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Abstract

This paper introduces and testsΛ-MADS, a new variant of the Mesh Adaptive Direct Search (MADS) class of derivative-
free optimization algorithms for constrained nonsmooth functions that is built on maximally uniformlattices Λn, rather than
Cartesian gridsZn, as the underlying mesh used to coordinate the exploration of parameter space. When a poll step fails to find
a mesh point with a better function value than that of the current candidate minimum point (CMP), in addition to reorienting the
poll set, a mesh refinement of a factor of 2 (rather than a factor of 4, as used in previous MADS implementations) is performed
in Λ-MADS; slowing the refinement of the mesh in this manner as theiteration proceeds is found to increase the rate of
convergence, as an appropriately-coarse underlying mesh is valuable in generalized pattern search (GPS) algorithms of this sort
in order to keep function evaluations relatively far apart until convergence is approached. The current leading (Cartesian-based)
MADS algorithm, OrthoMADS, is extended naturally to the present lattice-based setting by restricting the new poll points to
be drawn from a shell of lattice points that liek hops from the current CMP at thek’th level of mesh refinement. In such shells,
there is a rapidly-growing set of points to select the poll points from in the lattice-based setting ask is increased (dubbed the
‘coordination sequence’), thus leading to poll sets with high angularand radial uniformity. A novel mesh coarsening heuristic
is also introduced which makes maximum use of the most recenteffective polling direction while keeping the underlying mesh
appropriately coarse. Numerical tests demonstrate conclusively that the convergence of the resultingΛ-MADS algorithm is
significantly faster than previous MADS implementations, thus making improved progress towards the minimum when only a
limited number of function evaluations can be afforded. As with other MADS variants, the possible polling directions ultimately
become dense on the unit hypersphere as the lattice is refined, thus preserving the guaranteed convergence characteristics of
the MADS class of algorithms as the number of function evaluations ultimately becomes large.

I. BACKGROUND

Practical applications in engineering, science, finance, business, and elsewhere often call for efficient derivative-free
algorithms for the optimization of expensive nonsmooth functions over a constrained space ofn parameters. The field of
derivative-free optimization has a long and rich history which includes the development of downhill simplex algorithms,
genetic algorithms, and simulated annealing algorithms. The most computationally efficient family of derivative-free op-
timization algorithms available today, known asgeneralized pattern search(GPS) methods, leverage an underlying mesh
to coordinate the exploration of parameter space. The fundamental purpose of this underlying mesh is to keep function
evaluations relatively far apart until convergence is approached. All GPS implementations developed by other groups,that
we have seen to date, use Cartesian grids to coordinate the exploration of parameter space.

Lattice theory (which builds heavily on the closely-related subjects ofn-dimensional sphere-packings and error-correcting
codes) provides a natural alternative to Cartesian grids for the discretization of parameter space. Conway & Sloane (1998)
provides a comprehensive mathematical reference on many important elements of lattice theory; the succinct up-to-date
review of this subject in Bewley, Belitz, & Cessna (2011) lays out out essentially everything that is needed to apply this
otherwise somewhat abstruse subject in practical applications. The standard measures of lattice uniformity (described in
Conway & Sloane 1998 and summarized in Bewley, Belitz, & Cessna 2011) are

• thepacking density, ∆ [that is, the percentage of the domain contained within the spheres when identical spheres with
the largest radius possible such that the spheres do not overlap1 are centered at each lattice point],
• the covering thickness, Θ [that is, the average number of spheres that contain any point in the domain when identical
spheres with the smallest radius possible such that the every point in the domain is contained within at least one sphere2

are centered at each lattice point],
• an appropriately-normalized measure of themean-squared quantization error per dimension, G, and
• the kissing number, τ [that it, the number of nearest neighbors of each lattice point].

By all four of these standard measures, Cartesian grids become highly nonuniform as the dimensionn of the parameter
space under consideration is increased; for example, inn= 24 dimensions,

• the Cartesian grid,Z24, is characterized by∆ = 1.150e−10, Θ = 4200263, G= 0.08333, andτ = 48, whereas
• the Leech lattice,Λ24, is characterized by∆ = 0.001930, Θ = 7.904, G= 0.06577, andτ = 196560.

