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Abstract

A new class of integer sequences is introduced in which amopaentical symbols in the sequence, separated
a certain number of digits apart, appears in the sequentefht separation, at most once. For any given sequence
lengthn and number of distinct symbols used, such a sequence, if it exists, is not unique; our attensats
focused on the lexographically first such sequence availabtach case. Three variations of this class of sequence
are considered: infinite, finite, and periodic, and two opeestjons in Ramsey theory are identified. Application of
such sequences to the matrix coloring problem is also esglbriefly.

1 Introduction

Consider the following new class of sequences:

Definition: A pairwise-nonrecurrent sequences a sequence of symbols (taken in this work to be the nontivega
integers) in which any pair of identical symbols, separat@ertain number of digits apart, appears in the sequence,
with that separation, at most once.

This paper explores and extends this class of sequencesjrigan particular, in each case, on teadingpairwise-
nonrecurrent sequence available—that is, lexograpki¢iad., in dictionary order), on thiérst pairwise-nonrecurrent
sequence available for that valuerof(the number of distinct symbols used) amhe length of the sequence). We
also identify an immediate application of such sequencakaamatrix coloring problem; other potentially fruitful
areas for application of such sequences include cryptbgrapd coding theory.

1.1 Background: some related classes of integer sequences

The existing integer sequences that are most closely defatthe pairwise-nonrecurrent sequences defined and ex-
plored in this work are Skolem and Langford sequences (sele®k1957 and Langford 1958, respectively), which
have received a lot of attention in the literature; see,, €glbourn and Dinitz (1996; page 457) and Shalaby &
Stuckless (2000), and the references contained therein.

A Skolem sequence of order denotedS= {s;,%,...,%n}, is a permutation of therRintegers{1,1,2,2,...,n,n}
such that, ifs = s; = kwith i < j, thenj —i = k; an example witth =5 is given by{4,5,1,1,4,3,5,2,3,2}.

As a slight generalization, a Langford sequence of ondmrd defect, denoted = {l1,12,...,l2n}, is a permutation

of the hintegers{d,d,d+1,d+1,....,n+d—1,n+d— 1} such that, again, if =1; =kwithi < |, thenj —i =k;

an example witm = 5 andd = 3 is given by{7,5,3,6,4,3,5,7,4,6}. The Skolem sequence as defined above is a
Langford sequence witth= 1. Note that the term “Langford sequence” is sometimes,desgrally, used to denote a
Langford sequence, as defined here, wiith 2.

A related concept is known as a Golomb ruler (Sidon 1932 afmt8ek 1953). Am'th-order Golomb ruler is a set of

n marks at integer positions along an imaginary ruler suchrtbawo pairs of marks are the same distance apart. If a
Golomb ruler is able to measure all integer distances ugg tefitgth, it is said to be perfect. A Golomb ruler is said to
be optimal if no shorter Golomb ruler of the same order exiatsexample of a Golomb ruler of order 4 that is both
optimal and perfect i$0,1,4,6}; an optimal Golomb ruler of order 8 {€,1,4,9,15,22, 32, 34}.
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1.2 The leading pairwise-nonrecurrent infinite sequence

We consider first the leading pairwise-nonrecuriafibite sequence, the first 150 terms of which, composed of 15
distinct symbols, are:

0,0,1,0,1,1,2,0,2,1,3,2,0,3,3,1,4,2,2,3,0,3,4,1,4,4,5,5,6,4,0,2,1,3,5,2,5.,6,6,4,5,6,7,3,
0,7,7,1,8,6,2,4,5,7,8,5,6,8,3,7,9,8,8,1,9,0,2,4,7,9,9,3,5,6,10,10,11,8,6,8,0,9,10,1, 7,4,
7,2,9,3,11,10,11,10,5,11,0,10,6,5,12,9,11,8,4,3,12,12,13,1,11,12,6,2,7,4,13,9,10,11, 12,
10,0,11,8,13,13,14,12,5,12,3,13,7,14,4,8,13,1,9,14,2,6,7,14,14,12,0,3,2, ..

1)

Note that the pair$0,0}, {1,1}, {2,2}, {3,3}, etc., appear at most once in this sequence; denetaggany symbol,
the pairs{0,*,0}, {0, x,x,0}, {0, *,*,%,0}, {1,%,1}, {1,*,*,1}, etc., appear at most once as well.

