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A-stable or better) implicit RK scheme for the stiff part of the ODE, which is often linear,
and, simultaneously, a (more convenient) explicit RK scheme for the nonstiff part of the
ODE, which is often nonlinear. Low-storage RK schemes are especially effective for time-

Keywords: marching high-dimensional ODE discretizations of PDE systems on modern (cache-based)
Stiff ODE/PDE/DAE time marching computational hardware, in which memory management is often the most significant
Low-storage IMEXRK methods computational bottleneck. In this paper, we develop and characterize eight new low-storage
SSP/TVD methods implicit/explicit RK schemes which have higher accuracy and better stability properties than
L stability the only low-storage implicit/explicit RK scheme available previously, the venerable second-

order Crank-Nicolson/Runge-Kutta-Wray (CN/RKW3) algorithm that has dominated the

DNS/LES literature for the last 25 years, while requiring similar storage (two, three, or

four registers of length N) and comparable floating-point operations per timestep.
Published by Elsevier Inc.

1. Introduction

Although a wide variety of methods have been used for spatial discretization and subgrid-scale modeling in the Direct
Numerical Simulation (DNS) and Large Eddy Simulation (LES) of turbulent flows, time marching schemes for such systems
have relied, in most cases, on an implicit scheme for the advancement of the stiff terms and an explicit scheme for the ad-
vancement of the nonstiff terms. Among these so-called IMEX schemes, an approach that gained favor due to [11] and [12]
coupled the (implicit, second-order) Crank-Nicolson (CN) scheme for the stiff terms with the (explicit) second-order Adams-
Bashforth (AB2) scheme for the nonstiff terms. This approach was refined in [13], which used the (implicit) CN scheme for
the stiff terms, at each RK substep, together with the (explicit) third-order low-storage Runge-Kutta-Wray (RKW3) scheme
[22] for the nonstiff terms. This venerable IMEX algorithm, dubbed CN/RKW?3, still enjoys extensive use today, and is par-
ticularly appealing, as only two registers are required for advancing the ODE in time, though if three registers are used,
the number of flops required by the algorithm may be significantly reduced. In high-dimensional discretizations of 3D PDE
systems on modern computational hardware, the reduced memory footprint of this time marching algorithm, in its two-
register or three-register form, can significantly reduce the execution time of a simulation. However, the CN/RKW3 scheme
has the considerable disadvantage of being only second-order accurate, and its implicit part is only A-stable. In recent years,
there have been relatively few attempts to refine the CN/RKW3 time-marching scheme for turbulence simulations, perhaps
due to a mistaken notion that modifying it to achieve higher order might result in either increased storage requirements,
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significantly more computation per timestep, or the loss of A stability of the implicit part. It turns out that this is untrue;
in fact, there is much to be gained by revising this algorithm.

When using an IMEX scheme, such as those described above, to march the incompressible Navier-Stokes equation,
one natural choice is to treat the (linear) diffusion terms as the “stiff terms” and the (nonlinear) convective terms as the
“nonstiff terms”. Note that a better choice for discretizations with significant grid clustering implemented in one or more
spatial directions, as usually present when simulating wall-bounded turbulent flows, is to treat the diffusion and linearized
convection terms with derivatives in the direction of most significant grid clustering (e.g., in the direction normal to the
nearest wall) as the “stiff” terms, and the remaining terms as the “nonstiff” terms, as suggested by [1]. Note further that
so-called fractional step methods are often combined with such IMEX schemes in order to enforce the incompressibility
constraint (see, e.g., [13]). The present paper focuses exclusively on the IMEXRK part of such time-advancement algorithms;
various creative choices for which terms to take implicitly at different points in the physical domain of interest, and various
methods for implementing fractional step techniques for enforcing exactly the divergence-free constraint, may subsequently
be addressed in an identical manner as discussed in [1] and [13], and elsewhere in the literature.

Over the last 30 years, there has been significant development of (full-storage) IMEXRK algorithms. A comprehensive
review of this literature is given in [9], and a brief summary of this subject is given in Section 1.1 below, including the
general structure of full-storage IMEXRK schemes, their general implementation, conditions on their parameters for second-,
third-, and fourth-order accuracy, and characterizations of their stability.

Further, in the years since the development of RKW3 in [22], there has been significant development of alternative
low-storage explicit RK schemes; a comprehensive review of this literature is given in [10], and a brief summary of this
subject is given in Section 1.2 below, including the extension to implicit RK schemes, the introduction of a general 2-register
IMEXRK form, efficient 3-register and 2-register implementations of this form, as well as the introduction of a general
3-register IMEXRK form, and efficient 4-register and 3-register implementations of this form.

We then develop eight new low-storage IMEXRK schemes well suited for turbulent flow simulations, and other com-
putational grand challenge applications, using two, three, or four registers of length N (the dimension of the ODE under
consideration). With an eye on the computational cost of their implementation, we focus on schemes with the smallest
number of stages possible for a given order, stability, and storage requirement. A comprehensive summary of the schemes
developed in this paper is given in Table 1. In short:

e Section 2 presents two second-order, 2-register IMEXRK schemes:
- the classic 3-stage, A-stable, CN/RKW3 scheme, and
- a new, (2, 3)-stage [that is, a scheme with 2 implicit stages and 3 explicit stages], L-stable, strong-stability-preserving
scheme, dubbed IMEXRKCB2.
e Section 3 presents five new third-order, 2-register IMEXRK schemes:
- a (2, 3)-stage, strongly A-stable scheme, dubbed IMEXRKCB3a,
- a (3, 4)-stage, strongly A-stable scheme with ESDIRK implicit part, dubbed IMEXRKCB3b, and
- three (3, 4)-stage, L-stable schemes:
- one with coefficients selected to maximize stability of the ERK part on the negative real axis while being strong
stability preserving, dubbed IMEXRKCB3c,
- one with coefficients selected to be strong stability preserving for the maximum possible timestep, dubbed
IMEXRKCB3d, and
- one with coefficients selected to maximize accuracy of the ERK part, dubbed IMEXRKCB3e.
e Section 4 presents a new third-order, 3-register, 4-stage, L-stable, stage-order-2 scheme dubbed IMEXRKCB3f.
e Section 5 presents a new fourth-order, 3-register, 6-stage, L-stable, stage-order-2 scheme dubbed IMEXRKCB4.

In Section 6, we provide an analysis of the well-known order reduction phenomenon arising during the integration of very
stiff ODEs using these IMEXRK schemes. Finally, Section 7 considers the application of all of these low-storage IMEXRK
schemes, and some of their full-storage IMEXRK competitors, to a representative test problem in order to compare their
computational efficiency.

1.1. Full-storage IMEXRK schemes and their Butcher tableaux

A comprehensive review of (full-storage) IMEXRK schemes is given by Kennedy, Carpenter, and Lewis [9]. In short,
IMEXRK schemes incorporate a coordinated pair of Diagonally Implicit Runge-Kutta (DIRK, with lower-triangular A) and Ex-
plicit Runge-Kutta (ERK, with strictly lower-triangular A) schemes, with parameters as summarized in the standard Butcher
tableaux



Table 1

At a glance: summary of the properties of the eight IMEXRK schemes developed in this paper (top) and eight of the leading IMEXRK competitors (bottom), including the leading-order computational cost per
timestep for efficient finite-difference (FD) and pseudospectral (PS) implementation of each scheme on the 1D Kuramoto-Sivashinsky (KS) equation. “SSP” means that the scheme is strong stability preserving
under the appropriate timestep restriction, “embedded” means that a lower-order embedded scheme following the guidelines listed in Section 1.2 is provided, “ESDIRK” means that all diagonal components of the

vLL

A matrix of the associated DIRK scheme are equal (facilitating storage and reuse of an LU decomposition during the implicit solves), and “SO2” means the scheme is stage order 2.

