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A hybrid (variational/Kalman) ensemble smoother
for the estimation of nonlinear high-dimensional
discretizations of PDE systems
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Abstract—Two classes of state estimation schemes, variational
(4DVar) and ensemble Kalman (EnKF), have been developed
and used extensively by the weather forecasting community as
tractable alternatives to the standard matrix-based Kalman up-
date equations for the estimation of high-dimensional nonlinear
systems with possibly nongaussian PDFs. Variational schemes
iteratively minimize a finite-horizon cost function with respect to
the state estimate, using efficient vector-based gradient descent
methods, but fail to capture the moments of the PDF of this
estimate. Ensemble Kalman methods represent well the principal
moments of the PDF, accounting for the measurements with a
sequence of Kalman-like updates with the covariance of the PDF
approximated via the ensemble, but fail to provide a mechanism
to reinterpret past measurements in light of new data. In this
paper, we first introduce a tractable method for updating an
ensemble of estimates in a variational fashion, capturing correctly
both the estimate (via the ensemble mean) and the leading mo-
ments of its PDF (via the ensemble distribution). We then extend
this variational ensemble framework to facilitate its consistent
hybridization with the ensemble Kalman smoother. Finally, it is
shown (on a low-dimensional model problem) that the resulting
Hybrid (variational/Kalman) Ensemble Smoother (HEnS), which
inherits the tractable extensibility to high-dimensional systems
of the component methods upon which it is based, significantly
outperforms the existing 4DVar and EnKF approaches used
operationally today for high-dimensional state estimation.

Index Terms—state estimation, data assimilation, ensemble
Kalman, variational methods, smoothing

I. INTRODUCTION

HE estimation and forecasting of chaotic, multiscale,

uncertain fluid systems is one of the most highly visible
grand challenge problems of our generation. Specifically, this
class of problems includes weather forecasting, climate fore-
casting, and flow control. The financial impact of a hurricane
passing through a major metropolitan center regularly exceeds
a billion dollars. Improved atmospheric forecasting techniques
provide early and accurate warnings, which are critical to
minimize the impact of such events. On longer time scales,
the estimation and forecasting of changes in ocean currents
and temperatures is essential for an improved understanding
of changes to the earth’s weather systems. On shorter time
scales, feedback control of fluid systems (for reasons such
as minimizing drag, maximizing harvested energy, etc.) in
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mechanical, aerospace, environmental, energy, and chemical
engineering settings lead to a variety of similar estimation
problems. While this paper makes no claims with regards to
addressing the particular details of any of these important ap-
plications, it does introduce a new Hybrid (variational/Kalman)
Ensemble Smoother (HEnS) for the estimation and forecasting
of such multiscale uncertain fluid systems that might well have
a transformational effect in all of these areas.

A. Historical developments

Much of the research today in state estimation (a.k.a. data
assimilation) for multiscale uncertain fluid systems is focused
on short- to medium-range weather forecasting. Towards this
end, the methods available for this class of problems have
matured greatly in the past 25 years. To set the stage, we
must first mention a few related developments.

The full, correct answer to the state estimation of nonlinear
systems with finite (and, thus, nongaussian) uncertainties dates
back to the late 1950s (see [1]). As described clearly on page
164 of [2], it combines two simple steps:

(i) between measurement updates, the full probability density
function (PDF) in phase space is propagated via the Kol-
mogorov forward equation (a.k.a. Fokker-Planck equation);
(i1) at measurement updates, the PDF is updated via applica-
tion of Bayes’ theorem.

During step (i), the PDF stretches and diffuses; during step (ii),
the PDF is refocused. An efficient modern implementation of
this idea using a grid-based method, leveraging effectively the
fact that the PDF is usually nearly zero almost everywhere
in phase space, is given in [3]; unfortunately, such methods
are numerically intractable for systems with states of order
n 2 10, even with modern supercomputing resources.

Particle filters (PF; see [4]) approximate the solution of such
Bayesian estimation strategies using a Lagrangian approach.
With such methods, a set of candidate state trajectories is
followed to track the evolution of the probability distribu-
tion in time, and associated with each particle is a weight,
which is modified via Bayes’ theorem at each measurement
update (while normalizing such that the weights always add to
one). Unfortunately, application of such updates for successive
measurements invariably leads to most weights being driven
towards zero as the algorithm proceeds, a phenomenon known
as degeneracy. To counter this tendency in order to maintain
adequate resolution of the significant (nonzero) portion of
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the PDF, resampling of the PDF with a new distribution
of particles (with equalized weights) is, from time to time,
required. A variety of such resampling algorithms have been
proposed. When using a large number of particles (necessary
when attempting to resolve a nongaussian PDF of the state
estimate), the sampling importance resampling algorithm pro-
posed in [5] is commonly used. When using small number
of particles N (specifically, for N = 2n + 1, used when
considering a state estimate of order n with a Gaussian
PDF), an unscented transform (see [6], [7]) can be used
to resample while preserving exactly the covariance of the
original distribution. Unfortunately, PFs are also numerically
intractable in large-scale systems.

Kalman filters (see [8], [1], [9], [10], [11]) substantially
simplify the full state estimation problem in the common situ-
ation in which the random variables are all well approximated
by Gaussian PDFs. In this case, the PDF of a given random
variable, of order n, can be specified completely by keeping
track of its mean (of order n) and its covariance (of order
n?), which enormously simplifies the complexity of the state
estimation problem. With modern computational resources,
Kalman filters can thus be deployed for systems with states of
order up to n ~ 1000. Note that Extended Kalman filters,
designed for nonlinear systems, are simply Kalman filters,
designed based on linearization of the nonlinear system about
the expected state trajectory, with the nonlinearity tacked back
on in the eleventh hour.

Traditional Kalman and extended Kalman filters were inves-
tigated by [12] for atmospheric applications, with nonlinear
high-dimensional systems of order n > 10°. These applica-
tions necessitate the computation of a reduced-rank approxi-
mation of the covariance matrix at the heart of the Kalman
filter in order to be computationally tractable. Such reduced-
rank approximations are known in the controls community as
Chandresarkhar’s method, and were introduced by [13].

B. Variational methods

Since the mid 1980s, the field of state estimation has
seen two revolutionary advancements: variational methods
and ensemble Kalman methods. Today, these two classes of
methods, in roughly equal proportion worldwide, are used
operationally for practical real-time atmospheric forecasting.

The first variational methods introduced were spatial (three-
dimensional) variational methods (3DVar; see [14] and [15]),
which provide an optimization framework that may be used
to fit a large-scale model to a “snapshot” in time of available
data. This was soon followed by the development of spa-
tial/temporal (four-dimensional) variational methods (4DVar;
see [16] and [17]), in which this optimization framework is
extended to account for a time history of observations. This
4DVar framework has the effect of conditioning the resulting
estimate on all included data, in a manner consistent with the
Kalman Smoother (see [18], [19] and [20]).

Note that 4DVar was developed in parallel, and largely
independently, in the controls and weather forecasting com-
munities. In the controls community, the technique is referred
to as Moving Horizon Estimation (MHE; see [21]). MHE was

developed with low-dimensional ODE systems in mind; imple-
mentations of MHE typically search for a small time-varying
“state disturbance” or “model error” term in addition to the
initial state of the system in order reconcile the measurements
with the model over the period of interest. 4DVar, in contrast,
was developed with high-fidelity (that is, high-dimensional)
discretizations of infinite-dimensional (PDE) systems in mind;
in order to maintain numerical tractability, implementations of
4DVar typically do not search for such a time-varying model
error term. Both 4DVar and MHE suffer from the fact that they
only provide an updated mean trajectory, and not any updated
higher-moment statistics. However, during the minimization
process, it is possible to build up an approximation to the
cost function Hessian. For convex variational problems, this
Hessian is directly related to the inverse of the updated
covariance matrix. Several of these methods are outlined in
[22] and include the randomization method (which uses the
statistics of perturbed gradients), the Lanczos method (which
exploits the coupling between Lanczos vectors and conjugate
gradient directions), and the BFGS method (which explicitly
builds up the Hessian during minimization). All three of these
methods fail to provide an effective means for propagating the
updated statistics forward in time, and thus are not typically
tractable for variational schemes that cycle over multiple,
successive windows.

Another technique that has been introduced to accelerate
MHE/4DVar implementations is multiple shooting (see [23]).
With this technique, the horizon of interest is split into two
or more subintervals. The initial conditions (and, in some
cases, the time-varying model error term) for each subinterval
are first initialized and optimized independently; these several
independent solutions are then adjusted so that the trajectories
coincide at the matching points between the subintervals.

C. Ensemble Kalman methods

The more recent development of the Ensemble Kalman
Filter (EnKF) (see [24], [25], [26], [27]) has focused much at-
tention on an important refinement of the (sequential) Kalman
method in which the estimation statistics are intrinsically rep-
resented via the distribution of a cluster or “ensemble” of state
estimates in phase space, akin to the particle filters mentioned
previously but without separate weights for each ensemble
member. As with particle filters, the simultaneous simulation
of several perturbed trajectories of the state estimate eliminates
the need to propagate the state covariance matrix along with
the estimate as required by traditional Kalman and extended
Kalman approaches. Instead, this covariance information is
approximated based on the spread of the ensemble members
(with equal weights) in order to compute Kalman-like updates
to the position of each ensemble member' at the measurement
times (for further discussion, see §II-C).

