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Abstract

This paper characterizes a C∞ nonlinear feedback control strategy that exponentially stabilizes the oscillations
of the angle φ(t) of a classical variable-length pendulum. This simple system, once properly nondimensionalized,
is governed by φ̈ = −(sinφ+2 ℓ̇ φ̇)/ℓ. The nonlinear feedback control rule applied in this work takes the nondimen-
sionalized length of the pendulum as ℓ(t) = 1+ δ(t)φ(t) φ̇(t), with a feedback gain δ(t) that is gradually increased
as convergence is approached. This is achieved by taking δ(t) = C/Vs(t), where Vs(t) denotes a simplified measure
of the energy of the pendulum oscillations, Vs(t) = φ̇(t)2/2+ 1− cos φ(t). Convergence is attained in the sense of
Lyapunov, in the discrete-time setting introduced by Karafyllis (2012), integrating the derivative of Vs(t) along
system trajectories, 2π radians around the origin in phase space at a time. The fractional rate of convergence, f ,
after each full rotation of the system trajectory about the origin in phase space, for small oscillations of φ(t), is
determined numerically and written, for finite C, as ∆Vs/Vs = −Cp = −f ; for 0 < C ≤ 0.5, it works out that
3π > p > 2 (that is, p is nearly constant over a very large range of C), with p → 3π as C → 0. Conveniently,
it follows for small Vs that C = max t |ℓ(t) − 1| for each oscillation of the system; exponential stabilization of
the oscillations of φ(t) is thus seen to be achieved with this approach by maintaining the oscillations of ℓ(t) at a
constant amplitude (set by C) as long as the control is applied, not by reducing the amplitude of the oscillations
of ℓ(t) as the oscillations of φ(t) subside.

1 Introduction

The study of the dynamics of fixed-length pendulums dates back to Galileo Galilei and Christiaan Huygens in the
1600s. The study of the dynamics of variable-length pendulums, especially those of periodically-varying length
ℓ(t), is also classical (see, e.g., [1, 2]). The stabilization of a fixed-length inverted pendulum via open-loop vertical
vibrations of its pivot point is a well-known related problem [3]. The feedback control problem of pumping up the
oscillations of the angle φ(t) of a variable-length pendulum, via impulsive changes of ℓ(t) appropriately synchronized
with the oscillations of φ(t), has also enjoyed some attention (see [4, 5]). This prior work reveals that (a) effective
feedback controls for stabilizing the oscillations of a variable-length pendulum require an oscillation of ℓ(t) at twice
the fundamental frequency of oscillation of φ(t), and (b) the oscillations of ℓ(t) are required to be phased such that ℓ(t)
reaches its maximums during the upswings of the pendulum [when |φ(t)| is increasing], and ℓ(t) reaches it minimums
during the downswings of the pendulum [when |φ(t)| is decreasing]. These two requirements motivate the simple
feedback rule ℓ = 1 + δ φ φ̇ proposed and studied in the present paper, which is evidently the simplest, smoothest
(C∞) feedback control rule available which achieves both of these requirements (note that a linear controller is
insufficient to provide the required frequency doubling). The convergence behavior of this new feedback control
strategy is analyzed in the present work.

Denoting with “prime” differentiation w.r.t. (dimensional) time τ [e.g., Φ′ = dΦ/dτ ], and following, e.g., [5], the
full nonlinear equation of motion (EOM) of a variable-length hanging simple pendulum of length L(τ) > 0, angle
Φ(τ), and (constant) mass m > 0, rotating in a plane about a fixed support point O, may be found simply via
conservation of angular momentum H ′ = N , where H = mL2Φ′ is the angular momentum of the body about O, and
N = −mgL sinΦ is the net torque about O due to the effective acceleration of gravity g > 0. Neglecting the effects
of the displacement and drag of the air that the pendulum moves through, as well as the friction of the rotation
about the pivot point, we thus obtain

Φ′′ = −(g sinΦ + 2Φ′ L′)/L.

