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Abstract

The optimal control of a linear system disturbed by white noise with
a quadratic objective leads to the classical (“LQG”) linear feedback, with
gaussian statistical distributions of all quantities involved. Shifting to a
non-quadratic objective, as considered in this work, removes many con-
venient mathematical properties in this formulation; in particular, the
optimal controller can no longer be assumed to be linear, even though the
system to be controlled is linear, and the associated statistical distribu-
tions are non-gaussian. In this more general case, the statistical distri-
bution of the state must be modeled over phase space using a dynamic
programming approach leveraging a Fokker-Planck PDE.

This work considers a simplified model of the motion of a balloon
in a hurricane with strong vertical stratification of the horizontal wind,
modelled as a linear system dx/dt = v + nv, dv/dt = u + na, with state
{x, v} representing the relative horizontal {position,velocity} of the bal-
loon disturbed by white noise with spectral densities {κ, ϵ} (modeling the
diffusivity and dissipation of the turbulence), with control u representing
the vertical velocity of the balloon (associated with its inflation/deflation
within the vertically-stratified horizontal flow environment), and with cost
J =

〈
x2

〉
+ l2 ⟨|u|c⟩. The classical LQG case, with c = 2, is considered

first, to verify the correctness of our Fokker-Planck solver; we then grad-
ually reduce c to 1 to focus on the problem of physical interest here, in
which the relevant penalty on the control is proportional to the average
absolute value of the vertical velocity. Numerical solution of this prob-
lem leads to a perhaps unexpected discontinuous feedback control rule,
with u = 0 over much of phase space, which turns out to be particularly
convenient from an implementation perspective.
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dx/dt = u+ nx, ⟨nx(t)nx(t
′)⟩ = Nxδ(t− t′), J =

〈
x2

〉
+ l2 ⟨|u|c⟩

⇒ ∂f

∂t
+

∂(uf)

∂x
=

Nx

2

∂2f

∂x2
.

dx/dt = u+ nx, ⟨nx(t)nx(t
′)⟩ = Nxδ(t− t′),

du/dt = y + nu, ⟨nu(t)nu(t
′)⟩ = Nuδ(t− t′),

J =
〈
x2

〉
+ l2 ⟨|y|c⟩

⇒ ∂f

∂t
+

∂(uf)

∂x
+

∂(yf)

∂u
=

Nx

2

∂2f

∂x2
+

Nu

2

∂2f

∂u2
.

dx/dt = u+ nx, ⟨nx(t)nx(t
′)⟩ = Nxδ(t− t′),

du/dt = y + nu, ⟨nu(t)nu(t
′)⟩ = Nuδ(t− t′),

dy/dt = v + ny, ⟨ny(t)ny(t
′)⟩ = Nyδ(t− t′),

J =
〈
x2

〉
+ l2 ⟨|v|c⟩

⇒ ∂f

∂t
+

∂(uf)

∂x
+

∂(yf)

∂u
+

∂(vf)

∂y
=

Nx

2

∂2f

∂x2
+

Nu

2

∂2f

∂u2
+

Ny

2

∂2f

∂y2
.

dx/dt = u+ nx, ⟨nx(t)nx(t
′)⟩ = Nxδ(t− t′),

du/dt = y + nu, ⟨nu(t)nu(t
′)⟩ = Nuδ(t− t′),

dy/dt = v + ny, ⟨ny(t)ny(t
′)⟩ = Nyδ(t− t′),

dv/dt = a+ nv, ⟨nv(t)nv(t
′)⟩ = Nvδ(t− t′),

J =
〈
x2

〉
+ l2 ⟨|a|c⟩

⇒ ∂f

∂t
+

∂(uf)

∂x
+

∂(yf)

∂u
=

Nx

2

∂2f

∂x2
+

Nu

2

∂2f

∂u2
.
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1 Introduction and previous work

The forecasting of hurricanes can benefit significantly from GPS-equipped sensor-
laden balloons that can be guided to distribute over, and persist within, the
flowfield of interest (evolving over a large geographic region), for days at a time,
rather than a dozen minutes or so as is the case with today’s free-flying balloons
and dropsondes. A promising energy-sparing technology consists of balloons
with mechanically-adjustable volume [1] which can reversibly provide increased
or decreased buoyancy and move to an altitude where the prevailing wind blows
in the desired direction. In previous work we have shown that a) guidance of
balloons in specified orbits, and even in orderly formations, can numerically be
achieved in realistic hurricane simulations [2], and b) a control objective propor-
tional to the absolute value of the inflation rate, more representative of required
electric power than its square, leads to the choice of a discontinuous control law
where the balloon is left most of the time at a constant volume and only inflated
or deflated for abrupt short periods (ideally, in a discontinuous way) [3, 4].