Since its introduction, the EnKF has spawned many vari-
ations and modifications that seek to improve both its per-
formance and its numerical tractability. For example, Kalman
square-root filters update the analysis only once, in a manner

IThat is, rather than updating individual weights for each member sepa-
rately, as done at in particle filters.
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different than the traditional perturbed observation method.
Some square-root filters introduced include the ensemble ad-
justment filter of [28], the ensemble transform filter of [29],
and the ensemble square-root filter of [30]. Work has also
been done (see [31]) to further relax the linear Gaussian
assumptions with regards to the interpolation between the
observation and the background statistics.

Another essential advancement in the implementation of
the EnKF is the idea of covariance localization, as discussed
in [32] and [33]. With covariance localization, spurious cor-
relations of the uncertainty covariance over large distances
are reduced in an ad hoc fashion in order to improve the
overall performance of the estimation algorithm. This adjust-
ment is motivated by the rank-deficiency of the ensemble
approximation of the covariance matrix, and facilitates parallel
implementation of the resulting algorithm.

The Ensemble Kalman Smoother (EnKS) [34] is the analo-
gous ensemble extension of the standard Kalman Smoother.
With the EnKS, updates are performed on past estimates
based on future observations in a manner similar to the EnKF.
With the EnKS, the smoothed updates are a function of time
correlations between two ensemble estimates at the appropriate
times. Although each individual update is tractable, it becomes
infeasible to update entire trajectories after each new observa-
tion; as a result, a fixed-lag or fixed-point EnKS is traditionally
used in lieu of a full smoother. Another smoother in this class,
the Ensemble Smoother (ES; see [35]), uses ensemble statistics
to calculate a variance minimizing estimate, but in practice,
for nonlinear systems, performs poorly even when compared
to the standard EnKF.

For nonlinear systems, the ensemble Kalman framework is
suboptimal due to its reliance on a Kalman-like measurement
update formula, which is predicated on a Gaussian distribution
of the estimate uncertainty. The more general Particle Filter
(PF) method described in §I-A, in contrast, is a full Bayesian
approach, with the PDF approximated in a Largrangian fashion
akin to the ensemble Kalman framework. The Particle Kalman
Filter (PKF) method proposed by [36], which attempts to
combine the PF and EnKF approaches in order to inherit the
nongaussian uncertainty characterization of the PF method and
the numerical tractability of the EnKF method, appears to be
promising; this method could potentially benefit from further
hybridization with a variational approach, as proposed below.

D. Hybrid methods

The two modern schools of thought in large-scale state es-
timation for multiscale uncertain systems [namely, space/time
variational methods (§I-B) and ensemble Kalman methods
(§1-C)] have, for the most part, remained independent, despite
their similar theoretical backgrounds. The weather forecasting
community has made considerable efforts to compare and
contrast both the performance and the theoretical foundation of
these two methods (see, e.g., [37], [38], [39], and [40]). While
these comparisons are enlightening, it is quite possible that the
optimal method for many large-scale state estimation problems
cases may well be a hybridization of the two frameworks, as
suggested by [40]. We have identified three recent attempts at
such hybridization:

1) the 3DVar/EnKF method of [41],
2) the 4DEnKF method of [42], and
3) the E4DVar method of [43].

The 3DVar/EnKF algorithm introduced by [41] utilizes the
ensemble framework to propagate the estimate statistics in a
nonlinear setting, but does not exploit the temporal smoothing
characteristics of the 4DVar algorithm. The 4DEnKF (4D
Ensemble Kalman Filter) introduced by [42] provides a means
for assimilating past (and non-uniform) observations in a
sequential framework, but does not intrinsically smooth the re-
sulting estimate or fully implement the 4DVar framework. The
E4DVar (Ensemble 4DVar) method discussed by [43], which
is the closest existing method to the hybrid smoother proposed
here, runs a 4DVar and EnKF in parallel, sequentially shifting
the mean of the ensemble based on the 4DVar result and
providing the background term of the 4DVar algorithm based
on the EnKF result; however, this method does not attempt a
tighter coupling of the ensemble and variational approaches
by using an Ensemble Kalman Smoother to initialize better
(and, thus, accelerate) the variational iteration.

The three attempts at hybridization discussed above struggle
with the inability of traditional variational iterations to update
correctly the statistics of the PDF (covariance, etc.). This is
crucial for a consistent’ hybrid method, thus motivating the
precise formulation of ensemble variation methods in §III
below. The VAE (Variational Assimilation Ensemble) method
of [44] runs a half-dozen perturbed decoupled 4DVar or
3DFgat® assimilations in parallel to estimate error covariances,
and is the closest existing method we have found in the
literature to a true ensemble-variation method. However, to
the best of our knowledge, the current paper lays out the
first complete mathematical foundation for a pure variational
method that provides consistent, updated ensemble statistics
upon algorithm convergence.

We can now classify the full taxonomy of ensemble-based
methods (see Figure 1). Until now, these methods have been
split into two distinct families: ensemble variation methods
(suggested previously, but described formally for perhaps the
first time in §III) and the well-known ensemble Kalman
methods. Each family consists of filter variants (En3DVar and
EnKF) and smoother variants (En4dDVar and EnKS).

The proposed new algorithm, the Hybrid Ensemble Smoo-
ther (HEnS), is a consistent* and tightly-coupled hybrid of
these two types of ensemble smoothers. HEnS uses the EnKS
to precondition an appropriately defined En4DVar iteration.
Essentially, the EnKS solution is used as a good initial
condition for the ensemble variation problem, which in turn
improves upon this smoothed estimate in a manner that would
have been impossible using either method independently. In

2The word “consistent” is used in a precise fashion in this paper to mean
an estimation method that reduces to exactly the Kalman filter in the case that
the system happens to be linear, the disturbances happen to be Gaussian, and
(in the case of an ensemble-based method) a sufficient number of ensemble
members is used.

3That is, 3D First Guess at the Appropriate Time (3DFgat), an intermediate
variational method with complexity somewhere between that of 3DVar and
4DVar [see [45]].

4Again, meaning that it reduces to exactly the Kalman filter under the
appropriate assumptions.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ?, NO. ?, JANUARY 20??

Ensemble-Based Methods

[Ensemble Variation Methods] [ Ensemble Kalman MethodsJ

&

Fig. 1. Ensemble-based methods can be classified into two distinct families.
Ensemble Variation Methods (§III) are vector-based methods that iteratively
minimize an appropriately-defined cost function to produce either a filtered
(En3DVar) or a smoothed (En4DVar) estimate. Ensemble Kalman Methods
(8II) use the ensemble statistics to approximate the full (but computation-
ally intractable) matrix-based Kalman updates. The new Hybrid Ensemble
Smoother (HEnS) is a consistent hybrid of the smoother variants of these two
methods, a described in §IV.

&

HEnS

earlier work done by our group (see [46]), the 4DVar/MHE
framework was inverted, promoting retrograde time marches
(that is, marching the state estimate backward in time and
the corresponding adjoint forward in time), which facilitated
an adaptive (i.e., multiscale-in-time) receding-horizon opti-
mization framework, dubbed EnVE (Ensemble Variational
Estimation). Though the motivation behind this original work
was sound, performance suffered, in part as a result of the
inability of the variational formulation used to update correctly
the higher-moment statistics of the ensemble; the present
formulation corrects this significant shortcoming associated
with the EnVE formulation.

Section II reviews the general forms of both the ensem-
ble Kalman methods and the traditional variational meth-
ods. Section III describes the theoretical foundations for the
ensemble variation methods, and identifies their relationship
with the well-known KF and KS results. Building upon this,
Section IV describes the new hybrid smoother, HEnS, in
detail. Finally, Section V contains a comparative example,
performed on the low-dimensional chaotic Lorenz system,
showing the performance of the various methods in a time-
averaged setting. Two follow-up papers are planned which will
detail the implementation of the HEnS algorithm on 1D, 2D,
and 3D chaotic PDE systems, and introduce a unique adaptive
observation algorithm which builds directly upon the hybrid
framework discussed here.

II. THEORETICAL BACKGROUND
A. Notation
As described above, the Hybrid Ensemble Smoother (HEnS)
is a consistent data assimilation method that combines the key
ideas of the sequential Ensemble Kalman Smoother (EnKS)
and an ensemble variant of the batch (in time) variational
method known as 4DVar in the weather forecasting community

and as Moving Horizon Estimation (MHE) in the controls
community. These methods are thus first reviewed briefly in a
fairly standard form. Without loss of generality, the dynamic
model used to introduce these methods is a continuous-time
nonlinear ODE system with discrete-time measurements:

B () win). (1)
yr = Hx(tk) + v, (1b)

where the measurement noise vj iS a zero-mean, white,
discrete-time random process with auto-correlation

Ry (jik) = E{vi4; Vi } = Rdjo, )

with covariance R > 0, and the state disturbance w(t) is a
zero-mean, “nearly”-white> continuous-time random process
with auto-correlation

Ry(1;t) = E{w(t+7)w’(t)} = Q5 (1),
L /0%
oV2r ’

(3a)

(3b)

where 67(7)

with spectral density () > 0 and time correlation ¢ such that
0 < 0 <« 1.1Is also assumed that w(t) and v, are uncorrelated.