Defining τ0 =
√

L0/g, where L0 is the nominal length of the pendulum, simple rescaling with t = τ/τ0 and ℓ = L/L0,
and writing φ(t) = Φ(τ), leads to the equivalent nondimensional form

φ̈ = −(sinφ+ 2 φ̇ ℓ̇)/ℓ ⇔ ℓ φ̈+ sinφ = −2 φ̇ ℓ̇ , (1)
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where “dot” denotes differentiation w.r.t. (nondimensional) time t [e.g., φ̇ = dφ/dt], and where, in the controlled
setting, ℓ(t) is taken as the control variable. For lack of a better short name, we will refer to (1) as the varpend
(variable-length pendulum) oscillator, which is seen to be of similar simplicity, and perhaps even more important

physical and engineering significance, than both the van der Pol oscillator φ̈− µ(1− φ2)φ̇+ φ = 0, and the Duffing
oscillator φ̈+ δφ+ αφ+ βφ3 = 0, often studied in introductory nonlinear systems courses.

Accounting for the displacement of the air that the pendulum moves through using an “added mass” formulation,
as proposed by [7], reduces the effective gravity g, but leaves the essential form of (1) unchanged. Using such an
added mass formulation, the varpend oscillator (1), with additional RHS damping terms to also account for air drag,
provides a useful model of the oscillations of a singly-tethered hot-air (or, helium-filled) balloon with substantial
excess lift (and, thus, a taut tether). Such applications usually have a winch already installed, to launch and land
the tethered balloon; this existing winch can be used to modulate ℓ(t), implementing the control strategy proposed
herein. This engineering application is important because wind can often introduce hazardous oscillations of such
balloons [8], forcing the system via alternate vortex shedding at frequencies near the resonant frequency of the
varpend oscillator itself, akin to the famous Tacoma Narrows Bridge disaster (see, e.g., [9]); the present control
strategy can be used to subdue such sympathetic oscillations before they get too large.

The varpend oscillator (1) may also work well, in certain settings, for modelling the oscillations of tethered satellite
systems [10], which are also already equipped with winches to deploy and retrieve the tethered satellite subsystem;
implementing the controls developed herein in order to subdue the relative oscillations of such tethered satellites,
using battery power only (recharged by solar panels) without expending any propellant (which is a valuable limited
resource in orbit), might also be found to be useful.

The total (kinetic + potential) energy of the oscillations of this system may be written in the nondimensional
setting as

V = (ℓ2 φ̇2 + ℓ̇2)/2 + ℓ (1− cosφ) ≥ 0. (2)

Note that V approaches zero as the oscillations of the pendulum angle subside, and if

V < 2, (A0)

the oscillations of the uncontrolled (ℓ = 1) system remain within −π < φ(t) < π. For convenience, will will thus
assume (A0) in the remainder of this paper.

In the uncontrolled case, with ℓ = 1, it follows that V ≤ (φ̇2 + φ2)/2, and that

dV/dt = φ̇ (φ̈+ sinφ) = 0.

For ℓ = 1 and small deflections of φ (keeping only the linear term in the expansion of sinφ), (1) reduces to the EOM
of a simple harmonic oscillator, φ̈+φ = 0, with solution φ(t) = c1 sin(φ+c2); keeping only the linear and cubic terms
in the expansion of sinφ (1) reduces it to a Duffing oscillator, φ̈+φ−φ3/6 = 0 (that is, an oscillator with a nonlinear
spring, which softens for finite-amplitude oscillations, thus resulting in a somewhat longer oscillation period than for
infinitesimal oscillations). If ℓ = 1 but the oscillations of φ are not assumed to be small, the full solution of (1) may
be written in terms of the Jacobi amplitude function am(·, ·) as

φ(t) = 2 am
(

√

(c1 + 2)(t+ c2)2/2, 4/(c1 + 2)
)

