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Abstract5

Eulerian nonlinear uncertainty propagation methods often suffer from fi-6

nite domain limitations and computational inefficiencies. A recent approach7

to this class of algorithm, Grid-based Bayesian Estimation Exploiting Spar-8

sity, addresses the first challenge by dynamically allocating a discretized grid9

in regions of phase space where probability is non-negligible. However, the10

design of the original algorithm causes the second challenge to persist in11

high-dimensional systems. This paper presents an architectural optimization12

of the algorithm for CPU implementation, followed by its adaptation to the13

CUDA framework for GPU execution. The algorithm is validated for correct14

convergence and accuracy, with performance evaluated across multiple GPUs.15

Tests include propagating a three-dimensional probability distribution sub-16

ject to the Lorenz ’63 model and a six-dimensional probability distribution17

subject to the Lorenz ’96 model. The results imply that the improvements18

made result in a speedup of over 1000 times compared to the original imple-19

mentation.20
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1. Introduction24

Nonlinear uncertainty propagation methods can generally be classified as25

Kalman, Lagrangian, and/or Eulerian. The Kalman approach approximates26

uncertainty as Gaussian, or as a mixture of Gaussians. For linear dynamics27

and measurement models, Gaussian uncertainty remains Gaussian globally,28

but in the presence of nonlinearities, Kalman methods are suboptimal [1].29

Analytical linearizations, in the case of the Extended Kalman Filter (EKF),30

and statistical linearizations, in the cases of the Unscented Kalman Filter31

(UKF) [2] and the Ensemble Kalman Filter (EnKF) [3], are utilized to more32

accurately represent nonlinearities, but both tend to diverge when Gaussian33

measurement corrections are relatively infrequent. Alternatively, Gaussian34

Mixture Models (GMMs) represent non-Gaussian uncertainty as a weighted35

superposition of Gaussians [4]. Certain GMM methods use splitting proce-36

dures triggered by entropy flags to increase the number of components in the37

superposition as true uncertainty becomes more non-Gaussian [5].38

Langragian methods perform Sequential Monte Carlo (SMC) estimation39

on point mass representations of probability densities. Ensemble members40

are randomly drawn from an a priori distribution and then time-marched up41

to a measurement correction epoch via the true dynamics model. The sim-42

plest SMC method, Monte Carlo (MC) integration, attributes equal weight43

to each point [6]; this method prevents measurement corrections, limiting its44

applicability to uncertainty prediction. More sophisticated approaches assign45

weight based on an importance sampling distribution; these are known as Se-46

quential Importance Sampling (SIS) methods, or, more commonly, particle47

filters [7]. For particle filters, measurement corrections are incorporated via48

weight adjustments and resampling procedures are utilized to avoid particle49

degeneracy [8, 9]. Hybrid Kalman/Langrangian methods attribute Gaussian50

kernels to each particle and update the associated moments according to the51

GMM formulation [10].52

The Eulerian approach considers and updates probability at fixed points53

in space. For stochastic processes dominated by deterministic forces, the54

time-evolution of the full probability density function is a hyperbolic partial55

differential equation (PDE). Considerable effort has been put forth by the56

fluid mechanics community towards numerically solving these types of PDEs57

via finite difference/volume methods [11] which can be divided into two cat-58

egories: semidiscrete and fully discrete. Semidiscrete methods, like the Es-59

sentially Non-Oscillatory (ENO) and Weighted Essentially Non-Oscillatory60

2



(WENO) schemes [12], use adaptive stencils to create smooth interpolations61

of probability across discontinuities, then use Runge-Kutta time stepping to62

march the system of semidiscrete equations. Fully discrete methods use fluxes63

defined at grid cell interfaces to update discretized probability at grid cell64

centers. The Lax-Wendroff and Godunov methods are two, first-order accu-65

rate examples [13, 14], but higher-order corrections are necessary to achieve66

second-order accuracy, and flux limiters ensure these methods are total vari-67

ation diminishing [15].68

Of the three defined approaches, Eulerian methods are generally the least69

explored for high-dimensional nonlinear uncertainty propagation. This is70

most likely due to both the finite domain limitation for standard grid-based71

methods as well as the high computational intensity that accompanies the72

application of fluids-based finite volume methods to (n > 3)-dimensional73

probability density time-marching. However, Eulerian approaches do not74

require splitting procedures to maintain accuracy, do not succumb to particle75

degeneracy, and are extremely robust for chaotic dynamics models, under-76

determined measurement models, and infrequent correction updates.77

A novel Eulerian approach known as Grid-based Bayesian Estimation78

Exploiting Sparsity (GBEES) dynamically allocates grid cells in regions of79

non-negligible probability, unlocking propagation over all of phase space [16].80

However, the algorithm’s O(n2) time complexity poses computational chal-81

lenges for high-dimensional systems. In this paper, we optimize the compu-82

tational architecture of GBEES by:83

1. Storing the dynamic grid in a hashtable84

2. Time-marching with a CFL-minimized adaptive step size85

3. Employing directional growing and pruning procedures86

4. Implementing the algorithm in CUDA87

These improvements result in GBEES-GPU, an efficient, high-dimensional88

parallel GPU algorithm for nonlinear uncertainty propagation. In Section89

1 we outlined the landscape of nonlinear uncertainty propagation methods90

and defined our contributions towards the computational optimization of91

GBEES. In Section 2 the finite volume formulation underlying GBEES is92

extended to n-dimensions. Section 3 outlines the improvements made to93

the CPU implementation, while Section 4 describes its adaptation to the94

CUDA architecture. Section 5 presents the use cases employed for validation95

and testing, including the evaluation of the correct convergence and accu-96

racy. Next, Section 6 compares the performance of the improved CPU and97
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GPU implementations against the legacy version. Conclusions are presented98

in Section 7, and the hardware specifications for the tests are provided in99

Appendix A.100

2. Grid-based Bayesian Estimation Exploiting Sparsity101

The equations of motion of a stochastic process X(t) ∈ Rn governed by102

a combination of deterministic and random forces can be described by the103

following stochastic differential equation:104

dX(t) = f(X(t), t)dt+ q(X(t), t)dW (t), (1)

where dW (t) = ξ(t)dt is a Wiener process, meaning ξ(t) is zero-mean, un-105

correlated white noise (i.e., E[ξ(t)] = 0 and E[ξ(t + τ)ξT (t)] = δ(τ)). In106

continuous-time, the Fokker-Planck equation gives the evolution of the prob-107

ability density function (PDF) p(x, t) of X(t) in Eq. (1) as follows:108

∂p(x, t)

