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Abstract
The objective of this paper is to introduce the essential ingredients of
linear systems and control theory to the fluid mechanics community,
to discuss the relevance of this theory to important open problems in
the optimization, control, and forecasting of practical flow systems
of engineering interest, and to outline some of the key ideas that have
been put forward to make this connection tractable. Although many
significant advances have already been made, many new challenges
lie ahead before the full potential of this synthesis of disciplines can
be realized.
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1. INTRODUCTION

The ability to alter flows to achieve a desired effect is a matter of tremendous conse-
quence in many applications. For example, worldwide ocean shipping consumes about
2.1 billion barrels of oil per year (Corbett & Koehler 2003), whereas the airline indus-
try consumes about 1.5 billion barrels of jet fuel per year (P.R. Spalart, private commu-
nication). Reducing average overall drag by just a few percent could save several billion
dollars annually in either application, and help preserve the earth’s limited natural
resources. Reducing drag also enables increased speed, range, and endurance. Other
effects commonly desired in fluid mechanical systems include reducing structural
vibrations, radiated noise, and surface heat transfer, all typically associated with re-
ducing flow-field unsteadiness, as well as increasing mixing and combustion efficiency
and reducing pattern factor (i.e., hot spots in combustion products), problems typi-
cally associated with increasing flow-field unsteadiness in an appropriate fashion. All
such problems fall under the purview of this line of study. Not surprisingly, there has
been enormous interest in altering flows to achieve such effects for well over a century.

Today, flow control is a phrase used liberally with a range of intended meanings.
In its broadest sense, the phrase refers to any mechanism that manipulates a fluid flow
into a state with desired flow properties. In its narrowest sense, the phrase is sometimes
restricted to mean the application of systems and control theory to the Navier-Stokes
equations. Many definitions in between are also possible, including those that cover
intuition-based approaches based primarily on the control designers’ physical insight
into the relevant flow physics together with some simple trial and error. Although
such approaches have been successful and will continue to play a significant role,
the incorporation of model-based control theory into many open problems in fluid
mechanics presents a host of new opportunities.

A wide variety of different types of flow control strategies—active, passive, open-
loop, closed-loop, etc.—have been developed and implemented over the years, and
some are quite successful in achieving certain control objectives. Several recent and
comprehensive surveys of this rapidly growing field are available, including Gad-el
Hak (2000), Bewley (2001), Gunzburger (2002), Kim (2003), and Collis et al. (2004).
Interested readers are referred to these articles, and the references therein, for a
comprehensive overview of recent advances, as well as various attempts at pinning
down the somewhat ambiguous categorizations used in this field (active vs passive,
etc.). This article does not attempt to repeat these accomplishments; specifically, it is
not intended to review the now very extensive literature on this subject, which would
be impossible in an article of this length.

Our objective, rather, is to present and discuss the essential ingredients of linear
model–based systems and control theory as it relates to both transitional and turbulent
fluid mechanical systems. The article is intended for those with a background in fluid
mechanics, but not necessarily in control or optimization theory. We aim to draw
more mathematically inclined researchers with a fluids background into this line of
research, as there are an abundance of challenging and fundamental problems ripe
and wanting to be solved at this intersection of disciplines. As such, a portion of this
paper is expository in nature.
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The focus of this paper is primarily on the feedback problem; that is, coordinating
actuator inputs with sensor outputs to achieve a desired effect. Thus, much of the
paper considers near-wall flows, as this configuration facilitates both surface-mounted
sensors and actuators to be placed near the flow instabilities of interest. Perhaps the
most basic configuration in this vein is channel flow with skin friction and pressure
sensors continuously distributed over the walls to provide the system measurements,
and zero-net blowing/suction continuously distributed over the walls to provide the
actuation. Although simple to study, this configuration is artificial in several regards,
and various extensions are needed to connect it with reality—notably, accounting for
spatially developing boundary layers, the discrete locations of sensors and actuators
and their precise sensitivities and effects, and various types of system uncertainty.
Many of these extensions are well underway.

Early investigations in the present vein include, among others, Abergel & Temam
(1990), Burns & Kang (1991), Gunzburger et al. (1992), Joshi et al. (1997, 1999),
and Bewley & Liu (1998). The number of researchers working in related areas has
grown rapidly since these early efforts; there are now roughly a half dozen significant
workshops and mini-symposia organized yearly to discuss recent advances.

We present a brief motivation of the linear systems approach and its application to
fluid systems in Section 2, and the essential foundations of model-based control and
estimation theory (Section 3). We discuss the issue of managing high-dimensional
discretizations in Section 4, applications and extensions of the framework in Section
5, and conclusions in Section 6.

2. MOTIVATION AND SOME KEY ISSUES

Linear systems theory provides a uniquely effective tool for optimization and control.
We now discuss some key issues regarding its application to fluid systems.

2.1. Linearization

Any smooth problem is easily linearized. In partial differential equation (PDE) sys-
tems, linearization of the governing equations can be performed either algebraically
(by hand derivation and coding) or automatically via one of three approaches:

� By applying an automatic differentiation tool1 such as ADIFOR, TAMC, etc. to
a nonlinear simulation code implementing the governing equations. Note that
some such tools can also generate the adjoint equation at the heart of a corre-
sponding optimization problem (see Section 3).

� By performing a perturbed nonlinear simulation, subtracting the result from
an unperturbed nonlinear simulation, and dividing by the magnitude of the
perturbation (a finite difference approach).

1See http://www.autodiff.org/Tools/ for a complete listing of such tools.
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� By changing real types to complex types throughout an entire nonlinear sim-
ulation code, then perturbing the optimization variables a small amount in the
imaginary direction; the resulting linearized perturbation to the system is then
evident in the imaginary part of the complex result (this is the complex step
derivative approach; see Cerviño & Bewley 2003 for extension to pseudospec-
tral codes).

The choice of the state about which to linearize forms the central distinction between
the iterative (adjoint-based) and direct (Riccati-based) approaches to be outlined in
Section 3. The iterative approach performs a linearization about an actual trajec-
tory of the system, determines an appropriate direction to “nudge” the optimization
variables based on this linearized analysis, updates the optimization variables to max-
imum beneficial effect in this direction, then repeats, at each step performing a new
linearization of the governing equations about the trajectory of the full nonlinear sys-
tem with the current value of the optimization variables. Via a series of linear analyses
of this sort, this method optimizes the full nonlinear problem, although the (local)
optimal point so found is not guaranteed to be the globally optimal solution.

In contrast, the direct approach performs a single linearization about a represen-
tative mean flow state, which itself is not necessarily even a solution of the governing
equations. By simplifying the problem structure in this way, this solution approach
jumps straight to the unique optimal point of the (simplified) optimization problem
under consideration. Thus, at their heart, both the iterative (adjoint-based) and di-
rect (Riccati-based) approaches, which are closely related, are based effectively on
linearization and optimization.

The relevance of the iterative approach to transitional and turbulent flows is clear.
Although only providing a local optimum, the nonlinear optimizations so performed
are usually effective. Indeed, the benchmark problem of relaminarizing fully devel-
oped channel-flow turbulence (in numerical simulations) via a distribution of blow-
ing/suction on the wall as the control was solved for the first time this way (Bewley
et al. 2001). Unfortunately, this technique is computationally intensive, requiring it-
erative direct numerical simulations (DNSs) to complete significantly faster than the
system itself evolves in time. Thus, application of this technique to most practical tur-
bulent flow systems is not anticipated.2 The one notable exception to this statement
is in the field of weather forecasting, in which adjoint-based iterations following the
model predictive estimation approach (Section 3.3) are applied routinely. The per-
spective attained by the present line of investigation has in fact led to a fundamental
reformulation of this forecasting framework (see Section 5.4).

The relevance of the direct approach to the transition problem (at least, in its
early stages) is also clear, as the nonlinear instability of the flow leading to transition
is preceded (usually, upstream) by linear amplification of disturbances in the system,
which may be mitigated by linear control strategies. The relevance of the direct

2Note that tractable approaches based on the adjoint idea in a simplified setting (i.e., not marched all the way
to an optimum over a finite time horizon) have also been explored; this approach is sometimes referred to as
a suboptimal control strategy (see, e.g., Lee et al. 1998).
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approach to the turbulence problem, however, is still the subject of some debate, and
is thus motivated further in greater depth below.

2.2. Linear Models of Turbulence for Control-Oriented Analyses

The applicability of linear control strategies to turbulence is predicated upon the
hypothesis that appropriately linearized models (e.g., Orr-Sommerfeld/Squire) faith-
fully represent the inputs, outputs, and at least some of the important dynamic pro-
cesses of turbulent flow systems. The fluid dynamics literature of the last decade
is replete with articles aimed at supporting this hypothesis. For example, Farrell &
Ioannou (1996) used these linearized equations in an attempt to explain the mecha-
nism for the turbulence attenuation that is caused by the closed-loop intuition-based
control strategy now commonly known as opposition control. Jovanović & Bamieh
(2001) proposed a stochastic disturbance model, which, when used to force the lin-
earized open-loop Navier-Stokes equation, led to a simulated flow state with certain
second-order statistics (specifically, urms , vrms , wrms , and the Reynolds stress −uv)
that mimicked, with varying degrees of precision, the statistics from a full DNS of a
turbulent flow at Reτ = 180.

