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Abstract

A new class of integer sequences is introduced in which any pair of identical symbols in the sequence, separated
a certain number of digits apart, appears in the sequence, with that separation, at most once. For any given sequence
lengthn and number of distinct symbols used,m, such a sequence, if it exists, is not unique; our attention is thus
focused on the lexographically first such sequence available in each case. Three variations of this class of sequence
are considered: infinite, finite, and periodic, and two open questions in Ramsey theory are identified. Application of
such sequences to the matrix coloring problem is also explored briefly.

1 Introduction

Consider the following new class of sequences:

Definition: A pairwise-nonrecurrent sequenceis a sequence of symbols (taken in this work to be the non-negative
integers) in which any pair of identical symbols, separateda certain number of digits apart, appears in the sequence,
with that separation, at most once.

This paper explores and extends this class of sequences, focusing in particular, in each case, on theleadingpairwise-
nonrecurrent sequence available—that is, lexographically (i.e., in dictionary order), on thefirst pairwise-nonrecurrent
sequence available for that value ofm (the number of distinct symbols used) andn (the length of the sequence). We
also identify an immediate application of such sequences tothe matrix coloring problem; other potentially fruitful
areas for application of such sequences include cryptography and coding theory.

1.1 Background: some related classes of integer sequences

The existing integer sequences that are most closely related to the pairwise-nonrecurrent sequences defined and ex-
plored in this work are Skolem and Langford sequences (see Skolem 1957 and Langford 1958, respectively), which
have received a lot of attention in the literature; see, e.g., Colbourn and Dinitz (1996; page 457) and Shalaby &
Stuckless (2000), and the references contained therein.

A Skolem sequence of ordern, denotedS= {s1,s2, . . . ,s2n}, is a permutation of the 2n integers{1,1,2,2, . . . ,n,n}
such that, ifsi = sj = k with i < j, then j − i = k; an example withn= 5 is given by{4,5,1,1,4,3,5,2,3,2}.

As a slight generalization, a Langford sequence of ordern and defectd, denotedL = {l1, l2, . . . , l2n}, is a permutation
of the 2n integers{d,d,d+1,d+1, . . . ,n+d−1,n+d−1} such that, again, ifl i = l j = k with i < j, then j − i = k;
an example withn = 5 andd = 3 is given by{7,5,3,6,4,3,5,7,4,6}. The Skolem sequence as defined above is a
Langford sequence withd = 1. Note that the term “Langford sequence” is sometimes, lessgenerally, used to denote a
Langford sequence, as defined here, withd = 2.

A related concept is known as a Golomb ruler (Sidon 1932 and Babcock 1953). Ann’th-order Golomb ruler is a set of
n marks at integer positions along an imaginary ruler such that no two pairs of marks are the same distance apart. If a
Golomb ruler is able to measure all integer distances up to its length, it is said to be perfect. A Golomb ruler is said to
be optimal if no shorter Golomb ruler of the same order exists. An example of a Golomb ruler of order 4 that is both
optimal and perfect is{0,1,4,6}; an optimal Golomb ruler of order 8 is{0,1,4,9,15,22,32,34}.
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1.2 The leading pairwise-nonrecurrent infinite sequence

We consider first the leading pairwise-nonrecurrentinfinite sequence, the first 150 terms of which, composed of 15
distinct symbols, are:

0,0,1,0,1,1,2,0,2,1,3,2,0,3,3,1,4,2,2,3,0,3,4,1,4,4,5,5,6,4,0,2,1,3,5,2,5,6,6,4,5,6,7,3,

0,7,7,1,8,6,2,4,5,7,8,5,6,8,3,7,9,8,8,1,9,0,2,4,7,9,9,3,5,6,10,10,11,8,6,8,0,9,10,1,7,4,

7,2,9,3,11,10,11,10,5,11,0,10,6,5,12,9,11,8,4,3,12,12,13,1,11,12,6,2,7,4,13,9,10,11,12,

10,0,11,8,13,13,14,12,5,12,3,13,7,14,4,8,13,1,9,14,2,6,7,14,14,12,0,3,2, . . .

