
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

GBEES-GPU: An efficient parallel GPU algorithm for high-dimensional

nonlinear uncertainty propagation

Benjamin L. Hanson a, ,∗, Carlos Rubio b, Adrián García-Gutiérrez b, Thomas Bewley a

a Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, 92093, CA, USA
b Department of Aerospace Engineering, Universidad de León, Av. Facultad de Veterinaria, 25, León, 24004, Spain

A R T I C L E I N F O A B S T R A C T

The review of this paper was arranged by
Prof. Andrew Hazel

Keywords:

Eulerian uncertainty propagation

Corner transport upwind

Dynamic gridding

Hashtables

CUDA

GPU

Eulerian nonlinear uncertainty propagation methods often suffer from finite domain limitations and computa

tional inefficiencies. A recent approach to this class of algorithm, Grid-based Bayesian Estimation Exploiting
Sparsity, addresses the first challenge by dynamically allocating a discretized grid in regions of phase space
where probability is non-negligible. However, the design of the original algorithm causes the second challenge
to persist in high-dimensional systems. This paper presents an architectural optimization of the algorithm for
CPU implementation, followed by its adaptation to the CUDA framework for single GPU execution. The algo

rithm is validated for accuracy and convergence, with performance evaluated across distinct GPUs. Tests include
propagating a three-dimensional probability distribution subject to the Lorenz ’63 model and a six-dimensional
probability distribution subject to the Lorenz ’96 model. The results imply that the improvements made result in
a speedup of over 1000 times compared to the original implementation.

1. Introduction

Uncertainty propagation (UP) is the process by which the initial un

certainty of a state is evolved over time. While closely related to the
state estimation problem, UP focuses on the estimation of the state un

certainty rather than the state itself, although the latter may often be
extracted from the former. Like state estimation, UP consists of two re

peated steps known as prediction and correction. During prediction, state
uncertainty is propagated via the dynamical system governing the state’s
evolution. At correction intervals, state measurements are sourced from
a measurement model and combined with the predicted uncertainty. In
this paper, high-dimensional UP refers to cases where the state dimen

sion 𝑛 > 3, which most commonly arise when the state depends on the
position-velocity phase space. This is prevalent in fields such as orbital
mechanics and space surveillance [1,2], attitude estimation [2], aircraft
navigation [3], robotics and robust control [4], weather prediction and
climate models [4], hydrology and geology [4], nuclear physics [4],
biological and chemical models [4,5], reliability and safety studies of
structural designs [6], and many others.

When the dynamical system and measurement model are linear, and
the initial state uncertainty is Gaussian, state uncertainty remains Gaus

sian globally; therefore, only estimation of the mean and covariance

* Corresponding author.

E-mail address: blhanson@ucsd.edu (B.L. Hanson).

is required for complete representation of the uncertainty, a tractable
problem optimally solved by Kalman [7]. The Kalman filter is subopti

mal when one or both of the dynamical system and measurement model
are nonlinear. In this case, an infinite number of parameters may be re

quired to represent the uncertainty. Nonlinear uncertainty propagation
(NUP) numerical methods aim to represent this intractable uncertainty
with finite abstractions. These abstractions must be computed efficiently
while preserving accuracy, and typically adhere to one of three method

ologies: Kalman, Langragian, and Eulerian.

The Eulerian approach to NUP considers and evolves uncertainty
by discretizing phase space on a grid. Godunov [8] and Lax and Wen

droff [9] designed first-order accurate, grid-based numerical schemes
using conservation laws, but Arulampalam et al. [10] highlighted that
standard grid-based methods predefined on finite domain spaces suf

fer from heavy computational cost. Bewley and Sharma [11] addressed
this limitation with Grid-based Bayesian Estimation Exploiting Sparsity
(GBEES), a novel unstructured gridding scheme that excels at NUP when
uncertainty is highly non-Gaussian, tracking uncertainty only where it is
non-negligible. Outside of the examples discussed in this paper, GBEES
has been validated via the NUP of the Poincaré orbital element dynamics
(2D), a Saturn-Enceladus Distant Prograde Orbit (4D), and a Jupiter

Europa Low Prograde Orbit (6D) [12]. A review of NUP methods by

https://doi.org/10.1016/j.cpc.2025.109819

Received 10 December 2024; Received in revised form 17 July 2025; Accepted 19 August 2025

Computer Physics Communications 317 (2025) 109819

Available online 28 August 2025
0010-4655/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://orcid.org/0000-0001-6492-1931
mailto:blhanson@ucsd.edu
https://doi.org/10.1016/j.cpc.2025.109819
https://doi.org/10.1016/j.cpc.2025.109819
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2025.109819&domain=pdf

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Hanson et al. [13] validated the accuracy of GBEES but emphasized its
inefficiency compared with Kalman and Lagrangian approaches. Davis
et al. [14] and Castro et al. [15] employed adaptive mesh refinement
paired with grids stored in hash tables in attempts to address this com

putational cost; because these algorithms are primarily used in compu

tational fluid dynamics (CFD), rarely do they address high-dimensional
systems and their complexity.

Of the three numerical methodologies, we assert that the Eulerian
approach addresses the problem of NUP most fundamentally, requiring
the least abstraction to generally represent and propagate uncertainty.
Eulerian approaches do not linearize during prediction or correction, do
not require splitting procedures to maintain accuracy, and do not suc

cumb to particle degeneracy. They also happen to be the least explored
of the three for high-dimensional systems. Given the primary draw

back of this class of methods is computational cost, we argue that the
Eulerian approach warrants further investigation for high-dimensional
NUP as computational solutions continue to emerge. GPUs are one such
promising solution, given that the finite volume schemes are embarrass

ingly parallelizable, and have been employed often by CFD algorithms
for two- and three-dimensional systems (e.g., Ji et al. [16] Jaber et al.
[17]). These parallelized algorithms seldom extend to high-dimensional
systems.

To address the limitations of high-dimensional Eulerian NUP meth

ods, we introduce GBEES-GPU: a parallel extension of GBEES with im

proved efficiency achieved by:

1. Storing the dynamic grid in a hashtable

2. Time-marching with a CFL-minimized adaptive step size

3. Employing directional growing and pruning procedures

4. Translating the algorithm to CUDA for single GPU execution

These changes result in an efficient, high-dimensional parallel GPU al

gorithm for NUP, detailed in the remainder of the paper as follows: In
Section 2 the finite volume formulation underlying GBEES is extended
to 𝑛-dimensions. Section 3 outlines the first key deliverable referenced
in the abstract, the improvements made to the CPU implementation,
while Section 4 describes the second key deliverable referenced in the
abstract, its adaptation to the CUDA architecture. Section 5 presents the
use cases employed for validation and testing, including a quantitative
measure of accuracy and the evaluation of convergence. Next, Section 6
compares the performance of the improved CPU and GPU implementa

tions against the legacy version. Conclusions are presented in Section 7,
and the hardware specifications for the tests are provided in Appendix A.

2. Grid-based Bayesian estimation exploiting sparsity

The equations of motion of a stochastic process 𝑿(𝑡) ∈ℝ𝑛 governed
by a combination of deterministic and random forces can be described
by the following stochastic differential equation:

𝑑𝑿(𝑡) = 𝒇 (𝑿(𝑡), 𝑡)𝑑𝑡+ 𝒒(𝑿(𝑡), 𝑡)𝑑𝑾 (𝑡), (1)

where 𝒇 (𝑿(𝑡), 𝑡) is the drift vector, 𝒒(𝑿(𝑡), 𝑡) is the diffusion vector, and
𝑑𝑾 (𝑡) = 𝝃(𝑡)𝑑𝑡 is a Wiener process, meaning 𝝃(𝑡) is zero-mean, uncor

related white noise (i.e., 𝔼[𝝃(𝑡)] = 𝟎 and 𝔼[𝝃(𝑡 + 𝜏)𝝃⊤(𝑡)] = 𝜹(𝜏), where
𝔼[⋅] is the expectation of ⋅). In continuous-time, the Fokker-Planck equa

tion gives the evolution of the probability density function (PDF) 𝑝(𝒙, 𝑡)
of 𝑿(𝑡) in Eq. (1) as follows:

𝜕𝑝(𝒙, 𝑡)
𝜕𝑡

= −
𝑛 ∑
𝑗=1

𝜕𝑓𝑗 (𝒙, 𝑡)𝑝(𝒙, 𝑡)
𝜕𝑥𝑗

+ 1
2

𝑛 ∑
𝑗=1

𝑛 ∑
𝓁=1

𝜕2𝑄𝑗𝓁(𝒙, 𝑡) 𝑝(𝒙, 𝑡)
𝜕𝑥𝑗𝜕𝑥𝓁

(2)

where 𝒙 = (𝑥1,… , 𝑥𝑛) is a realization of the random variable 𝑿(𝑡),
𝑓𝑗 (𝒙, 𝑡) is the 𝑗th component of 𝒇 (𝒙, 𝑡), and 𝑄𝑗𝓁(𝒙, 𝑡) is the (𝑗,𝓁)th
component of the process noise spectral density matrix 𝑄(𝒙, 𝑡) =
𝒒(𝒙, 𝑡)𝒒⊤(𝒙, 𝑡). If 𝑄(𝒙, 𝑡) > 0 (i.e., it is positive definite), Eq. (2) is el

liptic, but if 𝑄(𝒙, 𝑡) is relatively small compared to the deterministic

forces, Eq. (2) is hyperbolic and satisfies the conservative form of the
𝑛-dimensional advection equation:

𝜕𝑝(𝒙, 𝑡)
𝜕𝑡

+
𝑛 ∑
𝑗=1

𝜕𝑓 ′
𝑗
(𝒙, 𝑡)

𝜕𝑥𝑗
= 0, (3)

where 𝑓 ′
𝑗
(𝒙, 𝑡) = 𝑓𝑗 (𝒙, 𝑡)𝑝(𝒙, 𝑡). At discrete measurement intervals 𝑡(𝑘) the

PDF is updated via Bayes’ theorem:

𝑝(𝒙, 𝑡(𝑘+)) =
𝑝(𝒚(𝑘)|𝒙) 𝑝(𝒙, 𝑡(𝑘−))

𝐶
, (4)

where 𝑝(𝒙, 𝑡(𝑘+)) is the a posteriori, 𝑝(𝒚(𝑘)|𝒙) is the measurement likeli

hood, 𝑝(𝒙, 𝑡(𝑘−)) is the a priori, and 𝐶 is a normalization constant. GBEES
performs the accurate, mixed continuous/discrete time-marching of
𝑝(𝒙, 𝑡) using numerical approximations of Eqs. (3) and (4). We first delve
into the continuous-time prediction of 𝑝(𝒙, 𝑡) via a fully discrete flux

differencing method.