Clearly, the hypothesis concerning the relevance of linearized models to the tur-
bulence problem can only be taken so far, as linear models of fluid systems do not
capture the nonlinear “scattering” or “cascade” of energy over a range of length scales
and time scales, and thus linear models fail to capture an essential dynamic effect that
endows turbulence with its inherent “multiscale” characteristics.

A key philosophy that underlies the field of systems and control theory, but is
somewhat underappreciated in the field of fluid mechanics, is this: A system model
that is good enough to use for control design is not necessarily good enough for accurate
numerical simulation. The main thing that a model needs to capture for it to be useful
in control design is the relation between the inputs and outputs of the system and
their general influence on cost function measuring the system under consideration.
Although perhaps counter to the traditional fluids mind-set, a useful control-oriented
model need not capture the well-known statistics (streak spacing, etc.) and distinctive
bifurcation points (transition Reynolds numbers, etc.) of the uncontrolled system,
and to a large extent it is irrelevant whether or not it does. Thus, for the purpose of
computing feedback for the control and estimation problems, linear models might
well be good enough.

Stated another way, in the control problem, the model upon which the feedback is
computed needs only to include the terms responsible for the production of energy
in the system and how this production might be mitigated by control input. For wall-
bounded flows, there is compelling evidence that this is true, at least at sufficiently
low Reynolds number. Kim & Lim (2000) showed that interior body forcing (applied
everywhere inside the flow domain) that was constructed to cancel the effect of the
off-diagonal block of the linear Orr-Sommerfeld/Squire equations was sufficient to
relaminarize the turbulent flow. Högberg et al. (2003b) showed that boundary forcing
(blowing/suction distributed on the channel walls) determined using full-information
linear control theory, scheduling the feedback gains based on the instantaneous shape
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of the mean velocity profile, was also sufficient to relaminarize the turbulent flow.
In a similar manner, the system model upon which estimator feedback is computed
might need only to capture the terms responsible for the production of energy in the
system describing the estimation error.

2.3. The Problem of Nearly Unobservable/Uncontrollable Modes

The problem of estimating and controlling the state of a chaotic nonlinear system
is inherently difficult. When posed as an optimization problem, one can expect that,
in general, multiple local minima of such non-convex optimization problems will
exist, many of which will be associated with control distributions and state estimates
that are quite poor. These difficulties are exacerbated by the fact that turbulence
is a multiscale phenomenon (i.e., it is characterized by energetic motions over a
broad range of length scales and timescales that interact in a nonlinear fashion), with
significant nonlinear chaotic dynamics evolving relatively far from where the sensors
and actuators are located (on the walls).

The issue of nearly unobservable/uncontrollable modes of the Orr-Sommerfeld/
Squire operator is evident by examining it for streamwise-varying modes, as illustrated
in Figure 1. Note that, even in the laminar case, a significant number of the leading
eigenmodes of the system at this wave-number pair are “center modes” with very
little support near the walls, and thus are nearly unobservable with wall-mounted
sensors and nearly uncontrollable with wall-mounted actuators. This makes both
estimation and control of these modes with noisy wall-mounted sensors and actuators
nearly impossible. As seen in the turbulent case at the same bulk Reynolds number
in Figure 1b (and at higher bulk Reynolds numbers, not shown), an even higher
percentage of the leading eigenmodes of the linearized system are nearly unobservable
and uncontrollable in the turbulent case, with the problem gradually getting worse
as the Reynolds number is increased and the mean velocity profile flattens. Thus, we
see that the problem of estimating and controlling turbulent flows is fundamentally
harder than the corresponding problems in laminar flows even if the linearized model
of turbulence is considered valid, simply due to the heightened presence of nearly
unobservable and uncontrollable modes.

For the problem of turbulence control, we might set our sights fairly low. That
is, we might design our cost functions to focus primarily on getting an accurate state
estimate only fairly close to the walls, near where the sensors are located, then subdu-
ing the flow-field fluctuations only fairly close to the walls, near where the actuators
are located. This approach is supported by the observation that most turbulence
production in turbulent boundary layers takes place in the wall region, more specif-
ically within the buffer layer (y+ < 50). Furthermore, it has now been recognized
that near-wall streamwise vortices are responsible for high skin-friction drag in tur-
bulent boundary layers (Choi et al. 1994, Kravchenko et al. 1993). These vortices
are primarily found in the buffer layer (y+ = 10 − 50) with their typical diameter
in the order of d+ = 20 − 50 (Kim et al. 1987). Streamwise vortices are formed
and maintained autonomously (independent of the outer layer) by a self-sustaining
process, which involves the wall-layer streaks and instabilities associated with them
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a

b

Figure 1
First 25 eigenvectors of
Orr-Sommerfeld/Squire at
{kx , kz} = {1, 0} linearized
about (a) the laminar flow
profile at Re B = 1429
(Rec = 2143.5) and (b) the
mean turbulent flow profile
at Re B = 1429 (Reτ = 100).
Shown are the real (solid )
and imaginary (dashed ) parts
of the ω component (blue)
and v component (red ) of
the least stable eigenvectors,
plotted as a function of y
from the lower wall (bottom)
to the upper wall (top).

(Hamilton et al. 1995, Schoppa & Hussain 2002). There are some differences in
details on the self-sustaining process, but it is generally accepted that this process
is essentially independent of the outer part of the boundary layer. In other words,
near-wall turbulence dynamics is self-sustaining. This self-sustaining process of near-
wall turbulence is clearly illustrated in the clever numerical experiment of Jimenez
& Pinelli (1999), in which modified Navier-Stokes equations were solved in order to
represent a turbulent channel flow without large-scale motions in the outer part. Sig-
nificantly, no discernible differences in the behavior of the inner part (i.e., near-wall
region) were observed, thus demonstrating that the inner part of the boundary layer
can be maintained autonomously by a self-sustaining process. Based on these obser-
vations, it has been argued that the outer part of turbulent boundary layers is driven
by the inner layer (a.k.a. a bottom-up process). By this argument, it is unnecessary to
estimate and control the motions of the flow far from the wall in order to realize our
objective. Flow-field fluctuations far from the wall will indeed (through nonlinear
interactions) act as disturbances to continuously excite both the state and the state
estimation error near the wall, whereas feedback from the sensors and actuators will
be used continuously to subdue these fluctuations in the near-wall region.

A counter argument has also been made. It has been argued that at high Reynolds
numbers (Reτ > 10,000) ( J.C.R. Hunt, private communication), the inner layer ceases
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to play the dominant role, and the overall boundary layer is driven by the outer part
of boundary layers (a.k.a. a top-down process). The phenomenon central to this ar-
gument is known as “shear sheltering,” which implies a limited extent to which the
outer layer can affect the inner layer when Reτ > 10,000 (Hunt & Durbin 1999).
If this is the case, it may be better to target the control on the large scales to af-
fect the large outer-layer structures directly, rather than targeting the substantially
smaller near-wall structures. Unfortunately, given the fact that several of the center
modes in Figure 1 are, effectively, unobservable/uncontrollable with wall measure-
ments/actuation, this might prove difficult with Riccati-based linear control strate-
gies.

From the present perspective, we don’t need to answer the question as to which part
of the boundary layer plays the dominant role. The model-based control algorithm
will figure out an effective strategy itself. This perspective may be refined with any
hypotheses we might have about the maintenance of near-wall turbulence (bottom-
up, top-down, or otherwise) by tuning the cost function to target the phenomenon
of interest. That is, there is a subtle interplay of discovering new things about flow
physics and incorporating existing knowledge/hypotheses/hunches of flow physics
when setting up and solving model-based flow control problems.

2.4. The Problem of Non-Normality

The non-normality of the Orr-Sommerfeld/Squire operator is evident when examin-
ing it for spanwise-varying modes, as illustrated in Figure 2. Note that the v compo-
nents of these eigenvectors (dashed lines) have been magnified substantially to make
them visible in this plot. In particular, note that, after the first, these eigenvectors
come in pairs of almost exactly the same shape. Thus, a flow perturbation initialized
as, for example, the second eigenmode minus the third eigenmode in Figure 2a is
characterized by a very low initial energy due to destructive interference; however,
as one eigenmode decays more quickly in time than the other, this destructive inter-
ference is reduced with time, and thus the overall energy of the perturbation actually
increases quite substantially before it eventually decreases due to the stability of both
modes (Butler & Farrell 1993, Reddy & Henningson 1993). This effect is referred
to as transient energy growth in the fluids literature and peaking in the controls litera-
ture. Transient energy growth is a direct result of eigenvector nonorthogonality, and
is accompanied by very large input/output transfer function norms in such systems
when the system is considered from the input/output perspective (see Bewley 2001
and Lim & Kim 2004).

The degree of non-normality of the eigenvectors is modified only slightly when
moving from the laminar case (Figure 2a) to the turbulent case (Figure 2b). How-
ever, all modes at this wave-number pair have a substantial footprint on the wall
in both the laminar case and the turbulent case (cf. Figure 1). Thus, the situation
is not quite as bad as it might first appear: Even when linearized about the turbu-
lent flow profile, at the wave numbers of primary concern (that is, those in which
the non-normality of the eigenmodes of the system matrix is most pronounced),
these eigenmodes are easily detected by wall-mounted sensors and affected by
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a

b

Figure 2
As in Figure 1, but at
{kx , kz} = {0, 2}. Shown are
the real part of the ω

component (solid blue) and
200 times the imaginary
part of the v component
(dashed red ) of the least
stable eigenvectors; the
other parts are negligible.

wall-mounted actuators. Furthermore, those pairs of eigenmodes with nearly the same
shape are easily distinguished from one another during the dynamic state estimation
process by the fact that they are associated with different eigenvalues characterizing
their variation in time.