In this context, result (b) mentioned above was achieved by simplifying the
dynamics, to the point that the entire turbulent flow was replaced by a white
noise with its spectral amplitude as the only tunable parameter. A more realis-
tic approximation must at least involve a spectrum that more closely resembles
a turbulent flow. It is an almost forgotten result that the lagrangian corre-
spondent of the Kolmogorov k−5/3 spatial spectrum of turbulent energy is a
temporal spectrum proportional to ω−2 [5]. An ω−2 power spectrum implies an
ω−1 amplitude spectrum, and is quite easy to achieve in a lumped numerical
simulation by passing white noise through an integrator.

2 Spectra of lagrangian tracers in turbulence

Kolmogorov’s classical theory of homogeneous isotropic turbulence is based on
the assumption that energy “flows” between adjacent scales of length at a con-
stant rate until it reaches scales so small that it is eventually dissipated by
viscosity. Its basic assumption is that there exists an energy flux (or cascade)
in wavenumber space, i.e. that energy flows “locally” from wavenumber k to
wavenumber 2k and from 2k to 4k, but with no jumping the chain. In a sense
this is implicit in the quadratic structure of the Navier-Stokes equations. En-
ergy in this statement must be read as kinetic energy per unit mass of fluid, half
the square of fluid velocity with the dimensions of m2/s2, and we shall assume
“per unit mass” as understood wherever we speak of just energy in what follows.
Since the average amount of viscous energy dissipation (in a statistically steady
state) is a power ε with the dimensions of energy per unit time, or m2/s3, it en-
sues that the energy flux at any scale (larger than the dissipation scale) equals ε.
Kolmogorov’s spectrum then follows by dimensional analysis: the wavenumber
spectrum Sk(k) is a function of the modulus only of the wavenumber vector k,
measured in m−1, and has the dimensions of energy per unit wavenumber, or
m2/s2/m−1 = m3/s2; the only dimensionally consistent spectrum that can be
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constructed using ε and k itself is then

Sk(k)
[m3/s2]

= Kk ε2/3
[m2/s3]2/3

k−5/3

[m]5/3
,

where the dimensionless number Kk is universally known as Kolmogorov’s con-
stant.

It is not an as frequently applied result, despite being mentioned in Ten-
nekes & Lumley [?], that a closely similar dimensional argument applies to
the frequency spectrum. If we again assume that all the important physical
characteristics at inertial scales are resumed in the single parameter of energy
dissipation (or, perhaps more appropriately, energy flux although it amounts
to the same number) ε, the frequency spectrum Sω(ω) has the dimensions of
energy per unit frequency, or m2/s, and can be expressed in a unique way as a
function of ε and frequency itself as

Sω(ω)
[m2/s]

= Kω ε
[m2/s3]

ω−2

[s]2
(1)

where Kω is another dimensionless constant.
Whereas in the presence of a flow with nonzero mean velocity V an eulerian

observer fixed in the laboratory frame will tend to measure a frequency spectrum
related to the wavenumber spectrum as Sω ≃ V −1Sk(ωV

−1) ≈ ω−5/3 (Taylor’s
hypothesis, see also [5]), a lagrangian observer transported with the fluid (or an
eulerian observer in the absence of mean velocity) will measure Sω = Kω ε ω−2.
The transition may not be very easy to detect, because the exponents −5/3 and
−2 are relatively close to each other, but nevertheless −2 is the correct exponent
for the spectrum seen by a lagrangian observer, and this realization will provide
a greatly simplified dynamical model for the purposes of the next section.