2.1. Corner transport upwinding for 𝑛-dimensional systems

We use the notation from Colella et al. [18] to define an 𝑛
dimensional control volume 𝑉𝒊 as

𝑉𝒊 =
𝑛 ∏
𝑗=1

[
𝑥𝑖𝑗

−
ℎ𝑗

2
, 𝑥𝑖𝑗

+
ℎ𝑗

2

]
, (5)

where the multi-index 𝒊 = (𝑖1,… , 𝑖𝑛) ∈ℤ𝑛 identifies the control volume
center within the grid, and 𝒉 = (ℎ1,… , ℎ𝑛) ∈ℝ𝑛+ is the grid spacing vec

tor. From Eq. (3), 𝑝 is assumed to be conserved over 𝑉𝒊, thus the integral
of 𝑝 varies only due to flux across the boundaries of 𝑉𝒊. The components
of the flux vectors at the forward and backward grid cell interfaces of
𝑉𝒊 at time step 𝑡(𝑘) are defined as

𝐹
(𝑘)
𝒊± 1

2 𝒆
𝑗 , 𝑗

≈ 1

Δ𝑡
𝑛 ∏

𝓁=1
𝓁≠𝑗

ℎ𝓁

𝑡(𝑘+1)

∫
𝑡(𝑘)

∫
𝐴𝒊,𝑗

𝑓 ′
𝑗
(𝒙

𝒊± 1
2 𝒆
𝑗 , 𝑡)𝑑𝑨𝑑𝑡, (6)

where 𝐴𝒊,𝑗 are the faces bounding the 𝑉𝒊 with normals pointing in the
𝑗th coordinate direction and 𝒆𝑗 denotes the unit vector in the 𝑗th co

ordinate direction. The numerical fluxes 𝐹 (𝑘)
𝒊± 1

2 𝒆
𝑗 , 𝑗

are approximated via

a Godunov-type finite volume method known as Corner Transport Up

winding (CTU). We now describe the 𝑛-dimensional generalization for
the CTU method.

First, the Donor Cell Upwind (DCU) method is used to calculate the
first-order accurate numerical fluxes. For 𝒊 ∈ , where  represents the
complete set of multi-index vectors in the grid, the upwind flux in the
𝑗th direction at time step 𝑘 is calculated:

𝐹
(𝑘)
𝒊− 1

2 𝒆
𝑗 , 𝑗

= 𝑓+
𝒊− 1

2 𝒆
𝑗 , 𝑗
𝑃
(𝑘)
𝒊−𝒆𝑗 + 𝑓

−
𝒊− 1

2 𝒆
𝑗 , 𝑗 𝑃

(𝑘)
𝒊
, (7)

where 𝑓±
𝒊− 1

2 𝒆
𝑗 , 𝑗

= max∕min(𝑓 (𝑘)
𝒊− 1

2 𝒆
𝑗 , 𝑗
,0), 𝑓 (𝑘)

𝒊− 1
2 𝒆
𝑗 , 𝑗

= 𝑓𝑗 (𝒙𝒊− 1
2 𝒆
𝑗 , 𝑡

(𝑘)), and

𝑃
(𝑘)
𝒊

is the probability defined at grid cell 𝒊 at time step 𝑡(𝑘).
Eq. (7) only considers probability flowing normal to the grid cell

interface, but in general, probability may flow oblique to the interfaces
of 𝑉𝒊. To obtain second-order accuracy, we must account for this with
flux corrections. Because the 𝑛-dimensional CTU method is notationally
complex, we provide it in full in Algorithm 1.

The CTU method is still not second-order accurate, as it is missing
high-resolution correction terms. For brevity, and because these correc

tion terms do not depend on dimensionality, we do not restate them
here. Instead, they may be found in Bewley and Sharma [11]. In total

ity, Eq. (7), Algorithm 1, and the high-resolution correction terms result
in a Godunov finite volume scheme that is formally second-order ac

curate; the truncation error analysis proving such may also be found in

Computer Physics Communications 317 (2025) 109819

2

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Algorithm 1 Corner Transport Upwind.

Require: Perform DCU for 𝒊∈ 
1: for 𝒊 ∈  do

2: for 𝑗 = 1 to 𝑛 do

3: 𝐹 ∗ ← Δ𝑡
2ℎ𝑗

(
𝑃

(𝑘)
𝒊

− 𝑃 (𝑘)
𝒊−𝒆𝑗

)
4: for 𝓁 = 1 to 𝑛, 𝓁 ≠ 𝑗 do

5: 𝐹
(𝑘)
𝒊+ 1

2 𝒆
𝓁 , 𝓁 ← 𝐹

(𝑘)
𝒊+ 1

2 𝒆
𝓁 , 𝓁 − 𝑓

+
𝒊− 1

2 𝒆
𝑗 , 𝑗 𝑓

+
𝒊+ 1

2 𝒆
𝓁 , 𝓁 𝐹

∗

6: 𝐹
(𝑘)
𝒊− 1

2 𝒆
𝓁 , 𝓁 ← 𝐹

(𝑘)
𝒊− 1

2 𝒆
𝓁 , 𝓁 − 𝑓

+
𝒊− 1

2 𝒆
𝑗 , 𝑗 𝑓

−
𝒊− 1

2 𝒆
𝓁 , 𝓁 𝐹

∗

7: 𝐹
(𝑘)
𝒊−𝒆𝑗+ 1

2 𝒆
𝓁 , 𝓁 ← 𝐹

(𝑘)
𝒊−𝒆𝑗+ 1

2 𝒆
𝓁 , 𝓁 − 𝑓

−
𝒊− 1

2 𝒆
𝑗 , 𝑗 𝑓

+
𝒊−𝒆𝑗+ 1

2 𝒆
𝓁 , 𝓁 𝐹

∗

8: 𝐹
(𝑘)
𝒊−𝒆𝑗− 1

2 𝒆
𝓁 , 𝓁 ← 𝐹

(𝑘)
𝒊−𝒆𝑗− 1

2 𝒆
𝓁 , 𝓁 − 𝑓

−
𝒊− 1

2 𝒆
𝑗 , 𝑗 𝑓

−
𝒊−𝒆𝑗− 1

2 𝒆
𝓁 , 𝓁 𝐹

∗

9: end for

10: end for

11: end for

Fig. 1. GBEES simplified flowchart. The underscored operations modify the grid
by adding or removing active cells. The PDF is propagated until the end time
𝑡end or the time for the next measurement update 𝑡𝑚.

[11]. Given GBEES employs a regular, structured grid scheme, this anal

ysis is sufficient evidence to claim second-order accuracy, as reported
by Veluri et al. [19] and Diskin and Thomas [20].

3. Advancements made to the CPU implementation

GBEES excels where other finite volume methods fail by dynamically
allocating grid cells where probability is above some threshold. Fig. 1
illustrates this process: in the grow grid phase, new cells are added to
the discrete representation of the PDF, and in the prune grid phase,
cells with probability below the threshold are discarded. This dynamic
grid evolution is iterated either until the end time of the uncertainty
propagation is reached or until the next measurement update occurs, at
which point the grid-based PDF is updated using a Bayesian approach.

This process is implemented in the legacy algorithm; however, that
implementation includes structures and subprocesses that are ripe for
optimization. Prior to detailing the GPU implementation, we discuss the
efficiency improvements made to the CPU implementation.

3.1. Dynamic grid stored in hashtable

The legacy implementation of GBEES stores the dynamic grid in
a nested list data structure. Many functions within GBEES require a

searching procedure to check if a given 𝑉𝒊 exists in the grid. The time
complexity of searching a nested list is (𝑁2), which will result in com

putational bottlenecks for high-dimensional systems. The first attempt
to address this issue employed a binary search tree [21], but overhead of
the conversion from grid cell index vector 𝒊 to unique, positive key value
proved too large. Instead, a hashtable was utilized, as the structure al

lows for collisions between mappings, thus removing the overhead from
ensuring bijectivity. Additionally, the time complexity of search for a
hashtable is (1). Hashtables are discussed further in Section 4.2.

3.2. CFL-minimized adaptive time-marching

For finite volume methods, the Courant–Friedrichs--Lewy (CFL) con

dition [22] 𝐶 ≤ 𝐶max must be satisfied in order for the method to be
stable. The legacy implementation of GBEES employed a static, over

conservative time step to ensure stability for the entire propagation
period. The new implementation of GBEES uses the following adaptive
time step:

Δ𝑡(𝑘) = min
𝒊∈

[(𝑛 ∑
𝑗=1

𝑓
(𝑘)
𝒊− 1

2 𝒆
𝑗 , 𝑗

ℎ𝑗

)−1
]
. (8)

Implementing Eq. (8) maximizes the time step size while ensuring the
stability of the explicit finite volume method.

