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This work extends the estimator developed in Part 1 of this study to the problem
of estimating a turbulent channel flow at Re, =100 based on a history of noisy
measurements on the wall. The key advancement enabling this work is the
development and implementation of an efficient technique to extract, from direct
numerical simulations, the relevant statistics of an appropriately defined ‘external
forcing’ term on the Navier—Stokes equation linearized about the mean turbulent flow
profile. This forcing term is designed to account for the unmodelled (nonlinear) terms
during the computation of the (linear) Kalman filter feedback gains in Fourier space.
Upon inverse transform of the resulting feedback gains computed on an array of
wavenumber pairs to physical space, we obtain, as in Part 1, effective and well-resolved
feedback convolution kernels for the estimation problem. It is demonstrated that, by
applying the feedback so determined, satisfactory correlation between the actual and
estimated flow is obtained in the near-wall region. As anticipated, extended Kalman
filters (with the nonlinearity of the actual system reintroduced into the estimator
model after the feedback gains are determined) outperform standard (linear) Kalman
filters on the full system.

1. Introduction

This paper builds directly on Part 1 of this study (Heepffner et al. 2005, hereafter
referred to as Part 1). It extends the estimator developed there, for the case of
perturbed laminar channel flow, to the problem of fully developed channel-flow
turbulence. The reader is referred to Part 1 for related general references, background
information on optimal state estimation (Kalman filter) theory, and a description of
how to apply this theory to a well-resolved discretization of a fluid system in a manner
that is consistent with the continuous PDE system upon which this discretization is
based (that is, in a manner such that the resulting feedback convolution kernels
converge upon refinement of the numerical grid).

The present paper effectively picks up where Part 1 left off, and treats specifically
the issues involved in extending the estimator developed in Part 1 to the problem
of estimating a fully developed turbulent channel flow based on wall measurements.
Three key steps were identified in obtaining adequate estimator performance in the
near-wall region:

(a) linearization the flow system about the mean turbulent flow profile, accounting
for the statistics of the additional forcing term during the computation of the feedback
gains;
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(b) extraction of these statistics from a direct numerical simulation; and

(¢) incorporation of the nonlinearity of the actual system into the estimator model
at the final step in the development of the estimator (using an extended Kalman
filter).
Note also that the statistics of the forcing term used in the linear system description in
this work are found to have some similarities to the parameterization of the external
disturbances considered in Part 1, which dealt with the estimation of the early stages
of transition in the same domain.

1.1. Model predictive estimation

There are two natural approaches for model-based estimation of near-wall turbulent
flows: model predictive estimation and extended Kalman filtering. Bewley & Protas
(2004) discusses the model predictive estimation approach, which is based on iterative
state and adjoint calculations, optimizing the estimate of the state of the system
such that the nonlinear evolution of the system model, over a finite horizon in time,
matches the available measurements to the maximum extent possible. This is typically
accomplished by optimizing the initial conditions in the estimator model in order to
minimize a cost function measuring a mean-square ‘misfit’ of the measurements from
the corresponding quantities in the estimator model over the time horizon of interest.
This optimization is performed iteratively, using gradient information provided by
calculation of an appropriately defined adjoint field driven by the measurement misfits
at the wall. The technique provides an optimized estimate of the state of the system
which accounts for the full nonlinear evolution of the system, albeit over a finite
time horizon and providing only a local optimal which might be far from the actual
flow state sought. The technique is typically expensive computationally, as it requires
iterative marches of the state and adjoint fields over the time horizon of interest in
order to obtain the state estimate; for this reason, this approach is often quickly
disqualified from consideration as being computationally intractable for practical
implementation. The model predictive estimation approach is closely related to the
adjoint-based approach to weather forecasting, commonly known as 4D-var. For
further discussion of model predictive estimation as it applies to near-wall turbulence,
the reader is referred to Bewley & Protas (2004).

1.2. Extended Kalman filtering

The extended Kalman filter approach, which is the focus of the present paper, is
described in detail in Part 1. To summarize it briefly, the estimation problem is first
considered in the linearized setting. Define 7 as the Fourier transform of the vector of
all three measurements axiailable on the walls in the actual flow system at wavenumber
pair {k,, k,}, and define 7 as the corresponding quantity in the estimator model. At
each wavenumber pair {k,, k,}, a set of feedback gains L is first computed such that a
forcing term O = L(r —;X’) on the (linearized) estimator model results in a minimization
of the energy of the estimation error (that is, this feedback minimizes the trace of the
covariance of the estimation error, usually denoted P), assuming that the flow state
itself is also governed by the same linearized model. This is called a Kalman filter,
and the theory for the calculation of the optimal feedback gain L in the estimator is
elegant, mathematically rigorous, and well known. For a comprehensive presentation
in the ODE setting, see Anderson & Moore (1979). For the corresponding derivation
in the spatially continuous (PDE) setting, see Balakrishnan (1976).

Upon inverse transform of the resulting feedback gains computed on an array of
wavenumber pairs to physical space, we seek (and, indeed, find) well-resolved feedback
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convolution kernels for the estimation problem that, far enough from the origin, decay
exponentially with distance from the origin. The reader is referred to Bewley (2001),
Bamieh, Paganini & Dahleh (2002), and Hogberg, Bewley & Henningson (2003a) for
further discussion of

(a) the technique used to transform feedback gains in Fourier space to feedback
convolution kernels in physical space,

(b) an interpretation of what these convolution kernels mean in both the control
and estimation problems, and

(c) adescription of the overlapping decentralized control implementation facilitated
by this approach, which is built from an interconnected array of identical tiles,
each incorporating actuators, sensors, control logic, and limited communication with
neighbouring tiles.

