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In applications involving the model-based control of transitional wall-bounded flow
systems, it is often desired to estimate the interior flow state based on a history of noisy
measurements from an array of flush-mounted skin-friction and pressure sensors on
the wall. This paper considers this estimation problem, using a Kalman filter based
on the linearized Navier–Stokes equations and appropriate stochastic models for the
relevant statistics of the initial conditions, sensor noise and external disturbances
acting on the system. We show that a physically relevant parameterization of these
statistics is key to obtaining well-resolved feedback kernels with appropriate spatial
extent for all three types of flow measurement available on the wall. The effectiveness
of the resulting Kalman and extended Kalman filters that implement this feedback
is verified for both infinitesimal and finite-amplitude disturbances in direct numerical
simulations of a perturbed laminar channel flow. The consideration of time-varying
feedback kernels is shown to be particularly advantageous in accelerating the conver-
gence of the estimator from unknown initial conditions. A companion paper (Part 2)
considers the extension of such estimators to the case of fully developed turbulence.

1. Introduction
The feedback control of fluid flow systems is a problem that has received growing

attention in recent years and has been approached in a number of different ways.
One approach is to design controls based on physical insight into dominant flow
mechanisms, as by the wave superposition principle (see e.g. Thomas 1990). Another
approach is to use adaptive or genetic techniques to attempt to learn an effective
control strategy by trial and error (see e.g. Lee et al. 1997). It is also possible to
leverage linear control theory, basing the control algorithm on the linearized Navier–
Stokes equations governing small perturbations to the flow system, a mathematical
statement of the control objective, and a mathematical model of the relevant statistical
properties of the unknown initial conditions, sensor noise and external disturbances
acting on the system. The present paper follows this latter approach. Reviews of
related flow control efforts can be found in, for instance, Bewley (2001), Gunzberger
(1996) and Kim (2003).

The problem of linear model-based feedback control based on noisy measurements
can be decomposed into two independent subproblems: (i) the state-feedback (or
full-information) control problem, in which full state information is used to determine
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effective control feedback; (ii) the state estimation problem, in which measurements
are continuously used to ‘nudge’ a real-time calculation of the flow system in an
appropriate manner such that the calculated flow state eventually approximates the
actual flow state.

Once both subproblems are solved, we can synthesize them to control a flow based
on limited noisy measurements of the flow system. The overall performance of the
resulting linear feedback control scheme is limited by the individual performance of the
two subproblems upon which it is based. For the application of linear control theory
to wall-bounded flows, though encouraging results have been obtained previously on
the state-feedback control problem (see, for example, Bewley & Liu 1998; Högberg,
Bewley & Henningson 2003), the development of effective state estimation strategies
remained, until now, largely an open problem. In the present paper, we therefore
focus on the state estimation problem exclusively.

One of the primary challenges of the state estimation problem is that its framing
is based centrally on quantities which are challenging to model, namely, the expected
statistics of the initial conditions, the sensor noise and the external disturbances acting
on the system. The state estimation problem may actually be thought of as a filtering
problem; that is, the estimator uses the governing equation itself as a filter to extract,
from the available noisy measurements of a small portion of the dynamic system, that
component of the measurements which is most consistent with the dynamic equation
itself. In other words, the estimator uses the governing equation to extract the signal
from the noise, and in the process builds up an estimate of the entire state of the
system. The purpose of the estimator at time t is to filter the measurements gathered
prior to time t to estimate the instantaneous state of the flow field. The purpose of
the state-feedback controller at time t , on the other hand, is to apply forcing to the
flow such that the subsequent evolution of the flow, after time t , exhibits favourable
characteristics. Thus, the controller is based on a metric defining these favourable
characteristics (the objective function), whereas the estimator is based on a model
describing, to the extent that they are known, the statistical properties of the unknown
quantities affecting the system.

Some attention has been paid in the literature to the creative choice of objective
functions for the control problem. Kim & Lim (2000), for example, performed a
numerical experiment which applied body forcing via linear feedback everywhere on
the interior of a turbulent channel flow. This linear feedback was constructed to
cancel exactly the linear coupling term (C in (2.2)) in the nonlinear simulation, with
the result that the turbulent flow relaminarized. This result lends credibility to the idea
of using a more sophisticated objective function which targets this linear coupling
(more precisely, one which targets the non-normality of the system eigenvectors)
rather than using an objective function which simply targets the energy of the flow
perturbations directly. The appropriate selection of the objective function is thus seen
to be not a trivial problem, and is closely linked to our understanding of the relevant
flow physics. The problem of disturbance modelling for the state estimation problem,
which is also inherently linked to our understanding of the relevant flow physics, is
perhaps even more subtle.

The importance of appropriate disturbance modelling was previously investigated
by Jovanović & Bamieh (2001a). In this work, a stochastic disturbance model was pro-
posed which, when used to force the linearized Navier–Stokes equation, led to a sim-
ulated flow state with certain second-order statistics (specifically, urms , vrms , wrms , and
the Reynolds stress −uv) that mimicked, with varying degrees of precision, the stat-
istics from a full direct numerical simulation (DNS) of a turbulent flow at Reτ = 180.
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The present work represents the next natural step in this vein, that is, the develop-
ment of appropriate disturbance parameterizations that facilitate the calculation of
well-resolved feedback kernels for the flow estimation problem that both converge
upon grid refinement and eventually decay exponentially with distance from the
origin (that is, from the corresponding sensor location). These feedback kernels,
in turn, facilitate accurate estimation of the state itself when a simulation of the
state estimate is coordinated with wall measurements from an actual flow (or a
separate direct numerical simulation thereof). Further, the tuning of this disturbance
parameterization allows for the tuning of the spatial extent of the resulting feedback
convolution kernels in order to modify the communication architecture required in
an ‘overlapping decentralized’ implementation of the resulting estimator in hardware
(that is, large-scale implementation via an interconnected array of identical tiles, each
with actuators, sensors and control logic incorporated, that communicate only with
their neighbours, as described in detail in Bewley 2001).

It appears as if little has been accomplished to date in terms of the investigation
of appropriate disturbance models for specifically the flow estimation problem in the
published literature. Bewley & Liu (1998) Joshi, Speyer & Kim (1999) and Högberg
et al. (2003) all modelled the covariance of the external disturbances at a single
wavenumber pair {kx, kz} in a channel flow with a simple identity matrix after the
problem was discretized in the wall-normal direction. This assumption effectively
implies a constant variance of disturbances at each gridpoint in the wall-normal
direction and zero correlation of the disturbances at different gridpoints above the
wall. Unfortunately, this covariance model does not converge to a resolved covariance
distribution as the wall-normal grid is refined. We now understand that, as a
consequence, this model was responsible for restricting the effectiveness of the resulting
estimators in our previous work, and also led to realization problems that required
us to limit the number of wall measurements that we could account for while still
obtaining convergence of the feedback kernels upon refinement of the numerical grid.

In the present paper, we propose an improved parameterization of the external
disturbances (that is, random volume forcing on the interior of the flow domain)
that may be used to model the effects of wall roughness, acoustic waves and
neglected dynamics, as well as appropriate parameterizations of the unknown initial
conditions and sensor noise. This improved disturbance parameterization converges
to a continuous function upon grid refinement, and allows us to account for all three
flow measurements available at the wall (that is, streamwise and spanwise wall skin
friction and wall pressure).

In previous studies, only time-constant feedback kernels have been considered
in the estimator. By introducing time-varying feedback kernels into the estimator,
the present paper incorporates plausible models of the statistics of the unknown
initial conditions on the flow in order to maximize the speed of convergence of the
estimator from unknown initial conditions. As a consequence, the initial transients in
the estimation error are shown to be greatly diminished.

We design and test an estimator for the early stages of transition in a laminar
three-dimensional plane channel flow (again, see Part 2 of this study for the case
of fully developed turbulence). After describing the system of interest, we propose a
stochastic model for the flow’s initial conditions, external disturbances, and sensor
noise in § 2.4. An appropriate Kalman filter is designed in § 2.5 in order to determine
suitable estimator feedback. After a discussion of the numerical methods employed,
we test the estimator in numerical simulations of the linearized system at isolated
wavenumber pairs in § 3. We then inverse Fourier transform the estimator feedback
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rules determined on a large array of wavenumber pairs to obtain well-resolved
spatially localized feedback convolution kernels in physical space for all three of the
measurable quantities on the wall (streamwise and spanwise wall skin friction and
wall pressure), as discussed in § 4.1. The resulting Kalman filter for the entire three-
dimensional channel, and an extended Kalman filter that additionally incorporates
the nonlinearity of the full system, are tested in direct numerical simulations of
the full nonlinear Navier–Stokes system for both infinitesimal and finite-amplitude
perturbations of a laminar channel flow in § § 4.2 and 4.3.