The noisy measurements y, are assumed to be taken at time
tr, = kAt for a fixed sample period At. For the purpose of
analysis, these observations are assumed available for a long
history into the past, up to and including the present time of
the system being estimated, which is often renormalized to
be t = tx = T. It is useful to think of ¢x as the time of
the most recent available measurement, so, accordingly, this
measurement will be denoted yx at the beginning of each
analysis step. This sets the basis for the indexing notation
used in this paper: k = K represents the index of the most
recent measurement, 1 < k < K is the set of indices of all
available measurements, and £ > K indexes observations that
are yet to be taken. Continuous-time trajectories, such as x(t)
(the “truth” model), are defined for all time, but are frequently
referenced at the observation times only. Hence, the following
notation is used:

x(kAt) = x(tr) = xg. 4)

B. Uncertainty Propagation in Chaotic Systems

Estimation, in general, involves the determination of a
probability distribution. This probability distribution describes
the likelihood that any particular point in phase space matches
the truth model. That is, without knowing the actual state
of a system, estimation strategies attempt to represent the
probability of any given state using only a time history of noisy
observations of a subset of the system and an approximate
dynamic model of the system of interest. Given this statistical
distribution, estimates can be inferred about the “most likely”
state of the system, and how much confidence should be
placed in that estimate. Unfortunately, in this most general
form, the estimation problem is intractable in most systems.
However, given certain justifiable assumptions about the nature

5The case for infinitesimal o is sometimes referred to as “continuous-time
white noise”, but presents certain technical difficulties [47].



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ?, NO. ?, JANUARY 20??

of the model and its associated disturbances, simplifications
can be applied with regards to how the probability distributions
are modeled. Specifically, in linear systems with Gaussian
uncertainty of the initial state, Gaussian state disturbances,
and Gaussian measurement noise, it can be shown that the
probability distribution of the optimal estimate is itself Gaus-
sian [see, e.g., [48]]. Consequently, the entire distribution of
the estimate in phase space can be represented exactly by its
mean X and its second moment about the mean (that is, its
covariance), P, where

P=F[(x—%)(x-%)"]. &)

This is the essential piece of theory that leads to the traditional
Kalman Filter (KF; see [9] and [10]).

Sequential data assimilation methods provide a method to
propagate the mean X and covariance P forward in time,
making the appropriate updates to both upon the receipt of
each new measurement. Under the assumption of a linear
system and white (or, in continuous time, ‘“nearly” white)
Gaussian state disturbances and measurement noise, the uncer-
tainty distribution of the optimal estimate is itself Gaussian,
and thus is completely described by the mean estimate X and
the covariance P propagated by the Kalman formulation. It
is useful to think of these quantities, at any given time g, as
being conditioned on a subset of the available measurements.
The notation Xj; represents the mean estimate at time #y
given measurements up to and including time ¢;. Similarly,

P, ,; represents the corresponding covariance of this estimate.
In particular, x, , _, and P, | are often called the prediction

estimate and prediction covariance, whereas Xy ik and PM are
often called the current estimate and the current covariance.
Note that X, , . ., for some K > 0, is often called a smoothed
estimate, and may be obtained in the sequential setting by a
Kalman smoother [see, [19] and [48]].

As mentioned previously, for nonlinear systems with rel-
atively small uncertainties, a common variation on the KF
known as the Extended Kalman Filter (EKF) has been de-
veloped in which the mean and covariance are propagated,
to first-order accuracy, about a linearized trajectory of the
full system. Essentially, if a Taylor-series expansion for the
nonlinear evolution of the covariance is considered, and all
terms higher than quadratic are dropped, what is left is the dif-
ferential Riccati equation associated with the EKF covariance
propagation. Though this approach gives acceptable estimation
performance for nonlinear systems when uncertainties are
small as compared to the fluctuations of the state itself,
EKF estimators often diverge when uncertainties are more
substantial, and other techniques are needed.

At its core, the linear thinking associated with the un-
certainty propagation in the KF and EKF breaks down in
chaotic systems. Chaotic systems are characterized by stable
manifolds or “attractors” in n-dimensional phase space. Such
attractors are fractional-dimensional subsets (a.k.a. “fractal”
subsets) of the entire phase space. Trajectories of chaotic
systems are stable with respect to the attractor in the sense
that initial conditions off the attractor converge exponentially
to the attractor, and trajectories on the attractor remain on
the attractor. On the attractor, however, trajectories of chaotic
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Fig. 2. Non-Gaussian uncertainty propagation in the Lorenz system. The
black point in the center shows a typical point located in a sensitive area of this
chaotic system’s attractor in phase space, representing a current estimate of
the state. The thick black line represents the evolution in time of the trajectory
from this estimate. If the uncertainty of the estimate is modeled as a very small
cloud of points, centered at the original estimate with an initially Gaussian
distribution, then the additional magenta lines show the evolution of each of
these perturbed points in time. A Gaussian model of the resulting distribution
of points is, clearly, completely invalid.

systems are characterized by an exponential divergence—along
the attractor—of slightly perturbed trajectories. That is, two
points infinitesimally close on the attractor at one time will
diverge exponentially from one another as the system evolves
until they are effectively uncorrelated.

Just as an individual trajectories diverge along the attractor,
so does the uncertainty associated with them. This uncer-
tainty diverges in a highly non-Gaussian fashion when such
uncertainties are not infinitesimal (see Figure 2). Estimation
techniques that attempt to propagate probability distributions
under linear, Gaussian assumptions fail to capture the true
uncertainty of the estimate in such settings, and thus improved
estimation techniques are required. The Ensemble Kalman Fil-
ter, in contrast, accounts properly for the nonlinearities of the
chaotic system when propagating estimator uncertainty. This
idea is a central component of the hybrid ensemble/variational
method proposed in the present work, and is thus reviewed
next.

C. Ensemble Kalman Filtering

The Ensemble Kalman Filter (EnKF) is a sequential data
assimilation method useful for nonlinear multiscale systems
with substantial uncertainties. In practice, it has been shown
repeatedly to provide significantly improved state estimates in
systems for which the traditional EKF breaks down. Unlike
in the KF and EKF, the statistics of the estimation error in
the EnKF are not propagated via a covariance matrix, but
rather are approximated implicitly via the appropriate nonlin-
ear propagation of several perturbed trajectories (“ensemble
members”) centered about the ensemble mean, as illustrated
in Figure 2. The collection of these ensemble members (it-
self called the “ensemble”), propagates the statistics of the
estimation error exactly in the limit of an infinite number of
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ensemble members. Realistic approximations arise when the
number of ensemble members, NV, is (necessarily) finite. Even
with a finite ensemble, the propagation of the statistics is still
consistent with the nonlinear nature of the model. Conversely,
the EKF propagates only the lowest-order components of the
second-moment statistics about some assumed trajectory of the
system. This difference is a primary strength of the EnKF.
In practice, the ensemble members %X’/ in the EnKF are
initialized with some known statistics about an initial mean
estimate X. The ensemble members are propagated forward
in time using the fully nonlinear model equation (la), incor-
porating random forcing w(¢) with statistics consistent with
those of the actual state disturbances w(t) [see (3)]:
)
B~ ), w(0), ©)
t
At the time t; (for integer k), an observation yj is taken
[see (1b)]. Each ensemble member is updated using this
observation, incorporating random forcing vy, with statistics
consistent with those of the actual measurement noise, v, [see

@)1
d} = yi +vJ. (7)

Given this perturbed observation d’ , each ensemble member
is updated in a manner consistent® with the KF and EKF:

), ®

% =% +P°

klk K|k — klk—1

HT(HP®

klk—1

HT+R)~'(d] - H%?

klk—1

Unlike the EKF, in which the entire covariance matrix P is

propagated using the appropriate Riccati equation, the EnKF

estimate covariance P°¢ is computed “on the fly” using the

second moment of the ensembles from the ensemble mean:

(6X) (6X)T
N -1

L L B B 1 L
ox) =% —x, and X = NZX]’ 9)
j

Pe = , where 0X = [6%' %> oxNT,

where NV is the number of ensemble members, and the time
subscripts have been dropped for notational clarity’.

Thus, like the KF and EKF, the EnKF is propagated with
a forecast step (6) and an update step (8). The ensemble
members %’(t) are propagated forward in time using the
system equations [with state disturbances w(¢)] until a new
measurement yj, is obtained, then each ensemble member
x7(t),) = % is updated to include this new information
[with measurement noise vff]. The covariance matrix is not
propagated explicitly, as its evolution is implicitly represented
by the evolution of the ensemble itself.

It is convenient to think of the various estimates during
such a data assimilation procedure in terms of the set of
measurements that have been included to obtain that estimate.

®Note that some authors (see, e.g., [27]) prefer to replace R in (8) with
R€, where

(Vi) (Vi)™
N -1
Our current research has not revealed any clear advantage for using this more

computationally expensive form.

"Note also that the factor N — 1 (instead of N) is used in (9) to obtain an
unbiased estimate of the covariance matrix [see [47]].