∂t
= −

n∑
j=1

∂fj(x, t)p(x, t)

∂xj

+
1

2

n∑
j=1

n∑
ℓ=1

∂2Qjℓ(x, t) p(x, t)

∂xj∂xℓ

(2)

where x = (x1, . . . , xn), fj(x, t) is the jth component of f(x, t), Qjℓ(x, t) is109

the (j, ℓ)th component of Q(x, t) = q(x, t)qT (x, t). If Q(x, t) > 0, Eq. (2) is110

elliptic, but if Q(x, t) is relatively small compared to the deterministic forces,111

Eq. (2) is hyperbolic and satisfies the conservative form of the n-dimensional112

advection equation:113

∂p(x, t)

∂t
+

n∑
j=1

∂f ′
j

(
p(x, t)

)
∂xj

= 0, (3)

where f ′
j

(
p(x, t)

)
= fj(x, t)p(x, t). At discrete measurement intervals t(k)114

the PDF is updated via Bayes’ theorem:115

p(x, t(k+)) =
p(y(k)|x) p(x, t(k−))

C
, (4)

where p(x, t(k+)) is the a posteriori, p(y(k)|x) is the measurement likeli-116

hood, p(x, t(k−)) is the a priori, and C is a normalization constant. GBEES117

performs the accurate, mixed continuous/discrete time-marching of p(x, t)118

using numerical approximations of Eqs. (3) and (4). We first delve into119

the continuous-time prediction of p(x, t) via a fully discrete flux-differencing120

method.121
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Figure 1: 2D schematic depicting the notation of GBEES.

2.1. Fully discrete flux-differencing methods122

Consider a hyperrectangular grid cell of the form123

C(i) =
n∏

j=1

[xj(ij−1/2), xj(ij+1/2)] (5)

where i = (i1, . . . , in) is the grid cell index vector corresponding to the grid124

cell center coordinate vector x(i). The grid width of C(i) in the xj-direction125

is then126

∆xj(i) = xj(ij+1/2) − xj(ij−1/2); (6)

for a uniform grid, ∆xj(i) is equal for all i (since a uniform grid is utilized127

in this work, the grid width is referenced as ∆xj for the remainder of the128

paper). Additionally,129

x(i±ı̂j/2) = x(i) ±
∆xj

2
x̂j (7)
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is the coordinate vector a half-grid width forward/backward relative to x(i)130

in the xj-direction (Fig. 1 displays Eqs. (5)-(7) schematically). From Eq.131

(3), p is assumed to be conserved over C(i), thus the integral of p varies only132

due to flux across the boundaries of C(i):133

d
dt

∫
C(i)

p(x(i), t)dx =
n∑

j=1

(∫
C±
(i∼ij

)

[
f ′
j

(
p(x(i+ı̂j/2), t)

)
− f ′

j

(
p(x(i−ı̂j/2), t)

)]
dx∼j

)
, (8)

where134

i∼j = (i1, . . . , ij−1, ij+1, . . . , in),

dx =
n∏

j=1

dxj, dx∼j =
n∏

ℓ=1
ℓ̸=j

dxℓ,

C±(i∼ij
) = [xj(ij±1/2)]×

n∏
ℓ=1
ℓ̸=j

[xℓ(iℓ−1/2), xℓ(iℓ+1/2)];

C±(i∼ij
) is the (n−1)-dimensional grid cell interface a half-step forward/backward135

in the xj-direction at xj = xj(ij±1/2) with normal vector pointing paral-136

lel/antiparallel to x̂j. Integrating Eq. (8) from t(k) to t(k+1) and dividing137

by the grid cell area leads to the fully discrete flux-differencing method138

P
(k+1)
(i) = P

(k)
(i) −

n∑
j=1

∆t

∆xj

[
Fj

(k)
(i+ı̂j/2)

− Fj
(k)
(i−ı̂j/2)

]
(9)

where P
(k+1)
(i) is the discrete, updated probability cell average at grid cell C(i),139

with140

Fj
(k)
(i±ı̂j/2)

≈ 1

∆t
n∏

ℓ=1
ℓ̸=j

∆xℓ

∫ t(k+1)

t(k)

∫
C±
(i∼ij

)

f ′
j

(
p(x(i±ı̂j/2), t)

)
dx∼jdt.

The numerical fluxes Fj
(k) parallel to the (n − 1)-dimensional cell faces are141

approximated via a Godunov-type finite volume method known as Corner142

Transport Upwinding (CTU).143
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2.2. The Corner Transport Upwind method144

First, the Donor Cell Upwind (DCU) method is used to calculate the145

first-order accurate numerical fluxes. For i ∈ I, where I represents the set146

of grid cell index vectors in the grid, in all directions j = 1, . . . , n, the upwind147

flux in each direction xj at time step k is calculated:148

Fj
(k)
(i−ı̂j/2)

= fj
+
(i−ı̂j/2)

P
(k)
(i−ı̂j)

+ fj
−
(i−ı̂j/2)

P
(k)
(i) , (10)

where149

fj
+
(i−ı̂j/2)

= max
(
f
(k)
j (i−ı̂j/2)

, 0
)
,

fj
−
(i−ı̂j/2)

= min
(
f
(k)
j (i−ı̂j/2)

, 0
)
,

f
(k)
j (i−ı̂j/2)

= fj(x(i−ı̂j/2), t
(k)).