3. MODEL-BASED CONTROL THEORY: THE ESSENTIALS

We now give a summary of the foundation for model-based control and estimation
of fluid mechanical systems, via both iterative adjoint-based optimization and di-
rect Riccati-based feedback. This section is divided into four parts: Sections 3.1 and
3.2 consider the control problem (i.e., the determination of appropriate inputs to
a system to achieve a desired objective assuming accurate knowledge of the system
state), Sections 3.3 and 3.4 consider the estimation problem (i.e., the approximate
determination of the system state based on recent, limited, noisy measurements of
an actual physical system). Denoting the current time as t = 0, the control problem
looks at the future evolution of the system over a horizon of interest [0, T ], whereas
the estimation problem looks at the past history of measurements from the system
over a horizon of interest [−T, 0] . Together, solutions of the control and estimation
problems facilitate the coordination of a limited number of actuators with a limited
number of sensors in order to achieve a desired effect (Section 3.5).
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The iterative approach to these two problems (see Sections 3.1 and 3.3) may be
applied to both nonlinear systems and nonquadratic cost functions. Significantly, it
only requires the computation of vectors (i.e., state and adjoint fields) of dimension
N (the dimension of the state field itself) evolving over the (finite) time horizon of in-
terest, and thus extends readily to high-dimensional discretizations of unsteady PDE
systems, even when N � 106 is necessary to resolve the system under consideration.
Essentially, for any smooth, differentiable system one can afford to simulate compu-
tationally, one can also afford to simulate the adjoint field necessary to determine the
gradient of the cost function of interest in the space of the optimization variables,
thereby enabling gradient-based optimization.

The direct approach to these problems (Sections 3.2 and 3.4) is based on more strict
assumptions (specifically, a linear governing equation and a quadratic cost function).
Subject to these assumptions, this approach jumps straight to the unique minimum
of the cost function by setting the gradient equal to zero and solving the two-point
boundary value problem for the state and adjoint fields that results. This approach
requires the computation of a matrix (relating the state and adjoint fields in the opti-
mal solution) of dimension N 2, and thus does not extend readily to high-dimension
discretizations of infinite-dimensional PDE systems, as it is prohibitively expensive
for N � 103. As discussed in Section 4, many of the major advances in the field of
the feedback control of fluid systems have been related to the development of appro-
priate techniques to finesse oneself out of this dimensionality predicament, such as
transform techniques, parabolization, and open-loop model reduction.

The adjoint-based control optimization approach (Section 3.1) is known as model
predictive control. The Riccati-based feedback control approach (Section 3.2) is
known as H2 state feedback control, or optimal control. The adjoint-based state esti-
mation approach (Section 3.3) is known (in the field of weather forecasting) as 4Dvar.
The Riccati-based state estimation approach (Section 3.4) is known as a Luenberger
observer, or, when interpreted from a stochastic point of view, as H2 state estimation
or a Kalman filter. Although their application to the Navier-Stokes equations is still
nascent, application of all four formulations is widespread in most areas of science
and engineering today.

3.1. Control via Adjoint-Based Iterative Optimization

We assume the system of interest is governed by a state equation of the form

E
dx
dt

= N(x, f, u) on 0 < t < T, (1a)

x = x0 at t = 0, (1b)

where t = 0 is the present time and
� x(t) is the state vector with x0 the (known) initial conditions (at t = 0),
� f(t) is the (known) applied external force (e.g., a pressure gradient), and
� u(t) is the “control” (e.g., a distribution of blowing and suction on the wall that

we may prescribe).

The matrix E, which may be singular, and the nonlinear function N(x, f, u) may
be defined as necessary in order to represent any smooth ordinary differential equation
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(ODE) of interest, including both low-dimensional ODEs and high-dimensional
discretizations of PDE systems, such as that governing fluid turbulence. We also
define a cost function, J , which measures any trajectory of this system such that3

J = 1
2

∫ T

0

[|x|2Qx
+ |u|2Qu

]
dt + 1

2
|Ex(T )|2QT

. (1c)

The norms are each weighted such that, e.g., |x|2Qx
� x∗ Qxx, where ( )∗ denotes the

conjugate transpose with Qx ≥ 0, Qu > 0 and QT ≥ 0. The cost function (specifically,
the selection of Qx, Qu and QT) mathematically represents what we would like the
controls u to accomplish in this system.4 In short, the problem at hand is to minimize
J with respect to the control distribution u(t) subject to Equation 1.

We now consider what happens when we simply perturb the inputs to our orig-
inal system (Equation 1) a small amount. Small perturbations u′ to the control u
cause small perturbations x′ to the state x. Such perturbations are governed by the
perturbation equation (a.k.a. tangent linear equation)

Lx′ = Bu′ ⇔ E
dx′

dt
= Ax′ + Bu′ on 0 < t < T, (2a)

x′ = 0 at t = 0, (2b)

where the operatorL = (E d
dt −A ) and matrices Aand B are obtained via the lineariza-

tion5 of Equation 1a about the trajectory x(u). The concomitant small perturbation
to the cost function J is given by

J ′ =
∫ T

0
(x∗ Qxx′ + u∗ Quu′) dt + x∗(T )E∗ QT Ex′(T ). (2c)

Note that Equation 2a-b implicitly represents a linear relationship between x′ and
u′. Knowing this, the task is to re-express J ′ in such a way as to make the resulting
linear relationship between J ′ and u′ explicitly evident, at which point the gradient
DJ /Du may readily be defined. To this end, define the weighted inner product
〈〈r, x′〉〉R �

∫ T
0 r∗ Rx′ dt with some R > 0 and express the following adjoint identity:

〈〈r,Lx′〉〉R = 〈〈L∗r, x′〉〉R + b. (3)

3Note that, if E is nonsingular, then the terminal penalty in Equation 1c may be written in the simpler form
1
2 |x(T )|2QT

, and an E−1 may be absorbed into the terminal condition on R in Equation 4b in the analysis that
follows. However, if E is singular (so that the analysis may be applied, e.g., to {u,v,w,p} formulations of the
incompressible NSE), then this simpler terminal condition does not work out in the analysis that follows for
arbitrary QT ≥ 0.
4Physically, we can say that the control objective is to minimize some measure of the state (as measured by
the first and third terms of J in Equation 1c) without using too much control effort to do so (as measured
by the second term of J ). Nonquadratic forms for J are also possible. Note, in particular, that the terminal
cost (the last term of Equation 1c) enables, in effect, the penalization of the dynamics likely to come after
the finite optimization horizon t ∈ [0, T]; including such a term in the optimization problem significantly
improves its long-time behavior when applied in the receding-horizon model predictive control framework
(Bitmead et al. 1990), as found in the application of this method to the control of channel-flow turbulence,
as reported in Bewley et al. (2001).
5That is, substitute x + x′ for x and u + u′ for u in Equation 1a, multiply out, and retain all terms that are
linear in the perturbation quantities.
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Using integration by parts, it follows that L∗r = −R−1(E∗ d
dt + A∗)R r and b =

[r∗ REx′]t=T
t=0 . We now define the relevant adjoint equation by

L∗r = R−1 Qxx ⇔ −E∗ R
dr
dt

= A∗ Rr + Qxx on 0 < t < T, (4a)

r = R−1 QT Ex at t = T. (4b)

The adjoint field r so defined is easy to compute via a backward march from t = T
back to t = 0. Both A∗ and the forcing term Qxx in Equation 4a are functions of x(t),
which itself must be determined from a forward march of Equation 1 from t = 0 to
t = T; thus, x(t) must be saved on this forward march over the interval t ∈ [0, T] in
order to calculate Equation 4 via a backward march from t = T back to t = 0. The
need for storing x(t) on [0, T ] during this forward march to construct the adjoint on
the backward march can present a significant storage problem. This problem may
be averted with a checkpointing algorithm, which saves x(t) only occasionally on the
forward march, then recomputes x(t) as necessary from these “checkpoints” during
the backward march for r(t). Noting Equations 2 and 4, it follows from Equation 3
that ∫ T

0
r∗ RBu′ dt =

∫ T

0
x∗ Qxx′ dt + x∗(T )E∗ QT Ex′(T )

⇒ J ′ =
∫ T

0
[B∗ Rr + Quu]∗ u′ dt �

〈〈DJ
Du

, u′
〉〉

Su

.

As u′ is arbitrary, the desired gradient is thus given by

DJ
Du

= S−1
u [B∗ Rr + Quu] , (5)

and is readily determined from the adjoint field r defined by Equation 4. This gradient
may be used to update u at each iteration k via any of a number of standard opti-
mization strategies, including steepest descent, preconditioned nonquadratic conju-
gate gradient, and limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) (see
Nocedal & Wright 1999).

Clearly, there is substantial flexibility in the framing of the optimization problem
described above. Once the equations governing the system are specified, this flexibility
comes in exactly three forms:

� targeting the cost function via selection of the Qi matrices,
� regularizing the adjoint operator via selection of the R matrix, and
� preconditioning the gradient via selection of the Si matrices.

