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Abstract

We present numerical results illustrating the successful state feedback control of a spatially developing boundary-layer
&ow system. Control is applied using the noncausal framework developed in Part I of this study. After addressing some
important regularization issues related to the proper treatment of the in5nite-dimensional nature and semi-in5nite spatial
extent of the present system, we compute the state-feedback control gains according to the equations developed in Part I at
several spanwise wavenumbers �. We then inverse transform the result to obtain spatial convolution kernels for determining
the control feedback. The e8ectiveness of the controls computed using these feedback kernels, which are well resolved on
the computational grid and spatially localized in the spanwise direction, is tested using direct numerical simulation of the
boundary-layer &ow system. A signi5cant damping of the &ow perturbation is observed, which is of the same order as the
damping that arises when applying signi5cantly more expensive iterative adjoint-based control optimization schemes.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The transition of a boundary-layer &ow system
from the laminar state to the turbulent state is trig-
gered via mechanisms of &ow instability whose phys-
ical explanation and feedback stabilization are current
areas of active fundamental and applied research.
The present paper considers small, spatially devel-
oping, three-dimensional perturbations to a laminar
boundary-layer &ow. Such perturbations often lead to
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subcritical transition to turbulence. Since the system
eigenfunctions in boundary-layer &ows are highly
nonorthogonal, analysis and control strategies based
on the system eigenvalues alone are generally inad-
equate for this system, and linear analyses based on
pseudo-modes (see [14,15]) and input/output transfer
function norms (see [2,3]) are preferred. In physical
terms, streamwise vortices which happen to appear
upstream evolve spatially into very strong stream-
wise streaks downstream; these streamwise streaks
are often strong enough to trigger secondary (non-
linear) instability mechanisms. The purpose of this
paper is to compute feedback convolution kernels to
inhibit the linear algebraic growth that can lead to the
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triggering of such instability mechanisms via
state-feedback control. The estimator developed in
Part I is currently under numerical investigation and
will be reported in future work.
In Part I of this work (see [4]), we introduced

a new noncausal framework for feedback control
of the present system which leverages the peculiar
parabolic-in-space nature of boundary-layer &ow sys-
tems. The reader is referred to Part I for the derivation
of the control technique to be used in the present
paper and discussion of how it 5ts in to the existing
body of literature in the 5eld of &ow control.
Moving from the theoretical formulation of an ap-

propriate control strategy for a &uid system to numer-
ical implementation and testing such strategy is often
nontrivial due to some special considerations that are
required to handle properly the in5nite-dimensional
nature and in5nite or semi-in5nite spatial extent of
&uid systems. The problem essentially boils down to
getting the control feedback gains for the PDE system
to roll o8 suHciently rapidly as a function of the spatial
wavenumbers, and is akin to the issue (which controls
engineers are already familiar with) of getting the con-
trol feedback to roll o8 suHciently rapidly as a func-
tion of the temporal wavenumber in ODE systems,
as evidenced in a Bode plot. Signi5cant progress has
already been made on this subtle issue, which is dis-
cussed further in [13] for iterative adjoint-based con-
trol optimization problems and in [7] for Riccati-based
feedback control calculations. After a brief discus-
sion of the numerical discretization used in the present
work in Section 2, we will discuss the important issue
of regularization of the present analysis in Section 3.
The resulting localized kernels are presented in Sec-
tion 4, and the e8ectiveness of the approach is veri5ed
by the simulation results presented in Section 5.

2. Numerical discretization

The numerical discretization of the boundary-layer
&ow system studied in the present work (and dis-
cussed in detail in Part I) is fairly standard. In the
wall-normal direction y, the actual &ow perturbations
evolve in a semi-in5nite domain [0;∞]. Numerically,
we must solve the system on the 5nite domain [0; y∞].
The y-discretization points used in the present study
are the modi5ed Chebyshev–Gauss–Lobatto points

(see [17])

y(i) =
y∞
2
c

1 + cos(�i=N )
1 + c − cos(�i=N )