A series of highly (in most dimensions, maximally) dense lattices, referred to as thelaminated lattices and denotedΛn,
may be constructed in dimensionsn= 2 to 23 by appropriately restricting the remarkable Leech lattice mentioned above to
successively lower and lower dimensions. Forn= 2 to 8, the resulting lattices are equivalent, respectively, to the so-called
root latticesA2, D3, D4, D5, E6, E7, and E8, each of which have fairly simple constructions and associated quantization
algorithms, as reviewed in Bewley, Belitz, & Cessna (2011);some of the salient properties of these lattices are compared
with the corresponding Cartesian grids in Table 1, theZ

2 and Λ2 lattices are visualized in Figure 1, and theZ3 and Λ3

1The radius of these nonoverlapping spheres, called thepacking radius, is usually denotedρ.
2The radius of these overlapping spheres that cover the domain, called thecovering radius, is usually denotedR.



lattice ∆ Θ G τ Available points to select the poll set from as the grid is refined.

D2 ∼= Z
2 0.78540 1.5708 0.08333 4

L/O: 8, 16, 32, 64, 128,. . . (see Figures 1a, 3, and 4)
Z: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40,. . . (see Figures 1b and 5)

A2 ∼= Λ2 0.90690 1.2092 0.08019 6 Λ: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60,. . . (see Figures 1c and 6)

Z
3 0.52360 2.7207 0.08333 6 L/O: 26, 98, 386, 1538, 6146,. . . (see Figure 2a)

Z: 6, 18, 38, 66, 102, 146, 198, 258, 326, 402,. . . (see Figure 2b)

D3 ∼= A3 ∼= Λ3 0.74048 2.0944 0.07874 12 Λ: 12, 42, 92, 162, 252, 362, 492, 642, 812, 1002,. . . (see Figure 2c)

Z
4 0.30843 4.9348 0.08333 8 L/O: 80, 544, 4160, 32896, 262400,. . .

Z: 8, 32, 88, 192, 360, 608, 952, 1408, 1992, 2720,. . .

D4 ∼= Λ4 0.61685 2.4674 0.07660 24 Λ: 24, 144, 456, 1056, 2040, 3504, 5544, 8256, 11736, 16080,. . .

Z
5 0.16449 9.1955 0.08333 10 L/O: 242, 2882, 42242, 660482, 10506242,. . .

Z: 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290, 14002,. . .

D5 ∼= Λ5 0.46526 4.5977 0.07579 40 Λ: 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 119720, 182002, . . .

Z
6 0.08075 17.441 0.08333 12 L/O: 728, 14896, 413792, 12746944, 403964288,. . .

Z: 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436, 58728,. . .

E6 ∼= Λ6 0.37295 7.0722 0.07435 72 Λ: 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304, 1408104, 2376126,. . .

Z
7 0.03691 33.498 0.08333 14 L/O: 2186, 75938, 3959426, 239479298, 15105828866,. . .

Z: 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598, 209762, . . .

E7 ∼= Λ7 0.29530 13.810 0.07323 126 Λ: 126, 2898, 25886, 133506, 490014, 1433810, 3573054, 7902594,
15942206, 29896146,. . .

Z
8 0.01585 64.939 0.08333 16

L/O: 6560, 384064, 37281920, 4412866816, 553517580800,. . .
Z: 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688, 658048, . . .

E8 ∼= Λ8 0.25367 4.0587 0.07168 240 Λ: 240, 9120, 121680, 864960, 4113840, 14905440, 44480400,
114879360, 265422960, 561403680,. . .

TABLE I: Characteristics up ton= 8 of the Cartesian gridZn as compared with theΛn lattice. Listed first are the packing density∆,
covering thicknessΘ, mean squared quantization error per dimensionG, and kissing numberτ, all of which indicate the lattice uniformity;
note thatΛn outperformsZn in every metric, with the differences becoming especially pronounced asn is increased. The last column
indicates the number of available points to select the poll set from at thek’th level of grid refiniment; ‘L/O:’ denotes the LTMADS or
OrthoMADS contexts (§I-C), ‘Z:’ denotes theZ-MADS context (§I-D), and ‘Λ:’denotes theΛ-MADS context (§I-E and §III).

lattices are visualized in Figure 2. A primary focus of our research program is to investigate how such highly uniform
n-dimensional lattices may be used to accelerate GPS algorithms3.