Eq. (10) only considers probability flowing normal to the grid cell interface,150

but in general, probability may flow oblique to the interfaces of C(i). To151

obtain second-order accuracy, we must account for this with flux corrections.152

We consider C−(i∼i1
), the (n− 1)-dimensional grid cell interface a half-step153

backward in the x1-direction at x1 = x1(i1−1/2). Generally, the direction of154

advection at this interface may not be perpendicular to this interface; thus,155

probability may propagate in any of the four ordinal directions depending156

on the signs of the components of f
(k)
(i−ı̂1/2)

, as shown schematically in Fig.157

2. For second-order accuracy, this corresponds to 4(n− 1) possible updates158

to neighboring fluxes in the (n − 1)-directions, excluding the x1-direction.159

Because the n-dimensional CTU method is notationally complex, we provide160

it in full in Algorithm 1.161

The CTU method is still not second-order accurate, as it is missing high-162

resolution correction terms. For i ∈ I, in all directions xj, the high-resolution163

correction terms are added to the (DCU + CTU)-calculated fluxes:164

Fj
(k)
(i−ı̂j/2)

← Fj
(k)
(i−ı̂j/2)

+ 1
2

∣∣∣fj(k)(i−ı̂j/2)

∣∣∣(1− ∆t
∆xj

∣∣∣fj(k)(i−ı̂j/2)

∣∣∣)P
(k)
(i)

−P
(k)
(i−ı̂j)

∆xj
ϕ
(
θ
(k)
(i−ı̂j/2)

)
(11)

where165

θ
(k)
(i−ı̂j/2)

=

{(
P

(k)
(i−ı̂j)

− P
(k)
(i−2ı̂j)

)
/
(
P

(k)
(i) − P

(k)
(i−ı̂j)

)
if fj

(k)
(i−ı̂j/2)

≥ 0,(
P

(k)
(i+ı̂j)

− P
(k)
(i)

)
/
(
P

(k)
(i) − P

(k)
(i−ı̂j)

)
if fj

(k)
(i−ı̂j/2)

< 0,
,

ϕ(θ) = max
(
0,min

[
(1 + θ)/2, 2, 2θ

])
;
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Figure 2: (x1, x2)-plane of an n-dimensional grid depicting the notation of the CTU
method.

Algorithm 1 Corner Transport Upwind

Require: Perform DCU for i ∈ I
1: for i ∈ I do
2: for j = 0 to n do
3: F ∗ ← ∆t

2∆xj

(
P

(k)
(i) − P

(k)
(i−ı̂j)

)
4: for ℓ = 0 to n, ℓ ̸= j do
5: Fℓ

(k)
(i+ı̂ℓ/2)

← Fℓ
(k)
(i+ı̂ℓ/2)

− fj
+
(i−ı̂j/2)

fℓ
+
(i+ı̂ℓ/2)

F ∗

6: Fl
(k)
(i−ı̂ℓ/2)

← Fℓ
(k)
(i−ı̂ℓ/2)

− fj
+
(i−ı̂j/2)

fℓ
−
(i−ı̂ℓ/2)

F ∗

7: Fℓ
(k)
(i−ı̂j+ı̂ℓ/2)

← Fℓ
(k)
(i−ı̂j+ı̂ℓ/2)

− fj
−
(i−ı̂j/2)

fℓ
+
(i−ı̂j+ı̂ℓ/2)

F ∗

8: Fℓ
(k)
(i−ı̂j−ı̂ℓ/2)

← Fℓ
(k)
(i−ı̂j−ı̂ℓ/2)

− fj
−
(i−ı̂j/2)

fℓ
−
(i−ı̂j−ı̂ℓ/2)

F ∗

9: end for
10: end for
11: end for

ϕ(θ) is a monotonized central difference limiter used for representing proba-166

bility discontinuities with sharper resolution [17]. After the fluxes have been167
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calculated and plugged into Eq. (9), the discretized PDF is normalized168

P
(k+1)
(i) =

(∑
i∈I

P
(k+1)
(i)

)−1

P
(k+1)
(i) . (12)

Together, Eq. (10), Algorithm 1, and Eqs. (11) and (12) form a second-169

order accurate finite volume method employed by GBEES for numerically170

time-marching a discretized, n-dimensional PDF.171

3. Advancements made to the CPU implementation172

GBEES excels where other finite volume methods fail by dynamically173

allocating grid cells where probability is above some threshold. However, the174

legacy algorithm architecture contains structures and subprocesses that are175

ripe for optimization. Prior to detailing the GPU implementation, we discuss176

the efficiency improvements made to the CPU implementation.177

3.1. Dynamic grid stored in hashtable178

The legacy implementation of GBEES stores the dynamic grid in a nested179

list data structure. Many functions within GBEES require a searching pro-180

cedure to check if a given C(i) exists in the grid. The time complexity of181

searching a nested list is O(n2), which will result in computational bottle-182

necks for high-dimensional systems. The first attempt to address this issue183

employed a binary search tree [18], but overhead of the conversion from grid184

cell index vector i to unique, positive key value proved too large. Instead,185

a hashtable was utilized, as the structure allows for collisions between map-186

pings, thus removing the overhead from ensuring bijectivity. Additionally,187

the time complexity of search for a hashtable is O(1). Hashtables are dis-188

cussed further in Section 4.2.189

3.2. CFL-minimized adaptive time-marching190

For finite volume methods, the Courant–Friedrichs–Lewy (CFL) condi-191

tion [19]192

∆t

( n∑
j=1

fj
∆xj

)
≤ Cmax

must be satisfied in order for the method to be stable, where Cmax = 1 for193

explicit methods (as GBEES is an explicit finite volume method, we assume194
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Cmax = 1 for the remainder of the paper). In general, because the advection195

is variable across spatial coordinates, ∆t must be small enough such that this196

condition holds for i ∈ I:197

∆t ≤
( n∑

j=1

fj(i−ı̂j/2)

∆xj

)−1

. (13)

The legacy implementation of GBEES employed a static, over-conservative198

time step to ensure stability for the entire propagation period. The new199

implementation of GBEES finds the minimum allowable ∆t such that Eq.200

(13) is true for i ∈ I at time step k:201

∆t(k) = min
i∈I

[( n∑
j=1

fj
(k)
(i−ı̂j/2)

∆xj

)−1
]
. (14)

