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Implicit/explicit (IMEX) Runge–Kutta (RK) schemes are effective for time-marching ODE 
systems with both stiff and nonstiff terms on the RHS; such schemes implement an (often 
A-stable or better) implicit RK scheme for the stiff part of the ODE, which is often linear, 
and, simultaneously, a (more convenient) explicit RK scheme for the nonstiff part of the 
ODE, which is often nonlinear. Low-storage RK schemes are especially effective for time-
marching high-dimensional ODE discretizations of PDE systems on modern (cache-based) 
computational hardware, in which memory management is often the most significant 
computational bottleneck. In this paper, we develop and characterize eight new low-storage 
implicit/explicit RK schemes which have higher accuracy and better stability properties than 
the only low-storage implicit/explicit RK scheme available previously, the venerable second-
order Crank–Nicolson/Runge–Kutta–Wray (CN/RKW3) algorithm that has dominated the 
DNS/LES literature for the last 25 years, while requiring similar storage (two, three, or 
four registers of length N) and comparable floating-point operations per timestep.

Published by Elsevier Inc.

1. Introduction

Although a wide variety of methods have been used for spatial discretization and subgrid-scale modeling in the Direct 
Numerical Simulation (DNS) and Large Eddy Simulation (LES) of turbulent flows, time marching schemes for such systems 
have relied, in most cases, on an implicit scheme for the advancement of the stiff terms and an explicit scheme for the ad-
vancement of the nonstiff terms. Among these so-called IMEX schemes, an approach that gained favor due to [11] and [12]
coupled the (implicit, second-order) Crank–Nicolson (CN) scheme for the stiff terms with the (explicit) second-order Adams–
Bashforth (AB2) scheme for the nonstiff terms. This approach was refined in [13], which used the (implicit) CN scheme for 
the stiff terms, at each RK substep, together with the (explicit) third-order low-storage Runge–Kutta–Wray (RKW3) scheme 
[22] for the nonstiff terms. This venerable IMEX algorithm, dubbed CN/RKW3, still enjoys extensive use today, and is par-
ticularly appealing, as only two registers are required for advancing the ODE in time, though if three registers are used, 
the number of flops required by the algorithm may be significantly reduced. In high-dimensional discretizations of 3D PDE 
systems on modern computational hardware, the reduced memory footprint of this time marching algorithm, in its two-
register or three-register form, can significantly reduce the execution time of a simulation. However, the CN/RKW3 scheme 
has the considerable disadvantage of being only second-order accurate, and its implicit part is only A-stable. In recent years, 
there have been relatively few attempts to refine the CN/RKW3 time-marching scheme for turbulence simulations, perhaps 
due to a mistaken notion that modifying it to achieve higher order might result in either increased storage requirements, 
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significantly more computation per timestep, or the loss of A stability of the implicit part. It turns out that this is untrue; 
in fact, there is much to be gained by revising this algorithm.

When using an IMEX scheme, such as those described above, to march the incompressible Navier–Stokes equation, 
one natural choice is to treat the (linear) diffusion terms as the “stiff terms” and the (nonlinear) convective terms as the 
“nonstiff terms”. Note that a better choice for discretizations with significant grid clustering implemented in one or more 
spatial directions, as usually present when simulating wall-bounded turbulent flows, is to treat the diffusion and linearized 
convection terms with derivatives in the direction of most significant grid clustering (e.g., in the direction normal to the 
nearest wall) as the “stiff” terms, and the remaining terms as the “nonstiff” terms, as suggested by [1]. Note further that 
so-called fractional step methods are often combined with such IMEX schemes in order to enforce the incompressibility 
constraint (see, e.g., [13]). The present paper focuses exclusively on the IMEXRK part of such time-advancement algorithms; 
various creative choices for which terms to take implicitly at different points in the physical domain of interest, and various 
methods for implementing fractional step techniques for enforcing exactly the divergence-free constraint, may subsequently 
be addressed in an identical manner as discussed in [1] and [13], and elsewhere in the literature.

Over the last 30 years, there has been significant development of (full-storage) IMEXRK algorithms. A comprehensive 
review of this literature is given in [9], and a brief summary of this subject is given in Section 1.1 below, including the 
general structure of full-storage IMEXRK schemes, their general implementation, conditions on their parameters for second-, 
third-, and fourth-order accuracy, and characterizations of their stability.

Further, in the years since the development of RKW3 in [22], there has been significant development of alternative 
low-storage explicit RK schemes; a comprehensive review of this literature is given in [10], and a brief summary of this 
subject is given in Section 1.2 below, including the extension to implicit RK schemes, the introduction of a general 2-register 
IMEXRK form, efficient 3-register and 2-register implementations of this form, as well as the introduction of a general 
3-register IMEXRK form, and efficient 4-register and 3-register implementations of this form.

We then develop eight new low-storage IMEXRK schemes well suited for turbulent flow simulations, and other com-
putational grand challenge applications, using two, three, or four registers of length N (the dimension of the ODE under 
consideration). With an eye on the computational cost of their implementation, we focus on schemes with the smallest 
number of stages possible for a given order, stability, and storage requirement. A comprehensive summary of the schemes 
developed in this paper is given in Table 1. In short:

• Section 2 presents two second-order, 2-register IMEXRK schemes:
– the classic 3-stage, A-stable, CN/RKW3 scheme, and
– a new, (2, 3)-stage [that is, a scheme with 2 implicit stages and 3 explicit stages], L-stable, strong-stability-preserving 

scheme, dubbed IMEXRKCB2.
• Section 3 presents five new third-order, 2-register IMEXRK schemes:

– a (2, 3)-stage, strongly A-stable scheme, dubbed IMEXRKCB3a,
– a (3, 4)-stage, strongly A-stable scheme with ESDIRK implicit part, dubbed IMEXRKCB3b, and
– three (3, 4)-stage, L-stable schemes:

– one with coefficients selected to maximize stability of the ERK part on the negative real axis while being strong 
stability preserving, dubbed IMEXRKCB3c,

– one with coefficients selected to be strong stability preserving for the maximum possible timestep, dubbed
IMEXRKCB3d, and

– one with coefficients selected to maximize accuracy of the ERK part, dubbed IMEXRKCB3e.
• Section 4 presents a new third-order, 3-register, 4-stage, L-stable, stage-order-2 scheme dubbed IMEXRKCB3f.
• Section 5 presents a new fourth-order, 3-register, 6-stage, L-stable, stage-order-2 scheme dubbed IMEXRKCB4.

In Section 6, we provide an analysis of the well-known order reduction phenomenon arising during the integration of very 
stiff ODEs using these IMEXRK schemes. Finally, Section 7 considers the application of all of these low-storage IMEXRK 
schemes, and some of their full-storage IMEXRK competitors, to a representative test problem in order to compare their 
computational efficiency.

1.1. Full-storage IMEXRK schemes and their Butcher tableaux

A comprehensive review of (full-storage) IMEXRK schemes is given by Kennedy, Carpenter, and Lewis [9]. In short, 
IMEXRK schemes incorporate a coordinated pair of Diagonally Implicit Runge–Kutta (DIRK, with lower-triangular A) and Ex-
plicit Runge–Kutta (ERK, with strictly lower-triangular A) schemes, with parameters as summarized in the standard Butcher 
tableaux
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ttom), including the leading-order computational cost per 
SSP” means that the scheme is strong stability preserving 
ided, “ESDIRK” means that all diagonal components of the 
e scheme is stage order 2.

Other
properties

FD cost for 1D KS PS cost

embedded,
SP (c = 1.0)

90N flops (3-reg),
101N flops (2-reg)

6 FFTs
(3-reg)

90N flops (3-reg),
101N flops (2-reg)

6 FFTs
(3-reg)

ESDIRK
130N flops (3-reg),
139N flops (2-reg)

8 FFTs
(3-reg)

embedded,
SP (c = 0.70)

133N flops (3-reg),
157N flops (2-reg)

8 FFTs
(3-reg)

embedded,
SP (c = 0.77)

embedded,
SO2

162N flops (4-reg),
266N flops (3-reg)

8 FFTs
(4-reg)

embedded,
SO2

253N flops (4-reg),
458N flops (3-reg)

12 FFTs
(4-reg)

115N flops (3-reg),
127N flops (2-reg)

6 FFTs
(3-reg)

92N flops 6 FFTs

141N flops 8 FFTs

190N flops 8 FFTs

139N flops 8 FFTs

embedded 159N flops 8 FFTs

249N flops 12 FFTs

embedded 270N flops 12 FFTs
Table 1
At a glance: summary of the properties of the eight IMEXRK schemes developed in this paper (top) and eight of the leading IMEXRK competitors (bo
timestep for efficient finite-difference (FD) and pseudospectral (PS) implementation of each scheme on the 1D Kuramoto–Sivashinsky (KS) equation. “
under the appropriate timestep restriction, “embedded” means that a lower-order embedded scheme following the guidelines listed in Section 1.2 is prov
A matrix of the associated DIRK scheme are equal (facilitating storage and reuse of an LU decomposition during the implicit solves), and “SO2” means th

Scheme Order Registers
Stages

(sIM, sEX)

Stability of DIRK part
[σ(zIM → ∞; zEX)]

Stability of ERK part
on negative real axis

Truncation error

IMEXRKCB2 second [2R] (2,3) L-stable [0] −5.81 ≤ zEX ≤ 0 A(3) = 0.114
S

IMEXRKCB3a

third [2R]

(2,3)
strongly A-stable

[−0.738] −2.51 ≤ zEX ≤ 0 A(4) = 0.226

IMEXRKCB3b

(3,4)

strongly A-stable
[−0.732 − 0.366zEX]

−2.21 ≤ zEX ≤ 0 A(4) = 0.186

IMEXRKCB3c

L-stable [0]