In the ODE setting, the simplest approach is to select the identity matrix for some if
not all of these weighting matrices. However, in high-dimensional discretizations of
multiscale turbulent flow systems, this is not always the best choice. By incorporating
finite-dimensional discretizations of Sobolev inner products (with derivatives and/or
antiderivatives in space and/or time) in place of L2 inner products, different scales
of the problem may be emphasized or de-emphasized in the statement of the cost
function, in the dynamics of the corresponding adjoint field, and in the extraction of
the gradient. Such alternative inner products (in the infinite-dimensional setting) or
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weighting matrices (in the finite-dimensional setting) can have a substantially benefi-
cial effect on the resulting optimization process when applied to multiscale problems.
In fact, the flexibility of the inner products implied by the Qi , R, and Si operators
parameterizes exactly all of the available options to target/regularize/precondition
the entire optimization framework laid out in this chapter (Protas et al. 2004). For
clarity of presentation, Sections 3.2 through 3.4 will take R = Si = I everywhere just
to simplify the form of the equations presented, recognizing that other choices can
(and, in some cases, should) be preferred.

Note also that, at a given iteration k of a gradient-based optimization procedure,
for a given value of the optimization variables uk and a given update direction pk, one
needs to determine the parameter of descent α to perform a “line minimization,” that
is, to minimize J (uk + αpk) with respect to the scalar α. By solving the perturbation
equation (Equation 2) for x′ in the direction u′ = pk from the point u = uk and
x = xk, it is straightforward to get an estimate of the most suitable value for α in the
case that J is nearly quadratic in u. Fixing uk and pk for the moment, performing a
truncated Taylor series expansion for J (uk + αpk) about the value J (uk), and setting
the derivative with respect to α equal to zero gives

α = −dJ (uk + αpk)
dα

∣∣∣∣∣
α=0

/
d 2J (uk + αpk)

dα2

∣∣∣∣∣
α=0

, (6)

where the derivatives shown are simple functions of {x, x′, u, u′}, as readily deter-
mined from Equation 1c. This value of α minimizes J (uk + αpk) if J is quadratic in
u. If it is not quadratic (for example, if the relationship x(u) implied by Equation 1a is
nonlinear), this value of α might not accurately minimize J (uk +αpk) with respect to
α, and in fact may lead to an unstable algorithm if used at each iteration of a gradient
descent procedure. However, Equation 6 is still useful to initialize the guess for α at
each iteration.

3.2. Control via Riccati-Based Feedback

In Equation 5, assuming that R = I , the control u, which minimizes J , is given by

DJ
Du

= 0 ⇒ u = −Q−1
u B∗r.

We now consider the problem that arises when we start with a governing equation
(Equations 1a–b) for the state variable x that is already in the linearized form of a
perturbation equation (as in Equations 2a–b). In other words, we perturb the (already
linear) system about the control distribution u = 0 and the trajectory x(u) = 0, and
thus the perturbed system is u = u′ and x = x′. Combining the perturbation and
adjoint Equations 2 and 4 into a single matrix form, applying the optimal value of the
control u as noted above, and assuming for simplicity that E = I , gives:

d
dt

[
x′

r

]
=

[
A −B Q−1

u B∗

−Qx −A∗

][
x′

r

]
where

{
x′ = 0 at t = 0,

r = QTx′ at t = T.
(7)
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This ODE, with both initial and terminal conditions, is referred to as a two-point
boundary value problem. Its general solution may be found via the sweep method
(Bryson & Ho 1969): Assuming there exists a relation between the perturbation
vector x′ = x′(t) and the adjoint vector r = r(t) via a matrix X = X(t) such that

r = Xx′, (8)

inserting this assumed form of the solution (a.k.a. solution ansatz) into the combined
matrix form (Equation 7) to eliminate r, combining rows to eliminate dx/dt, factoring
out x′ to the right, and noting that this equation holds for all x′, it follows that X
obeys the differential Riccati equation (DRE)

−d X
dt

= A∗ X + XA − XB Q−1
u B∗ X + Qx where X(T ) = QT, (9a)

where the condition at X(T ) follows from Equations 7 and 8. Solutions X = X(t)
of this matrix equation satisfy X∗ = X, and may easily be determined via marching
procedures similar to those used to march ODEs (Crank-Nicholson, Runge-Kutta,
etc.). By characterizing the optimal point, we now write the control u as

u = K x where K = −Q−1
u B∗ X. (9b)

To recap, this value of K minimizes

J = 1
2

∫ T

0
[x∗ Qxx + u∗ Quu] dt + 1

2
x∗(T )QTx(T ) where

dx
dt

= Ax + Bu. (9c)

The matrix K = K (t) is referred to as the optimal control feedback gain matrix, and
is a function of the solution X to Equation 9a. This equation may be solved for linear
time-varying (LTV) or linear time-invariant (LTI) systems based solely on knowledge
of A and B in the system model and Qx, Qu, and QT in the cost function (that is,
the gain matrix K may be computed offline). Alternatively, if we take the limit that
T → ∞ (that is, if we consider the infinite-horizon control problem) and the system
is LTI, the matrix X in Equation 9a may be marched to steady state. This steady-state
solution for X satisfies the algebraic Riccati equation (ARE)

0 = A∗ X + XA − XB Q−1
u B∗ X + Qx. (10)

Efficient algorithms to solve this quadratic matrix equation (Laub 1979), based on
a Schur factorization of the 2N × 2N matrix in Equation 7, are readily available in
Matlab.

3.3. Estimation via Adjoint-Based Iterative Optimization

The derivation presented here is analogous to that presented in Section 3.1. We first
write the state equation modeling the system of interest in ODE form:

E
dx
dt

= N(x, f, v, w) on −T < t < 0, (11a)

x = u at t = −T, (11b)

where t = 0 is the present time and
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� x(t) is the state vector,
� f(t) models the known external forcing,

and the quantities to be optimized are:
� u represents the unknown initial conditions of the model (at t = −T),
� v contains the unknown constant parameters of the model (Re , etc.), and
� w(t) contains the unknown external inputs that we would like to determine.

We next write a cost function that measures the misfit of the available measurements
y(t) with the corresponding quantity in the computational model Cx(t), and addition-
ally penalizes the deviation of the initial condition u from any a priori estimate6 of
the initial conditions ū, the deviation of the parameters v from any a priori estimate
of the parameters v̄, and the magnitude of the disturbance terms w(t):

J = 1
2

∫ 0

−T
|Cx − y|2Qy

dt + 1
2
|u − ū|2Qu

+ 1
2
|v − v̄|2Qv

+ 1
2

∫ 0

−T
|w|2Qw

dt. (11c)

The norms are each weighted with positive semidefinite matrices such that, e.g.,
|y|2Qy

� y∗ Qyy with Qy ≥ 0. In short, the problem at hand is to minimize J with
respect to {u, v, w(t)} subject to Equation 11.

Small perturbations {u′, v′, w′(t)} to {u, v, w(t)} cause small perturbations x′ to
the state x. Such perturbations are governed by the perturbation equation

Lx′ = Bvv′ + Bww′ ⇔ E
dx′

dt
= Ax′ + Bvv′ + Bww′ on −T < t < 0, (12a)

x′ = u′ at t = −T, (12b)

where the operator L = (E d
dt − A ) and the matrices A, Bv, and Bw are obtained via

the linearization of Equation 11a about the trajectory x(u, v, w). The concomitant
small perturbation to the cost function J is given by

J ′ =
∫ 0

−T
(Cx − y)∗ QyCx′ dt + (u − ū)∗ Quu′ + (v − v̄)∗ Qvv′ +

∫ 0

−T
w∗ Qww′ dt. (13)

Again, the task before us is to re-express J ′ in such a way as to make the resulting
linear relationship between J ′ and {u′, v′, w′(t)} explicitly evident, at which point the
necessary gradients may readily be defined. To this end, we define the inner product
〈〈r, x′〉〉 �

∫ T
0 r∗x′ dt and express the adjoint identity

〈〈r,Lx′〉〉 = 〈〈L∗r, x′〉〉 + b. (14)

Using integration by parts, it follows that L∗r = −(E∗ d
dt + A∗) r and b = [r∗ Ex′]t=0

t=−T .
Based on this adjoint operator, we now define an adjoint equation of the form

L∗r = C∗ Qy(Cx − y) ⇔ −E∗ dr
dt

= A∗r + C∗ Qy(Cx − y) on −T < t < 0, (15a)

r = 0 at t = 0. (15b)

6In the 4Dvar setting, such an estimate ū for x(−T) is obtained from the previously computed forecast, and
the corresponding term in the cost function is called the “background” term. The effect of this term on the
time evolution of the forecast is significant and sometimes detrimental, as it constrains the update to u to be
small when, in some circumstances, a large update might be warranted.
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Note again that the difficulty involved with numerically solving the ODE given by
Equation 15 via a backward march from t = 0 to t = −T is essentially the same as
the difficulty involved with solving the original ODE (Equation 11).

