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Abstract

We present numerical results illustrating the successful state feedback control of a spatially developing boundary-layer
flow system. Control is applied using the noncausal framework developed in Part I of this study. After addressing some
important regularization issues related to the proper treatment of the infinite-dimensional nature and semi-infinite spatial
extent of the present system, we compute the state-feedback control gains according to the equations developed in Part I at
several spanwise wavenumbers f;. We then inverse transform the result to obtain spatial convolution kernels for determining
the control feedback. The effectiveness of the controls computed using these feedback kernels, which are well resolved on
the computational grid and spatially localized in the spanwise direction, is tested using direct numerical simulation of the
boundary-layer flow system. A significant damping of the flow perturbation is observed, which is of the same order as the
damping that arises when applying significantly more expensive iterative adjoint-based control optimization schemes.

(© 2003 Elsevier B.V. All rights reserved.
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1. Introduction subcritical transition to turbulence. Since the system
eigenfunctions in boundary-layer flows are highly

The transition of a boundary-layer flow system nonorthogonal, analysis and control strategies based
from the laminar state to the turbulent state is trig- on the system eigenvalues alone are generally inad-
gered via mechanisms of flow instability whose phys- equate for this system, and linear analyses based on
ical explanation and feedback stabilization are current pseudo-modes (see [14,15]) and input/output transfer
areas of active fundamental and applied research. function norms (see [2,3]) are preferred. In physical
The present paper considers small, spatially devel- terms, streamwise vortices which happen to appear
oping, three-dimensional perturbations to a laminar upstream evolve spatially into very strong stream-
boundary-layer flow. Such perturbations often lead to wise streaks downstream; these streamwise streaks

are often strong enough to trigger secondary (non-
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triggering of such instability mechanisms via
state-feedback control. The estimator developed in
Part I is currently under numerical investigation and
will be reported in future work.

In Part I of this work (see [4]), we introduced
a new noncausal framework for feedback control
of the present system which leverages the peculiar
parabolic-in-space nature of boundary-layer flow sys-
tems. The reader is referred to Part I for the derivation
of the control technique to be used in the present
paper and discussion of how it fits in to the existing
body of literature in the field of flow control.

Moving from the theoretical formulation of an ap-
propriate control strategy for a fluid system to numer-
ical implementation and testing such strategy is often
nontrivial due to some special considerations that are
required to handle properly the infinite-dimensional
nature and infinite or semi-infinite spatial extent of
fluid systems. The problem essentially boils down to
getting the control feedback gains for the PDE system
to roll off sufficiently rapidly as a function of the spatial
wavenumbers, and is akin to the issue (which controls
engineers are already familiar with) of getting the con-
trol feedback to roll off sufficiently rapidly as a func-
tion of the temporal wavenumber in ODE systems,
as evidenced in a Bode plot. Significant progress has
already been made on this subtle issue, which is dis-
cussed further in [13] for iterative adjoint-based con-
trol optimization problems and in [7] for Riccati-based
feedback control calculations. After a brief discus-
sion of the numerical discretization used in the present
work in Section 2, we will discuss the important issue
of regularization of the present analysis in Section 3.
The resulting localized kernels are presented in Sec-
tion 4, and the effectiveness of the approach is verified
by the simulation results presented in Section 5.

2. Numerical discretization

The numerical discretization of the boundary-layer
flow system studied in the present work (and dis-
cussed in detail in Part 1) is fairly standard. In the
wall-normal direction y, the actual flow perturbations
evolve in a semi-infinite domain [0, co]. Numerically,
we must solve the system on the finite domain [0, y.].
The y-discretization points used in the present study
are the modified Chebyshev—Gauss—Lobatto points

(see [17])
Voo 1 + cos(mi/N)
— 7 1
(i) 2 ‘1 + ¢ — cos(mi/N) M
fori=1,...,N,, and appropriate boundary conditions

are applied at y., to emulate the far field. The normal
derivative operators, DF = §¥/5y*, are approximated
via a spectral collocation method, which is discussed
in detail in [17]. We take special care to avoid the spu-
rious eigenvalues discussed in [3] by using the method
described by Huang and Sloan [8]. The key of this ap-
proach is the use of a polynomial of degree (N — 2)
for the approximation of the second-order derivative
term in the Orr—Sommerfeld/Squire equations when
all other terms in these equations are approximated by
polynomials of degree N.