Ultimately, the estimator feedback ¥ is applied to a full (nonlinear) model of the flow
system. This final step of reintroducing the nonlinearity of the system into the
estimator model results in what is called an extended Kalman filter. In practice, the ex-
tended Kalman filter has proved to be one of the most reliable techniques available
for estimating the evolution of nonlinear systems.

1.3. On the suitability of linear models of turbulence for state estimation and control

As described in the previous section, the feedback kernels used in the extended
Kalman filter are calculated based on a linearized model of the fluid system. Thus,
the applicability of the extended Kalman filtering strategy to turbulence is predicated
upon the hypothesis that linearized models faithfully represent at least some of the
important dynamic processes in turbulent flow systems.

The fluid dynamics literature of the last decade contains many articles aimed
at supporting this hypothesis. For example, Farrell & Ioannou (1996) used these
linearized equations in an attempt to explain the mechanism for the turbulence
attenuation that is caused by the closed-loop control strategy now commonly known
as opposition control. Jovanovi¢c & Bamieh (2001) proposed a stochastic disturbance
model which, when used to force the linearized open-loop Navier—Stokes equation, led
to a simulated flow state with certain second-order statistics (specifically, u, s, Vrms,
W, s, and the Reynolds stress —uv) that mimicked, with varying degrees of precision,
the statistics from a full DNS of a turbulent flow at Re, = 180.

Clearly, however, the hypothesis concerning the relevance of linearized models to
the turbulence problem can only be taken so far, as linear models of fluid systems
do not capture the nonlinear ‘scattering’ or ‘cascade’ of energy over a range of length
scales and time scales, and thus linear models fail to capture an essential dynamical
effect that endows turbulence with its inherent ‘multiscale’ characteristics. The key
strategy of the present work (and, indeed, the key idea motivating our application of
linear control theory to turbulence in general), is that the fidelity required of a model
for it to be adequate for control (or estimator) design is in fact much lower than
the fidelity required of a model for it to be adequate for accurate simulation of the
system. Thus, for the purpose of computing feedback for the control and estimation
problems, linear models might well be good enough, even though the fidelity of linear
models as simulation tools to capture the open-loop statistics of turbulent flows
is still the matter of some debate in the fluids literature. All that the feedback in
an extended Kalman filter has to do is to give the estimator model a ‘nudge’ in
approximately the right direction when the state and the state estimate are diverging.
The extended Kalman filter contains the full nonlinear equations of the actual system
in the estimator model, so if the state and the state estimate are sufficiently close, the
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estimator will accurately track the state, for at least a short period of time, with little
or no additional forcing necessary.

Put another way, in the control problem, the model upon which the control feedback
is computed need only include the key terms responsible for the production of energy.
As the nonlinear terms in the Navier—Stokes equation scatter energy but do not
directly contribute to energy production, we might expect that a linear model may
indeed suffice. For the control Navier—Stokes systems near solid walls based on full
state information, Hogberg, Bewley & Henningson (2003b) demonstrated complete
relaminarization of low-Reynolds-number turbulent channel flow based on actuation
at the wall using linear control theory, thereby providing compelling evidence that
this is in fact true, at least for sufficiently low Reynolds number. The present work on
the estimation problem is based on the related strategy that, in a similar manner, the
model upon which the estimator feedback is computed might only need to capture
the key terms responsible for the production of energy in the system describing the
estimation error.

1.4. The problem of nearly unobservable modes

The problem of estimating the state of a chaotic nonlinear system based on
limited noisy measurements of the system is inherently difficult. When posed as
an optimization problem (for example, in the model predictive estimation approach
described previously), one can expect that, in general, multiple local minima of such
a non-convex optimization problem will exist, many of which will be associated with
state estimates that are in fact poor. These difficulties are exacerbated in the case
of the estimation of near-wall turbulence by the fact that turbulence is a multiscale
phenomenon (that is, it is characterized by energetic motions over a broad range of
length scales and time scales that interact in a nonlinear fashion), with significant
nonlinear chaotic dynamics evolving far from where sensors are located (that is, on
the walls).

As illustrated in figure 1(b) and table 1 of Bewley & Liu 1998 (hereafter, BL98)
and discussed further in Part 1, even in the laminar case, at k, = 1, k, = 0 a
significant number of the leading eigenmodes of the system are ‘centre modes’ with
little support near the walls, and are thus nearly unobservable with wall-mounted
sensors. As easily shown via similar plots in the turbulent case at the same and
higher bulk Reynolds numbers, an even higher percentage of the leading eigenmodes
of the linearized system are nearly unobservable in the turbulent case, with the
problem getting worse as the Reynolds number is increased. We thus see that
the problem of estimating turbulence is fundamentally harder than the problem
of estimating perturbations to a laminar flow even if the linear model of turbulence
is considered as valid, simply due to the heightened presence of nearly unobservable
modes.