R¢ = 2 N]

p — 1
and Vk—[vk vi Vi

Just as it is possible to propagate the ensemble members
forward in time accounting for new measurements, ensemble
members can also be propagated backward in time, either
retaining the effect of each measurement or subtracting this
information back off. In the case of a linear system, the former
approach is equivalent to the Kalman smoother, while the later
approach simply retraces the forward march of the Kalman
filter backwarg in time. In order to make this distinction clear,
the notation X;;, will represent the estimate ensemble at time
t; given measurements up to and including time ¢j. Similarly,
X;r will represent the corresponding ensemble mean; that
is, the average of the ensemble and the “highest-likelihood”
estimate of the system.

While the EnKF significantly outperforms the more tradi-
tional EKF for chaotic systems, further approximations need to
be made for multiscale systems such as atmospheric models.
When assimilating data for 3D PDEs, the discretized state di-
mension n is many orders of magnitude larger than the number
of ensemble members N that is computationally feasible (i.e.,
N < n). The consequences of this are twofold. First, the
ensemble covariance matrix P¢ is guaranteed to be singular,
which can lead to difficulty when trying to solve linear systems
constructed with this matrix. Second, this singularity combined
with an insufficient statistical sample size produces directions
in phase space in which no information is gained through the
assimilation. This leads to spurious correlations in the covari-
ance that would cause improper updates across the domain
of the system. This problem can be significantly diminished
via the ad hoc method of “covariance localization” mentioned
previously, which artificially suppresses these spurious corre-
lations using a distance-dependent damping function.

D. Ensemble Kalman Smoother (EnKS)

The Ensemble Kalman Smoother (EnKS) is built upon
the theoretical foundations of the EnKF. The key difference
lies in its ability to update past estimates based on future
observations. Thus, we end up with smoothed estimates f(i e
where p is not necessarily less than k. Given a new observation
yi at time t; and forecasted ensemble )Aci e, at that time,
the smoothed estimate fci " is given by the following update
equation:

HT+R)~1(d] —H%

klk—1

% =3

e T e
plk p\k—1+sk—lH (HP

klk—1

), (10a)

where S¢_ is the time covariance matrix between the estimate
at the observation time ¢;, and the estimate at the smoothing
time ¢,,, which is given by

(0X, ) (00X, )"

N -1 ’

SE = (10b)
with the definitions for 6X given in (9). Note that, when
t, = tj, the time covariance matrix S:_l reduces to the
standard covariance matrix P:‘ r and thus the EnKS update
(10a) reduces appropriately to the standard EnKF update (8).
This highlights an important property of the EnKS: even for
highly chaotic, nonlinear systems, the EnKS provides the same

estimate at the most recent measurement as the EnKF (in the
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limit of an infinite number of ensemble members). This result
is expected in the linear setting, but is a major shortcoming
of the EnKS when applied to the typical nonlinear systems.
This shortcoming is rectified by the hybrid method presented
in Section IV.

E. Variational Methods

For high-dimensional systems in which matrix-based meth-
ods are computationally infeasible, vector-based variational
methods are preferred for data assimilation. 3DVar is a vector-
based equivalent to the KF. In both 3DVar and KF, the cost
function being minimized is a (quadratic) weighted combi-
nation of the uncertainty in the background term and the
uncertainty in the new measurement. If the system is linear,
the optimal update to the state estimate can be found ana-
Iytically, though this solution requires matrix-based arithmetic
(specifically, the propagation of a Riccati equation), and is the
origin of the optimal update gain matrix for the KF. When this
matrix is too large for direct computation, a local gradient can
instead be found using vector-based arithmetic only; 3DVar
uses this local gradient information to determine the optimal
update iteratively.

Similarly, 4DVar is the vector-based equivalent to the
Kalman Smoother. In 4DVar, a finite time window (or “batch
process”) of a history of measurements is analyzed together to
improve the estimate of the system at one edge of this window
(and, thus, the corresponding trajectory of the estimate over the
entire window). Unlike sequential methods, a smoother uses
all available data over this finite time window to optimize the
estimates of the system. This has the consequence of refining
past estimates of the system based on future measurements,
whereas with sequential methods any given estimate is only
conditioned on previous observations.

For analysis, let the variational window be defined on

€ (0,T]. Additionally, let there be K measurements in this
interval, with measurement indices given by the set

M={k|tre(0,T]} = M={1,2, - K}

(1)

Without loss of generality, it will be assumed that there are
measurements at the right edge of the window (at ¢, = T)),
but not at the left (at tg = 0). Then, the cost function J(u)
that 4DVar minimizes (with respect to u) is defined as follows:

1 _
XO\O)T PO‘Ol ( u-— ){0\0)7L

—_

K
S (yr-H%) R (yo—H),  (12)
k=1

where the optimization variable u is the initial condition on
the refined state estimate x on the interval ¢ € (0,7 |; that is,

B0 _ (1), 0),

= u.

(13a)

X, (13b)
The first term in the cost function (12), known as the

“background” term, summarizes the fit of u with the current

probability distribution before the optimization (i.e., the effect
of all past measurement updates). Like with the KF, X ; is the
estimate at time ¢, not including any of the new measurements
in the window, and the covariance F, , quantifies the second
moment of the uncertainty in that estimate. Assuming an
apriori Gaussian probability distribution of this uncertainty,
the background mean and covariance exactly describe this
distribution. The second term in the cost function (12) sum-
marizes the misfit between the estimated system trajectory
and the observations within the variational window. Thus, the
solution u to this optimization problem is the estimate that
best “fits” the observations over the variational window while
also accounting for the existing information from observations
prior to the variational window.

In practice, a 4DVar iteration is usually initialized with the
background mean, u = X, . Given this initial guess for u, the
trajectory X(¢) may be found using the full nonlinear equations
for the system (13). To find the gradient of the cost function
(12), consider a small perturbation of the optimization variable,
u < u+ u/, and the resulting perturbed trajectory, X(t) «—
x(t) + x/(t), and perturbed cost function, J(u) «— J(u) +
J'(u’). The local gradient of (12), VJ(u), is defined here
as the sensitivity of the perturbed cost function J'(u’) to the
perturbed optimization variable u':

J'(u) = [VJ(u)}T u'.

The derivation included in the Appendix illustrates how to
write J'(u’) in this simple form, leveraging the definition of
an appropriate adjoint field r(¢) on ¢ € (0,T], providing the
following gradient:

VJ(u) (u—=%,,) ~

The resulting gradient can then be used iteratively to update
the current estimate via a suitable minimization algorithm
(steepest descent, conjugate gradient, limited-memory BFGS,
etc.).

Being vector based makes 4DVar well suited for multiscale
problems, and as a result is currently used extensively by
the weather forecasting community. However, it has several
key disadvantages. Most significantly, upon convergence, the
algorithm provides an updated mean estimate X, ., but pro-
vides no clear formula for computing the updated estimate
uncertainty covariance or its inverse, PUT;. That is, the statis-
tical distribution of the estimate probability is not contained in
the output of a traditional 4DVar algorithm. It can be shown
that, upon full convergence for a linear system, the resulting
analysis covariance P, . is simply the Hessian of the original
cost function (12) [see, e.g., [49]]. However, this is merely an
analytical curiosity; computing the analysis covariance in this
fashion requires as much matrix algebra as would be required
to propagate a sequential filter through the entire variational
window, defeating the purpose of the vector-based method.

Additionally, as posed above, the width of the variational
window is fixed in the traditional 4DVar formulation. Thus,
the cost function and associated n-dimensional minimization
surface are also constant throughout the iterations. For nonlin-
ear systems, especially chaotic systems, this makes traditional
4DVar extremely sensitive to initial conditions. Because of

(14)

= p-1

olo

r,. (15)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ?, NO. ?, JANUARY 20??

the chaotic nature of these systems, the optimization surface,
especially if 7' is large, is highly irregular and nonconvex (that
is, fraught with local minima). The gradient-based algorithms
associated with 4DVar are only guaranteed to converge to local
minima. Thus, if the initial background estimate is located
in the region of attraction of one of these local minima, the
solution of the 4DVar algorithm will tend to converge to a
suboptimal estimate.

III. ENSEMBLE VARIATION METHODS

As pointed out in Section II-E, one of the major weak-
nesses of the standard variational assimilation schemes is
the inability of these methods to update the higher moment
estimate statistics. Given both a background mean and co-
variance, 3DVar and 4DVar simply return an updated mean;
the corresponding updated covariance has thus far only been
found via computationally involved Hessian analysis [49] or
schemes coupled with a Kalman-like covariance propagation
[43]. Here, we lay out the mathematical foundations for a
consistent class of variational methods that, much like the
Ensemble Kalman methods, use a finite cloud of points to
represent implicitly both the background and analysis estimate
statistics. Unlike the Ensemble Kalman methods, this new
class of Ensemble Variation methods uses an ensemble of
variational problems to solve iteratively the complete data
assimilation via the minimization of an appropriately defined
cost function. It is shown that, under the standard assumptions
of linear dynamics and Gaussian noise and disturbances, these
Ensemble Variation methods reduce to the well-known optimal
results of the standard Kalman Filter and Kalman Smoother.