3.3. Directional growing and pruning

To exploit the sparsity of an 𝑛-dimensional PDF over phase space,
grid cells are tracked where probability is above some threshold 𝑝∗. To
ensure probability is not lost during time-marching, grid cells neighbor

ing those above threshold are also tracked. In the legacy implementation
of GBEES, during the growing procedure, the algorithm loops through
all existing grid cells and checks if any of the 3𝑛 − 1 neighbors that do
not exist must be inserted, regardless if probability is likely to flow into
the new grid cell in the following step. This can create irrelevant grid
cells that are deleted in future steps without ever increasing in probabil

ity. In the new GBEES implementation, the direction of the advection is
used to determine if a neighboring grid cell is required for the next time
step. As is demonstrated in Fig. 2, only the downwind grid cells are cre

ated; at maximum, this results in checking only 2𝑛 −1 neighbors, saving
on the number of cells that are inserted in each growth step.

Similarly, during the pruning procedure, the algorithm loops through
all existing grid cells, looking for those that are below threshold 𝑝∗. In
the legacy GBEES implementation, before deleting the negligible cell,
the algorithm checks each of the 3𝑛−1 neighbors to see if any are above
𝑝∗. Again, this results in redundant cells being saved, as even if a neigh

boring cell is above threshold, it does not necessarily mean that in the
following time steps, it will flow probability into the considered cell. In

stead, the new GBEES implementation takes a directional-approach to
the growth procedure, wherein only the neighboring grid cells that are
upwind are checked for probability above 𝑝∗. Fig. 3 shows that this re

quires the algorithm to check at maximum, 2𝑛 − 1 neighbors, a fraction
of the total neighbor cells, while ensuring that negligible cells are not
saved, again contribution to the efficiency of the new algorithm.

4. CUDA implementation

The CUDA implementation builds upon the enhancements made to
the CPU version described in the previous section. This section details
the implementation for the CUDA architecture [23] and the optimiza

tion strategies employed.

As described in Section 2, GBEES requires a dynamic grid in which
cells are added or removed throughout the integration steps. The scheme
depicted in the simplified flowchart of Fig. 1 is representative of the
high-level operations of both the CPU and GPU versions. The under

scored operations modify the grid by adding or removing active cells.

Computer Physics Communications 317 (2025) 109819

3

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Legacy Optimized

𝑉(−1,−1)

𝑉(−1,0)

𝑉(−1,0)

𝑉(0,−1)

𝑉(0,0)

𝑉(0,1)

𝑉(1,−1)

𝑉(1,0)

𝑉(1,1)

𝑉(0,0)

𝑉(0,1)

𝑉(1,0)

𝑉(1,1)

𝐹
(𝑘)
(0,1∕2), 2

𝐹
(𝑘)
(1∕2

,0), 1

𝐹
(𝑘)
(0,1∕2), 2

𝐹
(𝑘)
(1∕2

,0), 1

Fig. 2. 2D schematic demonstrating the differences in the growing procedure for the legacy and optimized implementations of GBEES. Solid border cells are those
with probability above threshold, dashed border cells are those set to be created during the growing procedure, and dotted border cells are neglected.

Legacy Optimized

𝑉(−1,−1)

𝑉(−1,0)

𝑉(−1,0)

𝑉(0,−1)

𝑉(0,0)

𝑉(0,1)

𝑉(1,−1)

𝑉(1,0)

𝑉(1,1)

𝑉(0,0)

𝑉(0,−1)

𝑉(−1,0)

𝑉(−1,−1)

𝐹
(𝑘)
(0,−1∕2), 2

𝐹
(𝑘)
(−

1∕2
,0), 1

𝐹
(𝑘)
(0,−1∕2), 2

𝐹
(𝑘)
(−

1∕2
,0), 1

Fig. 3. 2D schematic demonstrating the differences in the pruning procedure for the legacy and optimized implementations of GBEES. Solid border cells are those
with probability below threshold, dashed border cells are those checked during the pruning procedure, and dotted border cells are neglected.

Consequently, the dynamic grid not only changes at each integration
step but may also be updated multiple times within a single iteration.

This dynamic nature of the grid prevents establishing a fixed map

ping between execution threads and cells. In parallel implementations of
finite volume software using a static grid [24--27], the grid is partitioned
into subdomains (each one including also a boundary with additional
halo or ghost cells) and these subdomains are then assigned to thread
blocks on the GPU. However, with a dynamic grid, a flexible assignment
of cells to threads is required, along with additional synchronization, as
thread blocks can no longer operate independently within isolated sub

domains.

The problem of handling a dynamic grid alongside GPU paralleliza

tion has not been previously addressed in the field of uncertainty prop

agation. However, a closely related problem arises in Adaptive Mesh
Refinement (AMR). AMR [28,29] is used in CFD to refine mesh regions
with high gradients, such as shocks or vortices, and is also applied in
fields like astrophysics and structural analysis.

AMR involves mesh refinement and coarsening phases, similar to the
growth and pruning of the grid in GBEES. Given the difficulty and per

formance penalty associated with synchronizing the dynamic memory
structures on the GPU, some AMR implementations [30--32] adopt a hy

brid CPU-GPU approach, where mesh modifications occur on the CPU

while flow propagation is computed on the GPU. Other studies have
pursued a fully GPU-based implementation by leveraging specialized
low-level synchronization mechanisms and data structures, including
lists/trees [33,16,34,17] and hashtables [35].

The implementation proposed in this paper combines specific data
structures, synchronization algorithms, and parallel techniques to opti

mize the GBEES-GPU solver. While some elements resemble those used
in AMR (such as using hashtables [35], stream compaction [34], and
additional lists [33]) they are adapted to suit the distinct nature of the
problem.

The dynamic structure of the grid impacts all aspects of the GPU
implementation, necessitating more complex synchronization mecha

nisms and a highly efficient memory layout for storing the grid. This
extra global-level synchronization required is provided by the Coopera

tive Kernel abstraction in CUDA [36]. A Cooperative Kernel requires all
threads to be active concurrently, enabling the establishment of global
synchronization barriers. This means the maximum number of threads
equals the GPU device’s maximum simultaneous threads. If the grid con

tains more cells than this limit, each thread must process multiple cells
sequentially.

The thread-cell assignment is therefore dynamic and varies several
times at each integration step. Given a set of 𝓁 threads (𝑡ℎ1,… , 𝑡ℎ𝓁) and

Computer Physics Communications 317 (2025) 109819

4

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Fig. 4. Grid data structure. Notice that the Used List and the Free List are maintained compact, with all the used slots at the beginning and all the free slots at the
end.

𝑚 active cells in the current integration step (𝑐1 ,… , 𝑐𝑚), each thread 𝑗
processes sequentially the cells (𝑐𝑗 , 𝑐𝑗+𝓁 , 𝑐𝑗+2𝓁 ,…). The 𝓁 threads run
in parallel, so in the first stage, they process (𝑐1,… , 𝑐𝓁); in the second
stage, they process (𝑐𝓁+1,… , 𝑐2𝓁); in the third, (𝑐2𝓁+1,… , 𝑐3𝓁); and so
on until all active cells in the grid have been processed.

4.1. Grid data structure

Given the synchronization requirements, the dynamic thread-cell as

signments, and the need for each thread to process a variable number of
cells, we propose the data structure for the grid depicted in Fig. 4. This
data structure consists of a hashtable, a list to track used cells, another
list for unused cells, and a heap table for cell storage.

The hashtable provides fast access to a cell by its key, the multi-index
𝒊 = (𝑖1,… , 𝑖𝑛). This random access is crucial when accessing the neigh

bor cells in each dimension. The list of used cells in the grid serves two
main purposes. First, it enables quick access to used cells for functions
that process individual cells. More importantly, it allows an even dis

tribution of workload among active threads. The Free List maintains a
record of unused cells in the heap, reducing the time needed to locate
a free slot. Finally, the heap stores the cells themselves. In CUDA, it is
not possible to allocate memory directly within a device function in a
kernel. Therefore, and for performance reasons, all memory structures
are of fixed size, which, for a given configuration, sets the maximum
number of cells in the grid.

The relationships among these memory structures are depicted in
Fig. 4. In addition to the depicted relationships, each cell contains point

ers to its neighboring cells in each dimension by directly storing their
indexes of the Used List.

4.2. Hashtable

Because the maximum number of grid cells is fixed, we can set the
hashtable size to ensure a maximum occupancy level. The hashtable
size is configurable in the software as a multiple of the grid’s maximum
size, with a default setting of twice that size. This default configuration
ensures a maximum occupancy factor 𝛼 = 0.5. This bounded occupancy
allows us to use a simple open-addressing scheme with linear probing
[37]. With a well-randomized hash function [38]

𝔼[# of probes] =

{
(1 + 1∕(1 − 𝛼)2)∕2 unsuccessful search

(1 + 1∕(1 − 𝛼))∕2 successful search
.

The open addressing scheme requires marking elements as deleted
[37]. In GBEES, all cell deletions occur during the prune grid operation.

Since the prune operation is executed only for a subset of integration
steps, rehashing the hashtable after each grid prune has minimal impact
on performance while ensuring that the maximum occupancy level is
maintained. Moreover, in the CUDA implementation, this rehashing is
fully parallelized, with all execution threads sharing the workload to
rehash the hashtable entries concurrently.

Finally, achieving the expected efficiency requires a well-randomized
hash function. The key being hashed is the multi-index 𝒊, also known
as 𝑛-gram. Hashing by cyclic polynomial, also known as BuzHash, is an
effective method for hashing such 𝑛-grams, as described in [39]. Thus,
the BuzHash is used by GBEES.

4.3. Main code blocks

From an implementation perspective, we can divide the main code
blocks into operations that act on individual cells and those that act
on the grid as a whole. The first group is straightforward to imple

ment, as each thread modifies only its assigned cells without significant
synchronization issues, requiring only quick access to the cell and its
neighbors. This rapid access is achieved through the Used List. This cat

egory includes operations such as cell initialization, updating references
to the neighbor cells, updating the time step based on the CFL condition
[Eq. (8)], computing the DCU and CTU [Eq. (7), Algorithm 1, and high

resolution correction terms], probability distribution normalization, and
applying new measurements [Eq. (4)].

