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Abstract

Eulerian nonlinear uncertainty propagation methods often suffer from fi-
nite domain limitations and computational inefficiencies. A recent approach
to this class of algorithm, Grid-based Bayesian Estimation Exploiting Spar-
sity, addresses the first challenge by dynamically allocating a discretized grid
in regions of phase space where probability is non-negligible. However, the
design of the original algorithm causes the second challenge to persist in
high-dimensional systems. This paper presents an architectural optimization
of the algorithm for CPU implementation, followed by its adaptation to the
CUDA framework for GPU execution. The algorithm is validated for correct
convergence and accuracy, with performance evaluated across multiple GPUs.
Tests include propagating a three-dimensional probability distribution sub-
ject to the Lorenz 63 model and a six-dimensional probability distribution
subject to the Lorenz ‘96 model. The results imply that the improvements
made result in a speedup of over 1000 times compared to the original imple-
mentation.
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1. Introduction

Nonlinear uncertainty propagation methods can generally be classified as
Kalman, Lagrangian, and /or Eulerian. The Kalman approach approximates
uncertainty as Gaussian, or as a mixture of Gaussians. For linear dynamics
and measurement models, Gaussian uncertainty remains Gaussian globally,
but in the presence of nonlinearities, Kalman methods are suboptimal [I].
Analytical linearizations, in the case of the Extended Kalman Filter (EKF),
and statistical linearizations, in the cases of the Unscented Kalman Filter
(UKF) [2] and the Ensemble Kalman Filter (EnKF) [3], are utilized to more
accurately represent nonlinearities, but both tend to diverge when Gaussian
measurement corrections are relatively infrequent. Alternatively, Gaussian
Mixture Models (GMMs) represent non-Gaussian uncertainty as a weighted
superposition of Gaussians [4]. Certain GMM methods use splitting proce-
dures triggered by entropy flags to increase the number of components in the
superposition as true uncertainty becomes more non-Gaussian [5].

Langragian methods perform Sequential Monte Carlo (SMC) estimation
on point mass representations of probability densities. Ensemble members
are randomly drawn from an a priori distribution and then time-marched up
to a measurement correction epoch via the true dynamics model. The sim-
plest SMC method, Monte Carlo (MC) integration, attributes equal weight
to each point [6]; this method prevents measurement corrections, limiting its
applicability to uncertainty prediction. More sophisticated approaches assign
weight based on an importance sampling distribution; these are known as Se-
quential Importance Sampling (SIS) methods, or, more commonly, particle
filters [7]. For particle filters, measurement corrections are incorporated via
weight adjustments and resampling procedures are utilized to avoid particle
degeneracy [8,0]. Hybrid Kalman/Langrangian methods attribute Gaussian
kernels to each particle and update the associated moments according to the
GMM formulation [10].

The Eulerian approach considers and updates probability at fixed points
in space. For stochastic processes dominated by deterministic forces, the
time-evolution of the full probability density function is a hyperbolic partial
differential equation (PDE). Considerable effort has been put forth by the
fluid mechanics community towards numerically solving these types of PDEs
via finite difference/volume methods [I1] which can be divided into two cat-
egories: semidiscrete and fully discrete. Semidiscrete methods, like the Es-
sentially Non-Oscillatory (ENO) and Weighted Essentially Non-Oscillatory
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(WENO) schemes [12], use adaptive stencils to create smooth interpolations
of probability across discontinuities, then use Runge-Kutta time stepping to
march the system of semidiscrete equations. Fully discrete methods use fluxes
defined at grid cell interfaces to update discretized probability at grid cell
centers. The Lax-Wendroff and Godunov methods are two, first-order accu-
rate examples [13] [14], but higher-order corrections are necessary to achieve
second-order accuracy, and flux limiters ensure these methods are total vari-
ation diminishing [15].

Of the three defined approaches, Eulerian methods are generally the least
explored for high-dimensional nonlinear uncertainty propagation. This is
most likely due to both the finite domain limitation for standard grid-based
methods as well as the high computational intensity that accompanies the
application of fluids-based finite volume methods to (n > 3)-dimensional
probability density time-marching. However, Eulerian approaches do not
require splitting procedures to maintain accuracy, do not succumb to particle
degeneracy, and are extremely robust for chaotic dynamics models, under-
determined measurement models, and infrequent correction updates.

A novel Eulerian approach known as Grid-based Bayesian Estimation
Exploiting Sparsity (GBEES) dynamically allocates grid cells in regions of
non-negligible probability, unlocking propagation over all of phase space [16].
However, the algorithm’s O(n?) time complexity poses computational chal-
lenges for high-dimensional systems. In this paper, we optimize the compu-
tational architecture of GBEES by:

1. Storing the dynamic grid in a hashtable

2. Time-marching with a CFL-minimized adaptive step size
3. Employing directional growing and pruning procedures
4. Implementing the algorithm in CUDA

These improvements result in GBEES-GPU, an efficient, high-dimensional
parallel GPU algorithm for nonlinear uncertainty propagation. In Section
we outlined the landscape of nonlinear uncertainty propagation methods
and defined our contributions towards the computational optimization of
GBEES. In Section [2| the finite volume formulation underlying GBEES is
extended to m-dimensions. Section [3| outlines the improvements made to
the CPU implementation, while Section {4| describes its adaptation to the
CUDA architecture. Section [5| presents the use cases employed for validation
and testing, including the evaluation of the correct convergence and accu-
racy. Next, Section [6] compares the performance of the improved CPU and

3
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GPU implementations against the legacy version. Conclusions are presented
in Section [7, and the hardware specifications for the tests are provided in
Append Al