(1)

Note that the pairs{0,0}, {1,1}, {2,2}, {3,3}, etc., appear at most once in this sequence; denoting∗ as any symbol,
the pairs{0,∗,0}, {0,∗,∗,0}, {0,∗,∗,∗,0}, {1,∗,1}, {1,∗,∗,1}, etc., appear at most once as well.

The unique sequence given in (1) is easy to generate numerically, and can be built from left to right, at each step
adding to the existing pairwise-nonrecurrent finite sequence the lexographically smallest symbol that maintains the
pairwise-nonrecurrence property in the extended sequence. A very simple single-threaded code, available at

http://renaissance.ucsd.edu/pubs/PNinfinite.f90,
generates the first 1,000 terms of this sequence (composed of48 distinct symbols) in 22 seconds on a 3GHz Intel
Xeon desktop computer, and generates the first 10,000 terms of this sequence (composed of 193 distinct symbols) in
39 hours. These first 10,000 terms of the leading pairwise-nonrecurrent infinite sequence so generated are available at:

http://renaissance.ucsd.edu/pubs/PNinfinite.txt

1.3 Leading pairwise-nonrecurrent finite sequences

A finite pairwise-nonrecurrent sequence composed of a givennumber of distinct symbolsm may be generated by
simple truncation of the sequence given in (1) immediately before the first symbol outside the set of symbols under
consideration. However, asm is increased, much longer pairwise-nonrecurrent finite sequences using the same number
of distinct symbols may, in fact, be generated, though finding such sequences is computationally expensive. The logic
involved in the maximally efficient generation of such sequences for increasing values ofm is quite intricate; a brief
outline of the two algorithms developed in this work to identify such sequences is given below.

1.3.1 Algorithm A

We start by developing a maximally efficient exhaustive search in lexographic order. There are two ways to proceed:
either specifying the number of each symbol to be used in the sequence in advance, or allowing the number of each
symbol used to be determined by the search algorithm itself.We follow here the former approach; this has the numer-
ical benefit of examining considerably fewer possibilitieswhen searching for the solution. The algorithm developed
applies the conditions of pairwise nonrecurrence from leftto right to maximally accelerate the efficient nonrecursive
algorithm for permuting symbols given as Algorithm L of Knuth (2005), §7.2.1.2, eliminating from consideration
large sets of cases at a time wherever possible. The resulting exhaustive search algorithm (for both this problem and
that discussed in §1.4) is available at:

http://renaissance.ucsd.edu/pubs/PNfiniteA.f90

1.3.2 Algorithm B

An alternative approach for computing finite pairwise-nonrecurrent sequences splits the problem in half: in cases for
whichn is an even multiple ofm, we first determineall groups ofr = n/m locations in a sequence of lengthn such that
a single symbol may be put into allr of these locations without violating the conditions of pairwise-nonrecurrence,
then attempt to fitm of these groups together in a nonoverlapping fashion. For example, takingn= 24, m= 4, and
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r = 6, there areg= 1910 such groups of locations, four of which are:

x,x,∗,∗,∗,∗,∗,∗,x,∗,∗,x,∗,x,∗,∗,∗,x,∗,∗,∗,∗,∗,∗;

∗,∗,x,∗,x,∗,∗,∗,∗,∗,∗,∗,x,∗,∗,x,x,∗,∗,∗,∗,x,∗,∗;

∗,∗,∗,x,∗,x,∗,∗,∗,x,x,∗,∗,∗,∗,∗,∗,∗,∗,x,∗,∗,x,∗;

∗,∗,∗,∗,∗,∗,x,x,∗,∗,∗,∗,∗,∗,x,∗,∗,∗,x,∗,x,∗,∗,x.

We may fit together thesem= 4 sets ofr = 6 locations by assigningx = 0 to all slots in the first set of locations,x = 1
to all slots in the second set of locations, etc., resulting in a sequence of lengthn= m∗ r = 24 given by:

0,0,1,2,1,2,3,3,0,2,2,0,1,0,3,1,1,0,3,2,3,1,2,3.