(1)

for i=1; : : : ; Ny, and appropriate boundary conditions
are applied at y∞ to emulate the far 5eld. The normal
derivative operators, Dk = �k=�yk , are approximated
via a spectral collocation method, which is discussed
in detail in [17]. We take special care to avoid the spu-
rious eigenvalues discussed in [3] by using the method
described by Huang and Sloan [8]. The key of this ap-
proach is the use of a polynomial of degree (N − 2)
for the approximation of the second-order derivative
term in the Orr–Sommerfeld/Squire equations when
all other terms in these equations are approximated by
polynomials of degree N .
We use a uniform grid in the streamwise direction

x, and discretize our system using the “delta” formu-
lation described by Middleton and Goodwin [11]. The
matrix �k = (1=�)

∫ �
0 exp(Ak�) d� that arises in this

discrete-in-x problem formulation (see Part I) con-
tains a matrix exponential, which is computed using a
scaling and squaring method on PadOe approximations.
The details of this method may be found in [12,16].
In the spatially homogeneous spanwise direction z,

the control problem is 5rst decoupled and solved on
a wavenumber-by-wavenumber basis using a Fourier
representation, as discussed in Part I. We then inverse
Fourier transform the resulting feedback gains to
determine spatially localized feedback convolution
kernels using the FFTW library presented in [6].

3. Regularization of the control

As shown in Part I, the discretized state equation
may be written as

�qk = �kAkqk + �kBk�k + �kDkwk : (2)

In order to insure that the control distribution varies
smoothly in x, we penalize the square of d�=dx =
d2vw=dx2 in the cost function

J=
∫ L

x0

[∫ ∞

0
(‘2vv

∗v+ ‘2��
∗�) dy + ‘2vwv

∗
wvw

+ ‘2��
∗�+ ‘2s

@�∗
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]
dx;
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which may be approximated, after discretizing in x
and y, by

J=
N∑
i=0

�[(q)∗i Qqi + ‘2��
∗
i �i]

+
N∑
i=1

�
[
‘2s
@�∗

i

@x
@�i
@x

]
; (3)

where

Q =



‘2v Is 0 0

0 ‘2�Is 0

0 0 ‘2vw


 ;

and Is is a diagonal matrix with the corresponding
local wall-normal grid spacing on the elements of the
diagonal. Note that @�i=@x may be approximated by
(�i−�i−1)=�. By de5ning �−1=�0 we can therefore
write the cost function as

J=
N∑
i=0

[
�q∗i Qqi +

(
�‘2� +

‘2s
�

)
�∗
i �i

+
‘2s
�
�∗
i−1�i−1

]
− 2

‘2s
�
�∗
0�0

−
N∑
i=1

[
‘2s
�

(�∗
i−1�i + �∗

i �i−1)
]
:

In order to express this cost function in the classical
quadratic form, we append �k−1 to our state vector.
We thus de5ne

qrk =

(
qk

�k−1

)
: (4)

Noting that ��k−1 = (1=�)�k − (1=�)�k−1, and us-
ing the discrete state-space evolution of state (2), we
obtain a new discretized state equation

�qrk = Arkq
r
k + Brk�k + Drkwk ; (5)

where

Ark =

(
�kAk 0

0 −1=�

)
; Drk =

(
�kDk

0

)
;

Brk =

(
�kBk

1=�

)
:

Note that (5) and (2) are completely equivalent. Now
de5ne the augmented state

qak =

(
qrk

qwk

)
; (6)

where qwk follows the disturbancemodel de5ned in Part
I. Using this augmented state qak in the cost function,
we obtain

J=
N∑
i=0

[(qa)∗i Q
aqai + �∗

i R�i

+(Nqai )
∗�i + �∗

i Nqai ]; (7)

where

Qa =

(
Qr 0

0 0

)
; Qr =

(
�Q 0

0 ‘2s =�

)
;

R= �‘2� + ‘2s =� and N = (0 − ‘2s =� 0):

Now de5ne a new control variable

�Ni = R−1=2Nqai + R1=2�i

=−(‘2s =�)R
−1=2�i−1 + R1=2�i: (8)

Using relations (7) and (8), the cost function becomes
a standard discrete quadratic form

J=
N∑
i=0

[(qa)∗i Q
Nqai + �N

∗
i �Ni ]; (9)

where QN = Qa − N ∗R−1N , and plant (2) is trans-
formed to the standard discrete state space form

�qak = ANk q
a
k + BNk �

N
k ; (10)

where ANk = AAk − BAk R
−1N and BNk = BAk R

−1=2.
We can now 5nd a feedback control law for this

problem as described in Part I:

