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Abstract

A construction proposed by Tu (2010) establishes that the composite function S(x) = φ2(φ
−1
1 (x))

on −1 < x < 1, with S(x) = −1 on x ≤ −1 and S(x) = 1 on x ≥ 1 and where φ2(y) = tanh(y)
and φ−1

1 (x) = 2x/(1 − x2), provides a “compact C∞ sigmoid function” on −∞ < x < ∞ (that is, a
function whose derivatives all have compact support, on the region −1 < x < 1). Noting that, in Tu’s
construction, φ1(y) and φ2(y) are themselves C∞ sigmoid functions, with φ1(y) → 1 algebraically and
φ2(y)→ 1 exponentially as y →∞, this paper extends this result, providing a general method for direct
elementary construction of compact C∞ sigmoid functions.

1 Introduction / motivation

In real analysis [1], the non-analytic C∞ “bump” function

b(t) =

{
e−1/(1−t

2) −1 < t < 1,

0 otherwise,
(1a)

with integral (over all t) of
∫∞
−∞ b(t) dt = 0.443993816168 , b0, is an elementary construction of particular

interest. Once scaled to be of width 2ε, and normalized to be of unit area, the resulting “mollifier” function

bε(t) =

{
[1/(ε b0)] e−ε

2/(ε2−t2) −ε < t < ε,

0 otherwise,
(1b)

for small ε, may be interpreted as a finite, C∞ approximation of the Dirac delta with compact support, and
thus its integral forms a C∞ approximation of the Heaviside step function (or, with rescaling and shifting,
a C∞ sigmoid function) with compact support on all derivatives. Bump functions and their integrals [either
directly, or in convolution with other (often, nonsmooth) functions] are of central importance in proofs
involving “partitions of unity” (see [3], §13.2), as well as in certain engineering applications, including the
generation of smooth transitions of signals in a short period of time from one logical state to another, as
well as the “clipping” of audio signals to keep them within specified bounds.

Unfortunately, the bump and mollifier functions presented above are not amenable to elementary inte-
gration; that is, as discussed in [1], their anti-derivatives can not be built from the standard operations and
functions in calculus, including addition, multiplication, division, root-extraction, trigonometric functions
and their inverses, exponential and logarithmic functions, and compositions of such functions. This fact
makes the practical use of the integral of these functions somewhat cumbersome.

An elegant construction is thus proposed by Tu (see [3], §13.1) in order to build the anti-derivative of a
(differently-defined, but still C∞ with compact support) bump function directly using elementary operations
and functions. Tu’s construction involves defining two C∞ functions ψ(t) and H(t) such that

ψ(t) =

{
0 t ≤ 0,

e−1/t t > 0,
H(t) =

ψ(t)

ψ(t) + ψ(1− t)
. (2)
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So defined, the derivative B(t) = H ′(t) may also be written using elementary operations and functions,
and (once shifted and scaled appropriately) has a similar shape to the classic bump function b(t) given in
(1a). Since ψ(t) is known [classically, as with (1a)] to be C∞, the composite function H(t) is also C∞ on
−∞ < t < ∞. By construction, H(t) forms a compact C∞ approximation of the Heaviside function, with
H(t) = 0 for t ≤ 0 and H(t) = 1 for t ≥ 1, and with H(t) transitioning from 0 to 1 “smoothly” (that is, with
its first several derivatives having peaks of limited magnitude as compared with other similar constructions)
for 0 < t < 1. With rescaling and shifting (defining S = 2H − 1 and t = (x + 1)/2), we first observe that
Tu’s construction (2) may be written as a compact C∞ sigmoid function with, on −1 < x < 1,

S(x) =
2 e−2/(x+1)

e−2/(x+1) + e2/(x−1)
− 1 =

e−2/(x+1) − e2/(x−1)

e−2/(x+1) + e2/(x−1)
· e

2/(x+1) + e−2/(x−1)

e2/(x+1) + e−2/(x−1)

=
−2 sinh[4x/(x2 − 1)]

4 cosh2[2x/(x2 − 1)]
=
−4 sinh[2x/(x2 − 1)] cosh[2x/(x2 − 1)]