, (3)

where again {c1, c2} are functions of of the initial conditions on {φ, φ̇}. This solution is periodic, with period T0
satisfying 2π < T0 < ∞ for 0 < V < 2 [see (A0)], and amplitude |φ|max = acos(1 − V ) < π. For small V , φ(t)
by this solution is again nearly sinusoidal; for larger V , the peaks of φ(t) become flattened, and the oscillation
period increases. Of course, the Jacobi amplitude function is not exactly computable in terms of a finite number of
elementary operations, and in practice must be determined via integration. The “closed form” solution (3) is thus,
perhaps, of rather limited practical utility. Note instead that the scalar second-order ODE (1), which is not at all
stiff, is quite simple to integrate numerically using, e.g., a standard RK4 method, with a small timestep ∆t. This
may be done with very high accuracy, and can easily be extended to the controlled settings discussed below.

1.1 Feedback control rules tested

The simple feedback control strategy proposed and considered in this work is to apply

ℓ = 1 + δ φ φ̇ (4)

to the varpend oscillator (1) discussed above.
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Two specific cases of interest for the tuning of δ are considered. In §2, we consider the simplest case, with

δ = constant > 0. (5a)

Unfortunately, this feedback control approach is found (in §2) to provide only asymptotoic convergence as, by the
control rule (4) in this constant δ case, the amplitude of oscillations of the pendulum length ℓ(t) diminish to zero
faster than the amplitude of oscillations of φ(t) themselves diminish to zero.

We thus consider, in §3, a more aggressive control approach, which scales the feedback gain δ(t) with the inverse
of a measure of the energy of the oscillations of φ(t). This case may be written as

δ = C/Vs where Vs = φ̇2/2 + 1− cos φ ≥ 0. (5b)

Note that Vs(t) is a simplified approximation of the energy of the oscillations of the system given in full by V (t)
in (2). [The use of more accurate approximations of V (t) in the computation of δ(t) were also tested, but did not
provide any apparent benefit in the resulting system behavior.] For small C, Vs(t) [and, thus, the feedback gain δ(t)]
is found to change only gradually over time when implementing this approach. The synchronization of the essential
oscillations of ℓ(t) with φ(t) and φ̇(t) (that is, with ℓ(t) oscillating at the second-harmonic of the oscillations of φ(t),
with the appropriate phase; see §1), by applying (4) with (5b), is thus largely the same as in the constant δ case
[applying (4) with (5a)], with the feedback gain δ(t) now growing steadily as convergence is approached.

Note also that, from here forward, for notational simplicity, we will largely drop the (t) indications, used sporad-
ically above, from the notation used.

1.2 Numerical results

To better illustrate the behavior of the controlled varpend oscillator (1) studied in this work, we take the (perhaps,
unusual) first step of introducing the dynamics of this controlled system with a couple of numerical simulations
(using standard RK4 with ∆t = 0.01, and ICs of φ(0) = 1 and φ′(0) = 0). The dot-dashed curves in Figure 1
illustrate the behavior of this system when the control (4) with (5a) is applied, taking δ = 0.2, and the solid curves in
Figure 1 illustrate the behavior of this system when the control (4) with (5b) is applied, taking C = 0.1. Asymptotic
convergence is seen in the former case, and exponential convergence (over 13 orders of magnitude, down to machine
zero) is seen in the latter case; this paper sets out to explain this behavior.

2 Case with constant δ

In the simple case with constant δ, it follows from (4) with (5a) that

ℓ̇ = δ (φ̇2 + φ φ̈). (6)

Given (1), (4), and (6), noting that
a

1 + b
= a− b a

1 + b
, it follows that

(1 + δ φ φ̇) φ̈+ sinφ = −2 φ̇ δ (φ̇2 + φ φ̈),

(1 + 3 δ φ φ̇) φ̈+ sinφ = −2 δ φ̇3,

φ̈+
sinφ

1 + 3 δ φ φ̇
=

−2 δ φ̇3

1 + 3 δ φ φ̇
,

φ̈+ sinφ =
−2 δ φ̇3 + 3 δ φ φ̇ sinφ

1 + 3 δ φ φ̇
. (7)

