to determine the solution to the robust control problem, we define an adjoint state by the equation
_?j_ +vA*i + B'(U)*u = C;{Ciu,
i(t) e V, = (ve (HY2))% divu =0 in 2,v=Cjr on 92}, 1 <T,
i=CiCoucH atr=T, (2.17)
whereA* is the unbounded operator @hnN H! uniquely defined by
, ~ , ou’ . , B
(', A01) 2oy = (A’ 1) ) + <8n u)mm) for u' € D(A), i € HNH'.

We have the following lemma.
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Lemma 2.7. Letu(y, ¢) be the solution of (2.4) with the regularity @n ¢, ug, and U given in(2.5),letu’ (', ¢')
be the solution of2.12)with (v', ¢') € L2(0, T; L2(§2)?) x L2(0, T; L%(§2)?), and letii be the solution of2.17).
Then

T T P
0 0 on LZ(E).Q)

T
=/0 [(Biii, V') 12y + (B3it, ¢') 2] dt (2.18)

whereB] and B} are the adjoints inL2(£2) of the operators3; and B>.

Proof. The proof follows from integration by parts and the regularity.p&’ andi:

/

T T
/ (CTC]_M, MI)LZ(_Q) dr + (C;CZM(T), M/(T))LZ(_Q) - / <C3U—, r) dr
0 0 on L2(382)

T dii r ou’
— / ([—— + v A T+ B/(U)*ﬁ} , 1/) dt + @(T), u'(T)) 12(c) — / (v—, u) dr
0 dr LZ(.Q) 0 on LZ(S.Q)
T du’ T
= / (ﬁ [— +vAu' + B’(U)U’D dr = / (it, [BLy' + B2g') 2(q ot
0 dl LZ(Q) 0
T
= /(; [(BIﬁv 1///)L2(Q) + (B;ft, ¢/)L2(Q)] dr. 0

Application of (2.18) to (2.15), witky’ = 0 and takingy’ € L?(0, T'; L?(2)?) as arbitrary, leads to an expression
for the gradienD.7 /D:

DT .
— =Bja-— . 2.1
W(zw) Biu—y“y (2.19)
Similarly, application of (2.18) to (2.16), witli’ = 0 and takingp’ € L2(0, T; L2(2)?) as arbitrary, leads to an
expression for the gradie®.7 /D¢:

DJ -
D V) =Bl +1%. (2.20)

Now we prove the following important theorem.

Theorem 2.8. Let (v, ¢) be a solution to the robust control problem stated in Definition 2.1. Then

- 1 . - 1 ..

wherez is found from the solutio(w, &) of the following coupled system:
du 1 1 . du - , -
a+vAu+B(u,U)+B(U, u) = (FBlBT— 1—28283) i, —E—i-vA*u—i—B (U)*u = C{C1u,
ueV, a@)eV,={veHYNR)3dvv=0in2,v=_Clronde),
t<T, u =uo and u(T)=C5Cu(T), (2.22)

which admits a unique solution for sufficiently largeln other words, u and: are solutions of (2.17) and (2.4)

with (v, ¢) replaced by(v/, ¢).
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Proof. The existence of a solution to the robust control problem is established by Theorem 2.6 fer.

A necessary condition fory, ¢) to be a saddle point of the functiondl is given by (2.14). Thus, (2.19) and
(2.20) imply that (2.21) follows from the definition of the coupled system developed in this section and summarized
in (2.22).

The uniqueness of the solution of the coupled system (2.22) is classical. Fob(1B1l (12, i), B2l 22, 1) D,
itis clear thatD = —(y 2 B1B} — 12 B2By) is positive definite. The proof of uniqueness then follows by taking
the differenceus, ii3) of two solutions(u1, i11) and(u2, i), multiplying theus equation byiz and theiz equation
by us, integrating between 0 arid, and then subtracting the two resulting equations. This results in

T
(u3(T), u3(T)) — (u3(0), #3(0)) +/0 [(Dia(t), it3(t)) + (C{Crus(t), us(t))]dr = 0,

with u3(0) = 0 anduz(T) = C5C2u3(T), from which we conclude thatz = i3 = 0, and thus the solution is
unique. |

To summarize Section 2, for > max(y1, y2), a solution to the robust control problem stated in Definition 2.1
exists, is unique, and is given by (2.21).

3. Nonlinear problem

In this chapter, we apply the analysis of the previous chapter to the 2D and 3D nonlinear problems written in
the form (1.4) or, equivalently, in the abstract form (1.9). We consider the same cost functional as in the previous
chapter,

R Oy " (a2 d
J(Waﬁb)—z/(; | 1u|L2(.Q) t+§| ZM( )ILZ(Q)_\/‘0 31)%1" Lz(ag) t

1 T
+§L V@@%m—y%w;mjdﬁ (3.1)

Recall that the operato@s, C2, andCs satisfy (2.2), (2.3), and3r -n = 0, and note that is as discussed in Section
1. Assume now that satisfies the nonlinear Navier—Stokes equation (1.9) with (1.11) such that

d
d—L:+vAu+B(u,U)—|—B(U,u)+B(u,u):Blw+l’>’2¢, ueV, u=ug atr=0, 3.2

which models large deviations of the flow perturbatioinom the desired target flo&/. The regularity required on
v, ¢, B1, Ba, ug, andU are the same as in (2.5) except with, ¢) now confined to non-empty, closed, bounded,
convex subsets df2(0, T; L2(§2)%).