Scheme Order | Registers ?&age& Stamh,%{ of D[RKE,[() art Stability .Of ERK part Truncation error Other' FD cost for 1D KS PS cost
(s™, s¥%) [o(Z™ — o0; 2] on negative real axis properties
~ _ EX 3 _ embedded, 90N flops (3-reg), 6 FFTs
IMEXRKCB2 second [2R] 2,3) L-stable [0] 5.81<z* <0 AP) =0.114 SSP (c = 1.0) 101N flops (2-reg) (3-reg)
strongly A-stable B EX @ _ 90N flops (3-reg), 6 FFTs
IMEXRKCB3a 2,3) [-0.738] 251<z2*" <0 A% =0.226 101N flops (2-reg) (3-reg)
strongly A-stable EX @ _ 130N flops (3-reg), 8 FFTs
IMEXRKCB3b [-0.732 — 0.3662] —-221<z""<0 A" =0.186 ESDIRK 139N flops (2-reg) (3-reg)
i _ EX 4 _ embedded,
IMEXRKCB3c third (2R] 6.00<zX <0 A® =0.113 SSP (c = 0.70)
3,4) EX 4 embedded, 133N flops (3-reg) 8 FFTs
IMEXRKCB3d G - —252<7% <0 A® =0.207 P 8),
L-stable [0] — — SSP (¢ =10.77) 157N flops (2-reg) (3-reg)
IMEXRKCB3e —279<7% <0 A® =0.0824
- _ EX @) _ embedded, 162N flops (4-reg), 8 FFTs
IMEXRKCB3f [3R] 4,4) L-stable [0] 6.00<zX <0 A® =0.107 505 266N flops (3-reg) (4-reg)
i - _ EX ) _ embedded, 253N flops (4-reg), 12 FFTs
IMEXRKCB4 fourth [3R] (6,6) L-stable [0] 6.32<z*" <0 A" =0.0157 S0, 458N flops (3-reg) (4-reg)
115N flops (3-reg), 6 FFTs
- _ _ EX 3) —
CN/RKW3 second [2R] 3,3) A-stable [—1] 251<z <0 AP) =0.0387 127N flops (2-reg) (3-reg)
Ascher(2, 3,3) strongly A-stable EX @ _
(see 2]} 7 2,3) [=0.732 — 0.7327E%] —251<z* <0 A" =0.206 92N flops 6 FFTs
Asch 4
SC{SZZ(E]}’ » 9 3,4) L-stable [0.10625X] 278 <7% <0 A® —0.103 141N flops 8 FFTs
Ascher(4. 4 third
SC{SZre([é]}’ 3 10 (4,4) 214<7% <0 A® —0.163 190N flops 8 FFTs
LIRK3 - @
(see [4]} 9 3,4 L-stable [0] —221<z" <0 A™ =0.100 139N flops 8 FFTs
ARK3(2)4L[2]SA
{Se(e )[9][} ! 10 (4,4) —-366<z%<0 A® =0.0722 embedded 159N flops 8 FFTs
LIRKZ o ®
(see [4]} 13 (5,6) —341<z* <0 A®) =0.0404 249N flops 12 FFTs
ARK4(3)6L[2]SA fourth L-stable [0]
{Se(e )[9][} ! 14 (6,6) —423<7% <0 A®) =0.0122 embedded 270N flops 12 FFTs
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M| IM EX
SR 1
M| IM 4IM EX | ,EX
G a1 933 a0
M|, IM M M EX | EX EX (1)
Cs as,] as,sfl as,s Cs as,l 05’5,1 0
IM M M EX EX EX
bl <o bIM o pl bEX ... pEX  BE
hIM hIM AIM REX REX REX
bl o bM o pl bEX ... pEX  BE
for the time advancement of an ODE of the form
dx(t)
T = f(xs t) + g(xv t)v (2)

where f(x, t) represents the stiff part of the RHS [advanced with the DIRK method at left in (1)], and g(x, t) represents the
nonstiff part of the RHS [simultaneously advanced with the ERK method at right in (1)].

If the stiff part of the ODE is linear [that is, if f(x, t) = AX] then, denoting the efficient solution of Ax=b as A~'b,
a full-storage implementation of the IMEXRK scheme in (1) to advance from x =X, to X = X,4+1 proceeds as follows

for k=1:s (3a)
k—1 k-1
if k==1, y=x, else, y=x+Za}<’Yl!Atf,'+Za,?§-Atgj, end (3b)
i=1 =1
fu=A(I—aq At A)_]y [equivalently, £} = (I — ap, AtA)_lAy] (3c)
gk =g(y+apy Atfy, ta+cEX AL) (3d)
end (3e)
S S
X< x+ Y bMAtfi+) b Atg; (3f)
i—1 =1
N R N .
R+ DBMArti+) b Arg; (3g)
i=1 =1

Line (3c) above is simply f = f(z, t, + c]MAt), where z is the solution of e(z) =z —y — aM Atf(z, t, + c]MAf) =0 [that is,
where z=y+a Atf(z, t,+cMAD)], in the special case that f(x, t) = AX. More generally, if the stiff part f(x, t) is nonlinear,
then line (3c) is replaced by a Newton-Raphson iteration (see [16]) to find the z such that e(z) = 0:
Initialize: 2o =y + apy AtE(y, ta + R AL)
If(X, tn + AL
0X
Upon exit:  fi = f(Zconverged. tn + C;<MAI)

Iterate: (I —ap At

)(Zm-H —Zn)=—Zm+y+ a}?]:[ At f(zm, th+ CLMAf) (3c)

X=2Zn

The Jacobian used in this iteration may be computed analytically or approximated numerically. The low-storage IMEXRK
algorithms developed in this work may be applied in the linear or nonlinear setting, mutatis mutandis; Sections 1.2.1-1.2.4
provide low-storage pseudocode implementations in the case in which the stiff part of the ODE is linear.

Finally, note that the B}M and B,.EX coefficients in the Butcher tableaux, if provided, are used to form a so-called embedded
scheme to advance the solution at each timestep with an order of accuracy reduced by one with respect to the main scheme.
Using this embedded scheme, one may estimate the error of the simulation at each timestep, and adjust the stepsize at the
next iteration accordingly.

As is well known (see, e.g., [3]), for the DIRK and ERK components in (1), when used in isolation, to be first-order
accurate, it is required that

M) _ M _1=0 B S b —1=o, (4a)
. i

for these schemes, when used in isolation, to be second-order accurate, it is additionally required that
M@ =3 MM _12=0 P =3 b -12=0, (4b)
i i

for these schemes, when used in isolation, to be third-order accurate, it is additionally required that
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o = (1/2)Zb¥M MM —1/6=0 = (1/2)beX e —1/6=0 (4c)
£MB) _ ™ pMMcM _ 16 — 0 7, =3 bFaf X —1/6 =0, (4d)
i j i.J

and for these schemes, when used in isolation, to be fourth-order accurate, it is additionally required that

1M(4) (1 /6) ZblMCIM IM IM 1/24 0 EX(4) (1 /6) ZbEXCEX EX EX 1/24 0 (46)
P = /3)ZblMclM MM _124=0 ,"Y=q /3)ZbEXcEX aXcX —1/24=0 (4f)
i,j ij
]M(4) (1/2) ZblMalM IM lM 1/24 0 EX(4) (1 /2) ZbEXaEX EX EX 1/24 0 (4g)
i,j i,j
IM(4) Z blMag\/laI]l\l:ICLM _ 1/24 -0 EX(4) Z bEXaEX ljil)<( EX _ -1/24 0. (4h)
i,j.k ijk

Recall that, in the scalar case, the exact solution of ¥’ = f(x) + g(x) has the following terms:
Xnt1 =X 4+ AtX, + (ADZ X /2! + (At)3 X! /31+ 0((an?)

(A (At

=xn + At{f + g} x,

{f/f +fg+ef+e'el,.., {f"ff+2f"fe+ f'gg+&"ff
+28"fg+g'es+ fff+fef+eff+gef+ffeg+feeg+gfe+ges), ., +0(an?;
note in particular that there are 2 terms at second order and 10 terms at third order that involve both f and g. For the

DIRK and ERK components in (1), when used together in an IMEX fashion, to be second-order accurate, it is thus additionally
required that

_L_lIMEX(Z) _ Zb%MCiEX —1/2=0 _L,leEX(Z) _ ZbiExch —1/2=0, (4i)

i i

for these schemes, when used together in an IMEX fashion, to be third-order accurate, it is additionally required that

) P 150 MO =1 T 160 @

IMEX(3) 1/2 blMClM EX _1/6=0 IMEX(3) 1/2 bEXClM EX ~-1/6=0 4k
=(1/2) / =(1/2) / (4k)

IMEX(3) Z bIM EX EX _1/6=0 IMEX(3) Z bEX IM IM —1/6=0 (41)

LIMEXG) _ bEX EX IM —1/6=0 T IMEX3) _ b‘M “V' EX ~1/6=0 (4m)

7 8

IMEX(3) anv[ £ uv[ —1/6=0 IMEX(3) ZbEX M EX _1/6=0, (4n)

and for these schemes, when used together in an IMEX fashion, to be fourth-order accurate, 44 additional constraints are
required (see [9]), which for brevity aren’t listed here.

1.1.1. Stability

The stability of an RK scheme may be characterized by considering the model problem dx/dt = Ax and defining z = A At,
0(2) = Xn41/Xn, and o (c0) £ limzj— 0 0 (2). The stability function of an RK scheme with Butcher tableau parameters A and
b is then given by o (z) =1+ zbT (I —zA)~11, where 1 denotes a vector of ones; the RK scheme is said to be stable for any
z such that |0 ()| < 1. Further, considering its application to stiff systems, an RK scheme is said to be

e A-stable if |0 (z)| <1 over the entire LHP of z,
e strongly A-stable if it is A-stable and |0 (c0)| < 1, and
e L-stable if it is A-stable and o (c0) =0

The stability of an IMEXRK scheme is a bit more difficult to characterize. Of course, one may start by characterizing
the stability of the implicit and explicit parts considered in isolation. To evaluate the stability of the implicit and explicit
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components of an IMEX scheme working together, we consider the model problem dx/dt = A rx 4 A¢x, where the first term

on the RHS is handled implicitly, and the second term on the RHS is handled explicitly. Defining 2™ = 1§ At, zEX =), At,

and o (z2M; zEX) = x,, 1 /x,, we may write (see [9])

M. ZEX) _ det[I _ ZIMAIM _ ZEXAEX 4 ZlMl(blM)T + ZEX-l (bEX)T] .
’ det[I — zZMAIM]

We may then characterize the stability of the implicit and explicit parts of an IMEXRK scheme working in concert, when
the implicit part of the problem is stiff, by looking at o (zM; zEX) as zM — oo for finite zEX.