We must ensure that the denominator on the RHS of (7) remains positive, and thus that φ̈ remains bounded in this
model. This may be accomplished easily by leveraging the Cauchy-Schwarz inequality, in the form |φ φ̇| ≤ (φ2+φ̇2)/2,
from which it follows immediately that φ̈ remains bounded by assuming that

0 < δ (φ2 + φ̇2) < 2/3; (A1)

that is, for a given maximum value of (φ2 + φ̇2) selecting δ sufficiently small, or for a given δ selecting (φ2 + φ̇2)
sufficiently small. This upper bound on the maximum allowable δ is tight (that is, non-conservative); for δ (φ2+φ̇2) =
2/3, when φ̇ = −φ, the denominator of (7) goes to zero, and φ̈ diverges. For δ (φ2 + φ̇2) < 2/3, no combinations of
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Figure 1: Simulations of the controlled varpend oscillator: (a,b) trajectories in phase space {φ, φ̇}, (c) a simplified
measure of the energy of the oscillations of φ(t) as a function of time, Vs(t), (d) pendulum length as a function of
time, ℓ(t). The dot-dashed curves in (a,c,d) illustrate the behavior of (4) with (5a), taking δ = 0.2, and the solid
curves in (b,c,d) illustrate the behavior of (4) with (5b), taking C = 0.1. For reference, the black line in (c) indicates
a slope corresponding to a reduction of Vs(t) by an order of magnitude every ∆t = 2.445 · 2π nondimensional time
units, as predicted by the analysis in the last paragraph of §3.2.
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φ and φ̇ drive the denominator to zero. In practice, δ should be kept significantly smaller than the limit implied by
this upper bound in order to ensure a well-behaved controlled system, accurately governed by the model given in (1)
with appropriately small accelerations φ̈.

Equation (7) is the formula for a “damped” oscillator; whether the (cubic) RHS terms result, in total, in stabi-
lization or destabilization of this oscillator is the central question of interest addressed below.

Noting (7) and the definition of Vs in (5b), it follows that

dVs
dt

= φ̇ (φ̈+ sinφ) = φ̇

(

−2 δ φ̇3 + 3 δ φ φ̇ sinφ

1 + 3 δ φ φ̇

)

=
−2 δ φ̇4 + 3 δ φ φ̇2 sinφ

1 + 3 δ φ φ̇
. (8)

It is seen in the (exact) expression above that, if δ = 0, then dVs/dt = 0, and thus Vs is a constant, set by the initial
conditions on φ and φ̇. It follows from (8) that

dVs
dt

≤ − 2 δ φ̇4

1 + 3 δ φ φ̇
+

3 δ φ2 φ̇2

1 + 3 δ φ φ̇
. (9)

Note that, for small φ (and thus sinφ ≈ φ), the bound given in (9) is tight. It is seen above that, assuming (A1),
the time derivative of Vs along system trajectories, considered now as a candidate Lyapunov function, is bounded
above by two terms, forming a “competition” of sorts. [Quantification of, in total, which term eventually “wins” this
competition is the key question of interest.] The first term on the RHS is negative semidefinite (that is, stabilizing),
and goes to zero (quartically) whenever φ̇ goes to zero, whereas the second term is positive semidefinite (that is,
destabilizing), and goes to zero (quadratically) whenever either φ or φ̇ goes to zero. Whenever φ2 > (2/3)φ̇2 (which
happens, for two finite periods during each revolution of the system trajectory around the origin in phase space,
even for infinitesimal oscillations), the magnitude of the destabilizing term becomes greater than the magnitude of
the stabilizing term, and thus we can not establish that dVs/dt ≤ 0 everywhere (thus proving traditional Lyapunov
stability) in any finite region surrounding the origin using this candidate Lyapunov function.