The robust control problem to be solved in the nonlinear case is as follows.

Definition 3.1. Let X and) be non-empty, closed, bounded, convex subseté(, 7'; L2(s2)4). The disturbance
¥ € X and controlp € ), and the solutiol = u (v, ¢) to (3.2) associated withy, ¢) are said to solve the robust
control problem when a saddle poift, ¢) of the cost functional7 defined in (3.1) is reached such that

T, ) <ITW, ) <TW,¢) YW, ¢) e X x ). (3.3)

The robust control problem on the bounded dom@ing) € X x Y given in Definition 3.1 is closely related to
the robust control problem on the unbounded dontging) € L2(0, T; L?(22)4) x L2(0, T; L?(£2)%) given in
Definition 2.1.
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In this section, we will establish existence of a solution to the robust control problem for the case in which the
flow perturbatioru is related to the disturbange and the controd through the nonlinear Navier—Stokes equation
(3.2). The analysis is similar to that for the linear problem in the previous chapter. Note that Section 3.1 will consider
the 3D case, and Section 3.2 will focus specifically on the 2D case, for which stronger results may be established;
this is due to the well-known fact that the theory of the Navier—Stokes equation is complete in space dimension 2,
which is not the case in space dimension 3.

3.1. Existence of a solution to the robust control problem, 3D case

The proof of existence in this section is similar to that for the linear problem, but is restricted to cases of either
“small data” or “smallT”. The former assumption is valid when attempting to delay transition to turbulence (i.e.,
keeping alaminar flow laminar) in an externally disturbed flow thatis linearly stable but nonlinearly unstable, and is of
important engineering significance [7,25]. The latter assumption has been termed the “suboptimal” approximation in
earlier work, and has been shown to deliver simple control strategies with reduced long-term performance [6,20,29].
The restrictions used to prove existence of a solution to the robust control problem in the present case are due simply
tothe currentlack of regularity results for the 3D Navier—Stokes equation, not to a shortcoming of the present analysis
of the robust control framework.

To proceed under the constraint of a small data condition, we restrict the boundéed ¥eif L2(0, T'; L2(£2)?) x
L2(0, T; L?(£2)?) by the condition that, for angy, ¢) in X x ), we have

BuY 220 7.0y + 1Bob 220 7.y < C127 0%,
We will mention by way of two remarks that this restriction &nx )’ may be lifted in the existence proofif is
sufficiently small. The proof of the existence of a solutign ¢) on X x ) for the nonlinear, 3D case is based on
the following existence result.

Proposition 3.2. Let 7 be a functional defined ok x ), whereX and)’ are non-empty, closed, bounded, convex
sets. IfJ satisfies

1L.Voel, v JW,@)isconcaveupper semicontinuous,

2.V e X, ¢ T, @)isconvex lower semicontinuous,
then the functional7 has at least one saddle poiff, ¢) on X x ), which is defined by

. $) = Min M = Max Mi )
JW, P) ¢€|§¢3)>(<J<w,¢) w:\))((qbelgj(w,qﬁ)

Proof. The proofis given in [15]. |

We intend to apply Proposition 3.2 to the present problem (3.1) and (3.2) on the bounded tdpnggire X x V.
In order to establish conditions 1 and 2 of Proposition 3.2 for the present problem, we need to analyze the evolution
equation (3.2).

It can be proven (following the framework of Ladyzhenskaya [27], Lions [30] and Temam [35]) that there exists
anR > 0 such that, giveng € V, U € L*®(0, T; V) N L2(0, T; D(A)), and the small data constraints

luoll < R and (y,¢) e X x ), (3.4)
there exists a unique solutianof (3.2) such that

ueL?0,T; D(A)NL®O,T; V) VT > 0.
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The proofis based on the following a priori estimates. Multiplying (3.2) wieimd noting by (1.12) that(u, u, u) =
0, the estimates (2.8) and (2.9) follow as in the linear case; specifically,

eMo()  pt
2 Mo(t)|,, 12 2
)22 = & 0luol?, + < /OIPfIdes (35)
and
1 [t ) 2eMo(®) ) 2eMo(t)  pt 5
;/0 lull“ds < or |MO|L2+V2—M¢/0 P f172ds, (3.6)

whereMo(r) = Cov =3[y |U|* dx.
Also, multiplying (3.2) withAu and following a line of reasoning similar to the linear case, we can write

1/2
L2

1/4

3/4
PV

3/2
T ull|Aul gz + Callul| /2| Aul Y,

d 1
g IuI? +vlAulZ, < SIP 12, + ColUIM2IAUL S + U Vs

Y
Application of Young’s inequality to the first line and the Poincaré inequality to the second line leads to

1/2
L2

d v 1 Co 3/2
g I1uI?+ SlAulfe < SIPFI7, + —=(WUIAUIL2 + U %

AU ) ull? + Caa™ Y4 ull|Auf?,.  (3.7)

For the remainder of this derivation, we will fix the coefficiedis andC3 in (3.7) not allowing them to further
absorb numerical constants.