Because of the dynamic nature of the grid, ∆t(k) may change depending202

on where in phase space probability is focused. Implementing Eq. (14)203

maximizes the time step size while ensuring the stability of the explicit finite204

volume method.205

3.3. Directional growing and pruning206

To exploit the sparsity of an n-dimensional PDF over phase space, grid207

cells are tracked where probability is above some threshold p∗. To ensure208

probability is not lost during time-marching, grid cells neighboring those209

above threshold are also tracked. In the legacy implementation of GBEES,210

during the growing procedure, the algorithm loops through all existing grid211

cells and checks if any of the 3n − 1 neighbors that do not exist must be212

inserted, regardless if probability is likely to flow into the new grid cell in the213

following step. This can create irrelevant grid cells that are deleted in future214

steps without ever increasing in probability. In the new GBEES implemen-215

tation, the direction of the advection is used to determine if a neighboring216

grid cell is required for the next time step. As is demonstrated in Fig. 3,217

only the downwind grid cells are created; this process saves on the number218

of cells that are inserted in each growth step.219

Similarly, during the pruning procedure, the algorithm loops through all220

existing grid cells, looking for those that are below threshold p∗. In the221

legacy GBEES implementation, before deleting the negligible cell, the algo-222

rithm checks each of the 3n − 1 neighbors to see if any are above p∗. Again,223
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Figure 3: 2D schematic demonstrating the differences in the growing procedure for the
legacy and optimized implementations of GBEES. Solid border cells are those with prob-
ability above threshold, dashed border cells are those set to be created during the growing
procedure, and dotted border cells are neglected.

this results in redundant cells being saved, as even if a neighboring cell is224

above threshold, it does not necessarily mean that in the following time steps,225

it will flow probability into the considered cell. Instead, the new GBEES im-226

plementation takes a directional-approach to the growth procedure, wherein227

only the neighboring grid cells that are upwind are checked for probability228

above p∗. Fig. 4 shows that this requires the algorithm to check a fraction229

of the total neighbor cells, while ensuring that negligible cells are not saved,230

again contribution to the efficiency of the new algorithm.231

4. CUDA Implementation232

The CUDA implementation builds upon the enhancements made to the233

CPU version described in the previous section. This section describes the234

specifics of the CUDA architecture [20] and the optimization strategies em-235

ployed.236

The CUDA architecture is designed for parallel processing, with GPUs237

containing multiple Streaming Multiprocessors (SMs). Each SM can execute238

groups of threads organized into blocks, which are further divided into smaller239

units of 32 threads called warps. Warps execute instructions in a single-240

instruction, multiple-thread (SIMT) fashion, meaning all threads in a warp241

perform the same instruction simultaneously on different data.242
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Figure 4: 2D schematic demonstrating the differences in the pruning procedure for the
legacy and optimized implementations of GBEES. Solid border cells are those with proba-
bility below threshold, dashed border cells are those checked during the pruning procedure,
and dotted border cells are neglected.

CUDA GPUs also feature a layered memory hierarchy. Global (or de-243

vice) memory provides large storage capacity but has higher latency. Each244

SM has faster, limited shared memory that is accessible only to threads245

within a block, enabling efficient data sharing. Additionally, each thread has246

its own private registers, the fastest type of memory, used for intermediate247

calculations.248

As described in Section 2, the GBEES method requires a dynamic grid249

in which cells are added or removed throughout the integration steps. This250

dynamic nature prevents establishing a fixed mapping between execution251

threads and cells. In traditional finite volume software using a static grid,252

the grid is partitioned into subdomains —each one including also a bound-253

ary with additional halo cells— and these subdomains are then assigned to254

thread blocks on the GPU [21]. However, with a dynamic grid, a flexible255

assignment of cells to threads is required, along with additional synchroniza-256

tion, as thread blocks can no longer operate independently within isolated257

subdomains. This dynamic structure impacts all aspects of the GPU imple-258

mentation, necessitating more complex synchronization mechanisms and a259

highly efficient memory layout for storing the grid.260

This extra global-level synchronization required by the dynamic grid is261

provided by the Cooperative Kernel abstraction in CUDA [22]. A Coop-262
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Figure 5: Grid data structure. Notice that the Used List and the Free List are maintained
compact, with all the used slots at the beginning and all the free slots at the end.

erative Kernel requires all threads to be active concurrently, enabling the263

establishment of global synchronization barriers. This means the maximum264

number of threads equals the GPU device’s maximum simultaneous threads.265

If the grid contains more cells than this limit, each thread must process266

multiple cells sequentially.267

4.1. Grid data structure268

Given the synchronization requirements, the dynamic thread-cell assign-269

ments, and the need for each thread to process a variable number of cells, we270

propose the memory structure for the grid depicted in Fig. 5.271

The data structure consists of a hashtable, a list to track used cells,272

another list for unused cells, and a heap table for cell storage.273

The hashtable provides fast access to a cell by its key —the state coor-274

dinates i = (i1, . . . , in). This random access is crucial when accessing the275

neighbor cells in each dimension.276

The list of used cells in the grid serves two main purposes. First, it277

enables quick access to used cells for functions that process individual cells.278

More importantly, it allows an even distribution of workload among active279

threads.280

The Free List maintains a record of not used cells in the heap, reducing281

the time needed to locate a free slot.282
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Finally, the heap stores the cells themselves. In CUDA, it is not possible283

to allocate memory directly within a device function in a kernel. Therefore,284

and for performance reasons, all memory structures are of fixed size, which,285

for a given configuration, sets the maximum number of cells in the grid.286

The relationships among these memory structures are depicted in Fig. 5.287

In addition to the depicted relationships, each cell contains pointers to its288

neighboring cells in each dimension by directly storing their indexes of the289

Used List.290

4.2. Hashtable291

Because the maximum number of grid cells is fixed, we can set the292

hashtable size to ensure a maximum occupancy level. The hashtable size293

is configurable in the software as a multiple of the grid’s maximum size,294

with a default setting of twice that size. This default configuration ensures295

a maximum occupancy factor α = 0.5. This bounded occupancy allows us296

to use a simple open-addressing scheme with linear probing [23]. With a297

well-randomized hash function, the expected number of probes during an298

unsuccessful search is [24]299

(1 + 1/(1− α)2)/2

and for a successful search300

(1 + 1/(1− α))/2.