In the present work we focus our attention primarily on getting an accurate state
estimate fairly close to the walls, where the sensors are located. This is done with the
idea in mind that, in the problem of turbulence control (which is our ultimate long-
term objective in this effort, and the reason we are pursuing this line of investigation),
it is the near-wall region only that, on average, turbulence ‘production’ substantially
exceeds ‘dissipation’, as pointed out in Jimenez (1999). Thus, we proceed with the
objective that, if we can

(a) estimate the fluctuations in the near-wall region with a sufficient degree of
accuracy, then

(b) subdue these near-wall fluctuations with appropriate control feedback,



State estimation in wall-bounded flow systems. Part 2 171

then we will have a net stabilizing effect on the turbulent motions in the entire
flow system, even if we do not completely relaminarize the turbulent flow. It is thus
unnecessary to estimate accurately the motion of the flow far from the wall in order
to realize our ultimate objective in this work. Such flow-field fluctuations, which will
not be estimated accurately in this work, will (through nonlinear interactions) act
as disturbances to excite continuously the state estimation error in the near-wall
region, while feedback from the sensors will be used to subdue continuously this
error.

The non-normality of the Orr—Sommerfeld/Squire operator in the laminar case
is most evident by examining it near k, = 0, k, = 2, as illustrated in figure 2(b)
of BL98 and quantified by the transfer function norms in table 4 of BL98. Similar
plots reveal that the degree of non-normality of the eigenvectors (that is, the fact
that, after the first, these eigenvectors come in pairs of almost exactly the same
shape) is not significantly altered when moving from the laminar case to the turbulent
case at the same bulk Reynolds number, though it is exacerbated gradually as the
Reynolds number is increased. Note that, as opposed to the case at k, = 1, k, =0
discussed above, all leading modes in the case k, = 0, k, = 2 have a substantial
footprint on the wall. Thus, the situation is not as bad as it might first appear: even
when linearized about the turbulent flow profile, at the wavenumbers of primary
concern (in which the non-normality of the eigenmodes of the system matrix is most
pronounced), these eigenmodes are easily detected by wall-mounted sensors. Further,
the pairs of eigenmodes with nearly the same shape are easily distinguished during
the dynamic state estimation process, as they are associated with different eigenvalues
characterizing their variation in time.

1.5. Comparison of the estimation and control problems applied to near-wall turbulence

Another significant difference between the turbulence control and turbulence
estimation problems is that, in the control problem, once (if) the control becomes
effective, the system approaches a stationary state in which the linearization of the
system is valid. In the estimation problem, on the other hand, even if the estimate
at some time is quite accurate, the system is still moving on its chaotic attractor, so
the linearization of the system about some mean state is not strictly valid. Thus, in
this respect, it is seen that the turbulence estimation problem might be considered as
being fundamentally harder than the turbulence control problem.

1.6. Outline

A brief review of the governing equations and some of the particular properties
of the extended Kalman filter used in this work is given in §2. Section 3 collects
and analyses the relevant statistics from a direct numerical simulation (DNS) of a
turbulent channel flow at Re, = 100 in order to build the estimator. The statistical
data from §3 are then used in §4 to compute feedback gains (in Fourier space)
and kernels (in physical space) for the estimator. The performance of the resulting
estimator is evaluated via DNS in § 5, and §6 presents some concluding remarks.

2. Governing equations
2.1. State equation and identification of terms lumped into the ‘external forcing’ f

The system model considered in this work is the Navier—Stokes equation for the three
velocity components {U, V, W} and pressure P of an incompressible channel flow,
written as a (nonlinear) perturbation about a base flow profile #(y) and bulk pressure
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variation p(x, y, t) such that, defining

U u i(y)
\% v 0

w B w + 0

I p p(x,y, 1)

with {u, v, w, p} varying in {x,y, z, ¢} with periodic boundary conditions in the x-
and z-directions, we have
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We select the base flow profile ii(y) as the average in x, z, and ¢ of the turbulent flow,

u(y) = Th—r»rc}oTLL// / U dzdx dt,

and the variation of p(x, y,t) in the x-direction as the (unsteady) mean pressure
gradient sustaining the flow with a constant mass flux in the streamwise direction.
Note that the (steady) variation of p(x, y, t) in the y-direction arises to balance the
average in x, z, and ¢ of the vdv/dy term in the wall-normal momentum equation.
Note also that we assume no-slip solid walls (U =V =W =u =v=w =0 on
y = =+1). This facilitates decomposition of the perturbation problem (2.1) in the x-
and z-directions using a Fourier series.

We now apply such a Fourier decomposition to (2.1), using hat subscripts (%) to
denote the Fourier representation. The system may then be transformed to {9, 7}
form in a straightforward fashion. Applying the Laplacian A = 3%/9y* — k?, where
k* =k2 4+ k2, to the Fourier transform of (2.1b), substituting for A p from the divergence
of the Fourier transform of (2.1), and applying the Fourier transform of (2.2) gives
the equation for 9. Subtracting ik, times the Fourier transform of (2.1¢) from ik, times
the Fourier transform (2.1a) gives the equation for # = ik, i — ik, . The result is the
linear Orr—Sommerfeld/Squire equations at each wavenumber pair {k,, k,} with an
extra term accounting for the nonlinearity of the system

%M& LG =Th (2.4)
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where {i, iy, ni3} are given by the Fourier transform of (2.3), taking (from the Fourier
transform of (2.2) and the definition of )
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and where, with the walls located at y = +1 and the velocities normalized such
that the peak value of u#(y) is 1, Re is the Reynolds number based on the centreline
velocity and channel half-width. Note that, for k, = k., = 0, it follows immediately
from the definition of this system that v = # = 0 for all y. For all other wavenumber
pairs, multiplying (2.4) by M~!, we obtain

A 1y A A A

g=-—M "Lg+M Th. (2.5)

A B

Note that the terms in this expression depend on the wavenumber pair being
considered, {k,, k.}, and that the state ¢ is a continuous function of both the wall-
normal coordinate y and the time coordinate ¢. Implementation of this equation in
the computer requires discretization of this system in the wall-normal direction y and
a discrete march in time z.