We use a uniform grid in the streamwise direction
x, and discretize our system using the “delta” formu-
lation described by Middleton and Goodwin [11]. The
matrix Q; = (1/4) fOA exp(A4yt)dr that arises in this
discrete-in-x problem formulation (see Part 1) con-
tains a matrix exponential, which is computed using a
scaling and squaring method on Padé approximations.
The details of this method may be found in [12,16].

In the spatially homogeneous spanwise direction z,
the control problem is first decoupled and solved on
a wavenumber-by-wavenumber basis using a Fourier
representation, as discussed in Part I. We then inverse
Fourier transform the resulting feedback gains to
determine spatially localized feedback convolution
kernels using the FFTW library presented in [6].

3. Regularization of the control

As shown in Part I, the discretized state equation
may be written as

oqr = QArqQr + QBrdr + QuDpwy. (2)

In order to insure that the control distribution varies
smoothly in x, we penalize the square of d¢/dx =
d?v,,/dx? in the cost function
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which may be approximated, after discretizing in x
and y, by

S = ZA[(q) 0q; + (5,07 ]

i=0

gt 0o
+; {/f g; aﬂ 3)
where
A, 00
o=| 0 I, 0 |,
0o 0 [/

and /; is a diagonal matrix with the corresponding
local wall-normal grid spacing on the elements of the
diagonal. Note that d¢;/0x may be approximated by
(¢p;— ¢pi—1)/4. By defining ¢_ = ¢y we can therefore
write the cost function as

N
f=Z{Aq7qu+( 2+ ) b; i

i=0

4. 4.
+j ¢i—l¢i—1:| *2j¢0¢0

Z{(dn it b n}

In order to express this cost function in the classical
quadratic form, we append ¢;_; to our state vector.
We thus define

V—( N ) @)
o di1)

Noting that d¢py—; = (1/4)pr — (1/4)p—1, and us-
ing the discrete state-space evolution of state (2), we

obtain a new discretized state equation
Oy = Ay + By pi + Dpwi, (5)

where

QA 0 QD
k= , Dp= ,
0 —1/4 0
Qi By
B, = .
1/4

Note that (5) and (2) are completely equivalent. Now
define the augmented state

q = (qfv>, (6)
qy

where q)' follows the disturbance model defined in Part
I. Using this augmented state qj in the cost function,
we obtain

N
S = 1) 0} + ¢; R
i=0

+(Ng;) ¢i + ¢ Nq; ], (7
where

(00 (40 0
Q_OO’Q_O/E/A’

R=A4/3+ /A and N=(0 —/}/4 0).
Now define a new control variable
¢ =R™'Nqi + R'?¢,
=—((3/ MRy + R ;. (8)

Using relations (7) and (8), the cost function becomes
a standard discrete quadratic form

N

I =Y 1@ 0" + ¢ o)), 9)
i=0

where OV = 0* — N*R™!N, and plant (2) is trans-

formed to the standard discrete state space form
oq} = 4;'qi + BY 97, (10)
where A) = 4! — B{R~'N and BY = B{R™'.

We can now find a feedback control law for this
problem as described in Part I:

o =K qi- (1)
Combining (11), (10) and (8) we can express ¢y as
a simple function of qj:

bk = Ki'1140, (12)

where KO, | = —R™VA(KY,, + R™V2N) [T, 142~
RTVH(KY, + R™'N)B.