The open addressing scheme requires marking elements as deleted [23]. In301

the GBEES method, all cell deletions occur during the prune grid operation.302

Since the prune operation is executed only for a subset of integration steps,303

rehashing the hashtable after each grid prune has minimal impact on per-304

formance while ensuring that the maximum occupancy level is maintained.305

Moreover, in the CUDA implementation, this rehashing is fully parallelized,306

with all execution threads sharing the workload to rehash the hashtable en-307

tries concurrently.308

Finally, achieving the expected efficiency requires a well-randomized hash309

function. Fig. 6 shows collision graphs for different hash functions, with each310

plot representing the number of collisions per entry in a 2D projection for the311

3D Lorenz ’63 model —one of the test cases included in this study. Based312

on these patterns, the BuzHash algorithm, also known as hashing by cyclic313

polynomial, was selected and implemented as described in [25].314
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Figure 6: Number of collisions for different hash functions represented as 2D projections,
where the capacity of the hashtable is set to 1024 = 32 × 32. For these examples, the
hashtable stores the initial grid from the Lorenz ’63 example, explained further in Section
5.1.1.

4.3. Main code blocks315

From an implementation perspective, we can divide the main code blocks316

into operations that act on individual cells and those that act on the grid317

as a whole. The first group is straightforward to implement, as each thread318

modifies only its assigned cells without significant synchronization issues,319

requiring only quick access to the cell and its neighbors. This rapid access320

is achieved through the Used List. This category includes operations such321

as cell initialization, updating references to the neighbor cells, updating the322

time step based on the CFL condition —Eq. (14)—, computing the DCU323

and CTU—Eq. (10), Algorithm (1), and Eq. (11)—, probability distribution324

normalization —Eq. (12)—, and applying new measurements —Eq. (4)—.325

The second category involves grid-wide operations, specifically the grid326

growth and grid pruning. These operations modifies a shared global re-327

source —the grid— and therefore require careful synchronization. To opti-328

mize CUDA performance, all synchronization is managed using atomic op-329

erations and synchronization barriers, either at the block or device level.330

The following sections detail the key synchronization aspects and parallel331

techniques applied in these code blocks.332

4.4. Synchronization aspects333

4.4.1. Grow grid operation334

To maximize efficiency in the grid growth operation, a concurrent cell335

insertion method is required to avoid blocking threads during simultaneous336

cell creations. Additionally, when exploring different dimensions in the phase337
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space, the algorithm frequently attempts to create cells that already exist.338

Algorithm 2 presents the chosen compromise solution, which ensures correct339

synchronization without thread blocking by utilizing atomic operations.340

This implementation delays the complete initialization of the cell —using341

a callback function— until it is confirmed that the cell does not already exist342

in the grid, thereby improving performance.343

However, the selected approach has a trade-off: it can only check the344

existence of a new cell against the previous state of the grid and cannot345

guarantee successful checking with the other concurrent insertions. To ad-346

dress this limitation, the grid growth operation adopts a staged, directional347

cell growth strategy. Specifically:348

• Growth is first performed along the forward axis of all dimensions. A349

global synchronization barrier is then executed.350

• Growth is subsequently performed along the backward axis of all di-351

mensions, followed by another global synchronization step.352

• Finally, edge growth is carried out in a similar staged manner in the four353

diagonal directions —forward-forward, forward-backward, backward-354

forward, and backward-backward.355

This staged approach ensures that no concurrent thread attempts to insert356

the same cell at the same time.357

4.4.2. Prune grid operation358

The prune grid operation, outlined in Algorithm 3, is less performance-359

critical as it is executed only once every several integration steps. However,360

it requires specialized techniques to be performed in parallel by all threads.361

The operation begins by marking cells whose probability values fall below362

a specified threshold, identifying them as candidates for pruning. The next363

step involves performing a parallel prefix sum operation [26, 27] to compact364

the Used List. The prefix sum, also known as scan, computes cumulative365

sums over a list to facilitate parallel data compaction. This scan is carried366

out by the active threads, as detailed in the following section on specific367

parallel techniques.368

After the scan, the Used List is compacted using a double-buffer scheme,369

and the freed slots are added to the Free List via atomic operations.370

Finally, the Hashtable is rehashed, also employing a double-buffer scheme371

and distributing the rehashing workload across all active threads.372
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Algorithm 2 Concurrent Cell Creation

Require: The Used List and the Free List are compact.
1: Obtain the hashtable slot by applying the hash function to the cell key.
2: loop
3: Check if the hashtable slot is free using an atomicCAS() operation. If

it is free, reserve it with the RESERVED flag; if not, obtain the current
Used Index.

4: if The existing cell is the same then
5: break
6: end if
7: if An empty slot is reached then
8: Reserve a Used List slot using an atomicAdd() operation on the

list size.
9: Obtain a free heap slot from the Free List using an atomicDec()

operation on the list size.
10: Update the Hashtable and Used List contents.
11: Update the heap content and complete cell initialization with a

callback function.
12: end if
13: Move to the next hashtable slot.
14: end loop

Algorithm 3 Grid Prune Operation

1: Mark the negligible cells in the heap.
2: Perform a prefix sum process of the Used List in shared memory.
3: Complete the prefix sum of the Used List in global memory.
4: Compact the Used List and update the Free List.
5: Rehash the Hashtable.

Ensure: To perform a global synchronization at the end of each step.