The present system may be linearized by replacing the exact expression for n by an
appropriate stochastic model, which we will denote f, thereby obtaining the linear
state-space model

G=AG+Bf. (2.6)
As the mean of n is everywhere zero, it is logical to select this stochastic model such
that E[f] = 0, where the expectation operator E[-] is defined as the average over
many realizations of the stochastic quantity in brackets. The covariance of f will

be modelled carefully based on the covariance of n observed in DNS, as discussed
further in §2.3.

2.2. Measurements

The present work attempts to develop the best possible estimate of the state based on
measurements of the flow on the walls. As discussed in Part 1, and in greater detail in
Bewley & Protas (2004), the three independent measurements available on the walls
are the distributions of the streamwise and spanwise wall skin friction and the wall
pressure.

In the present paper, we have chosen to transform these measurements to a slightly
different form such that their effects on the estimation of the system (2.6), which is in
{0, A} form, is more transparent. There is some flexibility here; in the present work,
we have chosen to define this transformed measurement vector 7 to contain scaled
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versions of the wall values of the wall-normal derivative of the wall-normal vorticity,
ily/Re, the second wall-normal derivative of the wall-normal velocity, v,,/Re, and the
pressure, p. Note that we can easily relate this transformed measurement vector to
the raw measurements of £, = Dii/Re, T, = Di/Re, and p on the walls, which might
be available from a lab experiment, via the relation (in Fourier space)

R7e7/7\y|wall lkZ —lkx 0 %x|wall
7 = 1 = —lkx _lkz 0 %zlwull s (27)

A
v ’|wall
Re ™

A 0 0 1 Plwan
Plwait

K

and we may relate the transformed measurement vector 7 to the state g via the simple
relation

0 D‘wall
1 2
P=Ci+g with C=—- 1D a0 (2.8)
e
ﬁD3|wall 0

where g accounts for the measurement noise. The last row of the above relation
is easily verified by taking d/0x of the x-momentum equation plus 9/dz of the
z-momentum equation, then applying continuity and the boundary conditions.

For the purpose of posing the present state estimation problem, the measurements
are assumed to be corrupted by uncorrelated zero-mean white Gaussian noise
processes, which are assembled into the vector g with an assumed covariance (in
Fourier space) of

a,zi 0O 0
G=1|0 ozf 0 (2.9)
0 0 «?

Note that such an assumption of uncorrelated white (in space and time) noise is in
fact a fairly realistic model for electrical noise in the sensors. The role of G in tuning
the strength of the estimator feedback is discussed in greater detail in Part 1.

A different parameterization for the noise covariance that might be of interest in a
practical implementation, in which the physical sensors measure 7, 7,, and p, is

a; 0 0
G=K |0 o O0]K, (2.10)
0 0 o?

p

where K is defined in (2.7) and the convenient relation given in (2.5) of Part 1 has
been used to relate the covariance of the noise on the raw measurements to the
present formulation. This parameterization should also be explored numerically in
future work.

2.3. Extracting the relevant statistics for state estimation from resolved simulations

The performance of the estimator may be tuned by accurate parameterization of
the relevant statistical properties of the forcing term f in the linearized state model,
in addition to adjusting the parameterization of the statistical properties of the
measurement noise g. These statistics play an essential role in the computation of the
Kalman filter feedback gains.
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In the present work, we will assume that f is effectively uncorrelated from one time
step to the next (that is, we assume that f is ‘white’ in time) in order to simplify the
design of the estimator. Subject to this central assumption, we proceed by developing
an accurate model for the assumed spatial correlations of f. As the system under
consideration is statistically homogeneous in the x- and z-directions, the covariance
of the stochastic forcing f may be parameterized in physical space as

E[fj(xv Y, Z, t)fk(x + ry, y', z+rg, t,)] = 5(t - t,)Qf_ifk(y’ y,» Ty, Vz),

where §(¢) denotes the Dirac delta and where the covariance Q ; is determined by
calculating the statistics of the actual nonlinear forcing term n in a DNS,

O 3.y rers) = h—I}; TL. / / / ni(x,y, 2)n(x +ry, ¥,z +r,)dzdx dr.