2. Formulation
2.1. Flow configuration and governing equations

This paper considers the three-dimensional flow between two infinite flat plates (at
y = ± 1) driven by a pressure gradient in the streamwise (x) direction. Scaling the
time variable appropriately, the mean velocity profile is given by U (y) = 1 − y2.
For computational efficiency, we model the flow as being periodic in the horizontal
directions x and z, using a computational domain of sufficient extent in these directions
that this non-physical assumption does not significantly affect the statistics of the
flow. This approach allows all variables with spatial variation to be expanded in
Fourier series. Thus, the state vector describing the wall-normal velocity v̂mn(y, t) and
wall-normal vorticity η̂mn(y, t) on the interior of the domain at each wavenumber pair
{kx, kz}mn may be denoted by

q̂mn(y, t) =

(
v̂mn(y, t)
η̂mn(y, t)

)
.

The evolution of the flow can then be written with the linear terms, M and L, on the
left-hand side and the nonlinear terms, N , on the right-hand side, in addition to an
external forcing term êmn to account for unmodelled effects, yielding

d

dt
Mq̂mn + Lq̂mn︸ ︷︷ ︸
Linear dynamics

=
∑

k+i=m
l+j=n

N(q̂kl, q̂ij )

︸ ︷︷ ︸
Nonlinear coupling

+ êmn(y, t)︸ ︷︷ ︸
External forcing

, (2.1)

where

M =

(
−∆ 0
0 I

)
, L =

(
L 0
C S

)
. (2.2)

For the remainder of this paper (Part 1), the entire derivation is done in Fourier space,
so the accent (·̂) and subscript (·mn) will be dropped for notational clarity. The oper-
ators L, S and C relate to the Orr–Sommerfeld/Squire equations and are defined as

L = −ikxU∆ + ikxU
′′ + ∆2/Re,

S = ikxU − ∆/Re,

C = ikzU
′.

The Laplacian operator is denoted ∆ =D2 − k2, where D and D2 represent first- and
second-order differentiation operators in the wall-normal direction, and k2 = k2

x + k2
z .

The Reynolds number Re is based on the centreline velocity and channel half-width.
The double convolution sum in (2.1) represents the nonlinear ‘triad’ interactions. The
boundary conditions on v and η correspond to no-slip solid walls

v = Dv = η = 0 at y = ±1.
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In the following, the right-hand side of (2.1) will be lumped into a forcing function
f (y, t), thereby restricting the flow model to the linear terms, accounting for both the
nonlinear terms and the external disturbances with a stochastic model. The resulting
flow model can be written as

d

dt
Mq + Lq = Tf (y, t), (2.3)

where the operator

T =

(
ikxD k2 ikzD
ikz 0 −ikx

)
transforms the forcing f =(f1, f2, f3)

T on the evolution equation for the velocity
vector (u, v, w)T into an equivalent forcing on the (v, η)T system (see e.g. Jovanović
& Bamieh (2001b) for derivation of this transformation).

2.2. Measurements

The choice of the measurements to be taken in order to obtain the state estimate
(without knowledge of the initial conditions of the flow) is ultimately a matter of
practicality. In the present work, we will consider an idealized problem in which the
continuous distributions of streamwise and spanwise skin friction and pressure on
the wall are available as measurements in order to estimate the state of the flow away
from the wall. This information is mathematically complete in the following sense:
if this information is uncorrupted by noise and the external forcing on the system is
known exactly, the entire state of the flow (even in the fully turbulent regime, and
at any Reynolds number) is uniquely determined by these measurements at the wall
in an arbitrarily small neighbourhood of time t (without knowledge of the initial
conditions), as shown by Bewley & Protas (2003). However, in any practical problem,
the measurements are corrupted by noise, the modelling of the system is not precise,
and there are external disturbances on the system which are not accounted for.
Thus, in the practical setting, it is essential to filter the measurements appropriately
to reconcile the noisy measurements of the system with an approximate dynamic
model of the system. The Kalman filter used in the present paper is a mathematically
rigorous tool for achieving this reconciliation.

In our previous formulations of the estimator problem, as discussed in Högberg
et al. (2003), only the feedback gains using the measurement ηy , the first wall-normal
derivative of η, were used. In § 2.4, we develop an improved formulation based on a
more realistic model of the statistics of the external disturbances such that we may
now compute well-behaved feedback kernels that converge upon grid refinement for
any measurement constructed as a linear combination of the state variables and their
derivatives. In particular, the three available measurements at the wall, the streamwise
and spanwise wall skin friction and the wall pressure, are related to the quantities v

and η in the state model as follows

τx = τxy |wall =
1

Re
uy |wall =

i

Re k2
(kxD

2v − kzDη)|wall,

τz = τzy |wall =
1

Re
wy |wall =

i

Re k2
(kzD

2v + kxDη)|wall,

p = p|wall =
1

Re k2
vyyy |wall =

1

Re k2
D3v|wall.

Note that these equations are easily verified using the Taylor series expansions for
v(y) and η(y) near a solid wall, as written out in, for example, § 2.2 of Bewley & Protas
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(2003). In the formulation shown in the remainder of § 2, for clarity, we focus on the
feedback rules related to measurements made at the lower wall only. The extension
of this formulation to the case in which measurements are taken at both walls of the
channel, as considered in the simulations reported in § 3 and § 4, is straightforward.

2.3. Stochastic setting

As described earlier, the modelling of the relevant statistical properties of the
stochastic forcing function f in (2.3), which accounts for the effects of external
disturbances on the system, is one of the key steps in the framing of the present
estimation problem.

In the present stochastic framework, the mean of any quantity of interest may be
obtained using the expectation operator E[·], defined as the average over all possible
realizations of the stochastic inputs. In particular, the mean of f is modelled as zero,
that is, E[f ] = 0.

In the present formulation, it is the covariance of f that must be modelled carefully.
Since f is a continuous function of the spatial coordinate y, the appropriate definition
of the covariance in this problem is somewhat abstract, as discussed in detail in
Balakrishnan (1976). As shown in Balakrishnan (1976), once this abstraction is made,
the resulting Kalman filter in this spatially continuous formulation is found to be
analogous to its well-known counterpart in the finite-dimensional setting. In order
to proceed with the modelling of the statistics of f , it is necessary to have a clear
understanding of what the covariance means in the spatially continuous setting.

In the spatially discrete setting, if u and v are two zero-mean, random vectors
of length n1 and n2, respectively, their covariance Ruv is defined as a matrix of size
n1 × n2 such that Ruv = E[uv∗], where the symbol ∗ applied to a vector or scalar
denotes conjugate transpose. The covariance of a zero-mean random vector u is
defined as Ruu = E[uu∗].

To extrapolate these definitions to the spatially continuous setting (see e.g.
Balakrishnan 1976, p. 267), we make use of inner products with arbitrary test functions
chosen from the same Hilbert spaces as the random functions we are considering.
That is, if ξ and η are two zero-mean random functions in Hilbert spaces H1 and H2,
respectively, then their covariance Rξη is defined such that

〈x , Rξηy〉1 = E[〈x , ξ〉1〈y, η〉∗
2] ∀(x, y) ∈ H1 × H2, (2.4)

where 〈· , ·〉1 and 〈· , ·〉2 denote appropriate inner products in the Hilbert spaces H1

and H2, respectively. Thus, the covariance Rξη is seen to be a linear operator from
H2 to H1; this is analogous to the spatially discrete setting, in which the covariance
is a matrix which when multiplied by a rank n2 vector results in a rank n1 vector.
Further, if ξ and η are taken to be simple vectors u and v in the above expression, the
inner products may be defined using the simple form 〈x , y〉 = x∗ y, and the spatially
continuous definition of the covariance reduces immediately to the usual definition
given in the spatially discrete setting:

〈x, Ruv y〉 = x∗Ruv y

〈x, Ruv y〉 = E[(x∗u) (v∗ y)] = x∗E[uv∗] y

}
⇒ Ruv = E[uv∗].

We will subsequently need to express the covariance of a linear transformation of
a random process f of known covariance Rff . Letting g = Hf where H is a linear
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differential operator, it follows from (2.4) that

〈x, Rggy〉 = E[〈x , g〉〈y, g〉∗] = E[〈x , Hf 〉〈y, Hf 〉∗]

= E[〈H∗x , f 〉〈H∗y, f 〉∗] = 〈H∗x, Rff H∗y〉
= 〈x, HRff H∗y〉


 ⇒ Rgg = HRff H∗, (2.5)

where H∗ denotes the adjoint of H; note that the adjoint of a linear operator
H : H1 → H2 with inner products 〈· , ·〉1 and 〈· , ·〉2 on H1 and H2, respectively, is
defined by the equality

〈y , Hx〉2 = 〈H∗y , x〉1 ∀{x, y} ∈ H1 × H2.