A. Successive polling (SP)

The simplest prototype GPS algorithm, referred to here assuccessive polling(SP), starts from a candidate minimum point
(CMP) on a given mesh and polls (that is, checks) the value of the function at a set of nearest-neighbor mesh points which
positively span4 the feasible neighborhood of the CMP. If a function value lower than that of the CMP is located during
the poll, the new best point is defined as the new CMP, and the process repeated; if the poll fails to find a point with a
better function value, then the mesh is refined by some integer factor5, so that the function evaluations on the coarser mesh
coincide with points on the refined mesh (and may thus be reused efficiently as the iterations proceed on successively refined
meshes), and the process repeated until convergence.

Unfortunately, the prototype SP algorithm described aboveis convergent (albeit to a local minimum) only if the parameter
space being explored is unconstrained and the function being optimized is continuously differentiable6; that is, if the function
being optimized is sufficiently smooth that, after a sufficient number of grid refinements, the function is locally flat enough
that, if the CMP is not yet at a minimum, one of the poll points (which, again, are distributed over a set of directions that
positively span the neighborhood of the CMP) is guaranteed to have an improved function value, below that of the CMP. For

3Note that Conway & Sloane (1998, p. 12) state: “A related application that has not yet received much attention is the use ofthese packings for solving
n-dimensional search or approximation problems”; this is exactly the focus of this research program.

4A set of lattice points is said topositively spanthe feasible neighborhood of the CMP if any point in the feasible neighborhood of the CMP may be
reached by a linear combination withnon-negative coefficientsof the vectors from the CMP to the poll points.

5Typically, a factor of two is used, in order to keep the refinement of the mesh as slow as possible as the iteration proceeds.
6A function is said to becontinuously differentiableif its derivative is (a) defined everywhere, and (b) continous.
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Fig. 1: The (a, b)Z2 and (c)Λ2 lattices, indicating (a) the first three shells of potentialpoll points onZ2 used in the LTMADS and
OrthoMADS formulations, and (b, c) the first five shells of potential poll points used, respectively, in theZ-MADS and Λ-MADS
formulations. The number of points in all three sets of shells (arranged, respectively, in squares, diamonds, and hexagons around the
CMP) are listed in Table 1.

Fig. 2: The (a, b)Z3 and (c)Λ3 lattices, indicating (a) the first three shells of potentialpoll points onZ3 used in the LTMADS and
OrthoMADS formulations, and (b, c) the first three shells of potential poll points used, respectively, in theZ-MADS and Λ-MADS
formulations. The number of points in all three sets of shells (arranged, respectively, in cubes, octahedra, and cuboctahedra around the
CMP) are listed in Table 1.

general nonsmooth functions, for functions that are only piecewise differentiable7, or even for continuously differentiable
functions with hard constraints on the feasible domain in parameter space, the SP algorithm is not always convergent, asthe
finite number of poll directions available might miss the feasible descent directions around the CMP altogether, regardless of
the level of grid refinement. Indeed, in the constrained case, if the CMP is on the constraint boundary, then in most cases the
feasible poll points donot positively span the feasible neighborhood of the CMP regardless of the level of grid refinement;
this is a key challenge that the poll steps in the MADS class ofalgorithms, discussed further below, are specifically designed
to address.

B. SMF and LABDOGS

The surrogate management framework(SMF) of Booker et al. (1999) is a generalization of the SP method described above
that alternates between a SP-type ‘poll’ step, and ‘search’step which cleverly leverages a Kriging-based interpolation of all
existing function evaluations in order to identify promising and relatively unexplored regions of parameter space. Belitz &
Bewley (2011) extend the SMF to incorporate lattices, amongst other significant improvements8, in a manner intended to make
maximal use of each and every function evaluation, which areassumed to be expensive, during the optimization process.
The resultinglattice-based derivative-free optimization via global surrogates (LABDOGS) algorithm shows a significant
improvement in the rate of convergence over the original SMFalgorithm.

When used appropriately, the search step of the SMF and LABDOGS algorithms can in fact be used to assureglobal
convergence, even when the function being optimized is nonsmooth and/or the parameter space being considered is con-

7An example of apiecewise differentiablefunction is one with a cusp (akin to the hard chine along the bottom centerline of the hull of many high-speed
boats), with the function being continuously differentiable on either side of the cusp.