2. Grid-based Bayesian Estimation Exploiting Sparsity

The equations of motion of a stochastic process X (t) € R™ governed by
a combination of deterministic and random forces can be described by the
following stochastic differential equation:

dX(t) = f(X(t),t)dt +q(X (t),t)dW (1), (1)

where dW (t) = £(t)dt is a Wiener process, meaning &(t) is zero-mean, un-
correlated white noise (i.e., E[£(t)] = 0 and E[£(t + 7)€7(¢)] = 8(7)). In
continuous-time, the Fokker-Planck equation gives the evolution of the prob-
ability density function (PDF) p(z, t) of X(t) in Eq. as follows:

op(x,t 8Jwt 8Qﬂwt (x,t
R i e DI St

j=1 3121

where © = (z1,...,2,), fi(z,t) is the j™ component of f(x,t), Q;u(x,1) is
the (j,£)" omponent of Q(z,t) = q(x,t)q" (z,t). If Q(x,t) > 0, Eq. is
elliptic, but if Q(«, t) is relatively small compared to the deterministic forces,
Eq. is hyperbolic and satisfies the conservative form of the n-dimensional
advection equation:

=0 (3)

Op(z,t) n zn: af]/- (p(fl?, t))
0:16]- ’

ot ;
7=1
where fi(p(x,t)) = fi(x, t)p(z,t). At discrete measurement intervals t(%)
the PDF is updated via Bayes’ theorem:

(k) (k=)
p(af:,t(H)) _ p<y |.’13)£(CU,25 )7 (4)

where p(z,t*+) is the a posteriori, p(y™®|z) is the measurement likeli-
hood, p(z, t("’_)) is the a priori, and C' is a normalization constant. GBEES
performs the accurate, mixed continuous/discrete time-marching of p(x,t)
using numerical approximations of Egs. and . We first delve into
the continuous-time prediction of p(x,t) via a fully discrete flux-differencing
method.
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Figure 1: 2D schematic depicting the notation of GBEES.

2.1. Fully discrete flux-differencing methods

Consider a hyperrectangular grid cell of the form

Ca) = H[xj(ij_uz)vxj(ijﬂ/z)] ()
j=1
where ¢ = (i1,...,1,) is the grid cell index vector corresponding to the grid

cell center coordinate vector x(;. The grid width of C(;) in the z;-direction
is then

Azj, = Ljti;+172) — Ti@i;—1/2) (6)
for a uniform grid, Az; ., is equal for all ¢ (since a uniform grid is utilized
in this work, the grid width is referenced as Ax; for the remainder of the

paper). Additionally,
AI]‘ .
T(ixiy/2) = T(i) £ —~ 1 (7)
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is the coordinate vector a half-grid width forward/backward relative to @
in the xj-direction (Fig. [1] displays Egs. — schematically). From Eq.
, p is assumed to be conserved over C;, thus the integral of p varies only
due to flux across the boundaries of C(;:

dt fc t)dx = Z (fc(iz B} [f;l'(p(w(iﬂj/mi)) - fi (p(x(i-i,/2), ))}dww)’ (8)
=1
where
iNj = (il, Ce ,ij_17 ij+1, R ,in),
J=1 =1
i
:t .
C(zw ) = (25,4172 X H[xf(ig—l/Z)vxé(ie_i,_l/Q)],

=1
t#j
C(iiwi_) is the (n—1)-dimensional grid cell interface a half-step forward /backward

in the z;-direction at z; = Tj(i11/9) with normal vector pointing paral-
J

lel/antiparallel to z;. Integrating Eq. from t*) to t*++1) and dividing
by the grid cell area leads to the fully discrete flux-differencing method

(1) _ plk) At T k) (k)
Pay =T N { iy~ Fitimg ) (9)
j=1

where P((SH) is the discrete, updated probability cell average at grid cell C;),
with

(k) e

k

F (’L:‘:’L] /2) m(ziz]/Q )) diB dt
#(k) +
At H Az Clini)
E#J

The numerical fluxes F;®) parallel to the (n — 1)-dimensional cell faces are
approximated via a Godunov-type finite volume method known as Corner
Transport Upwinding (CTU).
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2.2. The Corner Transport Upwind method

First, the Donor Cell Upwind (DCU) method is used to calculate the
first-order accurate numerical fluxes. For ¢ € Z, where Z represents the set

of grid cell index vectors in the grid, in all directions j = 1, ..., n, the upwind
flux in each direction z; at time step k is calculated:
(k) + (k) (k)
FiiZi 2 = JicimiymPicin T fiaey P (10)
where

+ _ (k)
fJ(i—i]-/Q) = max (fj (i—i;/2) O)’
_ .
fia- 3;/2) — I (fj (i—1,/2) 0),
() k
fJ (i—15/2) f <w("‘ ZJ/Q)’t( ))

Eq. only considers probability flowing normal to the grid cell interface,
but in general, probability may flow oblique to the interfaces of C(;). To
obtain second-order accuracy, we must account for this with flux corrections.