4.5. Specific parallel techniques373

The GBEES-GPU implementation employs two high-level parallel tech-374

niques: parallel reduction and parallel scan. Parallel reduction is utilized375

to compute the sum of grid cell probabilities for normalizing the distribu-376

tion following Eq. (12). Parallel scan is applied during the prune operation377

to compact the Used List. These techniques are widely recognized as stan-378

dard methods [27], and only a brief description is provided here, focusing379
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on their adaptation to the GBEES kernel’s context, which involves multiple380

concurrent blocks and threads processing several cells each.381

In the case of parallel reduction, each thread begins by summing the382

probability value of all the cells assigned to it. Next, a parallel reduction383

is performed within each thread block, utilizing shared memory. This intra-384

block reduction employs a sequential addressing scheme to obtain an opti-385

mal shared memory access. Once the reduction within shared memory is386

complete, a global reduction is performed, involving the first thread of each387

block. Unlike the intra-block reduction, which uses thread synchronization,388

the outer reduction relies on global barriers. The final result of the reduction389

is the sum of the probabilities of all cells.390

For the scan operation required to compact the Used List, the process391

begins with a per-block scan using a double buffer in shared memory. Specif-392

ically, an inclusive scan with sequential addressing is employed. Unlike par-393

allel reduction, it is not possible to pre-accumulate the values of all cells394

processed by each thread. Instead, multiple intra-block scans are performed395

within each block, with the sums orderly accumulated into a global array.396

Following this, a second outer scan is conducted at the global level by the397

first thread of each block. Once the corresponding prefix sums are obtained,398

each thread populates the compacted Used List in parallel and updates the399

Free List to account for unused or deleted cells.400

5. Validation401

5.1. Use cases402

In order to validate the GBEES implementation we consider the following403

use cases404

• The Lorenz ’63 model (three-dimensional)405

• The Lorenz ’96 model (six-dimensional)406

5.1.1. Lorenz ’63407

The Lorenz ’63 model, colloquially referred to as the Butterfly Effect, is408

often employed to validate the accuracy of uncertainty propagation meth-409

ods because of the highly non-Gaussian behavior exhibited [28]. The three-410

18



Figure 7: PDF isosurfaces governed by the Lorenz ’63 model in (x1, x2, x3)-space at p =
0.607, p = 0.135, and p = 0.011 with ∆xj = 0.5 for j = 1, 2, 3. On the left (a), the
isosurfaces are at t = 0, t = 1/3, t = 2/3,and t = 1± and on the right (b), the isosurfaces
are at t = 1±, t = 4/3, t = 5/3 and t = 2.

dimensional state and equations of motion are defined as411

x =

x1

x2

x3

 ,
dx

dt
= f(x) =

 σ(x2 − x1)
−x2 − x1x3

−bx3 + x1x2 − br

 ,

where (σ, b, r) = (4, 1, 48) results in the system being chaotic. In Fig. 7,412

a 3D Gaussian PDF is initialized at x(0) = (−11.5,−10, 9.5) with standard413

deviation σxj
= 1 for j = 1, 2, 3. The uncertainty is then continuous-time414

propagated using GBEES until t(1) = 1, where a discrete measurement up-415

date is performed with measurement y(1) = −8, where the measurement416

model is417

y = h(x) = x3,

and the measurement uncertainty σy = 1. The uncertainty is then continuous-418

time propagated till t = 2, when the simulation ends. Fig. 7 illustrates the419

rapid evolution of the PDF from Gaussian to highly non-Gaussian, with the420

PDF naturally bifurcating at t = 1. Since this model was also used to val-421

idate the legacy GBEES implementation, it serves as a valuable basis for422

performance comparison, as discussed further in Section 6.423

5.1.2. Lorenz ’96424

As an analog to the Lorenz ’63 validation first performed in [16], the CPU-425

optimized and GPU implementations of GBEES are validated on the Lorenz426
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Figure 8: PDF representations in (x1, x2, x3)- and (x4, x5, x6)-spaces governed by the
Lorenz ’96 model with ∆xj = 0.01 for j = 1, . . . , 6 and F = 4. On top (a), the MC
point-mass distributions with 10,000 particles at t = 0 and t = 1.3 and on bottom (b), the
GBEES isosurfaces at p = 0.607, p = 0.135, and p = 0.011 for t = 0 and t = 1.3.

’96 model, a generalized dynamical system that exhibits chaotic behavior427

[29]. The n-dimensional state and equations of motion are defined as428

x =


x1
...
xj
...
xn

 ,
dx

dt
= f(x) =


(x2 − xn−1)xn − x1 + F

...
(xj+1 − xj−2)xj−1 − xj + F

...
(x1 − xn−2)xn−1 − xn + F

 ,

where (F, . . . , F ) is an unstable equilibrium, with F being a forcing constant.429

A 6D Gaussian PDF is initialized at x(0) = (F +0.5, F, . . . , F ) where F = 4,430

with standard deviation σxj
= 0.02 for j = 1, . . . , 6. The uncertainty is then431

propagated using GBEES until t = 1.3. No measurement update is per-432

formed in this simulation. To validate the accuracy of GBEES qualitatively,433

an MC simulation with identical initial conditions is plotted, depicted in Fig.434
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8(a). The 3D PDFs in the (x1, x2, x3)- and (x4, x5, x6)-spaces, shown in Fig.435

8(b), are calculated from the discretized 6D PDF by numerically integrating436

over the (x4, x5, x6)- and (x1, x2, x3)-spaces, respectively:437

p(x1, x2, x3, t) =

∫ max(x6)

min(x6)

∫ max(x5)

min(x5)

∫ max(x4)

min(x4)

p(x, t)dx4dx5dx6,

p(x4, x5, x6, t) =

∫ max(x3)

min(x3)

∫ max(x2)

min(x2)

∫ max(x1)

min(x1)

p(x, t)dx1dx2dx3.

5.2. Convergence and accuracy438

In addition to the qualitative validation against the MC simulation shown439

in Figs. 7 and 8, a quantitative validation is conducted by comparing the440

results to a propagation with a very small step size, which serves as the441

reference “true” solution for this test.442

This test has two primary objectives. First, to ensure the GBEES imple-443

mentation converge correctly, as demonstrated by decreasing errors relative444

to the reference propagation when step sizes are reduced. Second, to assess445

the impact of the non-deterministic execution order of operations in CUDA.446

In the CUDA architecture, the execution order of different threads is non-447

deterministic [22]. Due to the non-associativity of floating-point arithmetic448

caused by the rounding errors, small variations in the computed probability449

distribution are expected.450

The errors in the probability distribution are assessed using two metrics.451

The first metric measures the sum of the absolute differences between the452

probability values in each cell. Since the mesh is equispaced, there is no need453

to assign different weights to the cells. Additionally, because the total sum454

of the probabilities in the cells is 1, this metric is already normalized. The455

error for this metric is calculated as follows:456

E(t) =
∑
i∈I

|p(x(i), t)− p0(x(i), t)|,

where p0(x(i), t) represents the discrete probability distribution obtained457

from the reference propagation.458

The second metric is the Bhattacharyya Coefficient [30] defined as459

BC(t) =
∑
i∈I

√
p(x(i), t)p0(x(i), t),
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Figure 9: Comparison of the discrete probability distributions over simulated time with a
reference propagation of step size 0.01×CFL. On the left (a), the comparison is based on
the absolute probability differences between cells E(t). On the right (b), the comparison
utilizes the Bhattacharyya Coefficient BC(t).

