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ABSTRACT
This article presents a continuous-time framework for modeling the evo-
lution of a probability density function (PDF) summarizing the region of
interest (ROI) during the search for a stochastically-moving, statistically
stationary target. This framework utilizes the Fokker-Planck partial dif-
ferential equation representing the evolution of this PDF subject to: dif-
fusion modeling the spread of the PDF due to the random motion of the
target, advection modeling the relaxation of the PDF back to a speci!ed
steady pro!le summarizing the ROI in the absence of observations, and
observations substantially reducing the PDF within the vicinity of the
search vehicles patrolling the ROI. As a medium for testing the proposed
search algorithm, this work de!nes a new, more general formulation for
the multivariate generalized Gaussian distribution (GGD), an extension
of the Gaussian distribution described by shaping parameter β . Addi-
tionally, we de!ne a formulation with enhanced "exibility, the general-
ized Gaussian distribution with anisotropic "atness (GGDAF). Two tech-
niques are explored that convert a set of target location observations
into a steady-state PDF summarizing the ROI of the target, wherein the
steady-state advection is numerically solved for. This work thus provides
a novel framework for the probabilistic search of stochastically-moving
targets, accommodating both non-evasive and evasive behavior.
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1. Introduction

Probabilistic search techniques (i.e., methods that model uncertainty distributions when
searching for targets, and route search vehicles accordingly) are essential for maximizing
the e!ectiveness of search e!orts. Approximately stated, such searches must appropriately
balance the competing goals of maximizing the probability of "nding the target quickly
and ensuring that the target is found eventually. Techniques that focus on the discovery of
stationary objects Chung (2010); Chung and Burdick (2012) update the uncertainty of a
motionless target via observations by mobile agents, and consider cases where the obser-
vations taken may be inaccurate (i.e., false positives and false negatives). Other techniques
that consider stochastically-moving targets model the state of the target, rather than its
probability distribution, and evolve that state randomly, then compare di!erent searching
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strategies via a “probability of capture” metric that is approximated by a frequentist approach
Noori et al. (2016); Washburn (1998); Hollinger et al. (2009). In contrast, the present work
models the time evolution of the probability density function (PDF) representing the region
of interest (ROI) via the Fokker-Planck partial di!erential equation (PDE), thus providing a
representative model appropriate to guide the search for stochastically-moving targets. This
PDF evolution procedure may be utilized as the base for other probabilistic search techniques
where more detailed considerations are incorporated, such as detection inaccuracy, trajectory
optimization, and optimal search termination conditions Chew (1973); Ross (1969).

The framework we employ in this article makes the assumption that the location of the
target is constrained to a static domain space. To support the validity of this, we note that
it is well documented that predators o#en hunt over de"ned territories, which they defend
against the incursion of other predators Klopfer (1969). Herbivores o#en forage over similarly
de"ned territories, o#en referred to as their stable home range Van Moorter et al. (2009);
Powell (2000). Furthermore, the natural behaviors of many organisms over speci"c temporal
scales result in invariant probability measures, i.e., the stochastic location of the organism
is a statistically stationary process Benhamou (2014); Patin et al. (2020). In this article, it is
assumed that this phenomena, known as locational stationarity, accurately describes the ROI
of the proposed target over the expected temporal scale. While the location of said target at any
speci"c time may be unknown, and its movement over ROI modeled as “random”, information
about this ROI may be used to e!ectively guide a search. Today, rarely is such information
utilized to carry out a search optimally; consider, e.g., the $100M F-35B aircra# that was lost
by the US Marines in the woods of South Carolina on Sep 17, 2023 Kaufman (2023). The
consequential search for this lost, highly sensitive government asset, which lasted over 24
h, involved multiple search vehicles $ying overlapping “lawnmower” search trajectories (i.e.,
simple linear paths that go and and back over long stretches, as illustrated in Figure 1). This
search pattern was far from optimal, potentially delaying the recovery of this highly sensitive
asset by many hours, with potentially severe consequences.

This work considers the problem of searching for stochastically-moving, statistically
stationary targets displaying either non-evasive behavior, where the presence of the search
vehicles have no e!ect on the motion of the target, or evasive behavior, where the target is
privy to the presence of the search vehicles, thus directly impacting its motion. In the search
for the stochastically-moving target, observations that do not "nd the target along a certain
search path suppress the likelihood of the target being near that search path for a while, but due
to the motion of the target, the likelihood of the target being in that region relaxes back a#er
a period of time a#er the search vehicles moves on; this relaxation of the ROI back towards
the relaxation PDF shape p̄(x), is captured appropriately by the advection term in the Fokker-
Planck PDE developed and tested in this work.

Our probabilistic search method can be summarized as follows: search vehicles are directed
to traverse the ROI, taking (visual, infrared, audio, etc.) observations in the vicinity of their
trajectories. At these vicinites, the probability of "nding the target p(x, t) is reduced as a
function of the acuity and scope of the search vehicle. As the purpose of our framework is
demonstrating the evolution of the PDF, we assume that all observations fail to locate the
target, and terminate the simulation a#er a set time, rather than waiting for discovery or a
terminal condition. For non-evasive targets, the relaxation advection v̄(x) is proportional
to the rate at which the observations lose con"dence; that is, the advection term forces the
probability back to the “mowed down” regions where the search vehicles have recently been.
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Figure 1. Search trajectory of CAP3935, one of the U.S. Air Force Civil Air Patrol planes tasked with searching
for the lost F-35, from 2:17 PM UTC to 7:23 PM UTC on Sep 18, 2023 over South Carolina Live air tra"c (2023).

We assume that the di!usion D is homogeneous and isotropic, i.e., the random $uctuations of
the target are uncorrelated and constant with respect to space. For evasive targets, we model
the evasive advection ṽ(x, t) as a function of the positions and disruptivities of the search
vehicles, meant to represent the target being “scared o! ” by the encroaching vehicles, in
addition to the relaxation advection v̄(x). In this case, the di!usion of the target D(x, t) is
no longer homogeneous, as the magnitude of “agitation” changes depending on the distances
the search vehicles are from the target. Using a cooperative herding technique, we illustrate
an e!ective method for converging the target probability density, thus increasing probability
of discovery in the vicinity of the search vehicles.