−6.00 ≤ zEX ≤ 0 A(4) = 0.113 S

IMEXRKCB3d −2.52 ≤ zEX ≤ 0 A(4) = 0.207 S

IMEXRKCB3e −2.79 ≤ zEX ≤ 0 A(4) = 0.0824

IMEXRKCB3f [3R] (4,4) L-stable [0] −6.00 ≤ zEX ≤ 0 A(4) = 0.107

IMEXRKCB4 fourth [3R] (6,6) L-stable [0] −6.32 ≤ zEX ≤ 0 A(5) = 0.0157

CN/RKW3 second [2R] (3,3) A-stable [−1] −2.51 ≤ zEX ≤ 0 A(3) = 0.0387

Ascher(2, 3, 3)

{see [2]}

third

7 (2,3)
strongly A-stable

[−0.732 − 0.732zEX] −2.51 ≤ zEX ≤ 0 A(4) = 0.206

Ascher(3, 4, 3)

{see [2]} 9 (3,4) L-stable [0.106zEX] −2.78 ≤ zEX ≤ 0 A(4) = 0.103

Ascher(4, 4, 3)

{see [2]} 10 (4,4)

L-stable [0]

−2.14 ≤ zEX ≤ 0 A(4) = 0.163

LIRK3
{see [4]} 9 (3,4) −2.21 ≤ zEX ≤ 0 A(4) = 0.100

ARK3(2)4L[2]SA
{see [9]} 10 (4,4) −3.66 ≤ zEX ≤ 0 A(4) = 0.0722

LIRK4
{see [4]}

fourth
13 (5,6)

L-stable [0]
−3.41 ≤ zEX ≤ 0 A(5) = 0.0404

ARK4(3)6L[2]SA
{see [9]} 14 (6,6) −4.23 ≤ zEX ≤ 0 A(5) = 0.0122
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cIM
1 aIM

1,1

cIM
2 aIM

2,1 aIM
2,2

...
...

. . .
. . .

cIM
s aIM

s,1 · · · aIM
s,s−1 aIM

s,s

bIM
1 · · · bIM

s−1 bIM
s

b̂IM
1 · · · b̂IM

s−1 b̂IM
s

cEX
1 0

cEX
2 aEX

2,1 0
...

...
. . .

. . .

cEX
s aEX

s,1 · · · aEX
s,s−1 0

bEX
1 · · · bEX

s−1 bEX
s

b̂EX
1 · · · b̂EX

s−1 b̂EX
s

(1)

for the time advancement of an ODE of the form

dx(t)

dt
= f(x, t) + g(x, t), (2)

where f(x, t) represents the stiff part of the RHS [advanced with the DIRK method at left in (1)], and g(x, t) represents the 
nonstiff part of the RHS [simultaneously advanced with the ERK method at right in (1)].

If the stiff part of the ODE is linear [that is, if f(x, t) = Ax] then, denoting the efficient solution of Ax = b as A−1b, 
a full-storage implementation of the IMEXRK scheme in (1) to advance from x = xn to x = xn+1 proceeds as follows

for k = 1 : s (3a)

if k == 1, y = x, else, y = x +
k−1∑
i=1

aIM
k,i �t f i +

k−1∑
j=1

aEX
k, j �t g j, end (3b)

f k = A
(

I − aIM
k,k �t A

)−1
y

[
equivalently, f k = (

I − aIM
k,k �t A

)−1
A y

]
(3c)

g k = g
(
y + aIM

kk �t f k, tn + cEX
k �t

)
(3d)

end (3e)

x ← x +
s∑

i=1

bIM
i �t f i +

s∑
j=1

bEX
j �t g j (3f)

x̂ ← x̂ +
s∑

i=1

b̂IM
i �t f i +

s∑
j=1

b̂EX
j �t g j (3g)

Line (3c) above is simply f k = f(z, tn + cIM
k �t), where z is the solution of e(z) = z − y − aIM

kk �t f(z, tn + cIM
k �t) = 0 [that is, 

where z = y +aIM
kk �t f(z, tn +cIM

k �t)], in the special case that f(x, t) = Ax. More generally, if the stiff part f(x, t) is nonlinear, 
then line (3c) is replaced by a Newton–Raphson iteration (see [16]) to find the z such that e(z) = 0:

Initialize: z0 = y + aIM
kk �t f

(
y, tn + cIM

k �t
)

Iterate:

(
I − aIM

kk �t
∂f(x, tn + cIM

k �t)

∂x

∣∣∣∣
x=zm

)
(zm+1 − zm) = −zm + y + aIM

kk �t f
(
zm, tn + cIM

k �t
)

Upon exit: f k = f
(
zconverged, tn + cIM

k �t
)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3c′)

The Jacobian used in this iteration may be computed analytically or approximated numerically. The low-storage IMEXRK 
algorithms developed in this work may be applied in the linear or nonlinear setting, mutatis mutandis; Sections 1.2.1–1.2.4
provide low-storage pseudocode implementations in the case in which the stiff part of the ODE is linear.

Finally, note that the b̂IM
i and b̂EX

i coefficients in the Butcher tableaux, if provided, are used to form a so-called embedded 
scheme to advance the solution at each timestep with an order of accuracy reduced by one with respect to the main scheme. 
Using this embedded scheme, one may estimate the error of the simulation at each timestep, and adjust the stepsize at the 
next iteration accordingly.

As is well known (see, e.g., [3]), for the DIRK and ERK components in (1), when used in isolation, to be first-order 
accurate, it is required that

τ
IM(1)
1 =

∑
i

bIM
i − 1 = 0 τ

EX(1)
1 =

∑
i

bEX
i − 1 = 0, (4a)

for these schemes, when used in isolation, to be second-order accurate, it is additionally required that

τ
IM(2)
1 =

∑
i

bIM
i cIM

i − 1/2 = 0 τ
EX(2)
1 =

∑
i

bEX
i cEX

i − 1/2 = 0, (4b)

for these schemes, when used in isolation, to be third-order accurate, it is additionally required that
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τ
IM(3)
1 = (1/2)

∑
i

bIM
i cIM

i cIM
i − 1/6 = 0 τ

EX(3)
1 = (1/2)

∑
i

bEX
i cEX

i cEX
i − 1/6 = 0 (4c)

τ
IM(3)
2 =

∑
i, j

bIM
i aIM

i j cIM
j − 1/6 = 0 τ

EX(3)
2 =

∑
i, j

bEX
i aEX

i j cEX
j − 1/6 = 0, (4d)

and for these schemes, when used in isolation, to be fourth-order accurate, it is additionally required that

τ
IM(4)
1 = (1/6)

∑
i

bIM
i cIM

i cIM
i cIM

i − 1/24 = 0 τ
EX(4)
1 = (1/6)

∑
i

bEX
i cEX

i cEX
i cEX

i − 1/24 = 0 (4e)

τ
IM(4)
2 = (1/3)

∑
i, j

bIM
i cIM

i aIM
i j cIM

j − 1/24 = 0 τ
EX(4)
2 = (1/3)

∑
i, j

bEX
i cEX

i aEX
i j cEX

j − 1/24 = 0 (4f)

τ
IM(4)
3 = (1/2)

∑
i, j

bIM
i aIM

i j cIM
j cIM

j − 1/24 = 0 τ
EX(4)
3 = (1/2)

∑
i, j

bEX
i aEX

i j cEX
j cEX

j − 1/24 = 0 (4g)

τ
IM(4)
4 =

∑
i, j,k

bIM
i aIM

i j aIM
jk cIM

k − 1/24 = 0 τ
EX(4)
4 =

∑
i, j,k

bEX
i aEX

i j aEX
jk cEX

k − 1/24 = 0. (4h)

Recall that, in the scalar case, the exact solution of x′ = f (x) + g(x) has the following terms:

xn+1 = xn + �t x′
n + (�t)2 x′′

n/2! + (�t)3 x′′′
n /3! + O

(
(�t)4)

= xn + �t{ f + g}(xn,tn) + (�t)2

2!
{

f ′ f + f ′g + g′ f + g′g
}
(xn,tn)

+ (�t)3

3!
{

f ′′ f f + 2 f ′′ f g + f ′′gg + g′′ f f

+ 2g′′ f g + g′′gg + f ′ f ′ f + f ′g′ f + g′ f ′ f + g′g′ f + f ′ f ′g + f ′g′g + g′ f ′g + g′g′g
}
(xn,tn)

+ O
(
(�t)4);

note in particular that there are 2 terms at second order and 10 terms at third order that involve both f and g . For the 
DIRK and ERK components in (1), when used together in an IMEX fashion, to be second-order accurate, it is thus additionally 
required that

τ
IMEX(2)
1 =

∑
i

bIM
i cEX

i − 1/2 = 0 τ
IMEX(2)
2 =

∑
i

bEX
i cIM

i − 1/2 = 0, (4i)

for these schemes, when used together in an IMEX fashion, to be third-order accurate, it is additionally required that

τ
IMEX(3)
1 = (1/2)

∑
i

bIM
i cEX

i cEX
i − 1/6 = 0 τ

IMEX(3)
2 = (1/2)

∑
i

bEX
i cIM

i cIM
i − 1/6 = 0 (4j)

τ
IMEX(3)
3 = (1/2)

∑
i

bIM
i cIM

i cEX
i − 1/6 = 0 τ

IMEX(3)
4 = (1/2)

∑
i

bEX
i cIM

i cEX
i − 1/6 = 0 (4k)

τ
IMEX(3)
5 =

∑
i, j

bIM
i aEX

i j cEX
j − 1/6 = 0 τ

IMEX(3)
6 =

∑
i, j

bEX
i aIM

i j cIM
j − 1/6 = 0 (4l)

τ
IMEX(3)
7 =

∑
i, j

bEX
i aEX

i j cIM
j − 1/6 = 0 τ

IMEX(3)
8 =

∑
i, j

bIM
i aIM

i j cEX
j − 1/6 = 0 (4m)

τ
IMEX(3)
9 =

∑
i, j

bIM
i aEX

i j cIM
j − 1/6 = 0 τ

IMEX(3)
10 =

∑
i, j

bEX
i aIM

i j cEX
j − 1/6 = 0, (4n)

and for these schemes, when used together in an IMEX fashion, to be fourth-order accurate, 44 additional constraints are 
required (see [9]), which for brevity aren’t listed here.