3 Representative dynamical system of a lagrangian
balloon

A meteorological balloon in a hurricane is 103 times smaller than the transversal
(vertical) dimension of the hurricane itself, that is in the same size ratio as a
10µm particle in a glass of water. Both can be mechanically treated as point
particles in a locally homogeneous and isotropic turbulent field, with the addi-
tional advantage that the balloon sits flatly in the inertial part of the turbulent
spectrum. On a sufficiently slow time scale (compared to the time constant
given by the ratio of its mass and aerodynamic resistance), the balloon will be
simply transported with the local instantaneous velocity of the fluid. Namely,
it will obey the equation of motion

dx

dt
= V(x) + v

where V(x) is the mean and v the fluctuating (stochastic) component of the
fluid’s velocity. More precisely this equation will be obeyed by the horizontal
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components of the balloon’s position vector, as we assume that the balloon can
control its vertical position by changing its buoyancy. In an extreme simplifi-
cation, but one that captures the relevant energetic balance, we can state that
the vertical position z is given by

dz

dt
= u

where u is proportional to the gas flow rate with which the pump inflates the
balloon (or more realistically but equivalently, the rate at which a winch changes
its volume).

In order to maintain the balloon in a circular orbit around the eye of the
hurricane we want to control a single component of x representing its radial
position. Denoting this component as simply x, in [4] we assumed that the
mean horizontal velocity would be a linear function of vertical position, V = gz
for some velocity gradient g, and the fluctuating velocity a white noise v = nv

since this is the simplifying assumption that is standard in optimal control
theory. This setup led to the dynamical system

dz

dt
= u (2a)

dx

dt
= gz + nv, (2b)

with the autocorrelation of nv given by ⟨nv(t)nv(t
′)⟩ = Nδ(t − t′) and its

spectrum Sω = N (m2/s).
In the light of §2 we can now assume a more realistic turbulent fluctuation,

one with frequency spectrum Sω = ε ω−2 (We can for the present purposes
absorb the dimensionless constant Kω of (1) into ε.) To do so is actually quite
easy, because by the standard rules of linear-filter theory the spectrum of the
output of a filter is the spectrum of its input multiplied by the squared modulus
of its response function. Therefore a spectrum proportional to ω−2 is quickly
synthetized by passing a white noise (constant spectrum) through a filter with
response (iω)−1, namely an integrator. In formulas

dv

dt
= na, (3)

with ⟨na(t)na(t
′)⟩ = εδ(t − t′). What (3) shows is that in (the inertial range

of) a homogeneous turbulent flow, where the spectrum of velocity is far from
constant, the lagrangian spectrum of acceleration is actually the constant one
of a white noise.1

1A spectrum having a low-wavenumber cutoff, and thus a finite integral time scale, is just
as easy to synthetize by replacing (3) with the damped integrator

dv

dt
= −σv + na,

which produces the spectrum Sω = ε (ω2 + σ2)−1 and the finite variance
〈
v2

〉
=∫∞

−∞ Sω dω/(2π) = ε/(2σ). In practice the actual shape of a turbulent spectrum at low
frequency will change from case to case, and most likely homogeneity and isotropy will be lost
at that scale as well.
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Equations (2,3) can be combined together in a more compact form by re-
defining v ← g z + v (the local velocity of the balloon and the fluid at height z,
rather than the velocity at the reference height z = 0) and u ← g u. We then
obtain

dv

dt
= u+ na (4a)

dx

dt
= v. (4b)

Before delving into the control aspects of (4) it may be interesting to high-
light some qualitative properties of the uncontrolled system, that is a lagrangian
tracer (balloon) abandoned to a wiggling turbulent flow. Our previous model
(2), for zero control u, can be recognized as the Langevin equation of brownian
motion [?]. When v is a white noise, x is a brownian motion, just as is the
case in the canonical experiment with microscopic particles in thermal agita-
tion. In brownian motion, position x never attains a statistically steady state
(or it could be said that its statistical mean is infinite, which corresponds to the
observation that a brownian particle wanders away indefinitely if given enough
time), and if localized at a single point x = 0 at time t = 0, its variance subse-
quently grows linearly in time as

〈
x2

〉
= 0.5Nt. The more realistic equation (3)

shows that in a homogeneous turbulent flow velocity itself is a brownian mo-
tion, and its statistical mean is infinite whereas it variance grows indefinitely in
time (in a practical turbulent flow only until the integral time scale is attained,
but still this is a consideration with possibly nontrivial implications, showing
that the existence of a mean velocity is not always to be taken for granted).
The variance of position of a balloon localized at a single point x = 0 at time
t = 0, and released with zero initial velocity, grows cubically in time according
as

〈
x2

〉
∝ ε t3, ε being the energy dissipation (per unit mass of fluid) charac-

teristic of the turbulent flow involved. Notice that this different behaviour is
consistent with dimensional analysis, since the dimensions of the dissipation ε,
m2/s3, are different from the dimensions of the velocity white noise N (pro-
portional to temperature) intervening in classical brownian motion, which are
those of a diffusion coefficient m2/s.