(5)

o(z

1.1.2. Strong-stability preserving (SSP) schemes
Consider the 1D hyperbolic PDE

u/ot = —3 f(u)/dx; (6)

denoting by u;(t) the discretization of u(x,t) on N spatial grid points x;, and by u(t) a vector containing all of the u;(t), we
write the spatial discretization of this PDE as the ODE

du/dt = L(u). (7)

If a TVD spatial discretization is used, such as a Godunov or MUSCL scheme with an appropriate flux limiter incorporated
(see [14]), then applying a simple Explicit Euler time discretization to (7),

u"t =u" + ArL(u"), (8)

under the appropriate CFL condition on the timestep, At < Atcg, results in a simulation exhibiting a total variation of the
discrete solution which does not increase in time, that is,

TV(u"!) <TV(u"), where TV(u") = Z|u'}+1 —ufi|. 9)
j

Strong-stability preserving (SSP) explicit time-discretization methods (see [17] and [18]) are simply higher-order time dis-
cretization methods that conserve this total variation diminishing property with a modified CFL condition on the timestep,
At < ¢ Atcrr.

In [18] (see also [6]), a condition for an explicit Runge-Kutta scheme to be SSP has been developed. This condition states
that if an s-stage explicit Runge-Kutta scheme is written in incremental form, that is,

u® ="
i—1

u® = (ajju? + AtgL(Y)) fori=1.....s
i=0

un+1 — U(S),

where all of the «;; > 0, and if the forward Euler method applied to the ODE (7) arising from a TVD spatial discretization of
the hyperbolic PDE (6) is strongly stable under the appropriate CFL restriction, then such an explicit Runge-Kutta method is
SSP provided that all of the 8;; > 0 and that the following CFL restriction is fulfilled:

At < c Atcr, c=min%. (10)
i,j Bij
In case an explicit scheme is coupled with an implicit scheme, as in an IMEXRK formulation, then, provided the implicit
scheme used to integrate the stiff part of the ODE is L-stable, in the stiff limit the time integration scheme becomes the
explicit Runge-Kutta scheme, and the order of accuracy of the limiting scheme is greater than or equal to the order of
accuracy of the IMEXRK scheme itself. Hence, as stated in [15], if the explicit part of the IMEXRK scheme is SSP, then the
IMEXRK scheme will also be SSP in the stiff limit.

In [15], three full-storage second-order and two full-storage third-order IMEXRK schemes are presented which are SSP
in the stiff limit; no other IMEXRK schemes with this SSP property were found in our review of the IMEXRK literature.
The present paper derives three new IMEXRK schemes which are SSP in the stiff limit (one which is second-order and two
which are third-order); unlike the schemes in [15], the IMEXRK schemes derived here are of the low-storage variety.

1.2. Low-storage IMEXRK schemes
The existing literature on low-storage RK schemes to date appears to focus exclusively on explicit schemes. Note that a

cavalier implementation of a full-storage ERK scheme [see the explicit part of (3)] requires storage of the state vector [x],
the intermediate vector [y], and s values of the RHS vectors [g]; that is, s + 2 vectors of length N, where X = Xyx1. We
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now summarize the two main classes of low-storage ERK schemes,! a comprehensive review of which is given in Kennedy,
Carpenter, and Lewis [10].

The two-register Williamson class of ERK schemes [20], denoted “[2N]” schemes, may be written to advance from X = X,
to X =Xp41 as

for k=1:s
if k==1, Ax< Atg, tp+crAt), else
AX < o AX + At g(X, ty + cAt)
end
X <X+ By AX
end

If handled with care, such schemes can often be implemented efficiently in two registers of length N, x and Ax.

The two-register van der Houwen class of schemes [19], denoted “[2R]” schemes, restrict the parameters a;; below the
first subdiagonal in the Butcher tableau of the ERK scheme to be equal to the parameters b; of the corresponding column,
and may thus be written to advance from X = X, to X =X;4+1 as

for k=1:s
if k==1, y<«Xx, else
Yy < X+ (@ k-1 — br—1) AL (Y, tn + ck—1AL)
end
X < X+ by At g(y, ty + cpAt)
end

(12)

Such schemes can often be implemented efficiently in two registers of length N (namely, x and y). If implemented with
three registers, however, the function g(y, t, + cxAt) can be computed just once per timestep (instead of twice). RKW3
[22] is a commonly-used example of a two-register, three-stage, third-order van der Houwen ERK scheme, with a Butcher
tableau of

o] 0

8/15/8/15 0

2/3|1/4 5/12 0 (13)
‘1/4 0 3/4

In the three-register van der Houwen class of schemes, denoted “[3R]” schemes, only the parameters a;; below the
second subdiagonal of the Butcher tableau of the ERK scheme must equal the parameters b; of the corresponding column.
An effective implementation of such [3R] schemes that uses only three registers of length N (namely, X, y and z) is given
by

for k=1:s

if k==1, y<«X, zZ<«X, else,
Z <Y+ A k-1 ALEY, tnh + k-1 AL)
if k<s, Yy« X+ @i1k-1—bk-1)8Y, th +Ck-1AL), end (14)
end
X < X+ by Atg(y, tn + ckAt)
end

Again, if implemented with four registers, the function g(y, t, + cxAt) can be computed just once per timestep (instead of
thrice). In the present work, we extend the two- and three-register van der Houwen classes of ERK schemes to the DIRK
case, which can be accomplished with precisely the same restrictions on the (lower triangular) DIRK Butcher tableau as in
the (strictly lower triangular) ERK case, as specified above. Further, we will develop coordinated pairs of such [2R] and [3R]
DIRK and ERK schemes in the IMEX setting described in Section 1.1. In particular, we will develop a [2R] second-order IMEX
scheme, [2R] and [3R] third-order IMEX schemes, and a [3R] fourth-order IMEX scheme.

As shown in Section 1.1, six constraints on the parameters of the IMEX Butcher tableaux (1) must be satisfied for second-
order accuracy, fourteen additional constraints must be satisfied for third-order accuracy, and fifty-two additional constraints
must be satisfied for fourth-order accuracy. Before proceeding, we thus introduce some significant simplifying assumptions.
Following [15] and [9] and the CN/RKW3 scheme of [13], we synchronize the stages of DIRK and ERK components by impos-

ing M =cX =¢; fori=1, ..., s. We also coordinate the constituent DIRK and ERK components such that bM = b = b;

1 Both the Williamson class and the van der Houwen class of ERK schemes extend to ERK variants that require, at minimum, three, four, or more
registers for their implementation; with an eye on the computational cost of their implementation, we focus in this paper on schemes which admit a two-
or three-register implementation.
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fori=1, ..., s, as also done in [15] and [9], but which is not satisfied by CN/RKW3. Finally, for each stage, a stage-order of
one is also imposed such that

i i—1
IM _ EX _ . - .

E ;" = E a;j” = fori=1,...,s; (15)

=1 j=1

it follows that ¢y = a!¥ = ak¥ = 0. As a result of these assumptions, the number of constraints on the IMEX parameters [see

(4)] for second-order accuracy is reduced to just two, the number of constraints for third-order accuracy is reduced to five,
and the number of constraints for fourth-order accuracy is reduced to fourteen.

For several of the IMEXRK schemes developed in this paper, a lower-order embedded scheme is also developed, relaxing
the B}M = EFX restriction to provide increased freedom during the design phase. As a general guideline, none of the leading-
order truncation terms of an embedded scheme should vanish, so that each of these terms will contribute to the error
estimate (subject to this restriction, the remaining free parameters of the embedded scheme are then optimized to maxi-
mize the magnitude of the leading-order truncation terms). Unfortunately, this is not always achievable; as a result, not all
of the schemes developed in this paper are listed with embedded schemes. For all of the embedded schemes we do report,
the DIRK part of the embedded scheme is at least A-stable, which is a property of the embedded scheme recommended by
[8]; note, however, that the embedded scheme is not used for time marching, it is only used to adjust the timestep.

The IMEX Butcher tableaux in (1) for coordinated pairs of [2R] DIRK and ERK schemes are thus simplified to

0j 0 0| 0

IM M EX
21721 a121\’/12 IM 21921 gx
c3| by az, a33 c3| by as’5 0

M M EX
C4q b1 b2 (14,3 a4’4 Cyq b] b2 (14’3 0
: ) (16)
M IM EX

cs| bp 1} <o+ bs_o as,s_1 as,s Cs| by b, -+ bs_ a5,5_1 0

bl b2 s bs—2 bs—] bs b] bZ t bs—Z bs—1 bs

AIM DM AIM pIM AIM REX  LEX hEX REX PEX

b] b2 e bs—2 bs—] bS b] b2 e bs—2 bs—l bS

and the IMEX Butcher tableaux for coordinated pairs of [3R] DIRK and ERK schemes are simplified to

0| 0 0| 0
o alzl\,"] a% cy ag?(] 0

M M M EX ,EX
Ca| b1 az3 ay3  dgy ca| b1 ag; az3 0

) : . . (17)
M M M M EX

Cs| b by R R Cs| b bz L R 0

by by -+ bsa bs—1 bs by by -+ bs2 bs—1 bs

PIM AIM £IM ~IM ~IM PEX  REX PEX PEX PEX

b] b2 b572 bsfl bs bl b2 b572 bsfl bs

Note also that, as the DIRK component, the IMEXRK form considered above has an explicit first stage, its stability function
(5) may be written

s . (EXy 1 ,IM7i Sl )
o (zM; %) = 1+ Zl:lﬁ;(z )[z‘ L Where pi(Z) = Z pii [5X]’. (18)
1+ Zi:l qi [zM]! j=0
1.2.1. General three-register implementation of [2R] IMEXRK schemes
Note that, if the stiff part of the ODE is linear [that is, if f(X, t) = AX] then, denoting the efficient solution of Ax=Db as
A~1b, a straightforward implementation of the low-storage IMEXRK scheme in (16) that uses three registers? of length N
to advance from X =X, to X =X, proceeds as follows:

2 That is, in addition to any extra memory required to solve the linear system, which is problem dependent, plus an additional register of length N for
the embedded scheme, if adaptive timestepping is implemented.
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for k=1:s

if k==1, y<«Xx, else
M M EX EX
Y < x+(qf_ —bly) Atz+ (ap)_; —be,) Aty
end
— (I—aM AtA) Ay (19)

y<—g(y+akkAtz tn—i-ckXAt)
x<—x+b Atz—l—b Aty
f<<—§<+5}c Atz +bEX Aty
end

where z and y store the implicit and explicit parts of the RHS at each stage, x is used to advance the solution of the
main scheme,®> and X stores the solution of the embedded scheme if adaptive time stepping is implemented. Note that
one linear solve of the form (I — cA)~!b, one matrix/vector product Ay, and one nonlinear function evaluation g(y, t)
are computed per stage, in addition to various level-1 BLAS (basic linear algebra subroutine) operations. As discussed in
Section 1.1, implementation in the case of a nonlinear stiff part is a straightforward extension.