1.1.1. Stability
The stability of an RK scheme may be characterized by considering the model problem dx/dt = λx and defining z = λ �t , 

σ(z) = xn+1/xn , and σ(∞) � lim|z|→∞ σ(z). The stability function of an RK scheme with Butcher tableau parameters A and 
b is then given by σ(z) = 1 + zbT (I − z A)−11, where 1 denotes a vector of ones; the RK scheme is said to be stable for any 
z such that |σ(z)| ≤ 1. Further, considering its application to stiff systems, an RK scheme is said to be

• A-stable if |σ(z)| ≤ 1 over the entire LHP of z,
• strongly A-stable if it is A-stable and |σ(∞)| < 1, and
• L-stable if it is A-stable and σ(∞) = 0.

The stability of an IMEXRK scheme is a bit more difficult to characterize. Of course, one may start by characterizing 
the stability of the implicit and explicit parts considered in isolation. To evaluate the stability of the implicit and explicit 
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components of an IMEX scheme working together, we consider the model problem dx/dt = λ f x + λg x, where the first term 
on the RHS is handled implicitly, and the second term on the RHS is handled explicitly. Defining zIM = λ f �t , zEX = λg �t , 
and σ(zIM; zEX) = xn+1/xn , we may write (see [9])

σ
(
zIM; zEX) = det[I − zIM AIM − zEX AEX + zIM1(bIM)T + zEX1(bEX)T ]

det[I − zIM AIM] . (5)

We may then characterize the stability of the implicit and explicit parts of an IMEXRK scheme working in concert, when 
the implicit part of the problem is stiff, by looking at σ(zIM; zEX) as zIM → ∞ for finite zEX.

1.1.2. Strong-stability preserving (SSP) schemes
Consider the 1D hyperbolic PDE

∂u/∂t = −∂ f (u)/∂x; (6)

denoting by ui(t) the discretization of u(x, t) on N spatial grid points xi , and by u(t) a vector containing all of the ui(t), we 
write the spatial discretization of this PDE as the ODE

du/dt = L(u). (7)

If a TVD spatial discretization is used, such as a Godunov or MUSCL scheme with an appropriate flux limiter incorporated 
(see [14]), then applying a simple Explicit Euler time discretization to (7),

un+1 = un + �t L
(
un), (8)

under the appropriate CFL condition on the timestep, �t ≤ �tCFL , results in a simulation exhibiting a total variation of the 
discrete solution which does not increase in time, that is,

TV
(
un+1) ≤ TV

(
un), where TV

(
un) =

∑
j

∣∣un
j+1 − un

j

∣∣. (9)

Strong-stability preserving (SSP) explicit time-discretization methods (see [17] and [18]) are simply higher-order time dis-
cretization methods that conserve this total variation diminishing property with a modified CFL condition on the timestep, 
�t ≤ c �tCFL .

In [18] (see also [6]), a condition for an explicit Runge–Kutta scheme to be SSP has been developed. This condition states 
that if an s-stage explicit Runge–Kutta scheme is written in incremental form, that is,

u(0) = un

u(i) =
i−1∑
j=0

(
αi ju

( j) + �tβi jL
(
u( j))) for i = 1, . . . , s

un+1 = u(s),

where all of the αi j ≥ 0, and if the forward Euler method applied to the ODE (7) arising from a TVD spatial discretization of 
the hyperbolic PDE (6) is strongly stable under the appropriate CFL restriction, then such an explicit Runge–Kutta method is 
SSP provided that all of the βi j ≥ 0 and that the following CFL restriction is fulfilled:

�t ≤ c �tCFL, c = min
i, j

αi j

βi j
. (10)

In case an explicit scheme is coupled with an implicit scheme, as in an IMEXRK formulation, then, provided the implicit 
scheme used to integrate the stiff part of the ODE is L-stable, in the stiff limit the time integration scheme becomes the 
explicit Runge–Kutta scheme, and the order of accuracy of the limiting scheme is greater than or equal to the order of 
accuracy of the IMEXRK scheme itself. Hence, as stated in [15], if the explicit part of the IMEXRK scheme is SSP, then the 
IMEXRK scheme will also be SSP in the stiff limit.

In [15], three full-storage second-order and two full-storage third-order IMEXRK schemes are presented which are SSP 
in the stiff limit; no other IMEXRK schemes with this SSP property were found in our review of the IMEXRK literature. 
The present paper derives three new IMEXRK schemes which are SSP in the stiff limit (one which is second-order and two 
which are third-order); unlike the schemes in [15], the IMEXRK schemes derived here are of the low-storage variety.

1.2. Low-storage IMEXRK schemes

The existing literature on low-storage RK schemes to date appears to focus exclusively on explicit schemes. Note that a 
cavalier implementation of a full-storage ERK scheme [see the explicit part of (3)] requires storage of the state vector [x], 
the intermediate vector [y], and s values of the RHS vectors [g k]; that is, s + 2 vectors of length N , where x = xN×1. We 
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now summarize the two main classes of low-storage ERK schemes,1 a comprehensive review of which is given in Kennedy, 
Carpenter, and Lewis [10].

The two-register Williamson class of ERK schemes [20], denoted “[2N]” schemes, may be written to advance from x = xn

to x = xn+1 as

for k = 1 : s
if k == 1, �x ← �t g(x, tn + ck�t), else

�x ← αk �x + �t g(x, tn + ck�t)
end
x ← x + βk �x

end

(11)

If handled with care, such schemes can often be implemented efficiently in two registers of length N , x and �x.
The two-register van der Houwen class of schemes [19], denoted “[2R]” schemes, restrict the parameters aij below the 

first subdiagonal in the Butcher tableau of the ERK scheme to be equal to the parameters b j of the corresponding column, 
and may thus be written to advance from x = xn to x = xn+1 as

for k = 1 : s
if k == 1, y ← x, else

y ← x + (ak,k−1 − bk−1)�t g(y, tn + ck−1�t)
end
x ← x + bk �t g(y, tn + ck�t)

end

(12)

Such schemes can often be implemented efficiently in two registers of length N (namely, x and y). If implemented with 
three registers, however, the function g(y, tn + ck�t) can be computed just once per timestep (instead of twice). RKW3 
[22] is a commonly-used example of a two-register, three-stage, third-order van der Houwen ERK scheme, with a Butcher 
tableau of

0 0
8/15 8/15 0

2/3 1/4 5/12 0

1/4 0 3/4

(13)

In the three-register van der Houwen class of schemes, denoted “[3R]” schemes, only the parameters aij below the 
second subdiagonal of the Butcher tableau of the ERK scheme must equal the parameters b j of the corresponding column. 
An effective implementation of such [3R] schemes that uses only three registers of length N (namely, x, y and z) is given 
by

for k = 1 : s
if k == 1, y ← x, z ← x, else,

z ← y + ak,k−1 �t g(y, tn + ck−1�t)
if k < s, y ← x + (ak+1,k−1 − bk−1)g(y, tn + ck−1�t), end

end
x ← x + bk �t g(y, tn + ck�t)

end

(14)

Again, if implemented with four registers, the function g(y, tn + ck�t) can be computed just once per timestep (instead of 
thrice). In the present work, we extend the two- and three-register van der Houwen classes of ERK schemes to the DIRK 
case, which can be accomplished with precisely the same restrictions on the (lower triangular) DIRK Butcher tableau as in 
the (strictly lower triangular) ERK case, as specified above. Further, we will develop coordinated pairs of such [2R] and [3R] 
DIRK and ERK schemes in the IMEX setting described in Section 1.1. In particular, we will develop a [2R] second-order IMEX 
scheme, [2R] and [3R] third-order IMEX schemes, and a [3R] fourth-order IMEX scheme.

As shown in Section 1.1, six constraints on the parameters of the IMEX Butcher tableaux (1) must be satisfied for second-
order accuracy, fourteen additional constraints must be satisfied for third-order accuracy, and fifty-two additional constraints 
must be satisfied for fourth-order accuracy. Before proceeding, we thus introduce some significant simplifying assumptions. 
Following [15] and [9] and the CN/RKW3 scheme of [13], we synchronize the stages of DIRK and ERK components by impos-
ing cIM

i = cEX
i = ci for i = 1, . . . , s. We also coordinate the constituent DIRK and ERK components such that bIM

i = bEX
i = bi

1 Both the Williamson class and the van der Houwen class of ERK schemes extend to ERK variants that require, at minimum, three, four, or more 
registers for their implementation; with an eye on the computational cost of their implementation, we focus in this paper on schemes which admit a two-
or three-register implementation.
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for i = 1, . . . , s, as also done in [15] and [9], but which is not satisfied by CN/RKW3. Finally, for each stage, a stage-order of 
one is also imposed such that

i∑
j=1

aIM
i j =

i−1∑
j=1

aEX
i j = ci for i = 1, . . . , s; (15)

it follows that c1 = aIM
11 = aEX

11 = 0. As a result of these assumptions, the number of constraints on the IMEX parameters [see 
(4)] for second-order accuracy is reduced to just two, the number of constraints for third-order accuracy is reduced to five, 
and the number of constraints for fourth-order accuracy is reduced to fourteen.

For several of the IMEXRK schemes developed in this paper, a lower-order embedded scheme is also developed, relaxing 
the b̂IM

i = b̂EX
i restriction to provide increased freedom during the design phase. As a general guideline, none of the leading-

order truncation terms of an embedded scheme should vanish, so that each of these terms will contribute to the error 
estimate (subject to this restriction, the remaining free parameters of the embedded scheme are then optimized to maxi-
mize the magnitude of the leading-order truncation terms). Unfortunately, this is not always achievable; as a result, not all 
of the schemes developed in this paper are listed with embedded schemes. For all of the embedded schemes we do report, 
the DIRK part of the embedded scheme is at least A-stable, which is a property of the embedded scheme recommended by 
[8]; note, however, that the embedded scheme is not used for time marching, it is only used to adjust the timestep.