Now prescribe that the initial conditions), the target flowU, and the forcingP f = B1y + B2¢ be small,
specifically

vay? 1/2 32, VM
1 / /
luoll < 16C5" WUONMAU D2 + U], AUDI7) < 8_C2 Vv,
t
/ (P £ 12, ds < 2vlluol? Vr. 3.8)
0
Assumer* is the maximal time such that
lu(®)|l < 2lluoll forO<t <1t (3.9)

by continuity, this implies that equality is achieved at * such that
(@)1 = Alluoll?. (3.10)

We shall show that this assumption leads to a contradiction, which implies*tisainstead unbounded, and thus
that (3.9) is valid for alk when the conditions of (3.8) are met. Applying conditions (3.9) and (3.8) to (3.7) and
using the Poincaré inequality, it follows that

d v 1

a||u||2 + zl|Au|§2 < ;|Pf|i2 for0<r <t (3.11)

Hence, by the Poincaré inequality and Gronwall's lemma,
1 t
2 < & ol + [ 1PAZds foro< <
v Jo

and thus

lu(®)|* < 3lluoll® for0<r<t*.
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We have arrived at a contradiction with (3.10), and therefore our assumptiaii thébbunded must be false. Thus,
given the small data conditions of (3.8), it follows thatis unbounded and thus

_ 1

and from integration of (3.11),
1 2 4 2, A [ 2
;/0 |Au|7,ds < v_t”uO” +v—2t/0 [Pfli2ds Vi (3.13)

Remark 3.3. The estimate$3.12) and (3.13glso follow without prescribing constraints any, U, or P f but
instead prescribing small time, specifically

17 C -1
ety = (=] IPrRds+ M1+ g+ uolD?) (3.14)
VJo L v3

As opposedto the linearized problem studied in Section 2, the map@ngs — u(y, ¢) and(yr, @) — u(y, d)|r
here are not affine. We have only the following.

Lemma 3.4. Let u be the solution of3.2)withug € V , T > 0, U € L®(0,T; V)N L%0, T; D(A)), and
(¥, ¢) in the interior of X x ) such that the small data conditions (@ 8) are satisfied. The mapping#, ¢) —
u(y, ¢) and(yr, ¢) = u(y, ¢)|7 have Giteau derivatives’ (v, ¢') andu’ (v, ¢)|7 in every directiony’, ¢') €
L2(0, T; L2($2)?) x L2(0, T; L2(£2)?). Further, the Gateau derivative’ (', ¢’) solves the linear evolution
equation

/

d
d—”; Y VAW + B (U 4w =By’ +Bod', u' €V, u'=0ats=0, (3.15)

and it follows that/ (v, ¢') € L>(0, T; V) N L2(0, T; D(A)).

Proof. The existence of the Gateau derivatives as well as their characterization by (2.12) follows as in [1], to which
we refer the reader for more details. |

Remark 3.5. By Remark 3.3, Lemma 3.4 also holds when a condition of small time is saigfied < #7) in lieu
of the small data condition ¢8.8).

Lemma 3.6. Letug € V satisfying (3.8). There exis{s = yo(||uoll, v, T) such that, fory > yp , we have
1. Vo € Y, ¥ — T, ¢) is strictly concave upper semicontinugus
2.V e X, ¢ — T, ¢) is strictly convex lower semicontinuous

Proof. First, we note that by Lemma 3.4, and since the norm is lower semicontinuous, th¢ mag/ (1, ¢) is
upper semicontinuous, while the map— 7 (v, ¢) is lower semicontinuous.

Condition1. By Lemma 3.4, and since the norm is lower semicontinuous, thevmap J (v, ¢) is upper
semicontinuous. In order to prove concavity, it is sufficient to show that

h(p) =T W +p¥', ¢)

is concave w.r.tp nearp = 0, i.e.,h”(0) < 0. Takingu'(v', 0) = (Du /D) - ', we compute
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/

T T
h/(p)=/ (Cau, Cau') 2 At + (Cou(T), Cou'(T)) 12(2) —/ <Csv— r) dr
0 0 on LZ(dQ)

T
—y? fo W+ 00 V) g O,

Note by (3.15) that’ is a solution of

d/
d—ut+vAu’+B(U—|—u,u’)+B(u’,U~|—u)=Bllﬂ’, u eV, u=0atr=0.

Noting the similarity to the linear equation (2.4), and following the derivations leading to (2.8)—(2.11), we have the
following a priori estimates on’:

eM2(t)  pt t 2eM2(1)  pt
A fowﬁwizds, follu/llzdsf . f|61w/|§zds

3 pt ! , 2eM3(1)
/O|Blw’|izds, /0|Au Zads = = /|Blw 2, ds,

lu' ()12 <
with
t
Ma(t) = Cov™ / \U -+ ull* dr,

3/2

Mg(t)—co\flf (||U—|—u|||A(U+u)|L2+|U+u|1/2|A(U+u)| ) dr.

Similarly, u” = (D2u/Dy2) - ¢ - 4 is a solution of

d
d—L;+vAu’/+B(U+u,u”)+B(u”,U+u):.7-', W' eV, u=0atr=0,

where, taking:’ = (Du/Dvy) - ¥’ andi’ = (Du/Dy) - /',
F=—-B@,u)— B, i).
The a priori estimates far” follow as foru’ by replacingB1y with F.