4 LQR optimal control

In fact the lack of an upper bound on the growth of x with time becomes
irrelevant once a feedback controller is introduced, which is designed to keep the
ballon in proximity of a reference radial position (which for us will be x = 0). If
the controller is any effective, the statistical average of x will necessarily become
finite (as will always be the case in the following examples), and whether it
would be infinite or just much larger had the controller been absent makes no
difference.

Nevertheless a word of caution is needed concerning the different ways of
writing velocity v in (4) and (3). In (4) v is the actual balloon velocity v(z)
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as measured at its current height z, for instance from GPS, and in this sense
certainly more tangible as an input to the controller than the unmeasurable
fluid velocity v(0) at the reference height z = 0. On the other, the fluid velocity
v(0) at the reference height z = 0 is free to wander to infinity even when v(z)
is being kept finite by the controller. What this in fact means is that the wind
can in principle attain an unbounded velocity (because we are not imposing any
low-frequency cut-off or equivalently a finite integral time scale), but it does
so slowly enough that the controller can always compensate it by an equally
unbounded (again, in principle) change of altitude z. In practice none of these
quantities will be infinite, but we can expect balloon altitude z to fluctuate in
a wide range. By allowing this range to be infinite we gain the possibility to
set up the control model as a statistically stationary problem without having to
take an additional time scale into account.

Optimal control is particularly relevant to the design of such a controller
because energy onboard the balloon (electrical energy, not to be confused with
the turbulent fluctuation energy that has been considered so far) will be strongly
limited, and therefore more than in other cases we want to achieve control of
the trajectory with the least possible power expenditure.

In order to compare the present results to those of [4], we can formulate
a hybrid problem which encompasses both. By writing the dynamical system
with both an acceleration noise and a velocity noise, as

dv

dt
= u+ na (5a)

dx

dt
= v + nv. (5b)

it should be evident enough that for nv = 0 we reobtain (4) while for na = 0
(and u← gu), we reobtain (2). More generally, nv will be a white noise with cor-
relation function ⟨nv(t)nv(t

′)⟩ = Nδ(t−t′), and na a white noise with correlation
function ⟨na(t)na(t

′)⟩ = εδ(t− t′). Equation (5) is in fact the representation of
a fairly general second-order mechanical system (a double integrator) subjected
to white-noise disturbances in all its state components, a hallmark textbook
example of control theory.

In order to define (5) as a control problem, we have to specify an objective
function to be minimized. Typically we want to maintain the balloon as close
as possible to the origin, say we want to minimize the variance of its position,
with a constraint on spent power. In the simplest assumption the latter is
proportional to the square of the inflating pump’s flow rate u, and by imposing
the constraint through a Lagrange multiplier l2 we get the objective function

J =
〈
x2

〉
+ l2

〈
u2

〉
. (6)

Equivalently we may choose to minimize spent power for a given target variance
of the position x, which leads to the exact same objective function.

The problem of minimizing a quadratic objective function for a linear dy-
namical system, the Linear Quadratic Regulator problem as it is commonly
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denoted, has a number of useful mathematical properties that allow its solution
to prescind almost completely from its stochastic character. Minimizing (6) for
the system (5) is nowadays a classroom control problem, but unfortunately its
favourable properties are lost as soon as one of the assumptions is removed, as
will be the case in the next section. Therefore it may be useful to write down
the procedure that leads to the LQR solution as a comparison.

In particular, for an LQR problem we know that the optimal controller is a
linear controller, where u is a linear function of the state variables [?]. Linearity
of both the original and the closed-loop problem implies that if the excitation is
a white (or just gaussian) stochastic process every other statistics is gaussian as
well, and that the forced problem with a stochastic excitation is equivalent to
(can be written as a linear combination of) a set of deterministic problems with
independent forcing vectors. The latter in turn are equivalent to a set of initial-
value problems with independent initial-condition vectors; as a consequence the
usual textbook formulation of LQR only involves optimization of an initial-value
problem.