Our objective is to find a sufficiently smooth
control that minimizes the perturbation energy
Z?[:o A(q);Oq;. When the spanwise wavenum-
ber f tends to zero, we find that the gain ma-
trix K° for the control problem as formulated
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Fig. 1. Control gain for §=0.1 related to the normal vorticity, at the
middle of the control domain [0.5,0.8], using (—) a wall-weighted
objective function, and (- - -) an objective function without a
wall-weighting term.

thus far is large for y > J,, as depicted in the
dashed curve in Fig. 1. This means that flow
perturbations outside the boundary layer affect the
control at the wall strongly, which is not intended.
Further, since the boundary-layer flow actually takes
place in a semi-infinite domain, 0 < y < oo, K° de-
pends strongly on the numerical upper bound y.
when f§ goes to zero, which is nonphysical.

We must therefore reformulate our control objec-
tive in order to arrive at a physically meaningful con-
trol strategy. Note that we are not actually interested
in controlling the free-stream perturbations. Further-
more, since ¢ will ultimately be estimated by mea-
surements taken at the wall, we will probably have
only a poor estimate of the flow perturbations outside
the boundary layer in the final (estimator-based) im-
plementation. We thus refine our objective function
such that the control minimizes the energy of the per-
turbation only inside the boundary layer. To do so, we
simply use the second wall-normal derivative of the
longitudinal velocity of the base flow, §*U/5y? (here-
after denoted by U""), to weight appropriately the di-
agonal matrix I, in O, where (I;);; = 6;j(Viq1 — ¥i)
|U!" /U . |. Fig. 1 represents the profiles of the control
gain for a wavenumber of f§ = 0.1, before and after
weighting the matrix /; with |U” /U . |. We see that,
in the weighted control problem, the resulting control

feedback is no longer as heavily dependent on the per-
turbations outside the boundary layer.

4. Spatially localized convolution kernels

By inverse Fourier transforming the gain matrices
K%, we obtain feedback convolution kernels which
are spatially localized in the spanwise direction z (see
[1,7]). Physically, this means that the control at a
spanwise location z depends only on the input per-
turbation in the vicinity of this spanwise location.
Fig. 2 depicts representative convolution kernels re-
lating the streamwise and wall-normal velocity of per-
turbation at xo = 0.5 to the control input on the wall
on x €[0.5,0.8] as a result of the present control for-
mulation. To obtain the control at the wall position x;
and z, we simply convolve the kernel in the plane at
the streamwise location x; with the input perturbation
q in the vicinity of the spanwise location z, as de-
picted in Fig. 3. As expected, the convolution kernels
depicted in Fig. 2 do not exhibit spatial localization in
the streamwise direction x, but are elongated in this
direction.

It is significant to note that our objective function,
which up to this point has been targetted on the min-
imization of the perturbation energy over the entire
streamwise extent [xp,xy] of the domain of control
under consideration, may easily be generalized using
present formulation to target specifically the perturba-
tion energy at the end of the control domain, xy. To
accomplish this, we simply add to the cost function
(3) a penalty term on the energy of the perturbation
at the end of the control domain

N
I =Y AlQ);0q; + /5 ¢ bi]

i=0

0 oY) LT PO
i=1

where X1 is the initial condition of the Riccati
equation which arises when solving the feedback
control problem (see Part ). We may target these
outflow (“terminal”) perturbations exclusively simply
by setting O = 0. Fig. 4 represents the streamwise
and wall-normal kernels for this new optimization
problem.
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Fig. 2. Isosurfaces of the components of the feedback convolution kernel K°(x, y,z) relating (a) the streamwise component of the velocity
u (x=0.5,y,z) and (b) the wall-normal component of the velocity v (x = 0.5, y,z) to the control input ¢ (x,z=0) on x € [0.5,0.8]. The
cost function in this case is the minimization of the perturbation energy on the interval x € [0.5,0.8].