To de"ne the ROI of a target, we consider two scenarios: "rst, the ROI may be well-
approximated by an analytical distribution, and second, numerous observations of said target
may be aggregated to numerically de"ne the ROI. In the analytical regime, we speci"cally
consider the Gaussian distribution and its lesser-known generalization. The Gaussian (a.k.a.
normal) distribution (GD), originally de"ned by Gauss (1823) in 1823, is o#en considered
when representing the randomness of natural phenomena, characterized by a PDF of the form

p(x |µ, ") = 1
(2π)

d
2 |"| 1

2
exp

⎢
− 1

2
(x − µ)T"−1(x − µ)

⎥
(1)
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where x ∈ Rd is the random state vector, µ ∈ Rd is the mean of x and " ∈ Rd×d is the
covariance of x. It follows from this de"nition that the zeroth, "rst, and second central
moments of the GD are

1 =
∫

Rd
p(x |µ, ") dx, E[x] = µ, and E[(x − µ)(x − µ)T] = ", (2)

respectively.
The univariate generalized extension of the GD, with a shaping parameter β that controls

the “peakedness” of the distribution, later dubbed the generalized Gaussian distribution
(GGD), was established by Subbotin in 1923 Subbotin (1923). The bivariate GGD was intro-
duced by Taguchi (1978), and later used for adaptive modeling in video coding in 1996 Coban
and Mersereau (1996). Both these formulations adhere to the central moment de"nitions
given by (2). A multivariate extension of the GGD was then proposed by Gómez, Gomez-
Viilegas, and Marín (1998) in 1998 wherein the second central moment, or covariance, is no
longer equal to the matrix ", thus diminishing the “generalization” denotation. Moreover,
this speci"c multivariate GGD de"nition has been widely perpetuated by other sources in
the literature and even utilized in the bivariate case over Taguchi’s de"nition Verdoolaege and
Scheunders (2012); Zhang, Wiesel, and Greco (2013); Bouguila and Fan (2020). In this article,
along with the primary objective of de"ning a novel probabilistic search technique, we aim to
reformulate the multivariate GGD such that its covariance is the input matrix ", as is the case
for the GD. We also introduce a novel distribution that allows for di!erent shaping parameters
along di!erent eigenvectors of the covariance of the GGD, dubbed the generalized Gaussian
distribution with anisotropic $atness (GGDAF).

The additional $exibility of the GGD is the shape parameter β , which may be utilized to
more easily represent sharp peaks and $at tops. This idea is extremely pertinent in the "elds of
gaussian mixture modeling (GMM) and Gaussian sum "ltering (GSF) Sorenson and Alspach
(1971); Alspach and Sorenson (1972); Yun and Zanetti (2019); Yun, Zanetti, and Jones (2022),
wherein non-Gaussian uncertainty is approximated as a collection of Gaussian distributions.
Representing a nominal distribution with fewer (generalized) Gaussians provides a distinct
speedup in computation time. Generalized Gaussian mixture modeling (GGMM) and gen-
eralized Gaussian sum "ltering (GGSF) have been pursued Mohamed and Jaïdane-Saïdane
(2009); Nguyen, Wu, and Zhang (2014); Lee and Lewicki (2000), but rarely in multivariate
form and never with our proposed formulation. By ensuring that the second central moment
of the GGD is equal to the input matrix ", we theorize that the parameter estimation
techniques that initialize GMM/GSF implementations, such as the expectation-maximization
algorithm Dempster, Laird, and Rubin (1977); McLachlan and Krishnan (2007), may have
closed-form update solutions for ", which is not currently the case. GGMM/GGSF is not
pursued further in this article.

2. Problem formulation

We focus in this article on the class of problems in which the target of interest is stochastically-
moving within a speci"ed ROI $ ∈ Rd that is statistically stationary. In such problems, the
distribution of likely locations of this target within this ROI, assuming no measurements are
available, is modeled as a steady PDF p̄(x), i.e., the target displays locational stationarity. When
performing a “probabilistic search”, search vehicles modify this PDF over time, suppressing
the likelihood of discovery of the target near the path recently traveled by the search vehicles,
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assuming the target is not discovered by the search vehicles (otherwise, the search is over).
This time-varying PDF is denoted p(x, t) ≥ 0 for all x and t, with

∫
p(x, t) dx = 1 for all t, and

p(x, t) → 0 for |x| → ∞ for any t.
For non-evasive targets, the motion of the search vehicles does not change the motion of the

target, and as time passes, away from the search vehicles, the PDF p(x, t) ≥ 0 relaxes back to
its steady-state. This relaxation back to p̄(x) is achieved via the combined e!ects of advection
"eld v̄(x) and the symmetric di!usion tensor D(x) ∈ Rd×d > 0 in the Fokker-Planck PDE
Stone (1992); Fokker (1914); Planck (1917)

∂ p(x, t)
∂t +

n∑

i=1

∂ [vi(x) p(x, t)]
∂xi

=
n∑

i=1

n∑

j=1

∂2 [Di,j(x) p(x, t)]
∂xi ∂xj

,

where vi(x) is the ith component of the advection v(x) and Di,j(x) is the (i, j)th component of
the di!usion tensor D(x). This equation may be written in Gibbs notation as

∂ p(x, t)
∂t = −∇x ·

[
v(x) p(x, t)

]
+ ∇x ·

[
D(x) ∇x p(x, t) + p(x, t) ∇x · D(x)

]
(3)

= ∇x ·
[

D(x) ∇x p(x, t) + p(x, t) ∇x · D(x) − v(x) p(x, t)
]

,

where ∇x is the vector di!erential operator with respect to x.
We now set out to derive v̄(x) as a function of D(x) and p̄(x, t) such that, applying the

advection and di!usion of the Fokker-Planck PDE (3) to an arbitrary PDF relaxes it to p̄(x)

(from hereon, we denote a variable associated with the process of relaxation by a bar, e.g., ā).
Once derived, we provide example simulations of the relaxation advection derived for various
steady-state distributions in action.

Steady-state is achieved when the RHS in (3) is zero Guerrero et al. (2009); it is thus seen
that the advection "eld v̄(x) that eventually relaxes the PDF p(x, t), governed by (3), towards
a speci"ed steady-state distribution p̄(x) is given by

v̄(x) = 1
p̄(x)

D(x) ∇x p̄(x) + ∇x · D(x). (4)

When D is homogeneous (not a function of x), (4) simpli"es to v̄(x) = 1
p̄(x)

D ∇x p̄(x). For
homogeneous isotropic di!usion D = λ I where λ ∈ R, a common special case, v̄(x) can be
de"ned as the gradient of a scalar potential function φ̄(x), v̄(x | λ) = ∇x φ̄(x | λ). It follows
that

φ̄(x | λ) = λ ln
(

p̄(x)
)

; (5)

note that v̄(x | λ) is everywhere oriented orthogonal to the local isocontour of φ̄(x | λ), in the
direction of steepest ascent.

3. The Gaussian distribution (GD) and corresponding relaxation advection

The Gaussian distribution, denoted N (x |µ, ") Gauss (1823), is de"ned by a PDF of the form

p(x |µ, ") = 1
(2π)

d
2 |"| 1

2
exp

⎢
− 1

2
(x − µ)T"−1(x − µ)

⎥
(6)
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where x ∈ Rd. The gradient of p(x |µ, ") is

∇x p(x | µ, ") = − p(x | µ, ") "−1 (x − µ), (7)

and thus, by (4), the advection "eld v̄(x |µ, ") that drives an arbitrary PDF towards (6) subject
to the Fokker-Planck PDE (3) is

v̄(x |µ, ") = − D "−1 (x − µ). (8)

In the special case of " = ( 2I, the GD and the corresponding relaxation advection becomes

p(x |µ, ( ) = 1
(2π)

d
2 ( d

exp
⎢

− 1
2

(x − µ)T(x − µ)

( 2

⎥
(9a)

and v̄(x |µ, ( ) = − 1
( 2 D (x − µ). (9b)

4. The generalized Gaussian distribution (GGD) and corresponding relaxation
advection

We propose a new, more general multivariate Generalized Gaussian Distribution (GGD),
denoted N (x |µ, ", β), as de"ned by a PDF of the form

p(x | µ, ", β) = A(β , d) exp
⎢

−
[

B(β , d)(x − µ)T"−1(x − µ)