We consider C(’iw_l), the (n — 1)-dimensional grid cell interface a half-step
backward in the z;-direction at 1 = 14, _1/9)- Generally, the direction of
advection at this interface may not be perpendicular to this interface; thus,
probability may propagate in any of the four ordinal directions depending
on the signs of the components of f (i1 /2y BS shown schematically in Fig.
I For second-order accuracy, this corresponds to 4(n — 1) possible updates
to neighboring fluxes in the (n — 1)-directions, excluding the x;-direction.
Because the n-dimensional CTU method is notationally complex, we provide
it in full in Algorithm [I}

The CTU method is still not second-order accurate, as it is missing high-
resolution correction terms. For ¢ € Z, in all directions x;, the high-resolution
correction terms are added to the (DCU + CTU)-calculated fluxes:

(k) (k) (k)
Fiali - F f](z —i;/2) ‘< Azj

PP, (k)
f](z 1,/2)’) Az : ¢(9(z—i,/2)) (11>

J(i-1;/2) J(i— l]/2 j
where
(k) p®)
iy = {(P((i’f)Z] (7N )/ (<k> () Foiy) ffj(z b =
1—12:/2 )
’ (Pitiy) — P<>)/(P<> Pii) if £, ) < 0

6(0) = max (0, min [(1+0)/2,2,26] );
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Figure 2: (z1,z2)-plane of an n-dimensional grid depicting the notation of the CTU
method.

Algorithm 1 Corner Transport Upwind
Require: Perform DCU for ¢ € 7
1: for 2 € Z do

2 forijtondcz) "
* At k k
3 " = 5xe (P(i) - P(i—aj))
4 forﬁ(z)Oton,f;z(é'do
k k + + *
5 Feivipn) < Foiiriyn) = Fitimay o) T F
. (k) (k) A - *
6: Fl(&)n/m « F i Fitimi; o) Feimiosn ¥
- + *
7 Fé’ggaﬁum) = Fl’ggaﬁum) - fj(i—ij/Q) ff(z’—ijm/g) F
8 Fotizs, 2y < Frigla, i) = Jiimiy o) feGi—iy—isny £
9 end for
10: end for
11: end for

166 ¢(f) is a monotonized central difference limiter used for representing proba-
167 bility discontinuities with sharper resolution [I7]. After the fluxes have been
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calculated and plugged into Eq. @D, the discretized PDF is normalized

-1
(k+1) (k+1) (k+1)
Pay * = (pr ) Py (12)

1€l

Together, Eq. , Algorithm , and Egs. and form a second-
order accurate finite volume method employed by GBEES for numerically
time-marching a discretized, n-dimensional PDF.

3. Advancements made to the CPU implementation

GBEES excels where other finite volume methods fail by dynamically
allocating grid cells where probability is above some threshold. However, the
legacy algorithm architecture contains structures and subprocesses that are
ripe for optimization. Prior to detailing the GPU implementation, we discuss
the efficiency improvements made to the CPU implementation.

3.1. Dynamic grid stored in hashtable

The legacy implementation of GBEES stores the dynamic grid in a nested
list data structure. Many functions within GBEES require a searching pro-
cedure to check if a given C;) exists in the grid. The time complexity of
searching a nested list is O(n?), which will result in computational bottle-
necks for high-dimensional systems. The first attempt to address this issue
employed a binary search tree [I8], but overhead of the conversion from grid
cell index vector ¢ to unique, positive key value proved too large. Instead,
a hashtable was utilized, as the structure allows for collisions between map-
pings, thus removing the overhead from ensuring bijectivity. Additionally,
the time complexity of search for a hashtable is O(1). Hashtables are dis-
cussed further in Section [4.2]

3.2. CFL-minimized adaptive time-marching
For finite volume methods, the Courant-Friedrichs-Lewy (CFL) condi-

tion [19]
n fj

j=1
must be satisfied in order for the method to be stable, where C} .« = 1 for
explicit methods (as GBEES is an explicit finite volume method, we assume
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Chnax = 1 for the remainder of the paper). In general, because the advection
is variable across spatial coordinates, At must be small enough such that this
condition holds for 7z € Z:

" ity ) !
At < (ZA—%> . (13)

j=1

The legacy implementation of GBEES employed a static, over-conservative
time step to ensure stability for the entire propagation period. The new
implementation of GBEES finds the minimum allowable At such that Eq.
is true for ¢ € Z at time step k:

At®) — min i M o (14)
i€l A[Ej '

j=1

Because of the dynamic nature of the grid, At*®) may change depending
on where in phase space probability is focused. Implementing Eq.
maximizes the time step size while ensuring the stability of the explicit finite
volume method.

3.3. Directional growing and pruning

To exploit the sparsity of an n-dimensional PDF over phase space, grid
cells are tracked where probability is above some threshold p*. To ensure
probability is not lost during time-marching, grid cells neighboring those
above threshold are also tracked. In the legacy implementation of GBEES,
during the growing procedure, the algorithm loops through all existing grid
cells and checks if any of the 3" — 1 neighbors that do not exist must be
inserted, regardless if probability is likely to flow into the new grid cell in the
following step. This can create irrelevant grid cells that are deleted in future
steps without ever increasing in probability. In the new GBEES implemen-
tation, the direction of the advection is used to determine if a neighboring
grid cell is required for the next time step. As is demonstrated in Fig. [3]
only the downwind grid cells are created; this process saves on the number
of cells that are inserted in each growth step.

Similarly, during the pruning procedure, the algorithm loops through all
existing grid cells, looking for those that are below threshold p*. In the
legacy GBEES implementation, before deleting the negligible cell, the algo-
rithm checks each of the 3™ — 1 neighbors to see if any are above p*. Again,

10
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Figure 3: 2D schematic demonstrating the differences in the growing procedure for the
legacy and optimized implementations of GBEES. Solid border cells are those with prob-
ability above threshold, dashed border cells are those set to be created during the growing
procedure, and dotted border cells are neglected.

this results in redundant cells being saved, as even if a neighboring cell is
above threshold, it does not necessarily mean that in the following time steps,
it will low probability into the considered cell. Instead, the new GBEES im-
plementation takes a directional-approach to the growth procedure, wherein
only the neighboring grid cells that are upwind are checked for probability
above p*. Fig. |4 shows that this requires the algorithm to check a fraction
of the total neighbor cells, while ensuring that negligible cells are not saved,
again contribution to the efficiency of the new algorithm.