4 cosh2[2x/(x2 − 1)]
= tanh

2x

1− x2
,

with S(x) = −1 for x ≤ −1 and S(x) = 1 for x ≥ 1. It is thus seen that Tu’s compact C∞ Heaviside con-
struction, when rescaled and shifted as a compact C∞ sigmoid function, amounts to the simple composition

S(x) =


−1 x ≤ −1,

φi(φ
−1
k (x)) −1 < x < 1,

1 1 ≤ x,
(3)

where φi(y) = tanh(y) and φ−1k (x) = 2x/(1−x2), and thus φk(y) = (−1 +
√

1 + y2)/y; note that both φi(y)
and φk(y) are themselves (noncompact) C∞ sigmoid functions.

In order to generalize Tu’s construction (3), we begin with a couple of precise definitions.

Definition 1. For the purpose of this paper, “C∞ sigmoid functions” φ(y) refer to strictly monotonic
antisymmetric functions that are C∞ on −∞ < y <∞, and for which φ(y)→ 1 as y →∞. Such functions
may be divided into three broad classes, and are indicated in this paper by the first digit of the subscripts that
enumerate them: “class 1” C∞ sigmoid functions converge algebraically (φ1,j → 1 − c/yn as y → ∞, with
n ≥ 1), “class 2” C∞ sigmoid functions converge exponentially (φ2,j → 1− c1e−c2y as y →∞), and “class
3” C∞ sigmoid functions converge super-exponentially (φ3,j → 1− c1e−c2y

n

as y →∞, with n ≥ 2).

Definition 2. For the purpose of this paper, “compact C∞ sigmoid functions” S(x) refer to monotonic
antisymmetric functions that are C∞ on −∞ < x <∞, and for which S(x) = 1 for x ≥ 1.

Motivated by Tu’s construction (3), and the observation that there are in fact a rich variety of ways
to construct C∞ sigmoid functions φ(y), each with different rates of convergence to 1 as y → ∞, this
paper introduces and analyzes alternative constructions of compact C∞ sigmoid functions (easily rescaled
as compact C∞ Heaviside functions), all of the same general form as Tu’s construction (3) [that is, with
the inverse of one C∞ sigmoid function embedded within a second, more rapidly converging C∞ sigmoid
function]. We start by listing a few C∞ sigmoid functions1 φi,j(y) (see Definition 1), and their inverses,
belonging to class 1, class 2, and class 3, as illustrated in Figure 1:

1The following sigmoid function is not included on this list, as it is only C1 at y = 0:

φ(y) =
y

1 + |y|
y→∞−−−−→ 1−

1

y
+O

( 1

y2

)
, φ−1(x) =

x

1− |x|
=

1

1− x
− 1 for x ≥ 0,
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Figure 1: Example C∞ sigmoid functions φi,j(y) as a function of y [with φi,j(y) → 1 as y → ∞], and their
inverses φ−1i,j (x) as a function of x [with φ−1i,j (x)→∞ as x→ 1]. The red curves correspond to the “class 1”
sigmoids {φ1,1, φ1,2, φ1,3}, the blue curves correspond to the “class 2” sigmoids {φ2,1, φ2,2}, and the magenta
curve corresponds to the “class 3” sigmoid {φ3,1}.

φ1,1(y) =
−1 +

√
1 + 4 y2

2 y

y→∞−−−→ 1− 1/2

y
+O

( 1

y2

)
, φ−11,1(x) =

x

1− x2
x→1−−−→ 1/2

1− x
+O(1),

φ1,2(y) =
2

π
atan

π y

2

y→∞−−−→ 1− 4/π2

y
+O

( 1

y3

)
, φ−11,2(x) =

2

π
tan

πx

2

x→1−−−→ 4/π2

1− x
+O(1− x),

φ1,3(y) =
y√

1 + y2
y→∞−−−→ 1− 1/2

y2
+O

( 1

y4

)
, φ−11,3(x) =

x√
1− x2

x→1−−−→ 1/
√

2√
1− x

−O(
√

1− x),

φ2,1(y) =
2

π
gd

π y

2

y→∞−−−→ 1− 4

π
e−πy/2 +O(e−3πy/2),

⇒ φ−12,1(x) =
ln(tan2 π(x+1)

4 )