A significant feature of the definition of the covariance is its relation to the
expected value of the energy. In the spatially discrete setting, defining the energy
using an unweighted inner product, we may define the trace such that

tr(Ruu) �
∑

i

〈δji, (Ruu)jk δki〉 =
∑

i

(Ruu)ii

= E[u1u∗
1 + u2u∗

2 + · · · + unu∗
n] = E[E(u)],

where E(u) denotes the energy of the vector u. In the spatially continuous setting, the
corresponding definition is

tr(Rξξ ) �

∫
Ω

〈δ(x − x ′), Rξξ δ(x − x ′)〉 dx ′ =

∫
Ω

E
[
〈δ(x − x ′), ξ (x)〉 〈δ(x − x ′), ξ (x)〉∗]dx ′

= E

[ ∫
Ω

ξ (x ′)ξ ∗(x ′) dx ′
]
= E[E(ξ )].

Accounting for a weighting function in the definition of the energy in these relations
is straightforward.

2.4. Models for the stochastic inputs

The flow system that we desire to estimate is affected by its unknown initial conditions,
the unknown external disturbances that disrupt the evolution of the state, and the
unknown sensor noise that corrupts the measurements. Since the estimator is intended
to converge effectively over a large number of different realizations, a statistical
description (mean and covariance) of these unknown quantities may be used to tune
the feedback in the estimator design. The estimator which we will design, also known
as a Kalman filter, will be optimal in the sense of obtaining the most accurate estimate
possible over a large set of realizations of the system in which the initial conditions,
external disturbances, and sensor noise have the assumed statistical properties.

2.4.1. Modelling of the initial conditions

For the purpose of the present work, we will model the mean of the unknown
initial condition as zero (that is, we assume there is no preferred phase in the initial
flow structures) and its covariance as S0. Since the initial condition in the estimator
is always zero, S0 also represents the covariance of the state estimation error at t = 0.

We want to design an estimator that performs well over a large range of possible
initial conditions. It is natural to assume that the initial conditions are completely
‘random’, however, we know from our understanding of the flow physics that there
is a tendency for some specific types of flow disturbances to be present in any given
flow. For example, Tollmien–Schlichting (TS) waves are likely to be present if the
environment is characterized by acoustic waves, streaks are likely to be present if the
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environment is characterized by high levels of free-stream turbulence, and streamwise
vortices are likely to be present if the environment is characterized by wall roughness.
The specific initial conditions which we expect to see at each wavenumber pair in
a particular problem (though at an unknown phase and amplitude), and for which
we would like to tune the estimator to be particularly efficient at capturing, will be
denoted here by s = smn(y).

We will model the initial conditions q0 at each wavenumber pair as a linear
combination of a component qs of a specified profile s (but with random magnitude
and phase) and a component qr constructed by a random linear combination of the
first p eigenmodes ξ j = ξ j

mn(y), normalized to unit energy, of the system matrix M−1L

in (2.3) such that

qs = θ0 s, qr =
1

p

p∑
j=1

θj ξ
j ,

where the coefficients θj , j ∈ {0, . . . , p} are uncorrelated complex scalar random
variables with zero mean and unit variance. The initial condition q0 is then modelled
as a linear combination of these two components such that

q0 = c1 (c2qs + (1 − c2)qr ) .

The design parameter c1 > 0 is used to specify the expected amplitude of the initial
conditions at this wavenumber pair, and the design parameter c2 ∈ [0, 1] is used to
specify the relative importance of the components qs and qr in the initial conditions.
The corresponding covariance of the unknown initial conditions is given by

S0 = Rq0q0
= c1

(
c2Rss + (1 − c2)

p∑
j=1

Rξj ξj

)
. (2.6)

Note that we expect the energy of the initial conditions at both large wavenumber
pairs and small wavenumber pairs to be small. We may account for this in the present
model of the initial conditions by allowing c1 to vary in a wavenumber-dependent
fashion. In the present work, we will model this dependence with the function

c1(kx, kz) = ca k2
c e−k2

c with k2
c = (kx/cx)

2 + (kz/cz)
2,

where the design parameters cx and cz may be tuned to select the peak of the expected
energy of the initial condition in wavenumber space and the design parameter ca scales
the overall amplitude of the initial conditions. Many other assumed forms for c1(kx, kz)
are of course also possible, and may be experimented with in future work.

2.4.2. Modelling of the external disturbances

We will assume the external disturbance forcing f =(f1, f2, f3)
T in (2.3) to be a zero-

mean (E[fj (x, y, z, t)] = 0) stationary white Gaussian process with auto-correlation

E[fj (x, y, z, t)fk(x + rx, y
′, z + rz, t

′)] = δ(t − t ′)︸ ︷︷ ︸
Temporal

Qfj fk
(y, y ′, rx, rz)︸ ︷︷ ︸
Spatial

,

where δ(·) denotes the Dirac δ-function. The assumption of a ‘white’ time correlation
eases the derivation of the equations for the covariance of the state, and is appropriate
when the characteristic time scales of the external disturbances are short as compared
with the characteristic time scales of the flow system. When this is not the case,
the approach developed herein may be extended to incorporate an additional filter
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Figure 1. (a) Sketch of the assumed covariance of the unknown external disturbance f in
Fourier space at a single wavenumber pair {kx, kz}, taking dy = 0.1, and (b) the variation of
the amplitude of this forcing with wavenumbers kx and kz, taking dx = 0.5 and dz = 3.

in order to ‘colour’ the external disturbances with appropriate self-correlation time
scales (see e.g. Lewis & Syrmos 1995).

The remaining property to be described is the spatial extent of the two-point
one-time auto-correlation of f over the whole domain

Qfj fk
(y, y ′, rx, rz) = E[fj (x, y, z, t)fk(x + rx, y

′, z + rz, t)].

The corresponding quantity in Fourier space is a covariance operator of the form
discussed in § 2.3, obtained for any wavenumber pair {kx, kz} via the following
integration over the homogeneous directions

Rfj fk
(y, y ′, kx, kz) =

∫ ∫
Qfj fk

(y, y ′, rx, rz)e
−i(kxrx+kzrz) drx drz.

Our model for the covariance of f assumes that the disturbance has a localized struc-
ture in space (i.e. the two-point correlation of the disturbance decays exponentially
with distance) and that the correlations between forcing terms on different velocity
components are zero. Note that the presence of the wall will introduce correlation
between the forcing terms in the streamwise and spanwise directions. Such a
correlation is captured by the model used in Part 2 of this study. In the present
work, we assume a model for the covariance of the external forcing f which is of a
similar form to that assumed for the covariance of the initial conditions by taking

Rfj fk
(y, y ′, kx, kz) = d1δjkMy(y, y ′),

where

d1(kx, kz) = dak
2
de

−k2
d with k2

d = (kx/dx)
2 + (kz/dz)

2,

and the y variation of Rfj fk
is given by the function

My(y, y ′) = e−(y−y ′)2/(2dy ). (2.7)

Note that we will denote R =Rff = diag(Rf1f1
, Rf2f2

, Rf3f3
) in the sections that follow.

The design parameters dx and dz may be tuned to select the peak of the expected
energy of the disturbance forcing in wavenumber space, the design parameter dy

governs the width of the two-point correlation of the disturbance in the wall-normal
direction, and the design parameter da scales the overall amplitude of the disturbance
forcing. The variation of δjkMy(y, y ′) as a function of y and y ′, for the three different
values of j and the three different values of k, is depicted in figure 1(a), and the
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variation of k2
de

−k2
d as a function of kx and kz is depicted in figure 1(b). As with the

modelling of the covariance of the initial conditions, many other assumed forms for
d1(kx, kz) are also possible, and may be experimented with in future work.

2.4.3. Modelling of the sensor noise

Each of the three measurements is assumed to be corrupted by sensor noise, model-
led as independent, white (in both space and time), random processes, the amplitude
of which is determined by the assumed quality of the sensors. The covariance of the
sensor noise vector g can thus be described in Fourier space by a diagonal 3 × 3
matrix G whose diagonal elements α2

ι are the variances of the sensor noise assumed
to be associated with each individual sensor

Rgι(t),gκ (t ′) = δικδ(t − t ′)α2
ι ,

where δικ denotes the Kronecker delta. Thus, in the present work, we assume that the
sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed back only
gently into the estimator, lest the sensor noise disrupt the estimator. When the
signal-to-noise ratio is high, the measured signal may be fed back more aggressively
into the estimator, as the fidelity of the measurements can be better trusted. For a
given covariance of the initial conditions and external disturbances, the tuning of
the assumed overall magnitude of the sensor noise in the Kalman filter design thus
provides a natural ‘knob’ to regulate the magnitude of the feedback into the estimator.
Note that an intermediate amount of feedback is desired in the estimator design: if the
feedback is too weak, the estimator will not converge very quickly or very accurately,
and if the feedback is too strong, it may knock the estimated flow out of the small
perturbation neighbourhood assumed in the linear model used in its design.

2.5. The Kalman filter

Noting that the Laplacian ∆ in the operator M in the forced linear equation (2.3)
may be inverted by enforcement of the homogeneous boundary conditions on Dv, we
may write

q̇ = −M−1L︸ ︷︷ ︸
A

q + M−1T︸ ︷︷ ︸
B

f,

and thus the general state-space formulation for the evolution of the flow state
q = qmn(y, t) at each wavenumber pair {kx, kz}mn may be written

q̇ = Aq + Bf, q(0) = q0,

r = Cq + g.