Spanwise z )

Fig. 3. Relation between the flow system and the control input. The control ¢ (x = x;,z) is found by convolving the feedback kernel K°
in the plane x = x; with the augmented state qf in the vicinity of the spanwise location z.

5. Numerical simulations

By inserting the feedback convolution kernels il-
lustrated in Fig. 2 into a direct numerical simula-
tion (DNS) code, we now perform simulations of
the feedback controlled system, assuming full knowl-
edge of the initial perturbation qjj. For comparison, we
have also calculated the effectiveness of controls de-

termined by applying an iterative, adjoint—based con-
trol optimization strategy, as developed by Cathalifaud
and Luchini [5].

To perform the boundary-layer flow simulations,
we used the spectral DNS code developed by Lund-
bladh et al. [10], which accurately solves the full non-
linear 3D incompressible Navier—Stokes equations
in the boundary layer and correctly accounts for the
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Fig. 4. Isosurfaces of the components of the feedback convolution kernels K(x, y,z) relating (a) the streamwise component of the velocity
u (x=0.5,y,z) and (b) the wall-normal component of the velocity v (x = 0.5, y,z) to the control input ¢ (x,z=0) on x € [0.5,0.8]. The

cost function in this case is the minimization of the perturbation energy at x = 0.8.

Fig. 5. Longitudinal streaks without control (top), with present feedback control strategy (bottom left), and with the iterative adjoint-based

control optimisation strategy of [5] (bottom right).

effects of control inputs on the wall, as thoroughly
benchmarked in [10].

Fig. 5 displays the isolines of the streamwise
velocity of perturbation in a x,z plane located at
y = 2.022, both without and with control. We have
tested a worst-case (a.k.a., “optimal”) initial per-

turbation, that is, a perturbation whose energy is
amplified maximally over the computational domain
under consideration in the uncontrolled system. This
kind of perturbation has been computed previously
by Luchini [9], who found that such perturbations
come in the form of stationary streamwise vortices,
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Fig. 6. (a) Evolution of the energy of perturbation £ using (—-—) no control, (—) the present feedback control strategy, and (— —) the
iterative adjoint-based control optimization strategy of [5]. (b) Evolution of the control energy using (—) the present strategy, and (— —)

the adjoint-based strategy.

whereas the velocity field they induce is dominated
by streamwise streaks. This is a typical behaviour in
shear-driven flows.

The control is applied over [xg,xy]=1[0.5,0.8], and
we notice a very similar reduction of the perturbation
magnitude in both the present feedback control for-
mulation and the iterative adjoint-based control opti-
mization.

We have also computed the energy of the pertur-
bation £ = [~ fZZl u?>dzdy. Fig. 6(a) displays the
streamwise evolution of this energy. In the present
feedback control formulation, the blowing/suction ve-
locity v,, is part of the state vector q*. This means
that, using the control law (12), the control at each
streamwise station x; depends on the velocity of blow-
ing/suction at xo, v,,(xg), which we impose to be zero;
this leads to the control in the present formulation gen-
tly ramping up from zero at x = x;. On the contrary,
in the adjoint-based scheme the control v,,(xy) expe-
riences a large jump at x = xy, as shown in Fig. 6(b).
This explains, at least in part, the difference of effect
between the two control strategies. In other respects,
the damping of the perturbation energy is found to be
of similar order in the two cases.

6. Conclusions
Our present approach to the control of boundary-

layer flow systems is a decentralized-in-z feedback
strategy that takes into account the parabolic-in-x

nature of boundary-layer flow systems. Using
the formulation developed in Part I, we obtained
well-resolved convolution control kernels that are
elongated in the streamwise direction and localized in
the spanwise direction. By applying these feedback
kernels in a direct numerical simulation, we have
shown that the resulting control is quite effective, and
that it provides a damping of the perturbation energy of
the same order as that obtained with much more cum-
bersome, iterative adjoint-based control optimization
schemes.
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