]β⎥
, (10a)

where A(β , d) =
(B(β , d)

π

) d
2

· )(d
2 ) β

)( d
2β ) |"| 1

2
and B(β , d) =

)(d+2
2β )

d )( d
2β )

, (10b)

where again, x ∈ Rd. By de"ning A and B as such, the second central moment of the GGD is
equal to the input matrix ", as is the case for the GD. The gradient of p(x |µ, ", β) is

∇x p(x | µ, ", β) = −2 β p(x | µ, ", β) B(β , d)

[
B(β , d) (x − µ)T"−1(x − µ)

]β−1
"−1 (x − µ), (11)

and thus by (4), the advection "eld v̄(x |µ, ", β) that drives an arbitrary PDF towards (10)
subject to the Fokker-Planck PDE (3) is

v̄(x |µ, ", β) = −2 β D B(β , d)

[
B(β , d) (x − µ)T"−1(x − µ)

]β−1
"−1 (x − µ). (12)

Note that the β = 1 case reduces the GGD formulation in (10) to the Gaussian formulation
in (6). As before, (10)–(12) simplify slightly in the special case of " = ( 2I. Assume for the
remainder of the GD/GGD examples, shown in Figures 2 through 5, the statistics used are
N (x |µ, ", β), where µ =

[ 0
0
]

and " =
[ 1 0.4

0.4 1
]
, and the di!usion tensor is D = I. For each

p(x | µ, ", β), the isocontours are linearly spaced from 0.01 to max{p(x |µ, ", β)}.
As illustrated in Figures 3 and 4, the GGD, for β > 1, is $atter in the immediate vicinity

of x = µ, and away from that point eventually falls o! toward zero much faster than does
the Gaussian Distribution. Note also from the colorbar in Figures 3 and 4 that the $atter top
results in a smaller normalization coe%cient, as is expected from (10). The smaller β , the
more peaked the PDF is, and the larger β , the $atter the PDF is. In general, the GGD is a well-
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Figure 2. (left) p(x | µ, ") and (right) φ̄(x | µ, ", λ = 1) of a 2D GD.

Figure 3. (left) p(x | µ, ", β = 2) and (right) φ̄(x | µ, ", β = 2, λ = 1) of a 2D GGD.

Figure 4. (left) p(x | µ, ", β = 3) and (right) φ̄(x | µ, ", β = 3, λ = 1) of a 2D GGD.



8 B. L. HANSON ET AL.

Figure 5. (left) p(x | µ, ", β = 0.6) and (right) φ̄(x | µ, ", β = 0.6, λ = 1) of a 2D GGD.

de"ned function with an additional tunable parameter β for more accurately representing
ROI.

4.1. Higher-order central moments and smoothness of the GGD

To validate our multivariate GGD formulation, we look to the known higher-order central
moments of the 1D case. The 1D kth central moment of a scalar probability distribution p(x)

Bewley (2018) is de"ned as

µk = E[(x − E[x])k] !
∫

R
(x − E[x])kp(x)dx. (13)

Having already de"ned the "rst and second central moments of the GGD (µ1 = µ and µ2 =
( 2), we look to clarify the third and fourth ones. The third central moment of the 1D GGD
de"ned by (10) is

µ3 = E[(x − µ)3] =
∫ ∞

−∞
(x − µ)3

[
A(β , d) exp

⎢
−

[
B(β , d)

(x − µ)2

( 2

]β⎥]
dx. (14)

The third central moment is used to de"ne the skewness,

γ1 = µ3
( 3 . (15)

Skewness is a measure of the asymmetry of a PDF, with positive skewness indication a more
elongated right tail relative to the le#. It is obvious that the integrand of (14) is odd, therefore,
by construction, the skewness of the 1D GGD is

γ1 = 0.
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Figure 6. γ2(β) where (left) β = [0.1, 1] and (right) β = [1, 50].

The fourth central moment of the 1D GGD is

µ4 = E[(x − µ)4] =
∫ ∞

−∞
(x − µ)4

[
A(β , d) exp

⎢
−

[
B(β , d)

(x − µ)2

( 2

]β⎥]
dx. (16)

The fourth central moment is used to de"ne the kurtsosis,

γ2 = µ4
( 4 − 3. (17)

Kurtosis is a measure of the “peakedness” of a PDF, with negative kurtosis indicating less
elongated tails than the Gaussian distribution. We "nd that the kurtosis of the GGD as a
function of β is

γ2(β) =
)( 5

2β ))( 1
2β )

[
)( 3

2β )
]2 − 3






> 0, β < 1
= 0, β = 1
< 0, β > 1

. (18)

Note that the case when β = 1 returns the kurtosis of the Gaussian distribution (γ2 = 0),
whereas β = 0.5 returns the kurtosis of the Laplacian distribution (γ2 = 3). As β → ∞, the
GGD approaches a uniform distribution, so to validate (18), we numerically con"rm that
γ2(β) approaches the kurtosis of a uniform distribution (γ2 = −1.2) as β → ∞, shown in
Figure 6.

To further de"ne the GGD, we analyze its smoothness. The GD is a C∞ function, meaning
it is in"nitely di!erentiable, and all orders of derivatives are continuous. Using the 1D case of
(11), we "nd the "rst derivative of the 1D GGD to be

∂p(x | µ, ( 2, β)

∂x = − 2βB(β , d)p(x | µ, ( 2, β)

( 2

[
B(β , d)

(x − µ)2

( 2

]β−1
(x − µ) ∈

⎢
C∞, β ≥ 1
C0, β < 1 . (19)

It is obvious that the derivative is not smooth at x = µ when β < 1, so the GGD when β < 1
is of class C0, not C∞.

4.2. Generalized Gaussian distributions with anisotropic !atness (GGDAF)

To enhance the $exibility of the GGD such that it may "t even more exotic data, we consider
anisotropic $atness. In this context, what we mean by “anisotropic $atness” is that, along one
eigenvector si of the covariance matrix ", the distribution has a shaping parameter βi and
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Figure 7. Examples of six, 2D GGDAF with parameters µ =
[

0
0

]
, (top) " =

[
1&0
0&1

]
/(bottom) " =

[
1&0.4
0.4&1

]
,

and (left) β = [2 2], (middle) β = [1 3], and (right) β = [2 0.5], respectively. In all sub#gures, the isocon-
tour levels are spaced linearly from 0.05 to max{p̃(x | µ, ", β)}.

along another eigenvector sj, the distribution has a shaping parameter βj, where βi may not
equal βj if i (= j. We de"ne the 2D generalized Gaussian distribution with anisotropic $atness
(GGDAF) as

p̃(x | µ, ", β) = Ã(β , 2) exp




−




2∑

i=1

(
B̃(βi, 2) q2

i
)βi +

(
B(β1, 2)

)β1
δβ1β2

β1−1∑

i=1

(
β1
i

)
(q2

1)
β1−i(q2

2)
i










(20a)

where Ã(β , 2) =





|"| 1

2
2∏

i=1
A(βi, 1) if β1 (= β2

A(β1, 2) otherwise
, B̃(βi, 2) =

⎢
B(βi, 1) if β1 (= β2
B(βi, 2) otherwise , q = LST(x − µ),

(20b)

L =
√

,−1, and " = S,S−1, (20c)

where " = S,S−1 is the eigen decomposition of the covariance matrix (as " is symmetric and
positive semi-de"nite). The Ã and B̃ coe%cients are again chosen such that the de"nitions of
the "rst and second central moments in (2) hold. To demonstrate that the GGDAF simpli"es
to the GGD when β1 = β2 and displays anisotropic $atness otherwise, we provide Figure
7. We note that the current formulation only returns circular isocontours for β1 = β2 when
β1, β2 ∈ N+, but future work will attempt to address this such that the GGDAF is applicable
and continuous for all real values of β .