that measures the similarity between two probability distributions with a460

value of 1 indicating that the distributions coincide and 0 when the distribu-461

tions are entirely distinct.462

Using these metrics, the reference propagation of a variable step size of463

0.01×CFL was compared to CPU and GPU propagations with step sizes of464

1.0, 0.5, 0.2, and 0.1 times CFL.465

The results of these comparisons are shown in Fig. 9. The curves demon-466

strate proper convergence, with progressively more accurate values as the step467

size is reduced. Additionally, the differences caused by the non-deterministic468

execution order in CUDA are minimal compared to the influence of other469

error sources in the simulation, such as step size variation.470

6. Performance471

Performance improvements for both the new CPU and CUDA versions472

are evaluated using the same validation cases described in Section 5. Their473

computational effort is summarized in Table 1. The significant difference in474

computational load between the two cases is primarily due to the dimension-475

ality of the models: the Lorenz ’63 is formulated over a three-dimensional476
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Lorenz ’63 Lorenz ’96
Maximum grid size ≈ 24k ≈ 50M
Integration steps ≈ 960 ≈ 1050
Total cell computations ≈ 6.5M ≈ 30G

Table 1: Computational burden for the Lorenz ’63 and Lorenz ’96 models with a variable
step size corresponding to a 1.0×CFL and a cell size equal to half the standard deviation
in each dimension of the first measurement.

Figure 10: Runtime comparison between the legacy and the new CPU version for the
Lorenz ’63 model.

phase space, while the Lorenz ’96 uses a six-dimensional one.477

Fig. 10 shows the runtime comparison between the legacy and the new478

CPU versions for the Lorenz ’63 model. The legacy version performs a fixed-479

step integration, while the new CPU version uses a variable-step scheme.480

To ensure a fair comparison, the fixed step size of the legacy CPU version481

was adjusted so that, during the integration, the Bhattacharyya coefficients,482

computed using the same procedure as in Section 5, reach a similar maximum483

value.484

The runtime results of these executions are also included in Table 2. The485

relative speed-up of the new CPU version relative to the legacy version is486

approximately 13.85 times faster (calculated as 1/0.072).487

To assess performance in the CUDA version, it is essential first to outline488

the launch configuration parameters and explain how these settings influence489
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overall performance.490

The GPU launch configuration is determined by three key parameters:491

the number of blocks, the number of threads per block, and the number492

of cells each thread processes. The objective of the launch configuration493

is to maximize the GPU occupancy. Since we have a Cooperative Kernel,494

this is achieved by launching a total number of threads equal to the GPU’s495

maximum simultaneous thread capacity.496

Device Runtime (ms) Cells/s Speed-up
CPU-legacy: Apple M2 MAX 28777 ≈0.54M/s 0.072
CPU-optimized: Apple M2 MAX 2077 ≈3.13M/s 1
GPU 1: Tesla V100 244 ≈26.6M/s 8.5
GPU 2: NVIDIA A100 258 ≈25.2M/s 8.1
GPU 3: NVIDIA H100 226 ≈28.8M/s 9.2
GPU 4: NVIDIA H200 230 ≈28.3M/s 9.0

Table 2: Total runtime, number of cells processed per second, and relative speed-up com-
pared to a single-core CPU running the optimized version of GBEES for the Lorenz ’63
model.

If the maximum grid size exceeds this capacity, each thread must process497

multiple cells, requiring the parameter for cells processed per thread to be set498

to a value greater than one. Conversely, if the maximum grid size is smaller499

than this capacity, the configuration should launch only as many threads as500

the grid requires, with each thread processing only one cell. In this last case,501

the achieved occupancy will be less than the theoretical maximum because502

the model does not expose sufficient parallelism to fully utilize the GPU.503

Therefore, the launch configuration strategy is to keep the number of504

cells processed by each thread as low as possible. If the model is sufficiently505

large, the product of the number of blocks and the number of threads per506

block should equal the GPU’s maximum thread capacity. This product can507

be achieved through various combinations of blocks and threads per block.508

This balance between blocks and threads per block is very subtle. Setting509

the number of threads per block to the maximum (1024 in the current CUDA510

architectures) benefits the parallel reduction and scan processes described511

in Section 4.5, as more computation is performed at the block level using512

shared memory. However, the performance differences are minimal, and in513

some tests, using fewer threads per block than the maximum has resulted in514

slightly better runtimes.515
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Figure 11: Runtime comparison between the new CPU version and GBEES-GPU on
various GPU devices (a) and number of used cells (b) for the Lorenz ’63 model.

Fig. 11 represents, for the Lorenz ’63 model, the runtime comparision516

between the new CPU version and the CUDA implementation running on517

different GPU devices. Fig. 11(a) represents the program runtime as a518

function of the simulated time, where steeper regions correspond to moments519

when the grid contains more cells. The number of cells during the simulation520

is plotted in Fig. 11(b). The drop in the number of cells at t = 1.0 TU521

corresponds to a discrete measurement update.522

The graph in Fig. 11(a) shows a significant performance boost from523

parallelizing and executing the algorithm on the GPU. Table 2 summarizes524

the total runtime, the number of processed cells per second, and the speed-525

up values. The Lorenz ’63 model represents a case where the grid size is526

not large enough to achieve maximum occupancy on the tested GPUs. This527

limitation causes the performance to be similar across all devices. Despite528

this, the speed-up achieved by using the CUDA version ranges from 8.5 to529

9.0, depending on the specific GPU tested.530

The Lorenz ’96 model requires a high computational burden and exposes531

enough parallelism to fully utilize the performance of the tested GPUs. This532

results in a significant performance difference between the CPU and CUDA533

versions. To highlight this difference and facilitate representation, Fig. 12534

first presents the runtime comparison between the new CPU version and the535

25



Figure 12: Runtime comparison between the new CPU version and the GBEES-GPU
execution on a V100 GPU decvice for the Lorenz ’96 model.