1.2.2. General two-register implementation of [2R] IMEXRK schemes . o L o A

By applymg the matrix inversion lemma (A + BCD)"1=A~1 — A~1B(C~'+ DA-1B)~'1DA~! with A=C=1, D=4,
and B = ak . At, the algorithm laid out in Section 1.2.1 may be rewritten in a form that only requires two registers® of
length N:

for k=1:s

if k==1, y<«Xx, else

V—X+ (@ —bMy) At Ay + (0 — biX) Atg(y, ta+ it AL)
end

1 20
y< (I-aqAtA)y (20)

x < x+bM At Ay + bEX Atg(y, tn + XAl
R —X+bMAt Ay +BEX Atg(y, tn + cE¥Al)
end

In this case, one linear solve of the form (I —cA)~'b and two operations of the form* x +cAy + dg(y, t) are computed
per stage, in addition to various level-1 BLAS operations. However, the storage requirement is reduced from three registers
of length N to only two, which is quite significant. In many cases, some of the coefficients in the above algorithm turn out
to be zero, so the increased computational cost associated with the extra nonlinear function evaluations and matrix/vector
products in this implementation is not as bad as one might initially anticipate, as quantified in Section 7.

1.2.3. General four-register implementation of [3R] IMEXRK schemes

For the development of the stage-order-two schemes IMEXRKCB3f and IMEXRKCB4 in Section 4 and Section 5, the [3R]
IMEXRK structure (17) will be used to provide increased freedom during the design phase. Such schemes admit the following
four-register implementation:

for k=1:s
if k==1, y<x, ™M=x 2z <x else
X —y+aX | Acz™
if k<s, yex (g - b) arz™ 4 (@ oy —bK) (2% —y)/ak_y. end
X 2 g Az
end (21)
™M= (1- ak f AtA) 'azX
™ — g2+ ai Atz + X Ar)
X <X+ b”vl Atz™ 4 bEX Atz
XX+ b}CM Atz™ + b,EX Atz
end

3 Note again that M =bEX =b; for i=1, ..., s for the schemes developed herein, though this property is not shared by CN/RKW3 (see Section 2).

4 When using ﬁmte dlfference methods, an operation of this form can, with care, usually be performed in place in the computer memory using O (1)
temporary storage variables; how this is best accomplished, of course, depends on the precise form of A and g(y, t). When using spectral methods, such a
two-register implementation is generally not available.
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where zZM and zFX store the implicit and explicit parts of the RHS at each stage, y is a temporary variable which contributes
to advance the solution to the next stage, X is used to advance the solution of the main scheme, and X stores the solution
of the embedded scheme if adaptive timestepping is used. As in the three-register implementation of the [2R] scheme, only
one linear solve of the form (I —c A)~'b, one matrix/vector product, and one nonlinear function evaluation are computed
per stage.

1.2.4. General three-register implementation of [3R] IMEXRK schemes
Leveraging matrix inversion lemma as done in Section 1.2.2, we obtain a general three-register implementation of any
[3R] IMEXRK scheme:

for k=1:s
if k==1, y<«Xx, z<«Xx, else
if k<s

z <—y—i—am_1 AtAz
y< A @z—y/ (g At)
Z<z+ amf] Atg(y, ta + ¢t AL)
VX4 (@1 o1 —Dity) AL AY + (@ g — bt ) Atg(y, tn + %y At)
else (22)
Z<y+ a}<’f’,'<_1 AtAz+ a,%c_l Atg(y, tn + cf*, AL)
end
end
2 (I-aqAtA) 'z
x < x+bM At Az +bX Atg(z, ta + cfFAL)
X %+ bM At Az + bEX Atg(z, tn + cfXAl)
end

Note that this algorithm requires the invertibility of the matrix A, a condition that is often true when A arises from
the discretization of a PDE. In this case, two linear systems, three matrix/vector products, and three nonlinear function
evaluations must be performed per stage (except for the last stage), plus an additional matrix/vector product and one
nonlinear function evaluation if the embedded scheme is used for adaptive timestepping.

Finally, note that a (hardware-dependent) trade-off between flops and storage must ultimately be conducted to select
between the two-register and three-register implementation of any [2R] scheme, or between the three-register and four-
register implementation of any [3R] scheme.

2. Two second-order, 2-register IMEXRK schemes

The classical second-order, A-stable CNJ/RKW3 method may easily be written in the low-storage IMEXRK Butcher tableaux
form (16) (albeit with the b}M = biEX =b; constraint relaxed) with the four-stage IMEX Butcher tableaux

0| o 0| o

8/15|4/15 4/15 8/15(8/15 0

2/3|4/15 1/3 1/15 2/3|1/4 5/12 0 (23)
114/15 1/3 7/30 1/6 111/4 0 3/4 0
4/15 1/3 7/30 1/6 ‘1/4 0 3/4 0

A DIRK scheme with ¢; =0 and ¢s = 1 [such as that shown at left in (23)] is known as a first-same-as-last (FSAL) scheme. In
such a scheme, the implicit part of the last stage of one timestep is precisely the implicit part of the first stage of the next
timestep, and thus an FSAL scheme, such as the implicit part of the CN/RKW3 scheme shown above, actually incorporates
only s — 1 implicit solves per timestep. Note also that, since bSEX =0 above, g actually never needs to be computed. Thus,
though CN/RKW3 is written above as a four-stage IMEX Butcher tableaux, a careful implementation of CN/RKW3 actually
incorporates only three implicit stages and three explicit stages per timestep.

The stability boundaries of the constituent CN and RKW3 schemes of (23) are shown in Figs. 1(a)-1(b); the CN scheme,
applied over each of three stages, is A stable, and the stability of the RKW3 scheme is that of any third-order, three-stage

ERK scheme, with (denoting z = zFX) a stability function of
4 4 4 4
o*@ =142 bi+22) bici+2 Y bia¥c;+2t Y biaaa=1+2z+22/2+2°/6,
i=1 i=1 i,j=1 k=1

where, again, |08 ()| <1 indicates the stability region.



182 D. Cavaglieri, T. Bewley / Journal of Computational Physics 286 (2015) 172-193

db

m;/\
\ T

-10 5 -10 5
%6 5 o 5 10 15 20" = -4 -2 0 %6 5 o 5 10 15 20 =
(a) CN/RKW3 (b) CN/RKW3 (¢) IMEXRKCB2 (d) IMEXRKCB2
CN component RKW3 component DIRK component ERK component
15 4 15 4
3 3

I
N/

a
o

-3 -3
5% 5 o0 5 10 15 20" = -4 -2 0 5% 5 o0 5 10 15 20" = -4 -2 0
(e) IMEXRKCB3a (f) IMEXRKCB3a (g) IMEXRKCB3b (h) IMEXRKCB3b
DIRK component ERK component ESDIRK component ERK component
15 4 15 4
3 3

Y.l Yy A
N O

-3 -3
o 5 o 5 10 15 20 ¢ % -4 2 0 o 5 o 5 10 15 20 =% -4
(i) IMEXRKCB3c (j) IMEXRKCB3c (k) IMEXRKCB3d (1) IMEXRKCB3d
DIRK component ERK component DIRK component ERK component

Fig. 1. Stability regions |0 (z)| <1 for the low-storage IMEXRK schemes considered in this paper.

The CN/RKW3 scheme was initially developed simply by joining together two existing schemes, CN and RKW3, in an
IMEXRK fashion. It was, e.g., not designed with the constraints (4i)-(4n) in mind, and thus leaves significant room for
improvement. For example, a remarkably simple second-order [2R] alternative to CN/RKW3 which

(a) requires fewer flops per timestep to implement than CN/RKW3,

(b) comes with a first-order embedded scheme, following the guidelines listed in Section 1.2, for adaptive timestepping,
(c) whose implicit part is L-stable, and

(d) whose explicit part is both SSP and exhibits much improved stability on the negative real axis as compared to CN/RKW3,

dubbed IMEXRKCB2, is given by’

5 For details on how this scheme was discovered, see Section 3.3, which applies the same techniques used to discover (24) to the third-order, 3-stage
implicit, 4-stage explicit, L-stable case.
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Fig. 1. (continued)

0[0 0| 0

2/5/0 2/5 2/5(2/5 0

1l0 5/6 1/6 1o 1 o (24)
0 5/6 1/6 0 5/6 1/6
0 4/5 1/5 0 4/5 1/5

The coefficient for strong stability in (10) for this scheme is ¢ = 1, which is the maximum possible, as proved in [6]. Note
also that the so-called “stiff accuracy” conditions have been imposed on the implicit component of this scheme; that is, we
have set a?}’il =b; fori=1,...,s. These conditions improve the convergence of such a scheme for the integration of stiff
ODEs, as noted in [7] and [8] and described further in Section 6. Moreover, these conditions have the benefit of reducing
by one the order of the polynomial in the numerator of the stability function, facilitating the attainment of L-stability
[i.e., o (0c0) = 0], as we will show in Section 3.3. Applying the stiff accuracy conditions to (4a) and (15), we obtain cs = 1.
Together with the condition ¢; = 0, it follows that all IMEX schemes developed herein with DIRK components achieving
L-stability via the stiff accuracy conditions, such as (24), are FSAL, and thus require only s — 1 implicit solves per timestep.
This is especially apparent in (24), in which the entire first column of the Butcher tableau of the implicit component equals
zero. Since this IMEXRK scheme has two implicit stages and three explicit stages per timestep, as a shorthand, we report
the scheme as requiring (2, 3) stages per timestep in Table 1; the stage requirements of the other schemes developed in
this paper are denoted similarly.
The stability boundaries of the constituent DIRK and ERK components of (24) are shown in Figs. 1(c)-1(d).