For the 3D GGDAF, we de"ne the PDF as

p̃(x | µ, ", β) = Ã(β , 3) exp
⎢

−
[ 3∑

i=1

(
B̃(βi, 3) q2

i

)βi
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Figure 8. A 3D GGDAF with parameters µ =
[

0
0

]
, " =

[
1&0
0&1

]
, and β = [2 1 1]. The isosurfaces on the

(left) yz-plane are circular, as to be expected because βy = βz , while the (middle) xy- and (right) xz-planes
demonstrate anisotropic !atness created by the fact that βx is di$erent than βy and βz . The three isosurface
values shown are p = 0.01, p = 0.001, and p = 0.0001.

+
3∑

i=1

3∑

j>i

{(
B̃(βi, 3)

)βi
δβiβj

βi−1∑

k=1

(
βi
k

)
(q2

i )
βi−k(q2

j )
k
}

+
(

B(β1, 3)
)β1

δβ1β2β3

∑

i,j,k(=0
i+j+k=β1

(
β1

i, j, k

)
(q2

1)
i(q2

2)
j(q2

3)
k
]⎥

(21a)

where Ã(β , 3) =






|"|
3∏

i=1
A(βi, 1) if β1 (= β2 (= β3

|"| 1
2 A(βi, 1)A(βj, 2) if βi (= βj = βk

A(β1, 3) otherwise

,

B̃(βi, 3) =






B(βi, 1) if βi (= βj, βk
B(βi, 2) if βi = βj (= βk
B(βi, 3) otherwise

, q = LST(x − µ), (21b)

L =
√

,−1, and " = S,S−1. (21c)

We provide an example of a 3D GGDAF in Figure 8 where βx (= βy = βz to demonstrate
circular isocontours in the xy-plane and noncircular isocontours in the other two perpendicu-
lar planes. The d-dimensional case of the GGDAF follows by splitting the d-nomial expansion
into the subsequent d-nomial, (d − 1)-nomial,..., trinomial, and binomial expansions, as
demonstrated in the transition from (20) to (21), mutatis mutandis. Additionally, we note
that, via Bayes’ theorem Bayes (1763),

px(x′, tk+) + py(yk|x′)px(x′, tk−). (22)

From this, it is obvious that, when combining a GGDAF prior px(x′, tk−) with a measurement
with Gaussian uncertainty py(yk|x′) (as is commonly the case), the posterior px(x′, tk+) is a
GGDAF; therefore, the GGDAF family of distributions are conjugate priors.
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5. Numerical probability distributions

Now consider an arbitrary relaxation shape p̄(x), obtained experimentally and appropriately
smoothed. For instance, when modeling the motions of an apex predator within its observed
territory, one might collect a discrete set of measurements representing the coordinates of the
animal. Using this set, one would like to approximately de"ne the ROI that represents the non-
evasive statistics of said animal. The ROI could then be used to develop a steady-state p̄(x),
from which the relaxation advection "eld v̄(x) could be approximated via a "nite di!erence
approximation of (4). To focus this discussion, consider the Fokker-Planck PDE discretized on
a uniform Cartesian 2D mesh (with grid width -x and -y), noticing that higher-dimensional
cases follow as an obvious extension. Assuming homogeneous Dirichlet boundary conditions,
the advection "eld v̄i,j representing the advection at coordinate (i, j) can be written as

v̄i,j = D
p̄i,j

[ p̄i+1,j − p̄i−1,j
2-x

p̄i,j+1 − p̄i,j−1
2-y

]T
. (23)

An important consideration when approximating v̄i,j is the singularity that can occur at
p̄i,j = 0. We can circumvent this issue by assuming that p is a su%ciently smooth function,
or in"nitely di!erentiable, thus p̄i,j = 0 only at the boundaries. Because of our homogeneous
Dirichlet boundary conditions, v̄i,j at the boundaries is negligible. Using the approximated v̄i,j,
an arbitrary PDF can be relaxed in the same manner as in the analytical examples. However,
generating a p̄(x) from a dataset is nontrivial; the two di!erent methods that this article
focuses on are the α-convex hull approximation and kernel density estimation.

5.1. α-convex hull approximation

The α-convex hull Edelsbrunner, Kirkpatrick, and Seidel (1983) is a generalization of the
convex hull; where the convex hull assumes convexity of the estimator region $, the α-convex
hull assumes α-convexity, a more $exible constraint that enlarges the family of sets that may
be estimated. For each α ∈ R, a “generalized disk” of radius 1/α is de"ned as follows: if α = 0,
the disk is a closed halfplane (resulting in an ordinary convex hull), if α > 0 the disk is closed
with a radius of 1/α, and if α < 0 the disk is the closure of the complement of a disk of radius
−1/α. Using this de"nition of a disk, the α-convex hull, or ROI $, of a dataset S may be
de"ned as the intersection of all closed disks that contain all points of S.

Converting $ into a d-dimensional PDF requires some smoothing via di!usion. $ is "rst
converted to a uniform distribution p$(x), de"ned as

p$(x) = 1
C

{
1, x ∈ $

0, else
, (24)

where C is such that
∫
$ p$(x) dx = 1. To smooth the edges, the PDF is CT evolved with the

di!usion-only "nite di!erence stencil A(D). Consider the uniform Cartesian 2D mesh "nite
di!erence approximation of (3) when v̄(x) = 0 (assuming D = λ I)

pn+1
i,j − pn

i,j
-t = λ

(pn
i+1,j − 2pn

i,j + pn
i−1,j

-x2 +
pn

i,j+1 − 2pn
i,j + pn

i,j−1
-y2

)
(25)



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 13

Figure 9. Estimation of the boundary of an unknown ROI $ (taken in this as the space between two
parabolas) based on 1000 experimentally obtained datapoints randomly distributed over $, using the alpha
shape algorithm, as implemented in Matlab, using (left) an alpha radius (for adjusting the tightness of the
#t around the points) of 0.1, and (right) an alpha radius 0f 0.4. This sophisticated algorithm, which is built on
a Delaunay triangulation of the available datapoints, is a convenient generalization of the more traditional
convex hull algorithm.

The "nite di!erence stencil A(D) representing (25) is

A(D) =





0 λ
-y2 0

λ
-x2 −

(
2λ

-x2 + 2λ
-y2

)
λ

-x2

0 λ
-y2 0




, (26)

The stencil is used to form the block tridiagonal Toeplitz matrix M (as demonstrated in
Chapter 1 of Bewley (2018)) which is used for propagating p$(x) until it is su%ciently
smoothed. Using the explicit Euler method, this is written as

pn+1
$ (x) = pn

$(x) + -t
(

M pn
$(x)

)
. (27)

The number of timesteps of propagation necessary for su%cient smoothing is relative to the
problem and can be determined empirically. The "nal result is a smoothed, d-dimensional
p̄(x) representing the ROI $. From here, (23) can be used to calculate v̄(x) in a discretized
manner. Application of this smoothing process with 20 timesteps of smoothing, with -t =
0.001 and λ = 1 on the dataset from Figure 9, along with the corresponding v̄(x), is shown in
Figure 10.