Finally, combining Equations 12 and 15 into the identity Equation 14 and substi-
tuting into Equation 13, it follows that

J ′ = [E∗r(−T ) + Qu(u − ū)]∗ u′ +
[∫ 0

−T
B∗

v r dt + Qv(v − v̄)
]∗

v′

+
∫ 0

−T

[
B∗

wr + Qww
]∗ w′ dt �

〈DJ
Du

, u′
〉

Su

+
〈DJ
Dv

, v′
〉

Sv

+
〈〈DJ
Dw

, w′
〉〉

Sw

,

for some Su > 0, Sv > 0, and Sw > 0, where 〈a, b〉S � a∗Sb and 〈〈a, b〉〉S �
∫ 0

−T a∗Sb
dt, and thus

DJ
Du

= S−1
u [E∗r(−T ) + Qu(u − ū)] ,

DJ
Dv

= S−1
v

[ ∫ 0

−T
B∗

v r dt + Qv(v − v̄)

]
,

and
DJ
Dw(t)

= S−1
w

[
B∗

wr(t) + Qww(t)
]
, for t ∈ [−T, 0]. (16)

We have thus defined the gradient of the cost function with respect to the optimiza-
tion variables {u, v, w(t)} as a function of the adjoint field r defined in Equation 15,
which, for any trajectory x(u, v, w) of our original system (Equation 11), may eas-
ily be computed. Optimization of {u, v, w(t)} may thus again be performed with a
gradient-based algorithm, as discussed in Section 3.2.

3.4. Estimation via Riccati-Based Feedback

We now convert the Riccati-based estimation problem into an equivalent control
problem of the form already solved (in Section 3.2). Consider the linear equations
for the state x, the state estimate x̂, and the state estimation error x̃ = x − x̂:

dx/dt = Ax + Bu, y = Cx, (17)

d x̂/dt = Ax̂ + Bu − L(y − ŷ), ŷ = C x̂, (18)

d x̃/dt = Ax̃ + Lỹ, ỹ = C x̃, (19)

where u is now the (known) control forcing and L is the unknown gain matrix to
be determined. The output injection term L(y − ŷ) applied to the equation for the
state estimate x̂ is to be designed to nudge this equation appropriately based on the
available measurements y of the actual system. If this term is doing its job correctly,
x̂ is driven toward x (that is, x̃ is driven toward zero) even if the initial conditions on
x are unknown and Equation 17 is only an approximate model of reality.

We thus set out to minimize some measure of the state estimation error x̃ by
appropriate selection of L. To this end, taking x̃∗ times Equation 19, we obtain

x̃∗
[

d x̃
dt

= Ax̃ + LC x̃
]

=
[

d x̃
dt

= A∗x̃ + C∗L∗x̃
]∗

x̃ = 1
2

d x̃∗x̃
dt

. (20)
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Motivated by the second relation in brackets above, consider a new system

dz/dt = A∗z + C∗ũ where ũ = L∗z and z(−T ) = x̃(−T ). (21)

Although the dynamics of x̃(t) and z(t) are different, the evolution of their energy is the
same, by Equation 20. That is, z∗z �= x̃∗x̃ even though, in general, z(t) �= x̃(t). Thus,
for convenience, we design L to minimize a cost function related to this auxiliary
variable z, defined here such that, taking Q1 = I ,

J̃ = 1
2

∫ 0

−T
[z∗ Q1z + ũ∗ Q2ũ] dt + 1

2
z∗(−T )Q−Tz(−T ), (22a)

where, renaming Ã = A∗, B̃ = C∗, and K̃ = L∗, Equation 21 may be written as

dz/dt = Ãz + B̃ũ where ũ = K̃ z. (22b)

Finding the feedback gain matrix K̃ in Equation 22b that minimizes the cost function
J̃ in Equation 22a is exactly the same problem that is solved in Equation 9, just
with different variables. Thus, the optimal gain matrix L, which minimizes a linear
combination of the energy of the state estimation error, x̃∗x̃, and some measure of
the estimator feedback gain L, is again determined from the solution P of a Riccati
equation which, making the appropriate substitutions into the solution presented in
Equation 9, is given by

d P/dt = AP+P A∗−PC∗ Q−1
2 C P+Q1, P (−T ) = Q−T, L = −PC∗ Q−1

2 . (23)

The compact derivation presented above gets quickly to the Riccati equation for
an optimal estimator, but as the result of a somewhat contrived optimization problem.
A more intuitive formulation is to replace Equation 17 with

dx/dt = Ax + Bu + w1, y = Cx + w2, (24)

where w1 (the “state disturbances”) and w2 (the “measurement noise”) are assumed to
be uncorrelated, zero mean, white Gaussian processes with modeled spectral densities
E{w1w∗

1} = Q1 and E{w2w∗
2} = Q2, respectively. Going through the necessary steps

to minimize the expected energy of the estimation error, E{x̃∗x̃} = trace(P ), where
P = E{x̃x̃∗}, we again arrive at an estimator of the form given in Equation 18 with
the feedback gain matrix L as given by Equation 23. For a succinct derivation of
this setting in continuous time, see pp. 460–70 of Lewis & Syrmos (1995); for a
succinct derivation in discrete time, see pp. 382–95 of Franklin et al. (1998); for a
more comprehensive discussion, see Anderson & Moore (2005).

3.5. LQG and the Separation Principle: Putting It Together

In Section 3.2, a convenient feedback relationship was derived for determining
optimal control inputs based on full state information. In Section 3.4, a convenient
feedback relationship was derived for determining an optimal estimate of the full
state based on the available system measurements. In the practical situation in which
control inputs must be determined based on available system measurements, it is thus
natural to combine the results of these two sections—that is, to develop an estimate

www.annualreviews.org • Linear Systems Approach to Flow Control 399



ANRV294-FL39-16 ARI 12 December 2006 6:6

of the state x̂ based on the results of Section 3.4, then to apply control u = K x̂
based on this state estimate and the results of Section 3.2. This setting is referred
to as LQG control, with reference to the Linear state equation, Quadratic cost
function, and Gaussian disturbance model upon which it is based. It is justified by
the following separation principle: By collecting the equations presented previously
and adding a reference control input r, we have

Plant : dx/dt = Ax + Bu + w1, y = Cx + w2,

Estimator : d x̂/dt = Ax̂ + Bu − L(y − ŷ), ŷ = C x̂,

Controller : u = K x̂ + r,

where K is determined as in Equation 9 and L is determined as in Equation 23. Note
that K was determined in Section 3.2 in the nominal case without a reference input,
and may be extended here to the case with a control reference in a straightforward
fashion. In block matrix form (noting that x̃ = x − x̂), this composite system may be
written

d
dt

[
x

x̃

]
=

[
A + BK −BK

0 A + LC

] [
x

x̃

]
+

[
B

0

]
r +

[
I 0

I L

] [
w1

w2

]
(25a)

y = [C 0]
[x

x̃

]
+ [0 I ]

[w1

w2

]
. (25b)

Because this system matrix is block triangular, its eigenvalues are given by the union
of the eigenvalues of A+ BK and those of A+ LC ; thus, selecting K and L to stabilize
the control and estimation problems separately effectively stabilizes the composite
system. Further, assuming that w1 = w2 = 0 and the initial condition on all variables
are zero, taking the Laplace transform7 of Equation 25 gives

Y(s ) = [C 0]

[
s I − (A + BK ) BK

0 sI − (A + LC)

]−1 [
B

0

]
R(s )

= C[s I − (A + BK )]−1 B R(s ).

That is, the transfer function from r to y is unaffected by the estimator. As a matter
of practice, the estimator feedback L is typically designed (by adjusting the relative
magnitude of Q1 and Q2) such that the slowest eigenvalues of A+ LC are a factor of
two to five faster than the slowest eigenvalues of A + BK .

3.6. Transforming Navier-Stokes to State-Space Form

To illustrate how the linearized Navier-Stokes equations may be written in state-space
form, we begin with these equations manipulated into Orr-Sommerfeld/Squire form

7In effect, simply replacing d/dt by the Laplace variable s and replacing the time-domain signals {y, r, x, x̃}
with their Laplace transforms {Y(s ), R(s ), X(s ), X̃(s )}, where F(s ) = ∫ ∞

0− f(t) e−s t dt.
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(Schmid & Henningson 2001):

∂

∂t

[
v̂

ω̂y

]
=

[
L 0

C S

] [
v̂

ω̂y

]
with

⎧⎪⎪⎨
⎪⎪⎩
L = �−1(−ikxU� + ikxU ′′ + �2/Re),

S = −ikxU + �/Re,

C = −ikzU ′,

(26)

where v̂ and ω̂y denote Fourier coefficients of the wall-normal velocity and vorticity,
respectively, at wave-number pair {kx, kz}. These Fourier coefficients can be expanded
in terms of known functions Pn(y) and Rn(y):

v̂(y, t) =
Ny∑

n=1

an(t)Pn(y), ω̂y (y, t) =
Ny∑

n=1

bn(t)Rn(y). (27)

Substitution of Equation 27 into Equation 26, followed by a projection with a
weighted residual method, yields a linear system in the state-space form Equation
17 ( Joshi et al. 1997).

Alternatively, the derivative operators in Equation 26 may be discretized in a
straightforward manner using the matrix collocation operators provided, e.g., by the
spectral Matlab Differentiation Matrix Suite of Weideman & Reddy (2000), which
implements the technique of Huang & Sloan (1993) with “clamped” (homogeneous)
boundary conditions to avoid spurious eigenvalues. The technique of Högberg et al.
(2003a) may then be used to “lift” the boundary conditions on v to account for forcing
on the problem via an additional right-hand-side forcing vector u.

4. COPING WITH HIGH-DIMENSIONAL DISCRETIZATIONS

The principal difficulty with applying linear control theory to fluid systems is that
most flows (turbulent flows in particular) require very high-dimensional numerical
discretizations to resolve accurately. The matrix equations at the heart of the feedback
calculations presented in Section 3 are simply intractable for such discretizations in
their original form. There are a variety of ways around this dimensionality predica-
ment, as discussed below.