A. Ensemble 3D Variational Assimilation (En3DVar)

Given a measurement yj at time tg, we will represent our
estimate statistics with a finite ensemble of N members such
that the sample mean and sample covariance are consistent (in
the limit as N — oo) with the (assumed) known background
mean and covariance. Thus, we have a collection of ensem-
ble members f{{ ._, conditioned on all prior observations
{¥p | p < k } that build a sample covariance given by pPeo L
With this, we can define an En3DVar component cost function
for each ensemble member as:

. 1, . . . B S
Ji(w) =5 (o - X, )P )T =] )
1 ) . . )
+ 5 (dy - Hu)" R (d] — HWY), (16)

where the control variable u’ for each ensemble member is (at
the minimum) the updated estimate 5{{ o> NOW conditioned on
the new measurement y. As with the EnKF and EnKS, each
ensemble member is assimilated with additional noise added

onto the (already noisy) measurement, i.e.,

d] =yi + vy (17)

The total cost function J is given as the sum of the compo-
nent cost functions J; for each ensemble member j. Because
the component cost functions are only coupled through the

specified (and fixed) background ensemble members fc{ " and

the covariance matrix which they approximate, P:‘kil, each
Jj can be minimized independently, creating an optimization
problem that is trivial to parallelize on modern high per-
formance computing hardware. Similar to traditional 3DVar,
each component cost function is minimized by finding the
local gradient and then using a suitable descent algorithm;
again, these component-wise minimizations are completely
decoupled from one ensemble member to the next.

In summary, En3DVar is performed at a given time ¢; by
assimilating an ensemble of 3DVar problems, one for each
ensemble member. Each individual component 3DVar problem
is uniquely characterized by its own perturbed background
state f({c ., and its own perturbed measurement dj. The
component cost functions are coupled through the background
ensemble covariance matrix P)jk_l, the measurement noise
covariance matrix R, and the original, unperturbed (but still
noisy) measurement yy. It is shown in the following section
that the unique solution to this problem (in the limit as
N — o0) is a new ensemble with corresponding sample
statistics (mean and covariance) that are consistent with the
well-known optimal Kalman results.

Theorem 1 (Equivalence of En3DVar to the Kalman Filter):
In the limit of an infinite number of ensemble members (i.c.,
N — 00), the En3DVar problem defined above converges to
the equivalent Kalman filter solution.

Proof: Because each component cost function is mini-
mized independently, we will examine the unique solution of
just one for the purpose of this proof. Note that (16) is convex
in u/. The gradient of the j*" component cost function with
respect to the initial state u’ is given by

V= (P, )7 (=% )

— HT R (d] - HW). (18)
Typically, the cost function is minimized iteratively via a
gradient descent method, but for the purpose of analysis here,
we can find the minimum directly by setting the V.J; = 0 and
solving for the updated estimate u/ = )“({C o at the minimum:

0 = (P:|k71)_1 (f{i\k - )A(‘Z\k—l)
— H'R™'(d) - HX] ) (19a)
. o .
0 = (PlcUc—l) (X‘ch\k - X‘ch\k—l)
o N
+ H'R H(xilk —xi‘k_l)
- H'R'(d), - HX!, ) (19b)
()A(i\k )/\(?cﬂcfl) =
[(Pr )+ HERTH] T R A HY, )
(19¢)
Assuming that all inverses indicated exist, the identity
[(Pe, ) '+HTR'H] HTR
= P HT[HP, HT+R] (199
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can be substituted into (19¢) to get the form

X =%+

P HT[HPS, HT+R]™'(d} - HxI ), (20a)
K = P, H" [HP:“C_IHTJFR]*, (20b)
%= %+ K(d-H& ). (20c)

Recall that (20c) is the unique solution for the j ensemble
member. Thus, we can think of the ensemble of solutions )Aci "
as a random variable that is itself conditioned on two other
random variables, f(i — and d?c. Note that the gain matrix K
is identical to that of the Kalman Filter. To see the rest of the
equivalence with the Kalman Filter, we take the sample mean

of the result.

N
3 :i %7
klk N k|k
j=1
1 1L 1
S K (Y
j=1 j=1 j=1

21

Although we obtain the Kalman update (21) for the esti-
mate mean by using En3DVar, it is important to note that
the traditional 3DVar algorithm (involving only an iterative
update of the mean) would also have provided us with this
result. The real strength of En3Dvar lies in its ability to also
implicitly update the estimate covariance, something that was
not possible with traditional 3DVar. To see this equivalence,
we take the sample covariance of the updated ensemble f(]k

= ik\k—l + K (yr — Hilﬂk—l)

I
1 N
A9 = 57 = T
P:Ik = ﬁ (Xi‘k _Xk\k) (Xi‘k _Xk\k)
j=1

(22a)

Substituting in the definitions of X/ . from (20¢) and x,, from
(21) and simplifying, we get

€ = € T e 1oT T
1 I _
¢ =57 {(I—KH)(%I—XMI)
j=1

(d] —y)T KT } (22b)
The final terms ® + ®7 in (22b) arise from spurious corre-
lations between the background error and the measurement
noise. In a similar manner to the EnKF, as the number
of ensembles increase, these terms disappear, leaving the
expected Kalman Filter covariance update equation, i.e.,

Z\}E»noo =0, (23a)

P¢ =(I-KH)P*

i (- KH)' + KR K". (23b)
Thus, we have shown that, by iteratively assimilating an
ensemble of 3DVar problems with both perturbed background
states and perturbed measurements, we are able to compute
both the analysis mean and covariance. This algorithm is both
tractable for high dimensional systems (in the sense that it is
vector-based) and very easily parallelized (in the sense that

each individual problem can be solved independently). ]

B. Ensemble 4D Variational Assimilation (En4DVar)

Given a time history of measurements { Vi |tk € (0, T },
as with the En3DVar case, we will represent our estimate
statistics with a finite ensemble of N members such that the
sample mean and sample covariance are consistent (in the limit
as N — oo) with the (assumed) known background mean
and covariance at the left edge of the time window ¢,. We
can then define an analogous En4DVar cost function over the
window, for the j th ensemble member, that balances the misfit
between a set of perturbed observations and the deviation from
a perturbed background initial condition as follows:

- &gmo)

Jw) = 1w - %0 )T (P ) (uf

9 0l0 0lo

K
1 ) . . )
+3 S (d - Hx)" R (] - HX]). (24
k=1
Muck like traditional 4DVar, each ensemble member is con-
strained over the window by the model, and the control
variable u’ serves as the initial condition for its trajectory.
dx’ (t)

7~ & ®),0),

x) =u’.
0

(25a)
(25b)

Each initial ensemble member kg ,, acts as its own perturbed
background, and each ensemble member is assimilated with
its own set of perturbed measurements { dj, = yi + v, | t; €
(0,77}

The total cost function J is given as the sum of the
component cost functions for each ensemble member. Because
the component cost functions are only coupled through the
specified (and fixed) background ensemble members fcg , and
the covariance matrix which they approximate, P:m, each J;
can be minimized independently, creating an embarrassingly
parallel optimization problem. Similar to traditional 4DVar,
each cost function is minimized by finding the local gradient
and using a suitable descent algorithm. Finding the gradient of
(24) requires the use of an appropriately-defined adjoint field.
The derivation parallels that of standard 4DVar (as illustrated
in the Appendix), and gives the j*" gradient as:

VJj(w') = (Ps )~ (W

0]0

_xd Yy I
Xo\o) I‘o’

(26)

where rg is the initial condition of the 5" adjoint field found
via a background march from ¢, to ¢, of the adjoint equations.
Thus each iteration of En4DVar requires a forward march of
the ensemble through the optimization window followed by
a backward march of an ensemble of adjoints to find each
component gradient. The decoupled nature of these marches
is what facilitates the efficient parallel global solution.

Due to the fact that En4DVar accounts for all observations
within the assimilation window, it is, by nature, a smoother.
Upon completion of the minimization, we are provided with a
new ensemble of points )Acﬁ K conditioned on these measure-
ments. From this ensemble, statistical measures such as the
sample mean and covariance can be extracted.

Theorem 2 (Equivalence of En4DVar to the Kalman Smoother):

In the limit of an infinite number of ensemble members (i.e.
N — o0) and under the assumptions of linear dynamics
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and Gaussian noise and disturbances, the En4DVar problem
defined above converges to the equivalent Kalman smoother
solution.

Proof: The proof is straightforward and follows directly
from that of Theorem 1, however, due to the addition of the
time dynamics, it tends to become notationally cumbersome.
In the interest of brevity, we have elected to omit it here. M

IV. HYBRID ENSEMBLE SMOOTHER (HENS)

As was initially illustrated in Figure 1, we have identified
two families of ensemble-based assimilation methods: the
ensemble variational methods (consisting of En3DVar and
En4DVar) and the ensemble Kalman methods (consisting of
the EnKF and the EnKS). In theory, both families address the
same problem. Further, as we have shown in the simplified
case with linear dynamics and Gaussian uncertainties, they
converge to the same solution. However, when the system is
highly nonlinear, all bets on optimality of the solutions are
off, and we do not necessarily expect each method to provide
identical solutions.

In the case of nonlinear systems, one might thus wonder
which method typically provides the best answer. The best
answer, however, may in fact not come from one individual
method, but rather from a consistent hybrid of both methods.
This is the idea behind the development of the Hybrid Ensem-
ble Smoother (HEnS), which is a consistent hybrid between
the two smoothers, En4DVar and EnKS.