CUDA implementation running on a V100 GPU device, which is the slowest536

among the tested GPUs.537

The runtime data for this comparison, along with comparisons to other538

GPU devices, are included in Table 3. The execution of the Lorenz ’96 model539

is 17.8 times faster in the CUDA version on the V100 device compared to540

the new CPU version.541

For the other devices, Fig. 13 shows that, as the model fully utilizes the542

GPUs, there is a progressive reduction in execution times corresponding to543

the increasing computing power of the different test devices. The speed-ups544

achieved are 56.4 times for the A100 device, 106.6 times for the H100, and545

132.5 times faster for the H200 device.546

The observed execution time improvements surpass one order of magni-547

tude between the legacy and new CPU versions —as demonstrated in the548

Lorenz ’63 use case— and two orders of magnitude between the new CPU549

version and the GPU implementation. Together, these results indicate that550

the enhanced GBEES algorithm achieves a total performance improvement551

of more than three orders of magnitude.552
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Figure 13: Runtime comparison between the new CPU version and GBEES-GPU on
various GPU devices (a) and number of used cells (b) for the Lorenz ’96 model.

Device Runtime (s) Cells/s Speed-up
CPU-optimized: Apple M2 MAX 97927 ≈0.3M/s 1
GPU 1: Tesla V100 5513 ≈5.4M/s 17.8
GPU 2: NVIDIA A100 1736 ≈17.3M/s 56.4
GPU 3: NVIDIA H100 919 ≈32.6M/s 106.6
GPU 4: NVIDIA H200 739 ≈40.6M/s 132.5

Table 3: Total runtime, number of cells processed per second, and relative speed-up com-
pared to a single-core CPU running the new version of GBEES for the Lorenz ’96 model.

7. Conclusions553

This paper presents a CPU-optimized implementation and a GPU imple-554

mentation of GBEES, a second-order accurate, Eulerian algorithm for robust,555

nonlinear uncertainty propagation. To address the computational limitations556

associated with the CPU implementation of GBEES, the main data struc-557

ture was changed from a linked list to a hashtable, a CFL-minimized adaptive558

time step was used, and the grid growing and pruning procedures were ad-559

justed to consider the advection direction. Once the CPU implementation560

was optimized, the algorithm was translated to CUDA for GPU execution.561

The CUDA implementation is heavily influenced by the dynamic nature of562

the grid required by the GBEES method. This dynamic grid demands more563
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sophisticated synchronization mechanisms and an efficient memory layout for564

its storage. To address these challenges, the CUDA implementation employs565

the Cooperative Kernel abstraction, an ad-hoc data structure to store the566

grid, non-blocking algorithms to modify it, and parallel-specific optimization567

techniques.568

For validation, we test the two novel implementations on the Lorenz ‘63569

model, a three-dimensional chaotic system utilized in the original GBEES570

paper. Two quantitative metrics are analyzed: the sum of the absolute differ-571

ences and the Bhattacharyya Coefficient. For a truth model, we time-march572

an initially Gaussian PDF at 1/100th the expected stable time step size sub-573

ject to the chaotic dynamics. Both metrics indicate that the propagated prob-574

ability distribution converges to the truth as the time step decreases for both575

the CPU-optimized and GPU implementations. For this low-dimensional ex-576

ample, the performance increase relative to the CPU implementation is one577

order of magnitude for the CPU-optimized implementation and two orders578

of magnitude for the GPU implementation.579

Finally, we demonstrate the full capability of the new implementations on580

a six-dimensional variation of the Lorenz ’96 model, an n-dimensional chaotic581

system. The application of finite volume methods to this dimensionality is582

uncommon, but necessary for the uncertainty propagation of second-order583

dynamical systems. For this example, we validate with a densely-populated584

MC simulation, qualitatively confirming that the point mass distributions585

and probability isosurfaces match at the start and end epochs. The high586

dimensionality of the system highlights the efficacy of the parallelized algo-587

rithm; for the Lorenz ’96 system, the GPU implementation has a performance588

increase of two orders of magnitude relative to the CPU-optimized implemen-589

tation, implying a 1000-fold increase in performance relative to the original590

CPU implementation.591
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Appendix A. Benchmark hardware specifications613

The CPU execution times were measured on a system with the following614

specifications:615

• CPU: Apple M2 Max, 12-core CPU. Clock frequency 8 cores × 3.7GHz,616

4 cores × 3.4 GHz. L2 cache size 36 MB.617

The GPU performance tests were executed in the next GPU devices:618

• GPU 1: Tesla V100-SXM2-32GB, CUDA architecture Volta. Stream619

multiprocessors (SMs) 80. Maximum threads per SM 2048. SM clock620

frequency 1.530 GHz. Memory clock frequency 0.877 GHz. Memory 32621

GB HBM2.622

• GPU 2: NVIDIA A100-SXM4-40GB, CUDA architecture Ampere. Stream623

multiprocessors (SMs) 108. Maximum threads per SM 2048. SM clock624

frequency 1.410 GHz. Memory clock frequency 1.215 GHz. Memory 40625

GB HBM2e.626
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• GPU 3: NVIDIA H100-80GB, CUDA architecture Hopper. Stream627

multiprocessors (SMs) 132. Maximum threads per SM 2048. SM clock628

frequency 1.980 GHz. Memory clock frequency 2.619 GHz. Memory 80629

GB HBM3.630

• GPU 4: NVIDIA H200-141GB, CUDA architecture Hopper. Stream631

multiprocessors (SMs) 132. Maximum threads per SM 2048. SM clock632

frequency 1.980 GHz. Memory clock frequency 3.201 GHz. Memory633

141 GB HBM3e.634
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