(2.11)

As the system under consideration is statistically homogeneous, or ‘spatially invariant’,
in the x- and z-directions, it is more convenient to work with the Fourier transform
of the two-point correlation Qy ; rather than working with Qy  itself, as the
calculation of Qy, 5 in physical space involves a convolution sum, which reduces to
a simple multiplication in Fourier space. The Fourier transform of Qy, 5, which we
identify as the spectral density function R Fife is defined as

’ 1 b b / —ikyr,—ik.r.
Ri oy bk =g [ [ 0puyinorye b a2

Note that, due to the statistical homogeneity of the system in x and z, the spectral
density function R e is a decoupled at each wavenumber pair {k,, k.}, and thus may
be determined from the DNS according to

’ . 1 TA Akl ]
Rp 5 (v ¥ ke, k) = le—l?;lc T/o nj(y, ke, kg (Y, ke, k) dt. (2.13)

Certain symmetries may be applied to accelerate the convergence of the statistics
determined from the DNS and to reduce the amount of covariance data that needs
to be stored, which is in fact quite large. Since Qy, , is a real-valued function, R;
is Hermitian, so

Rj (3. Y ke k) =R} 5 (9. Y —ke, —k). (2.14)
By (2.13), it follows immediately that
Rj 7 (5 ¥ keoks) = Ry 5 (5, 3. ke k). (2.15)

Due to the up/down and left/right statistical symmetry in the flow, it also follows
that

Rf fk(y y kx’k) f ( Yy, y, kkaz)a (21661)
R; 7, (0, ¥ keke) = £RG ¢ (v, ¥, ke, —k2), (2.16b)
Rp 3oy ks k) = fzfz(y, Yo ke k) =0, (2.16¢)

where, in (2.16a), the minus sign is used for the cases {j = 2,k # 2} and {j # 2,k = 2},
and the positive sign is used for all other cases and, in (2.16b), the minus sign is used
for the cases {j = 3,k # 3} and {j # 3,k = 3}, and the positive sign is used for
all other cases. The reader is referred to, e.g, Moin & Moser (1989) for similar
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computations. Finally, for later use, the individual components of the spectral density
function R;; at each wavenumber pair {k,, k.| are denoted by

Ri o Rpg Ry,

/
Rf.f(y’y’kx’kZ): szfl szfz szf}
Rpp Rpp Ry,

3. Statistics of the nonlinear term n

We now perform a DNS of the nonlinear Navier-Stokes equations in a turbulent
channel flow at Re, = 100, gathering the statistics of the nonlinear term n identified in
(2.3), which combines all those terms which will be supplanted by the stochastic forcing
f in the linearized model (2.6) upon which the Kalman filter will be based. Note
that the Reynolds number Re, = u.§/v is based on the mean skin friction velocity
u., the channel half-width §, and the kinematic viscosity v; Re, = 100 corresponds to
Req = ugd/v = 1712, where uy is the mean centreline velocity.

All DNS calculations performed in this work used the code of Bewley, Moin &
Temam (2001). For the spatial discretization, this code uses dealiased pseudospectral
techniques in the streamwise and spanwise directions and an energy-conserving
second-order finite difference technique in the wall-normal direction. For the
time march, the code uses a fractional step implementation of a hybrid second-
order Crank—Nicolson/third-order Runge—Kutta—Wray method. The overall pressure
gradient is adjusted at each time step in order to maintain a constant mass flux in the
flow, and a computational domain of size 4n x 2 X 41/3 in the x X y X z directions is
used. The resolution is 42 x 64 x 42 Fourier, finite difference, Fourier modes (that is,
64 x 64 x 64 dealiased collocation points). The numerical scheme used to discretize the
Orr—Sommerfeld /Squire equations in this work is the spectral Differentiation Matrix
Suite of Weideman & Reddy (2000); for further discussion of this discretization, see
Hogberg et al. (2003a).

The covariance of the forcing term n = (n;, n,, n3)" identified in (2.3) was sampled
during a DNS long enough to obtain statistical convergence. During the simulation,
the full covariance matrices were computed at each wavenumber pair, creating a large,
four-dimensional data set. The size of the covariance data set is N, x N, x N? for
each correlation component of the forcing vector (before exploiting any symmetries),
where N,, N,, and N, denote the resolution in the corresponding directionst. The
symmetries mentioned in §2.3 were then applied in post-processing to improve the
statistical convergence. These statistics are subsequently used in § 4, where the optimal
estimation feedback gains are computed. In § 5, the feedback gains so determined are
used in order to estimate a fully developed turbulent flow based on wall measurements
alone. Both Kalman filters and extended Kalman filters are investigated.

In figure 1 the magnitude of the spectral density function at four representative
wavenumber pairs {k,, k,} is plotted. As seen in the figure (plotted along the main
diagonal), the variance of the forcing terms is stronger in the high-shear regions near
the walls, as expected. Note also that there is a pronounced cross-correlation between

+ As resolution requirements of turbulence simulations increase quickly with increasing Reynolds
number, at higher Reynolds numbers (to be explored in future work) it will thus be necessary to
represent only the most significant components of these correlations via an approximate strategy,
accounting only for the leading singular values of these correlation matrices at each wavenumber
pair.
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FIGURE 1. The magnitude of the spectral density function R;:(y, ., ky, k.) of f, computed
from the DNS of a turbulent channel flow at Re, = 100, at wavenumber pairs {k,, k,} of
(a) {1.0,3.0}, (b) {3.0,1.5}, (c) {0.0, 1.5}, and (d) {4.0,4.5}. The nine ‘squares’ correspond to
the correlation between the various components of the forcing vector; froAm furthest to the
viewer to closest to the viewer, the squares correspond to the fi, f», and f3 components on
each axis. The width of each side of each square represents the width of the channel, [—1, 1].
The variance is plotted along the diagonal of each square.

Jf1 and f, accounting for the Reynolds stresses in the flow, with the other cross-
correlations converging towards zero as the statistical basis is increased. Figure 3(a)
shows the corresponding variation of the maximum magnitude of the spectral density
function as a function of the wavenumbers k, and k,. As expected, the stochastic
forcing is stronger for lower wavenumber pairs.