4. CUDA Implementation

The CUDA implementation builds upon the enhancements made to the
CPU version described in the previous section. This section describes the
specifics of the CUDA architecture [20] and the optimization strategies em-
ployed.

The CUDA architecture is designed for parallel processing, with GPUs
containing multiple Streaming Multiprocessors (SMs). Each SM can execute
groups of threads organized into blocks, which are further divided into smaller
units of 32 threads called warps. Warps execute instructions in a single-
instruction, multiple-thread (SIMT) fashion, meaning all threads in a warp
perform the same instruction simultaneously on different data.

11
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Figure 4: 2D schematic demonstrating the differences in the pruning procedure for the
legacy and optimized implementations of GBEES. Solid border cells are those with proba-
bility below threshold, dashed border cells are those checked during the pruning procedure,
and dotted border cells are neglected.

CUDA GPUs also feature a layered memory hierarchy. Global (or de-
vice) memory provides large storage capacity but has higher latency. Each
SM has faster, limited shared memory that is accessible only to threads
within a block, enabling efficient data sharing. Additionally, each thread has
its own private registers, the fastest type of memory, used for intermediate
calculations.

As described in Section [2, the GBEES method requires a dynamic grid
in which cells are added or removed throughout the integration steps. This
dynamic nature prevents establishing a fixed mapping between execution
threads and cells. In traditional finite volume software using a static grid,
the grid is partitioned into subdomains —each one including also a bound-
ary with additional halo cells— and these subdomains are then assigned to
thread blocks on the GPU [2I]. However, with a dynamic grid, a flexible
assignment of cells to threads is required, along with additional synchroniza-
tion, as thread blocks can no longer operate independently within isolated
subdomains. This dynamic structure impacts all aspects of the GPU imple-
mentation, necessitating more complex synchronization mechanisms and a
highly efficient memory layout for storing the grid.

This extra global-level synchronization required by the dynamic grid is
provided by the Cooperative Kernel abstraction in CUDA [22]. A Coop-

12
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Figure 5: Grid data structure. Notice that the Used List and the Free List are maintained
compact, with all the used slots at the beginning and all the free slots at the end.

erative Kernel requires all threads to be active concurrently, enabling the
establishment of global synchronization barriers. This means the maximum
number of threads equals the GPU device’s maximum simultaneous threads.
If the grid contains more cells than this limit, each thread must process
multiple cells sequentially.

4.1. Grid data structure

Given the synchronization requirements, the dynamic thread-cell assign-
ments, and the need for each thread to process a variable number of cells, we
propose the memory structure for the grid depicted in Fig. [f|

The data structure consists of a hashtable, a list to track used cells,
another list for unused cells, and a heap table for cell storage.

The hashtable provides fast access to a cell by its key —the state coor-
dinates ¢ = (iy,...,%,). This random access is crucial when accessing the
neighbor cells in each dimension.

The list of used cells in the grid serves two main purposes. First, it
enables quick access to used cells for functions that process individual cells.
More importantly, it allows an even distribution of workload among active
threads.

The Free List maintains a record of not used cells in the heap, reducing
the time needed to locate a free slot.
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Finally, the heap stores the cells themselves. In CUDA, it is not possible
to allocate memory directly within a device function in a kernel. Therefore,
and for performance reasons, all memory structures are of fixed size, which,
for a given configuration, sets the maximum number of cells in the grid.

The relationships among these memory structures are depicted in Fig. [f
In addition to the depicted relationships, each cell contains pointers to its
neighboring cells in each dimension by directly storing their indexes of the
Used List.

4.2. Hashtable

Because the maximum number of grid cells is fixed, we can set the
hashtable size to ensure a maximum occupancy level. The hashtable size
is configurable in the software as a multiple of the grid’s maximum size,
with a default setting of twice that size. This default configuration ensures
a maximum occupancy factor o = 0.5. This bounded occupancy allows us
to use a simple open-addressing scheme with linear probing [23]. With a
well-randomized hash function, the expected number of probes during an
unsuccessful search is [24]

(14+1/(1—a)?)/2

and for a successful search

(1+1/(1—aw))/2.

The open addressing scheme requires marking elements as deleted [23]. In
the GBEES method, all cell deletions occur during the prune grid operation.
Since the prune operation is executed only for a subset of integration steps,
rehashing the hashtable after each grid prune has minimal impact on per-
formance while ensuring that the maximum occupancy level is maintained.
Moreover, in the CUDA implementation, this rehashing is fully parallelized,
with all execution threads sharing the workload to rehash the hashtable en-
tries concurrently.

Finally, achieving the expected efficiency requires a well-randomized hash
function. Fig. [6]shows collision graphs for different hash functions, with each
plot representing the number of collisions per entry in a 2D projection for the
3D Lorenz 63 model —one of the test cases included in this study. Based
on these patterns, the BuzHash algorithm, also known as hashing by cyclic
polynomial, was selected and implemented as described in [25].
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Figure 6: Number of collisions for different hash functions represented as 2D projections,
where the capacity of the hashtable is set to 1024 = 32 x 32. For these examples, the
hashtable stores the initial grid from the Lorenz '63 example, explained further in Section

EIT

4.8. Main code blocks

From an implementation perspective, we can divide the main code blocks
into operations that act on individual cells and those that act on the grid
as a whole. The first group is straightforward to implement, as each thread
modifies only its assigned cells without significant synchronization issues,
requiring only quick access to the cell and its neighbors. This rapid access
is achieved through the Used List. This category includes operations such
as cell initialization, updating references to the neighbor cells, updating the
time step based on the CFL condition —Eq. —, computing the DCU
and CTU —Eq. , Algorithm , and Eq. —, probability distribution
normalization —Eq. —, and applying new measurements —Eq. —.