�Nk =−KN
k+1q

a
k : (11)

Combining (11), (10) and (8) we can express �k as
a simple function of qa0:

�k = K0
k+1q

a
0; (12)

where K0
k+1 = −R−1=2(KN

k+1 + R−1=2N )
∏k−1

i=0 [Aa
i−

R−1=2(KN
i+1 + R−1=2N )Ba

i ].
Our objective is to 5nd a suHciently smooth

control that minimizes the perturbation energy∑N
i=0 �(q)

∗
i Qqi. When the spanwise wavenum-

ber � tends to zero, we 5nd that the gain ma-
trix K0 for the control problem as formulated
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Fig. 1. Control gain for �=0:1 related to the normal vorticity, at the
middle of the control domain [0:5; 0:8], using (—) a wall-weighted
objective function, and (- - -) an objective function without a
wall-weighting term.

thus far is large for y¿�x, as depicted in the
dashed curve in Fig. 1. This means that &ow
perturbations outside the boundary layer a8ect the
control at the wall strongly, which is not intended.
Further, since the boundary-layer &ow actually takes
place in a semi-in5nite domain, 06y¡∞, K0 de-
pends strongly on the numerical upper bound y∞
when � goes to zero, which is nonphysical.
We must therefore reformulate our control objec-

tive in order to arrive at a physically meaningful con-
trol strategy. Note that we are not actually interested
in controlling the free-stream perturbations. Further-
more, since qa0 will ultimately be estimated by mea-
surements taken at the wall, we will probably have
only a poor estimate of the &ow perturbations outside
the boundary layer in the 5nal (estimator-based) im-
plementation. We thus re5ne our objective function
such that the control minimizes the energy of the per-
turbation only inside the boundary layer. To do so, we
simply use the second wall-normal derivative of the
longitudinal velocity of the base &ow, �2U=�y2 (here-
after denoted by U ′′), to weight appropriately the di-
agonal matrix Is in Q, where (Is)ij = �ij(yi+1 − yi)
|U ′′

i =U
′′
max|. Fig. 1 represents the pro5les of the control

gain for a wavenumber of � = 0:1, before and after
weighting the matrix Is with |U ′′=U ′′

max|. We see that,
in the weighted control problem, the resulting control

feedback is no longer as heavily dependent on the per-
turbations outside the boundary layer.

4. Spatially localized convolution kernels

By inverse Fourier transforming the gain matrices
K0, we obtain feedback convolution kernels which
are spatially localized in the spanwise direction z (see
[1,7]). Physically, this means that the control at a
spanwise location z depends only on the input per-
turbation in the vicinity of this spanwise location.
Fig. 2 depicts representative convolution kernels re-
lating the streamwise and wall-normal velocity of per-
turbation at x0 = 0:5 to the control input on the wall
on x∈ [0:5; 0:8] as a result of the present control for-
mulation. To obtain the control at the wall position xk
and z, we simply convolve the kernel in the plane at
the streamwise location xk with the input perturbation
qa0 in the vicinity of the spanwise location z, as de-
picted in Fig. 3. As expected, the convolution kernels
depicted in Fig. 2 do not exhibit spatial localization in
the streamwise direction x, but are elongated in this
direction.
It is signi5cant to note that our objective function,

which up to this point has been targetted on the min-
imization of the perturbation energy over the entire
streamwise extent [x0; xN ] of the domain of control
under consideration, may easily be generalized using
present formulation to target speci5cally the perturba-
tion energy at the end of the control domain, xN . To
accomplish this, we simply add to the cost function
(3) a penalty term on the energy of the perturbation
at the end of the control domain

J=
N∑
i=0

�[(q)∗i Qqi + ‘2� �
∗
i �i]

+
N∑
i=1

�
[
‘2s
@�∗

i

@x
@�i
@x

]
+ ‘N (q)∗N%

11
N qN ; (13)

where %11
N is the initial condition of the Riccati

equation which arises when solving the feedback
control problem (see Part I). We may target these
out&ow (“terminal”) perturbations exclusively simply
by setting Q = 0. Fig. 4 represents the streamwise
and wall-normal kernels for this new optimization
problem.
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Fig. 2. Isosurfaces of the components of the feedback convolution kernel K0(x; y; z) relating (a) the streamwise component of the velocity
u (x = 0:5; y; z) and (b) the wall-normal component of the velocity v (x = 0:5; y; z) to the control input � (x; z = 0) on x∈ [0:5; 0:8]. The
cost function in this case is the minimization of the perturbation energy on the interval x∈ [0:5; 0:8].

