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This paper develops efficient techniques for calculating gradient information which may
be used to optimize the placement of sensors & actuators of a given precision for the ef-
fective estimation and control of high-dimensional discretizations of infinite-dimensional
linear time-invariant (LTI) systems. The necessary gradients are determined in this set-
ting via adjoint analyses which quantify the effects of small variations of the observa-
tion and control operators. The approach can be modified appropriately to fit a variety
of specific objectives within the Linear Quadratic Gaussian (LQG) estimation/control
framework. Unlike other work in this area, we work directly with the covariance of the
estimation error P, rather than working with the Fischer information matrix M, which is,
in a sense, a best-case estimate of P~! that neglects the impact of the state disturbances
on the evolution of the state estimation error. The method is tested by optimizing the
placement of two sensors and two actuators in a 1D complex Ginzburg-Landau system.

1. Introduction

Sensor and actuator placement techniques for state estimation and control problems
have broad applications in environmental studies, finance, and engineering. Significant
applications include: actuator placement in vibration control of flexible structures (Hi-
ramoto et al. 2000), sensor placement in environmental applications (Majumdar et al.
2002), explosion detection and contaminant plume tracking (Zhang et al. 2011), and esti-
mation/control of chemical production/mixing procedures (Alonso et al. 2004). Although
it is clear that the fidelity of the estimator in such problems is strongly dependent on
the sensor locations chosen in addition to the sensor precisions used, there has been sur-
prisingly little work on the development of rigorous, model-based, numerically-tractable
algorithms for optimizing sensor placement in such high-dimensional systems.

In low-dimensional systems, this class of problems may be addressed effectively using
the linear matrix inequality (LMI) formulation of Li et al. (2009). This approach does
not actually address the placement of sensors and actuators of fixed precision, but rather
assigns a cost associated with the precision of the sensors and actuators used (in preas-
signed locations), then optimizes these precisions in order to minimize this cost. By so
doing, the problem is made convex. One can thus formulate and solve a problem that be-
gins with a large number of sensors and actuators of undetermined precisions in candidate
positions, then perform an LMI-based optimization of the precisions of the sensors and
actuators used to minimize the cost. One can then, in an ad hoc fashion, eliminate those
sensors and actuators with the smallest impact on the problem at hand, and reoptimize
the precisions of the sensors and actuators that remain. The scaling of the complexity of
this formulation with dimension of the system under consideration is poor; the present
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gradient-based formulation might thus prove to be superior for the optimization of the
placement of sensors & actuators of a given precision in high-dimensional discretizations
of infinite-dimensional systems.

The majority of existing model-based sensor placement approaches considered in the
literature are based on minimizing various measures of the Fisher information matrix,
which is particularly convenient when considering problems of this sort (for an introduc-
tion, see, e.g., Cover & Thomas 2006, p. 392). In short, if a random variable x depends
on an unknown parameter 6, then the Fisher information is a characterization of the
“information” provided about 6 via samples of . In particular, if the probability density
function (PDF) of the random variable = depends only weakly on , then the derivative
of the conditional PDF p(z;6) with respect to § will be relatively small over all possible
values of z, whereas if this dependence is strong, this derivative will, at least for some x,
be large. Normalizing this derivative by the value of the conditional PDF itself, we define
the score v(x,0) as the sensitivity of the conditional PDF with respect to variation of 6
for given values of x and 6; that is,

Gp(z:0) 0

v(z,0) = ) %lnp(x;H).

Note that the expected value of the score v(z, ) over all possible values of x is zero:

E{v(z,0)} = /

— 00

v(z, 0) p(x;0) de = / —p(z;0)dx = —/ p(z;0)dx = 0.
oo 00
—_———
=1
It is thus the variance of the score v(x,0) that is useful in characterizing the overall
magnitude of the sensitivity of the conditional PDF with respect to variation of #; the
Fisher information M () is thus defined in this (scalar) case as the variance of the score:

MO) = E{lo(e.0F) = [ lole. 00 p(a:0) da

Extension of this concept to vectors of random variables x and vectors of unknown
parameters 0 is straightforward, and leads immediately to the Fisher information matriz
(FIM) M(0) via the appropriate outer product:

M(6) = E{[v(x,0)]"[v(x,0)]} = /[V(X79)]H[V(X79)]p(x;9) dx,

where v(x,0) = ZInp(x;0) is considered to be a row vector and []? denotes the
conjugate transpose.

The inverse of the Fisher information matrix provides a lower bound of the estimation
error covariance matrix P of the Kalman filter via the Cramér-Rao inequality

P>M1 (1.1)

derivation of this important bound is given in Goodwin & Payne 1977, Theorem 1.3.1.
As mentioned previously, scalar measures of the Fisher information matrix are typically
considered when optimizing sensor locations. Three common such measures are
e A-optimality (trace):
Ja(M) = trace(M™1), (1.2a)

o D-optimality (determinant):
Jp(M) = —Indet(M), (1.2b)
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e E-optimality (max eigenvalue):
Je(M) = X\pae (M1, (1.2¢)

Ucinski (2005) reviews these cost functions and summarizes the impact of this choice
on the overall optimization problem: “A D-optimum design minimizes the volume of the
uncertainty ellipsoid for the estimates. An E-optimum design minimizes the length of the
largest axis of the same ellipsoid. An A-optimum design suppresses the average variance
of the estimates.”