The second category involves grid-wide operations, specifically the grid
growth and grid pruning. These operations modifies a shared global re-
source —the grid— and therefore require careful synchronization. To opti-
mize CUDA performance, all synchronization is managed using atomic op-
erations and synchronization barriers, either at the block or device level.

The following sections detail the key synchronization aspects and parallel
techniques applied in these code blocks.

4.4. Synchronization aspects

4.4.1. Grow grid operation

To maximize efficiency in the grid growth operation, a concurrent cell
insertion method is required to avoid blocking threads during simultaneous
cell creations. Additionally, when exploring different dimensions in the phase
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space, the algorithm frequently attempts to create cells that already exist.
Algorithm |2 presents the chosen compromise solution, which ensures correct
synchronization without thread blocking by utilizing atomic operations.

This implementation delays the complete initialization of the cell —using
a callback function— until it is confirmed that the cell does not already exist
in the grid, thereby improving performance.

However, the selected approach has a trade-off: it can only check the
existence of a new cell against the previous state of the grid and cannot
guarantee successful checking with the other concurrent insertions. To ad-
dress this limitation, the grid growth operation adopts a staged, directional
cell growth strategy. Specifically:

e Growth is first performed along the forward axis of all dimensions. A
global synchronization barrier is then executed.

e Growth is subsequently performed along the backward axis of all di-
mensions, followed by another global synchronization step.

e Finally, edge growth is carried out in a similar staged manner in the four
diagonal directions —forward-forward, forward-backward, backward-
forward, and backward-backward.

This staged approach ensures that no concurrent thread attempts to insert
the same cell at the same time.

4.4.2. Prune grid operation

The prune grid operation, outlined in Algorithm [3] is less performance-
critical as it is executed only once every several integration steps. However,
it requires specialized techniques to be performed in parallel by all threads.

The operation begins by marking cells whose probability values fall below
a specified threshold, identifying them as candidates for pruning. The next
step involves performing a parallel prefix sum operation [20, 27] to compact
the Used List. The prefix sum, also known as scan, computes cumulative
sums over a list to facilitate parallel data compaction. This scan is carried
out by the active threads, as detailed in the following section on specific
parallel techniques.

After the scan, the Used List is compacted using a double-buffer scheme,
and the freed slots are added to the Free List via atomic operations.

Finally, the Hashtable is rehashed, also employing a double-buffer scheme
and distributing the rehashing workload across all active threads.
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Algorithm 2 Concurrent Cell Creation

Require: The Used List and the Free List are compact.
1: Obtain the hashtable slot by applying the hash function to the cell key.
2: loop
3: Check if the hashtable slot is free using an atomicCAS() operation. If
it is free, reserve it with the RESERVED flag; if not, obtain the current
Used Index.
if The existing cell is the same then
break
end if
if An empty slot is reached then
Reserve a Used List slot using an atomicAdd() operation on the
list size.
9: Obtain a free heap slot from the Free List using an atomicDec()
operation on the list size.
10: Update the Hashtable and Used List contents.
11: Update the heap content and complete cell initialization with a
callback function.
12: end if
13: Move to the next hashtable slot.
14: end loop

Algorithm 3 Grid Prune Operation
1: Mark the negligible cells in the heap.
2: Perform a prefix sum process of the Used List in shared memory.
3: Complete the prefix sum of the Used List in global memory.
4: Compact the Used List and update the Free List.
5: Rehash the Hashtable.
Ensure: To perform a global synchronization at the end of each step.

4.5. Specific parallel techniques

The GBEES-GPU implementation employs two high-level parallel tech-
niques: parallel reduction and parallel scan. Parallel reduction is utilized
to compute the sum of grid cell probabilities for normalizing the distribu-
tion following Eq. . Parallel scan is applied during the prune operation
to compact the Used List. These techniques are widely recognized as stan-
dard methods [27], and only a brief description is provided here, focusing
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on their adaptation to the GBEES kernel’s context, which involves multiple
concurrent blocks and threads processing several cells each.

In the case of parallel reduction, each thread begins by summing the
probability value of all the cells assigned to it. Next, a parallel reduction
is performed within each thread block, utilizing shared memory. This intra-
block reduction employs a sequential addressing scheme to obtain an opti-
mal shared memory access. Once the reduction within shared memory is
complete, a global reduction is performed, involving the first thread of each
block. Unlike the intra-block reduction, which uses thread synchronization,
the outer reduction relies on global barriers. The final result of the reduction
is the sum of the probabilities of all cells.

For the scan operation required to compact the Used List, the process
begins with a per-block scan using a double buffer in shared memory. Specif-
ically, an inclusive scan with sequential addressing is employed. Unlike par-
allel reduction, it is not possible to pre-accumulate the values of all cells
processed by each thread. Instead, multiple intra-block scans are performed
within each block, with the sums orderly accumulated into a global array.
Following this, a second outer scan is conducted at the global level by the
first thread of each block. Once the corresponding prefix sums are obtained,
each thread populates the compacted Used List in parallel and updates the
Free List to account for unused or deleted cells.

