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Abstract

Define an “integer matrix” as a matrix with integer elements. This note develops an algorithm,
dubbed Integer Gram-Schmidt (IGS), that for any small integer matrix Am,n of rank r develops the
exact matrix decomposition A = QD−1R, where {Q,D,R} themselves are also integer matrices,
and where the r columns of Q orthogonally span the column space of A, D is diagonal, and
R is in row echelon form; IGS also generates an integer matrix L, the m − r columns of which
exactly span the left nullspace of A. Applying IGS to AT , of course, generates corresponding exact
integer orthogonal bases for the row space and nullspace of A. IGS is a natural modification of
the Modified Gram-Schmidt (MGS) procedure, with at each step each subsequent column of Q
scaled by the inverse of its greatest common denominator (GCD), rather than its 2-norm, in order
to minimize the magnitude of the integers in each column of Q.

1 Main result

Given any real matrix Am,n of rank r, the Modified Gram Schmidt (MGS) algorithm (§5.2.8 of [1])
computes a real matrix decomposition A = QR, where {Q,R} are real matrices, the r columns of Qm,r

orthogonally span the column space of A, QTQ = I, and Rr,m is in row echelon form.
Given any integermatrixAm,n of rank r, we can instead write an exact integermatrix decomposition

A = QD−1R, where {Q,D,R} are integer matrices, the r columns of Qm,r orthogonally span the
column space of A, Dr,r = QTQ is diagonal, and Rr,m is in row echelon form; we can also form an
integer matrix Lm,m−r, the m − r columns of which orthogonally1 span the left nullspace of A. As
just one example with m = 5, n = 3, and r = 3, we may write such a decomposition as

A =


−3 3 1
4 1 −3
4 −2 1
−2 −2 2
−2 2 −3

 , Q =


−3 108 654
4 101 −202
4 −46 305
−2 −124 −100
−2 72 −675

 , L =


234 0
218 10
275 −11
410 7
225 −9

 ,

D =

49 0 0
0 44541 0
0 0 1027170

 , R =

49 −13 −9
0 909 −705
0 0 3390

 .

When such a decomposition is computed correctly, QTQ and LTL are diagonal, QTL and ATL are
zero, and of course A = QD−1R. The Integer Gram Schmidt (IGS) scheme developed in this paper,
which is provided in executable Matlab syntax in Algorithm 1, generates such decompositions exactly
using integer (int64) arithmetic only. As seen in Algorithm 1, IGS consists of eight main steps:

1.) initialize Q = A,
2.) orthogonalize the columns of Q,
3.) strip out the resulting of zero columns of Q,
4.) initialize L = Im×m,
5.) orthogonalize the columns of L against the columns of Q,
6.) orthogonalize the columns of L,
7.) strip out the resulting of zero columns of L, and
8.) generate R = QTA and D = QTQ.

1For the purpose of this paper, “orthogonality” of a set of integer vectors implies solely that the dot product between
any two different vectors in the set is zero; said vectors are not (as is often customary) also assumed to be of unit length.
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Some observations related to the above steps:

(2a) Rather than normalizing the columns of Q, which would convert them to real vectors, we instead
divide each column of Q by its GCD, thus minimizing the magnitudes of its integer entries.

(2b) The i’th column of Q, denoted here qi, is not normalized, so fi = qi · qi ̸= 1. Thus, rather than
updating qj ← qj − (qi · qj)qi as in MGS, we effectively scale the RHS of this update by fi, instead
performing the update qj ← fi q

j − (qi · qj)qi, which keeps the entries of qj as integers after the
update, while projecting the vector qj in the same direction as does the standard MGS update.

(8) Rather than computing R and D while orthogonalizing the columns of Q, it is simplest to just
compute them after the fact, leveraging the identity QT (A = QD−1R) ⇒ (QTA) = (QTQ)D−1R,
where by orthogonality (QTQ) is diagonal, and is thus set equal to D.

The rest of the steps of the Integer Gram-Schmidt algorithm are self explanatory.