8Most notably, a markedly improved search function, as suggested by Jones (2001).
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Fig. 3: The underlying Cartesian gridZ2 ( ) and two successive factor-of-four refinements of this grid(from left to right) in the
n= 2 LTMADS algorithm. Given a CMP at the center of each subfigure, the shell of points from which the poll points are selected are
marked (∗), and a representative poll set is indicated (◦); this poll set forms a minimal positive basis ( ), with n+1 vectors around
the CMP.

Fig. 4: The underlying Cartesian gridZ2 ( ) and two successive factor-of-four refinements of this gridin the n= 2 OrthoMADS
algorithm (cf. Figure 3). The shell of points from which the poll points are selected are marked (∗), and a representative poll set is
indicated (◦); this poll set forms an (orthogonal) maximal positive basis ( ), with 2n vectors around the CMP.

strained, despite the fact that the SP-type poll step of the SMF and LABDOGS algorithms, taken on their own, don’t even
establish local convergence for nonsmooth or constrained functions, as discussed above. That is, the search step of theSMF
and LABDOGS algorithms can be designed such that, as the number of function evaluations of the algorithm gets large,
the function evaluations ultimately become dense over parameter space, thereby ensuring global convergence (for further
discussion, see Torczon 1997, Booker et al. 1999, Jones 2001, and Belitz & Bewley 2011).

C. Mesh Adaptive Direct Search (LTMADS & OrthoMADS)

Mesh Adaptive Direct Search(MADS) algorithms are an alternative class of GPS methods designed to overcome the
fundamental convergence shortcoming of the polling algorithm used in the prototype SP method (and built upon in the SMF
and LABDOGS methods), as described above. They accomplish this by increasing (without bound) the number of directions
around current CMP that may be polled as the grid is refined; asthe number of grid refinements performed increases, the
possible polling directions ultimately become dense over the feasible neighborhood of the CMP. This is achieved in the
MADS setting, in general, by selecting the poll points from ashell9 of non-nearest-neighbor mesh points around the CMP.

Existing variants of MADS include LTMADS (Abramson, Audet,& Dennis 2005; for a graphical depiction, see Figure 3)
and OrthoMADS (Audet & Dennis 2008; for a graphical depiction, see Figure 4), the latter of which essentially supercedes
the former, and is becoming increasingly popular for practical numerical optimization problems with expensive functions
(see, e.g., Marsden et al., 2011). Both LTMADS and OrthoMADSare based on an underlying Cartesian gridZ

n, with
LTMADS based onminimalpositive bases, withn+1 vectors around the CMP, and OrthoMADS based onmaximalpositive
bases, with 2n vectors around the CMP. In both the LTMADS and OrthoMADS algorithms, the underlying grid is refined by
a factor offour upon each refinement of the grid10, whereas the shell of points from which the next poll set is tobe selcted

9We use the word ‘shell’ in this work to denote the surface of the region given by the convex hull of the specified points.
10That is, after just five grid refinements, the refined grid thathas less than 1/1000 of the original grid spacing in every coordinate direction.

4



Fig. 5: The underlying Cartesian gridZ2 ( ) and five successive factor-of-two refinements of this grid in the n = 2 Z-MADS
algorithm (cf. Figures 3 and 4). The set of points from which the poll points are selected are marked (∗), and a representative poll set is
indicated (◦); this poll set forms a maximal positive basis around the CMPon the original grid and a minimal positive basis around the
CMP on the others ( ).

lie on a hypercube around the CMP whose width is reduced only by a factor oftwo upon each refinement of the grid. That
is, the set of potential poll points around the CMP in the LTMADS and OrthoMADS formulations is the set of points on
theZ

n grid of L∞ norm 2k (see Figures 1a and 2a), scaled down by a factor of 1/4k, wherek= 0,1,2, . . . is the number of
grid refinements performed thus far; the LTMADS algorithm will selectn+1 of these points to poll (see Figure 3), whereas
the OrthoMADS algorithm will select 2n of these points to poll (see Figure 4). Thus, as the underlying Cartesian grid is
successively refined in LTMADS and OrthoMADS, the shell of points from which the poll is selected contains successively
more and more points, ultimately increasing in number by a factor of∼ 2n−1 upon each refinement of theZn grid (see Table
1). Given an appropriate scheme for selecting the poll points to actually use from this shell of possible poll points around
the CMP, convergence (albeit, to local minima) of the MADS algorithm may thus be established (see Abramson, Audet, &
Dennis 2005 and Audet & Dennis 2008) even when the function being optimized is nonsmooth, and/or the parameter space
being considered is constrained.