A key motivation for HEnS is the iterative nature of the
En4DVar method. Once the component cost functions (24) are
defined appropriately using the known background ensemble,
any initial condition u’/ can be used to begin the gradient-
based minimization. Typically, the best guess we have at the
start of an iteration is the background itself (i.e., u/ = %/ o)
because no other information is known. However, if we were
to first run the EnKS through the entire window (0, T'], we
would develop an intermediate smoothed estimate fc{) - That
is, the output of the EnKS at the left edge of the window
is the best estimate at that time, given all measurements in
the optimization window as determined by the EnKS frame-
work. Again, under the appropriate assumptions, this smoothed
estimate would be optimal, but, due to the nonlinear nature
of the system and the necessarily finite ensemble size, the
EnKS typically finds a suboptimal solution to the smoothing
problem. Consequently, this intermediate smoothed estimate
can then be used as the initial condition for the specified
En4DVar minimization problem in lieu of the background
state. If there is any more information to be extracted from
the observations, this iterative minimization will attempt to do
just that.

Theorem 3 (Consistency of HEnS): In the limit of an infi-
nite number of ensemble members (i.e. N — 00), and under
the assumptions of linear dynamics and Gaussian noise and
disturbances, the HEnS formulation described above converges
to both the Kalman smoother solution and the equivalent
En4DVar solution.

Proof: Under the above assumptions, the En4DVar cost
function is convex, and thus contains only one minimum. Pro-
vided the cost function is defined appropriately, the En4DVar

iteration will converge to this global minimum, regardless of
initial condition—even if the output from the EnKS is used
to initialize the minimization, as done with HEnS. Therefore,
HEnS will converge to the same solution as En4DVar under
the assumptions stated. The proof of the equivalence to the
Kalman smoother then follows immediately from Theorem 2.
|
An important consequence of Theorem 3 is that the HEnS
framework will do no worse than the EnKS solution alone.
In summary, HEnS is a consistent hybrid of both EnKS
and En4DVar. Essentially, HEnS uses a (typically) suboptimal
smoothed estimate from the EnKS to initialize an En4DVar
minimization. Because the output from the EnKS is much
closer to the expected minimum than the original background
estimate, the En4DVar iteration is less likely to converge to
spurious local minima, far from the optimal estimate, and
thus produces more a more accurate estimate than either
smoother would by itself. HEnS can be implemented in three
straightforward steps:

1) Given a set of measurements {y1,~~~ ,yK} on the
window (0,7'] and a background ensemble %/ , at the
left edge of the window, define the appropriate En4DVar
component cost functions.

2) March a fixed-point EnKS through the window, smooth-
ing the estimate at the left edge of the window to
produce an intermediate smoothed estimate Xg i con-
ditioned on all observations in the window.

3) Use the intermediate smoothed estimate output from the
EnKS as the initial condition u/ for an En4DVar min-
imization over the same window, using the previously-
defined component cost functions. This will potentially
provide a better smoothed estimate over the entire win-
dow for the full nonlinear system.

As with any assimilation strategy, the output of HEnS from a
previous window can be used as the background estimate for
a subsequent window, cycling the algorithm.

A. Advantages in forecasting

In data assimilation applications that involve forecasting, the
most important estimate is always the most recent one. This
is, of course, the estimate that is used as an initial condition
for any open-loop forecast (into the future).

In the linear setting, the most recent filtered estimate is
identical to the most recent smoothed estimate because they
have both been conditioned on the same set of measurements
(which are all necessarily in the past). It is for this reason
alone that smoothers have been largely ignored by the op-
erational weather forecasting community. Up until now, their
computational expense has not been justified by providing an
improved estimate upon which a forecast could be made.

Although this conclusion is certainly true in the linear world,
much information is to be gained, even at the most recent time,
by revisiting old measurements in light of new data. Even in
the EnKF setting, the suboptimal updates made at any given
time are a function of the ensemble member trajectories used.
If those trajectories were improved (say, through the use of a
smoother), then it might be possible to perform more accurate
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updates, which in turn would increase the accuracy of the
estimate at a future time.

Unfortunately, the formulation of the EnKS does not lever-
age this idea, and (in the limit of an infinite ensemble size)
returns exactly the same estimate at the right edge of the
window. HEnS, however, is not so constrained. By improving
the smoothed estimate initial condition at the left edge of
the window, HEnS also improves the estimate throughout the
window, and specifically reduces the error in the most recent
estimate, providing a more accurate long-term forecast.

B. Hybrid Ensemble Filter (HEnF)

It is worth noting that, in a manner analogous to the
hybridization of the two smoothers (En4DVar and the EnKS),
a hybrid filter can be defined by combining En3DVar and the
EnKF. The resulting algorithm, appropriately dubbed HEnF,
would use the EnKF to precondition an En3DVar iteration.
That is, at a given measurement time, the EnKF update
would be used as an initial condition for the subsequent
En3DVar minimization. However, because neither filter update
necessarily takes into account the dynamics of the system, it
is not apparent to the authors that such additional computation
would provide a better solution. As a result, we have neglected
to highlight the HEnF in this discussion.

V. REPRESENTATIVE EXAMPLE

The two primary new ideas described in this paper, En4DVar
and HEnS, are now compared, via computational experiments,
to both EnKF and EnKS. We have already shown analytically
that, in the linear setting, all four methods provide consistent
solutions; however, in a nonlinear setting with significant
uncertainties, these different approaches provide substantially
different results.

The Lorenz equation (see [50]) is used here as a simple
model of a nonlinear system with self-sustained chaotic un-
steadiness® in order to perform this comparison. The Lorenz
equation is a system of three coupled, nonlinear ordinary
differential equations given by:

o (xe — 1)
—T2 — 13 y
—Bx3 + 122 — BP

where o, 3, and ¢ are tunable parameters. Solutions of these
equations approach a well-defined manifold or attractor of
dimension slightly higher than two. Perturbed trajectories
converge exponentially back onto the attractor, while adjacent
trajectories diverge exponentially within the attractor, creating
the familiar chaotic motion in the Lorenz system. Note that,
for convenience, the system equations of (27) are transformed
slightly from the traditional form such that the attractor is
approximately centered at the origin.

In this comparison, we quantify the time-averaged statistics
of the four assimilation methods under consideration. That is,
we run a very large number of trials and calculate both the
average error of the estimate as well as the average energy of

dx(t)
dt

27

8That is, the system considered maintains its nonperiodic, finite, bounded
unsteady motion with no externally-applied stochastic forcing.

Specific Case: Error

EnkF
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) Specific Case: Variance
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Fig. 3. A typical run for the Lorenz test problem. On the left, each
assimilation method is compared to the truth trajectory and the very noisy
measurements taken of xo2. From this, the estimate error (top-right) and
error energy (bottom-right) are calculated. Note that the EnKF and EnKS
are not necessarily equivalent at the right edge of the window due to the
finite ensemble size.

the estimation error (a.k.a. the variance) over all of these trials.
A typical run simulates a truth trajectory over a fixed window,
taking noisy measurements at set intervals; then, each method
(EnKF, EnKS, En4DVar, and HEnS) is used on the resulting
data set, initialized with its own independent background.
Appealing to the ergodicic nature of the Lorenz system, the
output at the right edge of the window for each method (and
the truth model) is then used as the input for the next run
on the subsequent time window. Consequently, a series of
assimilation windows are evaluated on various intervals all
over the attractor. The statistics of this process are then used
to calculate the expected performance characteristics on this
nonlinear chaotic system.

For the results shown, the model parameters used are o = 4,
B =1, and ¢ = 48. Only the second state x5 is measured,
and the measurement noise variance used R = 5 (which,
as seen in Figure 3, is quite substantial). The assimilation
window has width T" = 0.5, and five observations are taken (at
intervals of At = 0.1) centered in this window. The starting
conditions for the truth and estimate ensemble backgrounds are
not significant, as the converged statistics are not a function
of the starting point used in the simulation. The nonlinear
model is assumed to be perfect (that is, () = 0), and thus any
ensemble forecasting would be done with a simple evolution of
the unforced equations from the most recent state estimate. All
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Fig. 4. This is the converged error plot for the Lorenz test case on EnKF,
EnKS, En4DVar, and HEnS. At the left edge of the window, we see that
EndDVar decreases the error from the background, but convergence to local
minima prevents it from competing with EnKS and HEnS. By initializing

an En4DVar minimization with the output from the EnKS, we can see that,
statistically, HEnS reduces the error by an additional 50%.

Average Variance
T T T T
EnKF
- — -EnKS
En4DVar
——HEnS

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 5. This is the converged variance plot for the experimental Lorenz
test case on EnKF, EnKS, En4DVar, and HEnS. The trace of the covariance
matrix for each method is plotted as a function of time (averaged over
several runs). EndDVar on its own does not perform as well as the other
methods. However, when En4DVar is combined with EnKS to make HEnS,
a substantially improved time-averaged performance is realized.

of the cases were run with N = 300 ensemble members, but
similar results were found with significantly fewer ensemble
members. A typical run is shown in Figure 3.

Statistical steady state was achieved via several weeks
of statistical averaging with an efficient yet single-threaded
implementation of the HEnS algorithm on a modern desktop
computer (3 GHz Core Duo). The converged statistics are
illustrated in Figures 4 and 5. One can see immediately that,
on average, HEnS significantly outperforms the other three
methods considered in terms of both accuracy (lower error)
and precision (lower variance).