Takingy’ = v/, and thusi’ = u’, we now write

T T
' (p) = /O Cat 125, f + fo (Cau, Cru") () At + Co ()13 ) + (Cou(T), Cou (T)) 12

T au// )
- Cav ) dr —y / lv'|2
A ( an’ L2(382) 0 Lz(m

We will show that for sufficiently larger, the last term dominates in this expression and #H(®) < 0 when
(¥, ¢) € X x Y. First notice by (1.13) thatF|,;2 < Collu’||*/?|Au’|Y/?, and thus that
Co e3Ms()+M2(0)]/2
2 2 201,112 2 _ 72 2
|‘7:|L2(0,1,L2(.Q)) S U3)\‘1/2 (lBllﬁ(LZ’H)) (W |L2(O,I;L2(Q))) - M4(f)(|1/f |L2(0,Z;L2(Q))) .
1

Then, given (2.2) and (2.3), and our a priori estimatesifor, andu”, we have

2eMa2(T)
12
|C1M |L2(O,T;L2(.Q)) = ( +ﬂ> | 1|E(L2 H)hy |L2(0 T; LZ(Q)) - D1|1// |L2(0 T; LZ(Q))’
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2 1/2 2 1/2
|(C]_M, Clu//)Lz(O,T;LZ(Q))| =< (|Clu|L2(0,T;L2(Q))) / (|Clu”|L2(O,T;L2(.Q))) /

([« a7ty (2220 1 o v /2 — Dol 2
= )\,_l + ﬂ ( ”uoll ) \)2)\,1 4( ) |I// |L2(O,T;L2(.Q)) - 2|1/f |L2(0,T;L2(Q))’

/ 2 o eMs(™) 2 2 12
|CZM (T)lLZ(Q) = )\'_1 + 13 TlBllﬁ(LZ’H)Hﬁ |L2(O,T;L2(.Q)) = DSW |L2(0,T;L2(.Q))’

|(Cou(T), Cou" (T)) 1202y | < (IC2u17 25 )2(ICU" 75 5)

o 2172 [ €0 e "2 /"2
= ()L_l + ﬂ) (3||u0|| ) TM4(T) |¢l |L2(0,T;L2(Q)) = D4|’W |L2(O,T;L2(Q))’

1/2 | //|1/2

/ 1/2y 1
<
< kvl u |L2(O,T;V) L2(0,T;D(A))

8u//
<Csv s I’)
In /) 1201:1209)

k' (2T)Y/2 eM2(T)+M3(T)]/4 12 )2 )2
S )\‘1/4 M4 (T)Hb |L2(0,T;L2(.Q)) = DSW |L2(O,T;L2(.Q))'
1

Thus, under the assumption that

y? > y§ = D1+ D2+ D3+ D4+ Ds, (3.16)
we have
h//(o) = (J/e,z - y2)|1’[//|%2(0,T;L2(Q)) < 0 VK”/ 75 0 (317)

The strict concavity ofy — J (v, ¢) follows immediately.
Condition2. By Lemma 3.4, and since the norm is lower semicontinuous, thedgmap J (¥, ¢) is upper
semicontinuous. In order to prove convexity, it is sufficient to show that

g(p) =T W, ¢+ pd")

is convex w.r.tp nearp = 0, i.e.,g”(0) > 0. Note that

T T
g"(p)= /O (C1t' 72, f + /0 (Cau, Cru") 2y At + Cou' ()13 ) + (Cou(T), Cou (T)) 2

T ou’ 5 T 5
— Cav , r) dr +1 / |¢'| dr.
/c; ( on L2(382) 0 L2@)

Also note that the a priori estimates oh= (Du/D¢) - ¢’ andu”’ = (D%u/D¢?) - ¢’ - ¢’ and the bounds on the
various terms og” (p) follow immediately as in the proof of condition 1 witBy¢’ replacingB1y," everywhere.
Thus, under the assumption that

%> ljz_ = D2+ D4g+ Ds, (3.18)
we have
g//(o) > (12 - l]2-)|¢/|22(0,T;L2(.Q)) > O V¢/ 7& 0 (319)

The strict convexity ofp — J (¥, ¢) follows immediately. a
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Putting the statements of this section together, we have established existence of a gglufipto the robust
control problem of Definition 3.1 for the 3D nonlinear case with sufficiently largend/ and sufficiently small
data or sufficiently small".

Theorem 3.7(Existence of a solution to the robust control problem, nonlinear 3D c#seume thay > y3 and

[ > 11, whereys is defined as in{3.16)and!; is defined as in{3.18),and that either the small T constraint is
satisfied 7' < 3, or thatug, U, and P f are sufficiently small such that the small data constraint§3ii8) are
satisfied. Then there exists a saddle pgiht¢) on X x ) and an associated = u (v, ¢) such that

TJW, ) <TW. ¢ <TW,d) YU, ¢) X x.
Proof. The proof follows promptly from Lemmas 3.4 and 3.6 and Proposition 3.2. O

3.2. Existence of a solution to the robust control problem, 2D case

The proof of the existence of a robust control solutign ¢) for the nonlinear problem in the 2D case is similar
to that for the 3D case in the previous section with no small data or gmaltriction. The improvement is due to
the existence of improved versions of the inequalities (1.13) in the 2D case; specifically, we have

b, v, w)| < ColulY2|ul|¥?|[v]|¥? Av| 7

lwl;2, YueV, ve D(A), weH,
b, v, w)| < ColulZ|AulZ Ivlllwl2,  Yu € D(A), veV, weH,
b, v, w)| < Colul | V2wl lwFwIY2, YueV, veV, weV.