3. Five third-order, 2-register IMEXRK schemes
3.1. A (2, 3)-stage, strongly A-stable scheme

As suggested by (24), to streamline the implementation, we can suppress the first stage of the DIRK scheme by imposing
b1 =a12“1" = 0. Following this simplification, the entire first column of the DIRK scheme is zero, thus leading to a scheme
with s — 1 implicit stages and s explicit stages. In the s =3 case, the IMEXRK Butcher tableaux take the general form
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Fig. 2. Stability regions |0 (z)| <1 for 0(2) =14z +2%/2+ 236 + 8 z* for various values of &; note that the case with § = 1/24 is given in Fig. 1(l), and
the case with § =1/54 is given in Fig. 1(j).

0|0 0] 0

2|0 ay co|df o

o a a¥ o a0 (252)
0 b2 b3 0 b2 b3

To achieve third-order accuracy, after imposing stage-order-one conditions on both implicit and explicit part, we arrive at
five nonlinear equations in five parameters:

by +b3 —1=0, bacy +b3c3 —1/2=0, byc3 +b3cs —1/3 =0, bscacs —1/6 =0,
bac5 + bsafics + bs(cs — aj$)c2 — 1/6 =0.

This system of nonlinear equations has a single closed-form solution among the real numbers. Defining ¢, as the sole real
root of the polynomial 18(‘3 — 27C§ 4+ 12c; — 2 =0, closed-form expressions for the parameters of this scheme, dubbed
IMEXRKCB3a, are:

o=a8=dX=027+ \3/2187 — 14582 + 9\3/3 +2v/2) /54,
3=a5=c2/(6c3 —3c2+1),  by=Q@Bc2—1)/(6c3), b3 =(6c—3c2+1)/(6c3),
afy = (1/6 — byc5 — bscacs) /[ba(cs — )], afy =aby —c3. (25b)

The stability boundaries of the constituent DIRK and ERK components of (25) are shown in Figs. 1(e)-1(f); note that the
stability boundary of the 3-stage, third-order ERK component necessarily coincides with that of RKW3. As compared with
(24), which has a Butcher tableaux of the same structure, the present scheme sacrifices L-stability of its DIRK component
in order to achieve third-order accuracy.

It is instructive to note that, even after removing the assumption by =0, it is not possible to achieve L-stability of the
DIRK component of a third-order IMEXRK scheme of the general form given in (16) using only three stages due to a conflict
that arises in the t™EX() = 0 constraints (4j)-(4n), as observed previously by [2]. For this reason, the remainder of this
paper explores four-stage schemes of an analogous form for third-order accuracy.

3.2. A (3, 4)-stage, strongly A-stable scheme with ESDIRK implicit part
Extending the simplifying assumptions used in the previous section to a four-stage two-register scheme, by taking b; =

b, =0, and additionally imposing equal values for the diagonal terms of the implicit scheme (that is, a}“{l =y fori=2,3,4),
the Butcher tableaux (16) reduce to:

0|0 0| 0

|0y cdX 0

3|0 d¥ oy 3|0 a0 (262)
40 0 aM vy a0 0 a5 0

0 O by by 0 0 b3z by
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After imposing stage-order-one conditions, determining all the parameters requires the solution of the following system of
five nonlinear equations:

b3 +bs—1=0,  bycs+bsca—1/2=0,  bsc’+baci—1/3=0,  bscacs +bacsca —1/6=0,
b3cacs + b3cacs — b3C% + bacyca + bac3cs — bacycz —1/6 =0.

This system of equations has two closed-form solutions, one of which does not lead to an A-stable scheme, and the other
of which, dubbed IMEXRKCB3Db, is given by

y=c=d=1/2++3/6, c3=d¥=1/2-+3/6, ci=dX=1/2++3/6,
aM=—-v3/3, dM¥=0, by=bs=1/2. (26b)

The stability boundaries of the constituent DIRK and ERK components of (26) are shown in Figs. 1(g)-1(h). This scheme again
achieves strong A-stability of its DIRK component while, as compared with IMEXRKCB3a, slightly extending the limit of
stability of the ERK component in the imaginary directions, and slightly reducing the limit of stability of the ERK component
in the negative real direction.

Imposing the nonzero diagonal terms of the DIRK scheme to be equal [a simplification resulting in what is usually called
an Explicit-first-stage Singly Diagonally Implicit Runge-Kutta (ESDIRK) method] facilitates use of the LU decomposition of
the matrix (I —cyAtA) to simplify all of the implicit solves. This can significantly reduce the number of flops needed for the
implicit solves, but may increase the number of registers required by the code; whether or not use of the LU decomposition
in the implicit solves represents an overall speedup of the simulation depends both on the structure and size of A and the
computational hardware being used.

3.3. Three (3, 4)-stage, L-stable schemes

The simplifying assumptions considered in the previous section again facilitated a closed-form expression of the param-
eters, but prevented the DIRK component from achieving L-stability. In order to achieve L-stability of the DIRK component,
as noted previously, a useful simplifying assumption is the “stiff accuracy” conditions as; =b; for i =1,...,s [and hence,
by (4a) and (15), cs = 1]. Taking s =4 and defining a!™ = «; for i = 2, 3, the Butcher tableaux (16) reduce to the following
form (with, again, an FSAL implicit part): ’

0|0 ol o

coa aM co|d¥ 0

c3|br a¥ a¥ cs|by d¥ 0

1 b] bz b3 b4 1 b] b, af‘é( 0 (27)
b1 b, b3 by by b, b3 ba
BIM DM pM M B¢ bE* b5 BE*

In order to impose third-order accuracy, five order constraints must again be imposed. To achieve L-stability of the DIRK
component, a further simplification of (27) is motivated. To understand this simplification, we may rewrite the stability
function of the scheme as a rational function of z™ and zEX, as suggested by (5) and (18), as

a(z"V'- ZEX) _ 1+ Zizzl pi(Z%%) [ZM] + (f’3o + 3125 [ZMP + Pao [2M]4
1 +Zl 1 ql ZIM]i

where the p;, p;j, and g; are polynomials in the Butcher tableaux parameters. Due to stiff accuracy, pso = 0; thus, in order to

)

impose L-stability of the DIRK component [i.e., limm_, o, o (z™; z5) = 0], it is sufficient to impose that g3 = ab} a3y bs # 0
and
L-stabili A
7 TP = pso azz a33 by — ‘122 ‘133 by — ‘122 ‘133b3 + ‘133 bz cz
+a¥bsca +bibscy +ayybscs —bscacs =0, (A)
‘EZL stability ﬁ (122 (133 bs + 033 bscy +bibgcy — (133 bibgcy — b% bgcy —bibybscy + alzl\él bgcs
— azz b1 bgcs — a22 bybgcs —bgcacs+bybgcycy +bybscycs =0. (B)

As noted in [8] and [9], suppressing the first column of the DIRK component, by imposing by =0 = a21 =0in (27), together
with stiff-accuracy condition, satisfies both (A) and (B) identically; we thus incorporate these additional simplifications in
the two subsections that follow. Notice that in the full-storage setting this strategy is not recommended, as it sacrifices s — 1
degrees of freedom. For a [2R] scheme, however, only two degrees of freedom are sacrificed to enforce these two equations,
and thereby gain L-stability.
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-2
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Fig. 3. The (real) value of 0(z) =14 z+2z2/2 +23/6 + 8 Z* for real, negative values of z and various values of &: (dashed) § = 1/60, 1/56, 1/55; (solid)
8 =1/54; (dot-dashed) § = 1/53, 1/50, 1/24. See also Fig. 2.

3.3.1. Maximizing the extent of stability of the ERK component over the negative real axis
A final (sixth) constraint is obtained by maximizing the stability envelope of the ERK component over the negative real
axis. Using Cramer’s rule, we may rewrite the stability function of the third-order, four-stage ERK component as

4
O’EX(Z;S)=1+ZbT(I—ZAEX)711=1+Z+22/2+ZB/6+3Z4 where § = Z b,'agxaﬁ(ck.
i,j,k=1

For z on the negative real axis, the stability region |6EX(z; §)| <1 is defined by the two conditions
“1<1+4z+222+2/6+682* <1.

Plots of 0X(z; 8) for —7 <z <0 and various values of § are given in Fig. 3. For

8 > derit = (139 — 5255/\3/—210253 +60928+/51 + \3/—210253 +60928+/51 )/6144 =0.0184557,

the condition —1 < o¥X(z; §) is satisfied everywhere in this interval; we thus choose 8§ = 1/54 = 0.0185 > 8, which gives
|oFX(2)] <1 for —6.00 < z < 0, as larger values of § reduce the extent of stability (see Figs. 2 and 3).