5.2. Kernel density estimation approximation

Kernel density estimation (KDE) Bowman (1997); Hill (1985); Jones (1993); Silverman (1986)
is a non-parametric technique that approximates the PDF of a random variable x given a set
of k realizations of said random variable xi, i = 1, ..., k. KDE generates the underlying PDF by
placing a kernel function K(·) scaled by a bandwidth h at each realization. It then sums up the
kernels and normalizes to form a density function. Explicitly stated, the d-dimensional PDF
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Figure 10. (left) p̄(x) and (right) φ̄(x | λ = 1) of numerically de#ned ROI $, approximated via α-convex hull
estimation of sample dataset from Figure 9.

ph(x) generated by KDE is written as

ph(x) = 1
k hn

k∑

i=1
K

(x − xi
h

)
. (28)

K(·) is typically a symmetric function that peaks at the realization value xi, and decays to
zero moving away from it. Commonly used kernel functions are the Gaussian, box, triangle,
and Epanechnikov functions. The bandwidth h determines the smoothness of ph(x) and is
dependent on the kernel function. A larger bandwidth will result in a smoother density, while
a smaller bandwidth may capture more local behavior. Generally, KDE is utilized when an
excess of data exists and said data indicates areas of bias within $. For instance, consider an
apex predator with a territory similar to that of Figure 9, with the key di!erence being that it
sleeps near the edge of its territory. In this case, the most likely area within the ROI for the
predator to be is no longer at the center. In another scenario, there exists an uninhabitable area
within the predator’s ROI, like a lake. As the predator has no means of entering this subregion,
the probability should be negligible here. For both cases, this information would be lost had
$ been approximated via the α-convex hull (depending on the value of α, for the latter case).

Following the constraints from the datasets from Figure 11, denoted “den dataset” and
“lake datase” for le# and right datasets, respectively, and increasing the number of points
to k = 10, 000 for additional smoothing, the KDE algorithm in Matlab is utilized, with the
default Gaussian kernel function and bandwidth h = 0.1. With 5 timesteps of smoothing
at -t = 0.001 and λ = 1, p̄(x) and the corresponding v̄(x) are approximated shown in
Figure 12.

Determining when to use the α-convex hull approximation versus KDE depends on the
characteristics of the dataset. When data is sparse, using the α-convex hull approximation may
more accurately portray the PDF of the non-evasive target compared to KDE. However, the
α-convex hull approximation assumes that each point within $ is an equally likely location of
the target. By smoothing the ROI via di!usion, this creates a p̄(x) with highest probability near
the center of $ and decaying probability moving outward. Although this may be a realistic
scenario, it is not always the case. When data is plentiful, KDE can capture areas of focus
otherwise ignored via the α-convex hull approximation. If data is sparse, the bandwidth of
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Figure 11. Two distinct types of territories, both containing the nominal dataset fromFigure 9; one (left)
includes additional points sampled from the red ellipse, representing a den, and the other (right) removes
all points from the green ellipse, representing a lake.

Figure 12. For the den dataset: (top left) p̄(x) and (top right) φ̄(x | λ = 1) of numerically de#ned ROI $.
For the lake dataset: (bottom left) p̄(x) and (bottom right) φ̄(x | λ = 1) of numerically de#ned ROI $, both
determined via KDE.

KDE can cause smoothing that removes important local variantions that would’ve been well
represented with the α-convex hull approximation.
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6. Application of relaxation advection

Utilizing the framework previously developed, we now demonstrate the application of the
derived relaxation advection "eld with di!usion which drives an arbitrary PDF (taken to be
a uniform distribution for this section) to a pre-determined, either analytic or numerical,
steady-state p̄(x).

6.1. CT evolving using advection-di"usion #nite stencil

Once v̄(x) is calculated, either analytically or numerically, it can be inserted into (3) to drive an
arbitrary PDF to the relaxation shape p̄(x). Similar to the process of smoothing with di!usion,
a "nite di!erence stencil is utilized, this time with advection included: A(v, D). Consider
the uniform Cartesian 2D mesh "nite di!erence approximation of (3) with the relaxation
advection "eld v̄(x) applied (again with isotropic di!usion D = λI)

pn+1
i,j − pn

i,j
-t + pn

i,j

( v̄x
i+1,j − v̄x

i−1,j
2-x +

v̄y
i,j+1 − v̄y

i,j−1
2-y

)

+
(

v̄x
i,j

pn
i+1,j − pn

i−1,j
2-x + v̄y

i,j
pn

i,j+1 − pn
i,j−1

2-y

)
(29)

= λ

(pn
i+1,j − 2pn

i,j + pn
i−1,j

-x2 +
pn

i,j+1 − 2pn
i,j + pn

i,j−1
-y2

)

where v̄i,j =
[ v̄x

i,j
v̄y

i,j

]
. Thus, the "nite di!erence stencil A(v̄, D), utilized for all of the following

examples, is

A(v̄, D) =





0 λ
-y2 − v̄y

i,j
2-y 0

λ
-x2 + v̄x

i,j
2-x −

(
2λ

-x2 + 2λ
-y2

)
−

(
v̄x

i+1,j−v̄x
i−1,j

2-x + v̄y
i,j+1−v̄y

i,j−1
2-y

)
λ

-x2 − v̄x
i,j

2-x

0 λ
-y2 + v̄y

i,j
2-y 0




.

(30)
The stencil is used to CT update an arbitrary PDF in the same manner as aforementioned. To
avoid bias, the initial PDF to be relaxed is a uniform distribution over $.

6.2. Convergence to relaxation shape

To determine if the driven PDF p(x, t) has converged to the relaxation shape p̄(x), the absolute
relative di!erence is computed at each grid point, then summed up to compute /. On a
uniform Cartesian 2D mesh square grid of size N, / can be written as

/ =
N∑

i=1

N∑

j=1
|pi,j − p̄i,j|. (31)

Convergence was assumed when -/ = /(tk+1) − /(tk) < 0.01, or the summation of the
absolute relative di!erence at timestep tk+1 minus the summation of the absolute relative
di!erence at timestep tk. We now demonstrate driving uniform PDFs to analytical and
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Figure 13. A uniform distribution relaxed to a GD p̄(x | µ, ") via the analytical relaxation advection
v̄(x | µ, ") at timestep (left) 50, (middle) 100, and (right) convergence.

Figure 14. A uniform distribution relaxed to a GGD p̄(x | µ, ", β = 2) via the analytical relaxation advection
v̄(x | µ, ", β = 2) at timestep (left) 50, (middle) 100, and (right) convergence.