VI. CONCLUSION

A new, hybrid method (dubbed the Hybrid Ensemble Smoo-
ther, or HEnS) for state estimation in nonlinear chaotic systems
has been proposed. This new method is based on a new
variational formulation of the ensemble smoother, dubbed
End4DVar, initialized using the (traditional, non-variational)
formulation of the ensemble Kalman smoother (EnKS). The
methods introduced in this work are proven to be consistent,
meaning that they all reduce to the Kalman filter under the
appropriate simplifying assumptions (that is, linear system,
Gaussian state disturbances and measurement noise, and a
sufficiently large number of ensemble members). Finally, the
new HEnS algorithm has been shown, on average, to signifi-
cantly outperform the leading scalable existing methods in a
representative estimation problem related to a model nonlinear
chaotic system. [Note that application of the HEnS method
to more complex models is currently ongoing, and will be
reported in future work.]

The reason for this remarkable success is that HEnS pro-
vides an effective mechanism for revisiting past measurements
in light of new data, leveraging a smoother effectively to
reinterpret past measurements based upon a more refined
past state estimate, and thereby improving significantly the
present state estimate. In essence, HEnS combines the pow-
erful retrospective analysis of a variational method with the
effective synthesis of the principal directions of uncertainty,
as summarized by an ensemble-based method. An important
ingredient to the method’s operational effectiveness is the
initialization of the variational analysis with the solution from
a EnKS computation, which is far better than initializing this
variational analysis simply with an EnKF computation based
on older measurements.

Note finally that the HEnS method is based solely on
variational and ensemble Kalman components that are already
used heavily for operational weather forecasting, and are
applied routinely, in real time, to systems with state dimension
larger than 107. Thus, HEnS naturally inherits this effective
scalability to very large scale chaotic systems, and holds
significant promise to improve the accuracy of such practical
estimation and forecasting efforts.

APPENDIX
MIXED DISCRETE/CONTINUOUS ADJOINT DERIVATION

The full derivation of the gradient V.J(u) is included here
due to the unusual setting considered (that is, of a continuous-
time system with discrete-time measurements). Perturbing the
nonlinear model equations (la) and linearizing about X(t)
gives:

dax’(t
’;Lf ) _ AR@E) X () with & _=u (28
d
= L% =0 where L= 7 A(x(t)). (29)
Similarly, the perturbed cost function is:
K
T () =(u = x,,)7 Prlu - Z(yk — Hx,)T R-VHX,. (30)
k=1
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The perturbed cost function (30) is not quite in the form
necessary to extract the gradient, as illustrated in (14). How-
ever, there is an implicitly-defined linear relationship between
u’ and X'(¢) on t € (0,7'] given by (28). To re-express this
relationship, a set of K adjoint functions r(*)(t) are defined
over the measurement intervals such that, for all k € [1, K],
the adjoint function r(*)(¢) is defined on the closed interval
t € [tk s k] These adjoint functions will be used to
identify the gradient. Towards this end, a suitable duality
pairing is defined here as:

t
(r® %)= / © T R dt. 31)
tk—l
Then, the necessary adjoint identity is given by
(r®£x'y=(£e® %) +p®), (32a)

Using the definition of the operator £ given by (29) and the
appropriate integration by parts, it is easily shown that

(k)
2o p®) _ _dPT(’f) —AERD) T ® @), (2b)
B = ()T = ()T K. (320)

Returning to the perturbed cost function, (30) can be rewritten
as:

J(W) =(u-x,,)" P u —J
K-1
- > (ye—Hx,)"R'Hx (33a)
k=1
J'=[HT R (y, — H%, )}Ti’K. (33b)

Looking at the adjoint defined over the last interval, r(*)(¢),
the following criteria is enforced:

=0 = (" %) =0, (34a)
' =HT'R (y, —Hx, ). (34b)
Substituting (29) and (34a) into (32a) for k = K gives:
b =0
= (r<K>) X — @I =0,
- T - -
= [H'R™ (v, —H%,)] %, =) % . 39
which allows us to re-express J’ in (33b) as
Jo= T (36)

Note that (34a) and (34b) give the full evolution equation and
terminal condition for the adjoint r(*) defined on the interval
t € [t,_,,t, ] Hence, a backward march over this interval
will lead to the term r&fi )1 contained in (36).

The perturbed cost function (33a) can now be rewritten such
that

= \T p—1
J'(W') =(u-x,,) P u —J
K—-2
S (yr—Hx)TR'HX,, (37a)
k=1
= J  =[H'R ' (y,,-H%, )+rX "% .
(37b)

Enforcing the following conditions [cf. (34)] for the adjoint
on this interval, r&—1(¢),

£rrE-1 =, (38a)
r Y = TRy, , —Hx, )+ (38b)
it can be shown via a derivation similar to (35) that
K—INT %
'];<71 = (I‘( -2 )) X;(727 (39)

which is of identical form as (36). Thus, it follows that each
of the adjoints can be defined in such a way as to collapse
the sum in the perturbed cost function (30) as above, until the
last adjoint equation r(!) reduces the perturbed cost function
to the following:

J(W)=(u=-x,)" Pl w— ()% 40
with the adjoints over the K intervals being defined as:
drF)(¢
rT() = —A(Sc(t))Tr(K) (t), where
) =0 +H'R ' (y, - Hx%, ),
dr(E=1 (¢
rT() = —A(i(t))Tr(K’l)(t), where
rgijl) = rl(xli)l + HT R_l (yK—l - H}N{K—l )7
dr® (¢
! dt( ) _ —Ax®) D (t), where
) =r® 4+ gT R (y, — Hx, ). (41)

Upon further examination, the system of adjoints (41) all
have the same form. Each backward-marching adjoint variable
r(®) is endowed with a terminal condition that is the initial
condition of the previous adjoint march r*+1) plus a correc-
tion due to the discrete measurement y, at the measurement
time ¢,. Thus, the total adjoint march can be thought of as
one continuous-time march of a single adjoint variable r(t)
backward over the window [t,,¢, ], with discrete “jumps” in
r at each measurement time ;. That is, (41) can be rewritten
as:

dr(t) _ - T
o = —A(x(t))" r(t),

which is marched backward over the entire interval ¢ €
[t,,t, ] with r,, = 0. At the measurement times (¢j for
k € M) the adjoint is updated such that

(yr — Hxyp ).

Then, this definition of the adjoint can be substituted into (40)
to give:

(42a)

I, < I, + HT R! (42b)

T o/

J'()=(u-x,,)" POTol u —r, X, (43)
T
= JW)=|P (u-%,,)—r,| W, (44)

olo

where (44) is found by noting that X’ = u’. Then finally,
from (14) and (44), the gradient sought may be written as:
VJ(u) =P} (u- (45)

olo io\o) —T,.
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The resulting gradient® can then be used iteratively to update
the current estimate via a suitable minimization algorithm
(steepest descent, conjugate gradient, limited-memory BFGS,
etc.).

ACKNOWLEDGMENT

The authors gratefully acknowledge the generous financial
support of the National Security Education Center (NSEC)
at Los Alamos National Laboratory (LANL) and numerous
helpful discussions with Chris Colburn (UCSD), David Zhang
(UCSD), Dr. Frank Alexander (LANL), Prof. Daniel Tar-
takovsky (UCSD), and Prof. Bruce Cornuelle (SIO).

[1]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

R. Stratonovich, “Data assimilation and inverse methods in terms of a
probabilistic formulation,” Radiofizika, vol. 2, pp. 892—901, 1959.

A. Jazwinski, Stochastic Processes and Filtering Theory.  Academic
Press, 1970.

T. Bewley and A. Sharma, “A tractable framework for grid-based
bayesian estimation of nonlinear low-dimensional systems with sparse
nongaussian pdfs,” Automatica, p. (submitted).

N. G. S. Arulampalam, S. Maskell and T. Clapp, “A tutorial on particle
filters for on-line non-linear/non-gaussian bayesian tracking,” [EEE
Transactions on Signal Processing, vol. 50, pp. 174-188, 2002.

N. G. A. Doucet and V. Krishnamurthy, “Particle filters for state esti-
mation of jump markov linear systems,” IEEE Trans. Signal Processing,
vol. 49, pp. 613-624, 1993.

S. Julier and J. Uhlmann, “A new extension of the kalman filter to
nonlinear systems,” Proc. AeroSense: 11th Int. Symp. Aerospace/Defence
Sensing, Simulation and Controls, pp. 182—193, 1997.

——, “Unscented filtering and nonlinear estimation,” Proc. of the IEEE,
vol. 92, pp. 401-422, 2004.

P. Swerling, “A proposed stagewise differential correction procedure
for satellite tracking and prediction,” RAND Technical Report, Santa
Monica, California, 1958.

R. Kalman, “A new approach to linear filtering and prediction problems,”
Journal of Basic Engineering, vol. 82, no. 1, pp. 35-45, 1960.

R. Kalman and R. Bucy, “New results in linear filtering and prediction
theory,” Journal of Basic Engineering, vol. 83, no. 3, pp. 95-108, 1961.
B. Anderson and J. Moore, Optimal Filtering. Dover, 1979.

M. Ghil, S. Cohn, J. Tavantzis, K. Bube, and E. Isaacson, “Applica-
tions of estimation theory to numerical weather prediction,” Dynamic
meteorology, data assimilation methods, pp. 139-224, 1981.

T. Kailath, “Some new algorithms for recursive estimation in constant
linear systems,” IEEE Transactions on Information Theory, vol. 19, pp.
750-760, 1973.