}
(2.8)

Note that q is a continuous function of both the wall-normal coordinate y and time
t in this formulation. The measurement vector r is constructed using the matrix C,
defined here as

C =
1

Re k2


ikxD

2|wall −ikzD|wall

ikzD
2|wall ikxD|wall

D3|wall 0


 .

This matrix extracts the two components of wall skin friction and the wall pressure
from q .
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We now build an estimator of the analogous form

˙̌q = Aq̌ − v, q̌(0) = 0,

ř = Cq̌,

}
(2.9)

with feedback

v = Lr̃ = L(r − ř). (2.10)

Kalman filter theory, combined with the models outlined in § 2.4 for the relevant
statistics of the unknown initial conditions q0, the unknown external forcing f , and
the unknown sensor noise g, provides a convenient and mathematically rigorous tool
for computing the feedback operator L in the estimator described above such that
q̌ converges to an accurate approximation of q . Note that the volume forcing v

used to apply corrections to the estimator is proportional to the ‘innovation process’
r̃ = r − ř , that is, the difference between the measurements of the actual system and
the corresponding quantity in the estimator model.

The solution of the Kalman filter problem in the classical finite-dimensional setting
is well known (for a succinct presentation, see e.g. Lewis & Syrmos 1995, pp. 463–
470). The corresponding operator equations applicable here, though more involved to
derive, are completely analogous (see Balakrishnan 1976). Thus, we will not rederive
these equations here. The main results, in both the finite-dimensional and infinite-
dimensional settings, are:

(a) the covariance S(t) = Rqq(t) of the flow state q(t) is governed by the Lyapunov
equation

Ṡ(t) = AS(t) + S(t)A∗ + BRB∗, S(0) = S0, (2.11)

(b) for a given L(t), the covariance P(t) = Rq̃q̃(t) of the state estimation error
q̃(t) = q(t) − q̌(t) is governed by the Lyapunov equation

Ṗ (t) = A0(t)P (t) + P (t)A∗
0(t) + BRB∗ + L(t)GL∗(t), P (0) = S0, (2.12)

where A0(t) = A + L(t)C, and
(c) the value of L(t) which minimizes the expected energy of the state estimation

error (that is, which minimizes the trace of P (t)) is given by the solution of the
differential Riccati equation (DRE)

Ṗ (t) = AP (t) + P (t)A∗ + BRB∗ − P (t)C∗G−1CP (t), P (0) = S0, (2.13a)

L(t) = −P (t)C∗G−1. (2.13b)

Note that, for a linear time-invariant (LTI) system (that is, for A, B , C, R, G indepen-
dent of time), the covariance of the estimation error, P (t), and the corresponding
feedback which minimizes its trace, L(t), follow a transient near t = 0 owing to the
effect of the initial condition S0, eventually reaching a steady state for large t in which
Ṗ (t) = 0 and L̇(t) = 0. In order to minimize the magnitude of the transient of the
trace of P (t), it is necessary to solve the differential Riccati equation given above. If
one is only interested in minimizing the trace of P (t) at statistical steady state, it is
sufficient to compute time-independent feedback L by solving the algebraic Riccati
equation (ARE) formed by setting Ṗ (t) = 0 in (2.13a).



274 J. Hœpffner, M. Chevalier, T. R. Bewley and D. S. Henningson

2.6. Numerical issues

2.6.1. Spatial discretization

In order to actually compute the feedback in this problem, it is necessary to
discretize the DRE given in operator form in (2.13) and solve this equation in the
finite-dimensional setting. In order to be relevant for the PDE problem of interest,
the resulting feedback gains must converge to continuous functions as the numerical
grid is refined.

Thus, to proceed, we first need to build the discrete counterparts of the system
operators A, B , C, and their respective adjoints as well as the disturbance covariances
R, G, and S0. In the present work, the discrete operators are obtained through enforce-
ment of the Orr–Sommerfeld/Squire equations at each point of a Gauss–Lobatto grid
using a Chebyshev collocation scheme, taking

fi = f (yi), yi = cos
iπ

N
(i = 0, . . . , N),

where N + 1 is the number of gridpoints in the wall-normal direction. The discrete
operators and differentiation matrices are determined using the spectral Matlab
Differentiation Matrix Suite of Weideman & Reddy (2000). In particular, this suite
provides fourth-order differentiation matrices invoking clamped boundary conditions
(f (±1) = f ′(±1) = 0), using the procedure suggested by Huang & Sloan (1993), to give
an Orr–Sommerfeld matrix with satisfactory numerical properties, avoiding unstable
or lightly damped spurious eigenmodes. The first-order, second-order, and third-order
differentiation matrices so obtained, denoted D1, D2 and D3, respectively, are combined
according to the equations given previously to compute the discrete matrices A, B,
and C in a straightforward fashion. The calculations reported in this paper use,
where needed, the discrete definition for the adjoint of a matrix, that is, its conjugate
transpose. The integration weights W(yj ) for the Chebyshev grid with the Gauss–
Lobatto collocation points are computed using the algorithm from Hanifi, Schmid
& Henningson (1996). These weights provide spectral accuracy in the numerical
integration used to assemble the energy measure matrix Q.

2.6.2. Solution of the DRE

The calculation of the differential Riccati equation (DRE) is accomplished in this
work using the Chandrasekhar algorithm developed by Kailath (1973). This elegant
algorithm solves a factored form of the DRE at the heart of the Kalman filter as
given by the spatial discretization of the operator equations in (2.13a)–(2.13b). It is
particularly efficient when these factors are of low rank, which happens to be the case
in the present study.

The main idea in the Chandrasekhar algorithm is to solve an evolution equation
for a factored form of the time derivative of the estimation error covariance matrix,
Ṗ(t). Since it is symmetric, Ṗ(t) can be factored as

Ṗ = L1L
∗
1 − L2L

∗
2 = YHY∗, Y =

(
L1 L2

)
, H =

(
I 0
0 −I

)
, (2.14)

where the rank of L1L
∗
1 is the number of positive eigenvalues of Ṗ and the rank of

L2L
∗
2 is the number of negative eigenvalues of Ṗ.

By spatial discretization of (2.13a), differentiation of both sides, and substitution
of the factorization given above, assuming the system is LTI (that is, that A, B, C, R,
and G are independent of time), it is straightforward to verify that (2.13a)–(2.13b) is
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equivalent to the solution of the following system:

L̇(t) = −Y(t)HY∗(t)C∗G−1, L(0) = −P(0)C∗G−1,

Ẏ(t) = (A + L(t)C)Y(t), Y(0)HY∗(0) = Ṗ(0),

}
(2.15)

where Ṗ(0) is easily determined from the spatial discretization of (2.12) evaluated at
t = 0.

The key to the efficiency of this scheme is to exploit the possibility for an accurate
low-rank approximation of Y. After an eigenvalue decomposition of Ṗ(0) to determine
L1 and L2, we can perform a singular value decomposition of the matrices L1L

∗
1

and L2L
∗
2 and discard the singular vectors associated with small singular values,

constructing an approximation of Y with the remaining singular vectors. In § 4,
singular values less than 0.01 % of the initial Ṗ matrix norm were discarded, resulting
in a reduction of the rank of Y by approximately 75 %.

In the present work, time integration of the DRE is performed using a standard
explicit fourth-order Runge–Kutta scheme. When only constant feedback gains are to
be used, we can either march the DRE to steady state using the Chandrasekhar
algorithm or solve directly the ARE via standard techniques based on Schur
factorization (see Laub 1991).

2.6.3. Computation of the expected energy

In the discretized setting, the expected energy of the state q can be extracted from
the discrete covariance matrix S by use of the energy measure matrix Q such that
E[E(q(t))] = tr(QS(t)), where E(q(t)) denotes the instantaneous energy of the state q
at time t . The expected energy of the state estimation error q̃ can be found in a
similar manner, E[E(q̃(t))] = tr(QP(t)).

The time evolution of the expected energy may be computed using the
Chandrasekhar method. For example, the expected energy of the state q can
be marched forward in time from E[E(q(0))] = tr(QS0), its value at t =0, via
time integration of (d/dt)E[E(q)] = tr(QṠ(t)), where Ṡ = YHY∗, and where the
evolution equation for Y(t) is simply (d/dt)Y(t) = AY(t), with Y(0) determined by the
factorization Y(0)HY∗(0) = Ṡ(0) and Ṡ(0) determined by evaluation of (2.11) at t = 0.
The expected energy of the state estimation error q̃ can be found in a similar manner,
marching forward in time from E[E(q̃(0))] = tr(QS0) at t =0 via time integration
of (d/dt)E[E(q̃)] = tr(QṖ(t)), where Ṗ =YHY∗ with, for L(t) specified, Y(t) evolving
according to (d/dt)Y(t) = (A+L(t)C)Y(t) with Y(0) determined by the factorization of
Ṗ(0), which itself is determined by evaluation of (2.12) at t =0.