4.1. The Parallel Flow Assumption

If the mean flow is parallel (or may locally be approximated as such), it is well known
in the fluids literature that performing a Fourier transform of the linearized Navier-
Stokes equations decouples the modes of the fluid system at each wave-number pair
{kx, kz}; when expressed in v − ω form, this results in the Orr-Sommerfeld/Squire
equations. It follows similarly that, under this parallel flow assumption, by perform-
ing a Fourier transform of all variables in the control problem (that is, the state, the
controls, the measurements, and the disturbances), the enormous Riccati equations
for both the control and estimation problems block diagonalize into Nkx × Nkz com-
pletely independent, tractable Riccati equations (each of dimension 2Ny × 2Ny ) that
may be solved separately (Bewley & Liu 1998).
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4.2. The Parabolic Flow Assumption

If a boundary layer is sufficiently thin, it is well known in the fluids literature that the
Navier-Stokes equations may sometimes be reduced to a simpler, parabolic-in-space
form, often referred to as the boundary-layer equations. Assuming such a parabolic-
in-space development of the perturbations in the flow system, we may follow a control
strategy similar to that used for the much more common parabolic-in-time systems,
as highlighted in the previous section, with one important difference: There is a
unique noncausal capability of control algorithms in this parabolic-in-space setting.
That is, measurements at a particular streamwise location may be used to update
both downstream and upstream controls to neutralize the effects of disturbances that
enter the boundary layer both downstream and upstream of the actuator itself. This
is not possible in control strategies for parabolic-in-time systems, which must be
constrained to act in a causal fashion to be implementable. The necessary extensions
of standard causal-in-time control theory to handle this unique noncausal-in-space
capability are formulated in Cathalifaud & Bewley (2004).

4.3. The Chandrasekhar Method for Approximate Solution
of Differential Riccati Equations

Consider a problem in which the state vector is of dimension N, the control vector is
of dimension Mu, and the measurement vector is of dimension My. If N 
 Mu and
N 
 My, which is typical, then solving Riccati equations for the N × N matrices X
(see Equation 9) and P (see Equation 23) in order to compute the Mu×N and N×My

feedback matrices K and L for the control and estimation problems, respectively,
might seem to be inefficient: This approach computes enormous N × N Riccati
matrices only to effectively take narrow slices of them to determine the feedback
gains. Chandrasekhar’s method (Kailath 1973) addresses this inefficiency in a clever
way. Consider the DRE for the estimator, as given in Equation 23:

Ṗ (t) = AP (t) + P (t)A∗ − P (t)C∗ Q−1
2 C P (t) + Q1, L(t) = −P (t)C∗ Q−1

2 . (28)

Chandrasekhar’s method solves an evolution equation for a low-dimensional factored
form of Ṗ (t) and another evolution equation for L(t). To this end, define

Ṗ = Y1Y∗
1 − Y2Y∗

2 = Y HY∗, Y = (Y1 Y2), H =
(

I 0

0 −I

)
,

where the number of columns of Y1 and Y2 are the number of positive and negative
eigenvalues of Ṗ , respectively, retained in the approximation. Differentiating Equa-
tion 28 with respect to time and inserting Ṗ = Y HY ∗, assuming {A, B, C, Q1, Q2} are
LTI, it is easily verified that the following set of equations are equivalent to Equation
28, but much cheaper to compute if the factors Y1 and Y2 are low rank:

L̇(t) = −Y(t)HY∗(t)C∗ Q2
−1, L(0) = −P (0)C∗ Q2

−1,

Ẏ(t) = [A + L(t)C]Y(t), Y(0)HY∗(0) = Ṗ (0),
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where Ṗ (0) is determined from the original DRE (Equation 28) evaluated at t = 0.
This method has been applied to control a heat equation system in Borggaard &
Burns (2002), to control a Burgers’ equation system in Camphouse & Myatt (2004),
and to estimate a Navier-Stokes system in Hoepffner et al. (2005).

4.4. Open-Loop Model Reduction via Balanced Truncation

The related problems of open-loop model reduction and compensator reduction
have received sustained attention in the systems and control literature; Zhou et al.
(1995), Antoulas & Sorensen (2001), and Obinata & Anderson (2001) provide detailed
overviews. Solutions to the open-loop model reduction problem are appropriate for
situations in which the system model is simply too complex for computing feedback
via the techniques described above, whereas solutions to the compensator reduction
problem are better suited8 for situations in which the feedback calculation is solvable
using a sufficiently large computer, but the resulting controller is too high dimen-
sional to implement at the necessary bandwidth with the feedback control hardware
available. In this section, we present a brief description of the balanced truncation
method for open-loop model reduction (Moore 1981). Although we do not have
room here to describe this method from first principles, we summarize some of its
key features and equations.

The aim of open-loop model reduction is to construct a reduced-order state-space
realization with input-output characteristics similar to the original plant, based on
which a stabilizing compensator for the plant may hopefully be designed. Balanced
truncation achieves this by transforming the system matrix into an ordered form in
which the leading principle submatrices in this balanced form contribute most signif-
icantly to the input-output transfer function of the plant. That is, the eigenmodes of
the original system that these submatrices represent are observable, controllable, and
not highly damped, whereas the remaining eigenmodes contribute less significantly
to the input-output transfer function of the plant (that is, these modes are either
nearly uncontrollable,9 nearly unobservable, highly damped, or some combination
of the three). Once transformed in this manner, the trailing modes in this realization
can be truncated with reduced impact on the input-output transfer function of the
model. The primary drawback of the method is that it is unrelated to the cost function
being minimized, so it is not guaranteed to keep those modes most relevant to the
particular control problem being solved.

Let a general state-space realization of the plant be denoted as follows:

ẋ = Ax + Bu

y = Cx + Du,
⇔ G =

[
A B
C D

]
.

8Note that compensator reduction (that is, design-then-reduce) strategies can be accomplished with perfor-
mance guarantees that are, to date, unavailable following the open-loop model reduction (that is, reduce-
then-design) approach. See Obinata & Anderson (2001) for details.
9As an example of nearly unobservable and nearly uncontrollable modes, see those modes in Figure 1 with
negligible support near the walls, where the sensors and actuators are located.
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The controllability Gramian P and observability Gramian Q are two useful matrices
derived from G that allow us to measure to what extent a particular eigenmode si

of the system matrix A is controllable and observable. They may be defined as the
solutions of the Lyapunov equations

AP + P A∗ + B B∗ = 0, A∗ Q + Q A + C∗C = 0.

So defined, it may be shown, for example, that eigenmode s1 is more controllable
than eigenmode s2 if ||s∗

1 Ps1|| > ||s∗
2 Ps2||. Suppose the state-space realization is

transformed by a nonsingular T such that xb = Tx and

Gb =
[

Ab Bb

Cb Db

]
=

[
T AT−1 TB
CT−1 D

]
.

Moore (1981) showed that there exists a nonsingular transformation matrix T by
which P and Q become equal and diagonal, that is,

Pb = TPT∗ = �, Qb = (T−1)∗ QT−1 = �, (29)

where � = diag(σ1, . . . , σn) with σ1 ≥ · · · ≥ σn (referred to as the Hankel singular
values of the system). Note that Pb Qb = TP QT−1 = �2 and P Q = T−1	T, where
	 = diag(λ1, . . . , λn) = �2 is the matrix of eigenvalues of P Q, and the T−1 is the
matrix of eigenvectors of P Q. The new realization Gb , with Gramians Pb = Qb = �,
is referred to as a balanced realization. As discussed above, modes corresponding
to diminished Hankel singular values are either nearly uncontrollable, nearly unob-
servable, highly stable, or some combination of the three, and thus truncating these
modes to reduce the model does not significantly corrupt its input-output transfer
function. Thus, let �2 contain the negligible Hankel singular values (σr+1, . . . , σn)
and partition in the balanced realization Gb such that

Ab =
[

A11 A12

A21 A22

]
, Bb =

[
B1

B2

]
, Cb = [C1|C2], � =

[
�1 0
0 �2

]
. (30)

The reduced-order model is obtained by truncating those states associated with �2:

Gr =
[

A11 B1

C1 D

]
. (31)

Although no guarantees are available about the stability or performance of a com-
pensator designed for Gr on the original system G, the H∞ norm of the differ-
ence between the original and reduced-order open-loop systems is bounded as
follows

||G − Gr ||H∞ ≤ 2(σr+1 + · · · + σn). (32)

Efficient algorithms for performing balanced truncation are available in Matlab.

A variant of the balanced truncation method described above has been used in
Cortelezzi et al. (2001), Lee et al. (2001), and Kang (2006) for boundary-layer control.
In this work, it was desired to retain the structure of eigenmodes of A (i.e., system
poles) as certain modes are known to play a critical role in the energy amplification
that needs to be minimized. In their modal balanced realization approach, the system
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matrix A was first transformed into the Schur canonical form, converting A into a
block diagonal matrix with each diagonal block corresponding to each eigenmode.
The B and C matrices were also appropriately transformed. The balanced Gramian
for each eigenmode was then computed and compared to determine the relative
observability and controllability of each eigenmode. The truncation was done based
on modal-balanced Gramian singular values. The error bound of this modal balanced
reduction is similar to that of the standard balanced truncation.