In figure 2, a corresponding plot of the magnitude of the spectral density function
of the stochastic forcing model defined in Part 1 is given. Note that the shape of
this covariance model is invariant with {k,,k.}. It is only the overall magnitude of
this covariance model that varies with {k,, k. }, in contrast to the covariance data
determined from the DNS data, as reported in figure 1. Figure 3(b) shows the
corresponding variation of the maximum magnitude of the spectral density function
as a function of the wavenumbers &, and k..

4. Estimator gains and the corresponding physical-space kernels

In Hogberg et al. (2003a), the covariance Q was modelled with a spatially
uncorrelated stochastic forcing, Q@ = I. With that model, it proved to be impossible
to obtain well-resolved estimation gains for more than one measurement (of 75,),
essentially because the problem defined did not converge as the grid was refined.
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FIGURE 2. The magnitude of the spectral density function R/ ;(y, v, ke, k;) of f , as paramet-
erized in the laminar model proposed in Part 1, taking p =0 (a) and p = 3 (b); see figure 1
for further explanation of the plot.
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FIGURE 3. The variation of the maximum amplitude of the spectral density function as a

function of the wavenumbers k, and k, for the DNS data of f 1 (a) and the statistical model
of Part 1 (b).

Part 1 of this study fixed this problem, where it was shown that, using approriately
smooth models for the covariance functions, well-resolved estimation kernels could
be obtained for all three measurements available at the wall (specifically, n, and
vy, (equivalently, 7, and t;) and p). The present study takes this approach one
step further, obtaining the covariance of the stochastic forcing terms directly from
data obtained via DNS. Basing the stochastic model on the turbulent statistics, we
again obtain well-resolved gains that converge upon grid refinement for all three
measurements available at the wall. The definition and solution procedure for the
state estimation problem in order to solve for the Kalman filter gains in the estimator
in the present work are identical to that described in Part 1, to which the reader is
referred for further details.

Figure 4 illustrates isosurfaces of the physical-space convolution kernels based on
the statistics of the neglected terms in the linearized model, as determined from
DNS. (Note that these gains are transformed to gains based on 7y, v,,, and p
in the estimator simulations presented in §5.) The kernels depicted in figure 4 are
substantially different in shape from those used in the laminar case, as reported in
figure 12 of Part 1; in particular, note that they are generally more focused in the
region adjacent to the lower wall, probably as consequence of the fuller mean velocity
profile about which the system is linearized in the turbulent case.
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FIGURE 4. Isosurfaces of the physical-space convolution kernels determined for Re, =100
turbulent channel flow based on the statistics of the neglected terms in the linearized model, as
determined by DNS and plotted in figures 1 and 3(a). Shown are the steady-state convolution
kernels relating the (a) ,, (b) t;, and (¢) p measurements at the point {x =0, y = —1, z =0}
on the wall to the estimator forcing on the interior of the domain for the evolution equation
for the estimate of (top) v and (bottom) 5. Visualized are positive (dark) and negative (light)
isosurfaces with isovalues of +5% of the maximum amplitude for each kernel illustrated.

Case a, a, o, [0) J1/2
1 0.1200 - — 1 52
2 0.0037 - - Ri; 52
3 0.0030 0.0030 - Rj;f 55
4 0.0030 0.0030 0.0075 R 53

if
TaBLE 1. The estimation simulations. For the cases when using one and two measurements,

only the corresponding o values are relevant since the other measurements are excluded from
the C-matrix.

The level of the sensor noise, described in §2.2, is a natural ‘knob’ to tune the
magnitude of the contribution to the estimator feedback from each of the individual
measurements. In an attempt to make a reasonably fair comparison between the
different stochastic models, we define measures of the 7, kernel

Uophe ke
J = / / / L, dxdydz.
-1Jo Jo

Such a quantity measures the integral in all three spatial directions of the square of
the gain corresponding to the », measurement.

Four cases were studied, as shown in table 1. In all four cases, the relevant o
parameters were tuned so that the sum J of the measure 7, is approximately equal. The
logic for performing the comparison in this way is to study the additional information
provided when the additional measurements are added while the covariance of the
system is accurately modelled. Future studies should experiment with tuning the
relevant o parameters differently (corresponding to changing the relative noise on
each of the three types of sensors) in order to find the most effective combination.
Note that, with the current choice of the o parameters, the addition of the feedback
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into the estimator required no adjustment of the time step for the extended Kalman
filter DNS to run properly.

5. Estimator performance
5.1. Estimator algorithm

In order to quantify the performance of the Kalman filter developed in this work,
we run two direct numerical simulations in parallel. One simulation represents the
‘real’ flow, where the initial condition is a fully developed turbulent flow field. The
other simulation represents the estimated flow field, and is initialized with a turbulent
mean flow profile and all fluctuating velocity components set to zero. The real flow
is modelled by the Navier—Stokes equation. In the estimator simulations we have
tested both Kalman filters (with the state model being the linearized Navier—Stokes
equation) and extended Kalman filters (with the state model being the full nonlinear
Navier—Stokes equation).

In the estimator simulations the volume forcing v, defined in §1.2, is added. This
additional forcing is based on the wall measurements and the precomputed estimation
gains L. For the Kalman filter simulations, we fix the mean flow to the turbulent mean
flow profile and compute the velocity fluctuations using the linearized Navier—Stokes
equation.