3. Fourier-space characterization
By Fourier transforming in the x- and z-directions all variables with spatial

variation (that is, the state, the disturbances, the measurements and the control), the
linearized three-dimensional estimation and control problems completely decouple
at each wavenumber pair {kx, kz}, as observed in Bewley & Liu (1998). Thus, the
present section characterizes the performance of the estimator derived in the previous
section on the linearized system in Fourier space at three individual wavenumber
pairs {kx, kz} = {0, 2}, {1, 0} and {1, 1}, where this performance is characterized most
clearly. In § 4, we inverse transform a large array of such feedback gains to physical
space, obtaining more readily implementable spatially localized three-dimensional
convolution kernels, and consider their effect on direct numerical simulations of the
full nonlinear system.
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Figure 2. Contour plot of the variation of amplitude of the initial conditions, taking
cx = cz =1.7 (dashed) and external disturbance forcing, taking dx = 0.5, and dz = 3 (solid),
as a function of the wavenumbers kx and kz. Note that the peak amplitudes are near the design
values of kc and kd , as defined in § § 2.4.1 and 2.4.2, with reduced amplitudes for smaller and
larger values of kc and kd . The expected covariance of the initial condition is modelled with
equal extent in the streamwise and spanwise directions, while the expected covariance of the
disturbance forcing is tuned for structures that are elongated in the streamwise direction.

Unless stated otherwise, the results reported are computed for R = 3000, a
subcritical Reynolds number characterized by transient growth phenomena. The
design parameters for the stochastic model for the initial conditions (see § 2.4.1)
are chosen to be c2 = 0.5, ca = 10.9 and cx = cz = 1.7. The design parameters for the
stochastic model for the external disturbances (see § 2.4.2) are chosen to be da =0.09,
dx =0.5, dz =3 and dy = 0.1. The design parameters for the stochastic model for
the sensor noise (see § 2.4.3) are chosen to be α2

1 =α2
2 = 0.002 (for the shear-stress

measurements) and α2
3 = 20 (for the pressure measurements).

These choices for the design parameters of the stochastic models of the initial
conditions, external disturbances and sensor noise are the result of a combination of
parametric tuning and physical arguments. For example, the choice c2 = 0.5 reflects
a 50 % confidence in the ‘specific form’ of the assumed statistics of the of the
initial conditions. Figure 2 compares the variation with wavenumber of the expected
covariance of the initial conditions and disturbance forcing in the model used in this
work; these variations excite the wavenumber ranges of interest for the estimation
of localized disturbances and the accounting for the early effects of nonlinearity in
the transition problem, as studied in § § 4.2 and 4.3. The amplitude parameters for the
initial condition, ca , and the external forcing, da , are chosen such that the flow energy
initially grows and then slightly decays to statistical steady state, for the wavenumber
pair showing the greatest potential for transient growth, {kx, kz} = {0, 2}.

The initial conditions used for the tests at isolated wavenumber pairs are the
‘worst-case’ initial conditions at these wavenumber pairs, i.e. the initial conditions
that, leveraging the non-normality of the dynamic operator A to the maximum extent
possible, lead to the largest possible transient energy growth. Such initial conditions
are of particular concern in a flow transition scenario, as described in, e.g. Schmid &
Henningson (2001).

The plots in this section show the evolution of the expected value of the energy of
both the flow state and the state estimation error for initial conditions, sensor noise
and external disturbances distributed as described in the stochastic models presented
in § 2.4. Thus, these plots can be interpreted as an average over a large number of
realizations of these stochastic inputs. They illustrate the effectiveness of the estimator
feedback in the presence of the types of disturbance for which the estimator feedback
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Figure 3. Evolution of the expected energy versus time for three flows of interest at three
representative wavenumber pairs: (a) {0, 2}, (b) {1, 1} and (c) {1, 0}. The stochastic inputs
driving each simulation are: (solid) initial conditions plus external disturbances, (dashed)
external disturbances only, (dot-dashed) initial conditions only; note that each simulation
accounts for the effect of sensor noise corrupting the measurements. Thick lines represent the
expected energy of the flow disturbance and thin lines represent the expected energy of the
estimation error. Note that for {1, 1} and {1, 0} the thin dashed lines lie under the thick dashed
lines.

was designed, namely, uncorrelated zero-mean random Gaussian distributions of the
same covariance as specified in the estimator design.

3.1. Evolution of the expected energy of the flow state and the state estimation error

Figure 3 shows the evolution of both the expected energy of the flow state and the
expected energy of the state estimation error using time-varying feedback gains for
three cases, each of which including the effect of sensor noise:

(i) Non-zero initial conditions with zero external disturbances (dot-dashed curves):
the expected energy of the state estimation error follows an initial transient, eventually
tending exponentially to zero at the decay rate of the least-stable eigenmode of A+LC
since there is no additional excitation. In all flows considered, the expected energy of
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the state estimation error is rapidly reduced to over two orders of magnitude below
the expected energy of the flow state.

(ii) Non-zero external disturbances with zero initial conditions (dashed curves): the
expected energy of the estimation error monotonically increases towards a statistical
steady state. In the flow considered at wavenumber pair {0, 2}, the expected energy of
the state estimation error rapidly approaches a value close to two orders of magnitude
below the expected energy of the flow state, indicating effective estimator convergence.
In the flows considered at wavenumber pairs {1, 1} and {1, 0}, however, the expected
energy of the state estimation error is nearly as large as the expected energy of the
flow state itself, indicating poor convergence of the estimator in these particular flows.
This issue is discussed in § 3.2.

(iii) Both non-zero initial conditions and non-zero external disturbances (solid
curves): as expected, owing to the linearity of the system and the additive effects of
the stochastic inputs on the expected energy of the system, this case is given precisely
by the sum of cases (i) and (ii).

It is also worth noting that the transient in the expected energy of the state
estimation error is not only of lower amplitude, but is typically much faster than the
transient in the expected energy of the flow state.

Figure 4 shows how the peak and statistical steady state of the expected energy of
the flow state and state estimation error depend on the wavenumber pair, quantifying
the effects seen in figure 1 for a range of different wavenumbers.

3.2. The difficulty of detecting structures in the centre of the channel with wall sensors

The reason the estimator discussed in the previous section fails to converge effectively
in the flows at wavenumber pairs {1, 1} and {1, 0} when external disturbances are
present is interesting. Bewley & Liu (1998, hereinafter referred to as BL98), studied
extensively the Kalman filter problem in the present flow system for the following
two cases:

case (i): Re =10 000, {kx, kz} = {1, 0},
case (ii): Re = 5000, {kx, kz} = {0, 2}.

As shown in figure 1(b) of BL98, the leading eigenvectors of A in the {1, 0} case
include several ‘centre’ modes with nearly zero support near the wall†. These modes,
which are absent in the {0, 2} case, would be continuously excited by the external
disturbances, and are nearly impossible to detect with wall measurements even if the
sensor noise is very low. To quantify this notion, the corresponding ‘modal observation
residuals’ gκ are tabulated for both cases in tables 1 and 2 of BL98.

Because of the presence of these nearly unobservable centre modes, the estimation
problem is inherently difficult at certain wavenumber pairs when both external
disturbances and sensor noise are present. Thus, the failure of the Kalman filter
developed here to converge accurately for the externally disturbed flows in the {1, 0}
case and the {1, 1} case, which is characterized by similar unobservable centre modes,
is a reflection of the fundamental difficulty of this estimation problem when only
wall measurements are employed, and is not a shortcoming of the estimation strategy
applied in the present work.

To investigate the excitation of the flow by external disturbances which do not
significantly excite such centre modes, we may augment the definition of My in
(2.7), which models the wall-normal distribution of the covariance of the external

† Note that the shapes of these modes are only weak functions of Reynolds number, so the same
general comments hold true for the Re = 3000 case studied here.
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Figure 4. Maximum (thick lines) and statistical steady state (thin lines) of the total expected
energy of the flow (solid) and the estimation error (dashed) over a range of wavenumber pairs
for (a) kx = 0 with varying kz, and (b) kz = 1 with varying kx .

disturbances f , as

My

augmented = C(p)

(
y + y ′

2

)2p

My.

The parameter p may be chosen to tune the profile of the external disturbances, with
uniform intensity in y if p = 0 or with intensity increasing near the walls if p > 0, as
shown in figure 5. In the simulations reported here, the coefficient C(p) is selected
such that the total expected energy of the flow is identical in each case.

The effect of this biasing of the external disturbances towards the walls is plotted
in figure 6. For the three wavenumber pairs tested, figure 6 illustrates the wall-normal
distribution of the expected energy of both the flow and the estimation error at
statistical steady state. The flow is forced both with the external disturbance with
p = 0 (solid lines) and p = 5 (dashed lines).