Work on the sensor placement problem has focused heavily on the three cost functions
listed above. For example, Faulds & King (2000) considered A-optimality measures of
the FIM to analyze (but not optimize) a model-free method for placing sensors in the
domain of the 2D heat equation using Centroidal Voronoi Tesselations (CVT). Simi-
larly, Martinez & Bullo (2006) found methods for minimizing D-optimality measures of
the FIM in target tracking problems. These two formulations are particularly attrac-
tive because they can be solved in a distributed framework (Cortes et al. 2004; Bullo &
Cortes 2004; Kwok & Martinez 2010). However attractive these distributed formulations
are, computational experiments in 2D Navier-Stokes systems (Zhang et al. 2011) indi-
cate that centralized formulations which optimize sensor vehicle trajectories specifically
targeting regions of high estimation uncertainty in a model predictive control setting
generally provide superior estimator performance than CVT-based formulations. Porat
& Nehorai (1996) propose a source-seeking estimation/tracking algorithm based on A-
optimality measures of the FIM which seek to optimize sensor locations for estimating
a contaminant source location via a relatively inefficient global search over feasible fu-
ture measurement locations. Because this method scales poorly with problem size, they
augment the algorithm by calculating gradients of the FIM at select locations within the
feasible set for each sensor; the authors propose this optimization in a receding horizon
setting, where measurement locations eventually converge to stationary points in the do-
main. In the robust setting, Flaherty et al. (2006) use E-optimality measures of the FIM
to estimate parameter values in models of biological systems.

Although optimization of sensor locations via consideration of the FIM is convenient, it
is somewhat unfortunate that Cramér-Rao only relates the FIM to a lower bound on the
quantity of interest (that is, the covariance of the estimation error); though it is evident
that the covariance of the estimation error and the inverse of FIM are somehow related,
optimizing the sensor locations based on the FIM in fact provides no gaurantees (upper
bounds) on the resulting covariance of the estimation error. In fact, the covariance of
the estimation error of the Kalman Filter only approaches the lower bound provided by
the FIM in the limit that the state disturbances of the system model are made small.
To illustrate this, Taylor (1979) puts the Kalman Filter for continuous time systems
with discrete time measurements in context with the FIM and the Cramér-Rao bound.
Assuming a continuous-time state transition matrix satisfying the differential equation

A®(t,to)
—a O — A(H)®(t, to), (1.3a)

defining ®j11 1 = ®(t41,tx), and taking the initial condition ®(t,t) = I, Taylor (1979)
showed that the FIM for the discrete-time Kalman Filter can be written in the form

M(tx) = @ 7 M(ty—1)®,;_, + HIVT'H. (1.4)
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Comparing this result with the propagation of the discrete-time information filtert,
_ -1 _
Pkl}c = (®rp-1Pr_1jp—1Prp_ + W)  +HIVT'H, (1.5)

where W is the covariance of the state disturbances added to the state evolution equation,
it is clear that, in the limit in which the state evolution is deterministic (W — 0), the
covariance of the state estimation error approaches the lower bound predicted by the
Cramer-Rao inequality.

Adjoint-based variational methods provide a powerful and broadly extensible frame-
work for optimization problems of this sort, and scale well to high-dimensional discretiza-
tions of infinite-dimensional systems. Via successive linearization, they can also be used
to optimize problems outside of the somewhat restrictive linear/quadratic setting. Note
that adjoint-based optimizations have been applied broadly for shape design in aerody-
namic systems (Jameson et al. 1998; Giles & Pierce 2000), adaptive grid refinement for
error reduction in CFD simulations (Giles 1998), and a host of other practical applica-
tions. However, such methods have not yet been extended to optimize sensor distributions
in fluid systems; the present work seeks to fill this void. Furthermore, only a few inves-
tigations have used adjoint methods to evaluate the sensitivity of solutions to Riccati
equations. Specifically, De Farias et al. (2001, Appendix A) propose a strategy similar
to that used here for extracting gradients while performing optimizations of LMIs, and
Kenney & Hewer (1990) examined how solutions to Riccati equations change as a result
of modeling errors in the actuation/measurement covariance matrix.

The remainder of this paper develops various adjoint-based methods for minimizing
relavent scalar measures in the control and estimation problems: §2 presents this analysis
for continuous-time systems, §3 performs the equivalent discrete-time analysis, and §4
presents an application of the continuous-time theory to the 1D complex Ginzburg-
Landau equation.

2. Continuous-time Analyses

Consider a continuous-time Linear Time Invariant (LTI) system described by

((1;; = Ax + B(gqa)u+w, (2.1a)
y = C(gs)x + v, (2.1b)

wherei x(t) € C" is the state, u(t) € C* is the control, y(t) € C™ is the measure-
ment, w(t) € C™ is the state disturbance, v(t) € C™ is the measurement noise, qa(t)
parameterizes the actuator positions, and qs(t) parameterizes the sensor positions. For
simplicity below, we make the standard modeling assumptions that w(t) and v(t) are
uncorrelated, zero-mean, white continuous-time random processes with spectral densities
W > 0 and V > 0 respectively. The (bounded) functional dependence of the operators
B and C on the actuator and sensor positions q, and qs is emphasized explicitly above,
but is suppressed below for notational clarity. In the discussion below, we first treat the
optimization of the sensor positions qs, then the optimization of the actuator positions
da; the development of the gradient information necessary to optimize both actuator and
sensor positions simultaneously follows similarly, and is discussed further in §2.3.

1 The information filter is not to be confused with the FIM. The information filter is the
propagation and update of the information matrix, which is defined as the inverse of the Kalman
Filter covariance P; see, Anderson & Moore (1979).