5. Validation

5.1. Use cases

In order to validate the GBEES implementation we consider the following
use cases

e The Lorenz '63 model (three-dimensional)

e The Lorenz '96 model (six-dimensional)

5.1.1. Lorenz 63

The Lorenz 63 model, colloquially referred to as the Butterfly Effect, is
often employed to validate the accuracy of uncertainty propagation meth-
ods because of the highly non-Gaussian behavior exhibited [28]. The three-
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Figure 7: PDF isosurfaces governed by the Lorenz ’63 model in (x1, z2,x3)-space at p =
0.607, p = 0.135, and p = 0.011 with Az; = 0.5 for j = 1,2,3. On the left (a), the
isosurfaces are at t = 0, t = 1/3, ¢t = 2/3,and ¢t = 1F and on the right (b), the isosurfaces
areat t = 1%t =4/3, t =5/3 and t = 2.

dimensional state and equations of motion are defined as

T dax O'(Q?Q — xl)
r= |2, E:f(m): —T2 — T1T3 )
T3 —bxs + x129 — br

where (0,b,7) = (4,1,48) results in the system being chaotic. In Fig. [7]
a 3D Gaussian PDF is initialized at ® = (—11.5, —10,9.5) with standard
deviation o,; = 1 for j = 1,2,3. The uncertainty is then continuous-time
propagated using GBEES until t) = 1, where a discrete measurement up-
date is performed with measurement y) = —8, where the measurement
model is

y = h(x) = s,

and the measurement uncertainty o, = 1. The uncertainty is then continuous-
time propagated till ¢ = 2, when the simulation ends. Fig. [7] illustrates the
rapid evolution of the PDF from Gaussian to highly non-Gaussian, with the
PDF naturally bifurcating at ¢ = 1. Since this model was also used to val-
idate the legacy GBEES implementation, it serves as a valuable basis for
performance comparison, as discussed further in Section [6]

5.1.2. Lorenz '96
As an analog to the Lorenz ’63 validation first performed in [16], the CPU-
optimized and GPU implementations of GBEES are validated on the Lorenz
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Figure 8: PDF representations in (z1,xs,x3)- and (x4, x5, 2s)-spaces governed by the
Lorenz ’96 model with Az; = 0.01 for j = 1,...,6 and F' = 4. On top (a), the MC
point-mass distributions with 10,000 particles at t = 0 and ¢ = 1.3 and on bottom (b), the
GBEES isosurfaces at p = 0.607, p = 0.135, and p = 0.011 for ¢t =0 and t = 1.3.

‘96 model, a generalized dynamical system that exhibits chaotic behavior
[29]. The n-dimensional state and equations of motion are defined as

-131- [ (.712 — xn,1)$n — X+ F
dx ’
=), —=F@)= (@ = t)e -1+ P
LTn L (1'1 - l‘n—2)xn—1 — Ty + F i
where (F, ..., F) is an unstable equilibrium, with F being a forcing constant.

A 6D Gaussian PDF is initialized at (® = (F+0.5, F, ..., F) where F = 4,
with standard deviation o,; = 0.02 for j = 1,...,6. The uncertainty is then
propagated using GBEES until ¢ = 1.3. No measurement update is per-
formed in this simulation. To validate the accuracy of GBEES qualitatively,
an MC simulation with identical initial conditions is plotted, depicted in Fig.
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(a). The 3D PDFs in the (x1, 29, x3)- and (x4, T5, x6)-spaces, shown in Fig.
8((b), are calculated from the discretized 6D PDF by numerically integrating
over the (x4, x5, 26)- and (21, xq, x3)-spaces, respectively:

max(ze) prmax(zs) pmax(za)
p('rlax%x?n = / / p(w,t)dx4dx5dx6,
min(ze) in(zs) min(z4)
max(z3) max(z2) max(z1)
p(x4, Ts, x67 / / 33 t d[L‘ldl'le’g
min(z in(z2) min(z1)

5.2. Convergence and accuracy

In addition to the qualitative validation against the MC simulation shown
in Figs. [7] and [§ a quantitative validation is conducted by comparing the
results to a propagation with a very small step size, which serves as the
reference “true” solution for this test.

This test has two primary objectives. First, to ensure the GBEES imple-
mentation converge correctly, as demonstrated by decreasing errors relative
to the reference propagation when step sizes are reduced. Second, to assess
the impact of the non-deterministic execution order of operations in CUDA.

In the CUDA architecture, the execution order of different threads is non-
deterministic [22]. Due to the non-associativity of floating-point arithmetic
caused by the rounding errors, small variations in the computed probability
distribution are expected.

The errors in the probability distribution are assessed using two metrics.
The first metric measures the sum of the absolute differences between the
probability values in each cell. Since the mesh is equispaced, there is no need
to assign different weights to the cells. Additionally, because the total sum
of the probabilities in the cells is 1, this metric is already normalized. The
error for this metric is calculated as follows:

)= Ip(@a), t) — (), t),
1€l

where po(az(i),t) represents the discrete probability distribution obtained
from the reference propagation.
The second metric is the Bhattacharyya Coefficient [30] defined as

=D, \/p(m(i)’ (@), t),

1€l
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Figure 9: Comparison of the discrete probability distributions over simulated time with a
reference propagation of step size 0.01x CFL. On the left (a), the comparison is based on
the absolute probability differences between cells E(t). On the right (b), the comparison
utilizes the Bhattacharyya Coefficient BC(t).

that measures the similarity between two probability distributions with a
value of 1 indicating that the distributions coincide and 0 when the distribu-
tions are entirely distinct.

Using these metrics, the reference propagation of a variable step size of
0.01xCFL was compared to CPU and GPU propagations with step sizes of
1.0, 0.5, 0.2, and 0.1 times CFL.