Implementation of this algorithm is given in:
http://renaissance.ucsd.edu/pubs/PNfiniteBeven.f90

This approach doesn’t necessary find sequences in lexographic order, and thus must be run exhaustively in order to
find the first such sequence in lexographic order. However, for a given value ofm, there are ultimately a decreasing
number of pairwise nonrecurrent groups asn gets large; for example, takingm= 4, there are:

• g= 2520 pairwise nonrecurrent groupings ofr = n/m= 5 symbols forn= 20,
• g= 1910 pairwise nonrecurrent groupings ofr = n/m= 6 symbols forn= 24,
• g= 98 pairwise nonrecurrent groupings ofr = n/m= 7 symbols forn= 28, and
• g= 0 pairwise nonrecurrent groupings ofr = n/m= 8 symbols forn= 32

As g descreases, the problem of finding all possible ways of fitting the groupings together without overlap becomes
computationally easier to solve.

In cases for whichn is not an even multiple ofm, we proceed by roundingr = n/m both up and down, obtaining
r1 andr2 = r1−1, respectively, then find all pairwise nonrecurrent groupsof both r1 andr2 locations in a sequence
of lengthn; we then attempt to fit togetherm1 groups of lengthr1 with m2 groups of lengthr2 in a nonoverlapping
fashion, wheren = m1r1 +m2r2. [We note that it’s possible, though perhaps somewhat unlikely, that some symbol
may appearr1+1 or r1−2 times in a pairwise nonrecurrent sequence with the largestvalue ofn possible for a given
value ofm; we do not consider this possibility in the present work, focusing instead on more “balanced” pairwise
nonrecurrent sequence built solely from groups of lengthr1 andr2.] This approach is a straightforward generalization
of the approach described above; its implementation is available here:

http://renaissance.ucsd.edu/pubs/PNfiniteBuneven.f90.

1.3.3 Results

Six examples of leading pairwise-nonrecurrent finite sequences generated using Algorithms A and B, withm =
{2,3,4,5,6,7} and lengthn= {7,14,24,35,49,62}, respectively, are:

0,0,1,1,0,1,0; (2a)

0,0,1,1,2,2,1,0,2,0,2,1,0,1; (2b)

0,0,1,2,1,2,3,3,0,2,2,0,1,0,3,1,1,0,3,2,3,1,2,3; (2c)

0,0,1,1,2,2,3,4,1,4,3,2,3,4,4,2,0,3,0,1,3,1,0,4,2,0,4,2,1,2,0,1,3,3,4; (2d)

0,0,1,1,2,3,4,5,2,1,0,5,5,1,4,3,4,3,5,4,4,3,3,2,0,1,5,0,1,2,3,4,0,1,2,5,2,2,5,0,4,3,1,0,3,0,2,4,5; (2e)

0,0,1,0,2,3,2,0,4,3,5,5,0,1,2,4,1,6,4,6,0,5,1,1,6,3,5,3,2,5,4,2,6,6,3,0,6,3,4,4,2,1,3,5,4,1,2,2,

3,0,5,2,5,1,6,4,5,4,1,0,6,3.

}

(2f)

By applying the conditions of pairwise nonrecurrence in a maximally efficient fashion, as described in §1.3.1, Algo-
rithm A needed to check only 6, 406, 1.00×106, and 1.08×1010 cases, respectively, in order to find the sequences
listed in (2a)-(2d). Regardless of the significant care that has been taken in accelerating Algorithm A, as its search is
exhaustive, the scaling of the problem difficulty with increasingm is seen to be poor, and cases with higher values of
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m are exceedingly difficult to determine following this approach, and might take several years of computation time to
complete. Algorithm B, on the other hand, scales to larger values ofm andn much more efficiently, and was used to
find the sequences listed in (2e)-(2f).