Parametric variation reveals that the extent of the stability region along the imaginary axis is relatively insensitive to
changes in 8. Among the third-order, four-stage IMEXRK scheme available in literature, the one with the widest stability
region of the ERK part, which is the (full-storage) ARK3(2)4L[2R]SA scheme developed in [9], has a maximum extent along
the negative real axis which is ~40% less than that of that of the present scheme, and a maximum extent along the
imaginary axis which is only ~5% greater than that of the present scheme; the stability characteristics of the present
scheme are thus seen to be quite competitive.

Thus, in order to determine the parameters of the Butcher tableaux, we impose our final (sixth) constraint as

4
== N bt g —1/54=0. (€
i,j,k=1
The complete solution of this set of six nonlinear constraint equations has been obtained using Mathematica [21]. The
scheme associated to such solution, dubbed IMEXRKCB3c, is given by (27) with

M 3375509829940 M 11712383 888607 531889907 M 566 138307 881
227 4525919076317’ 327 32694570495602 105556248’ 337 912153721139’
b —0 b — 673 488 652 607 493801219040 184814777513
=5 2= 2334033219546 3~ 853653026979° 4~ 1389668723319’
ex 3375509829940 ex | 272778623835 M 1660544566939
OQ=0="—r > (3=03) = ———————, U3 = oo (28a)
4525919076317 1039454778728 2334033219546
the associated second-order embedded scheme has the following coefficients:
BM_ o M _ 366319659506 M _ 270096253 287 M _ 104228367309
L 2 7 1093160237145’ 3 7 480244073137’ 4 71017021570740°
~ex 449556814708 AEx ~ex 210901428686 o 480175564215
X ———— " —  pX—_po = pER_ = (28b)
1155810555193 1400818478499 1042748212601

The stability boundaries of the constituent DIRK and ERK components are shown in Figs. 1(i)-1(j). This scheme is SSP under
the condition (10) with ¢ = 0.7027915. This result can be improved up to ¢ =0.7703947, which is achieved by replacing
condition (C) with
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4
5=0 EX ,EX
T = Z bi aij ajk cx—0=0. (C/)
i,j.k=1
This constraint does not lead to an IMEXRK scheme with an L-stable implicit component; we thus instead choose a small

positive §, thus ensuring L-stability and a nearly optimal value c for strong stability. Choosing § = 1/10000 results in a
scheme, dubbed IMEXRKCB3d, given by (27) with

M 418884414754 M 304881946 513433 262434901 M 684872032315
227 469594081263’ 327 718520734375438559540570° 337 962089110311’
b —0 by — 355931813527 709215176366 755675305
== 27 1014712533305 37 1093407543385’ 47 1258355728177
ex 418884414754 ex 214744852859 ex 658780719778
Q=)= (3=l =————————, Q= (29a)
469594081263 746833870870 1014712533305
the associated second-order embedded scheme has the following coefficients:
5M_ o M _ 226763370689 s _ 1496839794860 .y 353416193
1 ’ 2 7 646029759300’ 3 7 2307829317197 % ~ 889746336234’
~ex 1226988580973 ~EX AEX 827818615 ~ex 317137569431
A== p*=0, = X (29b)
2455716303 853 1665592077 861 634456480332

The coefficient for strong stability in this case is ¢ = 0.7701444. The stability boundaries of the associated DIRK and ERK
components are shown in Figs. 1(k)-1(1). Since § is chosen close to zero, the stability region of the ERK component closely
resembles that of a third-order three-stage explicit Runge-Kutta scheme.

3.3.2. Maximizing accuracy of the ERK component
An alternative third-order four-stage 2-register L-stable strategy, with closed-form parameter values and improved accu-
racy, is given by replacing the final constraint, (C), with

4
T §=1/24 — Z biaEIXaEl)((Ck — 1/24 = 0, (C//)
i,j,k=1

which sets to zero one of the fourth-order truncation terms for the explicit component. This results in a scheme, dubbed
IMEXRKCB3e, given by

o0lo 0] 0
1/310 1/3 1/3|1/3 0
110 1/2 1/2 110 1 0 (30)
110 3/4 —1/4 1,2 110 3/4 1/4 0
0 3/4 —1/4 12 0 3/4 —1/4 1/2

A second-order embedded scheme having all third-order truncation terms nonzero could not be achieved because of
assumption (C”). The stability boundaries of the constituent DIRK and ERK components are shown in Figs. 1(m)-1(n);
IMEXRKCB3e has improved accuracy but reduced stability on the negative real axis for the ERK component, as compared
with IMEXRKCB3c. In particular, because of (C”), the stability region for the ERK part coincides with the stability region of
a standard 4-stage fourth-order explicit RK scheme.

4. A third-order, 3-register, 4-stage, L-stable scheme

All of the schemes so-far described have stage-order one for both the implicit and explicit components. It is well known
in the literature (see [7]) that this limits the order of convergence of such methods when applied to stiff ODEs. In particular,
if the stiffness is so high that the ODE turns into an index-1 DAE, some variables convert from differential to algebraic
and their convergence rate is determined by the stage-order of the method. For this reason, an attempt has been made
to improve the stage-order of the implicit scheme, as done in [9]. In this way, when the DIRK scheme is employed alone,
a better convergence will be observed during the integration of a stiff ODE, as we will show in Section 6.

Hence, after imposing the same b; and c; over the explicit and implicit components and stiff accuracy for the implicit
component as done previously, we impose the stage-order-two condition for the implicit component, that is:

S
dae=ci/2. i=23...5-1. o
j=1
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With these constraints, IZIMG) =0 in (4d) is automatically satisfied. Hence, we must only impose four constraints for third-

order accuracy, two for L-stability, 2(s —2) constraints for stage-order two for the implicit component, and (s —1) constraints
for stage-order one for the explicit component. We also impose c; =0 and c4 =1 for FSAL structure. Considering a four-
stage three-register scheme,

0| 0 00

oladt o ol o

c3layy a3y ass cslaff az 0

1|b1 by b3 by 1| bq afl)z( 05)3( 0 (32a)
b1 by b3z by by by b3z by
M BN M BN 5B GEX X piX

after these constraints are imposed, we are left with three degrees of freedom. We choose the constraint (C) to maximize
the extent of the stability region of the explicit component on the negative real axis, and perform a parametric variation
over the coefficients c; and c3, the remaining two degrees of freedom, between 0 and 1 in order to identify an IMEXRK
scheme with coefficients of the Butcher tableaux within the interval [—5, 5], L-stability of the implicit part over the entire
LHP, and minimum truncation error, defined, following [9], as

AGHD _ \/Z(T:M(qm)z +Z(TiEX(q+1>)2 +Z(T§MEX(QH))27 (32b)

1 1 1

where q is the order of accuracy of the Runge-Kutta scheme, in this case equal to 3. [The same definition is used in Table 1
to compare the truncation error of the various schemes considered.]

This approach is convenient, as the constraint equations depending on both b; and ¢; become linear in b;, which allows
a significant simplification of the corresponding optimization problem. Note that all of the schemes developed in [9] follow
this approach. In the present case, this strategy leads, for each pair (c3, c3), to a set of solutions which depend on the
roots of a fifth-order polynomial. Among these, only three are real, and only one of these gives an L-stable solution.® The
resulting scheme, dubbed IMEXRKCB3f, is obtained for c; =49/50 and c3 = 1/25. The other parameter values are:

v __ 785157464198 v __ 30736234873 v _ 983779726483
317 1093480182337’ 327 978681420651’ 337 1246172347126’
B _ 13244205847 B _ 13419997131

317 647648310246’ 32~ 686433909488’
i _ 231677526244 JBx _ 3007879347537

427 1085522130027’ 47 683461566472 °
,, _ 2179897048956 99189146040

1= 7603118880443 27 891495457793°

6064140186914 146791865627 (320)

3~ 1415701440113 4~ 668377518349"

and ¥ = al¥ = c,/2 and a5¥ = ¢, from stage-order conditions. The scheme is not SSP. The associated second-order embed-
ded scheme is given by:
337712514207 o 311412265155 ;52826596233

M _ o M _
1 =Y 2 = 5 3 = > 4 = 5
759004992 869 608745789881 1214539205236
N N N 25 A 23
EX EX EX EX
b] :0, b2 :0, b3 = @, b4 - @ (32d)

The stability boundaries of the DIRK and ERK components are shown in Figs. 1(0)-1(p). Notice that the stability region of
the explicit component coincides with that of IMEXRKCB3c.

5. A fourth-order, 3-register, 6-stage, L-stable scheme
Solving the nonlinear system of equations arising from the imposition of the fourth-order accuracy constraints is a

difficult task. For this reason, stage-order conditions higher than one are usually imposed, as pointed out in [8]. These

6 The other solutions give a stability region which does not cover the entire LHP; note that this is not in contradiction with the way we have imposed
stability on the scheme during the optimization of the coefficients, since we only impose the behavior of the stability function at infinity, then check the
boundary of the resulting stability region only after all the parameters of the scheme have been determined.
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conditions simplify the search for a solution by significantly reducing the nonconvexity of the corresponding optimization
problem. For this reason, after imposing the same b; and c; over the explicit and implicit components and stiff accuracy for
the implicit component, we require stage-order two for the implicit component.” We also again impose ¢; =0 and cg = 1
for FSAL structure. This reduces the number of nonlinear equations from fourteen, i.e. one for first order, one for second
order, three for third order, and nine for fourth order, to only ten, to which we have to add two constraints for L-stability,
2(s—2) constraints for stage-order two for the implicit component and (s — 1) constraints for stage-order one for the explicit
component. Leveraging a six-stage three-register IMEXRK scheme, i.e.