The second category involves grid-wide operations, specifically the
grid growth and grid pruning. These operations modify a shared global
resource, the grid, and therefore require careful synchronization. To op

timize CUDA performance, all synchronization is managed using atomic
operations and synchronization barriers, either at the block or device
level. The following sections detail the key synchronization aspects and
parallel techniques applied in these code blocks.

4.4. Synchronization aspects

4.4.1. Grow grid operation

To maximize efficiency in the grid growth operation, a concurrent
cell insertion method is required to avoid blocking threads during simul

taneous cell creations. Additionally, when exploring different dimen

sions in the phase space, the algorithm frequently attempts to create
cells that already exist. Algorithm 2 presents the chosen compromise
solution, which ensures correct synchronization without thread block

ing by utilizing atomic operations.

This implementation delays the complete initialization of the cell
(using a callback function) until it is confirmed that the cell does not

Computer Physics Communications 317 (2025) 109819

5

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Algorithm 2 Concurrent Cell Creation.

Require: usedList and freeList are compact

1: hash ← BuzHash(𝒊)
2: for count ∈ size(hashtable) do ⊳ linear probing

3: hashIndex ← (hash+ count) % size(hashtable)
4: if hashtable[hashIndex] is free then ⊳ current slot is empty

5: usedIndex ← atomicAdd[size(usedList)] ⊳ reserve used slot

6: freeIndex ← atomicDec[size(freeList)] ⊳ reserve free slot

7: hashtable[hashIndex].𝒊← 𝒊 ⊳ update hashtable and lists

8: usedList[usedIndex].heapIndex ← freeList[freeIndex]
9: usedList[usedIndex].hashIndex ← hashIndex

10: complete cell initialization with callback function

11: else

12: if hashtable[hashIndex].𝒊 is 𝒊 then ⊳ cell already exists

13: break

14: end if

15: end if

16: end for

already exist in the grid, thereby improving performance. However, the
selected approach has a trade-off: it can only check the existence of
a new cell against the previous state of the grid and cannot guarantee
successful checking with the other concurrent insertions. To address this
limitation, the grid growth operation adopts a staged, directional cell
growth strategy:

1. Growth is performed along the forward axis of all dimensions. A
global synchronization barrier is then executed

2. Growth is performed along the backward axis of all dimensions,
followed by another global synchronization step.

3. Edge growth is carried out in a similar staged manner in the four di

agonal directions (forward-forward, forward-backward, backward

forward, and backward-backward).

This staged approach ensures that no concurrent thread attempts to in

sert the same cell at the same time.

4.4.2. Prune grid operation

The prune grid operation, outlined in Algorithm 3, is less performance

critical as it is executed only once every several integration steps.
However, it requires specialized techniques to be performed in parallel
by all threads. The operation begins by marking cells whose probability
values fall below a specified threshold that do not neighbor any cells ex

ceeding this threshold, identifying them as candidates for pruning. The
next step involves performing a parallel prefix sum operation [40,41]
to compact the Used List. The prefix sum, also known as scan, com

putes cumulative sums over a list to facilitate parallel data compaction.
This scan is carried out by the active threads, as detailed in the fol

lowing section on specific parallel techniques. After the scan, the Used
List is compacted using a double-buffer scheme, and the freed slots are
added to the Free List via atomic operations. Finally, the Hashtable is
rehashed, also employing a double-buffer scheme and distributing the
rehashing workload across all active threads.

Algorithm 3 Grid Prune Operation.

1: for 𝒊 ∈  do

2: if 𝒊.𝑝 < 𝑝∗ and 𝒊 is not a neighbor then

3: 𝒊← negligible

4: end if

5: end for

6: perform a prefix sum process of usedList in shared memory

7: complete the prefix sum of usedList in global memory

8: compact usedList and update freeList

9: rehash hashtable

Ensure: perform a global synchronization at the end of each step.

4.5. Specific parallel techniques

The GBEES-GPU implementation employs two high-level parallel
techniques: parallel reduction and parallel scan. Parallel reduction is uti

lized to compute the sum of grid cell probabilities for normalizing the
distribution. Parallel scan is applied during the prune operation to com

pact the Used List. These techniques are widely recognized as standard
methods [41], and only a brief description is provided here, focusing on
their adaptation to the GBEES kernel’s context, which involves multiple
concurrent blocks and threads processing several cells each.

In the case of parallel reduction, each thread begins by summing the
probability value of all the cells assigned to it. Next, a parallel reduction
is performed within each thread block, utilizing shared memory. This
intra-block reduction employs a sequential addressing scheme to obtain
an optimal shared memory access. Once the reduction within shared
memory is complete, a global reduction is performed, involving the first
thread of each block. Unlike the intra-block reduction, which uses thread
synchronization, the outer reduction relies on global barriers. The final
result of the reduction is the sum of the probabilities of all cells.

For the scan operation required to compact the Used List, the process
begins with a per-block scan using a double buffer in shared memory.
Specifically, an inclusive scan with sequential addressing is employed.
Unlike parallel reduction, it is not possible to pre-accumulate the values
of all cells processed by each thread. Instead, multiple intra-block scans
are performed within each block, with the sums orderly accumulated
into a global array. Following this, a second outer scan is conducted at
the global level by the first thread of each block. Once the corresponding
prefix sums are obtained, each thread populates the compacted Used List
in parallel and updates the Free List to account for unused or deleted
cells.

5. Validation

5.1. Use cases

In order to validate the GBEES implementation we propagate uncer

tainty in the Lorenz ’63 model (three-dimensional) and the Lorenz ’96
model (six-dimensional).

5.1.1. Lorenz ’63

The Lorenz ’63 model, colloquially referred to as the Butterfly Effect,
is often employed to validate the accuracy of NUP methods because of
the highly non-Gaussian behavior exhibited [42]. The three-dimensional
state and equations of motion are defined as

𝒙 =
⎡⎢⎢⎣
𝑥1
𝑥2
𝑥3

⎤⎥⎥⎦ , 𝑑𝒙

𝑑𝑡
= 𝒇 (𝒙) =

⎡⎢⎢⎣
𝜎(𝑥2 − 𝑥1)
−𝑥2 − 𝑥1𝑥3

−𝑏𝑥3 + 𝑥1𝑥2 − 𝑏𝑟

⎤⎥⎥⎦ ,
where (𝜎, 𝑏, 𝑟) = (4,1,48) results in the system being chaotic. In Fig. 5,
a 3D Gaussian PDF is initialized at 𝒙(0) = [−11.5,−10,9.5]⊤ with stan

dard deviation 𝜎𝑥𝑗 = 1 for 𝑗 = 1,2,3. The uncertainty is then propagated
via the system dynamics until the next measurement correction at 𝑡 = 1.
To validate the accuracy of GBEES, a Monte Carlo (MC) simulation with
identical initial conditions is propagated up to this epoch. Because MC
cannot assimilate measurement corrections, the simulation and compar

ison with GBEES ends here. At 𝑡 = 1, a discrete measurement update is
performed with measurement 𝑦(1) = −8, where the measurement model
is

𝑦 = ℎ(𝒙) = 𝑥3,

and the measurement uncertainty 𝜎𝑦 = 1. The uncertainty is then prop

agated via the system dynamics until 𝑡 = 2, when the GBEES simulation
ends. Fig. 5 illustrates the rapid evolution of the PDF from Gaussian to
highly non-Gaussian, with the PDF naturally bifurcating at 𝑡 = 1. Since
this model was also used to validate the legacy GBEES implementation,

Computer Physics Communications 317 (2025) 109819

6

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Fig. 5. PDF isosurfaces governed by the Lorenz ’63 model in (𝑥1, 𝑥2, 𝑥3)-space at 𝑝 = 0.607, 𝑝 = 0.135, and 𝑝 = 0.011 with grid cell width ℎ∗
𝑗
= 0.5 for 𝑗 = 1,2,3,

compared with a MC simulation with 100,000 samples. On the left (a), the isosurfaces and MC distributions are at 𝑡 = 0, 𝑡= 1∕3, 𝑡 = 2∕3, and 𝑡= 1± and on the right
(b), the isosurfaces are at 𝑡= 1±, 𝑡= 4∕3, 𝑡= 5∕3 and 𝑡= 2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. PDF isosurfaces in (𝑥1, 𝑥2, 𝑥3)- and (𝑥4, 𝑥5, 𝑥6)-spaces governed by the Lorenz ’96 model with grid cell width ℎ∗
𝑗
= 0.1 for 𝑗 = 1,… ,6 and 𝐹 = 4. On top (a),

the MC point-mass distributions with 10,000 samples at 𝑡 = 0 and 𝑡 = 1.3 and on bottom (b), the GBEES isosurfaces at 𝑝 = 0.607, 𝑝 = 0.135, and 𝑝 = 0.011 for 𝑡 = 0
and 𝑡= 1.3.

it serves as a valuable basis for performance comparison, as discussed
further in Section 6.