The IMEX Butcher tableaux in (1) for coordinated pairs of [2R] DIRK and ERK schemes are thus simplified to

0 0
c2 aIM

2,1 aIM
2,2

c3 b1 aIM
3,2 aIM

3,3
c4 b1 b2 aIM

4,3 aIM
4,4

...
...

...
. . .

. . .
. . .

cs b1 b2 · · · bs−2 aIM
s,s−1 aIM

s,s

b1 b2 · · · bs−2 bs−1 bs

b̂IM
1 b̂IM

2 · · · b̂IM
s−2 b̂IM

s−1 b̂IM
s

0 0
c2 aEX

2,1 0
c3 b1 aEX

3,2 0
c4 b1 b2 aEX

4,3 0
...

...
...

. . .
. . .

. . .

cs b1 b2 · · · bs−2 aEX
s,s−1 0

b1 b2 · · · bs−2 bs−1 bs

b̂EX
1 b̂EX

2 · · · b̂EX
s−2 b̂EX

s−1 b̂EX
s

(16)

and the IMEX Butcher tableaux for coordinated pairs of [3R] DIRK and ERK schemes are simplified to

0 0
c2 aIM

2,1 aIM
2,2

c3 aIM
3,1 aIM

3,2 aIM
3,3

c4 b1 aIM
4,2 aIM

4,3 aIM
4,4

...
...

...
. . .

. . .
. . .

cs b1 b2 · · · aIM
s,s−2 aIM

s,s−1 aIM
s,s

b1 b2 · · · bs−2 bs−1 bs

b̂IM
1 b̂IM

2 · · · b̂IM
s−2 b̂IM

s−1 b̂IM
s

0 0
c2 aEX

2,1 0
c3 aEX

3,1 aEX
3,2 0

c4 b1 aEX
4,2 aEX

4,3 0
...

...
...

. . .
. . .

. . .

cs b1 b2 · · · aIM
s,s−2 aEX

s,s−1 0

b1 b2 · · · bs−2 bs−1 bs

b̂EX
1 b̂EX

2 · · · b̂EX
s−2 b̂EX

s−1 b̂EX
s

(17)

Note also that, as the DIRK component, the IMEXRK form considered above has an explicit first stage, its stability function 
(5) may be written

σ
(
zIM; zEX) = 1 + ∑ s

i=1 pi(zEX) [zIM]i

1 + ∑ s−1
i=1 qi [zIM]i

where pi
(
zEX) =

s−i∑
j=0

p̂i j
[
zEX] j

. (18)

1.2.1. General three-register implementation of [2R] IMEXRK schemes
Note that, if the stiff part of the ODE is linear [that is, if f(x, t) = Ax] then, denoting the efficient solution of Ax = b as 

A−1b, a straightforward implementation of the low-storage IMEXRK scheme in (16) that uses three registers2 of length N
to advance from x = xn to x = xn+1 proceeds as follows:

2 That is, in addition to any extra memory required to solve the linear system, which is problem dependent, plus an additional register of length N for 
the embedded scheme, if adaptive timestepping is implemented.
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for k = 1 : s
if k == 1, y ← x, else

y ← x + (
aIM

k,k−1 − bIM
k−1

)
�t z + (

aEX
k,k−1 − bEX

k−1

)
�t y

end

z = (
I − aIM

k,k �t A
)−1

A y
y ← g

(
y + aIM

k,k �t z, tn + cEX
k �t

)
x ← x + bIM

k �t z + bEX
k �t y

x̂ ← x̂ + b̂IM
k �t z + b̂EX

k �t y
end

(19)

where z and y store the implicit and explicit parts of the RHS at each stage, x is used to advance the solution of the 
main scheme,3 and x̂ stores the solution of the embedded scheme if adaptive time stepping is implemented. Note that 
one linear solve of the form (I − c A)−1b, one matrix/vector product Ay, and one nonlinear function evaluation g(y, t)
are computed per stage, in addition to various level-1 BLAS (basic linear algebra subroutine) operations. As discussed in 
Section 1.1, implementation in the case of a nonlinear stiff part is a straightforward extension.

1.2.2. General two-register implementation of [2R] IMEXRK schemes
By applying the matrix inversion lemma ( Â + B̂ Ĉ D̂)−1 = Â−1 − Â−1 B̂(Ĉ−1 + D̂ Â−1 B̂)−1 D̂ Â−1 with Â = Ĉ = I , D̂ = A, 

and B = −aIM
k,k �t , the algorithm laid out in Section 1.2.1 may be rewritten in a form that only requires two registers2 of 

length N:

for k = 1 : s
if k == 1, y ← x, else

y ← x + (
aIM

k,k−1 − bIM
k−1

)
�t A y + (

aEX
k,k−1 − bEX

k−1

)
�t g

(
y, tn + cEX

k−1�t
)

end

y ← (
I − aIM

k,k �t A
)−1

y
x ← x + bIM

k �t A y + bEX
k �t g

(
y, tn + cEX

k �t
)

x̂ ← x̂ + b̂IM
k �t A y + b̂EX

k �t g
(
y, tn + cEX

k �t
)

end

(20)

In this case, one linear solve of the form (I − c A)−1b and two operations of the form4 x + c A y + d g(y, t) are computed 
per stage, in addition to various level-1 BLAS operations. However, the storage requirement is reduced from three registers 
of length N to only two, which is quite significant. In many cases, some of the coefficients in the above algorithm turn out 
to be zero, so the increased computational cost associated with the extra nonlinear function evaluations and matrix/vector 
products in this implementation is not as bad as one might initially anticipate, as quantified in Section 7.

1.2.3. General four-register implementation of [3R] IMEXRK schemes
For the development of the stage-order-two schemes IMEXRKCB3f and IMEXRKCB4 in Section 4 and Section 5, the [3R] 

IMEXRK structure (17) will be used to provide increased freedom during the design phase. Such schemes admit the following 
four-register implementation:

for k = 1 : s
if k == 1, y ← x, zIM = x, zEX ← x, else

zEX ← y + aEX
k,k−1 �t zEX

if k < s, y ← x + (
aIM

k+1,k−1 − bIM
k−1

)
�t zIM + (

aEX
k+1,k−1 − bEX

k−1

) (
zEX − y

)
/aEX

k,k−1, end

zEX ← zEX + aIM
k,k−1 �t zIM

end

zIM = (
I − aIM

k,k �t A
)−1

A zEX

zEX ← g
(
zEX + aIM

k,k �t zIM, tn + cEX
k �t

)
x ← x + bIM

k �t zIM + bEX
k �t zEX

x̂ ← x̂ + b̂IM
k �t zIM + b̂EX

k �t zEX

end

(21)

3 Note again that bIM
i = bEX

i = bi for i = 1, . . . , s for the schemes developed herein, though this property is not shared by CN/RKW3 (see Section 2).
4 When using finite-difference methods, an operation of this form can, with care, usually be performed in place in the computer memory using O (1)

temporary storage variables; how this is best accomplished, of course, depends on the precise form of A and g(y, t). When using spectral methods, such a 
two-register implementation is generally not available.
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where zIM and zEX store the implicit and explicit parts of the RHS at each stage, y is a temporary variable which contributes 
to advance the solution to the next stage, x is used to advance the solution of the main scheme, and x̂ stores the solution 
of the embedded scheme if adaptive timestepping is used. As in the three-register implementation of the [2R] scheme, only 
one linear solve of the form (I − c A)−1b, one matrix/vector product, and one nonlinear function evaluation are computed 
per stage.

1.2.4. General three-register implementation of [3R] IMEXRK schemes
Leveraging matrix inversion lemma as done in Section 1.2.2, we obtain a general three-register implementation of any 

[3R] IMEXRK scheme:

for k = 1 : s
if k == 1, y ← x, z ← x, else
if k < s

z ← y + aIM
k,k−1 �t A z

y ← A−1 (z − y)/
(
aIM

k,k−1 �t
)

z ← z + aEX
k,k−1 �t g

(
y, tn + cEX

k−1�t
)

y ← x + (
aIM

k+1,k−1 − bIM
k−1

)
�t A y + (

aEX
k+1,k−1 − bEX

k−1

)
�t g

(
y, tn + cEX

k−1�t
)

else
z ← y + aIM

k,k−1 �t A z + aEX
k,k−1 �t g

(
y, tn + cEX

k−1�t
)

end
end
z ← (I − aIM

k,k �t A)−1 z
x ← x + bIM

k �t A z + bEX
k �t g

(
z, tn + cEX

k �t
)

x̂ ← x̂ + b̂IM
k �t A z + b̂EX

k �t g
(
z, tn + cEX

k �t
)

end

(22)

Note that this algorithm requires the invertibility of the matrix A, a condition that is often true when A arises from 
the discretization of a PDE. In this case, two linear systems, three matrix/vector products, and three nonlinear function 
evaluations must be performed per stage (except for the last stage), plus an additional matrix/vector product and one 
nonlinear function evaluation if the embedded scheme is used for adaptive timestepping.

Finally, note that a (hardware-dependent) trade-off between flops and storage must ultimately be conducted to select 
between the two-register and three-register implementation of any [2R] scheme, or between the three-register and four-
register implementation of any [3R] scheme.

2. Two second-order, 2-register IMEXRK schemes

The classical second-order, A-stable CN/RKW3 method may easily be written in the low-storage IMEXRK Butcher tableaux 
form (16) (albeit with the bIM

i = bEX
i = bi constraint relaxed) with the four-stage IMEX Butcher tableaux

0 0
8/15 4/15 4/15

2/3 4/15 1/3 1/15
1 4/15 1/3 7/30 1/6

4/15 1/3 7/30 1/6

0 0
8/15 8/15 0

2/3 1/4 5/12 0
1 1/4 0 3/4 0

1/4 0 3/4 0

(23)

A DIRK scheme with c1 = 0 and cs = 1 [such as that shown at left in (23)] is known as a first-same-as-last (FSAL) scheme. In 
such a scheme, the implicit part of the last stage of one timestep is precisely the implicit part of the first stage of the next 
timestep, and thus an FSAL scheme, such as the implicit part of the CN/RKW3 scheme shown above, actually incorporates 
only s − 1 implicit solves per timestep. Note also that, since bEX

s = 0 above, g s actually never needs to be computed. Thus, 
though CN/RKW3 is written above as a four-stage IMEX Butcher tableaux, a careful implementation of CN/RKW3 actually 
incorporates only three implicit stages and three explicit stages per timestep.