The unique sequence given ih) (s easy to generate numerically, and can be built from teftight, at each step

adding to the existing pairwise-nonrecurrent finite segeghe lexographically smallest symbol that maintains the

pairwise-nonrecurrence property in the extended sequéneery simple single-threaded code, available at
http://renai ssance. ucsd. edu/ pubs/ PNi nfinite.f90,

generates the first 1,000 terms of this sequence (compos&8l ditinct symbols) in 22 seconds on a 3GHz Intel

Xeon desktop computer, and generates the first 10,000 terths @equence (composed of 193 distinct symbols) in

39 hours. These first 10,000 terms of the leading pairwisgeturrent infinite sequence so generated are available at:
http://renai ssance. ucsd. edu/ pubs/ PNi nfinite.txt

1.3 Leading pairwise-nonrecurrent finite sequences

A finite pairwise-nonrecurrent sequence composed of a givenber of distinct symbols may be generated by
simple truncation of the sequence given 1) inmediately before the first symbol outside the set of syimbader
consideration. However, &sis increased, much longer pairwise-nonrecurrentfiniteieeges using the same number
of distinct symbols may, in fact, be generated, though fig@imch sequences is computationally expensive. The logic
involved in the maximally efficient generation of such sewes for increasing values ofis quite intricate; a brief
outline of the two algorithms developed in this work to idgnsuch sequences is given below.

1.3.1 Algorithm A

We start by developing a maximally efficient exhaustive sle@m lexographic order. There are two ways to proceed:
either specifying the number of each symbol to be used inegeence in advance, or allowing the number of each
symbol used to be determined by the search algorithm it@édffollow here the former approach; this has the numer-
ical benefit of examining considerably fewer possibilitidsen searching for the solution. The algorithm developed
applies the conditions of pairwise nonrecurrence fromttefight to maximally accelerate the efficient nonrecursive
algorithm for permuting symbols given as Algorithm L of Khuf2005), §7.2.1.2, eliminating from consideration
large sets of cases at a time wherever possible. The rageltimustive search algorithm (for both this problem and
that discussed in184) is available at:
http://renai ssance. ucsd. edu/ pubs/ PNfi ni t eA f90

1.3.2 Algorithm B

An alternative approach for computing finite pairwise-remurrent sequences splits the problem in half: in cases for
whichnis an even multiple o, we first determinall groups off = n/mlocations in a sequence of lengtlsuch that

a single symbol may be put into allof these locations without violating the conditions of page-nonrecurrence,
then attempt to fitn of these groups together in a nonoverlapping fashion. Famgie, takingh = 24, m= 4, and
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r = 6, there argg = 1910 such groups of locations, four of which are:
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We may fit together thesa = 4 sets ofr = 6 locations by assigning= 0 to all slots in the first set of locations= 1
to all slots in the second set of locations, etc., resultmg sequence of length= mxr = 24 given by:

0,0,1,2,1,2,3,3,0,2,2,0,1,0,3,1,1,0,3,2,3,1,2,3.

Implementation of this algorithm is given in:
http://renai ssance. ucsd. edu/ pubs/ PNfi ni t eBeven. f 90

This approach doesn'’t necessary find sequences in lexdgrayater, and thus must be run exhaustively in order to
find the first such sequence in lexographic order. Howevem fgiven value ofm, there are ultimately a decreasing
number of pairwise nonrecurrent groupsagets large; for example, takimg = 4, there are:

g = 2520 pairwise nonrecurrent groupingsref n/m= 5 symbols fom = 20,

g = 1910 pairwise nonrecurrent groupingsref n/m= 6 symbols fom = 24,

g = 98 pairwise nonrecurrent groupingsrof n/m= 7 symbols fom = 28, and
g = 0 pairwise nonrecurrent groupingsrof n/m= 8 symbols fom = 32

As g descreases, the problem of finding all possible ways ofdittive groupings together without overlap becomes
computationally easier to solve.