1 For generality, our formulations are developed in §2 and §3 and tested in §4 on complex
systems; it is trivial to restrict these formulations to the (more typical) setting of real systems.
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2.1. Computing a gradient with respect to the sensor positions

Via standard (continuous-time) Kalman-Bucy filter theory, the best linear unbiased es-
timate X(t) of the system (2.1) is given by

dx(t)

5 = (A — LCO)x(t) + Bu(t) + L(t)y(t), L(t) = P(t)CVv, (2.2)

where the covariance P(t) = E{x(t)x" (t)} > 0 of the estimation error x(t) = x(t) — x(t)
evolves forward in time from given initial conditions P(0) according to the differential
Riccati equation (DRE)

%it) =AP(t)+Pt) AT + W - L) VLI (2). (2.3)
This evolution equation for P(¢) reveals that, as the estimator (2.2) evolves in time, the
estimation error covariance P(t) is driven larger by the unmodelled state disturbances
w(t) in the system (2.1), and is driven smaller by the feedback term L(¢)y(¢) in the
estimator (2.2). Given that the DRE (2.3) marches to a finite value at t =T as T — o0
[that is, that the system (2.1) is detectable], the infinite-horizon solution of the DRE (2.3)
may be computed directly by setting dP/d¢ = 0, thus transforming the DRE (2.3) into
the continuous-time algebraic Riccati equation (CARE)

0=AP+PAY tW-LVL?, L=PCfVvl (2.4a)

Closed-form solutions to a CARE such as (2.4a) are generally unavailable, and thus
iterative methods based on the Schur decomposition of a 2n x 2n Hamiltonian matrix
are typically used to solve them (Kailath 1980).

The matrices A, W, and V in this LTI formulation are assumed to be given. The
remaining matrix which affects P in (2.4a) is C, which is, in turn, a function of the sensor
positions qs. Thus, an optimization problem may be posed to minimize some measure of
P in the infinite-horizon problem (2.4a) with respect to the (stationary) sensor locations
gs- In particular, we will seek the optimal qs which minimizes the cost

J(qs) = trace(P); (2.4b)

alternative formulations based on different measures of P are considered in §2.3.

The gradient-based optimization problem we develop here focuses on the selection of
ds to minimize the cost J(qs) in (2.4b), where J is related to gs via solution of the CARE
(2.4a). We first select an initial gs essentially arbitrarily, subject only to the technical
condition that (2.1) be detectable. Local gradients of the cost J with respect to the sensor
positions gg are then iteratively optimized via a standard gradient-based minimization
algorithm. The algebraically difficult step of this formulation is the efficient computation
of the gradient V_J.

A simple approach to computing the necessary gradient in this problem might be to
apply a finite difference method or the (more accurate) complex-step derivative method
to each component of each of the m sensor locations individually, solve a perturbation
problem for each, then synthesize the results to assemble the gradient (see, e.g., Chen
& Rowley 2010). An accurate and significantly more computationally efficient approach
to compute the gradient is to instead perform a single adjoint computation, as discussed
in detail below.

Starting from an initial set of sensor locations qs and the corresponding observation
matrix C, associated CARE solution P, and cost J, consider the following Taylor series
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expansion of (2.4b) about qs:
J(as +dl) = J(as) + (Vo )" @l + ... = J(gs) + T (as, d) + ... (2.5)

The constraint given in (2.4a) implies that a small perturbation of qs yields a small
perturbation of J; this expansion can also be written explicitly as a function of P’:

J(as + q) = trace(P + P’) = trace(P) + trace(P’) = J'(qs,q’) = trace(P’). (2.6)
The corresponding equations for the perturbation matrix P’ are

AP + P'AY — p'CHLY — LCP = P(C)Y LY +LC'P (2.7a)

H
= (1) o

In general, the matrix C’ is a contraction of the rank-3 tensor dC/dqs with a vector
of sensor perturbations q.. For notational convenience, (2.7a) is written as two linear
operations U(P’) and V(C’) such that

U(P") =V(C) (2.7b)

where

where
U(P') = AP’ + P'AY — P'CHLY — LCP,
V(C') = P(C) L7 +LC'P.
Comparing the right-hand-sides of (2.5) and (2.6) reveals that
(Voo /)™ o, = trace(P’). (2.8)

The relationship between P’ and ¢, can thus be used to compute the gradient. To proceed,
define an appropriate matrix inner-productf

(X, Z) = R[trace(X" Z)] (2.9)

(where R[] and 3[] denote the real and imaginary imaginary part, respectively) along
with a matrix adjoint variable S and an adjoint operator U*(-) defined such that

(S,U(P")) = (U*(S),P") (2.10)
= U*(S)=A"S+SA-SLC-C LS = (A-LC)”S +S(A - LC).

Recognizing that the perturbation to the cost function (2.4b) may be expressed using
(2.9), it follows from (2.7b) and (2.10) that, if U*(S) = I, then the first-order perturbation
to the cost is exactly

J'(as,q") = trace(P") = (I P’) =(U*S),P")=(S,U(P"))=(S,V(C"))

e (i)
= trace( [ } qs’]> —trace( [QPSL dc} %[qs’]> . (211)

Thus, the gradient of the cost function (2.4b) with respect to the i’th element of the

T Note that, if all matrices are real, (2.9) and (2.11) simplify, and the conjugate operation
may be dropped from (2.12a).