The stability boundaries of the constituent CN and RKW3 schemes of (23) are shown in Figs. 1(a)–1(b); the CN scheme, 
applied over each of three stages, is A stable, and the stability of the RKW3 scheme is that of any third-order, three-stage 
ERK scheme, with (denoting z = zEX) a stability function of

σ EX(z) = 1 + z
4∑

i=1

bi + z2
4∑

i=1

bi ci + z3
4∑

i, j=1

bi aEX
i j c j + z4

4∑
i, j,k=1

bi aEX
i j aEX

jk ck = 1 + z + z2/2 + z3/6,

where, again, |σ EX(z)| ≤ 1 indicates the stability region.
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Fig. 1. Stability regions |σ(z)| ≤ 1 for the low-storage IMEXRK schemes considered in this paper.

The CN/RKW3 scheme was initially developed simply by joining together two existing schemes, CN and RKW3, in an 
IMEXRK fashion. It was, e.g., not designed with the constraints (4i)–(4n) in mind, and thus leaves significant room for 
improvement. For example, a remarkably simple second-order [2R] alternative to CN/RKW3 which

(a) requires fewer flops per timestep to implement than CN/RKW3,
(b) comes with a first-order embedded scheme, following the guidelines listed in Section 1.2, for adaptive timestepping,
(c) whose implicit part is L-stable, and
(d) whose explicit part is both SSP and exhibits much improved stability on the negative real axis as compared to CN/RKW3,

dubbed IMEXRKCB2, is given by5

5 For details on how this scheme was discovered, see Section 3.3, which applies the same techniques used to discover (24) to the third-order, 3-stage 
implicit, 4-stage explicit, L-stable case.
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Fig. 1. (continued)

0 0
2/5 0 2/5

1 0 5/6 1/6

0 5/6 1/6

0 4/5 1/5

0 0
2/5 2/5 0

1 0 1 0

0 5/6 1/6

0 4/5 1/5

(24)

The coefficient for strong stability in (10) for this scheme is c = 1, which is the maximum possible, as proved in [6]. Note 
also that the so-called “stiff accuracy” conditions have been imposed on the implicit component of this scheme; that is, we 
have set aIM

s,i = bi for i = 1, . . . , s. These conditions improve the convergence of such a scheme for the integration of stiff 
ODEs, as noted in [7] and [8] and described further in Section 6. Moreover, these conditions have the benefit of reducing 
by one the order of the polynomial in the numerator of the stability function, facilitating the attainment of L-stability 
[i.e., σ(∞) = 0], as we will show in Section 3.3. Applying the stiff accuracy conditions to (4a) and (15), we obtain cs = 1. 
Together with the condition c1 = 0, it follows that all IMEX schemes developed herein with DIRK components achieving 
L-stability via the stiff accuracy conditions, such as (24), are FSAL, and thus require only s − 1 implicit solves per timestep. 
This is especially apparent in (24), in which the entire first column of the Butcher tableau of the implicit component equals 
zero. Since this IMEXRK scheme has two implicit stages and three explicit stages per timestep, as a shorthand, we report 
the scheme as requiring (2, 3) stages per timestep in Table 1; the stage requirements of the other schemes developed in 
this paper are denoted similarly.

The stability boundaries of the constituent DIRK and ERK components of (24) are shown in Figs. 1(c)–1(d).

3. Five third-order, 2-register IMEXRK schemes

3.1. A (2, 3)-stage, strongly A-stable scheme

As suggested by (24), to streamline the implementation, we can suppress the first stage of the DIRK scheme by imposing 
b1 = aIM

21 = 0. Following this simplification, the entire first column of the DIRK scheme is zero, thus leading to a scheme 
with s − 1 implicit stages and s explicit stages. In the s = 3 case, the IMEXRK Butcher tableaux take the general form
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Fig. 2. Stability regions |σ(z)| ≤ 1 for σ(z) = 1 + z + z2/2 + z3/6 + δ z4 for various values of δ; note that the case with δ = 1/24 is given in Fig. 1(l), and 
the case with δ = 1/54 is given in Fig. 1(j).

0 0

c2 0 aIM
22

c3 0 aIM
32 aIM

33

0 b2 b3

0 0

c2 aEX
21 0

c3 0 aEX
32 0

0 b2 b3

(25a)

To achieve third-order accuracy, after imposing stage-order-one conditions on both implicit and explicit part, we arrive at 
five nonlinear equations in five parameters:

b2 + b3 − 1 = 0, b2c2 + b3c3 − 1/2 = 0, b2c2
2 + b3c2

3 − 1/3 = 0, b3c2c3 − 1/6 = 0,

b2c2
2 + b3aIM

33 c3 + b3
(
c3 − aIM

33

)
c2 − 1/6 = 0.

This system of nonlinear equations has a single closed-form solution among the real numbers. Defining c2 as the sole real 
root of the polynomial 18c3

2 − 27c2
2 + 12c2 − 2 = 0, closed-form expressions for the parameters of this scheme, dubbed

IMEXRKCB3a, are:

c2 = aIM
22 = aEX

21 = (
27 + 3

√
2187 − 1458

√
2 + 9

3
√

3 + 2
√

2
)
/54,

c3 = aEX
32 = c2/

(
6c2

2 − 3c2 + 1
)
, b2 = (3c2 − 1)/

(
6c2

2

)
, b3 = (

6c2
2 − 3c2 + 1

)
/
(
6c2

2

)
,

aIM
33 = (

1/6 − b2c2
2 − b3c2c3

)/[
b3(c3 − c2)

]
, aIM

32 = aIM
33 − c3. (25b)

The stability boundaries of the constituent DIRK and ERK components of (25) are shown in Figs. 1(e)–1(f); note that the 
stability boundary of the 3-stage, third-order ERK component necessarily coincides with that of RKW3. As compared with 
(24), which has a Butcher tableaux of the same structure, the present scheme sacrifices L-stability of its DIRK component 
in order to achieve third-order accuracy.

It is instructive to note that, even after removing the assumption b1 = 0, it is not possible to achieve L-stability of the 
DIRK component of a third-order IMEXRK scheme of the general form given in (16) using only three stages due to a conflict 
that arises in the τ IMEX(3) = 0 constraints (4j)–(4n), as observed previously by [2]. For this reason, the remainder of this 
paper explores four-stage schemes of an analogous form for third-order accuracy.

3.2. A (3, 4)-stage, strongly A-stable scheme with ESDIRK implicit part

Extending the simplifying assumptions used in the previous section to a four-stage two-register scheme, by taking b1 =
b2 = 0, and additionally imposing equal values for the diagonal terms of the implicit scheme (that is, aIM

i,i = γ for i = 2, 3, 4), 
the Butcher tableaux (16) reduce to:

0 0
c2 0 γ

c3 0 aIM
32 γ

c4 0 0 aIM
43 γ

0 0 b3 b4

0 0
c2 aEX

21 0

c3 0 aEX
32 0

c4 0 0 aEX
43 0

0 0 b3 b4

(26a)
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After imposing stage-order-one conditions, determining all the parameters requires the solution of the following system of 
five nonlinear equations:

b3 + b4 − 1 = 0, b3c3 + b4c4 − 1/2 = 0, b3c2
3 + b4c2

4 − 1/3 = 0, b3c2c3 + b4c3c4 − 1/6 = 0,

b3c2c3 + b3c2c3 − b3c2
2 + b4c2c4 + b4c3c4 − b4c2c3 − 1/6 = 0.

This system of equations has two closed-form solutions, one of which does not lead to an A-stable scheme, and the other 
of which, dubbed IMEXRKCB3b, is given by

γ = c2 = aEX
21 = 1/2 + √

3/6, c3 = aEX
32 = 1/2 − √

3/6, c4 = aEX
43 = 1/2 + √

3/6,

aIM
32 = −√

3/3, aIM
43 = 0, b3 = b4 = 1/2. (26b)

The stability boundaries of the constituent DIRK and ERK components of (26) are shown in Figs. 1(g)–1(h). This scheme again 
achieves strong A-stability of its DIRK component while, as compared with IMEXRKCB3a, slightly extending the limit of 
stability of the ERK component in the imaginary directions, and slightly reducing the limit of stability of the ERK component 
in the negative real direction.

Imposing the nonzero diagonal terms of the DIRK scheme to be equal [a simplification resulting in what is usually called 
an Explicit-first-stage Singly Diagonally Implicit Runge–Kutta (ESDIRK) method] facilitates use of the LU decomposition of 
the matrix (I − c2�t A) to simplify all of the implicit solves. This can significantly reduce the number of flops needed for the 
implicit solves, but may increase the number of registers required by the code; whether or not use of the LU decomposition 
in the implicit solves represents an overall speedup of the simulation depends both on the structure and size of A and the 
computational hardware being used.