0| 0 0/ 0
co|laM aM c|df o

M MM EX EX
(3|37 d3; d3g c3lazy azp; 0
b d ol b a a0

M LM M EX EX 33a

¢s| by by as3 ag, asg ¢s| b1 by a3 azy O (33a)
1|b1 by b3 bs bs bg 1/b1 by b3 agﬁ agf-f 0

bi by bz bsg bs bg by by by by bs bg

bi by bz bsg bs bg b1y by b3 by bs bg

we have 30 degrees of freedom to satisfy 25 constraints. [For the embedded scheme, the coordination assumption bEX =

M =} is again imposed, which proves to provide sufficient freedom in the search for a solution.] As in Section 4, we
again perform a (tedious) parametric variation over the coefficients c,, c3, c4, and cs in the range [0, 1]. The last degree of
freedom is taken as one of the diagonal terms of the Butcher tableau of the implicit part (we select alsl\él ), which is varied in
the range [0, 1/2] in order to minimize the truncation error (32b). With this approach, it is possible to numerically solve the
nonlinear systems arising during the IMEXRK scheme design phase. In particular, 114 solutions are found for each quintuplet
(c2, c3, C4, C5, ag‘é'). Among these, over half have imaginary coefficients, and are therefore discarded immediately. Among of
the remaining solutions, only a few satisfy L-stability of the implicit part, and have coefficients in the range [—5, 5]. Among
the schemes that survived this initial downselection, we have selected the one offering the smallest truncation error while
still exhibiting a large extent of the stability region of the explicit part on the negative real axis. It has been found that the
set

c2=1/4, c3=3/4, c1=3/8, c5=1/2, am=1/2 (33b)
gives the best results. The scheme thus obtained, dubbed IMEXRKCB4 is given by:

v _ 216145252607 v _ 257479850128 i _ 30481561667

317 961230882893’ 327 1143310606989’ 337 101628412017’

M 381180097479 ™ 54660926 949 M 344309628413

2= 71276440792700° ™37 T 61115766612° % T 552073727558’

M 100836174740 M 250423827953

953 = T 361952129159° 154 T T 1283875864443’

i 153985248130 i 902825336800

azf = — a5 =—
317~ 1004999853329 327 1512825644809
ix 99316866929 ix 82888780751

ff=—— fp=—,
427 820744730663 4 969573940619

JEx _ 57501241309 JEx _ 76345938311
>3 7 765040883867’ > 676824576433’
Jix _ 4009309936455 1395992540491
64 6310162971841° 5™ 933264948679 ’
232049084587 322009889509 195109672787
'~ 1377130630063 2~ 2243393849156 37 T 1233165545817°
340582416761 463396075661 323177943294
4~ 7705418832319 >~ 409972144477 ® = 1626646580633" (330)

7 Note that, even if it were desired to impose the same stage-order for both implicit and explicit components, in order to improve algebraic variable
accuracy, this is not possible, as the low-storage structure used here removes the necessary degrees of freedom to impose such a condition.



190 D. Cavaglieri, T. Bewley / Journal of Computational Physics 286 (2015) 172-193

and af¥ = ¢, and al¥ = a¥ = c,/2 from the stage-order conditions. The scheme is not SSP. The associated third-order

embedded scheme is:

5 _ 5590918588 5 _ 92380217342 . 29257529014
1= 49191225249 27 122399335103" 3~ T55608238079°

126677396901 j._ 384446411890 . _ 58325237543 (334)
4= 7766917692409 >~ 169364936833 = 207682037557

The stability boundaries of the DIRK and ERK components are shown in Figs. 1(q)-1(r).
6. Order reduction

We now consider the order reduction present when the schemes developed above are applied to the van der Pol equation.
It is well documented in the literature (see, e.g., [8]) that whenever an RK method is used to integrate a singular perturba-
tion problem (that is, an ODE characterized by a stiffness parameter € whose behavior transitions towards that of an index-1
DAE as the stiffness increases), the observed convergence rate appears to be lower than the nominal order of accuracy of
the RK scheme used. In the seminal work of Hairer et al. [7], it is shown that the global error of DIRK schemes applied
to singular perturbation problems may be written in the convenient form E = C; (At)™ + C; & (At)™. For the differential
variables, DIRK methods have n; =n and ny; =nsp + 1, where n is the nominal order of accuracy and ngp is the stage order
of the scheme. For the algebraic variables, if the DIRK method satisfies the aforementioned “stiff-accuracy” conditions, it
turns out that® n; =n and ny = nsp; if not, however, n;y =nsp + 1 and C, = 0, which is generally much worse.

For IMEXRK methods, very little is known about order reduction outside of the empirical work of Kennedy and Carpenter
in [9] and [5], where various IMEX schemes are tested on a range of singular perturbation problems. In this work, the
greatest order reduction is observed in the case of the van der Pol equation; for this reason, we focus on this model
problem in the present paper in order to characterize the order reduction phenomenon. The van der Pol equation describes
the dynamics of a nonlinear oscillator of the form

dy dz 2

=2 edt_(l y)z—y, (34)
where ¢ is known as the stiffness parameter. It is seen that, for ¢ — 0, this ODE system transitions into an index-1 DAE,
where y(t) is a differential variable, and z(t) transitions into an algebraic variable. The initial conditions used are y(0) =2
and z(0) = —0.6666654321121172. All of the schemes introduced in this paper have been tested on this system over the
time interval 0 <t < T, taking T = 0.5, with various values for the (constant) stepsize At and stiffness parameter ¢. The
error at t = T has then been used to estimate the convergence rate (that is, ny and ny) as the stiffness parameter ¢ is
decreased. The procedure used is analogous to that described in [9]: by fixing ¢ and varying At in the At — & limit, the
change of slope in the convergence rate has been detected and used to estimate n; and n;. Results of such simulations are
reported in Fig. 4, and empirical estimates of the convergence rates for each method are reported in Table 2. When only the
DIRK component of the schemes are used, the results generally show good agreement with the theoretical bounds provided
in [7]. If the entire IMEX schemes are used, results do not differ substantially from those reported in [9]. The order-reduction
phenomenon tends to be problem dependent; results in practice (see [9]) often indicate behavior significantly better than
the corresponding theoretical bounds. Note also that imposing stage-order two on the DIRK component of a scheme does
not influence the convergence of the entire IMEX scheme, though it significantly improves the accuracy when the DIRK
component only is used.

7. Computational cost

To illustrate the relative computational cost of our new low-storage IMEXRK schemes on a representative PDE model
problem discretized on N > 1 gridpoints, we now compare the efficient implementation of each of the methods developed
herein to CN/RKW3 and several full-storage IMEX Runge-Kutta schemes available in literature. We consider as a model PDE
problem the one-dimensional Kuramoto-Sivashinsky equation

2 4

u__du u o a5)
ot ax  ox2 x4
over the domain x € [—-L/2,L/2] with u =09u/dx =0 at x = +L/2, where L is the width of the domain. It should be
remarked that, unlike the van der Pol case, this example represents a rather undemanding application of our IMEXRK
schemes. The sole purpose of this analysis is the comparison of the computational cost that our new schemes require with
respect to other IMEXRK schemes available in literature; the implementation of a selection of these schemes in a DNS code
for the simulation of an incompressible turbulent channel flow is currently underway, and will be reported elsewhere. The
RHS of (35) consists of a nonlinear convective term, treated explicitly, and two linear terms, treated implicitly.

8 Indeed, it is precisely for this reason that these “stiff-accuracy” conditions are so named.
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Fig. 4. Convergence rates for the low-storage IMEXRK schemes considered in this paper when applied to the van der Pol equation, as a function of ¢. Solid
lines are for simulations using the DIRK component only (squares for the differential variables, triangles for the algebraic variables), whereas dashed lines
are for the simulations using the entire IMEXRK scheme (diamonds for the differential variables, circles for the algebraic variables).

Table 2

Estimated convergence rates of the differential and algebraic variables on the van der Pol equation for CN/RKW3
and the IMEXRK schemes presented in this paper, and their associated DIRK components only.

Method IMEXRK scheme IMEXRK scheme DIRK scheme only DIRK scheme only
differential part algebraic part differential part algebraic part
CN/RKW3 (AD? 4+ 8(AD)! (AD? +(AD)! (AD? +g(AD)? (AD)? + g(AD)?
IMEXRKCB2 (AD? +&(AL)? (AD? +e(An)! (AD? +e(Ar)? (AD2 +e(AD!
IMEXRKCB3a (A3 4+ e(At)? (AD? 4 g(AD)! (At)? +e(At)? (A3 4+ e(AD)!
IMEXRKCB3b (A3 +e(At)? (AD? +e(AD)! (A3 +e(At)? (AD3 +e(AD)!
IMEXRKCB3c (A1) +e(At)? (AD? 4 g(AD)! (At)? +e(At)? (A3 +e(A)!
IMEXRKCB3d (A0 +e(At)? (AD? +e(AD)! (A3 +e(A)? (AD3 +e(AD)!
IMEXRKCB3e (A3 4+ e(At)? (AD? 4 g(AD)! (At)? +e(At)? (A3 +e(A)!
IMEXRKCB3f (A3 + e(At)? (AD? +e(AD)! (A3 +e(At)? (A3 +e(At)?
IMEXRKCB4 (AD* + e(At)? (AD3 4 e(AD)! (A +e(At)? (AD* + e(At)?
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Following a five-point central finite-difference (FD) approach on a uniform grid, (35) can be approximated as

du
T Au+g(u),
where A is a pentadiagonal Toeplitz matrix obtained by discretizing the last two terms on the RHS of (35), and gj(u) =
—ui(uj—p —8uj_1+8uir1 —uijt2)/(12AX). As an example, using the 3-register implementation (19) of the CN/RKW3 method
(23), 6N flops times 3 stages are required for the evaluation of the nonlinear term, 19N flops times 3 stages are required
for the implicit (pentadiagonal) solves, and 40N additional flops are required for basic product/sum operations; thus, 115N
flops per timestep are required.