To evaluate the performance of the Kalman and extended Kalman filters, the
correlation between the actual and estimated flow is defined throughout the wall-
normal extent of the domain at each instant of time according to

L. pL,
/ / ssdxdz
0o Jo
Le L. 172 Ly pL.
(/ / szdxdz> (/ / §2dxdz>
o Jo o Jo

where s and § represent either a velocity component, or the pressure, or the Reynolds
stresses from the actual and estimated flow, respectively. A correlation of 1 means
perfect correlation whereas correlation zero means no correlation at all. Another
useful quantity to study is the error between the actual and estimated flow state,

defined as
)
([ [ we)

The error (5.2) ranges from zero, which means no error between the real and estimated
flow fields, to infinity. Finally, perhaps the most pertinent quantity to measure is the
kinetic energy of the total error between the real and estimated velocity fields, defined
(with 2 selected appropriately, as required to measure the energy of the velocity field)

as
(/ /(q q)"2(q — q)cbch)l/2 5
([ [[omue) |

corry(s, §) =

g (5.1)

1/2

(5.2)

errny(s, §) =

errn{™(q, 4) =
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FIGURE 5. corry(s, §) fors = u, s = v, s = w, and p obtained using the Kalman filter. The solid
line denotes estimation using all three measurements and noise statistics as discussed in § 3. The
dashed line denotes the estimator performance using only the 1, measurement. The dash-dotted
line is obtained using the spatially uncorrelated stochastic model for noise statistics. The dotted

line denotes the estimator performance using the , and v,, measurements.
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FIGURE 6. As figure 5 but ‘obtained’ using the extended the Kalman filter.

By the initialization of the estimator (based on zero knowledge of the flow-field
fluctuation), the correlation is zero at r = 0, followed by a transient during which the
correlation increases to statistically steady state. A similar transient also appears in
plots of the error. Figures 5-11 report the correlations and errors as a function of y
for the several cases considered at statistical steady state (that is, after the transient).

5.2. One measurement — a comparison of two stochastic models

To compare the gains based on a spatially uncorrelated stochastic model Q = I with
the estimation gains based on the stochastic model obtained from DNS as suggested
in this study, we first compare the performance of the estimator using only the 7,
measurement. This is because we only obtained a well-resolved estimation gain for
the n, measurement when using the spatially uncorrelated stochastic model.

The correlation between the real and estimated flow, for one measurement, is
depicted in figure 5 and figure 6 for the Kalman and extended Kalman filters
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FIGURE 7. corr,(s, §) for the Reynolds stresses obtained using the Kalman filter. The solid line
denotes estimation using all three measurements and noise statistics as discussed in §3. The
dashed line denotes the estimator performance using only the 7, measurement. The dash-dotted
line is obtained using the spatially uncorrelated stochastic model for noise statistics. The dotted
line denotes the estimator performance using the 7, and vy, measurements.
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FIGURE 8. As figure 7 but obtained using the extended Kalman filter.

respectively. The dashed lines represent the stochastic model developed in this work
whereas the dash-dotted lines represent the spatially uncorrelated stochastic model.
The correlation for the u-component is almost 1 (perfect correlation) close to the
wall for the two filters but there is an increasing difference both for the Kalman and
extended Kalman filter as the wall distance increases. For v, w, and p the difference
is larger. This is due to the fact that the streamwise disturbance velocity contains
more energy than the other components and that with only the n, measurement we
are missing important information about the flow behaviour.

Corresponding correlations are shown in figures 7 and 8 for the Reynolds stresses
uv, vw, and ww. These correlations decay faster since they depend on a squared
velocity quantity. This also makes a clearer difference between the two stochastic
models.
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FIGURE 9. The relative estimation error errny(s, §), defined as in equation (5.2) plotted for the
Kalman filter. The solid line denotes estimation performed with all three measurements and
gains based on turbulence statistics. The dashed line denotes the estimator performance using
only the n, measurement. The dash-dotted line is the correlation when using the spatially
uncorrelated stochastic model. The dotted line denotes the estimator performance using the »,
and v,, measurements.
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FIGURE 10. As figure 9 but plotted for the extended Kalman filter.

In figures 9 and 10 we can see similar trends for the error function (5.2) for all the
primitive variables and for both the Kalman and extended Kalman filter.

For both the estimators and both stochastic models, using only the n, gains, the
correlation and error for the u-component, decay quickly beyond y* ~ 8 and in the
centre region of the channel both the error and correlation measures perform poorly.
The components v, w, and p are also clearly not estimated very well when only the
n, measurement is used.

5.3. Two and three measurements, using the stochastic model obtained from DNS

The performance of all three measurements combined, with the relative weighting
presented in table 1, are shown as solid lines in figure 5-10.

In these figures it is clearly seen that the correlation and error between the
real and estimated flow for the primitive variables and the Reynolds stresses are
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FiGgure 11. The total energy of the estimation error is shown as a function of the wall-normal
distance. The solid line denotes the error when all three measurements are applied in the
estimator. The dashed and dash-dotted lines represent the estimator performance when using
only the 1, measurement with the stochastic model based on turbulence statistics and the
spatially uncorrelated stochastic model respectively. The thick lines show the extended Kalman
filter and the thin lines the Kalman filter data.

greatly improved when the additional measurements are included, as facilitated by
the covariance models proposed by this study. The strongest improvement appears
for the pressure, due to the addition of a pressure measurement.