Figure 15. A uniform distribution relaxed to an α-convex hull approximation p̄(x) via the numerical
relaxation advection v̄(x) at timestep (left) 100, (middle) 400, and (right) convergence, approximated based
on the dataset fromFigure 9.

numerical steady-state PDFs using the de"ned framework. In both analytical examples
provided, we use parameters µ =

[ 0
0
]

and " =
[ 1 0.4

0.4 1
]
. The parameters for the frames from

Figures 13 through 17 can be found in Table 1.

7. Probabilistic search

Probabilistic search algorithms employ statistical methods that "nd optimal solutions in
solution-space Stone (1992). For target searching speci"cally, these algorithms utilize the
information provided by the PDF of a target to control the trajectories of the search vehicles
examining the ROI, with the objective of minimizing the search time required to detect said
target. As the dynamics of the target may vary (a non-evasive target versus an evasive target,
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Figure 16. A uniform distribution relaxed to a KDE approximation p̄(x) via the numerical relaxation advec-
tion v̄(x) at timestep (left) 100, (middle) 400, and (right) convergence, approximated based on the den
dataset fromFigure 11.

Figure 17. A uniform distribution relaxed to a KDE approximation p̄(x) via the numerical relaxation advec-
tion v̄(x) at timestep (left) 100, (middle) 400, and (right) convergence, approximated based on the lake
dataset fromFigure 11.

for example), so too may the CT evolution of the PDF, governed by (3). We provide a class of
probablistic search algorithm that utilizes uninformed, periodic search vehicle trajectories as
a means for displaying the capabilities of non-evasive and evasive target searching utilizing the
relaxation advection v̄(x) previously derived. This work is meant to act as a straightforward
starting point for a trajectory optimization method, with search trajectories that are adaptive
and informed by the PDF of the target.

7.1. Non-evasive targets

For the probabilistic search of a non-evasive target, we assume D(x) and v(x) are time-
invariant, i.e., the target is statistically stationary. Then, we use the relaxation advection "eld
v̄(x) from (4) and homogenous isotropic di!usion D = λ0I to represent the non-evasive
target. We introduce m = 1, ..., M search vehicles moving in periodic orbits about the ROI.
The search vehicles have sensors that form a limited "eld of view of the ROI, modeled in the
form of a normal distribution pm(x, t) ∼ N (qm(t), ( 2

m) where qm(t) is the position and ( 2
m

is the e!ective width of the "eld of view of the mth search vehicle, respectively. This density
function acts as an external forcing term in (3) that “mows” down the probability in its vicinity,
assuming that it fails to locate the target. In this model, where we account for observations,
the Fokker-Planck PDE becomes

∂p(x, t)
∂t − ∇x ·

[
λ0∇x p(x, t) − v̄(x)p(x, t)

]
= −p(x, t)

(
b(x, t) − γ (t)

)
, (32a)
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where b(x, t) =
M∑

m=1
am exp

⎢
− ||x − qm(t)||

2( 2
m

⎥
and γ (t) =

∫

$
p(x, t) b(x, t) dx.

(32b)

The normalization factor γ (t) ensures that
∫
$ p(x, t) = 1 for all t, and am is the acuity of the

sensor of the mth search vehicle (this model assumes the sensor’s range decays exponentially
as a function of distance, but other distributions may be used). For the scope of this article,
the trajectory of the search vehicles qm(t) are "xed and are designed to best cover the
known ROI. Examples of such trajectories are concentric circles, Cassini ovals Cassini (1730),
and o!set lemniscates Bos (1974). Note that larger values of λ lead to quicker $ow of
probability, representing a faster-moving target, while smaller values of λ, representing a
slower-moving target, may lead to buildups of probability in small subregions. Both behaviors
are demonstrated in Figure 18.

7.2. Evasive targets

For an evasive target, we no longer assume the statistics are time-invariant, thus D(x, t) are
v(x, t) are both functions of space and time. Consider a skittish deer, a target that is both
aware of the search vehicles and actively evading them, with increasing “agitation”, or random
$uctuation, and “evasiveness”, or advection away from, as the search vehicles come closer. In
this case, we model the evasive, isotropic di!usion D(x, t) as the relaxation di!usion tensor
λ0I plus the superposition of GGDs centered at the locations of the M search vehicles, and the
evasive advection ṽ(x, t) as the relaxation advection v̄(x) plus the superposition of the negative
gradients of GGDs centered at the locations of the M search vehicles, explicitly stated as

D(x, t) = λ(x, t)I, where λ(x, t) = λ0 + ψ

M∑

m=1
pm(x | qm(t), "m), (33a)

and ṽ(x, t) = v̄(x) − δ

M∑

m=1
∇x pm(x | qm(t), "m), where (33b)

pm(x | qm(t), "m) = Aβ ,d exp
⎢

−
[

Bβ ,d[x − qm(t)]T"−1
m [x − qm(t)]

]β⎥
, (33c)

and ψ , δ ≥ 0 are the agitation and evasiviness parameters of the target, respectively. In the case
of inhomogenous, time-varying advection and di!usion, the Fokker-Planck PDE becomes

∂p(x, t)
∂t − ∇x ·

[
λ(x, t)∇x p(x, t) + p(x, t)[∇x · λ(x, t) I] − ṽ(x, t)p(x, t)

]
(34)

= −p(x, t)
(

b(x, t) − γ (t)
)

.

The prior distribution used as an initialization point for the target search is the relaxation PDF
p̄(x). For evasive targets, we utilize cooperative hunting, a strategy used by pack hunters that
drives the prey towards the “kill zone” (or generally, the identi"cation zone), considering their
avoidance behavior, commonly used by dolphins Klopfer (1969). Using rotating trajectories
from the Cassini oval family, the search vehicles begin at the outskirts of the ROI, directing
the target inwards, then converge simultaneously from all directions, trapping the target in
the center, as demonstrated in Figure 19.
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Figure 18. Frames from three di$erent probabilistic search simulations of non-evasive targets with dynam-
ics from (32a). The solid lines represent the #xed orbits of the search vehicles and the points are the search
vehicles’ positions. Parameters for simulations can be found inTable 2, rows 1–3.
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Figure 19. Three subsequent frames from the same probabilistic search simulation of an evasive target with
dynamics from (34). The solid lines represent the #xed orbits of the search vehicles and the points are the
search vehicles’ positions. Parameters for simulations can be found inTable 2, row 4.
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7.3. Results

To demonstrate the probabilistic search on non-evasive and evasive targets, we discretize the
dynamics from (32a) and (34) on an N × N Cartesian grid of width -x and -y and time-
march p̄(x, t) using an RK4 scheme and a "nite di!erence stencil M aforementioned. In Figure
18, we demonstrate three di!erent, non-evasive ROI’s:

(1) N (x | µ, ", β = 1) where µ =
[ 0

0
]

and " =
[ 3 0

0 3
]

with concentric circular orbits
(2) N (x | µ, ", β = 2) where µ =

[ 0
0
]

and " =
[ 2 0.8

0.8 2
]

with Cassini ovals
(3) An α-convex hull approximation from the dataset from Figure 10 with o!set, scaled

lemniscates

We demonstrate an evasive target search in Figure 19, utilizing a set of rotating shapes from
the Cassini oval family. From the subsequent frames, we illustrate how the herding vehicles
increase the probability density at the center of the ROI, leading to an increased likelihood of
target discovery. The full list of parameters for the simulations can be found in Table 2 and
the location of the simulation animations can be found in Appendix.