Following a pseudospectral (PS) approach, with nonlinear products computed in physical space and spatial derivatives
computed in Fourier space, (35) can be written in wavenumber space as

du 1k, ——= .

=), + (6, K i (36)
where 1 = /=1, ky, = 27rn/L is the wavenumber, and (u?), denotes the nth wavenumber component of the function
computed by transforming u to physical space on N = 2P equispaced gridpoints, computing u? at each gridpoint, and
transforming the result back to Fourier space. Since computing FFTs requires ~5N log N real flops while all other operations
are linear in N, the number of FFTs performed represents the leading-order computational cost for large N. As an example,
the 3-register implementation of CN/RKW3 requires 2 FFTs per stage for each of three stages.

The computational cost of the other schemes may be counted similarly; results are summarized in the last two columns
of Table 1. It is seen that, if computational cost is naively characterized simply by the number of floating point operations
required per timestep, the present low-storage IMEXRK schemes are in fact competitive with both CN/RKW3 and all of the
full-storage IMEXRK schemes available in the literature of the corresponding order. The fact that CN/RKW3 and all of our
low-storage IMEXRK schemes admit two-, three-, or four-register implementations, however, bestows them with a distinct
operational advantage for high-dimensional ODE discretizations of PDE systems.

8. Conclusions

We have developed eight new IMEX Runge-Kutta schemes with reduced storage requirements, the properties of which
are succinctly summarized and compared with competing schemes in Table 1. It is seen that:

e IMEXRKCB2 is second-order accurate, like CN/RKW3; IMEXRKCB3a-3f are third-order accurate, and IMEXRKCB4 is
fourth-order accurate.

e IMEXRKCB2 and 3a-3e, like CN/RKW3, admit both two-register and three-register implementations, with the three-
register implementations requiring slightly fewer flops.

o IMEXRKCB3f and 4 admit both three-register and four-register implementations, with the four-register implementations
requiring significantly fewer flops; the four-register implementations of these two schemes are thus generally recom-
mended, unless the additional storage that the four-register implementations require represents a particularly acute
computational disadvantage.

e IMEXRKCB2 and IMEXRKCB3a generally require fewer floating-point operations per timestep than CN/RKW3, whereas
the other schemes we have developed generally require progressively more; this comparison, however, is somewhat
problem dependent.

o IMEXRKCB2, 3c-3f, and 4 are L-stable, whereas IMEXRKCB3a and 3b are strongly A-stable (CN/RKW3 is only A-stable),
making them well suited for stiff ODEs.

e IMEXRKCB2, 3¢, 3d, 3f, and 4 are each provided with a reduced-order embedded scheme following the guidelines listed
in Section 1.2, making them well suited for application in adaptive time-stepping applications.

e IMEXRKCB3b incorporates an ESDIRK implicit component, and is thus better suited to leverage an LU decomposition
during the implicit solves than either CN/RKW3 or our other schemes.

o IMEXRKCB2, 3c, and 3d are strong stability preserving (SSP) under the appropriate timestep restriction, and are thus
better suited for application to hyperbolic systems than either CNJRKW3 or our other schemes.

o IMEXRKCB3f and 4 have stage order two, whereas CN/RKW3 and our other schemes have stage order one; these two
schemes thus show better convergence properties when applied to especially stiff ODE systems.

Implementation of these schemes into our lab’s benchmark DNS code, diablo, is currently underway.
Acknowledgements
The authors would like to thank one of the reviewers for the especially valuable comments and suggestions, which

contributed to improve the results of the present work. The authors also gratefully acknowledge the financial support of
AFOSR FA9550-12-1-0046 and NSF CNS-1035828.



D. Cavaglieri, T. Bewley / Journal of Computational Physics 286 (2015) 172-193 193

References

[1] K. Akselvoll, P. Moin, Large eddy simulation of turbulent confined coannular jets and turbulent flow over a backward facing step, Rep. TF-63, Thermo-
sciences Division, Dept. of Mech. Eng., Stanford University, 1995.
[2] UM. Ascher, SJ. Ruuth, RJ. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math.
25 (2-3) (1997) 151-167.
[3] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2008.
[4] M.P. Calvo, ]. de Frutos, ]. Novo, Linearly implicit Runge-Kutta methods for advection-reaction-diffusion equations, Appl. Numer. Math. 37 (4) (2001)
535-549.
[5] M.H. Carpenter, C.A. Kennedy, H. Bijl, S.A. Viken, V.N. Vatsa, Fourth-order Runge-Kutta schemes for fluid mechanics applications, J. Sci. Comput. 25
(2005).
[6] S. Gottlieb, C.W. Shu, E. Tadmor, Strong-stability-preserving high order time discretization methods, SIAM Rev. 43 (2001) 89-112.
[7] E. Hairer, Ch. Lubich, M. Roche, Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations, BIT Numer. Math. 28 (3)
(1988) 678-700.
[8] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, 2nd edition, Springer-Verlag, Berlin, 1996.
[9] CA. Kennedy, M.H. Carpenter, R.M. Lewis, Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math. 44 (2003)
139-181.
[10] C.A. Kennedy, M.H. Carpenter, R.M. Lewis, Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer. Math.
35 (2000) 177-219.
[11] J. Kim, P. Moin, Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys. 59 (1985) 308-323.
[12] J. Kim, P. Moin, B. Moser, Turbulence statistics in fully developed channel flow at low Reynolds number, J. Fluid Mech. 177 (1987) 133-166.
[13] H. Le, P. Moin, An improvement of fractional step methods for the incompressible Navier-Stokes equations, J. Comput. Phys. 92 (1991) 369-379.
[14] RJ. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
[15] L. Pareschi, G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput. 25 (2003) 129-155.
[16] L.F. Shampine, Implementation of implicit formulas for the solution of ODEs, SIAM J. Sci. Comput. 1 (1) (1980) 103-118.
[17] C.W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Stat. Comput. 9 (1988) 1073-1084.
[18] C.W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439-471.
[19] P. van der Houwen, Explicit Runge-Kutta formulas with increased stability boundaries, Numer. Math. 20 (1972) 149-164.
[20] J.H. Williamson, Low-storage Runge-Kutta schemes, J. Comput. Phys. 35 (1980) 48-56.
[21] S. Wolfram, The Mathematica Book, fifth edition, Cambridge University Press, Cambridge, 2003.
[22] A.A. Wray, Minimal-storage time advancement schemes for spectral methods, NASA Technical Report, 1986.


http://refhub.elsevier.com/S0021-9991(15)00035-2/bib616B73656C766F6C6C2D31393935s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib616B73656C766F6C6C2D31393935s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6173636865722D31393937s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6173636865722D31393937s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib627574636865722D32303038s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib63616C766F2D32303031s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib63616C766F2D32303031s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib63617270656E7465722D32303035s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib63617270656E7465722D32303035s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib676F74746C6965622D32303031s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6861697265722D31393838s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6861697265722D31393838s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6861697265722D31393936s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6B656E6E6564792D32303033s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6B656E6E6564792D32303033s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6B656E6E6564792D32303030s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6B656E6E6564792D32303030s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6B696D2D31393835s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6B6D6D2D31393837s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib6C652D31393931s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib4C655665717565s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib70617265736368692D32303033s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib7368616D70696E652D31393830s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib7368752D31393838s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib736875322D31393838s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib686F7577656E2D31393732s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib77696C6C69616D736F6E2D31393830s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib776F6C6672616D2D32303033s1
http://refhub.elsevier.com/S0021-9991(15)00035-2/bib777261792D31393836s1

	Low-storage implicit/explicit Runge-Kutta schemes for the simulation of stiff high-dimensional ODE systems
	1 Introduction
	1.1 Full-storage IMEXRK schemes and their Butcher tableaux
	1.1.1 Stability
	1.1.2 Strong-stability preserving (SSP) schemes

	1.2 Low-storage IMEXRK schemes
	1.2.1 General three-register implementation of [2R] IMEXRK schemes
	1.2.2 General two-register implementation of [2R] IMEXRK schemes
	1.2.3 General four-register implementation of [3R] IMEXRK schemes
	1.2.4 General three-register implementation of [3R] IMEXRK schemes


	2 Two second-order, 2-register IMEXRK schemes
	3 Five third-order, 2-register IMEXRK schemes
	3.1 A (2,3)-stage, strongly A-stable scheme
	3.2 A (3,4)-stage, strongly A-stable scheme with ESDIRK implicit part
	3.3 Three (3,4)-stage, L-stable schemes
	3.3.1 Maximizing the extent of stability of the ERK component over the negative real axis
	3.3.2 Maximizing accuracy of the ERK component


	4 A third-order, 3-register, 4-stage, L-stable scheme
	5 A fourth-order, 3-register, 6-stage, L-stable scheme
	6 Order reduction
	7 Computational cost
	8 Conclusions
	Acknowledgements
	References