Fig. 3. Relation between the &ow system and the control input. The control � (x = xk ; z) is found by convolving the feedback kernel K0

in the plane x = xk with the augmented state qa0 in the vicinity of the spanwise location z.

5. Numerical simulations

By inserting the feedback convolution kernels il-
lustrated in Fig. 2 into a direct numerical simula-
tion (DNS) code, we now perform simulations of
the feedback controlled system, assuming full knowl-
edge of the initial perturbation qa0. For comparison, we
have also calculated the e8ectiveness of controls de-

termined by applying an iterative, adjoint–based con-
trol optimization strategy, as developed by Cathalifaud
and Luchini [5].
To perform the boundary-layer &ow simulations,

we used the spectral DNS code developed by Lund-
bladh et al. [10], which accurately solves the full non-
linear 3D incompressible Navier–Stokes equations
in the boundary layer and correctly accounts for the
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Fig. 4. Isosurfaces of the components of the feedback convolution kernels K0(x; y; z) relating (a) the streamwise component of the velocity
u (x = 0:5; y; z) and (b) the wall-normal component of the velocity v (x = 0:5; y; z) to the control input � (x; z = 0) on x∈ [0:5; 0:8]. The
cost function in this case is the minimization of the perturbation energy at x = 0:8.

Fig. 5. Longitudinal streaks without control (top), with present feedback control strategy (bottom left), and with the iterative adjoint-based
control optimisation strategy of [5] (bottom right).

e8ects of control inputs on the wall, as thoroughly
benchmarked in [10].
Fig. 5 displays the isolines of the streamwise

velocity of perturbation in a x; z plane located at
y = 2:022, both without and with control. We have
tested a worst-case (a.k.a., “optimal”) initial per-

turbation, that is, a perturbation whose energy is
ampli5ed maximally over the computational domain
under consideration in the uncontrolled system. This
kind of perturbation has been computed previously
by Luchini [9], who found that such perturbations
come in the form of stationary streamwise vortices,
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Fig. 6. (a) Evolution of the energy of perturbation E using (– · –) no control, (—) the present feedback control strategy, and (– –) the
iterative adjoint-based control optimization strategy of [5]. (b) Evolution of the control energy using (—) the present strategy, and (– –)
the adjoint-based strategy.

whereas the velocity 5eld they induce is dominated
by streamwise streaks. This is a typical behaviour in
shear-driven &ows.
The control is applied over [x0; xN ]= [0:5; 0:8], and

we notice a very similar reduction of the perturbation
magnitude in both the present feedback control for-
mulation and the iterative adjoint-based control opti-
mization.
We have also computed the energy of the pertur-

bation E =
∫∞
0

∫ zr
zl
u2 dz dy. Fig. 6(a) displays the

streamwise evolution of this energy. In the present
feedback control formulation, the blowing/suction ve-
locity vw is part of the state vector qa. This means
that, using the control law (12), the control at each
streamwise station xk depends on the velocity of blow-
ing/suction at x0, vw(x0), which we impose to be zero;
this leads to the control in the present formulation gen-
tly ramping up from zero at x = x0. On the contrary,
in the adjoint-based scheme the control vw(x0) expe-
riences a large jump at x = x0, as shown in Fig. 6(b).
This explains, at least in part, the di8erence of e8ect
between the two control strategies. In other respects,
the damping of the perturbation energy is found to be
of similar order in the two cases.

6. Conclusions

Our present approach to the control of boundary-
layer &ow systems is a decentralized-in-z feedback
strategy that takes into account the parabolic-in-x

nature of boundary-layer &ow systems. Using
the formulation developed in Part I, we obtained
well-resolved convolution control kernels that are
elongated in the streamwise direction and localized in
the spanwise direction. By applying these feedback
kernels in a direct numerical simulation, we have
shown that the resulting control is quite e8ective, and
that it provides a damping of the perturbation energy of
the same order as that obtained with much more cum-
bersome, iterative adjoint-based control optimization
schemes.
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