5 Optimal control with a non-quadratic cost

Remembering our aim to keep the balloon on its trajectory with the least amount
of electric power, we may want to more closely re-examine how this power is
estimated. When a pump inflates a balloon it has to do work against the
pressure difference that exists between the inside and the outside. Spent power
would be proportional to the square of gas flow rate u if this pressure difference
were proportional to u itself, as would be the case, for instance, in low-Reynolds
number flow through a pipe, but this is hardly realistic for a balloon. More
likely the pressure difference depends on the total volume of contained gas,
and on the elastic properties of the envelope, but very little (within reasonable
margins) on flow rate. In a schematization opposite to the one assumed in
the previous section, we may roughly assume the pressure difference as being
a constant; work done by the pump is then linearly proportional to u. More
precisely, in a cycle of inflating and deflating the pump only does work when
inflating, whereas when the ballon is deflated energy is lost (unless some energy-
recovery device is adopted that for now we shall consider absent); therefore we
must sum the increases of u when u is positive only. However, in a statistically
stationary process the sum of the positive increases of u exactly balances the sum
of its negative decreases; therefore the average of positive increases is half the
average of absolute values. Eventually the objective to be minimized becomes
the statistical expectation of the absolute value of gas flow rate, ⟨|u|⟩, or once
this is combined with the variance of x through a Lagrange multiplier,

J =
〈
x2

〉
+ l2 ⟨|u|⟩ . (7)

The seemingly marginal difference between (6) and (7) all of a sudden makes
LQR theory inapplicable. Even when the open-loop system is linear, it can no
longer be proved that its optimal controller is linear as well, and generally with
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a non-quadratic objective it cannot be expected to be so. Once the closed-loop
system becomes nonlinear the stochastic process becomes nongaussian, and the
stochastic control problem can no longer be reduced to a deterministic initial
value problem and must be studied in its entirety.

5.1 Fokker-Planck equation

Upon introducing the probability density f(x, v, t), such that fdxdv represents
the probability that the position and velocity of the balloon are in the interval
[x, x + dx; v, v + dv] at time t, the statistics of (5) are governed by the two-
dimensional Fokker-Planck equation

∂f

∂t
+

∂(vf)

∂x
+

∂(uf)

∂v
=

N

2

∂2f

∂x2
+

ε

2

∂2f

∂v2
. (8)

Now the control u = u(x, v) can be a general nonlinear function, which we want
to determine in such a manner that the objective (7) is minimized. The steady
solution, which we shall mostly be interested in, is simply obtained by setting
the derivative ∂f/∂t = 0. Notice that (8) is a homogeneous problem that has
a nontrivial solution, and must generally be accompanied by the normalization
condition ∫

f dxdv = 1 (9)

In order to encompass both cases of (6) and (7) (and intermediates between
them), we can more generally write the objective function as

J =

∫ [
x2 + l2w(u)

]
f(x, v, t) dxdv (10)

where w(u) is a given function of one variable that we may specify later, and the
averaging has been made explicit as an integral over the probability distribution.
Adding the differential equation (8), which acts as a constraint, through a La-
grange multiplier p(x, v), and the normalization condition (9) through another
Lagrange multiplier λ, gives the variational problem

δJ = δ

∫ {[
x2 + l2w(u)− λ

]
f+

+p

[
v
∂f

∂x
+

∂(uf)

∂v
− N

2

∂2f

∂x2
− ε

2

∂2f

∂v2

]}
dxdv = 0.

By the usual procedure of integration by parts the optimality conditions, or
adjoint equations, can now be worked out as

v
∂p

∂x
+ u

∂p

∂v
+

N

2

∂2p

∂x2
+

ε

2

∂2p

∂v2
= x2 + l2w(u)− λ (11a)

l2
dw

du
=

∂p

∂v
. (11b)
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Since not only the system equation (8) like all Fokker-Planck equations is
linear in f , but contrary to what happens in LQR control also the objective
(10) is, the direct and adjoint problems are decoupled. Curiously the value of
the Lagrange multiplier λ coincides with the value of the objective function J
itself. In fact, just as the direct equation is a homogeneous problem which has
a nontrivial solution, its adjoint (11a) is a nonhomogeneous problem which only
has a solution at all under a compatibility condition. This condition is that its
r.h.s. be orthogonal to f , i.e.∫ [

x2 + l2w(u)− λ
]
f dxdv = 0.