Exhaustive searches using Algorithms A and B readily establish that (2a)-(2e) are in fact the longest pairwise-
nonrecurrent finite sequences possible1 for their corresponding values ofm. Note that the maximum length of these
sequences are

• n= m1r1+m2r2 where{m1, r1}= {m−1,m+2} and{m2, r2}= {1,m+1} for m= 2 and 3,
• n= mr wherer = m+2 for m= 4 and 5, and
• n= m1r1+m2r2 where{m1, r1}= {1,m+3} and{m2, r2}= {m−1,m+2} for m= 6.

A natural question remains open:
• What is the maximum lengthn of a pairwise-nonrecurrent finite sequence composed ofm> 6 distinct symbols?
If this question can not be answered directly, what are the sharpest possible upper and lower bounds on its value?

1.4 Leading pairwise-nonrecurrent periodic sequences

An important subset of the class pairwise-nonrecurrent finite sequences considered in §1.3 may be identified by re-
quiring that the conditions of pairwise nonrecurrence apply not only over the entire sequence iteself, but also over its
periodic connection. That is, the sequence is assumed to be connected in a ring, and we now require that any pair of
identical symbols, separated a certain number of digits apart, appearson the ring, with that separation, at most once.

Seven examples of leading pairwise-nonrecurrent periodicsequences generated using Algorithms A and B, withm=
{2,3,4,5,6,7,8} and of lengthn= {4,9,16,25,36,49,62}, respectively, are:

0,0,1,1; (3a)

0,0,1,0,1,2,2,1,2; (3b)

0,0,1,0,1,1,2,0,2,3,1,3,2,2,3,3; (3c)

0,0,1,0,1,1,2,0,2,1,3,2,2,4,4,0,3,4,3,3,2,1,4,3,4; (3d)

0,0,1,0,1,1,2,0,2,1,3,2,2,3,4,4,5,5,4,5,1,0,2,3,5,4,0,4,5,2,3,3,1,4,5,3; (3e)

0,0,1,0,1,2,3,4,3,1,5,4,2,2,3,2,4,6,3,1,1,3,4,1,6,6,5,0,5,4,4,0,4,5,5,6,0,5,6,2,6,3,0,2,6,1,3,5,2; (3f)

0,0,1,0,1,1,2,2,0,3,2,4,3,5,0,2,6,6,0,4,5,6,4,6,3,7,4,2,1,7,0,4,4,3,3,6,5,1,3,0,3,7,5,2,5,2,7,5,

4,1,4,3,6,1,7,6,5,5,2,1,7,7.

}

(3g)

By applying the conditions of pairwise nonrecurrence in a maximally efficient fashion, Algorithm A needed to check
only 1, 4, 28, 1404, and 1.02×1011 cases, respectively, in order to find the sequences listed in(3a)-(3e). Again, as
this search is exhaustive, the scaling of the problem difficulty with increasingm is poor. Algorithm B was thus used to
find the sequences listed in (3f)-(3g).

Exhaustive searches using Algorithms A and B readily establish that (3a)-(3g) are in fact the longest pairwise-
nonrecurrent periodic sequences possible for their corresponding values ofm. Note that the maximum length of
these sequences are

• n= mr wherer = m for m= 2 through 7, and
• n= m1r1+m2r2 where{m1, r1}= {m−2,m} and{m2, r2}= {2,m−1} for m= 8.

The sequences in (3) are each assumed to be periodically connected (in a ring), whereas the sequences in (2) are not;
the conditions of pairwise-nonrecurrence are more restrictive in the periodic case than they are in the nonperiodic case,
and thus the sequences in (3) are each a bit shorter than the corresponding sequence in (2).

As in §1.3, a natural question remains open:

1Regarding (2f), it is likely that slightly longer pairwise-nonrecurrentfinite sequences exist form = 7; this case has not yet been
run exhaustively. An updated list of the longest pairwise-nonrecurrent finite sequences found thus far will therefore be maintained at:
http://renaissance.ucsd.edu/PairwiseNonrecurrent.html
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• What is the maximum lengthn of a pairwise-nonrecurrentperiodicsequence composed ofm> 8 distinct symbols?
If this question can not be answered directly, what are the sharpest possible upper and lower bounds on its value?