Further, no better candidate Lyapunov function for establishing convergence of this controlled system has yet
been discovered (though, not for lack of trying). In this regard, possibly taking the candidate Lyapunov function Vs
considered above as an initial guess, a constructive or “learning” strategy, such as that proposed in [11], may well
be able to identify a new Lyapunov function VL ≥ 0, with dVL/dt < 0 along system trajectories everywhere within a
finite region surrounding the origin in phase space. However, our efforts at generating such a proof of stability, using
such a numerically-generated Lyapunov function VL, have so far been unsuccessful.

As mentioned in (3), taking δ = 0 in (7), the solution of the resulting ODE, φ̈+ sinφ = 0, in fact may be written
in “closed-form” in terms of the Jacobi amplitude function; this solution reduces to simple sinusoidal oscillations
(that is, to circular trajectories in phase space {φ, φ̇}) if Vs is taken as small. On the other hand, taking δ > 0, a
similar “closed-form” solution of (7), with its full (rather complicated) RHS, appears to be unavailable.

However, for finite δ > 0, assuming (A1) [but, not assuming infinitesimal Vs], the (oscillatory) dynamics of (7)
are quite easy to simulate numerically with high accuracy [the ODE (7) is not stiff], using a standard RK4 method
and small timestep ∆t. A typical such simulation result, taking {φ, φ̇}t=0 = {1, 0} and δ = 0.2 [thus satisfying (A1)],
is illustrated in Figure 1; other ICs and values of δ satisfying (A1) lead, qualitatively, to the same simple behavior.
It is observed that, for finite δ, oscillations do initially decay, but that this decay rate diminishes rapidly as Vs gets
small, with the system oscillations eventually approaching nearly circular trajectories in phase space.

This behavior may be understood by considering (7) for finite δ > 0 but small Vs. Defining

ǫ =
√

2Vs ≈ (φ2 + φ̇2)1/2, (10a)

the effect of both terms on the RHS of (7) in this setting are diminished [that is, they are O(ǫ3)], and sinφ = φ+O(ǫ3).
Thus, again, the system trajectories {φ, φ̇} are nearly circular, and may be well approximated as {ϕ, ϕ̇} where

ϕ = ǫ sin(t+ ψ), ϕ̇ = ǫ cos(t+ ψ). (10b)

To establish that the net effect of the stabilizing term is greater than that of the destabilizing term on the RHS
of (9) in the limit of small ǫ, thus reducing Vs with each revolution around the origin in phase space, we may simply
integrate the RHS of (9) [dropping the O(ǫ2) terms added to unity in the denominator, which in the small ǫ limit
are negligible] around 2π radians of the approximate trajectory {ϕ, ϕ̇} suggested in (10), which gives

∆Vs = δ

∫

2π

0

[

−2 ϕ̇4 + 3ϕ2 ϕ̇2
]

dt = ǫ4 δ

∫

2π

0

[

−2 (cos(t+ ψ))4 + 3 (sin(t+ ψ))2 (cos(t+ ψ))2
]

dt

= ǫ4 δ (− 3π/2 + 3π/4) = −3π V 2

s δ < 0.

(11)
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It is seen that, for small ǫ, the negative term indeed “wins” the “competition” mentioned previously, providing, in
total, a stabilizing effect. However, it is also seen that, as Vs gets small, the fractional reduction of Vs with each
successive orbit around the origin, ∆Vs/Vs ≈ −3π Vs δ, reduces to zero (that is, the RHS is itself proportional to
Vs), thus indicating only asymptotic convergence. We thus abandon the constant δ case, in favor of that considered
in the next section.

3 Case with δ(t) = C/Vs(t)

Given the observation in §2 that, using the control rule (4) with constant δ, the variations of the control input
diminish to zero faster than the state oscillations themselves do, thus providing only asymptotic convergence [see
(11) and Figure 1], we consider now the scaling of δ(t) with the inverse of Vs(t), taking δ = C/Vs, in order to maintain
the amplitude of the oscillations of ℓ(t) even as the amplitude of the oscillations of φ(t) are diminished.