5.1.2. Lorenz ’96

As an analog to the Lorenz ’63 validation first performed in [11],
the CPU-optimized and GPU implementations of GBEES are validated
on the Lorenz ’96 model, a generalized dynamical system that exhibits
chaotic behavior [43]. The 𝑛-dimensional state and equations of motion
are defined as

𝒙 =

⎡⎢⎢⎢⎢⎢⎣

𝑥1
⋮
𝑥𝑗
⋮
𝑥𝑛

⎤⎥⎥⎥⎥⎥⎦
, 𝑑𝒙

𝑑𝑡
= 𝒇 (𝒙) =

⎡⎢⎢⎢⎢⎢⎣

(𝑥2 − 𝑥𝑛−1)𝑥𝑛 − 𝑥1 + 𝐹
⋮

(𝑥𝑗+1 − 𝑥𝑗−2)𝑥𝑗−1 − 𝑥𝑗 + 𝐹
⋮

(𝑥1 − 𝑥𝑛−2)𝑥𝑛−1 − 𝑥𝑛 + 𝐹

⎤⎥⎥⎥⎥⎥⎦
,

where (𝐹 ,… , 𝐹) is an unstable equilibrium, with 𝐹 being a forcing con

stant. A 6D Gaussian PDF is initialized at 𝒙(0) = [𝐹 + 0.5, 𝐹 ,… , 𝐹]⊤

where 𝐹 = 4, with standard deviation 𝜎𝑥𝑗 = 0.2 for 𝑗 = 1,… ,6. The
uncertainty is then propagated via the system dynamics until 𝑡 = 1.3.
No measurement update is performed in this simulation. To validate
the accuracy of GBEES, an MC simulation with identical initial condi

tions is plotted, depicted in Fig. 6(a). The 3D PDFs in the (𝑥1, 𝑥2, 𝑥3)-
and (𝑥4, 𝑥5, 𝑥6)-spaces, shown in Fig. 6(b), are calculated from the dis

cretized 6D PDF by numerically integrating over the (𝑥4, 𝑥5, 𝑥6)- and
(𝑥1, 𝑥2, 𝑥3)-spaces, respectively:

𝑝(𝑥1, 𝑥2, 𝑥3, 𝑡) =

max(𝑥6)

∫
min(𝑥6)

max(𝑥5)

∫
min(𝑥5)

max(𝑥4)

∫
min(𝑥4)

𝑝(𝒙, 𝑡)𝑑𝑥4𝑑𝑥5𝑑𝑥6,

𝑝(𝑥4, 𝑥5, 𝑥6, 𝑡) =

max(𝑥3)

∫
min(𝑥3)

max(𝑥2)

∫
min(𝑥2)

max(𝑥1)

∫
min(𝑥1)

𝑝(𝒙, 𝑡)𝑑𝑥1𝑑𝑥2𝑑𝑥3.

Computer Physics Communications 317 (2025) 109819

7

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Fig. 7. Lorenz ’63 comparison of the discrete probability distributions for different time step sizes (with respect to a reference propagation with 𝜖 = 0.01). On the
left (a), the comparison is based on the 1-norm 𝐸(𝑡). On the right (b), the comparison utilizes the Bhattacharyya Coefficient 𝐵𝐶(𝑡).

Table 1
𝐵𝐶 values comparing the Lorenz ’63 and Lorenz ’96 GBEES
propagations with a KDE representation of the Monte Carlo
simulation of 100,000 samples. Lorenz ’96 was not tested in
the CPU-legacy version due to its high computational cost.

Lorenz ’63 at 𝑡= 1 Lorenz ’96 at 𝑡= 1.3

CPU-legacy 0.9047
CPU-optimized 0.9027 0.9155
GPU 0.9027 0.9155

5.2. Accuracy and convergence

In addition to the qualitative validation against the MC simulation
shown in Figs. 5 and 6, two quantitative validations are performed. The
first compares the PDFs obtained using GBEES with those from a dense
MC simulation to evaluate the accuracy of GBEES uncertainty propa

gation. The second compares different GBEES versions to validate the
CUDA implementation and verify proper convergence as the step size is
reduced.

5.2.1. Comparison with MC

The quantitative comparison with a dense MC simulation is per

formed using the Bhattacharyya Coefficient (BC) [44], defined as

𝐵𝐶(𝑡) =
∑
𝒊∈

√
𝑝(𝒙𝒊, 𝑡)𝑝0(𝒙𝒊, 𝑡). (9)

𝐵𝐶 measures the similarity between two probability distributions,
where 𝐵𝐶 = 1 indicates perfect coincidence and 𝐵𝐶 = 0 indicates com

plete dissimilarity. The BC was chosen over other similarity metrics due
to 0 ≤ 𝐵𝐶 ≤ 1. A more commonly-used metric, the Kullback–Leibler
(KL) divergence [45], approaches ∞ as 𝑃 and 𝑄 approach complete
dissimilarity. To ensure the readability of figures illustrating the time
evolution of the similarity between the truth and approximate distribu

tions, the BC was selected for use in this paper.

The computation of 𝐵𝐶 requires that the MC set of samples be first
represented as a PDF function. This representation was obtained using
kernel density estimation (KDE) with Gaussian kernels and a bandwidth
selection using the Scott factor [46]. Table 1 shows the 𝐵𝐶 values for
the different GBEES implementations. In all cases, high values (> 0.9) of
𝐵𝐶 are obtained, which confirms the similarity observed in Figs. 5 and
6 between the PDFs obtained by the GBEES and the MC method. The
specific threshold for sufficient UP accuracy is application-dependent.
In this comparison, it is influenced by the number of MC samples, the
grid and step sizes of the GBEES configurations, the KDE conversion,
and the characteristics of the problem itself.

Finally, note the equality in values between the CPU-optimized and
GPU implementations, as both follow the same GBEES algorithm with
identical rules for variable step size based on the CFL condition and the
same directional growth. That is, the only differences between the CPU

optimized and GPU versions stem from implementation details, which
are minimal, as evaluated in the next section.

5.2.2. Convergence of GBEES

The second quantitative validation follows the framework for en

suring convergence delineated by Leveque [47]. To quantify the global
error between an approximate distribution and a truth distribution, for
methods that depend on conservation laws, the 1-norm is often used as
a convergence metric [48,49], defined as:

𝐸(𝑡) =

(
𝑛 ∏
𝑗=1

ℎ𝑗

)∑
𝒊∈

|||𝑝(𝒙𝒊, 𝑡) − 𝑝0(𝒙𝒊, 𝑡)||| ,
where 𝑝0(𝒙𝒊, 𝑡) represents the truth distribution. A method is then con

vergent at time 𝑇 if

lim
Δ𝑡→0

𝐸(𝑇) = 0. (10)

Because the CPU-optimized and GPU versions of GBEES use an adaptive
step size, we define Δ𝑡 for them as a function of the CFL condition, or
Δ𝑡 = 𝜖×CFL. As an analytical truth distribution may not exist in general,
we represent 𝑝0(𝒙𝒊, 𝑡) using a reference propagation with an extremely
small 𝜖. As a supplementary metric of convergence, similarly used by
Chen et al. [50], we also assess the approximate distributions using the
BC, as previously defined in Eq. (9).

These convergence tests have two primary objectives. First, to en

sure the new GBEES implementations qualitatively converge, as demon

strated by decreasing errors relative to the reference propagation when
step and cell width sizes are reduced. Second, to assess the impact of
the non-deterministic execution order of operations in CUDA. In the
CUDA architecture, the execution order of different threads is non

deterministic [36]. Due to the non-associativity of floating-point arith

metic caused by the rounding errors, small variations in the computed
probability distribution are expected.

For the temporal convergence test, the reference propagation with
𝜖 = 0.01 was compared to CPU-legacy, CPU-optimized, and GPU approx

imate propagations. The CPU-legacy used a fixed step size Δ𝑡 = 0.005
and the CPU-optimized and GPU versions used adaptive step sizes with
𝜖 =1.0, 0.5, 0.2, and 0.1. The results of these comparisons are shown
in Fig. 7 for the Lorenz ’63 case. The curves demonstrate convergence
as defined by Eq. (10), with progressively more accurate values as the
step size is reduced. Additionally, the differences caused by the non

deterministic execution order in CUDA are minimal compared to the

Computer Physics Communications 317 (2025) 109819

8

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Fig. 8. Lorenz ’63 comparison of the discrete probability distributions for different cell widths (with respect to a reference propagation with 𝜂 = 0.5). On the left (a),
the comparison is based on the 1-norm 𝐸(𝑡). On the right (b), the comparison utilizes the Bhattacharyya Coefficient 𝐵𝐶(𝑡).

Table 2
Computational burden for the Lorenz ’63 and
Lorenz ’96 models with a variable step size corre

sponding to a Δ𝑡=1.0×CFL and a cell size equal to
half the standard deviation in each dimension of the
first measurement.

Lorenz ’63 Lorenz ’96
Maximum grid size ≈ 24k ≈ 50M
Integration steps ≈ 960 ≈ 1050
Total cell computations ≈ 6.5M ≈ 30G

influence of other error sources in the simulation, such as step size vari

ation.

For the spatial convergence test, we run simulations with varying
grid cell widths as functions of the default width, or ℎ𝑗 = 𝜂 × ℎ∗𝑗 . As
the non-deterministic effects of the GPU version of GBEES were trivial,
we use only this version for this test. The reference propagation with
𝜂 = 0.5 was compared to propagations with 𝜂 = 1.25, 1, 0.8, and 0.6.
A CFL number of 𝐶 = 0.1 was set in the simulations for this validation.
Fig. 8 indicates that the convergence behavior, in both metrics, is similar
to that observed in the temporal convergence analysis.

6. Performance

Performance improvements for both the new CPU and GPU versions
are evaluated using the same validation cases described in Section 5.
Their computational effort is summarized in Table 2. The significant
difference in computational load between the two cases is primarily
due to the dimensionality of the models: the Lorenz ’63 is formulated
over a three-dimensional phase space, while the Lorenz ’96 uses a six

dimensional one.

Fig. 9 shows the runtime comparison between the legacy and the new
CPU versions for the Lorenz ’63 model. The legacy version performs
a fixed-step integration, while the new CPU version uses a variable

step scheme. To ensure a fair comparison, the fixed step size of the
legacy CPU version was adjusted so that, during the integration, the
BCs, computed using the same procedure as in Section 5, reach a simi

lar maximum value.