It is worth commenting here on the proper orthogonal decomposition (POD)
method in regard to its use as a method to construct a reduced-order model for
controller design (see, e.g., Lumley & Blossey 1998). POD modes are, by design,
energetically optimal in representation; that is, POD modes are the best choice in
representing the energetics of a given data set. However, POD-based reduced-order
models, in which low-energy modes are truncated, do not account for the observabil-
ity and controllability of the modes being truncated. Consequently, some retained
modes may be nearly uncontrollable or unobservable, whereas some truncated modes
actually play a more vital role in the input-output transfer function of the open-loop
system. This is demonstrated by Rowley (2005). A POD-based reduced-order model
demonstrated dynamics that were significantly different than those of the original
system. However, a balanced POD method suggested by Rowley, in which POD’s
snapshot method was used to compute empirical Gramians, appears to be promis-
ing, especially for large systems, as it avoids directly computing Gramians, which is
computationally expensive.

5. REPRESENTATIVE APPLICATIONS AND EXTENSIONS

This section discusses a few representative applications of the above framework to
transitional and turbulent flow systems, then presents two significant extensions of
the framework discussed above. It is impossible to review here all related applied
work in this area, or even a significant fraction of it, as this body of literature is by
now quite extensive. Thus, we again refer the readers to Bewley (2001), Gunzburger
(2002), Kim (2003), and Collis et al. (2004) for many further examples.

5.1. Near-Wall Feedback via Overlapping
Decentralized Convolutions

As discussed in Section 4.1, performing a Fourier transform of the linearized Navier-
Stokes system decouples the entire control and estimation feedback calculations into
tractable subproblems at each wave-number pair {kx, kz}. For the control problem,
this results in a feedback product u = K x at each wave-number pair, where the vector
x is the state of the system at wave-number pair {kx, kz} discretized in the y direction.
Recall that a product at each mode in Fourier space corresponds to a convolution in
physical space. Thus, upon inverse transforming the entire set of feedback gains at
all wave-number pairs, three-dimensional feedback convolution kernels are obtained
in physical space, relating, e.g., the control to be applied at a given point on the
wall to the state of the fluid system in the three-dimensional vicinity of this point. If
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the feedback problem is well framed, these convolution kernels have the following
properties:

� They are independent of the box size in which they were computed, so long
as the computational box is sufficiently large. This relaxes the nonphysical
assumption of spatial periodicity used in their calculation, thereby connecting
the artificial spatially periodic model with which they are computed to the
nonspatially periodic problem of physical interest.

� They are well resolved with grid resolutions appropriate for simulating the
physical system of interest, and converge upon refinement of the grid. This is
necessary to give them relevance to the PDE system from which the computa-
tional control problem was derived. Note that careful framing of the feedback
problem is required to achieve this. Specifically, it is found that appropriate
choices of the regulation terms Qi , R, and Si mentioned in Section 3 must be
chosen.10

� They eventually decay exponentially, and thus may be truncated to any desired
degree of precision (note figure 6 of Högberg et al. 2003a; see also Bewley 2001,
Bamieh et al. 2002). Such truncated kernels are spatially compact with finite
support, and facilitate implementation in an overlapping decentralized fashion,
thereby enabling extension to massive arrays of sensors and actuators with-
out either communication or centralized computational bottlenecks (Bewley
2001).

� Their structure is physically tenable, but not imposed a priori. Typically, con-
trol convolution kernels angle upstream away from each actuator, whereas es-
timation convolution kernels extend well downstream of each sensor (see, e.g.,
Figure 3). Interesting flow physics (specifically, cause/effect relationships in
the near-wall region) may thus be characterized in a new way by examining
these kernels.

Figure 4 illustrates the effectiveness of such kernels on the estimation of a flow
perturbation developing from a localized disturbance in a laminar channel flow. For
further discussion of how such well-behaved kernels are derived and their effectiveness
on both the transition and turbulence problems, see Bewley (2001), Högberg et al.
(2003a), Hoepffner et al. (2005), and Chevalier et al. (2006).

5.2. Applications to Controlling Turbulence

Lee et al. (2001) used the LTR (loop-transfer recovery) variant of LQG synthesis
in designing an optimal controller for drag reduction in a turbulent channel flow.
The LTR procedure assumes that the system noise has a certain form in order to
warrant robust performance in the limit the system noise power spectral density

10Recall that Qi denotes the weights in the cost function for the control problem and the covariance of the
state disturbances and measurement noise in the estimation problem. Significantly, the simplest choice, taking
Qi , R, and Si each proportional to the identity matrix, is generally not adequate to achieve convergence of
the feedback kernels upon grid refinement; the question of exactly what regulation is required to insure this
property is still open.
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Figure 3
Representative convolution kernels relating the (left) τx , (center) τz, and (right) p measurements
at the point {x = 0, y = −1, z = 0} on the wall to the estimator forcing on the interior of the
domain for the evolution equation for the estimate of (top) v̂ and (bottom) ω̂y . Visualized are
positive (dark) and negative (light) iso-surfaces with iso-values of ±5% of the maximum
amplitude for each kernel illustrated. From Hoepffner et al. (2005).

goes to infinity (Doyle & Stein 1981). Lee et al.’s LQG/LTR controller was two
dimensional, and the size of their reduced-order estimator was less than 2.5% of the
original system; they included an ad hoc controller to account for three-dimensional
disturbances. Lim (2004, see also Lim & Kim 2004) later extended the LQG/LTR
synthesis to three-dimensional controllers. For both applications, the ultimate goal of
control was to reduce mean skin-friction drag in turbulent channel flows. However,
controllers were designed to minimize wall-shear stress fluctuations, as mean skin-
friction drag could not be incorporated directly into the cost function. Nonetheless,
about 20% drag reduction was achieved.

The following observations are worth mentioning. First, the reduction of wall-
shear stress fluctuations for each wave number was much larger than 20% (especially
for low wave numbers, for which the reduction was several orders of magnitude),
indicating that controllers based on a linearized system were performing remarkably
well in nonlinear flows. This was partly because a linear mechanism, which was re-
tained in the linearized system, plays a key role in maintaining near-wall turbulence
structures responsible for high skin-friction drag in turbulent boundary layers (Kim
& Lim 2000). Second, the performance of LQG/LTR controllers was very similar to
that of LQR controllers (i.e., complete system state information was used for the feed-
back control), which yielded 30% drag reduction, suggesting that the reduced-order
estimator was tracking the system state reasonably well. Further examinations, how-
ever, indicated that the estimated system state was good near the wall but poor away
from the wall, suggesting that development of an improved reduced-order estimator
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Figure 4
Evolution of a localized
disturbance to the state (left)
and the corresponding state
estimate based on wall
measurements only (right) at
time t = 0 (top), t = 20
(middle), and t = 60 (bottom).
Visualized are positive
(light) and negative (dark)
iso-surfaces of the
streamwise component of
the velocity. The iso-values
are ±10% of the maximum
streamwise velocity of the
flow during the time
interval shown. From
Hoepffner et al. (2005).

could improve the overall performance of LQG/LTR controllers. Thirdly, examina-
tions of flow fields indicated that only flows near the wall were substantially affected
by the controller (see Figure 5). If controllers were more efficient in affecting flow
fields further away from the wall, where dominant turbulence structures present (i.e.,
the buffer layer), further drag reduction would have been possible. This calls for a
different cost function to be minimized such that minimizing the cost function can
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Figure 5
Contours of streamwise
vorticity in (y, z)-plane in a
turbulent channel with no
control (top) and with a
controller that minimizes
wall-shear stress fluctuations
(bottom). Note that flow
structures very close to the
walls are significantly
reduced, whereas those
further away from the walls
still present in the channel
flow with control.

lead to more impact on flow properties further away from the wall, in contrast to
minimizing wall-shear stress fluctuations.

To address this issue, Lim (2004) explored an LQG/LTR controller, which was de-
signed to minimize (dU/d y)(∂v/∂z), which plays a key role in self-sustaining near-wall
turbulence structures and peaks further away from the wall. Unfortunately, the mean
skin-friction reduction obtained was not significantly different than that obtained by
minimizing skin-friction fluctuations.

Another candidate for the cost function is the Reynolds shear stress in the wall
region. The skin-friction drag in turbulent boundary layers is related to that in laminar
boundary layers plus a weighted average of Reynolds shear stress (Bewley & Aamo
2004, Fukagata et al. 2002). For example, skin-friction drag in a channel flow with a
fixed mass flux may be expressed as

D = Dlam +
∫ 1

−1
y u′v′ dy, (33)

where Dlam and u′v′ denote the laminar drag and Reynolds shear stress, respectively,
and the integration is from lower wall to upper wall. Min et al. (2006) showed that an
open-loop control, with which nominally negative Reynolds shear stress in the lower
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half of a channel was changed to positive (and vice versa for the upper half), could
reduce the skin-friction drag in a turbulent channel flow below that in a laminar chan-
nel flow. In this regard, it is therefore desirable to target the integral in Equation 33
in the cost function.

5.3. Coping with Uncertainty: Detuning
the Optimization Framework

If desired, a “maximally disruptive” term may be introduced into both the control
and estimation problems described in Section 3 in order to “robustify” the result
of the optimization procedure. In the iterative, adjoint-based optimization setting,
this is referred to as a noncooperative approach; in the direct, Riccati-based feedback
setting, this is referred to as an H∞ approach (see Green & Limebeer 1995 and Zhou
et al. 1995); in both cases, it often goes by the simple name of robust control.