In cases for whictn is not an even multiple ofn, we proceed by rounding= n/m both up and down, obtaining
ri andry =rq — 1, respectively, then find all pairwise nonrecurrent groofilsothr; andr, locations in a sequence
of lengthn; we then attempt to fit togethem groups of lengtir; with mp groups of lengttr, in a nonoverlapping
fashion, wheren = myri 4+ mpro. [We note that it's possible, though perhaps somewhat elylithat some symbol
may appear; + 1 orr; — 2 times in a pairwise nonrecurrent sequence with the laxgdse ofn possible for a given
value ofm; we do not consider this possibility in the present work,ufsing instead on more “balanced” pairwise
nonrecurrent sequence built solely from groups of lemg#indr,.] This approach is a straightforward generalization
of the approach described above; its implementation idahlaihere:

http://renai ssance. ucsd. edu/ pubs/ PNfi ni t eBuneven. f 90.

1.3.3 Results

Six examples of leading pairwise-nonrecurrent finite segas generated using Algorithms A and B, with=
{2,3,4,5,6,7} and lengtim = {7,14, 24, 35,49,62}, respectively, are:

0,0,1,1,0,1,0; (2a)
0,0,1,1,2,2,1,0,2,0,2,1,0,1; (2b)
0,0,1,2,1,2,3,3,0,2,2,0,1,0,3,1,1,0,3,2,3,1,2, 3; (2¢)
0,0,1,1,2,2,3,4,1,4,3,2,3,4,4,2,0,3,0,1,3,1,0,4,2,0,4,2,1,2,0,1,3,3,4; (2d)

0,0,1,1,2,3,4,5,2,1,0,5,5,1,4,3,4,3,5,4,4,3,3,2,0,1,5,0,1,2,3,4,0,1,2,5,2,2,5,0,4,3,1,0,3,0,2,4,5; (2e)
0,0,1,0,2,3,2,0,4,3,5,5,0,1,2,4,1,6,4,6,0,5,1,1,6,3,5,3,2,5,4,2,6,6,3,0,6,3,4,4,2,1,3,5,4,1,2,2, 2
3,0,5,2,5,1,6,4,5,4,1,0,6,3.

By applying the conditions of pairwise nonrecurrence in ximally efficient fashion, as described i1.8.1, Algo-
rithm A needed to check only 6, 406,00 x 10°, and 108 x 1010 cases, respectively, in order to find the sequences
listed in 28)-(2d). Regardless of the significant care that has been takercelaaating Algorithm A, as its search is
exhaustive, the scaling of the problem difficulty with ineséngm is seen to be poor, and cases with higher values of
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mare exceedingly difficult to determine following this apach, and might take several years of computation time to
complete. Algorithm B, on the other hand, scales to largikresaofm andn much more efficiently, and was used to
find the sequences listed iBd)-(2f).

Exhaustive searches using Algorithms A and B readily estatthat 3)-(2€) are in fact the longest pairwise-
nonrecurrent finite sequences possibite their corresponding values af. Note that the maximum length of these
sequences are

e n=myri+mpro where{my,ri1} = {m—1,m+2}and{mp,r2} = {1,m+1} form=2and 3,
e n=mrwherer =m+2form=4and5, and
e n=rmmyry+ mprp where{my,r1} = {1, m+ 3} and{mp,r2} = {m— 1, m+ 2} form=6.

A natural question remains open:
e What is the maximum lengthof a pairwise-nonrecurrent finite sequence composed uf6 distinct symbols?
If this question can not be answered directly, what are thepast possible upper and lower bounds on its value?

1.4 Leading pairwise-nonrecurrent periodic sequences

An important subset of the class pairwise-nonrecurrenefiséquences considered ih.§may be identified by re-
quiring that the conditions of pairwise nonrecurrence gpyit only over the entire sequence iteself, but also over its
periodic connection. That is, the sequence is assumed torbreected in a ring, and we now require that any pair of
identical symbols, separated a certain number of digitsta@apear®n the ring with that separation, at most once.