Combining the last result with (10) and (9) now gives J = λ. This relationship
provides a means to obtain the value of J from the solution of (11) without ever
computing f . (Although computing f can be interesting in its own right.)

The solution to equations (8) and (11) can be sought for numerically. It
helps in this respect to consider that the form of these equations is mathemati-
cally identical to those of scalar transport in a recirculating fluid flow, and the
relevant numerical techniques can be directly borrowed from fluid dynamics.
This analogy also helps in recognizing the appropriate boundary conditions at
infinity: (8) represents an incoming flow and needs a condition of zero incoming
particle flux in order to make the total probability constantly equal to 1 even
in a discrete setting; (11a) represents an outgoing flow and will give a result
almost independent of which boundary condition is imposed except in the near
proximity of the artificial boundary itself. It must also be remarked that, in
the case where the function w is absolute value, its derivative which appears in
(11b) is the sign function and is discontinuous (piecewise constant). We must
expect therefore that this case may develop peculiar behaviour; it helps in this
respect to consider a family of problems defined by

w(u) = |u|c ,

which reduces with continuity to (6) for c = 2 and to (7) for c→ 1.
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6 Numerical results
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6.1 Interpretation of the discontinuous solution

The control function obtained when spent power is proportional to the abso-
lute value of u has a clearly discontinuous appearance, with a central plateau
where u = 0 bounded by two nearly straight oblique lines where it suddenly
jumps to very high positive or negative values. Such discontinuous jumps act
as impenetrable barriers, which reject particles (balloons) attempting to pass
them. This is a very interesting form of on-off control, interesting because it is
very often adopted even when it is not optimal for the practical reason that an
on-off controller is easier to build than a continuous controller. In the present
application where power spent is at a premium, knowing that an on-off con-
troller is actually the optimal one gives a double advantage. In addition, an
on-off controller really consumes no power during the periods it is off.

To verify that a discontinous on-off controller is really what the numerical
simulations of the previous section ar aiming towards, we set up a separate
simulation where a barrier is imposed, in the form of a zero-flux boundary
condition, at the position of a priori unspecified straight line, and the location
of this straight line is optimized for. Since in the interior we assume u = 0, (8)
reduces to

∂(vf)

∂x
=

ε

2

∂2f

∂v2
,

and (11a) to

v
∂p

∂x
+

ε

2

∂2p

∂v2
= x2 − λ.
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7 Practical application

Once the problem is brought to the form of (5), the answer to the linear-
quadratic optimal control problem appears in its surprising simplicity: LQ con-
trol does not care whether noise is in one or the other state equation or both,
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as long as it is white. Therefore

The optimal linear controller for the Kolmogorov-noise ballon prob-
lem is identical to the optimal controller for the white-noise bal-
lon problem.

This is astounding, given the large difference in turbulence statistics. Just as in
last year’s notes, in either case the controller is

gu = −2σv − 2σ2x

σ being a “strength” (or gain) parameter indirectly determined by the variance
of x one is aiming for and the related cost.

Whereas the optimal controller is the same, the obtained optimum is differ-
ent. The impulse response of (5) corresponding to wε excitation is obtained from
the initial-value problem x(0) = 0; v(0) = 1 (as opposed to x(0) = 1; v(0) = 0
for wν excitation) and is

x =
1

2iσ

[
e−σ(1−i)t − e−σ(1+i)t

]
whence 〈

x2
〉
= ε

∫ ∞

0

x2 dt =
ε

8σ3
, g2

〈
u2

〉
= ε

∫ ∞

0

u2 dt = 2εσ

and, upon eliminating σ,

g2
〈
u2

〉
= ε4/3

〈
x2

〉−1/3

(to be compared to g2
〈
u2

〉
= (27/64)ν4

〈
x2

〉−3
for the case of diffusion noise).

8 More general mechanical system

dv

dt
= −a x− b v + u+ na (12a)

dx

dt
= v. (12b)
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