Gradient-based optimization of sensor & actuator placement in LTI systems 7

sensor positions vector ¢ can be extracted:

dC
VgiJ = trace <2PSL ,), (2.12a)
’ dg;
where the overbar denotes the complex conjugate, and where S satisfies the associated

continuous-time algebraic Lyapunov equation (CALE)
(A-LC)”S+S(A-LC)=1. (2.12b)
2.2. Computing a gradient with respect to the actuator positions

Following an analogous approach as that developed above for the sensor placement
problem, we now consider the corresponding actuator placement problem. Standard
continuous-time optimal control theory applied to the linear system (2.1) establishes
that the cost function

e 1
=3 / M (0)Qx(0) + ! (Ru(t)] de + X (1)Qrx(T) (2.13)
0
is minimized by the full-state feedback control policy
u(t) = —K(t)x(t), K(t) =R 'BAY(1), (2.14)

where the “cost-to-go” matrix Y(¢) > 0 evolves backward in time from the terminal
condition Y(T') = Qr according to the DRE [cf. (2.3)]

—%it) =A"Y(®)+Y(t)A+ Q- KI(t) RK(2). (2.15)
We identify Y(t) as a “cost-to-go” matrix because it can be shown that
J(r) = % / "k (0Qx(t) + uf (ORu(t)] de + %XH (T)Qrx(T)
_ %XH(T)Y(T)X(T). (2.16)

Given that the DRE (2.15) marches to a finite value at t = 0 as T — oo [that is, that
the system (2.1) is stabilizable], the infinite-horizon solution of the DRE (2.15) may be
computed directly by setting dY/dt = 0, thus transforming the DRE (2.15) into the
CARE |[cf. (2.4a)]

0=A"Y +YA+Q-KRK, K=R'B”Y. (2.17a)

The matrices A, Q, and R in this LTI formulation are assumed to be given. The
remaining matrix which affects Y in (2.17a) is B, which is, in turn, a function of the
actuator positions q,. Note that (2.16) evalutated at 7 = 0 in the infinite-horizon limit
T — oo implies that the original cost metric in (2.13) is minimized when the eigenvalues
of the symmetric matrix Y are minimized. Towards this end, the following cost function
may be proposed [cf. (2.4b)]

min J = trace(Y). (2.17b)

da

The actuator positions q, can now be iteratively optimized following an essentially
identical analysis to that presented in §2.1. The resulting expression for the gradient
[cf. (2.12a)] is

dB
Vi J = trace <2KTY a7 ), (2.18a)

a

where the matrix adjoint T satisfies the associated CALE [cf. (2.12b)]
I

(A -BK)T+T(A-BK)" = (2.18b)
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2.3. Discussion

As mentioned previously, the gradient-based optimizations discussed in §2.1 and §2.2
first select initial sensor and actuator positions essentially arbitrarily, subject only to
the technical conditions that (2.1) be detectable and stabilizablef. Local gradients of a
relevant cost J with respect to the sensor and actuator positions are then successively
calculated and used to efficiently (but locally) optimize the sensor and actuator locations
via a standard minimization algorithm such as steepest descent or the nonquadratic
conjugate gradient method. The algebraically difficult step is the efficient computation of
the necessary gradients, which has been shown in both cases to arise in a straightforward
fashion from the standard CARE for the estimation or control problem, together with
an associated CALE to compute an adjoint matrix upon which the required gradient is
based.

From the analyses performed in §2.1 and §2.2, it is clear that the RHS forcing in (2.12b)
and (2.18b) is determined solely by the definition of the cost function. Alternative cost
functions can also easily be considered, such as those appearing in (1.2a)-(1.2c) with the
estimation error covariance P, which the quantitiy of interest here, replacing the inverse
of the FIM. Taking Ay > Ay > ... > A\, > 0 as the eigenvalues of P, a summary outlining
the key results is sufficient to clarifyi:

e A-optimality (trace):

Ja =trace(P) =\ +...+ A\,

= J) = trace(P’) = (I,P’)

= U*S)=L (2.19a)
e D-optimality (determinant):

Jp = —Indet(P~!) = Indet(P)

= Jj =trace(P"'P") = (P71 P)

= U*S)=P L (2.19b)
e E-optimality (max eigenvalue, A1, with corresponding eigenvector ry)
Jg =M (P)
= Jp = trace(r;ri’P') = (rird P)
= U*S)=rri. (2.19¢)

Another metric of interest is the square of the Frobenius norm of P:

Tr = [PI = trace(PP) = 3" 3 [y = A2 ...+ A2
g

= Jp = trace(2PP’) = (2P, P’)

. U*(S) = 2P (2.19d)

It has been shown that the adjoint method of computing the gradient in this class of
problems is readily extensible to a broad range of different cost functions, with the only
difference between the various cases being the RHS forcing of the associated adjoint.

t Lauga & Bewley (2003) showed that detectability and stabilizability are lost gradually in
systems of this short when the sensors and actuators are moved outside of the physical domain
of interest (that is, where the significant dynamics of the open-loop PDE system take place),
which can lead to numerical problems when using finite-precision arithmetic. It is thus advisable
to chose reasonable initial placements of the sensors and actuators, well within the regions of
significant dynamics of the open-loop system.

i Matrix identities from Petersen & Pedersen (2008) and Horn & Johnson (1990) are used in
the analyses leading to (2.19b) and (2.19c¢), respectively.
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The perhaps most notable extension to consider is the cost function associated with
the Ho control problem. This problem is well known and has been studied extensively
(see, e.g., Kwakernaak & Sivan (1972), Zhou & Doyle (1998), and Hassibi et al. (1999)).
We proceed by appending the state equation with an additional output z identifying the
states of interest in the control problem