3.3. Three (3, 4)-stage, L-stable schemes

The simplifying assumptions considered in the previous section again facilitated a closed-form expression of the param-
eters, but prevented the DIRK component from achieving L-stability. In order to achieve L-stability of the DIRK component, 
as noted previously, a useful simplifying assumption is the “stiff accuracy” conditions as,i = bi for i = 1, . . . , s [and hence, 
by (4a) and (15), cs = 1]. Taking s = 4 and defining aIM

i,i = αi for i = 2, 3, the Butcher tableaux (16) reduce to the following 
form (with, again, an FSAL implicit part):

0 0

c2 aIM
21 aIM

22

c3 b1 aIM
32 aIM

33

1 b1 b2 b3 b4

b1 b2 b3 b4

b̂IM
1 b̂IM

2 b̂IM
3 b̂IM

4

0 0
c2 aEX

21 0
c3 b1 aEX

32 0

1 b1 b2 aEX
43 0

b1 b2 b3 b4

b̂EX
1 b̂EX

2 b̂EX
3 b̂EX

4

(27)

In order to impose third-order accuracy, five order constraints must again be imposed. To achieve L-stability of the DIRK 
component, a further simplification of (27) is motivated. To understand this simplification, we may rewrite the stability 
function of the scheme as a rational function of zIM and zEX, as suggested by (5) and (18), as

σ
(
zIM; zEX) = 1 + ∑ 2

i=1 pi(zEX) [zIM]i + (p̂30 + p̂31zEX) [zIM]3 + p̂40 [zIM]4

1 + ∑ s−1
i=1 qi [zIM]i

,

where the pi , p̂i j , and qi are polynomials in the Butcher tableaux parameters. Due to stiff accuracy, p̂40 = 0; thus, in order to 
impose L-stability of the DIRK component [i.e., limzIM→∞ σ(zIM; zEX) = 0], it is sufficient to impose that q3 = aIM

22 aIM
33 b4 
= 0

and

τ
L-stability

1 = p̂30 = −aIM
22 aIM

33 b1 − aIM
22 aIM

33 b2 − aIM
22 aIM

33b3 + aIM
33 b2 c2

+ aIM
33 b3 c2 + b1 b3 c2 + aIM

22 b3 c3 − b3 c2 c3 = 0, (A)

τ
L-stability

2 = p̂31 = −aIM
22 aIM

33 b4 + aIM
33 b4 c2 + b1 b4 c2 − aIM

33 b1 b4 c2 − b2
1 b4 c2 − b1 b2 b4 c2 + aIM

22 b4 c3

− aIM
22 b1 b4 c3 − aIM

22 b2 b4 c3 − b4 c2 c3 + b1 b4 c2 c3 + b2b4 c2 c3 = 0. (B)

As noted in [8] and [9], suppressing the first column of the DIRK component, by imposing b1 = 0 = aIM
21 = 0 in (27), together 

with stiff-accuracy condition, satisfies both (A) and (B) identically; we thus incorporate these additional simplifications in 
the two subsections that follow. Notice that in the full-storage setting this strategy is not recommended, as it sacrifices s − 1
degrees of freedom. For a [2R] scheme, however, only two degrees of freedom are sacrificed to enforce these two equations, 
and thereby gain L-stability.
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Fig. 3. The (real) value of σ(z) = 1 + z + z2/2 + z3/6 + δ z4 for real, negative values of z and various values of δ: (dashed) δ = 1/60, 1/56, 1/55; (solid) 
δ = 1/54; (dot-dashed) δ = 1/53, 1/50, 1/24. See also Fig. 2.

3.3.1. Maximizing the extent of stability of the ERK component over the negative real axis
A final (sixth) constraint is obtained by maximizing the stability envelope of the ERK component over the negative real 

axis. Using Cramer’s rule, we may rewrite the stability function of the third-order, four-stage ERK component as

σ EX(z; δ) = 1 + z bT (
I − z AEX)−1

1 = 1 + z + z2/2 + z3/6 + δ z4 where δ =
4∑

i, j,k=1

bi aEX
i j aEX

jk ck.

For z on the negative real axis, the stability region |σ EX(z; δ)| ≤ 1 is defined by the two conditions

−1 ≤ 1 + z + z2/2 + z3/6 + δ z4 ≤ 1.

Plots of σ EX(z; δ) for −7 ≤ z ≤ 0 and various values of δ are given in Fig. 3. For

δ > δcrit = (
139 − 5255/

3
√

−210 253 + 60 928
√

51 + 3
√

−210 253 + 60 928
√

51
)
/6144 = 0.0184557,

the condition −1 ≤ σ EX(z; δ) is satisfied everywhere in this interval; we thus choose δ = 1/54 = 0.0185 > δcrit, which gives 
|σ EX(z)| ≤ 1 for −6.00 < z < 0, as larger values of δ reduce the extent of stability (see Figs. 2 and 3).

Parametric variation reveals that the extent of the stability region along the imaginary axis is relatively insensitive to 
changes in δ. Among the third-order, four-stage IMEXRK scheme available in literature, the one with the widest stability 
region of the ERK part, which is the (full-storage) ARK3(2)4L[2R]SA scheme developed in [9], has a maximum extent along 
the negative real axis which is ∼40% less than that of that of the present scheme, and a maximum extent along the 
imaginary axis which is only ∼5% greater than that of the present scheme; the stability characteristics of the present 
scheme are thus seen to be quite competitive.

Thus, in order to determine the parameters of the Butcher tableaux, we impose our final (sixth) constraint as

τ δ=1/54 =
4∑

i, j,k=1

bi aEX
i j aEX

jk ck − 1/54 = 0. (C)

The complete solution of this set of six nonlinear constraint equations has been obtained using Mathematica [21]. The 
scheme associated to such solution, dubbed IMEXRKCB3c, is given by (27) with

aIM
22 = 3 375 509 829 940

4 525 919 076 317
, aIM

32 = −11 712 383 888 607 531 889 907

32 694 570 495 602 105 556 248
, aIM

33 = 566 138 307 881

912 153 721 139
,

b1 = 0, b2 = 673 488 652 607

2 334 033 219 546
, b3 = 493 801 219 040

853 653 026 979
, b4 = 184 814 777 513

1 389 668 723 319
,

c2 = aEX
21 = 3 375 509 829 940

4 525 919 076 317
, c3 = aEX

32 = 272 778 623 835

1 039 454 778 728
, aIM

43 = 1 660 544 566 939

2 334 033 219 546
; (28a)

the associated second-order embedded scheme has the following coefficients:

b̂IM
1 = 0, b̂IM

2 = 366 319 659 506

1 093 160 237 145
, b̂IM

3 = 270 096 253 287

480 244 073 137
, b̂IM

4 = 104 228 367 309

1 017 021 570 740
,

b̂EX
1 = 449 556 814 708

1 155 810 555 193
, b̂EX

2 = 0, b̂EX
3 = 210 901 428 686

1 400 818 478 499
, b̂EX

4 = 480 175 564 215

1 042 748 212 601
. (28b)

The stability boundaries of the constituent DIRK and ERK components are shown in Figs. 1(i)–1(j). This scheme is SSP under 
the condition (10) with c = 0.7027915. This result can be improved up to c = 0.7703947, which is achieved by replacing 
condition (C) with
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τ δ=0 =
4∑

i, j,k=1

bi aEX
i j aEX

jk ck − 0 = 0. (C′)

This constraint does not lead to an IMEXRK scheme with an L-stable implicit component; we thus instead choose a small 
positive δ, thus ensuring L-stability and a nearly optimal value c for strong stability. Choosing δ = 1/10 000 results in a 
scheme, dubbed IMEXRKCB3d, given by (27) with

aIM
22 = 418 884 414 754

469 594 081 263
, aIM

32 = −304 881 946 513 433 262 434 901

718 520 734 375 438 559 540 570
, aIM

33 = 684 872 032 315

962 089 110 311
,

b1 = 0, b2 = 355 931 813 527

1 014 712 533 305
, b3 = 709 215 176 366

1 093 407 543 385
, b4 = 755 675 305

1 258 355 728 177
,

c2 = aEX
21 = 418 884 414 754

469 594 081 263
, c3 = aEX

32 = 214 744 852 859

746 833 870 870
, aEX

43 = 658 780 719 778

1 014 712 533 305
; (29a)

the associated second-order embedded scheme has the following coefficients:

b̂IM
1 = 0, b̂IM

2 = 226 763 370 689

646 029 759 300
, b̂IM

3 = 1 496 839 794 860

2 307 829 317 197
, b̂IM

4 = 353 416 193

889 746 336 234
,

b̂EX
1 = 1 226 988 580 973

2 455 716 303 853
, b̂EX

2 = 0, b̂EX
3 = 827 818 615

1 665 592 077 861
, b̂EX

4 = 317 137 569 431

634 456 480 332
. (29b)

The coefficient for strong stability in this case is c = 0.7701444. The stability boundaries of the associated DIRK and ERK 
components are shown in Figs. 1(k)–1(l). Since δ is chosen close to zero, the stability region of the ERK component closely 
resembles that of a third-order three-stage explicit Runge–Kutta scheme.

3.3.2. Maximizing accuracy of the ERK component
An alternative third-order four-stage 2-register L-stable strategy, with closed-form parameter values and improved accu-

racy, is given by replacing the final constraint, (C), with

τ δ=1/24 =
4∑

i, j,k=1

bia
EX
i j aEX

jk ck − 1/24 = 0, (C′′)

which sets to zero one of the fourth-order truncation terms for the explicit component. This results in a scheme, dubbed
IMEXRKCB3e, given by

0 0
1/3 0 1/3

1 0 1/2 1/2
1 0 3/4 −1/4 1/2

0 3/4 −1/4 1/2

0 0
1/3 1/3 0

1 0 1 0
1 0 3/4 1/4 0

0 3/4 −1/4 1/2

(30)

A second-order embedded scheme having all third-order truncation terms nonzero could not be achieved because of 
assumption (C′′). The stability boundaries of the constituent DIRK and ERK components are shown in Figs. 1(m)–1(n); 
IMEXRKCB3e has improved accuracy but reduced stability on the negative real axis for the ERK component, as compared 
with IMEXRKCB3c. In particular, because of (C′′), the stability region for the ERK part coincides with the stability region of 
a standard 4-stage fourth-order explicit RK scheme.

4. A third-order, 3-register, 4-stage, L-stable scheme

All of the schemes so-far described have stage-order one for both the implicit and explicit components. It is well known
in the literature (see [7]) that this limits the order of convergence of such methods when applied to stiff ODEs. In particular, 
if the stiffness is so high that the ODE turns into an index-1 DAE, some variables convert from differential to algebraic 
and their convergence rate is determined by the stage-order of the method. For this reason, an attempt has been made 
to improve the stage-order of the implicit scheme, as done in [9]. In this way, when the DIRK scheme is employed alone, 
a better convergence will be observed during the integration of a stiff ODE, as we will show in Section 6.