Curiously, though their definitions are quite simple, no simple patterns have yet been detected in the infinite sequence
given in (1), the finite (nonperiodic) sequences given in (2), or the periodic sequences given in (3). Recognizing
such patterns would, of course, be immensely valuable in constructing longer pairwise-nonrecurrent sequences, as
exhaustively searching for such sequences is numerically prohibitive asm andn are increased, even if the code is
written in a maximally efficient manner. The lack of such patterns might lend these sequences well to applications in
cryptography.

2 Efficient generation ofm-colored matrices

The papers of Cooper, Fenner, and Purewal (2008) and Fenner,Gasarch, Glover, and Purewal (2009) introduce, and
put into context with Ramsey theory, the following notion:

Definition: A p×q matrixA is said to bem-coloredif each elementaik of the matrixA is one ofmsymbols [taken here
to be the numbers 0 through(m−1)] such that there is no set of four integers{i, j,k, l} with aik = ail = a jk = a jl ; that
is, such that there are nomonochromatic rectangleswithin A. A matrix of orderp×q for which such anm-colored
set of elements exists is said to bem-colorable.

For example, the matrixA below is 2-colored, where the matrixB, which contains two monochromatic rectangles
(a11= a12 = a41= a42 anda11= a14 = a21= a24), is not:

A=









1 0 0 1
0 0 1 1
1 1 0 0
0 1 1 0









, B=









1 1 0 1
1 0 1 1
0 1 1 0
1 1 0 0









. (4)

Note that any submatrix of anm-colored matrix is itself also anm-colored matrix. Note also that the notion ofm-
colorable matrices (of dimension 2) extends immediately tom-colorabled-dimensional tensors ford > 2.

In particular, Cooper, Fenner, and Purewal (2008) explore two natural questions: for which values of{n1,n2, . . . ,nd} is
ann1×n2× . . .×nd tensor (of dimensiond ≥ 2) m-colorable, and for which values of{n1,n2, . . . ,nd} is such a tensor
not m-colorable? The paper of Fenner, Gasarch, Glover, and Purewal (2009) focuses on refining the bounds on these
two questions specifically in the case ofd = 2. These two questions are closely related to the new question stated at
the end of §1.4(and solved exhaustively in the present work form= 2 through 8); this new question might in fact be a
significantly easier (that is, for values ofm larger than those that can be solved exhaustively), as thereare now onlyn
unknowns, rather thann1∗n2∗ · · · ∗nd unknowns. Indeed, these two papers inspired the present focused investigation,
which specifically sought a method for the efficient construction of largem-colored matrices. To accomplish such a
construction, which is trivial once we know how to generate pairwise-nonrecurrent periodic sequences, we first review
the definition ofn×n circulant Toeplitz and Hankel matrices:

Definition: An n×n circulant Toeplitz matrix is a matrix that is constant alongits extended diagonals, and is defined
by the symbols in then positions along its top row. Ann×n circulant Hankel matrix is a matrix that is constant along
its extended antidiagonals, and is also defined by the symbols in then positions along its top row.

For example, in the case wheren= 4,n×n circulant Toeplitz and Hankel matrices may be written in thegeneral forms

T =









a b c d
d a b c
c d a b
b c d a









and H =









a b c d
b c d a
c d a b
d a b c









. (5)