C(ii—); = Ax + B(qa)u+ Byw, (2.20a)
y = Clax+v, (2.20b)
z = Cix. (2.20c)

Following the Hy approach, an estimate X of the state x is first developed, based on the
measurements y, as discussed in §2.1, then a full state feedback controller u = —Kx is
developed, as discussed in §2.2. These two components are then connected by making
the control feedback depend on the state estimate, u = —KX, rather than the state itself.
Consolidating the disturbance vector d = [w;v] for the purpose of analysis, a new cost
function can be written to characterize the Hs-norm of the closed-loop transfer function:

Jr, = ||Toal|3 = trace(C;PCH) + trace(V'CPYPCH), (2.21a)
= trace(B'YB,) + trace(R"'BYYPYB), (2.21Db)

where P and Y are the solutions to the CAREs (2.4a) and (2.17a), respectively. [As briefly
mentioned above, this sensor/actuator placement problem was addressed by Chen &
Rowley (2010), but will be reconsidered here since the gradient calculation is different.]
By averaging (2.21a) and (2.21b) and then performing perturbation analysis on the
averaged equations, the perturbation of Jy, can be written

Jj,, = trace (PYPCYV™'C') + trace (R™'B”YPYB')
+ %trace ([cfc, +cvicPY + YPCYV~'C + YBR™'B"Y|P)
+ %trace ([B1BY + BR"'B”YP + PYBR 'B” + PC*V~'CP]Y’)
= ([pypciv-11".c’) + ([R'B7YPY]" B')
+ %< [cic, + c#v-'CPY + YPCHV-'C + YBR'BYY]", P’>

1

T3

<[BlB{’ + BR™'BYYP + PYBR™ !B + Pch—1CP}H,Y’> (2.22)
Thus, via a slight change of the RHS forcing of the adjoint CALEs (2.12b) and (2.18b),

(A -LC)#S +S(A - LC) = C’c, + YBR!BYY
+ CHVTICPY + YPCHV™IC, (2.23)

(A —BK)T + T(A -BK)? =B,BY + PCHV~ICP
+BR'B¥YP + PYBR'B, (2.24)
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the gradient can be reéxpressed as a function of both the sensor and actuator positions

Vgid = trace(P(Y + S)L;c ), (2.25)
dB

3. Discrete-Time Analyses

We now present the discrete-time analogs of the derivations given in §2 in the continuous-
time case, as there are some subtle differences. Consider a discrete-time linear system
described by

X1 = Fxp + G(qa)uy + wy, (3.1a)
v = H(as)xk + vi, (3.1b)

where x;, € C*, u;, € C¢, y, € C™, wy, € C*, vi, € C™ are the discrete-time equivalents
of the corresponding quantities in (2.1). Similarly, q. and qs parametrize the locations
of sensors and actuators at each timestep k. We again make the standard modeling
assumptions that w and vy are uncorrelated, zero-mean, white continuous-time random
processes with covariance W > 0 and V > 0 respectively. The (bounded) functional
dependence of the operators G and H on the actuator and sensor positions q, and qg is
again emphasized explicitly above, but is suppressed below for notational clarity.

3.1. Computing a gradient with respect to the sensor positions

Via standard (discrete-time) Kalman filter theory, the best linear unbiased estimate of
the system (3.1) is given by a two-step update [cf. (2.2)]

time update: Xpti1lk = FXppp + Guy, 3.2a)
measurement update: Xt 1lk+1 = X1k + Ler1 (Va1 — HX g1 pz), (3.2b)
where
Ly =P HA (HP HP v)~! 3.2
k+1 = PrpapHY (HP )  HY + V)70 (3.2¢)

The discrete-time estimation error covariance obeys a similar two-step update known as
the Riccati difference equation (RDE) [cf. (2.3)]

time update: Piiir = FPk‘kFH + W, (3.3a)
measurement update: Pitijpsr = (1 = Lt H)Prg g (3.3b)

Using this standard notation for the discrete-time estimation setting, the notation Xj;
denotes the maximum likelihood estimate of x at time t; given all measurements up to
and including time ¢;, and P, = denotes the covariance corresponding to this estimate.
In particular, x, ., and P, are often called the prior estimate and prior covariance,
whereas x, |, and P, are often called the posterior estimate and posterior covariance.
As in §2.1, we now consider the minimization of the trace of the infinite-horizon co-
variance matrix. Because the discrete-time Kalman filter is characterized as a two-step
process, there are two possible choices to make as to whether the covariance should be
minimized before or after the measurement update, as shown below. Both formulations
are presented; which is more appropriate to use in practice is application dependant.
The infinite-horizon prior covariance of (3.3) is computed by substituting (3.3b) into

(3.3a) and applying (3.2c), then defining P_ = Py, = Pjr—1, thus transforming the
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RDE (3.3) into the prior form of the discrete-time algebraic Riccati equation (DARE)
[cf. (2.4a)]

P_.=FP_Ff + W _—FP_HY(HP_HY + v)"'HP_F4 (3.4a)

Alternatively, the infinite-horizon posterior covariance of (3.3) is computed by substi-
tuting (3.3a) into (3.3b) and (3.2c) and combining, then defining Py = Py 4,41 = Py
and applying the Matrix-Inversion Lemma

(D-CA'B)y'=D'4+D!'C(A-BD!C)"'BD !,
thus transforming the RDE (3.3) into the posterior form of the DARE
P! = (FP.F7 + W)"' + HAV 'H. (3.4b)

The matrices F, W, and V in this LTI formulation are assumed to be given. The
remaining matrix which affects P_ in (3.4a), and Py in (3.4b), is H, which is a function
of the sensor positions qs. Thus, an optimization problem may be posed to minimize
some measure of P_, or P, with respect to the (stationary) sensor locations qs.