Seven examples of leading pairwise-nonrecurrent pergaticiences generated using Algorithms A and B, with
{2,3,4,5,6,7,8} and of lengtm = {4,9,16,25,36,49,62}, respectively, are:

0,0,1,1; (3a)
0,0,1,0,1,2,2,1,2; (3b)
0,0,1,0,1,1,2,0,2,3,1,3,2,2,3,3; (3¢)
0,0,1,0,1,1,2,0,2,1,3,2,2,4,4,0,3,4,3,3,2,1,4,3,4; (3d)
0,0,1,0,1,1,2,0,2,1,3,2,2,3,4,4,5,5,4,5,1,0,2,3,5,4,0,4,5,2,3,3,1,4,5,3; (3e)

0,0,1,0,1,2,3,4,3,1,5.4,2,2.3,2,4,6,.3.1,1,3.4,1,6,6,5,0,5,4,4,0,4,5,5.6.0,5,6,2,6,3,0,2,6,1,3,5.2; (3f)
O’ O’ 1’ O’ 1’ 1’ 2’ 2’ O’ 3’ 2’ 4’ 3’ 5’ O’ 2’ 6’ 6’ O’ 4’ 5’ 6’ 4’ 67 37 774’ 2’ 1’ 7’ 074747 37 3’ 6’ 5’ 1’ 37 07 37 7, 5, 2, 5, 27 77 57 (3 )
414.3617655217.7. 9

By applying the conditions of pairwise nonrecurrence in ximally efficient fashion, Algorithm A needed to check
only 1, 4, 28, 1404, and.@2 x 10! cases, respectively, in order to find the sequences list€85)r(3¢). Again, as
this search is exhaustive, the scaling of the problem diffiauith increasingmis poor. Algorithm B was thus used to
find the sequences listed iBff-(30).

Exhaustive searches using Algorithms A and B readily esalithat 3a)-(3g) are in fact the longest pairwise-
nonrecurrent periodic sequences possible for their cooreding values oim. Note that the maximum length of
these sequences are

e n=mrwherer = mfor m= 2 through 7, and
e n=myri+mprp where{my,ri1} = {m—2,m} and{mp,r2} ={2,m—1} form=8.

The sequences ir8) are each assumed to be periodically connected (in a rifggreas the sequences ) are not;
the conditions of pairwise-nonrecurrence are more reistei the periodic case than they are in the nonperiodie,cas
and thus the sequences B) ére each a bit shorter than the corresponding sequengg in (

As in 81.3 a natural question remains open:

IRegarding 2f), it is likely that slightly longer pairwise-nonrecurrefiinite sequences exist fom = 7; this case has not yet been
run exhaustively. An updated list of the longest pairwisenecurrent finite sequences found thus far will therefoee nimintained at:
http://renaissance.ucsd.edu/PairwiseNonrecurremit.ht
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e What is the maximum lengthof a pairwise-nonrecurreperiodicsequence composedmf> 8 distinct symbols?
If this question can not be answered directly, what are thepEst possible upper and lower bounds on its value?

Curiously, though their definitions are quite simple, noigpatterns have yet been detected in the infinite sequence
given in (1), the finite (nonperiodic) sequences given ), (or the periodic sequences given 8).( Recognizing
such patterns would, of course, be immensely valuable istoocting longer pairwise-nonrecurrent sequences, as
exhaustively searching for such sequences is numericedlyilgitive asm andn are increased, even if the code is
written in a maximally efficient manner. The lack of such pats might lend these sequences well to applications in

cryptography.

2 Efficient generation ofm-colored matrices

The papers of Cooper, Fenner, and Purewal (2008) and Febasarch, Glover, and Purewal (2009) introduce, and
put into context with Ramsey theory, the following notion:

Definition: A px gmatrixAis said to ben-coloredif each elemenay of the matrixA is one ofmsymbols [taken here
to be the numbers 0 througin— 1)] such that there is no set of four integ€isj, k,| } with ay = & = ajk = a;i; that
is, such that there are nmonochromatic rectangleswithin A. A matrix of orderp x q for which such amém-colored
set of elements exists is said toimecolorable.

For example, the matriR below is 2-colored, where the matr which contains two monochromatic rectangles
(a11 = a12 = ayy = ayp anday 1 = a4 = a1 = aa), is NOt:

A:

1
0
1 B=
0

=N
R ORr o
B R OR

0 1
11
1 ol (4)
0 0

R OR R

1
1
O )
o)

Note that any submatrix of am-colored matrix is itself also am-colored matrix. Note also that the notion iof
colorable matrices (of dimension 2) extends immediately-tolorabled-dimensional tensors fat > 2.