Hence, after imposing the same bi and ci over the explicit and implicit components and stiff accuracy for the implicit 
component as done previously, we impose the stage-order-two condition for the implicit component, that is:

s∑
aIM

i j c j = c2
i /2, i = 2, 3, . . . , s − 1. (31)
j=1



188 D. Cavaglieri, T. Bewley / Journal of Computational Physics 286 (2015) 172–193
With these constraints, τ IM(3)
2 = 0 in (4d) is automatically satisfied. Hence, we must only impose four constraints for third-

order accuracy, two for L-stability, 2(s −2) constraints for stage-order two for the implicit component, and (s −1) constraints 
for stage-order one for the explicit component. We also impose c1 = 0 and c4 = 1 for FSAL structure. Considering a four-
stage three-register scheme,

0 0

c2 aIM
21 aIM

22

c3 aIM
31 aIM

32 aIM
33

1 b1 b2 b3 b4

b1 b2 b3 b4

b̂IM
1 b̂IM

2 b̂IM
3 b̂IM

4

0 0

c2 aEX
21 0

c3 aEX
31 aEX

32 0

1 b1 aEX
42 aEX

43 0

b1 b2 b3 b4

b̂EX
1 b̂EX

2 b̂EX
3 b̂EX

4

(32a)

after these constraints are imposed, we are left with three degrees of freedom. We choose the constraint (C) to maximize 
the extent of the stability region of the explicit component on the negative real axis, and perform a parametric variation 
over the coefficients c2 and c3, the remaining two degrees of freedom, between 0 and 1 in order to identify an IMEXRK 
scheme with coefficients of the Butcher tableaux within the interval [−5, 5], L-stability of the implicit part over the entire 
LHP, and minimum truncation error, defined, following [9], as

A(q+1) =
√∑

i

(
τ

IM(q+1)

i

)2 +
∑

i

(
τ

EX(q+1)

i

)2 +
∑

i

(
τ

IMEX(q+1)

i

)2
, (32b)

where q is the order of accuracy of the Runge–Kutta scheme, in this case equal to 3. [The same definition is used in Table 1
to compare the truncation error of the various schemes considered.]

This approach is convenient, as the constraint equations depending on both bi and ci become linear in bi , which allows 
a significant simplification of the corresponding optimization problem. Note that all of the schemes developed in [9] follow 
this approach. In the present case, this strategy leads, for each pair (c2, c3), to a set of solutions which depend on the 
roots of a fifth-order polynomial. Among these, only three are real, and only one of these gives an L-stable solution.6 The 
resulting scheme, dubbed IMEXRKCB3f, is obtained for c2 = 49/50 and c3 = 1/25. The other parameter values are:

aIM
31 = − 785 157 464 198

1 093 480 182 337
, aIM

32 = − 30 736 234 873

978 681 420 651
, aIM

33 = 983 779 726 483

1 246 172 347 126
,

aEX
31 = 13 244 205 847

647 648 310 246
, aEX

32 = 13 419 997 131

686 433 909 488
,

aEX
42 = 231 677 526 244

1 085 522 130 027
, aEX

43 = 3 007 879 347 537

683 461 566 472
,

b1 = −2 179 897 048 956

603 118 880 443
, b2 = 99 189 146 040

891 495 457 793
,

b3 = 6 064 140 186 914

1 415 701 440 113
, b4 = 146 791 865 627

668 377 518 349
, (32c)

and aIM
21 = aIM

22 = c2/2 and aEX
21 = c2 from stage-order conditions. The scheme is not SSP. The associated second-order embed-

ded scheme is given by:

b̂IM
1 = 0, b̂IM

2 = 337 712 514 207

759 004 992 869
, b̂IM

3 = 311 412 265 155

608 745 789 881
, b̂IM

4 = 52 826 596 233

1 214 539 205 236
,

b̂EX
1 = 0, b̂EX

2 = 0, b̂EX
3 = 25

48
, b̂EX

4 = 23

48
. (32d)

The stability boundaries of the DIRK and ERK components are shown in Figs. 1(o)–1(p). Notice that the stability region of 
the explicit component coincides with that of IMEXRKCB3c.

5. A fourth-order, 3-register, 6-stage, L-stable scheme

Solving the nonlinear system of equations arising from the imposition of the fourth-order accuracy constraints is a 
difficult task. For this reason, stage-order conditions higher than one are usually imposed, as pointed out in [8]. These 

6 The other solutions give a stability region which does not cover the entire LHP; note that this is not in contradiction with the way we have imposed 
stability on the scheme during the optimization of the coefficients, since we only impose the behavior of the stability function at infinity, then check the 
boundary of the resulting stability region only after all the parameters of the scheme have been determined.
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conditions simplify the search for a solution by significantly reducing the nonconvexity of the corresponding optimization 
problem. For this reason, after imposing the same bi and ci over the explicit and implicit components and stiff accuracy for 
the implicit component, we require stage-order two for the implicit component.7 We also again impose c1 = 0 and c6 = 1
for FSAL structure. This reduces the number of nonlinear equations from fourteen, i.e. one for first order, one for second 
order, three for third order, and nine for fourth order, to only ten, to which we have to add two constraints for L-stability, 
2(s −2) constraints for stage-order two for the implicit component and (s −1) constraints for stage-order one for the explicit 
component. Leveraging a six-stage three-register IMEXRK scheme, i.e.

0 0

c2 aIM
21 aIM

22

c3 aIM
31 aIM

32 aIM
33

c4 b1 aIM
42 aIM

43 aIM
44

c5 b1 b2 aIM
53 aIM

54 aIM
55

1 b1 b2 b3 b4 b5 b6

b1 b2 b3 b4 b5 b6

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6

0 0

c2 aEX
21 0

c3 aEX
31 aEX

32 0

c4 b1 aEX
42 aEX

43 0

c5 b1 b2 aEX
53 aEX

54 0

1 b1 b2 b3 aEX
64 aEX

65 0

b1 b2 b3 b4 b5 b6

b̂1 b̂2 b̂3 b̂4 b̂5 b̂6

(33a)

we have 30 degrees of freedom to satisfy 25 constraints. [For the embedded scheme, the coordination assumption b̂EX =
b̂IM = b̂ is again imposed, which proves to provide sufficient freedom in the search for a solution.] As in Section 4, we 
again perform a (tedious) parametric variation over the coefficients c2, c3, c4, and c5 in the range [0, 1]. The last degree of 
freedom is taken as one of the diagonal terms of the Butcher tableau of the implicit part (we select aIM

55 ), which is varied in 
the range [0, 1/2] in order to minimize the truncation error (32b). With this approach, it is possible to numerically solve the 
nonlinear systems arising during the IMEXRK scheme design phase. In particular, 114 solutions are found for each quintuplet 
(c2, c3, c4, c5, aIM

55 ). Among these, over half have imaginary coefficients, and are therefore discarded immediately. Among of 
the remaining solutions, only a few satisfy L-stability of the implicit part, and have coefficients in the range [−5, 5]. Among 
the schemes that survived this initial downselection, we have selected the one offering the smallest truncation error while 
still exhibiting a large extent of the stability region of the explicit part on the negative real axis. It has been found that the 
set

c2 = 1/4, c3 = 3/4, c4 = 3/8, c5 = 1/2, aIM
55 = 1/2 (33b)

gives the best results. The scheme thus obtained, dubbed IMEXRKCB4 is given by:

aIM
31 = 216 145 252 607

961 230 882 893
, aIM

32 = 257 479 850 128

1 143 310 606 989
, aIM

33 = 30 481 561 667

101 628 412 017
,

aIM
42 = − 381 180 097 479

1 276 440 792 700
, aIM

43 = − 54 660 926 949

461 115 766 612
, aIM

44 = 344 309 628 413

552 073 727 558
,

aIM
53 = −100 836 174 740

861 952 129 159
, aIM

54 = − 250 423 827 953

1 283 875 864 443
,

aEX
31 = 153 985 248 130

1 004 999 853 329
, aEX

32 = 902 825 336 800

1 512 825 644 809
,

aEX
42 = 99 316 866 929

820 744 730 663
, aEX

43 = 82 888 780 751

969 573 940 619
,

aEX
53 = 57 501 241 309

765 040 883 867
, aEX

54 = 76 345 938 311

676 824 576 433
,

aEX
64 = −4 099 309 936 455

6 310 162 971 841
, aEX

65 = 1 395 992 540 491

933 264 948 679
,

b1 = 232 049 084 587

1 377 130 630 063
, b2 = 322 009 889 509

2 243 393 849 156
, b3 = − 195 109 672 787

1 233 165 545 817
,

b4 = −340 582 416 761

705 418 832 319
, b5 = 463 396 075 661

409 972 144 477
, b6 = 323 177 943 294

1 626 646 580 633
, (33c)

7 Note that, even if it were desired to impose the same stage-order for both implicit and explicit components, in order to improve algebraic variable 
accuracy, this is not possible, as the low-storage structure used here removes the necessary degrees of freedom to impose such a condition.
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and aEX
21 = c2 and aIM

21 = aIM
22 = c2/2 from the stage-order conditions. The scheme is not SSP. The associated third-order 

embedded scheme is:

b̂1 = 5 590 918 588

49 191 225 249
, b̂2 = 92 380 217 342

122 399 335 103
, b̂3 = −29 257 529 014

55 608 238 079
,

b̂4 = −126 677 396 901

66 917 692 409
, b̂5 = 384 446 411 890

169 364 936 833
, b̂6 = 58 325 237 543

207 682 037 557
. (33d)

The stability boundaries of the DIRK and ERK components are shown in Figs. 1(q)–1(r).