3.1.1. Prior covariance optimization
We first seek the optimal qs which minimizes the cost [cf. (2.4b)]
J_ = trace(P_), (3.5)
subject to (3.4a). The associated first-order perturbations are
J. =trace(P_) = (I,P_),
P_ =F(1—LH)P_ (1 - LH)"F"
+FL(H'P_H? + HP_(H)")LYF? —FP_(H)YLAF" — FLH'P_F”

dH\“
H = .
<qu> 4

The above relations are derived in a manner analogous to the continuous-time case.
Note that the perturbation of (HP_H# + V)~! is determined leveraging the identity
(@71) = —d~1d’'d~! (see Petersen & Pedersen (2008)), thus leading to

(HP_H" V)Y = (HP_H" V)" (H'P_HY +HP_H” +HP_(H")")(HP_H" 1Vv)~".

Defining an adjoint matrix S_ and the inner product (2.9) and performing the necessary
rearrangements in a manner analogous to the continuous-time case, one ultimately arrives
at the gradient of J_,

dH
VgiJ- = trace <2P(I - LH)HFHS,Fqui )7 (3.6a)

s
where S_ satisfies the associated discrete-time algebraic Lyapunov equation (DALE)
(1= LH)"FYS_F(1-LH) —S_ =1. (3.6b)
3.1.2. Posterior covariance optimization
We now seek the optimal gs which minimizes the cost [cf. (2.4b)]
J4 = trace(Py), (3.7)
subject to (3.4b). The associated first-order perturbations in this case are

—P'P, Pt = —(FPLF¥ + W) 'FP FZ(FP.F + W)~! + (HF)'V'H + HIVIH'.
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Using a similar procedure as before, one ultimately arrives at the graident of J,,

H
Veidy = trace<25+HHV 13 Z), (3.8a)

where S satisfies the DALE
P F*(FP F” + W)~ 'S (FPLF” + W)"'FP, — S, = P3, (3.8b)

The gradients in (3.6a) and (3.8a) are slightly different, because the cost functions
they minimize are different. Noting (3.3a), it is evident that

J_ = trace(P_) = trace(FP,F¥) 4 trace(W),

whereas J; = trace(P, ). The gradients and optimal solutions of these two formulations
thus coincide only if FEF = I.

3.2. Computing a gradient with respect to the actuator positions

In a final analysis analogous to those of the previous sections, we now consider the
corresponding discrete-time actuator placement problem. Standard discrete-time optimal
control theory applied to the linear system (3.1) establishes that the cost function

1
=3 Z x4 Qxj, + uf Ruy] + 2XNQNXN (3.9)
k=1
is minimized by the full-state feedback control policy
we = —Kixp, K= (R+G"Y,,G) " GY,,F, (3.10)

where the matrix Y, > 0 evolves backward in time from the terminal condition Yy = Qun
according to the RDE [cf. (2.3)]

Yi = F7Y, F— F7Y, G (R+G"Y,,G) " GY, ,F7 + Q. (3.11)

Similar to the continuous-time case, we identify Y as the “cost-to-go” matrix because
it can be shown [cf. (2.16)] that

N—-1
1 1
J(K‘/) = 5 [XkHQXk + ukHRuk] + §X%QNXN (312)
k=kr
1 H
~ Ly, (3.13)

Given that the RDE (3.11) marches to a finite value at k = 0 as N — oo [that is, that
the system (3.1) is stabilizable], the infinite-horizon solution may be computed directly
by setting Y = Y = Yj41, thus transforming the RDE (3.11) into a DARE [cf. (2.4a)]

Y = FYYF - FPYG(R + G"YG)'G”YF + Q. (3.14a)

As in §2.2, for K = 0 in the infinite-horizon limit N — oo, the cost matrix (3.9) is
minimized when the eigenvalues of Y are minimized. With this in mind, the following
cost function may be considered [cf. (2.4b)]

min J = trace(Y). (3.14b)

da

The steps for gradient calculation via perturbation analysis are essentially identical to
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those presented previously. The resulting expression for the gradient [cf. 2.12a] is

Vg J = trace (ZKT(F - GK)HY;ich) (3.15a)

a

where the matrix adjoint T must satisfy the associated DALE [cf. 2.12Db]
(F-GK)T(F-GK)? —T=1. (3.15b)

4. Application to the complex Ginzburg-Landau equation

The 1D complex Ginzburg-Landau (CGL) system (Chomaz et al. 1987; Roussopoulos
& Monkewitz 1996) shares some interesting dynamic features of 3D Navier-Stokes (NS)
systems. Notable similarities include transient energy growth (due to non-normality of
the system eigenvectors) and extensively-studied stability characteristics (including well-
identified thresholds between stability, convective instability, and global instability). For
this reason, and its relative computational simplicity, CGL systems are a useful 1D PDE
testbed for estimation and control strategies being developed for ultimate application in
3D NS systems.

The linear CGL equation for a flow perturbation variable ¢(£,t) may be written

0 0 0?
£=<—U%+M(f)+7{%2>¢ (4.1)
where U, u(€), v are complex coefficients which parameterize the advection, amplification,
and diffusion properties of the flow, respectively, and £ denotes the streamwise coordinate
of the system. This flexible parameterization has been tuned to match a variety of physical
phenomena; for example, Roussopoulos & Monkewitz (1996) tuned the parameters to
model vortex shedding behind a circular cylinder. A recent review of the CGL model by
Bagheri et al. (2009) surveys several such studies of this system.