π

x→1−−−→ − 2

π
ln(1− x) +

2

π
ln

4

π
+O[(1− x)2],

φ2,2(y) = tanh y = 1− 2

e2y + 1

y→∞−−−→ 1− 2 e−2y +O(e−4y),

⇒ φ−12,2(x) = atanhx = −1

2
ln(1− x) +

1

2
ln(1 + x),

φ3,1(y) = erf
y
√
π

2

y→∞−−−→

√
1− exp

(
− y2π

4
· 4/π + ay2π/4

1 + ay2π/4

)
> 1− 1

2
e−y

2π/4,

⇒ φ−13,1(x) =
2√
π

erf−1(x), where a =
8(π − 3)

3π(4− π)
≈ 0.14.

The example C∞ sigmoid functions φi,j(y) listed above, each of which is scaled to be of unit slope at y = 0,
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are ordered above by their rate of convergence (to 1 as y →∞). The rate of convergence of such C∞ sigmoid
functions φi,j(y) may be quantified by considering either their own leading-order behavior (as y → ∞), or
by the leading-order behavior of their inverses φ−1i,j (x) (as x→ 1), as illustrated in the expansions also listed
above. Note that the list of C∞ sigmoids functions given above is by no means comprehensive. Indeed:

Remark 1. If φ(y) is a C∞ sigmoid function (see Definition 1), then φ̃(y) = [φ(cym)]n is also a C∞

sigmoid function for any c > 0, where m and n are odd integers. Similarly, if ϕ−1(x) is an inverse sigmoid
function that is C∞ on [−1, 1], then ϕ̃−1(x) = c[ϕ−1(xp)]q is also an inverse sigmoid function that is C∞

on [−1, 1] for any c > 0, where p and q are odd integers. Note that applying such modifications substantially
changes the shape of the sigmoid function, or inverse sigmoid function, to which they are applied; values
of c other than 1 change the slope of the function at the origin, and setting m or n (in the construction of
φ̃) or p or q (in the construction of ϕ̃−1) to an odd integer larger than 1 gives the function zero slope at
the origin. Further, a “class 1” C∞ sigmoid function φ(y) may be converted into a “class 2” C∞ sigmoid
function φ̃(y) = φ(ξ(y)) by composing it with any odd monotonic function ξ(y) that maps y ∈ (−∞,∞) to
ξ(y) ∈ (−∞,∞) in such a way that ξ(y) → c1 e

c2y as y → ∞; ξ(y) = sinh(y) is an example of one such
function.

2 Main result

Theorem 1. Define S(x) = φi,j(φ
−1
k,`) on −1 < x < 1 for any “class i” C∞ sigmoid function φi,j and any

“class k” C∞ sigmoid function φk,` with i > k (see Definition 1), and take S(x) = −1 for x ≤ 1 and S(x) = 1
for x ≥ 1. Then the resulting S(x) is a compact C∞ sigmoid function (see Definition 2).

Proof. By construction, S(x) is antisymmetric and C0 on x ∈ (−∞,∞), and, since φi,j(y) and φ−1k,`(x) are
C∞, S(x) is C∞ on x ∈ (−1, 1) by the composite function theorem. To show that the antisymmetric function
S(x) is C∞ over x ∈ (−∞,∞), it thus suffices to show that all derivatives of S(x) approach 0 as x approaches
1 from the left.

Consider first the case [as in Tu’s construction (3)] with i = 2 and k = 1. The combination of the
expansion for φ2,j(y) with that for φ−11,`(x) may be written in general as follows:

S(x) = φ2,j(y(x)) = 1− c1e−c2y(x) +H.O.T. with y(x) = φ−11,`(x) = c3/(1− x)d +H.O.T.