The results of these comparisons are shown in Fig. [9] The curves demon-
strate proper convergence, with progressively more accurate values as the step
size is reduced. Additionally, the differences caused by the non-deterministic
execution order in CUDA are minimal compared to the influence of other
error sources in the simulation, such as step size variation.

6. Performance

Performance improvements for both the new CPU and CUDA versions
are evaluated using the same validation cases described in Section [5| Their
computational effort is summarized in Table [II The significant difference in
computational load between the two cases is primarily due to the dimension-
ality of the models: the Lorenz 63 is formulated over a three-dimensional
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Lorenz '63 Lorenz '96

Maximum grid size ~ 24k ~ H0M
Integration steps ~ 960 ~ 1050
Total cell computations ~ 6.5M ~ 30G

Table 1: Computational burden for the Lorenz ’63 and Lorenz '96 models with a variable
step size corresponding to a 1.0xCFL and a cell size equal to half the standard deviation
in each dimension of the first measurement.

X CPU (legacy)
_| + CPU (new)

0.0 0.5 1.0 1.5 2.0
Simulation time (TU)

Figure 10: Runtime comparison between the legacy and the new CPU version for the
Lorenz ’63 model.

phase space, while the Lorenz "96 uses a six-dimensional one.

Fig. shows the runtime comparison between the legacy and the new
CPU versions for the Lorenz 63 model. The legacy version performs a fixed-
step integration, while the new CPU version uses a variable-step scheme.
To ensure a fair comparison, the fixed step size of the legacy CPU version
was adjusted so that, during the integration, the Bhattacharyya coefficients,
computed using the same procedure as in Section [f, reach a similar maximum
value.

The runtime results of these executions are also included in Table[2l The
relative speed-up of the new CPU version relative to the legacy version is
approximately 13.85 times faster (calculated as 1/0.072).

To assess performance in the CUDA version, it is essential first to outline
the launch configuration parameters and explain how these settings influence
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overall performance.

The GPU launch configuration is determined by three key parameters:
the number of blocks, the number of threads per block, and the number
of cells each thread processes. The objective of the launch configuration
is to maximize the GPU occupancy. Since we have a Cooperative Kernel,
this is achieved by launching a total number of threads equal to the GPU’s
maximum simultaneous thread capacity.

Device Runtime (ms) Cells/s Speed-up
CPU-legacy: Apple M2 MAX 28777  ~0.54M /s 0.072
CPU-optimized: Apple M2 MAX 2077 ~3.13M/s 1
GPU 1: Tesla V100 244  ~26.6M/s 8.5
GPU 2: NVIDIA A100 258 =25.2M/s 8.1
GPU 3: NVIDIA H100 226 ~28.8M/s 9.2
GPU 4: NVIDIA H200 230 ~28.3M/s 9.0

Table 2: Total runtime, number of cells processed per second, and relative speed-up com-
pared to a single-core CPU running the optimized version of GBEES for the Lorenz ’63
model.

If the maximum grid size exceeds this capacity, each thread must process
multiple cells, requiring the parameter for cells processed per thread to be set
to a value greater than one. Conversely, if the maximum grid size is smaller
than this capacity, the configuration should launch only as many threads as
the grid requires, with each thread processing only one cell. In this last case,
the achieved occupancy will be less than the theoretical maximum because
the model does not expose sufficient parallelism to fully utilize the GPU.

Therefore, the launch configuration strategy is to keep the number of
cells processed by each thread as low as possible. If the model is sufficiently
large, the product of the number of blocks and the number of threads per
block should equal the GPU’s maximum thread capacity. This product can
be achieved through various combinations of blocks and threads per block.

This balance between blocks and threads per block is very subtle. Setting
the number of threads per block to the maximum (1024 in the current CUDA
architectures) benefits the parallel reduction and scan processes described
in Section as more computation is performed at the block level using
shared memory. However, the performance differences are minimal, and in
some tests, using fewer threads per block than the maximum has resulted in
slightly better runtimes.

24



516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

o _g
S + CPU (new) o i
X GPU (V100)
A GPU (A100)
v _| o GPU (H100) — ©
_ ™| + GPU (H200) 5
) >
2 =
_g e % o _|
s - g 2
& 3
(2]
o | 3
IS o -
° T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Simulation time (TU) Simulation time (TU)

(@) (b)

Figure 11: Runtime comparison between the new CPU version and GBEES-GPU on
various GPU devices (a) and number of used cells (b) for the Lorenz ’63 model.

Fig. represents, for the Lorenz ’63 model, the runtime comparision
between the new CPU version and the CUDA implementation running on
different GPU devices. Fig. (a) represents the program runtime as a
function of the simulated time, where steeper regions correspond to moments
when the grid contains more cells. The number of cells during the simulation
is plotted in Fig. [LI[b). The drop in the number of cells at ¢ = 1.0 TU
corresponds to a discrete measurement update.

The graph in Fig. (a) shows a significant performance boost from
parallelizing and executing the algorithm on the GPU. Table [2| summarizes
the total runtime, the number of processed cells per second, and the speed-
up values. The Lorenz 63 model represents a case where the grid size is
not large enough to achieve maximum occupancy on the tested GPUs. This
limitation causes the performance to be similar across all devices. Despite
this, the speed-up achieved by using the CUDA version ranges from 8.5 to
9.0, depending on the specific GPU tested.

The Lorenz '96 model requires a high computational burden and exposes
enough parallelism to fully utilize the performance of the tested GPUs. This
results in a significant performance difference between the CPU and CUDA
versions. To highlight this difference and facilitate representation, Fig.
first presents the runtime comparison between the new CPU version and the
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Figure 12: Runtime comparison between the new CPU version and the GBEES-GPU
execution on a V100 GPU decvice for the Lorenz 96 model.