In the results presented below, the parameters were selected to coincide with the
convectively unstable case mentioned by Bagheri et al. (2009), with U = 2+ 0.27, u(§) =
0.38 — 0.01€2/2, v = 1 — 4. The resulting variable-coefficient PDE has a locally unstable
domain with p(€) > 0 for all £ € (—8.72,8.72).

Bagheri et al. (2009) also provide a convenient codebase for discretization and simula-
tion of the CGL equation using a collocation approach based on a Hermite polynomial
expansion. Following this approach, the state ¢(£,t) in (4.1) is considered as a linear
combination of n orthogonal polynomialst defined on & € (—o0, 00),

L, _ i (e—€°
HED Y GO where  Hy(9) = (-1 e o),
j=1
The perturbation variable ¢(&,t) may now be discretized on a set of n collocation points
&, for j =1,...,n, and assembled as a state vector x, where the n collocation points are
selected as roots of H,(£). With this discretization, the transformation given above, and
the relationships between the derivatives of the Hermite polynomials H,, (&), it is straight-
forward to write the discretized system (4.1) in collocation form with the appropriate

t Note that the Hermite polynomials are orthogonal on £ € (—o0,00) using the weighting
function w(§) = e <.
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forcing and measurement variables added:

887): = Ax + Bu + Bw, (4.2)
y=Cx+v, (4.3)

where the matrix A approximates the spatially-varying linear operator on the RHS of
(4.1), B models the effect of the control inputs u on the system near the actuators
located at ¢ = ¢J for j = 1,...,n,, and C models the measurements y of the system
taken from the sensors located at £ = ¢J for j = 1,...,n,. The random vectors w and
v are independent and normally distributed with covariances W and V respectively.
The matrix B models the effect of the disturbance inputs w applied to the system near
¢ =g for j =1,...,ng; note that it is straightforward to cast this system in the standard
continuous-times state-space form given in (2.1) by considering a new disturbance vector
w with covariance W = BWB.

In the results presented below, we actuate the system with n, = 1 or 2 actuators (at
locations ¢/ that we will optimize), we sense the system with ny = 1 or 2 sensors (at
locations ¢/ that we will optimize), and we disrupt the system with ny = 1 disturbance (at
q(}l = —11.0); the corresponding matrices are all chosen to approximate narrow Gaussians
in space:

[Blij = exp(—(q) — &)?/207),
[Cli,; = miexp(—(q] — &)?/207),
[Bli1 = exp(—(qy — &)?/207),

where the width of the Gaussians used in the simulations reported below is 0% = 1/2,
and where a trapezoidal integration weighting factor m; is used in the definition of C,

(62— &1)/2 i=1
m; =9 (i1 —&-1)/2 1<i<n,

fn _gnfl t=mn,

so that the sum of the elements on any row of C approximates the integral of the cor-
responding Gaussian, independent of the sensor locations ¢J. By selecting a parameteri-
zation of this sort, the input and output operators represent sensors and actuators of a
given sensitivity, it is only their locations that change when ¢/ and ¢ are modified.

Before analyzing the influence of measurements and control on the statistics of the
estimation error and the statistics of the disturbed system, it is important to consider first
the statistics of the disturbed CGL system itself. Figure 1 thus depicts the modulus of the
covariance of the state itself, as given by the solution to the infinite-horizon Lyapunov
equation [that is, (2.3) with L = 0], when the CGL system (4.1) is forced with the
disturbances w, but no measurements are used for state estimation. As expected, it is
seen in these statistics that disruptions of the state tend to grow as they convect through
the locally unstable region of the domain and then decay after that; thus, the peak in
these statistics is on the diagonal near £ = 8.72.

4.1. Optimal sensor placement in the estimation problem

Finding the optimal placement of a single sensor ¢! € (—o0,0) is a relatively straight-
forward task that may be achieved with a simple line search. The problem becomes
more interesting when considering the simultaneous placement of two or more sensors
with ¢¢ € (—00,00), as the dimension of the optimization space is increased and thus a
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FIGURE 1. The modulus of the covariance of the state itself in the disturbed CGL system [that
is, E{x(t)x™(t)}; see also Bagheri et al. (2009), Figure 16]. Note that this coincides with the
covariance P = E{x(t)%" (t)} of the state estimation error when no measurement information is
used. The red star indicates the location of the disturbance forcing, ¢i, = —11.0, and the dashed
box indicates the region of local instability, p(£) > 0.
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FIGURE 2. The modulus of the covariance of the state estimation error, P = E{%(t)%* (¢)}, for
two different placements of a pair of sensors (blue dots). Figure 2(a) uses a heuristic sequential
method of placing the sensors (see text), thereby reducing the covariance depicted in Fig. 1 by
nearly 4 orders of magnitude. Figure 2(b) uses a gradient-based method of optimizing the place-
ment of both sensors simultaneously, as described in §2, thereby further reducing the covariance
depicted in Fig. 2(a) by another order of magnitude.
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FIGURE 3. A log,, plot of the optimization surface for the two-sensor placement problem in the
CGL system with the optimization path superposed, with the axes representing the positions of
the two sensors. The optimization was initialized as depicted in Fig. 2(a), and converged to the
solution depicted in Fig. 2(b). Since the two sensors are identical, the plot is symmetric across
the diagonal.

gradient-based optimization approach is motivated. We thus consider now the optimiza-
tion of the placement of two sensors in this system.