For the wavenumber pair {0, 2}, the biasing of the external disturbance towards the
walls has relatively little effect. In both cases tested, most of the energy of the resulting
flow perturbation is located in the region of high shear, as explained by the lift-up
effect. This perturbation is easily detected by the sensors on the walls, so the corres-
ponding expected energy of the estimation error is relatively small.
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Figure 5. Thewall-normal distribution of the variance in the augmented formof the external
disturbance parameterization. Four cases are shown, corresponding to p =0, 1, 3 and 5.
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Figure 6. The distribution in y of the expected energy at statistical steady state of the flow
(thick lines) and the estimation error (thin lines) for three wavenumber pairs: (a) {0, 2},
(b) {1, 1}, and (c) {1, 0}, and for two different wall-normal distributions of the external
perturbations: p = 0 (solid) and p = 5 (dashed).

For the wavenumber pair {1, 0}, on the other hand, the biasing of the external
disturbance towards the walls has a relatively strong influence on where the expected
energy of the flow is located. When excitation is present in the centre of the channel
(for p = 0), it is seen that the expected energy of the flow is relatively large near
the centre of the channel. In this case, the estimator performance is poor, and the
value of the expected energy of the estimation error is relatively large, especially
near the centre of the channel. On the other hand, when the excitation is focused
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{kx, kz} {0, 2} {1, 1} {1, 0}

p = 0 28.8 289.5 548.4
p = 1 26.4 112.0 178.4
p = 3 16.3 38.3 43.8
p = 5 12.4 17.9 16.7

Table 1. The total expected energy of the estimation error at statistical steady state for
three wavenumber pairs and four wall-normal distributions of the variance of the external
disturbances. For each case, the magnitude of the external disturbances was scaled so that the
total expected energy of the flow was 1000.

near the walls of the channel (for p = 5), the so-called ‘centre modes’ are not excited,
and the estimator performance is very substantially improved, with the expected
energy of the estimation error in this case being almost zero.

The characteristics of the case at wavenumber pair {1, 1} are essentially intermediate
between the two other cases, at {1, 0} and {0, 2}.

These results are further reinforced in table 1, where the total expected energy of
the estimation error is tabulated for p = 0, 1, 3 and 5. When the external disturbances
are uniformly distributed across the channel (for p = 0), the estimator performance
is substantially degraded for the {1, 0} and, to a lesser extent, the {1, 1} cases as
compared to the {0, 2} case, as already seen in figure 6. As the excitation is focused
closer to the walls (that is, as p is increased), the estimator performance is substantially
improved, as the nearly unobservable centre modes are no longer excited.

The flow structures that typically play the dominant role in the transition process
(and, thus, the flow structures which we are most interested in estimating accurately
in the present work) are elongated in the streamwise direction. That is, the modes of
maximum concern in the transition process are the highly non-normal modes in the
neighbourhood of {kx, kz} = {0, 2}. Fortunately, this is the wavenumber regime that
is not characterized by the problematical centre modes that are difficult to estimate
based on wall measurements alone. Thus, the estimator developed and tested here
appears to be promising for estimating the components of the state that are most
relevant to the transition problem even though this estimator is incapable of detecting
the so-called centre modes. It is also significant to point out that, to model the effects
of wall roughness in linearized Navier–Stokes models, it is common practice to tune
the parameterization of the external disturbances to focus them near the wall, as done
here for large values of p. In this setting, the resulting flow disturbances are estimated
well at all wavenumber pairs, as reflected in table 1.

3.3. The utility of time-varying gains in the estimator

The feedback gains L determined by the Kalman filter, computed according to
(2.13a)–(2.13b), are inherently a function of time. Thus, as stated previously, in order
to minimize the trace of P(t) during the transient which ensues after the estimator
is turned on, it is necessary to use time-varying feedback gains. However, for large
times, P(t) and L(t) eventually approach constants as the estimation error approaches
statistical steady state. Thus, if one is not interested in minimizing this transient, one
can simply apply constant feedback gains designed to minimize the expected energy
of the state estimation error at statistical steady state.

It is interesting to compare the possible utility of time-varying gains for the control
and estimation problems. Consider first the problems of optimal control and optimal
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Figure 7. Comparison of the expected energy of the estimation error using the time-varying
gains (thick lines) and constant gains (thin lines) for three wavenumber pairs: {0, 2} solid,
{1, 1} dash-dot and {1, 0} dash.

estimation over the finite time horizon [0, T ]. As already seen, the optimal estimation
(Kalman filter) problem is solved by a DRE that marches forward in time from t = 0
to t = T . On the other hand, the optimal control problem is solved by a (closely
related) DRE that marches backward in time, from t = T to t = 0. For time-invariant
systems over a long time horizon (that is, for large T ), the resulting feedback gains
for the estimation problem exhibit a transient near t = 0 and approach a constant for
the remainder of the march towards t = T , whereas the resulting feedback gains for
the control problem exhibit a transient near t = T and approach a constant for the
remainder of the march towards t = 0. In the limit that T → ∞, the transient in the
gains in the control problem becomes unimportant; however, the transient in the gains
in the estimation problem is still significant, especially if one is concerned with how
rapidly the estimator converges after the estimator is turned on. Failure to appreciate
this point can lead to the implementation of constant-gain estimators which do not
converge as rapidly as one might desire.

In our previous work on dynamic compensation (Högberg et al. 2003), constant
feedback gains for both the control and estimation problems were used, taking no
account of the transient due to the initial condition in the estimator. The full-state
feedback control problem was found to be solved successfully with this approach for
a large number of relevant flow cases. However, the state estimation problem was not
found to be solved effectively by this approach, and was left as an important open
problem.

It is now clear that we cannot expect optimal estimator performance during the
initial transient when using constant estimation gains if the initial condition has a
significant effect on the flow. This can be seen in figure 7, where the evolution of the
expected energy of the estimation error is plotted for the case of constant gains (thin
lines) and the time-varying gains (thick lines). Both the constant and the time-varying
gains give identical expected energy of the estimation error at large times, but the
peak in the expected energy of the estimation error at short times is substantially
diminished when the time-varying gains are employed. By taking the covariance of
the initial condition into account, the use of the time-varying gains gives us a direct
means of leveraging any knowledge we might have about the expected structure of
the initial conditions in the flow case of interest.
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Figure 8. Expected energy of the flow (solid thick line) and estimation error when (solid thin
line) all measurements are used, (dashed line) only measurements of τx are used, (dot-dashed
line) only measurements of τz are used, and (dotted line) only measurements of wall pressure
are used, at the wavenumber pairs (a) {0, 2}, (b) {1, 1}, and (c) {1, 0}. Note that the thin dotted
line for {0, 2} lies under the thick solid line.

3.4. Relative importance of the different measured quantities

As described in § 1, the new disturbance parameterization proposed in the present
work allows us now to feed back into the estimator all three types of measurements
available at the wall, that is, the streamwise skin friction τx , the spanwise skin friction
τz, and the wall pressure p. Figure 8 explores the relative importance of each of
these individual measurements in the convergence of the estimator for the three
wavenumber pairs studied previously. It is seen that the measurement of τx is the
most significant for the estimator convergence for wavenumber pairs corresponding
to streamwise elongated structures; as mentioned in the last paragraph of § 3.2, we
might consider these modes as the ones of maximum concern in the early stages
of transition. Physically, we might say that, in this case, the estimator can leverage
the strong streamwise skin friction footprint associated with the streamwise streaks
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Figure 9. Time evolution of the peak absolute value of the gains and the variance of the
measurements for the wavenumber pair {0, 2}. (a) Peak absolute value of the gains for the mea-
surements of (dot-dashed) τx , (dashed) τz, and (dotted) wall pressure. (b) Variance of the
measured signal (thick lines) and the measurement error (thin lines), with same line types as
in (a).

created be the lift-up of low-momentum fluid by low-amplitude streamwise vortices.
With the present parameterization (with a relatively high expected noise variance
for the pressure measurement), the pressure measurement did not contribute as
significantly as the other measurements to the estimation performance.

The evolution in time of the peak amplitudes of the feedback gains for the three
different types of measurements, as well as the variance of the measured signals (that
is, the expected value of the measurement signal squared), is depicted in figure 9 for
the wavenumber pair {0, 2}. It is seen that the transient in the feedback gains due to
the effects of the initial conditions is clearly significant.

3.5. The effectiveness of freezing selected gains based on the unsteady solution
of the DRE

The present section attempts to give some practical insight into the behaviour of
selected feedback gains chosen from snapshots of the full solution of the DRE. To
this end, the expected energy of the estimation error when using constant gains that
were determined from snapshots of the unsteady solution to the DRE is illustrated
in figure 10. It is seen that, when gains from early in this time evolution are used, the
early stages of the transient are estimated effectively, but there is increased error in
the estimate as statistical steady state is approached. When gains from later in this
time evolution are used, the estimate of the transient is degraded, but the estimate of
the statistical steady state is significantly improved.