The analysis proceeds essentially as before, with a few more terms to deal with. By (4) with (5b), it now follows
[cf. (6)] that

ℓ̇ = (C/Vs) (φ̇
2 + φ φ̈) + φ φ̇ δ̇ = (C/Vs) (φ̇

2 + φ φ̈)− (C/V 2

s )φ φ̇
2 (φ̈+ sinφ). (12)

Given (1), (4), (5b), and (12), it thus now follows [cf. (7)] that

[1 + (C/Vs)φ φ̇] φ̈+ sinφ = −2 φ̇ [(C/Vs) (φ̇
2 + φ φ̈)− (C/V 2

s )φ φ̇
2 (φ̈+ sinφ)],

[1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2

s ] φ̈+ sinφ = −(2C φ̇3/Vs) [1− φ (sinφ)/Vs],

φ̈+
sinφ

1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2
s

=
−(2C φ̇3/Vs) [1− φ (sinφ)/Vs]

1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2
s

,

φ̈+ sinφ =
−(2C φ̇3/Vs) [1− φ (sinφ)/Vs] + [3C φ φ̇/Vs − 2C φ φ̇3/V 2

s ] sinφ

1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2
s

. (13)

We must again ensure that the denominator on the RHS of (13) remains positive, and thus that φ̈ remains bounded.
To accomplish this, we define r = φ̇/φ and, noting that Vs/φ

2 = (1 + r2)/2, write the denominator of the RHS of
(13) as

1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2

s , 1 + Cf ⇒ f(r) = r [6/(1 + r2)− 8 r2/(1 + r2)2].

Note that f(r) → 0 as r → ±∞. The global minimum value of f(r), over −∞ < r <∞, is easy to calculate:

fmin , min
r
f(r) = −

[

207/128 + 33
√
33/128

]1/2
/8 ≈ −1.7602 at r = r̄ = −

[

6−
√
33
]1/2 ≈ −0.50541.

We therefore ensure that φ̈ remains bounded by taking C < 1/|fmin|; that is, by assuming that

0 < C < 1/|fmin| = Cmax = −[(69− 11
√
33)/2]1/2/3 ≈ 0.56813. (A2)

This upper bound on the maximum allowable C is tight; for C = Cmax, when φ̇/φ = r̄, the denominator of (13)
goes to zero, and φ̈ diverges. For C < Cmax, no combinations of φ and φ̇ drive the denominator to zero. In practice,
C should be kept significantly smaller than Cmax in order to ensure a well-behaved controlled system, accurately
governed by the model given in (1) with appropriately small accelerations φ̈.

Again, whether the various RHS terms of (13) result, in total, in stabilization or destabilization of this oscillator
is the central question of interest addressed below. Noting the definition of Vs in (5b), we now [cf. (8)] have

dVs
dt

= φ̇ (φ̈+ sinφ) = φ̇

(

−(2C φ̇3/Vs) [1− φ (sinφ)/Vs] + [3C φ φ̇/Vs − 2C φ φ̇3/V 2

s ] sinφ

1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2
s

)

=
−(2C φ̇4/Vs) [1− φ (sinφ)/Vs] + [3C φ φ̇2/Vs − 2C φ φ̇4/V 2

s ] sinφ

1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2
s

. (14)

It is seen in the (exact) expression above that, if C = 0, then dVs/dt = 0, and thus Vs is a constant, set by the initial
conditions on φ and φ̇. It follows from (14) [cf. (9)] that

dVs
dt

≤ −2C φ̇4/Vs + 2C φ2 φ̇4/V 2

s + 3C φ2 φ̇2/Vs − 2C φ2 φ̇4/V 2

s

1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2
s

=
(C φ̇2/Vs)(−2 φ̇2 + 3φ2)