Figure 2 depicts the modulus of the covariance of the state estimation error for two
different configurations of a pair of sensors. The sensor configuration in Fig. 2(a) was
chosen heuristically, first placing one sensor at the location of maximum covariance in
Figure 1, then placing the other sensor at the location of maximum state estimation error
in the estimator that results. The sensor configuration in Fig. 2(b), on the other hand, was
optimized using the algorithm described in §2.1. Figure 3 depicts of the full optimization
surface as a function of the locations of the two sensors, indicating the path taken during
the optimization process from the initial configuration at {q’, ¢} = {12.60, —0.46} [see
Fig. 2(a)] to the optimized configuration at {q!,q?} = {2.10,—10.65} [see Fig. 2(b)].
Note at each step that the path taken is downhill (normal to the isocontours), which is
consistent with the fact that a steepest descent method was used in the optimization.
Also, Figure 3 is symmetric about the diagonal ¢?> = ¢!, as the sensors in this case
are identical; had sensors of different precision been used (i.e., V = diag{[v1, v2]} with
vy # v3), the symmetry in Figure 3 would be broken, and the gradient-based optimization
algorithm would converge to a local minimum.



Gradient-based optimization of sensor & actuator placement in LTI systems 17

4.2. Optimal actuator placement in the full information control problem

The two-actuator placement problem is analogous to the two-sensor placement problem
discussed in the previous section. Figure 4 depicts the full optimization surface as a
function of the configuration of the two actuators, indicating the path taken during
the optimization process to minimize the cost (2.4b). The initial configuration of the
actuators in this case was taken simply as the optimized sensor configuration found in
the previous section. As in the estimation problem, at each step the path taken is downhill
(normal to the isocontours). Also, Figure 4 is symmetric about the diagonal ¢2 = ¢!, as
the actuators in this case are identical. In this full-information setting, the optimized
solution at {q!,q?} = {—4.66,2.36} places both actuators inside the locally unstable
region, thus effectively leveraging the positive local amplification term of the CGL; this
is in contrast with the optimized sensor configuration presented previously, in which the
upstream sensor is actually placed outside the unstable domain, relatively close to where
the disturbance is introduced into the system.

Further understanding of this result is given by Fig. 5, which depicts the diagonal of
the “cost-to-go” matrix Y of the controlled CGL system. It is reasonable that the area
of the three lobes of the optimized configuration are approximately equal, indicating
essentially that contributions to the cost function are, effectively, evenly distributed over
the physical domain when the actuator positions are properly optimized.

4.3. Ho optimal actuator/sensor placement

Though many control-oriented studies of the CGL system have appeared in the literature,
only recently has the question of optimizing sensor and actuator placements in such
problems been considered. In particular, Chen & Rowley (2010) found acuator/sensor
configurations that minimize the Hs norm in such problems by simultaneously optimizing
both sensor and actuator positions. As intuition suggests, optimizing the sensor and
actuators positions separately leads to reasonable but not optimal performance in the
full Hy problem.

As established in §2.3, the gradient-based procedure outlined in §2.1 and §2.2 may
easily be extended to optimize sensor and actuator locations simultaneously in the full
H, setting; results are depicted in Fig. 6. The optimization surface is depicted in Fig.
6(a) for the one-actuator, one-sensor Hsy problem, and superposed is the path taken by
the full optimization algorithm. Note again at each step that the path taken is downhill
(normal to the isocontours), thus indicating the correctness of the gradient computation.
The initial configuration, {gs, ¢o} = {—2.47, —1.94}, was generated by solving separately
the optimal sensor placement problem for one sensor and the (full-information) optimal
actuator placement problem for one actuator. The gradient-based method discussed in
§2.3 was then used to find the optimized configuration {gs,q.} = {—3.08, —4.66}, as
depicted in Fig. 6(b).

A similar procedure was performed for the two-actuator, two-sensor case, as depicted
in Fig. 6(c), where the initial configuration (based on solving the actuator and sen-
sor placement problems separately) and the optimized configuration {ql,q?,qt,¢?} =
{1.09,—-10.57,—10.32,0.49} are compared side-by-side. Though this problem is four-
dimensional and thus difficult to visualize, optimizations from the various random initial
conditions tested all appear to converge to the same optimized configuration in this case.

The present gradient-based formulation appears to extend naturally to high-dimensional
discretizations of various 2D and 3D Navier-Stokes systems, which is left for future stud-
ies.
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2.5

FIGURE 4. A log,, plot of the optimization surface for the full-information two-actuator place-
ment problem in the CGL system with the optimization path superposed, with the axes repre-
senting the positions of the two actuators.
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Actuator Position

Sensor Position

(a) The optimization surface for the one-sensor, one-actuator Hz problem. Also
shown is the path taken during the optimization process. The initial condition, e,
was generated by performing independent optimizations of the sensor and actuator
placements. The combined gradient-based optimization formulation converges from
this (suboptimal) inital guess to a (significantly improved) optimal solution, x, of
the combined problem.

(b) Initial condition (dashed) and optimal solution (solid) for the one-sensor, one-
actuator Ha optimization problem depicted in Fig. 6(a). Note that, through the
optimization, the sensor and actuator actually swap their relative positions

(c) As in Fig. 6(b), but for the two-sensor, two-actuator Hz problem.

FIGURE 6. Optimized sensor/actuator placements for the combined Hz estimation/control prob-
lem. The disturbance (indicated with x) is located at g, = —11.0 in all instances. Actuators
and sensors are denoted with the symbols x, and e, respectively.
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