Algorithm 1: The Integer Gram-Schmidt (IGS) algorithm, in executable Matlab syntax.

function [Q,D,R, r , L ] = IGS(A)
% Copyright 2025 by Thomas Bewley , pub l i shed under BSD 3−Clause L icense .
[m, n]= s ize (A) ; Q=int64 (A) ; % Convert to i n t e g e r s ( a l l math below done on i n t e g e r s ! )
for i =1:n % or thogona l i z e the columns o f Q

Q( : , i )=Q( : , i )/ gcd vec (Q( : , i ) ) ; f ( i )=dot product (Q( : , i ) ,Q( : , i ) ) ;
i f f ( i )>0 , for j=i +1:n ;
Q( : , j )= f ( i )∗Q( : , j )−Q( : , i )∗ dot product (Q( : , i ) ,Q( : , j ) ) ;

end , end
end
index =[1:n ] ; for i =1:n % s t r i p out the zero columns o f Q

i f f ( i )==0, l=length ( index ) ;
for j =1: l , i f index ( j)==i

index=index ( [ 1 : j −1, j +1: l ] ) ; break
end , end

end
end , Q=Q( : , index ) ; f=f ( index ) ; r=length ( index ) ;
L=int64 (eye (m) ) ; for j =1: r % or thogona l i z e columns o f L aga in s t Q

for i =1:m
L ( : , i )= f ( j )∗L ( : , i )−Q( : , j )∗ dot product (Q( : , j ) ,L ( : , i ) ) ;
L ( : , i )=L ( : , i )/ gcd vec (L ( : , i ) ) ;

end
end
for j =1:m % or thogona l i z e the columns o f L

h( j )=dot product (L ( : , j ) ,L ( : , j ) ) ;
for i=j +1:m

L ( : , i )=h( j )∗L ( : , i )−L ( : , j )∗ dot product (L ( : , j ) ,L ( : , i ) ) ;
L ( : , i )=L ( : , i )/ gcd vec (L ( : , i ) ) ;

end
end
index =[1:m] ; for i =1:m % s t r i p out the zero columns o f L

i f dot product (L ( : , i ) ,L ( : , i ))==0, l=length ( index ) ;
for j =1: l , i f index ( j)==i

index=index ( [ 1 : j −1, j +1: l ] ) ; break
end , end

end
end , L=L ( : , index ) ;
Q=double (Q) ; L=double (L ) ; % convert back to double (Matlab d e f au l t )
R=Q’∗A; D=Q’∗Q; % generate R and D
end % func t i on IGS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ p]=dot product (u , v )
p=0; for i =1: length (u ) , p=p+u( i )∗v ( i ) ; end
end
function [ g]= gcd vec (u)
g=gcd (u ( 1 ) , u ( 2 ) ) ; for i =3: length (u ) , g=gcd ( g , u ( i ) ) ; end
end
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2 Discussion

An exact integer QD−1R decomposition may be rewritten a few different ways:
• as A = Q1R where Q1 = QD−1 is Q with its columns scaled by the diagonal elements of D−1;
• as A = QR1 where R1 = D−1R is R with its rows scaled by the diagonal elements of D−1;
• as A = Q2R2 where Q2 = QD−1/2 and R2 = D−1/2R.

The rational expressions for Q1 and R1 above are, of course, also exact, as are the expressions for Q2

and R2, before the (real) divisions and square roots are calculated. Note that the third form above,
with QT

2 Q2 = I, is equivalent a standard (real) QR decomposition of A.
Note also that an integer QD−1R decomposition of an integer matrix A can sometimes be formed

by taking a standard (real) QR decomposition of A, then attempting to express the (real) elements
of Q as rational expressions. This approach, however, is highly susceptible to error due to the finite-
precision arithmetic involved. IGS, on the other hand, is based on integer arithmetic only, and is thus
not susceptible such errors.

The magnitudes of the elements of an integer QD−1R decomposition grow rapidly as m and n and
the magnitude of the integer elements of A grow. Variable precision integer arithmetic can easily be
implemented to overcome this, starting with 64-bit integers and increasing to 128-bit integers, etc, as
the need arises in the IGS computations.

Integer and rational matrices of the type discussed above play a valuable role in dynamical systems
theory and crystallography [2, 3], and are also valuable in the pedagogical setting when introducing
orthogonal bases of the four fundamental subspaces [4] of a matrix A leveraging simple examples with
integer elements. There has been significant previous work in the generation of rational orthogonal
matrices (see, e.g., [5], and the references contained therein). To the best of our knowledge, the integer
QD−1R decomposition, and the natural modification of the Modified Gram-Schmidt (MGS) procedure
identified herein which exactly generates it, had not previous been discovered, and may well be useful
in such settings.
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