We have, as in the 3D case (without any small data restriction),

u()?, < eMoWjyg2, + 2, ds,

ZeMo(l) 2eMo(t)
/nun ds < luol?; + —— /IPfI

V2t

whereMo(r) = Cov_3f()t||U||4d‘L’. Multiplying (3.2) with Au, we now have

1/2 1/2 1/2

+ U2 1AUL

3/2
—||u|| +v|Auff, < = |Pf|L2+CO(|U|l/2|AU| Mulll Aul 2 + Calu Y2 [} | Auly.
Applying Young's inequality,
d 1 Co C1
anuu2 +v|Aul?, < ;|7>f|iz + —(UIIAU]2 + U 2| AU | 2)[|ul|® + ﬁ|u|2||u||4.

Setg(t) = (Co/v)(IU||AU| 2 + U] 2|AU | 2) + (C1/v®)|u[?||u]|? and note that

2
2 ds) = Ms(1),

t t
/ g(r)dr < Mo(t) + sup [u(x)[2, f lul® ds < Me(0)

O<t<t

2
+ = (e’”"(”luoliz +



T.R. Bewley et al./Physica D 138 (2000) 360-392 383

whereMg(t) = Co/vf5(|U||AU|Lz + |U|;2|AU|,;2) ds. It follows by Gronwall’'s lemma that

5(t) t
lu()]|? < e |lug||? +

Using this estimate ofu(r)||%, which has been established with no small data or sihaibnstraint, sufficient
conditions ony and! for the existence of a solution to the robust control problem follow immediately as in the 3D
case.

Theorem 3.8 (Existence of a solution to the robust control problem, nonlinear 2D ca@ssume thatt’ and

Y are non-empty, closed, bounded, convex subset$©f 7; L2(£2)?) and thaty > y4 andl > [ , whereys =
ya(X,Y) andl, = I>(X,)) are defined with a procedure identical to that in the 3D case but with the modi-
fied estimates given above. Then there exists a saddle @birt) on X x Y and an associated = u(y, ¢)
such that

T, d) <TW,$) <TW.¢) Y, ¢) € X x .
Proof. Follows promptly as in the 3D case with the modified estimates given above. O
3.3. Identification of the gradients to determine the unique solution

Now we prove the main result of this chapter.

Theorem 3.9. For sufficiently largey and!, the solution to the robust control problem stated in Definition 3.1 exists
and is unique. Further, the gradients of the cost functiofiégls, ¢) in (3.1)for any (¥, ¢) € X x Y are given by

DI o DI o 2
Dw(w,qﬁ)—l’ﬁ‘lu y°¥ and D¢(w,¢)—82u+1¢, (3.20)
whereun is found from the solutiotu, iz) of the following coupled system:

du dﬁ * ~ / ke~ *
& —gp TvATE+ B'U Wi = CiCuu,

ueV, i) eV, =eHYR2)3dvo=0inQ2,v=CjrondR), ¢ <T,

4+ vAu+ B(u,U) + B(U,u) + B(u,u) = B1y + B,

u(@©) =uo and i(T) = CiCou(T). (3.21)

Proof. The existence of a robust control solution to the nonlinear problem was proved in Section 3.1 for the 3D
case, subject to a small data constraint or a sfhalbnstraint, and in Section 3.2 for the 2D case, with no such
constraint.

As in the linear case, the gradierf’s7 /Dy andD.J /D¢ may be determined by computation of the coupled
system (3.21), from whence (3.20) follows.

Uniqueness in the nonlinear case is proved by contradiction as follows: assumg thatand (v, ¢) are two
distinct saddle points i’ x Y. It follows from the statements of strict concavity (3.17) and strict convexity (3.19)
that

T, ) <TW, ) <TW, ) and TW,$) <TW, ) < T, $).

This is a contradiction, and thus the saddle point¢) is unique. |
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Remark 3.10. For the robust control problem on the bounded dom@ing) € X x ) as stated in Definition 3.1
(and for which the gradient®.7 /Dy andD.J /D¢ are identified in Theorem 3)9solutions(v/, ¢) to the robust
control problem may not necessarily sati§B.7 /Dy ) (v, ¢) = (DT /D) (¥, ¢) = 0, as they may be located on
the boundary of the domaif’ x ). These equalities hold, however(if, ¢) is in the interior of ¥ x Y and, in
particular, if X and) are all of L2(0, T'; L2(§2)).

To summarize Section 3, for sufficiently largeand/ in both the 2D case and the 3D case (the latter of which is
confined in the analysis either by a small data or a sffialbnstraint), a solution to the robust control problem
stated in Definition 3.1 exists and is unique. Further, the gradBptgDy andD.7 /D¢, which may be used to
determine this solution with a numerical algorithm such as that proposed in Section 5, may be identified as a simple
function of an appropriately defined adjoint field.

4. Generalizations

We now consider two straightforward generalizations of the robust control framework laid out in Sections 2 and
3, first for the problem of boundary control (Section 4.1), then for the problem of data assimilation (Section 4.2).

4.1. The boundary control problem in a domain with corners

In this section, we will discuss the robust control problem assuming that the cgntost acts upon the flow by
modification of the boundary conditions on the velogitylt will be shown that the effect of boundary forcing on
the flow velocity inside the domaif? may be accounted for by a “lifting” procedure which constructs an equivalent
interior forcing profile to account for the boundary forcing [22]. With such a construction, the proofs of existence
and uniqueness of the robust control problem follow as in the previous sections with slight modifications. Further,
the identification of the gradien®.7 /Dy andD.7 /D¢ is, again, straightforward. In the present work we treat
domains with corners, avoiding the smoothing of the boundary used in [1].