The runtime results of these executions are also included in Table 3.
The relative speed-up of the new CPU version relative to the legacy
version is approximately 13.85 times faster (calculated as 1∕0.072). To
assess performance in the CUDA version, it is essential first to outline the
launch configuration parameters and explain how these settings influ

ence overall performance. The GPU launch configuration is determined
by three key parameters: the number of blocks, the number of threads

Fig. 9. Runtime comparison between the legacy and the new CPU version for
the Lorenz ’63 model.

Table 3
Total runtime, number of cells processed per second, and relative speed

up compared to a single-core CPU running the optimized version of
GBEES for the Lorenz ’63 model. See Appendix A for full specifications of
processing units.

Device Runtime (ms) Cells/s Speed-up
CPU-legacy: Apple M2 MAX 28777 ≈0.54M/s 0.072
CPU-optimized: Apple M2 MAX 2077 ≈3.13M/s 1
GPU 1: NVIDIA Tesla V100 244 ≈26.6M/s 8.5
GPU 2: NVIDIA A100 258 ≈25.2M/s 8.1
GPU 3: NVIDIA H100 226 ≈28.8M/s 9.2
GPU 4: NVIDIA H200 230 ≈28.3M/s 9.0

per block, and the number of cells each thread processes. The objective
of the launch configuration is to maximize the GPU occupancy. Since we
have a Cooperative Kernel, this is achieved by launching a total number
of threads equal to the GPU’s maximum simultaneous thread capacity.

If the maximum grid size exceeds this capacity, each thread must
process multiple cells, requiring the parameter for cells processed per
thread to be set to a value greater than one. Conversely, if the maximum
grid size is smaller than this capacity, the configuration should launch
only as many threads as the grid requires, with each thread processing
only one cell. In this last case, the achieved occupancy will be less than
the theoretical maximum because the model does not expose sufficient
parallelism to fully utilize the GPU. Therefore, the launch configuration
strategy is to keep the number of cells processed by each thread as low
as possible. If the model is sufficiently large, the product of the number

Computer Physics Communications 317 (2025) 109819

9

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Fig. 10. Runtime comparison between the new CPU version and GBEES-GPU on various GPU devices (a) and number of used cells (b) for the Lorenz ’63 model.

of blocks and the number of threads per block should equal the GPU’s
maximum thread capacity. This product can be achieved through vari

ous combinations of blocks and threads per block.

This balance between blocks and threads per block is very subtle.
Setting the number of threads per block to the maximum (1024 in the
current CUDA architectures) benefits the parallel reduction and scan
processes described in Section 4.5, as more computation is performed
at the block level using shared memory. However, the performance dif

ferences are minimal, and in some tests, using fewer threads per block
than the maximum has resulted in slightly better runtimes.

Fig. 10 represents, for the Lorenz ’63 model, the runtime comparison
between the new CPU version and the CUDA implementation running
on different GPU devices. Fig. 10(a) represents the program runtime as
a function of the simulated time, where steeper regions correspond to
moments when the grid contains more cells. The number of cells during
the simulation is plotted in Fig. 10(b). The drop in the number of cells
at 𝑡 = 1.0 TU corresponds to a discrete measurement update.

The graph in Fig. 10(a) shows a significant performance boost from
parallelizing and executing the algorithm on the GPU. Table 3 summa

rizes the total runtime, the number of processed cells per second, and the
speed-up values. The Lorenz ’63 model represents a case where the grid
size is not large enough to achieve maximum occupancy on the tested
GPUs. This limitation causes the performance to be similar across all
devices. Despite this, the speed-up achieved by using the CUDA version
ranges from 8.5 to 9.0, depending on the specific GPU tested.

The Lorenz ’96 model requires a high computational burden and ex

poses enough parallelism to fully utilize the performance of the tested
GPUs. This results in a significant performance difference between the
CPU and CUDA versions. To highlight this difference and facilitate rep

resentation, Fig. 11 first presents the runtime comparison between the
new CPU version and the CUDA implementation running on a V100 GPU
device, which is the slowest among the tested GPUs.

The runtime data for this comparison, along with comparisons to
other GPU devices, are included in Table 4. The execution of the Lorenz
’96 model is 17.8 times faster in the CUDA version on the V100 device
compared to the new CPU version. For the other devices, Fig. 12 shows
that, as the model fully utilizes the GPUs, there is a progressive reduction
in execution times corresponding to the increasing computing power of
the different test devices. The speed-ups achieved are 56.4 times for the
A100 device, 106.6 times for the H100, and 132.5 times faster for the
H200 device.

The observed execution time improvements surpass one order of
magnitude between the legacy and new CPU versions �-as demonstrated
in the Lorenz ’63 use case�- and two orders of magnitude between the
new CPU version and the GPU implementation. Together, these results
indicate that the enhanced GBEES algorithm achieves a total perfor

mance improvement of more than three orders of magnitude.

Fig. 11. Runtime comparison between the new CPU version and the GBEES-GPU
execution on a V100 GPU device for the Lorenz ’96 model.

Table 4
Total runtime, number of cells processed per second, and relative speed

up compared to a single-core CPU running the new version of GBEES
for the Lorenz ’96 model.

Device Runtime (s) Cells/s Speed-up
CPU-optimized: Apple M2 MAX 97927 ≈0.3M/s 1
GPU 1: NVIDIA Tesla V100 5513 ≈5.4M/s 17.8
GPU 2: NVIDIA A100 1736 ≈17.3M/s 56.4
GPU 3: NVIDIA H100 919 ≈32.6M/s 106.6
GPU 4: NVIDIA H200 739 ≈40.6M/s 132.5

7. Conclusions

This paper presents a CPU-optimized implementation and a GPU im

plementation of GBEES, a second-order accurate, Eulerian algorithm for
robust nonlinear uncertainty propagation. To address the computational
limitations associated with the legacy CPU implementation of GBEES,
the main data structure was changed from a linked list to a hashtable,
a CFL-minimized adaptive step size was used, and the grid growing and
pruning procedures were adjusted to consider the advection direction.
Once the CPU implementation was optimized, the algorithm was trans

lated to CUDA for single GPU execution.

The CUDA implementation is heavily influenced by the dynamic
nature of the grid required by the GBEES method. This dynamic grid
demands more sophisticated synchronization mechanisms and an effi

cient memory layout for its storage. To address these challenges, the

Computer Physics Communications 317 (2025) 109819

10

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

Fig. 12. Runtime comparison between the new CPU version and GBEES-GPU on various GPU devices (a) and number of used cells (b) for the Lorenz ’96 model.

CUDA implementation employs the Cooperative Kernel abstraction, an
ad-hoc data structure to store the grid, non-blocking algorithms to mod

ify it, and parallel-specific optimization techniques.

We validate the two novel implementations using accuracy and con

vergence. To measure accuracy, we calculate the Bhattacharyya Co

efficient (BC) of the GBEES distribution compared with a dense MC
distribution, assuming values greater than 0.9 represent sufficient simi

larity. To measure convergence, we evolve a truth distribution of GBEES
using a time step that is 1∕100th of the CFL-based stability limit. We then
compare various GBEES implementations, beginning with the CFL time
step then decreasing in step size, evaluating convergence through both
the 1-norm and the BC. We deem ``convergence'' as the approach of the
reference propagation as the adaptive step size is reduced.

The framework is applied to two chaotic systems: the first is the
three-dimensional Lorenz ’63 model. For this use case, the BC remains
above 0.9 for each of the GBEES implementations. The inability of the
MC distribution to assimilate corrections emphasizes its inefficacy when
a measurement model is present. Additionally, both metrics indicate
convergence. The CPU-optimized implementation has a performance in

crease of 14× relative to the CPU-legacy implementation and the GPU
implementation has a performance increase of 9× relative to the CPU

optimized implementation.

Finally, we demonstrate the full capability of the new implemen

tations on a six-dimensional variation of the Lorenz ’96 model, an
𝑛-dimensional chaotic system. For this use case, the BC for the CPU

optimized and GPU implementations compared with a dense MC dis

tribution remains above 0.9 (implementing this example with the CPU

legacy version is computationally infeasible). Convergence metrics also
demonstrated convergence. The high dimensionality of the system high

lights the efficacy of the parallelized algorithm; the GPU implementation
has a performance increase of 133× relative to the CPU-optimized im

plementation, implying a 1000-fold increase in performance relative to
the CPU-legacy implementation.

CRediT authorship contribution statement

Benjamin L. Hanson: Writing -- original draft, Visualization, Vali

dation, Software, Methodology. Carlos Rubio: Writing -- original draft,
Validation, Software, Methodology. Adrián García-Gutiérrez: Valida

tion. Thomas Bewley: Writing -- review & editing, Supervision, Project
administration, Methodology, Conceptualization.

Code availability

In the interest of facilitating further research, promoting its use, and
allowing the reproduction of the experiments, the complete source code
is available in the following repositories:

• The GBEES-CPU-optimized code is available at https://github.com/

bhanson10/gbees under the BSD 3-Clause License.

• The GBEES-GPU code is available at https://github.com/Cx-Rubio/

gbees-cuda under the BSD 3-Clause License.

The provided software can be easily extended with new dynamic
models. Documentation on how to compile and execute the software, the
format of the input and output data, and instructions for extending the
software by adding additional models can be found in the repositories
themselves and in the corresponding instruction guide [12].

Declaration of competing interest

The authors declare the following financial interests/personal re

lationships which may be considered as potential competing inter

ests: Benjamin Hanson reports financial support was provided by the
NASA Space Technology Graduate Research Opportunities Fellowship
(80NSSC23K1219). Benjamin Hanson reports equipment, drugs, or sup

plies was provided by San Diego Supercomputer Center at UC San Diego.
If there are other authors, they declare that they have no known compet

ing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The authors thank the San Diego Supercomputer Center for a com

puting time allocation on the Triton Shared Computing Cluster.