4. Physical-space characterization
In the previous section, the estimator was tested in the linear setting in Fourier

space at individual wavenumber pairs. In this section, we inverse transform the
gains computed on a large array of wavenumber pairs to obtain spatially localized
convolution kernels in physical space (§ 4.1). We then investigate the estimation (in
physical space) of two flows of interest, one at very small amplitude, in which
nonlinear effects may be neglected (§ 4.2), and one at a finite amplitude, in which
nonlinear effects are significant (§ 4.3).
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Figure 10. Energy of the expected estimation error for gains selected from the time-varying
solution to the DRE and applied as constant-gain feedback, tested at the wavenumber pair
{0, 2}. Gains are selected from times 20, 40, 60 and 80 (solid lines, with later times in the
direction of the arrow), as compared with the (constant) solution of the ARE (◦) and the full
(time-varying) solution of the DRE (+).

4.1. Physical-space feedback convolution kernels

The feedback gains for the estimator, as formulated in § 2 and tested at individual
wavenumber pairs {kx, kz}mn in § 3, are functions of the wall-normal coordinate y.
By computing such feedback gains on a large array of wavenumber pairs and then
performing an inverse Fourier transform in x and z, three-dimensional (physical-
space) feedback convolution kernels are obtained. Such convolution kernels relate the
measurement at a given sensor location on the wall to the forcing of the estimator
model in the vicinity of that point, and eventually decay exponentially with distance
far from the corresponding sensor. For further discussion of the interpretation of
such convolution kernels, see Bewley (2001) and Högberg et al. (2003).

The results presented in this section were computed with p = 0, i.e. assuming a
constant amplitude of the external disturbance forcing in the wall-normal direction.

4.1.1. Time variation of the kernels

To illustrate the time variation of the kernels computed via solution of the DRE, the
evolution in time of the kernels corresponding to the measurement of the streamwise
skin friction is shown in figure 11. Note that the shape of this kernel varies rapidly
near t = 0, then gradually approaches a steady state. Also note that, near t =0, the
kernel is similar in its streamwise and spanwise extent, but, as time evolves, the
kernel becomes elongated in its streamwise extent. This is consistent with the fact
that streamwise elongated structures are persistent in time and typically dominate
such flows.

4.1.2. Steady-state shapes of the kernels

The time-varying kernels computed via the solution of the DRE eventually converge
to a steady state. Figure 12 shows these steady-state shapes for each of the three
measurement and the two evolution equations. Note the close correspondence between



286 J. Hœpffner, M. Chevalier, T. R. Bewley and D. S. Henningson

0.5

–0.5

0

0.5

–0.5

–2
0

0
5

10
15

2

–2
0

0
–5

5
10

15 2

–2
0

0
–5

5
10

15 2

0

0.5

–0.5

0

–2
0

0
–5

5
10

15 2

0.5

–0.5

0

–2
0

0
–5

5
10

15 2

0.5

–0.5

0

–2
0

0
–5

5
10

15 2

0.5

–0.5

0

y

0.5

–0.5

0

–2
0

0
5

10
15

2

y

0.5

–0.5

0

–2
0

0
5

10
15 2

y

0.5

–0.5

0

–2
0

0
5

10
15 2

y

0.5

–0.5

0

–2
0

0
5

x x zz
10

15 2

y

(a) (b)

Figure 11. The time-varying kernel for times (top to bottom) t = 0, 15, 30, 45 and 60, relating
the streamwise component of the shear stress measurement at the point {x = 0, y = −1, z = 0}
on the wall to the estimator forcing on the interior of the domain for the evolution equation for
the estimate of (a) v and (b) η. Visualized are positive (dark) and negative (light) isosurfaces
with isovalues of ± 5 % of the maximum amplitude for each kernel illustrated.

the steady-state kernels for the τx measurement in figure 12 and the corresponding
kernels at t = 60 in figure 11.

It is important to note that the spatial extent of the convolution kernels is related, to
some degree, to the correlation length scales chosen during the disturbance parameter-
ization defining the estimation problem. Specifically, the parameters dx , dy and dz

parameterizing the correlation length scales of the disturbances in § 2.4.2 have a direct
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Figure 12. The steady-state convolution kernels relating the (a) τx , (b) τz and (c) p measure-
ments at the point {x = 0, y = −1, z = 0} on the wall to the estimator forcing on the interior
of the domain for the evolution equation for the estimate of v (top) and η (bottom). Visualized
are positive (dark) and negative (light) isosurfaces with isovalues of ± 5 % of the maximum
amplitude for each kernel illustrated.
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Figure 13. Decay of the pressure kernel forcing the streamwise velocity component of the state
estimate, (a) integrated in the streamwise and wall normal direction for (solid) dx = dz = 0.2,
(dashed) 0.7, and (dot-dashed) 1.3, and (b) integrated in the spanwise and wall-normal
directions for (solid) Re = 3000, (dashed) 2000, (dot-dashed) 1000.

effect on the spatial extent of the present kernels. For example, figure 13(a) shows,
for three different values of dz, the spanwise extent of the pressure kernel forcing
the streamwise velocity component of the state estimate, integrated in the streamwise
and wall-normal directions. It is clear that, when designing feedback for disturbances
which are more ‘spread out’ in the spanwise direction (that is, disturbances with greater
two-point correlation length scales in the spanwise direction), the corresponding
convolution kernel has a broader spanwise extent. It is also seen that this broader
kernel has a lower peak amplitude, since the corresponding forcing is more distributed.

The streamwise extent of the kernel is less sensitive to the streamwise correlation
length scale of the disturbances, but is a strong function of the Reynolds number. In a
flow with a higher Reynolds number, the effect of flow advection is more pronounced,
and information from wall sensors can be related to the interior flow structures
responsible for this wall footprint that have since advected further downstream. This
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effect can be clearly seen in figure 13(b), which shows the same kernel as in figure 13(a),
but integrated in the spanwise and cross-flow directions for three different Reynolds
numbers.

4.2. Estimation of an infinitesimal localized flow perturbation

The localized flow perturbation studied by Henningson, Lundbladh & Johansson
(1993) is now used to test the convergence of the estimator in physical space. In
this section, we will consider the direct numerical simulation of an infinitesimal flow
perturbation, so that nonlinear effects in this section can effectively be neglected.

Recall that the estimator initializes the state estimate as zero; that is, it assumes no
a priori knowledge of the location of the initial flow perturbation. In the following,
we explore different models for the assumed covariance of the initial estimation error
by varying the design parameter c2 in (2.6). This parameter effectively reflects our
level of confidence in our knowledge of the relevant statistical properties of the initial
conditions, ranging from 0.05 (little specific knowledge of the statistical properties of
the initial conditions) to 1 (accurate knowledge of these statistics, but no knowledge
of the actual location of the initial flow perturbation). For the simulations reported
here, the exact initial condition of the flow perturbation, described below, is used
as the ‘specific’ component s in the parameterization of the initial covariance of the
estimation error, P (0), for the purpose of the computation of the feedback kernels.

The external disturbance forcing of the flow considered in this section is taken
as zero, so the resulting simulation might be characterized as a ‘deterministic’ case
with no stochastic forcing. The initial condition of the flow considered in this section
consists of an axisymmetric disturbance of the form

ψ = 1
2
εf (y)r2e−(r/ l)2,

f (y) = (1 + y)2(1 − y)5,

(u, v, w) =

(
− x

r2
ψy,

1

r
ψr, − z

r2
ψy

)
.


 (4.1)

Here (x, y, z) are the streamwise, wall-normal and spanwise coordinates, respectively,
r2 = x2 + z2, and (u, v, w) are the corresponding velocity components. The horizontal
extent of this perturbation may be adjusted with the parameter l, which is set
equal to 1 for the presented simulations so that the maximum energy of the initial
flow perturbation in Fourier space is at the wavenumber pairs showing the greatest
transient energy growth, as illustrated in figure 14. The parameter ε scaling the
amplitude of the initial flow perturbation is taken as 0.001.

Five different estimators, as formulated in the previous sections with feedback gains
computed by selecting c2 = 0.05, 0.1, 0.25, 0.5 and 1, respectively, were tested on the
problem of estimating this flow. It can be seen in figure 15 that the variation of c2

between 1 and 0.25 had a relatively small effect on the resulting estimator performance,
and that all four of the estimators tested in this range significantly outperformed
the estimator that used only the steady-state kernels (dashed line), which does not
depend on the parameterization of the statistics of the initial conditions. On the other
hand, the estimator in the case with c2 = 0.05 significantly underperformed the others,
indicating that, when no useful information is available concerning the statistics of the
initial conditions, it might be better simply to use the steady-state kernels computed via
solution of the ARE.

Figure 16 visualizes the evolution of this flow perturbation (figure 16a) as it evolves
from the initial conditions provided, as well as the evolution of the state estimate
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Figure 14. Energy content (in Fourier space) of the initial condition for the case studied in
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Figure 15. The time evolution of the energy of an infinitesimal localized flow perturbation
(thick solid line) and the energy of the estimation error of the same flow using (dashed line)
the steady-state kernels determined from the solution of the ARE as well as (thin solid lines) a
gain scheduled set of kernels computed using values of c2 = 0.05, 0.1, 0.25, 0.5 and 1, increasing
in the direction of the arrow. Note that the energy E has been normalized by energy of the
initial flow perturbation.