The cost functional considered in this section is analogous to that used in previous sections

1wtz de s Eeaum? " (a2 d
j(¢,¢)_§ A ICaul 720, t+§| (D) 2y — A 3v£,r oo 1

1 T
where the flow is governed by

9 .
8—’:—vAu+(u-V)U+(U.V)u+(u.V)u+vp=Blw, divi =0, u = Bop onds,

u =up atr =0, (4.2)

wherewerestrigp € H1(0, T; (L?(352))3), C4r-n = 0, andB, to be amapping froriL2(32))3to (H¥?+<(32))3,
€ > 0, such thatBa¢, N) 250y = mez(p -ndI” = 0, wheren is the unit outward normal vector &a2. Note the
control forcingy = Ba¢, which is allowed on all three velocity components, is confined to the bourdayf the
domain in the present section.

4.1.1. Transformation of problem to the interior forcing framework
For simplicity, let us assume a rectangular two or three-dimensional dagnai{ [/, (—L;, L;), wherem = 2
or 3, as depicted in Fig. 4. Suppose that the boundary forcing belongs to the closure, in an appropriate Sobolev
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3

Fig. 4. Cornered domains considered for the problem of boundary forcing in Section 4.1.1. The analysis of the flow control problem in these 2D
and 3D “driven cavities” is easily generalized to account for periodicity in one or two directions (i.e., channel flow and duct flow), and more
generally, for domains of any convex shape.

space, of infinitely differentiable functions with compact support on each smooth compordent 8pecifically,
the boundary of2 is given by

n
IR = U(ri+ Ur) and IF={(x1,...,x%) € 32; x; = £L;},
i=1

and the boundary contro:l@'t on each face"idE of §2 satisfy

¢ € HY(O, T; HY*™“(I'%)), wheree > 0.

Using [39], there exist® € H(0, T; H?(£2)) such that

0 .
a—f—l)A(b‘i‘Vﬂ:O, dive = 0, ¢ =9 on I/, ¢ =ug att=0.

Furthermore, making use df as an intermediate lifting, Hopf's technig@id22,30,36] may be used to determine
a® € HY(0, T; H2($2)) such that

dive =0, O =¢* on I,
where® is constructed such that
b ©.1) < lul (4.3)

Now setv = u — @. As v, by construction, has homogeneous boundary conditions, we may return to the familiar
abstract form

d_v
dr

where

+vAv+Bw, U+O®)+BU+6O,v)+Bw,v)=F, veV, v=ug—O0) atr=0, (4.4)

~

de
F =By — - —vA® — B(©.6) — BWU.0) - BO. V).

3 Note that the support of the lifting of the boundary forcing determined by Hopf's approach is included in a neighborhood of the boundary.
Note also that Hopf's technique can be easily generalized to work for the rectangular demaififiég. 4 and, in fact, for any convex domain.
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Note thatF € L2(0, T; H) and that

n
+
1Fll 2050y = CoY N0 N a0 1. w32t ity + B 20,7,y (4.5)
i=1

Theorem 4.1. Existence and uniqueness of the solution to the robust control problems posed in Sections 2 and 3
extend directly to the case of boundary forcing

Proof. Noting the estimates (4.3) and (4.5), the existence and uniquenedsltw promptly from the develop-
ments in Sections 2 and 3 applied to (4.4), witht ® replacingU andF replacingP f, mutatis mutandis. The
existence and uniquenessuwE v + @ follow directly. O

4.1.2. ldentification of gradients

The existence and uniqueness of a robust control solution for the problem with boundary control were proved
in Section 4.1.1 by reducing it to the interior forcing problem, which has already been considered thoroughly in
Sections 2 and 3. We now identify the gradie®tg /Dy andD.J /D¢ necessary to find a solution to the robust
data assimilation problem with the algorithm of Section 5 by coupling the flow system (4.2) with an adjoint system
defined by

d . -
—8—L;—vAﬁ+(V[U+u])T-ﬁ—(Vﬁ)-[U+u]+Vﬁ=C’1“Clu, divi =0, i =Cjr on a2,
u=C5Cou att=T. (4.6)
Since

T T a !/
/ (C:TC]_M, M/)LZ(_Q) dt + (C;CZM(T), M/(T))LZ(_Q) — / (C3I)—M, r) dt
0 0 L2(382)

n

T
= / (I:_?)_L; — VAL 4 (VU +ul)" - i — (Vi) - [U +u] + Vﬁ] , u/) dr
0

L2(£2)
ou’

T
+(ﬁ(T),u/(T))L2(!2>_/(; (Va_n’ﬂ> 2092 “
12(9)

T/ Tou
=/ (u, |:— —vAu + (U +ul - V)u' + (' - V)[U + u] +Vp’i|> dr
0 al LZ(Q)

T
+/0 (B’ -2y — (B, V- u) 2oy + (P, V- D) 120y — (P - N) 250y

25
_ (v_”, u/) — (@ -n[U +ul,u) 20 | dr
ai’l LZ(B.Q)

T T ol
= / (l:i, Blw/)LZ(Q) dt +/ <|:_V— + ﬁn] B 82¢/) df
0 0 dn L2(092)

r g dut
= / (BI&, 1///)L2(_Q) dr +/ <B; |:—U— + ﬁl’li| s ¢/> dt,
0 0 on L2(3R2)

it follows that

by . DJ N
W(l/f,tﬁ)zb’lu_ﬁw and D—¢(¢,¢)=BZ [—Vﬁ—#pn}—l—l%.
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The appearance gf in this derivation is due to the fact that we have allovi®g - n # 0, i.e., we have allowed

the case of boundary forcing by wall transpiration (blowing/suction). If we restrict the problem to wall-tangential
control velocities only (i.e.B2¢ - n = 0), then thep term will disappear from the expression for the gradient.
Conversely, if we restrict the problem to wall-normal control velocities only, @thconstant over the walls, then
thedii/on term will disappear from the expression for the gradient.