Appendix A. Benchmark hardware specifications

The CPU execution times were measured on a system with the fol

lowing specifications:

• CPU: Apple M2 Max, 12-core CPU. Clock frequency 8 cores ×
3.7GHz, 4 cores × 3.4 GHz. L2 cache size 36 MB.

The GPU performance tests were executed in the next GPU devices:

• GPU 1: NVIDIA Tesla V100-SXM2-32GB, CUDA architecture Volta.
Stream multiprocessors (SMs) 80. Maximum threads per SM 2048.
SM clock frequency 1.530 GHz. Memory clock frequency 0.877
GHz. Memory 32 GB HBM2.

• GPU 2: NVIDIA A100-SXM4-40GB, CUDA architecture Ampere.
Stream multiprocessors (SMs) 108. Maximum threads per SM 2048.
SM clock frequency 1.410 GHz. Memory clock frequency 1.215
GHz. Memory 40 GB HBM2e.

Computer Physics Communications 317 (2025) 109819

11

https://github.com/bhanson10/gbees
https://github.com/bhanson10/gbees
https://github.com/Cx-Rubio/gbees-cuda
https://github.com/Cx-Rubio/gbees-cuda

B.L. Hanson, C. Rubio, A. García-Gutiérrez et al.

• GPU 3: NVIDIA H100-80GB, CUDA architecture Hopper. Stream
multiprocessors (SMs) 132. Maximum threads per SM 2048. SM
clock frequency 1.980 GHz. Memory clock frequency 2.619 GHz.
Memory 80 GB HBM3.

• GPU 4: NVIDIA H200-141GB, CUDA architecture Hopper. Stream
multiprocessors (SMs) 132. Maximum threads per SM 2048. SM
clock frequency 1.980 GHz. Memory clock frequency 3.201 GHz.
Memory 141 GB HBM3e.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.cpc.2025.109819.

Data availability

The code is available on Github

References

[1] A.B. Poore, J.M. Aristoff, J.T. Horwood, Covariance and Uncertainty Realism in
Space Surveillance and Tracking, Tech. Rep., Numerica Corporation, 2016.

[2] M. Vetrisano, Uncertainty Quantification and State Estimation for Complex Non

linear Problems in Space Flight Mechanics, Ph.D. thesis, University of Strathclyde,
2016.

[3] S. Sankararaman, M. Daigle, Uncertainty quantification in trajectory prediction for
aircraft operations, in: AIAA Guidance, Navigation, and Control Conference, Ameri

can Institute of Aeronautics and Astronautics, Grapevine, Texas, 2017, p. 1724.

[4] R.C. Smith, Uncertainty Quantification: Theory, Implementation, and Applications,
Computational Science & Engineering, vol. 12, SIAM, Society for Industrial and Ap

plied Mathematics, Philadelphia, 2014.

[5] H.N. Najm, B.J. Debusschere, Y.M. Marzouk, S. Widmer, O.P. Le Maître, Uncertainty
quantification in chemical systems, Int. J. Numer. Methods Eng. 80 (6--7) (2009)
789--814, https://doi.org/10.1002/nme.2551.

[6] B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models,
Ph.D. thesis, Université Blaise Pascal - Clermont Ferrand II, 2007.

[7] R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic
Eng. 82 (1) (1960) 35--45, https://doi.org/10.1115/1.3662552.

[8] S.K. Godunov, A difference scheme for numerical solution of discontinuous solution
of hydrodynamic equations, Mat. Sb. 47 (1959) 271--306, https://cir.nii.ac.jp/crid/

1573387449783562752.

[9] P. Lax, B. Wendroff, Systems of conservation laws, in: Selected Papers Volume I,
Springer, 2005, pp. 263--283.

[10] M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Process. 50 (2)
(2002) 174--188.

[11] T.R. Bewley, et al., Efficient grid-based Bayesian estimation of nonlinear low

dimensional systems with sparse. Non-Gaussian PDFs, Automatica 48 (7) (2012)
1286--1290, https://doi.org/10.1016/j.automatica.2012.02.039.

[12] B. Hanson, An instruction guide to gbees: grid-based Bayesian estimation exploiting
sparsity, https://bhanson10.github.io/gbees.pdf, 2025. (Accessed 11 March 2025).

[13] B.L. Hanson, A.J. Rosengren, T.R. Bewley, T.A. Ely, Non-Gaussian recursive Bayesian
filtering for outer planetary orbilander navigation, in: AAS/AIAA Space Flight Me

chanics Meeting, 2025, p. 194.

[14] A.L. Davis, S. Guzik, X. Gao, On the parallel performance of a novel brick-based
hash-table cfd library for distributed computing, in: AIAA SCITECH 2025 Forum,
2025, p. 1868.

[15] L.P.d. Castro, A.P. Pinheiro, V. Vilela, G.M. Magalhães, R. Serfaty, J.M. Vedovotto,
Implementation of a hybrid Lagrangian filtered density function–large eddy simula

tion methodology in a dynamic adaptive mesh refinement environment, Phys. Fluids
33 (4) (2021).

[16] H. Ji, F.-S. Lien, F. Zhang, A GPU-accelerated adaptive mesh refinement for immersed
boundary methods, Comput. Fluids 118 (2015) 131--147, https://doi.org/10.1016/

j.compfluid.2015.06.011.

[17] K. Jaber, E.E. Essel, P.E. Sullivan, GPU-native adaptive mesh refinement with ap

plication to lattice Boltzmann simulations, Comput. Phys. Commun. 311 (2025)
109543, https://doi.org/10.1016/j.cpc.2025.109543.

[18] P. Colella, M.R. Dorr, J.A. Hittinger, D.F. Martin, High-order, finite-volume methods
in mapped coordinates, J. Comput. Phys. 230 (8) (2011) 2952--2976.

[19] S.P. Veluri, C.J. Roy, E.A. Luke, Comprehensive code verification techniques for fi

nite volume CFD codes, Comput. Fluids 70 (2012) 59--72, https://doi.org/10.1016/

j.compfluid.2012.04.028.

[20] B. Diskin, J.L. Thomas, Notes on accuracy of finite-volume discretization schemes
on irregular grids, Appl. Numer. Math. 60 (3) (2010) 224--226, https://doi.org/10.

1016/j.apnum.2009.12.001.

[21] B.L. Hanson, A.J. Rosengren, T.R. Bewley, State estimation of chaotic trajectories: a
higher-dimensional, grid-based, Bayesian approach to uncertainty propagation, in:
AIAA SCITECH 2024 Forum, 2024, p. 0426.

[22] R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of mathemat

ical physics, IBM J. Res. Dev. 11 (2) (1967) 215--234, https://doi.org/10.1147/rd.

112.0215.

[23] NVIDIA-Corporation, About CUDA, https://developer.nvidia.com/about-cuda,
2024. (Accessed 19 November 2024).

[24] H.S. Tang, R.D. Haynes, G. Houzeaux, A review of domain decomposition methods
for simulation of fluid flows: concepts, algorithms, and applications, Arch. Comput.
Methods Eng. 28 (3) (2021) 841--873, https://doi.org/10.1007/s11831-019-09394-

0.

[25] K. Karzhaubayev, L.-P. Wang, D. Zhakebayev, DUGKS-GPU: an efficient parallel GPU
code for 3D turbulent flow simulations using discrete unified gas kinetic scheme,
Comput. Phys. Commun. 301 (2024) 109216, https://doi.org/10.1016/j.cpc.2024.

109216.

[26] W. Xue, C.W. Jackson, C.J. Roy, An improved framework of GPU computing for CFD
applications on structured grids using OpenACC, J. Parallel Distrib. Comput. 156
(2021) 64--85, https://doi.org/10.1016/j.jpdc.2021.05.010.

[27] C.-C. Ye, P.-J.-Y. Zhang, Z.-H. Wan, R. Yan, D.-J. Sun, Accelerating CFD simulation
with high order finite difference method on curvilinear coordinates for modern GPU
clusters, Adv. Aerodyn. 4 (1) (2022) 7, https://doi.org/10.1186/s42774-021-00098-

3.

[28] J. Berger, J. Marsha, J. Oliger, Adaptive mesh refinement for hyperbolic partial dif

ferential equations, J. Comput. Phys. 53 (3) (1984) 484--512.

[29] M. Berger, P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J.
Comput. Phys. 82 (1) (1989) 64--84, https://doi.org/10.1016/0021-9991(89)90035-

1.

[30] P. Wang, T. Abel, R. Kaehler, Adaptive mesh fluid simulations on GPU, New Astron.
15 (7) (2010) 581--589, https://doi.org/10.1016/j.newast.2009.10.002.

[31] D. Beckingsale, W. Gaudin, A. Herdman, S. Jarvis, Resident block-structured adap

tive mesh refinement on thousands of graphics processing units, in: 2015 44th Inter

national Conference on Parallel Processing, IEEE, Beijing, China, 2015, pp. 61--70.

[32] H.-Y. Schive, Y.-C. Tsai, T. Chiueh, GAMER: a GPU-accelerated adaptive mesh re

finement code for astrophysics, Astrophys. J. Suppl. Ser. 186 (2) (2010) 457--484,
https://doi.org/10.1088/0067-0049/186/2/457.

[33] X. Luo, L. Wang, W. Ran, F. Qin, GPU accelerated cell-based adaptive mesh re

finement on unstructured quadrilateral grid, Comput. Phys. Commun. 207 (2016)
114--122, https://doi.org/10.1016/j.cpc.2016.05.018.

[34] A. Giuliani, L. Krivodonova, Adaptive mesh refinement on graphics processing units
for applications in gas dynamics, J. Comput. Phys. 381 (2019) 67--90, https://doi.

org/10.1016/j.jcp.2018.12.019.

[35] W. Raateland, T. Hädrich, J.A.A. Herrera, D.T. Banuti, W. Pałubicki, S. Pirk, K. Hilde

brandt, D.L. Michels, DCGrid: an adaptive grid structure for memory-constrained
fluid simulation on the GPU, Proc. ACM Comput. Graph. Interact. Tech. 5 (1) (2022)
1--14, https://doi.org/10.1145/3522608.