8. Conclusion

This article e!ectively demonstrates the CT framework for a probabilistic search algorithm
that evolves the PDF p(x, t) of a stochastically-moving, statistically stationary target governed
by the steady-state PDF p̄(x) summarizing the ROI $ ∈ Rd of the target, which may be de"ned
analytically or experimentally. Using the Fokker-Planck PDE, we solve for the relaxation
advection equation v̄(x), shown to be only a function of the di!usion tensor D(x) and
p̄(x), which, when applied with D(x), drives an arbitrary p(x, t) to steady-state p̄(x). In the
analytical regime, for the Gaussian family of distributions, we use the closed-form p̄(x)

to solve for a closed-form solution to v̄(x). In the experimental regime, we demonstrate
how a set of observations may be used to numerically solve for p̄(x), either using the α-
convex hull approximation or by kernel density estimation; the decision between the two
methods was also discussed at length. For either numerical technique, v̄(x) may be derived
numerically from the steady-state solution of the Fokker-Planck PDE. The e%cacy of using
either the analytically- or numerically-de"ned relaxation advection was demonstrated by
driving uniform distributions to steady-state.

Having validated v̄(x), we set up a framework for how it may be used to perform a
probabilistic search. First, we consider the behavior of the target. For a non-evasive target,
the presence of search vehicles will have no impact on the motion, thus the advection in the
Fokker-Planck PDE is just the relaxation advection. To the evolution equation of the PDF, we
introduce an external forcing term b(x, t), representative of search vehicle observations that
decrease the probability of discovery in their vicinity. To ensure unity of the PDF, we include
a normalization term γ (t). We then RK4 time-march the initially steady-state PDF subject
to the listed forces and demonstrate how the PDF changes over time, with the assumption
that the observations do not result in discovery. The search trajectories qm(t) for the non-
evasive target are uninformed, periodic orbits of varying shape. For an evasive target, we add
to the relaxation advection a tendency to move away from, or evade, the search vehicles. To
the isotropic di!usion we add a tendency to become more agitated, or random, as the search
vehicles get closer. Including b(x, t) and γ (t), we again RK4 time-march the initially steady-
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state PDF with the assumption that the observations do not result in discovery. The search
trajectories qm(t) for the evasive target, while still uninformed with regards to p(x, t), are
representative of a coordinate herding technique that is meant to drive the target to a central
identi"cation zone, where discovery is more likely.

As opposed to other search techniques that stochastically evolve the state of a target, the
technique we propose evolves the full PDF, which may provide more information to search
vehicle optimization algorithms, improving the standards for search and rescue procedures,
resulting in targets being located faster. In our demonstrations, the search trajectories are
uninformed periodic orbits meant to cover the ROI and do not take advantage of the real-
time information provided by p(x, t). Future work will look to change these search trajectories,
optimizing and directing qm(t) to regions of high probability within the ROI for fast target
procurement.

As a medium for testing the probabilistic search technique, we derive a new formulation for
the multivariate generalized Gaussian distribution, an extension of the Gaussian distribution
raised to β . The formulation we present includes a change to the standard de"nition of
the multivariate GGD to ensure that the second central moment, or the covariance, is the
matrix ", as is the case for the GD. We theorize that this new formulation of the GGD
may be advantageous for parameter estimation algorithms in the "eld of mixture modeling,
particularly for determining the closed-form solutions to the parameter update steps. Finally,
to enhance the $exibility of the GGD for more precisely "tting data, we introduce the
generalized Gaussian distribution with anisotropic $atness (GGDAF), a GGD with shape
parameters that may di!er along the eigenvectors of ". We formulate the 2D and 3D GGDAF
such that the distribution simpli"es to the GGD when the shaping parameters are equal and
displays anisotropic $atness otherwise. The presented formulation of the GGDAF is only
suited for integer values of β , but future work will aim to address this limitation.

Acknowledgments

The authors gratefully acknowledge Prof. Paulo Luchini and Prof. Boris Kramer for insightful discussion
related to this work.

Disclosure statement

No potential con$ict of interest was reported by the author(s).

References

Alspach, D., and H. Sorenson. 1972. Nonlinear Bayesian estimation using Gaussian sum approxima-
tions. IEEE Transactions on Automatic Control 17 (4):439–48. doi: 10.1109/TAC.1972.1100034.

Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions
of the Royal Society of London 53:370–418.

Benhamou, S. 2014. Of scales and stationarity in animal movements. Ecology Letters 17 (3):261–72. doi:
10.1111/ele.12225. 24350897

Bewley, T. 2018. Numerical renaissance: Simulation, optimization, & control. Ashuelot, NH: Renaissance
Press.

Bos, H. J. M. 1974. The lemniscate of bernoulli. Dordrecht, Netherlands: Springer.
Bouguila, N., and W. Fan. 2020. Mixture models and applications. Berlin, Germany: Springer.



24 B. L. HANSON ET AL.

Bowman, A. W. 1997. Applied smoothing techniques for data analysis. New York: Oxford University Press
Inc.

Cassini, J. D. 1730. De l’origine et du progr‘es de l’astronomie et de son usage dans la geographie et dans la
navigation. Paris: De l’Imprimerie Royale.

Chew, M. C. 1973. Optimal stopping in a discrete search problem. Operations Research 21 (3):741–7.
doi: 10.1287/opre.21.3.741.

Chung, T. H. 2010. On probabilistic search decisions under searcher motion constraints. In Algorithmic
Foundation of Robotics VIII: Selected Contributions of the Eight International 22 Workshop on the
Algorithmic Foundations of Robotics, 501–16. Springer; 2009.

Chung, T. H., and J. W. Burdick. 2012. Analysis of search decision making using probabilistic search
strategies. IEEE Transactions on Robotics 28 (1):132–44. doi: 10.1109/TRO.2011.2170333.

Coban, M. Z., and R. M. Mersereau. 1996. Adaptive subband video coding using bivariate generalized
gaussian distribution model. In 1996 IEEE International Conference on Acoustics, Speech, and Signal
Processing Conference Proceedings, Vol. 4, 1990– 3. Piscataway, NJ: IEEE.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical Society Series B: Statistical Methodology 39 (1):1–22.
doi: 10.1111/j.2517-6161.1977.tb01600.x.

Edelsbrunner, H., D. Kirkpatrick, and R. Seidel. 1983. On the shape of a set of points in the plane. IEEE
Transactions on Information Theory 29 (4):551–9. doi: 10.1109/TIT.1983.1056714.

Fokker, A. D. 1914. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Annalen
Der Physik 348 (5):810–20. doi: 10.1002/andp.19143480507.

Gauss, C. F. 1823. Theoria combinationis observationum erroribus minimis obnoxiae. Göttingen, Ger-
many: Henricus Dieterich.

Gómez, E., M. A. Gomez-Viilegas, and J. M. Marín. 1998. A multivariate generalization of the power
exponential family of distributions. Communications in Statistics - Theory and Methods 27 (3):589–
600. doi: 10.1080/03610929808832115.

Guerrero, J. S., L. C. G. Pimentel, T. H. Skaggs, and MTh. Van Genuchten. 2009. Analytical
solution of the advection–di!usion transport equation using a change-of-variable and integral
transform technique. International Journal of Heat and Mass Transfer 52 (13-14):3297–304. doi:
10.1016/j.ijheatmasstransfer.2009.02.002.