The essential idea of robust control, in both the iterative and direct settings, is
to optimize the controls11 simultaneously with a small component of disturbances
of maximally disruptive structure. The motivation for this is that, if the controls
are optimized to achieve the desired result as well as possible even in the presence
of a small component of disturbances of maximally disruptive structure, then these
controls will similarly be effective at achieving the desired result even in the presence
of a broad range of other disturbances, which, by definition, are not as disruptive as
the “worst case.” In such a manner, the optimized values of the controls are “detuned.”
This detuned or “robust” control solution (that is, as designed simultaneously with
some maximally disruptive disturbances) is less effective at achieving the control
objective in the “nominal” system (that is, when the disturbances are absent) than the
“optimal” solution of the standard optimization problem (that is, as designed with
the disturbances absent). However, the robust solution is generally more effective
at optimizing the desired objective when disturbances are present in any structure,
including the potentially problematic worst case, as this solution is designed while
specifically accounting for this worst-case scenario.

Our perspective on the robust control formulation is not to be too concerned with
its particular performance guarantees, but simply to use it as a knob to detune the
optimization problem during the process of control system design. This has been done
to particularly beneficial effect in, e.g., Lauga & Bewley (2004). For further discussion
of the noncooperative optimization of PDE systems and the mathematical details of
applying such an approach to systems governed by the Navier-Stokes equation in
particular, see Bewley et al. (2000).

5.4. Estimating Chaos: Filtering vs Smoothing

In the estimation and control of near-wall turbulence based on wall sensing and
wall actuation, it is the estimation problem that is the primary pacing item today.

11The word “controls” is used here in the generic sense, meaning either the actual control distribution in the
control problem or the state and parameter estimates in the estimation and identification problems.
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Discussion of the application of the adjoint-based estimation approach outlined in
Section 3.3 to the problem of near-wall turbulence is given in Bewley & Protas
(2004), and the application of the Riccati-based estimation approach outlined in Sec-
tion 3.4 to this problem is given in Chevalier et al. (2006). The key advancement
of the latter paper was the development and implementation of an efficient tech-
nique to extract, from DNS, a relevant covariance model for an external forcing term
on the Navier-Stokes equations linearized about the mean turbulent flow profile.
This forcing term was designed to account for the unmodeled (nonlinear) terms dur-
ing the computation of the (linear) Kalman filter feedback gains in Fourier space.
In the final implementation, as anticipated, the extended Kalman filter approach12

gave somewhat improved results. However, the correlation between the turbulent
flow state and the state estimate were still relatively modest. Note that Chevalier
et al. (2006) accounted well for the spatial correlation of the disturbances, but ar-
tificially assumed that all disturbances were white in time, thereby eliminating any
temporal correlation in the disturbance model. This aspect of the disturbance model
used is artificial, and will be addressed via spectral factorization techniques in future
work.

The difficulty of this problem has led us to fundamentally rethink the optimization
framework used for estimating chaotic systems. In a linear system, given an estimate
of the state of the system at some time t = −T and an estimate of the covariance of
the error of this state estimate (both obtained via older measurements), the best state
estimate possible at some future time t = 0 is given by the Kalman filter (Section 3.4).
This filter simply propagates both the state estimate and the covariance estimate based
on the governing equations, updating them both appropriately as new measurements
are made. Interpreted geometrically, the estimate of the state is a point in phase space,
and the estimate of the covariance is an ellipsoid in phase space, centered at the state
estimate, which describes the expected covariance of the estimation error. At any given
time, all prior measurements in the Kalman filter approach are summarized by the
point and the ellipsoid in the estimator, assuming a Gaussian distribution of the error
of the state estimate within this ellipsoid. Recall that the adjoint-based estimation
procedure (Section 3.3) marches the state forward from −T → 0 and the adjoint
backward from 0 → −T until convergence, thereby solving a related finite-horizon
Kalman filter problem (Section 3.4) in an iterative fashion.

Figure 6 illustrates plainly how the linear thinking implied by the Kalman filter
and the related 4Dvar framework can break down in nonlinear chaotic systems. Cer-
tain places on a nonlinear attractor (near the bottom of this figure) are characterized
by a large local Lyapunov exponents, indicating the rapid divergence of perturbed
trajectories. This can lead to the nonlinear chaotic system effectively splitting into
one of two or more solution modes (e.g., following path A or path B) depending on
small errors in the modeling of the system (in Figure 6, for simplicity, only very
small errors to the initial conditions were considered). In such a situation, the state

12That is, reintroducing the nonlinearity of the original plant into the system model in the estimator after
the feedback gains have been determined.
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Figure 6
A model problem illustrating the splitting of a set of 40 trajectories of a nonlinear chaotic
system (Lorenz). Starting from a very small cluster of initial conditions near the center of the
figure with a Gaussian distribution, approximately half of the trajectories peel off to the left
(path A) and the other half peel off to the right (path B). The resulting distribution of the
system state at the terminal time is poorly described by a Gaussian distribution, thus
motivating backward-in-time analysis (multiscale retrograde or Kalman smoothing), in order
to revisit past measurements based on new data, as an alternative to forward-in-time analysis
(standard 4Dvar or Kalman filtering).

estimate and covariance estimate together give an inadequate description of where
the new state might lie. Substantial information is known about where this new state
might be; this distribution just does not fit well to a Gaussian model.

A new multiscale retrograde approach for the forecasting of chaotic flow systems
is thus being explored. With this approach, the state equation (regularized with, e.g.,
a hyperviscocity term of the correct sign and appropriate magnitude; see Protas et al.
2004) is marched over short, intermediate, and long horizons (cycled in a multigrid-
type fashion) backward in time, and the corresponding adjoint equation marched
forward in time (cf. Section 3.3). The corresponding Riccati-based formulation is
a matrix equation that is marched backward in time (cf. Section 3.4), a framework
referred to as a Kalman smoother rather than a Kalman filter (Anderson & Moore
2005). Significantly, this approach revisits past measurements based on new data in
order to determine how such past measurements are consistent with the new data as it
is obtained. This strategy is motivated by situations that appear in chaotic (nonlinear)
systems, in which a Gaussian summary (i.e., state and covariance estimates) is not an
adequate parameterization of the actual uncertainty of the system state based on all
prior measurements. Such situations are not encountered in linear systems; this idea
is borne strictly from a nonlinear perspective.
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6. DISCUSSION

There are many related issues and promising avenues of investigation that we do
not have room to discuss. For example, the framework of Section 3 was laid out in
the ODE setting (continuous in time and discrete in space). Analogous formulations
may be laid out in the fully discrete setting (discrete in both space and time) and
the fully continuous (PDE) setting. Each setting has its respective merits; we pre-
sented the ODE setting for simplicity. Also, this review focused primarily on what
can be accomplished via linearization of a system—either repeated linearization about
specific trajectories at each iteration, or a single linearization of the system about a
representative mean state leading to a direct (feedback) solution. Nonlinear control
approaches are also possible following Lyapunov-based methods, backstepping, etc.;
see Aamo & Krstic (2002) for a recent review.

A system is stabilizable if all unstable eigenmodes of the system may be made stable
by control feedback; that is if all unstable eigenmodes of the system are controllable.
In practice, stabilizability is all one really needs. Typically, accurate discretizations
of PDE systems are uncontrollable (i.e., not all of the eigenmodes of the system are
controllable), as some of the highly damped modes (which, in the closed-loop system,
ultimately have very little effect) nearly always have negligible support at the actua-
tors. Lack of controllability in itself is thus not a matter of much practical concern.
However, typical fluids systems usually exhibit a gradual loss of linear stabilizability
as the Reynolds number is increased, as discussed in detail for the complex Ginzburg
Landau model of spatially developing flows in Lauga & Bewley (2003). This gradual
loss of stabilizability is related to an increase in non-normality of the eigenvectors of
the closed-loop system (and the associated increased transfer function norms) as the
Reynolds number is increased, and may be quantified by a metric based on adjoint
eigenvector analysis, which extends readily to three-dimensional computational fluid
dynamics codes via the implicitly restarted Arnoldi method (Sorenson 1992). When
linear stabilizability is lost, stabilization of the system is virtually impossible by any
means. Thus, the quantification of the stabilizability of a given system of interest
is a matter of significant practical relevance. Similar arguments can be made about
detectability vs observability in the estimation problem.

In complex flows, a linear system model is often not readily available or is too
large to handle. For such problems, a system identification approach can be used
to construct an approximate linear model of the input-output relationships of the
original system. This approach estimates the system matrices (A, B, C, D) from well
designed input-output data sequences. Once the approximate low-dimensional sys-
tem matrices are so obtained, the control design strategies outlined in Section 3 may
again be applied. An application of such an approach to control a separated flow can
be found in Huang et al. (2004) and Huang (2005).

A valuable new role for model-based control theory in fluid mechanics is the
characterization of fundamental limitations present in fluid systems to which controls
might be applied. Such fundamental limitations may be computed in advance of
determining any particular candidate control strategies of a given class and providing
new insight into the flow control problem at hand. The first fundamental performance
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limitation that was established for the Navier-Stokes equations is that the minimum
heat transfer of a channel flow with constant-temperature walls that can be sustained
with any zero-net blowing/suction controls on the walls is given exactly by that of
the laminar flow (Bewley & Ziane 2006).

This article provides a brief introduction to the application of linear systems and
control theory to the Navier-Stokes equations. Many encouraging results have already
been obtained, but much more remains to be done to explore the relevance of this
challenging yet powerful framework to the field of fluid mechanics.
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