[36] NVIDIA-Corporation, CUDA C++ programming guide, https://docs.nvidia.com/

cuda/cuda-c-programming-guide/index.html, 2024. (Accessed 19 November 2024).

[37] D.P. Mehta (Ed.), Handbook of Data Structures and Applications, Chapman &
Hall/CRC Computer and Information Science Series, vol. 3, Chapman & Hall/CRC,
Boca Raton, Fla, 2005.

[38] D.E. Knuth, The Art of Computer Programming, vol. 3, second edition, Addison

Wesley Publ, Reading (Mass.) London Manila [etc.], 1973.

[39] J.D. Cohen, Recursive hashing functions for n-grams, ACM Trans. Inf. Syst. 15 (3)
(1997) 291--320, https://doi.org/10.1145/256163.256168.

[40] R.E. Ladner, M.J. Fischer, Parallel prefix computation, J. ACM 27 (4) (1980)
831--838, https://doi.org/10.1145/322217.322232.

[41] W. Hwu, D. Kirk, I. El Hajj, Programming Massively Parallel Processors: a Hands-on
Approach, fourth edition, Elsevier: Morgan Kauffmann, Cambridge, MA, 2023.

[42] E.N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (2) (1963) 130--141,
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.

[43] E.N. Lorenz, Predictability: a problem partly solved, in: Proc. Seminar on Predictabil

ity, vol. 1, Reading, 1996, pp. 40--58.

[44] A. Bhattacharyya, On a measure of divergence between two multinomial popula

tions, Sankhya 7 (4) (1960) 401--406, http://www.jstor.org/stable/25047882.

[45] S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Stat. 22 (1)
(1951) 79--86.

[46] D.W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, 2nd
edition, Wiley Series in Probability and Statistics, Wiley, Somerset, 2015.

[47] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, vol. 31, Cambridge
University Press, 2002.

[48] B. Medi, M. Amanullah, Application of a finite-volume method in the simulation of
chromatographic systems: effects of flux limiters, Ind. Eng. Chem. Res. 50 (3) (2011)
1739--1748, https://doi.org/10.1021/ie100617c.

[49] H.F. Schwaiger, R.P. Denlinger, L.G. Mastin, Ash3d: a finite-volume, conservative
numerical model for ash transport and tephra deposition, J. Geophys. Res., Solid
Earth 117 (B4) (2012), https://doi.org/10.1029/2011JB008968.

[50] M. Chen, T. Guo, C. Chen, W. Xu, Data-driven arbitrary polynomial chaos expan

sion on uncertainty quantification for real-time hybrid simulation under stochas

tic ground motions, Exp. Tech. 44 (6) (2020) 751--762, https://doi.org/10.1007/

s40799-020-00381-w.

Computer Physics Communications 317 (2025) 109819

12

https://doi.org/10.1016/j.cpc.2025.109819
http://refhub.elsevier.com/S0010-4655(25)00321-2/bibD67ACB2528B9141F914A2A9A56E133EAs1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bibD67ACB2528B9141F914A2A9A56E133EAs1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bibB35F12DC6A9EEDF19410E6E50EC58694s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bibB35F12DC6A9EEDF19410E6E50EC58694s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bibB35F12DC6A9EEDF19410E6E50EC58694s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib783EA627FA8F35972C97774B4A6F36F1s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib783EA627FA8F35972C97774B4A6F36F1s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib783EA627FA8F35972C97774B4A6F36F1s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib00387F89ABEF82389C7D4EDEAE23B47Fs1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib00387F89ABEF82389C7D4EDEAE23B47Fs1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib00387F89ABEF82389C7D4EDEAE23B47Fs1
https://doi.org/10.1002/nme.2551
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib1209BCAB9B1C07C374A8C925A187328Fs1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib1209BCAB9B1C07C374A8C925A187328Fs1
https://doi.org/10.1115/1.3662552
https://cir.nii.ac.jp/crid/1573387449783562752
https://cir.nii.ac.jp/crid/1573387449783562752
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib4A5DD7DB008B8DE00C0C5B105DC5DC26s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib4A5DD7DB008B8DE00C0C5B105DC5DC26s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib938FB805720DA28BF6FD8ACC75D656C7s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib938FB805720DA28BF6FD8ACC75D656C7s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib938FB805720DA28BF6FD8ACC75D656C7s1
https://doi.org/10.1016/j.automatica.2012.02.039
https://bhanson10.github.io/gbees.pdf
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib3710E6BBF01FEF77F65E331EAE53399As1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib3710E6BBF01FEF77F65E331EAE53399As1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib3710E6BBF01FEF77F65E331EAE53399As1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib7A43DB0C21168FF35509C8579AF0907Es1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib7A43DB0C21168FF35509C8579AF0907Es1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib7A43DB0C21168FF35509C8579AF0907Es1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib4E369F778C2E65FD0EEE3D80570A1D88s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib4E369F778C2E65FD0EEE3D80570A1D88s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib4E369F778C2E65FD0EEE3D80570A1D88s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib4E369F778C2E65FD0EEE3D80570A1D88s1
https://doi.org/10.1016/j.compfluid.2015.06.011
https://doi.org/10.1016/j.compfluid.2015.06.011
https://doi.org/10.1016/j.cpc.2025.109543
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib43C8EFB24E059BB83459ABF483F93DB6s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib43C8EFB24E059BB83459ABF483F93DB6s1
https://doi.org/10.1016/j.compfluid.2012.04.028
https://doi.org/10.1016/j.compfluid.2012.04.028
https://doi.org/10.1016/j.apnum.2009.12.001
https://doi.org/10.1016/j.apnum.2009.12.001
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib8ABD3EB06DF5355D787504DD323DB18Cs1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib8ABD3EB06DF5355D787504DD323DB18Cs1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib8ABD3EB06DF5355D787504DD323DB18Cs1
https://doi.org/10.1147/rd.112.0215
https://doi.org/10.1147/rd.112.0215
https://developer.nvidia.com/about-cuda
https://doi.org/10.1007/s11831-019-09394-0
https://doi.org/10.1007/s11831-019-09394-0
https://doi.org/10.1016/j.cpc.2024.109216
https://doi.org/10.1016/j.cpc.2024.109216
https://doi.org/10.1016/j.jpdc.2021.05.010
https://doi.org/10.1186/s42774-021-00098-3
https://doi.org/10.1186/s42774-021-00098-3
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib6152F9BB6078CA9E451373152AFBCBF1s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib6152F9BB6078CA9E451373152AFBCBF1s1
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1016/j.newast.2009.10.002
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib8FAE3915ACFBFCFA760500B23D0BD428s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib8FAE3915ACFBFCFA760500B23D0BD428s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib8FAE3915ACFBFCFA760500B23D0BD428s1
https://doi.org/10.1088/0067-0049/186/2/457
https://doi.org/10.1016/j.cpc.2016.05.018
https://doi.org/10.1016/j.jcp.2018.12.019
https://doi.org/10.1016/j.jcp.2018.12.019
https://doi.org/10.1145/3522608
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib6ABA6367E6AA9D3731D4328C1F605D14s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib6ABA6367E6AA9D3731D4328C1F605D14s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib6ABA6367E6AA9D3731D4328C1F605D14s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bibD3F5C71E5EB6E78EE420F771BB7D6D50s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bibD3F5C71E5EB6E78EE420F771BB7D6D50s1
https://doi.org/10.1145/256163.256168
https://doi.org/10.1145/322217.322232
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib13953BB8E6B9AD82B6A0635963ADC74Ds1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib13953BB8E6B9AD82B6A0635963ADC74Ds1
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib01D6759C62327F1F88C9133A10BB23F6s1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib01D6759C62327F1F88C9133A10BB23F6s1
http://www.jstor.org/stable/25047882
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib7E9293E90055A83D4943872232FF638Fs1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib7E9293E90055A83D4943872232FF638Fs1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bibAA8C188F5028A54D3429329E453CAA5As1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bibAA8C188F5028A54D3429329E453CAA5As1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib0EC07C5F743D0135935513FDB8C0DD6Ds1
http://refhub.elsevier.com/S0010-4655(25)00321-2/bib0EC07C5F743D0135935513FDB8C0DD6Ds1
https://doi.org/10.1021/ie100617c
https://doi.org/10.1029/2011JB008968
https://doi.org/10.1007/s40799-020-00381-w
https://doi.org/10.1007/s40799-020-00381-w

	GBEES-GPU: An efficient parallel GPU algorithm for high-dimensional nonlinear uncertainty propagation
	1 Introduction
	2 Grid-based Bayesian estimation exploiting sparsity
	2.1 Corner transport upwinding for n-dimensional systems

	3 Advancements made to the CPU implementation
	3.1 Dynamic grid stored in hashtable
	3.2 CFL-minimized adaptive time-marching
	3.3 Directional growing and pruning

	4 CUDA implementation
	4.1 Grid data structure
	4.2 Hashtable
	4.3 Main code blocks
	4.4 Synchronization aspects
	4.4.1 Grow grid operation
	4.4.2 Prune grid operation

	4.5 Specific parallel techniques

	5 Validation
	5.1 Use cases
	5.1.1 Lorenz ’63
	5.1.2 Lorenz ’96

	5.2 Accuracy and convergence
	5.2.1 Comparison with MC
	5.2.2 Convergence of GBEES

	6 Performance
	7 Conclusions
	CRediT authorship contribution statement
	Code availability
	Declaration of competing interest
	Acknowledgements
	Appendix A Benchmark hardware specifications
	Appendix B Supplementary material
	Data availability
	References