CUDA implementation running on a V100 GPU device, which is the slowest
among the tested GPUs.

The runtime data for this comparison, along with comparisons to other
GPU devices, are included in Table[3| The execution of the Lorenz 96 model
is 17.8 times faster in the CUDA version on the V100 device compared to
the new CPU version.

For the other devices, Fig. shows that, as the model fully utilizes the
GPUs, there is a progressive reduction in execution times corresponding to
the increasing computing power of the different test devices. The speed-ups
achieved are 56.4 times for the A100 device, 106.6 times for the H100, and
132.5 times faster for the H200 device.

The observed execution time improvements surpass one order of magni-
tude between the legacy and new CPU versions —as demonstrated in the
Lorenz 63 use case— and two orders of magnitude between the new CPU
version and the GPU implementation. Together, these results indicate that
the enhanced GBEES algorithm achieves a total performance improvement
of more than three orders of magnitude.
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Figure 13: Runtime comparison between the new CPU version and GBEES-GPU on
various GPU devices (a) and number of used cells (b) for the Lorenz 96 model.

Device Runtime (s) Cells/s Speed-up
CPU-optimized: Apple M2 MAX 97927  =~0.3M/s 1
GPU 1: Tesla V100 5513  ~5.4M/s 17.8
GPU 2: NVIDIA A100 1736  ~17.3M/s 56.4
GPU 3: NVIDIA H100 919 =32.6M/s 106.6
GPU 4: NVIDIA H200 739 ~40.6M/s 132.5

Table 3: Total runtime, number of cells processed per second, and relative speed-up com-
pared to a single-core CPU running the new version of GBEES for the Lorenz '96 model.

7. Conclusions

This paper presents a CPU-optimized implementation and a GPU imple-
mentation of GBEES, a second-order accurate, Eulerian algorithm for robust,
nonlinear uncertainty propagation. To address the computational limitations
associated with the CPU implementation of GBEES, the main data struc-
ture was changed from a linked list to a hashtable, a CFL-minimized adaptive
time step was used, and the grid growing and pruning procedures were ad-
justed to consider the advection direction. Once the CPU implementation
was optimized, the algorithm was translated to CUDA for GPU execution.

The CUDA implementation is heavily influenced by the dynamic nature of
the grid required by the GBEES method. This dynamic grid demands more
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sophisticated synchronization mechanisms and an efficient memory layout for
its storage. To address these challenges, the CUDA implementation employs
the Cooperative Kernel abstraction, an ad-hoc data structure to store the
grid, non-blocking algorithms to modify it, and parallel-specific optimization
techniques.

For validation, we test the two novel implementations on the Lorenz ‘63
model, a three-dimensional chaotic system utilized in the original GBEES
paper. Two quantitative metrics are analyzed: the sum of the absolute differ-
ences and the Bhattacharyya Coefficient. For a truth model, we time-march
an initially Gaussian PDF at 1/100" the expected stable time step size sub-
ject to the chaotic dynamics. Both metrics indicate that the propagated prob-
ability distribution converges to the truth as the time step decreases for both
the CPU-optimized and GPU implementations. For this low-dimensional ex-
ample, the performance increase relative to the CPU implementation is one
order of magnitude for the CPU-optimized implementation and two orders
of magnitude for the GPU implementation.

Finally, we demonstrate the full capability of the new implementations on
a six-dimensional variation of the Lorenz 96 model, an n-dimensional chaotic
system. The application of finite volume methods to this dimensionality is
uncommon, but necessary for the uncertainty propagation of second-order
dynamical systems. For this example, we validate with a densely-populated
MC simulation, qualitatively confirming that the point mass distributions
and probability isosurfaces match at the start and end epochs. The high
dimensionality of the system highlights the efficacy of the parallelized algo-
rithm; for the Lorenz '96 system, the GPU implementation has a performance
increase of two orders of magnitude relative to the CPU-optimized implemen-
tation, implying a 1000-fold increase in performance relative to the original
CPU implementation.
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sz Appendix A. Benchmark hardware specifications

614 The CPU execution times were measured on a system with the following
e15  specifications:

616 e CPU: Apple M2 Max, 12-core CPU. Clock frequency 8 cores x 3.7GHz,

617 4 cores X 3.4 GHz. L2 cache size 36 MB.

618 The GPU performance tests were executed in the next GPU devices:

610 e GPU 1: Tesla V100-SXM2-32GB, CUDA architecture Volta. Stream

620 multiprocessors (SMs) 80. Maximum threads per SM 2048. SM clock

621 frequency 1.530 GHz. Memory clock frequency 0.877 GHz. Memory 32

622 GB HBM2.

623 e GPU 2: NVIDIA A100-SXM4-40GB, CUDA architecture Ampere. Stream
624 multiprocessors (SMs) 108. Maximum threads per SM 2048. SM clock

625 frequency 1.410 GHz. Memory clock frequency 1.215 GHz. Memory 40

626 GB HBM2e.
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e GPU 3: NVIDIA H100-80GB, CUDA architecture Hopper. Stream
multiprocessors (SMs) 132. Maximum threads per SM 2048. SM clock
frequency 1.980 GHz. Memory clock frequency 2.619 GHz. Memory 80

GB HBM3.

e GPU 4: NVIDIA H200-141GB, CUDA architecture Hopper. Stream
multiprocessors (SMs) 132. Maximum threads per SM 2048. SM clock
frequency 1.980 GHz. Memory clock frequency 3.201 GHz. Memory
141 GB HBM3e.
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