Theorem: An n× n circulant Toeplitz or Hankel matrix ism-colored if and only if the top row of the matrix is a
pairwise-nonrecurrent periodic sequence withm symbols.
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Proof: To establish that ann× n circulant Hankel matrix ism-colored, we need only (due to the symmetry of the
matrix) compare the top row to all of the other rows of the matrix and look for monochromatic rectangles. In particular,
enumerating the rows and columns from zero, for eachs∈ [1,n−1], looking at the top (zeroth) ands’th rows of the
Hankel matrix, in order for there to be no monochromatic rectangles, no single symbol can simultaneously be in both
the i’th and the mod(i + s,n)’th positions as well as both thej ’th and the mod( j + s,n)’th positions along the top row
for any distincti ∈ [0,n−1] and j ∈ [0,n−1]. These are exactly the conditions of pairwise nonrecurrence applied to the
top row of the matrix, considered as a periodic sequence. Thecase of circulant Toeplitz matrices follows immediately,
via rearrangement of the rows considered in the circulant Hankel case [see, e.g., (5)]. �

Thus, the circulant Hankel matrices and circulant Toeplitzmatrices with top rows given by (3a) through (3g) give
immediately: a 2-colored 4× 4 matrix, a 3-colored 9× 9 matrix, a 4-colored 16× 16 matrix, a 5-colored 25× 25
matrix, a 6-colored 36×36 matrix, a 7-colored 49×49 matrix, and an 8-colored 62×62 matrix.

Further, as (3a) through (3g) are the longest pairwise-nonrecurrent periodic sequences available at each corresponding
value ofm (proved via exhaustion in §1), it follows immediately that 2-colored 5×5, 3-colored 10×10, 4-colored
17×17, 5-colored 26×26, 6-colored 37×37, 7-colored 50×50, and 8-colored 63×63 matrices with circulant Hankel
or circulant Toeplitz structure do not exist.

It appears that, with some patience, the largest 9-colored and possibly even the largest 10-colored circulant Hankel
and circulant Toeplitz matrices might also be found via Algorithm B, as implemented in the single-threaded fortran
codes provided herein, if there is sufficient interest. Doing such with the present code would require a fortran compiler
with aninteger*16 data type; the present implementation of Algorithm B uses some somewhat sophisticated bitwise
arithmetic oninteger*8 variables in order to streamline memory usage and thereforesignificantly improve execution
speed, and is therefore limited to problems withn ≤ 64 on compilers withoutinteger*16 data types, such as the
present versions ofg95 andgfortran. The time-consuming part of Algorithm B is its second half, and should be
trivial to parallelize; it also uses memory (and, thus, highspeed cache) very efficiently, and incorporates only integer
arithmetic and bit-wise comparisons (that is, there is no floating point arithmetic involved). This is thus an attractive
algorithm for GPU-based implementation, if there is interest in extending it to larger problems.

References

1. J. Cooper, S. Fenner, and S. Purewal, Monochromatic Boxesin Colored Grids. Preprint arXiv:0810.3019v1. (2008)

2. S. Fenner, W. Gasarch, C. Glover, and S. Purewal, Rectangle Free Coloring of Grids. Preprint arXiv:1005.3750.
(2009)

3. D. Knuth,The Art of Computer Programming, Volume 4: Combinatorial Algorithms. Preprint. (2005)

4. C. D. Langford, Problem,Mathematical Gazette42 (1958), 228.

5. T. Skolem, On certain distributions of integers in pairs with given differences,Math. Scand.5 (1957), 57-68.

6. C. J. Colbourn, J. H. Dinitz,The CRC handbook of combinatorial designs. CRC Press. (1996)

7. N. Shalaby, T. Stuckless, The Existence of Looped Langford Sequences.CRUX with MAYHEM26 (2000), 86-92.

8. S. Sidon, Ein Satz ber trigonometrische Polynome und seine Anwendungen in der Theorie der Fourier-Reihen,
Mathematische Annalen106(1932), 536-539

9. W. C. Babcock, Intermodulation Interference in Radio Systems/Frequency of Occurrence and Control by Channel
Selection,Bell System Technical Journal31 (1953), 63-73.

6


	Introduction
	Background: some related classes of integer sequences
	The leading pairwise-nonrecurrent infinite sequence
	Leading pairwise-nonrecurrent finite sequences
	Algorithm A
	Algorithm B
	Results

	Leading pairwise-nonrecurrent periodic sequences

	Efficient generation of m-colored matrices