6. Order reduction

We now consider the order reduction present when the schemes developed above are applied to the van der Pol equation. 
It is well documented in the literature (see, e.g., [8]) that whenever an RK method is used to integrate a singular perturba-
tion problem (that is, an ODE characterized by a stiffness parameter ε whose behavior transitions towards that of an index-1 
DAE as the stiffness increases), the observed convergence rate appears to be lower than the nominal order of accuracy of 
the RK scheme used. In the seminal work of Hairer et al. [7], it is shown that the global error of DIRK schemes applied 
to singular perturbation problems may be written in the convenient form E = C1 (�t)n1 + C2 ε (�t)n2 . For the differential 
variables, DIRK methods have n1 = n and n2 = nSO + 1, where n is the nominal order of accuracy and nSO is the stage order 
of the scheme. For the algebraic variables, if the DIRK method satisfies the aforementioned “stiff-accuracy” conditions, it 
turns out that8 n1 = n and n2 = nSO; if not, however, n1 = nSO + 1 and C2 = 0, which is generally much worse.

For IMEXRK methods, very little is known about order reduction outside of the empirical work of Kennedy and Carpenter 
in [9] and [5], where various IMEX schemes are tested on a range of singular perturbation problems. In this work, the 
greatest order reduction is observed in the case of the van der Pol equation; for this reason, we focus on this model 
problem in the present paper in order to characterize the order reduction phenomenon. The van der Pol equation describes 
the dynamics of a nonlinear oscillator of the form

dy

dt
= z, ε

dz

dt
= (

1 − y2) z − y, (34)

where ε is known as the stiffness parameter. It is seen that, for ε → 0, this ODE system transitions into an index-1 DAE, 
where y(t) is a differential variable, and z(t) transitions into an algebraic variable. The initial conditions used are y(0) = 2
and z(0) = −0.6666654321121172. All of the schemes introduced in this paper have been tested on this system over the 
time interval 0 ≤ t ≤ T , taking T = 0.5, with various values for the (constant) stepsize �t and stiffness parameter ε. The 
error at t = T has then been used to estimate the convergence rate (that is, n1 and n2) as the stiffness parameter ε is 
decreased. The procedure used is analogous to that described in [9]: by fixing ε and varying �t in the �t → ε limit, the 
change of slope in the convergence rate has been detected and used to estimate n1 and n2. Results of such simulations are 
reported in Fig. 4, and empirical estimates of the convergence rates for each method are reported in Table 2. When only the 
DIRK component of the schemes are used, the results generally show good agreement with the theoretical bounds provided 
in [7]. If the entire IMEX schemes are used, results do not differ substantially from those reported in [9]. The order-reduction 
phenomenon tends to be problem dependent; results in practice (see [9]) often indicate behavior significantly better than 
the corresponding theoretical bounds. Note also that imposing stage-order two on the DIRK component of a scheme does 
not influence the convergence of the entire IMEX scheme, though it significantly improves the accuracy when the DIRK 
component only is used.

7. Computational cost

To illustrate the relative computational cost of our new low-storage IMEXRK schemes on a representative PDE model 
problem discretized on N � 1 gridpoints, we now compare the efficient implementation of each of the methods developed 
herein to CN/RKW3 and several full-storage IMEX Runge–Kutta schemes available in literature. We consider as a model PDE 
problem the one-dimensional Kuramoto–Sivashinsky equation

∂u

∂t
= −u

∂u

∂x
− ∂2u

∂x2
− ∂4u

∂x4
(35)

over the domain x ∈ [−L/2, L/2] with u = ∂u/∂x = 0 at x = ±L/2, where L is the width of the domain. It should be 
remarked that, unlike the van der Pol case, this example represents a rather undemanding application of our IMEXRK 
schemes. The sole purpose of this analysis is the comparison of the computational cost that our new schemes require with 
respect to other IMEXRK schemes available in literature; the implementation of a selection of these schemes in a DNS code 
for the simulation of an incompressible turbulent channel flow is currently underway, and will be reported elsewhere. The 
RHS of (35) consists of a nonlinear convective term, treated explicitly, and two linear terms, treated implicitly.

8 Indeed, it is precisely for this reason that these “stiff-accuracy” conditions are so named.
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Fig. 4. Convergence rates for the low-storage IMEXRK schemes considered in this paper when applied to the van der Pol equation, as a function of ε. Solid 
lines are for simulations using the DIRK component only (squares for the differential variables, triangles for the algebraic variables), whereas dashed lines 
are for the simulations using the entire IMEXRK scheme (diamonds for the differential variables, circles for the algebraic variables).

Table 2
Estimated convergence rates of the differential and algebraic variables on the van der Pol equation for CN/RKW3 
and the IMEXRK schemes presented in this paper, and their associated DIRK components only.

Method IMEXRK scheme
differential part

IMEXRK scheme
algebraic part

DIRK scheme only
differential part

DIRK scheme only
algebraic part

CN/RKW3 (�t)2 + ε(�t)1 (�t)2 + ε(�t)1 (�t)2 + ε(�t)2 (�t)2 + ε(�t)2

IMEXRKCB2 (�t)2 + ε(�t)2 (�t)2 + ε(�t)1 (�t)2 + ε(�t)2 (�t)2 + ε(�t)1

IMEXRKCB3a (�t)3 + ε(�t)2 (�t)2 + ε(�t)1 (�t)3 + ε(�t)2 (�t)3 + ε(�t)1

IMEXRKCB3b (�t)3 + ε(�t)2 (�t)2 + ε(�t)1 (�t)3 + ε(�t)2 (�t)3 + ε(�t)1

IMEXRKCB3c (�t)3 + ε(�t)2 (�t)2 + ε(�t)1 (�t)3 + ε(�t)2 (�t)3 + ε(�t)1

IMEXRKCB3d (�t)3 + ε(�t)2 (�t)2 + ε(�t)1 (�t)3 + ε(�t)2 (�t)3 + ε(�t)1

IMEXRKCB3e (�t)3 + ε(�t)2 (�t)2 + ε(�t)1 (�t)3 + ε(�t)2 (�t)3 + ε(�t)1

IMEXRKCB3f (�t)3 + ε(�t)2 (�t)2 + ε(�t)1 (�t)3 + ε(�t)3 (�t)3 + ε(�t)2

IMEXRKCB4 (�t)4 + ε(�t)2 (�t)3 + ε(�t)1 (�t)4 + ε(�t)3 (�t)4 + ε(�t)2
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Following a five-point central finite-difference (FD) approach on a uniform grid, (35) can be approximated as

du

dt
= A u + g(u),

where A is a pentadiagonal Toeplitz matrix obtained by discretizing the last two terms on the RHS of (35), and gi(u) =
−ui(ui−2 −8ui−1 +8ui+1 −ui+2)/(12�x). As an example, using the 3-register implementation (19) of the CN/RKW3 method 
(23), 6N flops times 3 stages are required for the evaluation of the nonlinear term, 19N flops times 3 stages are required 
for the implicit (pentadiagonal) solves, and 40N additional flops are required for basic product/sum operations; thus, 115N
flops per timestep are required.

Following a pseudospectral (PS) approach, with nonlinear products computed in physical space and spatial derivatives 
computed in Fourier space, (35) can be written in wavenumber space as

dûn

dt
= − ı kxn

2

(̂
u2

)
n + (

k2
xn

− k4
xn

)
ûn (36)

where ı = √−1, kxn = 2πn/L is the wavenumber, and (̂u2)n denotes the nth wavenumber component of the function 
computed by transforming u to physical space on N = 2p equispaced gridpoints, computing u2 at each gridpoint, and 
transforming the result back to Fourier space. Since computing FFTs requires ∼5N log N real flops while all other operations 
are linear in N , the number of FFTs performed represents the leading-order computational cost for large N . As an example, 
the 3-register implementation of CN/RKW3 requires 2 FFTs per stage for each of three stages.

The computational cost of the other schemes may be counted similarly; results are summarized in the last two columns 
of Table 1. It is seen that, if computational cost is naïvely characterized simply by the number of floating point operations 
required per timestep, the present low-storage IMEXRK schemes are in fact competitive with both CN/RKW3 and all of the 
full-storage IMEXRK schemes available in the literature of the corresponding order. The fact that CN/RKW3 and all of our 
low-storage IMEXRK schemes admit two-, three-, or four-register implementations, however, bestows them with a distinct 
operational advantage for high-dimensional ODE discretizations of PDE systems.

8. Conclusions

We have developed eight new IMEX Runge–Kutta schemes with reduced storage requirements, the properties of which 
are succinctly summarized and compared with competing schemes in Table 1. It is seen that:

• IMEXRKCB2 is second-order accurate, like CN/RKW3; IMEXRKCB3a–3f are third-order accurate, and IMEXRKCB4 is 
fourth-order accurate.

• IMEXRKCB2 and 3a–3e, like CN/RKW3, admit both two-register and three-register implementations, with the three-
register implementations requiring slightly fewer flops.

• IMEXRKCB3f and 4 admit both three-register and four-register implementations, with the four-register implementations 
requiring significantly fewer flops; the four-register implementations of these two schemes are thus generally recom-
mended, unless the additional storage that the four-register implementations require represents a particularly acute 
computational disadvantage.

• IMEXRKCB2 and IMEXRKCB3a generally require fewer floating-point operations per timestep than CN/RKW3, whereas 
the other schemes we have developed generally require progressively more; this comparison, however, is somewhat 
problem dependent.

• IMEXRKCB2, 3c–3f, and 4 are L-stable, whereas IMEXRKCB3a and 3b are strongly A-stable (CN/RKW3 is only A-stable), 
making them well suited for stiff ODEs.

• IMEXRKCB2, 3c, 3d, 3f, and 4 are each provided with a reduced-order embedded scheme following the guidelines listed 
in Section 1.2, making them well suited for application in adaptive time-stepping applications.

• IMEXRKCB3b incorporates an ESDIRK implicit component, and is thus better suited to leverage an LU decomposition 
during the implicit solves than either CN/RKW3 or our other schemes.

• IMEXRKCB2, 3c, and 3d are strong stability preserving (SSP) under the appropriate timestep restriction, and are thus 
better suited for application to hyperbolic systems than either CN/RKW3 or our other schemes.

• IMEXRKCB3f and 4 have stage order two, whereas CN/RKW3 and our other schemes have stage order one; these two 
schemes thus show better convergence properties when applied to especially stiff ODE systems.

Implementation of these schemes into our lab’s benchmark DNS code, diablo, is currently underway.
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