⇒ S(x) = 1− c1e−c2/(1−x)
d

+H.O.T. (5)

for some d > 0, where H.O.T. contains all Higher-Order Terms, which become insignificant in the expression
compared to the terms shown as x → 1, and the ci denote positive constants whose values are generally
different in each instance in which they are used, but whose precise values actually don’t matter in the proof
itself. Taking the first derivative of (5) gives

S′(x) =
{ c1

(1− x)d+1

}
e−c2/(1−x)

d

+H.O.T. (6)

We now establish that the n’the derivative of (5) has the form

S(n)(x) =
{∑

m

c1,m
(1− x)pm

}
e−c2/(1−x)

d

+H.O.T. (7)

as x → 1; once this is established, Theorem 1 is proved for this case (with i = 2 and k = 1) simply by
the observation that the exponential term in (7) converges to zero as x → 1 faster than the algebraic term
{in brackets} diverges as x→ 1, regardless of the precise values of {c1,m, pm, c2, d}, and thus, forming their
product, S(n)(x) → 0 as x → 1 for all n. By (6), it is evident that (7) is of the correct form for n = 1.
Assuming that (7) is of the correct form for some n, we now show that it follows that it is also of the correct
form for the case with n+ 1. Differentiating (7) gives

S(n+1)(x) =
{∑

m

[ c1
(1− x)pm+d+1

+
c3

(1− x)pm+1

]}
e−c2/(1−x)

d

+H.O.T., (8)
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which is of the same form as (7), thus completing the proof for this case via the induction hypothesis.
The case with i = 3 and k = 1 follows in a similar fashion. The combination of the expansion for the

lower bound L(x) on φ3,j(y) with the expansion for φ−11,`(x) gives

L(x) = 1− c1e−c2[y(x)]
2

+H.O.T. with y(x) = φ−11,`(x) = c3/(1− x)d +H.O.T.

⇒ L(x) = 1− c1e−c2/(1−x)
(2d)

+H.O.T.

Since the lower bound L(x) on the function S(x) is of the same structural form as (5), it follows by the same
argument that L(x)→ 1 and L(n)(x)→ 0 as x→ 1 for all n. By construction, S(x) is bounded from above
by U(x) = 1; thus, by the squeeze theorem, S(x) satisfies the same properties as U(x); that is, S(x) → 1
and S(n)(x)→ 0 as x→ 1 for all n.

Finally, proof in the case with i = 3 and k = 2 has a similar but slightly different form. In this case, the
combination of the expansion for lower bound L(x) on φ3,j(y) with that for φ−12,`(x) gives

L(x) = 1− c1e−c2[y(x)]
2

+H.O.T. with y(x) = φ−12,`(x) = −c3 ln(1− x) +H.O.T.

⇒ L(x) = 1− c1e−c2[ln(1−x)]
2

+H.O.T. (9)

Taking the first derivative of (9) gives

L′(x) =
{−c1 ln(1− x)

(1− x)

}
e−c2[ln(1−x)]

2

+H.O.T. (10)

Following the same approach as before, it is easy to establish that the n’the derivative of (9) has the form

L(n)(x) =
{c1[ln(1− x)]n

(1− x)n

}
e−c2[ln(1−x)]

2

+H.O.T. (11)

for x → 1. Theorem 1 is thus proved for this case (with i = 3 and k = 2) simply by the observation that
the super exponential term in (11) converges to zero as x → 1 faster than the log times algebraic term {in
brackets} diverges as x → 1, regardless of the precise values of c1 and c2, and thus, forming their product,
L(x) → 1 and L(n)(x) → 0 as x → 1 for all n. Noting again that S(x) is again bounded from above by
U(x) = 1 in this case, and again appealing to the squeeze theorem, it follows for this case that, again,
S(x)→ 1 and S(n)(x)→ 0 as x→ 1 for all n.

Remark 2. Two sigmoid functions φi,j and φk,` of the same class (i.e., with i = k) are insufficient to
provide a compact C∞ sigmoid function following the construction proposed in Theorem 1, even if one has
a slightly faster convergence rate than the other. (Counter examples are easily generated.)

Remark 3. Once a compact C∞ sigmoid function S(x) is generated via the parameterized elementary
construction given in Theorem 1, a corresponding compact C∞ Heaviside function (corresponding to a smooth
transition of state from 0 to 1 over an interval of width 2ε) may be generated by the transformation Hε(x) =
[S(x/ε)+1]/2, a corresponding elementary C∞ bump function (forming a finite, compact C∞ approximation
of the Dirac delta) may be generated by Bε(x) = H ′ε(x), and more general C∞ transitions between logical
states may be generated via shifting and addition/subtraction (e.g., as Hε(x) − Hε(x − 2)); for further
discussion, see [3].
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