To summarize Section 4.1, for sufficiently largga solution to the robust control problem for the case of boundary
forcing exists and is unique. Further, the gradiedt$ /Dy andD.7 /D¢, which may be used to determine this
solution with a numerical algorithm such as that proposed in Section 5, may be identified as a simple function of
an appropriately defined adjoint field.

4.2. The data assimilation problem

In this section, we will discuss a robust estimation problem wherein the “control” to be determined is, in fact, the
initial condition on the velocity field, i.euo = B2¢. This framework is useful in data assimilation problems: given
a set of measurements of some actual floan [0, T], determine a “best” estimate as to the initial stagan the
modelu that leads to the observed system behavior, while simultaneously forcing the model system with a small
component of the worst-case disturbancevhich perturbs: away from the observed system behavior. Chaotic
problems, such as weather systems, are highly susceptible to the small disturbances present in all physical systems.
Thus, this robust estimation framework should help to reduce the component of the initial state most susceptible to
external disturbances and thereby prove to be a valuable tool for improving the fidelity of such estimates.

Definew = u — v as the amount the estimated flavdiffers from the actual flow. A cost functional may be
defined as in the previous problems, but now forced byrteasurement erroiw, Cow(T), andCzv(dw/on) |y
on the interior, at the final time, and at the boundaries, respectively, such that

2

Cav—

d 2o
n t+ E|¢|L2(Q)

1 (7 2 1 2 1 1T
VAUZ ¢>)=§/0 |Clw|L2(_Q)dt+§|Czw(T)|L2(Q)+§/O

L2(3.Q)
)/2 T 2

whereC3C3v(dw/dn) - n = 0. The measurements of the actual fiéw, Cov(T'), andC3v(dv/dn) |y are assumed
to be given. In order to find the best estimatef the actual floww, we seek the best initial conditiogs subject to
the worst disturbance forcing, such that7 is minimized, where the estimateis governed by

du

0 +vAu + B(u,U)+ B(U,u)+ B(u,u) =By, uecV, u=DBy att=0, (4.8)

whereg € (L%(£2))3 andB, is a mapping from(L2(£2))3 to V.

Theorem 4.2. Existence and uniqueness of the solution to the robust control problems posed in Sections 2 and 3
extend directly to the data assimilation framework

Proof. The development of Sections 2 and 3 extend directly to the present case with no further estimates
required. |

4.2.1. Identification of gradients
The existence and unigueness of a robust solution for the data assimilation problem were found by appealing
directly to the interior forcing problem, which has already been considered thoroughly in Sections 2 and 3. We now
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identify the gradient® 7 /Dy andD.J /D¢ necessary to find a solution to the robust data assimilation problem
with the algorithm of Section 5. The derivation is very similar to those encountered earlier.
Differentiation of (4.7) leads to expressions for the gradients in weak form:

Du(T) ,)
Ciw,C1— dr + { Cow(T), C .
w(’# P) -y = / ( 1w, 1D¢/ ¢>L2(Q) (2w( ), C2 Dy ¥ o)
T ow 0 Du > (T -
+/(; <Csv n C3Va—nm Y )LZ(B.Q) dr —y /(; V. ¥ 20 dr, (4.9)

Du(T) ¢,>
D¢ LZ(.Q)

C C— d C T),C:
D¢(1/f ¢)-¢' = / (1w 1 Do ¢)L2(9) t+(2w() 2

T ow 0 Du -
+f (cgv g Du ¢> dr + 2. ) 120,
0 on on D¢ LZ(QQ) LA

In order to determine a solution to the robust data assimilation problem, we define an adjoint state by the equation

di
—d—L; +vA*i + B' (U + w)*i = C{C1w,

d
i(t) € Vy = {v e (HY(2))3% divv=0inQ,v = —cgcsua—w onasz} ,
n
t<T, a=CCrweH att=T,
whereA* is defined by

ou’

(u/, A*ﬁ)LZ(Q) (Au M)LZ(.Q) + ( ~) fOf M/ € D(A) and uc Vw
8n LZ(BQ)

Note again thaf3Csv(dw/dn)-n = 0. Note that the adjoint state is forced by the measurement €ror<,w(T),
andCzv(dw/dn)|ye. From integration by parts and the regularityuof.’ andii, which follows as in the previous
sections, we have

ow  ou’

T T
/é (CIC]_U), u/)LZ(Q) dr + (C)ZKCZU)(T), u/(T))LZ(_Q) + /(; <C§C3\}a—, Vv

—) dr
n on LZ(BQ)
T dii
:/ <|:——+V.A*~+B(U+M) ui| ) dr
0 d L2(£2)

, T 8u/
(T T — i, v— d
T, Mz /0 (u "on )LZ(MZ) t

T ’
0 dr L2(£2)

T
- /0 (. Buy) 200 Ot + @(0). Bag) 1200

T
= A (BIIZ, W/)LZ(SZ) dt + (B;ﬂ(O), ¢/)L2(-Q)'
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Thus, (4.9), withp’ = 0 and takingy’ € L2(0, T; L2(£2)%) as arbitrary, leads to an expression for the gradient
DJ /Dy

DT
W(l/f,¢>)= - 2y

Similarly, with y' = 0 and takingp’ € L? as arbitrary,

DJ - - o

Dg W #) = B30 + 1%p.