In particular, Cooper, Fenner, and Purewal (2008) expleoaiatural questions: for which values{afi,ny,...,ng} is
anng x Ny X ... x ng tensor (of dimensiod > 2) m-colorable, and for which values §f1,nz,...,ng} is such a tensor
not m-colorable? The paper of Fenner, Gasarch, Glover, and RlI(8@09) focuses on refining the bounds on these
two questions specifically in the casedf 2. These two questions are closely related to the new questtided at
the end of 8.4 (and solved exhaustively in the present workrfoe 2 through 8); this new question might in fact be a
significantly easier (that is, for values wflarger than those that can be solved exhaustively), as émensow onlyn
unknowns, rather tham * nz - - - x ng unknowns. Indeed, these two papers inspired the presamdddnvestigation,
which specifically sought a method for the efficient condtaucof largem-colored matrices. To accomplish such a
construction, which is trivial once we know how to generai@pise-nonrecurrent periodic sequences, we first review
the definition ofn x n circulant Toeplitz and Hankel matrices:

Definition: An nx ncirculant Toeplitz matrix is a matrix that is constant aldtsgextended diagonals, and is defined
by the symbols in the positions along its top row. An x n circulant Hankel matrix is a matrix that is constant along
its extended antidiagonals, and is also defined by the sysbdthen positions along its top row.

For example, in the case whare- 4, n x n circulant Toeplitz and Hankel matrices may be written indgkaeral forms

a b c a b c
d a b b ¢ d a

T=1l¢c d a bl @ H=|c g a bl ©)
b ¢ d a d a b c

Theorem: An n x n circulant Toeplitz or Hankel matrix is+colored if and only if the top row of the matrix is a
pairwise-nonrecurrent periodic sequence witeymbols.



Proof. To establish that an x n circulant Hankel matrix isn-colored, we need only (due to the symmetry of the
matrix) compare the top row to all of the other rows of the matnd look for monochromatic rectangles. In particular,
enumerating the rows and columns from zero, for ea€l1,n— 1], looking at the top (zeroth) argth rows of the
Hankel matrix, in order for there to be no monochromaticargtes, no single symbol can simultaneously be in both
thei’'th and the modi + s,n)’th positions as well as both thigth and the modlj + s,n)’th positions along the top row
for any distinci € [0,n— 1] andj € [0,n—1]. These are exactly the conditions of pairwise nonrecugapplied to the
top row of the matrix, considered as a periodic sequencecd@be of circulant Toeplitz matrices follows immediately,
via rearrangement of the rows considered in the circulankidiecase [see, e.g5). O

Thus, the circulant Hankel matrices and circulant Toeptitrices with top rows given by36) through @g) give
immediately: a 2-colored 4 4 matrix, a 3-colored & 9 matrix, a 4-colored 16& 16 matrix, a 5-colored 25 25
matrix, a 6-colored 3& 36 matrix, a 7-colored 49 49 matrix, and an 8-colored 6262 matrix.

Further, as3a) through Bg) are the longest pairwise-nonrecurrent periodic seqseanalable at each corresponding
value ofm (proved via exhaustion in 81), it follows immediately that@ored 5x 5, 3-colored 10« 10, 4-colored
17x 17, 5-colored 2& 26, 6-colored 3% 37, 7-colored 5& 50, and 8-colored 63 63 matrices with circulant Hankel
or circulant Toeplitz structure do not exist.

It appears that, with some patience, the largest 9-colanddcbassibly even the largest 10-colored circulant Hankel
and circulant Toeplitz matrices might also be found via Aldon B, as implemented in the single-threaded fortran
codes provided herein, if there is sufficient interest. [@anch with the present code would require a fortran compiler
with ani nt eger * 16 data type; the present implementation of Algorithm B usesessomewhat sophisticated bitwise
arithmetic oni nt eger *8 variables in order to streamline memory usage and thersignéicantly improve execution
speed, and is therefore limited to problems witki 64 on compilers withouitnt eger * 16 data types, such as the
present versions af95 andgfortran. The time-consuming part of Algorithm B is its second hatfdahould be
trivial to parallelize; it also uses memory (and, thus, regleed cache) very efficiently, and incorporates only intege
arithmetic and bit-wise comparisons (that is, there is natiit point arithmetic involved). This is thus an attraetiv
algorithm for GPU-based implementation, if there is ing¢ia extending it to larger problems.
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