The dotted lines in figure 5-10 represent the correlation when using gains based on
the n, and the v,, measurements. By comparing the solid and dotted lines it is evident
that the importance of the pressure measurement is relatively weak for the velocity
components and the Reynolds stresses whereas for the pressure component there is
a big difference. Notice also that the effect of the pressure measurement generally
becomes stronger farther away from the wall.

In figure 11 the total estimation error, averaged in time, is plotted as a function
of wall-normal distance. The thin lines show the Kalman filter results and the thick
lines the corresponding extended Kalman filter results. The improved estimation
possibilities with the stochastic model presented in this study over a spatially
uncorrelated one is clearly seen in figure 11. This improvement is most pronounced
close to the wall. The correlation and error for all quantities decay quickly well
beyond y* ~ 10. As expected, towards the centre of the channel, by both measures,
the estimator performs poorly.

The total energy of the estimation error exhibits a transient as the two simulations
are started, as described in § 5.1. This transient is depicted in figure 12 for the Kalman
filter simulation. Closer to the wall the transient is stronger and the error reaches a
lower level than further into the flow domain. The transient is due to the fact that
the estimated flow is initialized with only a turbulent mean flow profile.

In figure 13, an instantaneous plot of the v-velocity component is shown at y* = 9.7
for the flow field and the two different filters (based on three measurements). Similar
structures are present in all three plots, with the extended Kalman filter visibly
superior to the Kalman filter in terms of matching the actual flow.

At this time, it is impossible to compare properly the performance of the present
approach to the adjoint-based estimation approach discussed in Bewley & Protas
(2004), where a turbulent channel flow at Re, = 180 was estimated based on wall
measurements, as discussed in § 1.1. The difficulty is that the two methods have several
adjustable parameters that are essentially incompatible (in the present strategy, the
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FIGURE 12. The transient of the total error energy at several values of y* for case 4 in
table 1. All three measurements are used together with the Kalman filter; the transient
exhibited by the extended Kalman filter is similar.

o parameters, and in the adjoint-based strategy, the length of the time horizon and
the weighting of the so-called background term); further, these parameters, have, so
far, not been adequately optimized for either approach. Thus, at this time, a proper
comparison between the present extended Kalman filtering approach and adjoint-
based approach proposed in Bewley & Protas (2004) to the estimation of near-wall
turbulence is not possible, and remains a topic of future work.

6. Summary

A key step in framing the Kalman filter problem is the accurate statistical
description of the system dynamics not fully described by the estimator model. The
present paper has shown that, by determining the appropriate second-order statistical
information in a full nonlinear DNS of the channel flow system, then incorporating
this statistical information in the computation of the linear estimator feedback gains,
an effective estimator may be built based on all three measurements available at the
wall. For a given feedback amplitude, this estimator provides a better correlation
between the real turbulent flow and the estimate thereof than the corresponding
estimators considered for this problem in previous work. Significant improvements
are obtained, as compared with estimators based on spatially uncorrelated stochastic
models, in terms of both the maximum correlation near the wall and how far
into the channel an adequate correlation extends. Also, the estimation gains may
be transformed to physical space to obtain well-resolved convolution kernels that
eventually decay exponentially with distance from the origin, thereby, ultimately,
facilitating decentralized implementation.

In Part 1, the estimation of a perturbed laminar flow was investigated, and it was
shown that an artificial, but physically reasonable, Gaussian distribution model for the
spectral density function was adequate to obtain effective, well-behaved estimation
feedback kernels for the problem of estimating the perturbed laminar flow. That
result, together with the result from the present study for the problem of estimating
turbulence, indicate that the choice of the disturbance model is quite significant in
the effectiveness of the resulting estimator. Note that it has also been observed that
a highly accurate statistical model is not essential in obtaining effective estimator
performance.
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FIGURE 13. Wall-normal velocity component v plotted at y© = 9.7 at an instant in time when
statistically steady state has been reached in the estimator: (a) the flow velocity itself; (b) the
velocity field reproduced by the extended Kalman filter; (¢) the velocity field reproduced by
the Kalman filter. The contour levels range from —1 to 1, where black and white represent the
lower and upper bound respectively.

As expected, the (nonlinear) extended Kalman filter was found to outperform a
(linear) Kalman filter on this nonlinear estimation problem. The estimated state in
the Kalman filter deteriorates more rapidly with the distance from the wall. The
extended Kalman filter captures better the structures farther into the domain, both
in magnitude and phase. In terms of both correlation and estimation error, we also
observed an approximate correspondence of the performance of the present extended
Kalman filter with the adjoint-based estimation procedure reported in Bewley &
Protas (2004). The adjoint-based approach is vastly more expensive computationally,
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and, at least in theory, can account for the nonlinear dynamics of the system more
accurately, so this correspondence reflects favourably on the performance of the
present extended Kalman filter. .

The admittedly artificial assumption of the external disturbance forcing f being
‘white’ in time may be relaxed in future work, ‘colouring’ the noise with the time
dynamics of 71, by performing a spectral factorization and augmenting the estimator
model to account for the dominant time dynamics in f. This approach, while in theory
tractable for this problem, involves estimators of substantially higher dimension than
the present one (which is already large), and might facilitate substantial performance
improvements. Development of this approach is thus deferred for the time being as a
promising area for future work on this problem.

The authors sincerely acknowledge the funding provided by the Swedish research
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