(figure 16b) as it evolves from the initial condition of zero and is forced by the
feedback of the measurement error term as formulated in (2.9)–(2.10). It is seen that,
by time t = 60, all of the major features of the flow are apparently reproduced well
by the state estimate. Additionally, as seen in figure 15, the time t =60 is rather early
in the evolution of the flow perturbation – the energy of the flow perturbation is still
growing substantially at this point, while the energy of the state estimation error is
by now decaying exponentially, indicating successful convergence of the estimator.

4.3. Estimation of a finite-amplitude flow perturbation

We now test the same estimator as used previously on the problem of estimating
a flow with the same initial conditions as considered in § 4.2, but with an initial
amplitude now almost an order of magnitude larger, such that nonlinear effects play
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Figure 16. Evolution of (a) a localized disturbance to the state and (b) the corresponding
state estimate at time t = 0 (top), t = 20 (middle), and t = 60 (bottom), computed with c2 = 0.08.
Visualized are positive (light) and negative (dark) isosurfaces of the streamwise component of
the velocity. The isovalues are ± 10 % of the maximum streamwise velocity of the flow during
the time interval shown.

a significant role. We take ε = 0.00828, which corresponds to a maximum wall normal
velocity of 0.0117 at t =0 (this is approximately ≈ 1.2 % of the maximum velocity of
the mean flow).

As in § 4.2, the direct numerical simulation reported here used the code described
in Lundbladh, Henningson & Johansson (1992), which uses a pseudo-spectral scheme
with Fourier, Chebychev and Fourier techniques in the streamwise, wall-normal and
spanwise directions, respectively. The time advancement was a third-order Runge–
Kutta method for the nonlinear terms and a second-order Crank–Nicolson method for
the linear terms. The box size is 48 × 2 × 24 and the grid resolution is 96 × 65 × 192.

As mentioned in the third paragraph of § 3, the estimator used in this work has
already been designed to handle well the leading-order effects of nonlinearity. Since we
know from Henningson et al. (1993) that nonlinear effects will be most pronounced
at wavenumber pairs with lower kx and higher kz than the initial conditions, we have
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Figure 17. Evolution of the normalized flow energy (thick lines) and normalized estimation
error energy (thin lines) for the case with moderate-amplitude initial conditions (solid) and
low-amplitude initial conditions (dashed). The evolution of the normalized estimation error
energy for the extended Kalman filter in the case with moderate-amplitude initial conditions
is also plotted (thin dot-dashed line), illustrating a significant improvement as compared with
the performance of the corresponding Kalman filter (thin solid line) when nonlinearities are
significant.

tuned the covariance of the external disturbance model upon which the estimator
is based to account specifically for unmodelled dynamics at these wavenumbers, as
depicted in figure 2. The model for the external disturbances accounts here for a
forcing of higher amplitude than for the tests on single wavenumber pairs of § 3, with
da = 0.68, and located closer to the walls, with p = 1. With this choice of parameters,
the expected flow energy grows due to the initial condition, and continues to grow
due to the forcing f , in a way similar to the nonlinear evolution of the flow.

The evolution of the energy of the state and the estimation error for both the
moderate-amplitude case (§ 4.3) and the small-amplitude case (§ 4.2) are plotted in
figure 17. To facilitate comparison, all curves have been normalized to unity at t = 0.
Note the significant difference in the normalized energy evolution of the state in
the two cases considered (compare the thick solid line and the thick dashed line);
this reflects the significant effects of nonlinearities in the moderate amplitude case.
For both cases, the initial stage of the evolution (during which nonlinear effects are
fairly small in both cases) is estimated well (thin lines). As the moderate-amplitude
perturbation evolves and its amplitude grows, nonlinear effects become significant,
and the performance of the linear estimator (thin solid line) is degraded as compared
with the performance of the linear estimator in the small-amplitude case (thin dashed
line).

The Kalman filter is an ‘optimal’ estimator (in several rigorous respects – see
Anderson & Moore (1979) for a detailed discussion) in the linear setting. As seen in
figure 17 and discussed in the previous paragraph, when a Kalman filter is applied to
a nonlinear system, its performance is typically degraded, owing to the fact that the
linear model upon which the Kalman filter is based does not include all the terms of
the (nonlinear) equation governing the actual system. A common (though somewhat
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ad hoc) patch which partially accounts for this deficiency is to reintroduce the system
nonlinearity to the estimator model after the Kalman filter is designed. This approach
is called an extended Kalman filter. This type of estimator is identical to the Kalman
filter except for the presence of the system’s nonlinearity in the estimator model. This
addition makes some sense: if the estimate of the state happens to match the actual
state, no feedback from measurements is required for the extended Kalman filter to
track the actual flow state. This is not the case for the standard (linear) Kalman filter.
As seen clearly in figure 17, the extended Kalman filter (thin dot-dashed line) enjoys
a substantial performance improvement compared with its standard Kalman filter
counterpart (the thin solid line) for estimating finite-amplitude flow perturbations
when nonlinearities in the system model are significant.

5. Conclusions
A canonical feedback-control problem in fluid mechanics, which undoubtedly

sets the stage for several follow-on flow-control problems that incorporate greater
geometric complexity, is the feedback control of a near-wall flow system based on
limited noisy measurements from flush wall-mounted sensors in order to stabilize the
flow and inhibit transition to turbulence. In such problems, it is natural to apply
model-based linear control theory, as the equations of motion of the system are well
known and the linearization of these equations is valid, at least during the early stages
of the transition process when all flow perturbations are small. The mathematical
framework for the linear control theory we have chosen to apply in the present study,
commonly called ‘optimal’ or ‘H2’ control theory, is well known in both the finite-
and infinite-dimensional setting. However, the fact that the flow system is infinite
dimensional and that regularity issues play a very subtle role in the well posedness of
this control problem in the infinite-dimensional setting, compounded by the fact that
the theory of well posedness of the equations of motion of the system of interest (that
is, the three-dimensional Navier–Stokes equation) is not yet even complete, leads to
some peculiar challenges in the well-posed framing and subsequent numerical solution
of this challenging flow-control problem.

Via the so-called separation principle, such linearized flow-control problems in the
optimal setting break up into two independent subproblems: control of the flow
with whatever actuators are available based on full state information, and estimation
of the full flow state with whatever sensors are available. Once both subproblems
are solved effectively, they may be combined to develop a dynamic compensator to
control the flow system using limited actuation authority (with, for example, actuators
mounted on the walls) based only on limited noisy measurements of the flow (with, for
example, sensors mounted on the walls). In previous work, excellent results had been
obtained on the full-state feedback control problem, but certain unresolved difficulties
remained on the estimation problem. The present work thus focused exclusively on
the estimation problem.

The first important development in this work was the introduction of a physically
relevant parameterization of the external disturbances acting on the system that
converges upon refinement of the numerical grid. This disturbance parameterization
is fairly generic, and can easily be used to give an insight into the initial conditions
likely to be encountered in a given flow (for example, Tollmien–Schlichting (TS)
waves, streaks, or streamwise vortices). Also, the disturbance parameterization can be
tuned in order to modify (at least, to some degree) the spatial extent of the resulting
convolution kernels.
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Using this disturbance parameterization, together with appropriate parameteriza-
tions of the initial conditions and the measurement noise, feedback gains for the
estimation problem were computed (using a efficient Chandrasekhar method) for the
near-wall flow system in Fourier space on a large array of (decoupled) wavenumber
pairs {kx, kz}, then inversed transformed to obtain physical-space convolution kernels.
The improved disturbance parameterization proposed in this study facilitated, for
the first time, the computation of measurement feedback gains in the discretized
problem that converged upon grid refinement (and thus are relevant for the infinite-
dimensional problem upon which the numerical problem solved in the computer was
derived) for all three types of measurements that are available on the wall (that is,
streamwise and spanwise wall skin friction and wall pressure).

The second significant development in this work was the recognition that for the
problem of transition control, though time-invariant feedback gains (computed from
a corresponding algebraic Riccati equation) are sufficient for the full-state feedback
control problem, time-varying feedback gains (computed from a differential Riccati
equation) are necessary for the estimation problem in order to minimize the initial
transient in the estimation error when the estimator is turned on.

The estimator feedback rules that resulted from these two developments were tested
extensively both in Fourier space (in the linearized setting) and in physical space (in
direct numerical simulations of both infinitesimal and finite-amplitude disturbances
for which the effects of nonlinearity are significant). The estimator was shown to
perform well for all cases studied except when the external disturbances excited
centre modes, which can happen sometimes for wavenumber pairs with relatively
large streamwise component (that is, for modes which are relatively large in their
spanwise extent). Fortunately, it was recognized that such cases are not the primary
cases of interest in most transition scenarios. It was also found that, when the flow
perturbations were large enough that the nonlinearities of the system were significant,
an extended Kalman filter which incorporated the system nonlinearity in the estimator
model outperformed the standard (linear) Kalman filter.

Part 2 of this study will give a summary of recent work considering the extension
of such estimation strategies to the problem of fully developed near-wall turbulence.
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