1 + 3C φ φ̇/Vs − 2C φ φ̇3/V 2
s

. (15)
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Again, for small φ (and thus sinφ ≈ φ), the bound given in (15) is tight. It is seen that, assuming (A2), the time
derivative of Vs along system trajectories, considered as a candidate Lyapunov function, is again bounded above
by a competition of two terms, one negative semidefinite (stabilizing) and one positive semidefinite (destabilizing).
Whenever φ2 > (2/3)φ̇2, the magnitude of the destabilizing term becomes greater than that of the stabilizing term,
and thus we can again not establish that dVs/dt ≤ 0 everywhere in any finite region surrounding the origin using
this candidate Lyapunov function.

3.1 Analysis for small C

If we now also assume that both C and Vs are small, the terms added to unity in the denominator of (15) are
negligible. In this case, Vs is nearly constant, and system trajectories are nearly circular. Integrating the RHS of
(15) around 2π radians of the circular approximate trajectory {ϕ, ϕ̇} defined in (10) as before now gives

∆Vs =

∫

2π

0

(C/Vs)[−2 ϕ̇4 + 3ϕ2 ϕ̇2] dτ = ǫ4 (C/Vs)

∫

2π

0

[

−2 (cos(t+ ψ))4 + 3 (sin(t+ ψ))2 (cos(t+ ψ))2
]

dt

= 4Vs C (− 3π/2 + 3π/4) = −3π Vs C < 0.

(16)

As Vs gets small, the fractional reduction of Vs with each orbit around the origin, ∆Vs/Vs = −3π C, now remains
constant [cf. (11)], thus establishing exponential convergence, for small C and small Vs, in the discrete-time sense of
[6] mentioned previously.

3.2 Analysis for finite C

As mentioned previously, for larger values of C, closed-form solutions of system trajectories, which spiral in to the
origin [albeit, with non-monotonically decreasing Vs(t), as illustrated in Figure 1c] are apparently not available. Note
in particular [in Figure 1b] that, for small ǫ =

√
2Vs, these solutions are not simply decaying circular orbits; this is

because the (complicated) four terms in the numerator of the RHS of (13) are now also O(ǫ), and the three terms in
the denominator of the RHS of (13) are all O(ǫ0).

However, the full nonlinear EOM in this case, (13), is again easily integrated numerically using a standard RK4
approach with small ∆t to determine φ(t). We perform such simulations for small initial conditions {φ, φ̇}t=0, and
then calculate Vs both before and after a full (2π radians) revolution of the system trajectory about the origin in
phase space. [This may be done either directly, via the definition of Vs in (5b), or indirectly, via integration of
the RHS of (14) along system trajectories; both approaches converge, for small ∆t, to the same answer.] We may
represent the convergence rates in these simulations [cf. (16)] as

∆Vs/Vs = − pC = −f < 0. (17)

Figure 2 plots the results of such tests for C ranging from 0.001 to 0.5. Note that p→ 3π as C → 0, as determined
analytically in §3.1. For C = 0.5, the calculated value of f is 0.993.

As also illustrated in Figure 2c [and, quite convenient from the perspective of controller design], it follows from

ℓ = 1 + δ φ φ̇, δ = C/Vs, Vs = φ̇2/2 + 1− cos φ,

the fact that Vs ≈ (φ̇2 + φ2)/2 for small Vs, and the relation |φ φ̇| = max t (φ
2 + φ̇2)/2 due to Cauchy Schwarz, that,

for small Vs, for each oscillation of the controlled system,

C = max t |ℓ(t)− 1|. (18)