Hill, P. D. 1985. Kernel estimation of a distribution function. Communications in Statistics - Theory and
Methods 14:605–20.

Hollinger, G., S. Singh, J. Djugash, and A. Kehagias. 2009. E%cient multi-robot search for a moving tar-
get. The International Journal of Robotics Research 28 (2):201–19. doi: 10.1177/0278364908099853.

Jones, M. C. 1993. Simple boundary correction for kernel density estimation. Statistics and Computing
3 (3):135–46. doi: 10.1007/BF00147776.

Kaufman, E. 2023. New details in F-35 ’mishap’ as mystery remains about how jet was lost. ABC News.
Klopfer, P. 1969. Habitats and territories: A study of the use of space by animals. New York: Basic Books.
Lee, T. W., and M. S. Lewicki. 2000. The generalized gaussian mixture model using ica. In International

Workshop on Independent Component Analysis, 239– 44. Helsinki, Finland: ICA’00.
Live air tra"c www.!ightradar24.com/about; 2023. FlightRadar24.
Mclachlan, G. J., and T. Krishnan. 2007. The em algorithm and extensions. Hoboken, NJ: John Wiley &

Sons.
Mohamed, O. and M. Jaïdane-Saïdane. 2009. Generalized gaussian mixture model. In 17th European

signal processing conference, 2273–7. Piscataway, NJ: IEEE.
Nguyen, T. M., Q. M. Jonathan Wu, and H. Zhang. 2014. Bounded generalized Gaussian mixture model.

Pattern Recognition 47 (9):3132–42. doi: 10.1016/j.patcog.2014.03.030.
Noori, N., A. Renzaglia, J. V. Hook, and V. Isler. 2016. Constrained probabilistic search

for a one-dimensional random walker. IEEE Transactions on Robotics 32 (2):261–74. doi:
10.1109/TRO.2015.2513751.

Patin, R., M.-P. Etienne, E. Lebarbier, S. Chamaillé-Jammes, and S. Benhamou. 2020. Identifying
stationary phases in multivariate time series for highlighting behavioural modes and home range
settlements. The Journal of Animal Ecology 89 (1):44–56. doi: 10.1111/1365-2656.13105.31539165



COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 25

Planck, M. 1917. Über einen satz der statistischen dynamik und seine erweiterung in der quantentheorie.
Sitzungsberichte der Königlich-Preussischen Akademie der Wissenscha"en zu Berlin. Berlin, Germany:
Reimer.

Powell, R. 2000. Animal home ranges and territories and home range estimators. Research Techniques
in Animal Ecology: Controversies and Consequences (442):65–110.

Ross, S. M. 1969. A problem in optimal search and stop. Operations Research 17 (6):984–92. doi:
10.1287/opre.17.6.984.

Silverman, B. W. 1986. Density estimation for statistics and data analysis. London: Chapman & Hall.
Sorenson, H. W., and D. L. Alspach. 1971. Recursive bayesian estimation using gaussian sums. Auto-

matica 7 (4):465–79. doi: 10.1016/0005-1098(71)90097-5.
Stone, L. 1992. Theory of optimal search. In Operations Research Society of America, 2nd ed. New York,

NY: Military application section.
Subbotin, M. T. 1923. On the law of frequency of error. Mathematical Collection 31 (2):296–301.
Taguchi, T. 1978. On a generalization of Gaussian distribution. Annals of the Institute of Statistical

Mathematics 30 (1):211–42. doi: 10.1007/BF02480215.
Van Moorter, B., D. Visscher, S. Benhamou, L. Börger, M. S. Boyce, and J. Gaillard. 2009. Memory

keeps you at home: A mechanistic model for home range emergence. Oikos 118 (5):641–52. doi:
10.1111/j.1600-0706.2008.17003.x.

Verdoolaege, G., and P. Scheunders. 2012. On the geometry of multivariate generalized gaussian models.
Journal of Mathematical Imaging and Vision 43 (3):180–93. doi: 10.1007/s10851-011-0297-8.

Washburn, A. R. 1998. Branch and bound methods for a search problem. Naval Research Logistics 45
(3):243–57. doi: 10.1002/(SICI)1520-6750(199804)45:3<243::AID-NAV1>3.0.CO;2-7.

Yun, S., and R. Zanetti. 2019. Sequential Monte Carlo "ltering with Gaussian mixture sampling. Journal
of Guidance, Control, and Dynamics 42 (9):2069–77. doi: 10.2514/1.G004403.

Yun, S., R. Zanetti, and B. A. Jones. 2022. Kernel-based ensemble gaussian mixture "ltering
for orbit determination with sparse data. Advances in Space Research 69 (12):4179–97. doi:
10.1016/j.asr.2022.03.041.

Zhang, T., A. M, I. Wiesel, and M. S. Greco. 2013. Multivariate generalized Gaussian distribution:
Convexity and graphical models. IEEE Transactions on Signal Processing 61 (16):4141–8. doi:
10.1109/TSP.2013.2267740.

Appendix
The code to recreate all of the results provided in this article can be found at https://github.com/bhanson
10/Prob-Search. All animations can be found at https://bhanson10.github.io/PS.html.

Table 1. Relaxation advection simulation parameters.
Frame 1 2 3 (convergence)

Parameter iter t / iter t / iter t /

Analytical Gaussian 50 0.25 41.66 100 0.5 20.53 246 1.23 2.21
GGD, β = 2 50 0.15 48.87 100 0.3 26.70 400 1.2 1.50

Numerical
α-convex hull 100 0.1 93.68 400 0.4 23.17 1021 1.02 4.94

KDE - den 100 0.1 104.26 400 0.4 37.71 1301 1.30 6.79
KDE - lake 100 0.1 86.09 400 0.4 23.71 1008 1.01 7.27
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Table 2. Probabilistic search simulation parameters

# Target characteristics Search vehicle orbit characteristics

Process type Prior shape Parameters λ Orbit shape Parameters

1 Non-evasive Gaussian
µ =

[ 0
0
]

" =
[ 3 0

0 3
] 1 Concentric circles

radii = [0.5, 1.5, 2.5]
θ0 = [0, 2π

3 , 4π
3 ]

θ̇ = 8
(m = 0.25
am = 1e4

2 GGD

β = 2
µ =

[ 0
0
]

" =
[ 2 0.8

0.8 2
]

0.5 Cassini ovals

A = 1.2
B = [1.22, 1.4, 1.7]
f = 1.41
θ0 = [0, 2π

3 , 4π
3 ]

θ̇ = 8
(m = 0.25
am = 4e3

3 α-convex hull Figure 9 dataset 0.25 O$set lemniscates

f = 1.4
θ0 = [0, 2π

3 , 4π
3 ]

θ̇ = 8
(m = 0.1
am = 8e3

4 Evasive Gaussian

µ =
[ 0

0
]

" =
[ 3 0

0 3
]

δ = 8
ψ = 0.1

2 Rotating Cassini ovals

A = 2
B = [2.02, 2.021,
2.022, 2.023]
v = 0.4
θ0 = [0, π

2 , π , 3π
2 ]

θ̇ = 1
(m = 0.1
am = 4e2
s = 0.6