A. Lorenc, “Analysis methods for numerical weather prediction,” Quar-
terly Journal of the Royal Meteorological Society, vol. 112, no. 474, pp.
1177-1194, 1986.

D. Parrish and J. Derber, “The National Meteorological Center’s spectral
statistical-interpolation analysis system,” Monthly Weather Review, vol.
120, pp. 1747-1763, 1992.

F.-X. L. Dimet and O. Talagrand, “Variational algorithms for analysis
and assimilation of meteorological observations: theoretical aspects,”
Tellus, vol. 38A, p. 97, 1986.

F. Rabier, J.-N. Thepaut, and P. Courtier, “Extended assimilation and
forecast experiments with a four-dimensional variational assimilation
system,” Quarterly Journal of the Royal Meteorological Society, vol.
124, no. 550, pp. 1861-1887, July 1998.

Z. Li and 1. Navon, “Optimality of 4D-Var and its relationship with the
Kalman filter and Kalman smoother,” Quarterly Journal of the Royal
Meteorological Society, vol. 127, no. 572, pp. 661-684, January 2001.

Omitted in this gradient derivation is the substantial flexibility in the
choice of the gradient definition (14) and the duality pairing (31). There is
freedom in the choice of these inner products (e.g. by incorporating derivative
and/or integral operators as well as weighting factors) that can serve to better
precondition the optimization problem at hand without affecting its minimum
points. This ability to precondition the adjoint problem is discussed at length
in [51].

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]
(28]

[29]

(30]

(31]

[32]

[33]

[35]

[36]

[37]

(38]

(39]
[40]

[41]

[42]

[43]

H. Rauch, F. Tung, and C. Striebel, “Maximum likelihood estimates of
linear dynamic systems,” AIAA Journal, vol. 3, pp. 1445-1450, 1965.
S. Cohn, N. Sivakumaran, and R. Todling, “A fixed-lag Kalman smoother
for retrospective data assimilation,” Monthly Weather Review, vol. 122,
pp- 2838-2867, April 1994.

H. Michalska and D. Mayne, “Moving horizon observers and observer-
based control,” IEEE Transactions on Automatic Control, vol. 40, pp.
995-1006, 1995.

M. Fisher and P. Courtier, “Estimating the covariance matrices of
analysis and forecast error in variational data assimilation,” European
Centre for Medium-Range Weather Forecasts, Tech Memo 220, 1995.
T. Kraus, P. Kiihl, L. Wirsching, H. Bock, and M. Diehl, “A moving
horizon state estimation algorithm applied to the Tennessee Eastman
Benchmark Process,” in Proceedings of the IEEE Conference on Mul-
tisensor Fusion and Integration for Intelligent Systems, 2006, pp. 377—
382.

G. Evensen, “Sequential data assimilation with a non-linear quasi-
geostrophic model using Monte Carlo methods to forecast error statis-
tics,” Journal of Geophysical Research, vol. 99, pp. 10 143-10 162, May
1994.

P. Houtekamer and H. Mitchell, “Data assimilation using an ensemble
Kalman filter technique,” Monthly Weather Review, vol. 126, pp. 796—
811, March 1998.

——, “A sequential ensemble Kalman filter for atmospheric data as-
similation,” Monthly Weather Review, vol. 129, pp. 123—-137, November
2001.

G. Evensen, “The ensemble Kalman filter: theoretical formulation and
practical implementation,” Ocean Dynamics, vol. 53, pp. 343-367, 2003.
J. Anderson, “An ensemble adjustment Kalman filter for data assimila-
tion,” Monthly Weather Review, vol. 129, pp. 2884-2903, 2001.

C. Bishop, B. Etherton, and S. Majumdar, “Adaptive sampling with the
ensemble transform Kalman filter. Part I: Theoretical aspects,” Monthly
Weather Review, vol. 129, pp. 420-436, 2001.

J. Whitaker and T. Hamill, “Ensemble data assimilation without per-
turbed observations,” Monthly Weather Review, vol. 130, no. 7, pp.
1913-1924, 2002.

S. Kim, G. Eyink, J. Restrepo, F. Alexander, and G. Johnson, “Ensemble
filtering for nonlinear dynamics,” Monthly Weather Review, vol. 131, pp.
2586-2594, November 2003.

T. Hamill, J. Whitaker, and C. Snyder, “Distance-dependent filtering of
background error covariance estimates in an ensemble Kalman filter,”
Monthly Weather Review, vol. 129, pp. 2776-2790, 2001.

E. Ott, B. Hunt, I. Szunyogh, A. Zimin, E. Kostelich, M. Corazza,
E. Kalnay, D. Patil, and J. Yorke, “A local ensemble Kalman filter for
atmospheric data assimilation,” Tellus, vol. 5S6A, pp. 415-428, October
2004.

G. Evensen and P. van Leeuwen, “An ensemble Kalman smoother for
nonlinear dynamics,” Monthly Weather Review, vol. 128, pp. 1852-1867,
June 2000.

P. van Leeuwen and G. Evensen, ‘“Data assimilation and inverse methods
in terms of a probabilistic formulation,” Monthly Weather Review, vol.
124, pp. 2898-2913, 1996.

I. Hoteit, D. Pham, G. Triantafyllou, and G. Korres, “Particle Kalman
filtering for data assimilation in meteorology and oceanography,” Under
Preparation, 2008.

A. Lorenc, “The potential of the ensemble Kalman filter for NWP-a
comparison with 4D-Var,” Quarterly Journal of the Royal Meteorolog-
ical Society, vol. 129, no. 595, pp. 3183-3203, 2003.

A. Caya, J. Sun, and C. Snyder, “A comparison between the 4DVar
and the ensemble Kalman filter techniques for radar data assimilation,”
Monthly Weather Review, vol. 133, no. 11, pp. 3081-3094, 2005.

E. Kalnay, H. Li, T. Miyoshi, S. Yang, and J. Ballabrera-Poy, “4d-var
or ensemble kalman filter?” Tellus, vol. 59A, pp. 758-773, 2007.

N. Gustaffson, “Discussions on ’4DVar of EnKF?’,)” Tellus, vol. 59A,
pp. 7747717, 2007.

T. Hamill and C. Snyder, “A hybrid ensemble Kalman filter-3D varia-
tional analysis scheme,” Monthly Weather Review, vol. 128, no. 8, pp.
2905-2919, 2000.

B. Hunt, E. Kalnay, E. Kostelich, E. Ott, D. Patil, T. Sauer, I. Szunyogh,
J. Yorke, and A. Zimin, “Four-dimensional ensemble Kalman filtering,”
Tellus, vol. 56A, pp. 273-277, April 2004.

M. Zhang, F. Zhang, and J. Hansen, “Coupling ensemble Kalman filter
with four dimensional variational data assimilation,” in 22nd Conference
on Weather Analysis and Forecasting/ 18th Conference on Numerical
Weather Prediction, 2007.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. ?, NO. ?, JANUARY 20??

[44] L. Berre, O. Pannekoucke, G. Desroziers, and G. Stefdnescu, “A
variational assimilation ensemble and the spatial filtering of its error co-
variances,” in Proceedings of the ECMWF workshop on Flow-dependent
aspects of Data Assimilation. Reading, 2007, pp. 151-168.

[45] M. Fisher, “Assimilation techniques (4): 4dvar, April 2001,” in Meteo-
rological training course lecture series. ECMWE, 2002.

[46] J. Cessna, C. Colburn, and T. Bewley, “Multiscale retrograde estimation
and forecasting of chaotic nonlinear systems,” in Proceedings of the 46th
IEEE Conference on Decision and Control, New Orleans, LA, USA,
2007.

[47] T. Bewley, Numerical Renaissance: Simulation, Optimization, and Con-
trol. under preparation, 2009.

[48] B. Anderson and J. Moore, Optimal Filtering. — Dover Publications,
1979.

[49] F. Bouttier and P. Courtier, “Data assimilation concepts and methods
march 1999, Meteorological training course lecture series. ECMWEF,
2002.

[50] E. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric
Sciences, vol. 20, pp. 130-141, January 1963.

[51] B. Protas and T. Bewley, “A computational framework for the regu-
larization of adjoint analysis in multiscale pde systems,” Journal of
Computational Physics, vol. 195, pp. 49-89, 2004.

Joseph Cessna is a PhD candidate in the Mechanical
and Aerospace Engineering department at UC San
Diego. He is part of the interdisciplinary program in
Computational Science, Mathematics, and Engineer-
ing (CSME). Mr. Cessna got his BS from the Uni-
versity of Wisconsin in Engineering Mechanics &
Astronautics and Mathematics. He received his MS
in Engineering Sciences from UC San Diego. His
current research is centered around the development
of novel data assimilation schemes for the estimation
of chaotic, multiscale systems.

&
b

Thomas Bewley directs the Flow Control and Coor-
dinated Robotics Labs at UC San Diego, and also co-
directs UCSD’s interdisciplinary program in Com-
putational Science, Mathematics, and Engineering.
Prof. Bewley got his BS and MS at Caltech and
his PhD at Stanford. His recent work focuses on the
the design optimization, feedback control, and real-
time forecasting of fluid-mechanical systems in both
the aeronautical and environmental settings, as well
as the coordinated observation of such systems with
autonomous unmanned vehicles.