To summarize Section 4.2, for sufficiently largeand!, a solution to the robust setting of the data assimilation
problem exists and is unique. Further, the gradiéhs/ Dy andD.7 /D¢, which may be used to determine this

solution with a numerical algorithm such as that proposed in Section 5, may be identified as a simple function of
an appropriately defined adjoint field.

5. Numerical algorithm for determination of robust control solution

A selected number of important linear robust control problems may be derived from the Navier—Stokes equation
and discretized accurately with a system of small state dimenaioa D(100)]. For such problems, the two-point
boundary-value problem of (2.22) may be stated and solved as a Riccati problem, as demonstrated by Bewley and
Liu [8] for the problem of stabilization of plane channel flow. For nonlinear robust control problems of fairly low
state dimension, the two-point boundary-valued problem may be stated as the Hamilton—Jacobi—Bellman inequality
and solved via the notions @f gain, passivity, and control Lyapunov functions, as described by Isidori [23], van
der Schaft [33] and Freeman and Kokotovic [17].

The majority of linear and nonlinear problems in fluid mechanics, however, require quite a large state dimension
for adequate resolution[ > O(10P)]. For such problems, a computational approach which does not rely on the
computation and storage of(@?) fields is an absolute necessity. As suggested for the optimal case by Abergel
and Temam [1], an iterative numerical algorithm is now proposed to find a saddle-point solution to the two-point
boundary value problem of both linear and nonlinear robust control problems based on the repeated computation
of an Q(N) adjoint field.

Algorithm 1.
1. Initialize k = 0 and (¥%, %) = 0 on+ € [0, T], wherek is the iteration index andy*, ¢¥) is the numerical
approximation of the disturbance and the control during the kth iteration of the algarithm
2. Determine the state® on[0, T'] from the state equation (Navier—Stokes) based on the initial conditipasd
with the forcing(y*, ¢%).
3. Determine the adjoini* on[0, 7] from the adjoint equation based on the stafe
4. Determine local expressions for the gradients
DI« .k DI« .k
— ) d T~ )
w“” ¢") an D¢(¢ ")
based on the adjoirit*.
5. Determine the updated disturbangé ! with
DJg k 4k
Dy ", 9"),

where0 < C1 < af < Cy < 1, whereC; andC» depend on the second derivativebf

1pk-i-l — wk + Otk
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6. Determine the updated contrgf+1 with

DJ
k1 _ ok pkZY ok ik
T =9¢" - B ng(w L P"),

where0 < C1 < Bk < ¢ < 1.
7. Increment indext = k + 1. Repeat from step until converged

The proof of the convergence of Algorithm 1 is currently under development and will appear elsewhere.

In order to arrive at an algorithm which is numerically efficient, but for which a proof of convergence is
not available,a® and g* themselves may be determined by an iterative procedure, specifically as given
below.

Algorithm 2. Follow the same procedure as in Algorithm 1, but now

e Leta! be selected by a numerically robust line maximization algorithm, based on repeated “trial” computations
of y**1 for various different choices of and computing the resulting effect on the cost functighal 1, ¢~).
Such an approach guarantees local line maximizatioy dh the direction of the gradiertD.7 /Dy](v*, ¢%)
from the poini(y*, $*) even for nonlinear problems. Efficient numerical algorithms for such a line maximization
(i.e., optimization of the single scalar parameté?) are well established. Note thaf is chosen while holding
the controlg* fixed

o Lets* be selected by a line minimization algorithm, based on repeated “trial” computatiog&'dffor various
different choices op* and computing the resulting effect on the cost functiofigl*, ¢**1), in a manner
analogous to that foe*. Note thatg* is chosen while holding the disturbangé fixed

Note that Algorithm 2 may be modified by settin§ = 0 (i.e., y*+1 = yX) for k odd and settingg* = 0
(i.e., p¥t1 = @) for k even. Note also that, for the purpose of numerical computation, it is often most efficient
to compute the line minimizations only approximately, in order to reduce the number of computations required to
seleci andgk.

6. Conclusions

A framework for robust control has been developed for problems governed by the Navier—Stokes equation.
Existence and uniqueness of the solution to the robust control problem have been proven, and upper bounds on
the minimum value ofy for which a solution exists have been established. Cost functionals which account for
both the regulation and the terminal control of both interior quantities and boundary quantities have been accounted
for. Interior forcing, boundary forcing, and the optimization of the initial state (i.e., data assimilation) have been
considered. Together, this set of problems constitutes a complete family of problems governed by the flow/adjoint
two-point boundary value problem. Finally, a tractable numerical algorithm (based on repeated computations of an
adjoint field) to solve the robust control problem has been proposed.
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