Note in these plots that the fractional reduction of Vs per complete revolution around the origin in phase space,
f = −∆Vs/Vs (in a sense, the “discrete-time rate of exponential convergence” in this system), increases for increasing
C, approaching f = 1.0 (that is, driving Vs to zero in a single swing) as C → Cmax. Recall also that C must be kept
smaller than Cmax [see (A2)] in order to keep φ̈(t) from diverging; practical constraints might limit control solutions
even further. For example, in practical application, keeping C [see (18)] to somewhere around, say, 1% to 10%, might
be preferred. As shown in Figure 2, this corresponds to fractional reductions of Vs per revolution around the origin
in phase space of 9% to 61%, which is still quite substantial. For example, a fractional reduction rate ∆Vs/Vs of 61%
corresponds to reducing Vs by an order of magnitude every ln(0.1)/ln(1−0.61) = 2.445 revolutions around the origin
in phase space, which for small Vs again takes T0 ≈ 2π nondimensional time units. For reference, the black line in
Figure 1c indicates a slope corresponding to a reduction of Vs(t) by an order of magnitude every ∆t = 2.445 · 2π
nondimensional time units, which matches well the sustained exponential rate of reduction of Vs seen in simulation
for C = 0.1.
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Figure 2: Exponential convergence behavior of present control approach for small Vs and finite C, with 0.0001 ≤
C ≤ 0.5. (a) The fractional reduction of Vs per revolution around the origin in phase space, f = −∆Vs/Vs, versus C.
(b) The coefficient p = f/C in (17) versus C [note that, for diminishing C, p → 3π, as indicated by the dot-dashed
curve, and as determined analytically in (16)]. (c) The corresponding maximum magnitude of the deviations of the
pendulum length, max t(|ℓ(t)− 1|), versus C [note that, conveniently, C = max t(|ℓ(t)− 1|)].

3.3 The “curious caveat”

As for the curious caveat, note that the above analysis only establishes that Vs [see (5b)] converges exponentially (in
a discrete-time sense); the control inputs [that is, the fluctuations of ℓ(t)] actually remain O(1) as {φ, φ̇} converge
to zero as long as the control is applied. This must in fact be the case if exponential convergence is sought, as the
control term ℓ̇ multiplies φ̇ as it enters the evolution equation (1); to remain effective even as the oscillations of {φ, φ̇}
get small, it is necessary that the fluctuations of ℓ(t) remain O(1).

4 Conclusions

Combining the varpend oscillator (1) with the control rule (4) taking (5a) leads to an EOM that may be written as
(7); assumption (A1) is necessary and sufficient to ensure that φ̈ is bounded. In this case, dVs/dt is given (exactly)
by (8), and a sharp upper bound on dVs/dt is given by (9), which exhibits a competition between two terms, one
negative semidefinite, and one positive semidefinite. Though the resulting Vs(t) indeed decreases over time (albeit,
non-monotonically), convergence in this case is found to be only asymptotic (see Figures 1a and c). This is consistent
with the fact that, after each full revolution of the system trajectory about the origin in phase space, the fractional
decrease of Vs in this case is found to approach ∆Vs/Vs ≈ −3π Vs δ [as determined analytically in (11)], which
diminishes as Vs is reduced.

Combining (1) with (4) taking (5b), on the other hand, leads to an EOM that may be written as (13); assumption
(A2) is necessary and sufficient to ensure that φ̈ is bounded. In this case, dVs/dt is given (exactly) by (14), and
a sharp upper bound on dVs/dt is given by (15), which again exhibits a competition between two sign-semidefinite
terms. The resulting Vs(t) in this case decreases over time exponentially, albeit (again) non-monotonically (see
Figures 1b and c). After each full revolution of the system trajectory about the origin in phase space, the fractional
decrease of Vs is found in this case to approach ∆Vs/Vs ≈ −pC [see (11)], with 3π > p > 2 for 0 < C < 0.5, with
(as determined analytically) p → 3π as C → 0. The fluctuations of ℓ(t) actually remain O(1) in this case as {φ, φ̇}
converge towards zero. In application, once the oscillations of {φ, φ̇} diminish (exponentially) to the desired value,
one may simply (smoothly) reduce C to zero, and thus [by (4) and (5b)] ℓ(t) will return (smoothly) to 1 [that is,
L(t) will return (smoothly) to its target value L0].
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