LTMADS selects the first ‘seed’ vector of the poll set using a pseudo-random algorithm, then builds a minimal positive
basis via a stochasticlower triangularconstruction (thus motivating the algorithm name); for details, see Abramson, Audet,
& Dennis (2005). As illustrated in in Figure 3, the radial andangular uniformity of the poll sets generated by the LTMADS
algorithm can both be poor; the poll set shown in in Figure 3a has one poll vector that is

√
n longer than the others, and

the angles between the poll vectors vary from 90◦ to 135◦.
OrthoMADS, in contrast, selects the first ‘seed’ vector of the poll set using a (low discrepancy) ‘quasi-random’ Halton

sequence, builds up set ofn− 1 directions that areorthogonal to this seed (thus motivating the algorithm name) via a
Householder-based QR algorithm, then finds the 2n points amongst the (hypercube-shaped) shell of potential poll points that
are closest to these directions and their opposites; for details, see Audet & Dennis (2008). As illustrated in in Figure 4, the
radial and angular uniformity of the poll sets generated by the OrthoMADS algorithm forn= 2 are perfect. Unfortunately,
for n> 2, the radial and angular uniformity of the OrthoMADS poll sets can, again, both be poor. Consider, e.g., the case
with n= 3 and a first seed vector of the poll set oriented torwards one of the corners of the cube; it is clearly not possible
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Fig. 6: The underlyingΛ2 lattice ( ) and five successive factor-of-two refinements of this lattice in then= 2 Λ-MADS algorithm
(cf. Figures 3, 4, and 5). The set of points from which the pollpoints are selected are marked (∗), and a representative poll set is indicated
(◦); this poll set forms a minimal positive basis around the CMP( ).

to select the remaining five poll points to provide both good radial uniformity11 and good angular uniformity in this case.
Note also that an OrthoMADS poll requires 2n function evaluations to complete, rather than then+1 function evaluations
required to complete a poll on a minimum positive basis, suchas that used by LTMADS; for larger values ofn, this fact
alone results in about a factor of 2 increase in the number of function evaluations required for each complete poll step.

D. Slowing the mesh refinement of Cartesian-based MADS algorithms (Z-MADS)

Before we discuss shifting the MADS algorithm onto a more uniform lattice, we first note that the factor-of-four method
of successive refinement, as described in the previous section and illustrated in Figures 3 and 4, is not the only choice for a
MADS-type algorithm on a Cartesian grid. As illustrated in Figure 5, the Cartesian grid may instead be refined only by a
factor of two whenever a poll step fails; this helps to slow the refinement of the underlying mesh as the iterations proceed,
thus respecting the overall GPS objective of keeping function evaluations relatively far apart until convergence is approached.
As the Cartesian grid is refined in this modified approach, which we will callZ-MADS, the shell of points around the CMP
from which the poll points are selected is increased one ‘hop’ at a time (see Figures 1b & 2b). Thus, as the underlying
Cartesian grid is successively refined inZ-MADS, the shell of points from which the poll is selected ultimately decreases in
width by a factor of∼ 2 upon each refinement of the grid. Further, as the underlyingCartesian grid is successively refined,
the shell of points from which the poll is selected again contains successively more and more points; the available points
to select the poll set from in this case is the number of pointsk hops from the origin onZn for k = 1,2,3, . . . (that is, the
coordination sequenceof Zn, as listed in Table 1). Noting the sentence at the end of the previous subsection, at each poll
step, the preferred implementation of theZ-MADS algorithm selectsn+1 of these points to poll.

E. An overview of Lattice-based MADS (Λ-MADS)

The present paper demonstrates how uniform lattices of theΛn family may be used to significantly accelerate the convergence
of the MADS class of algorithms in order to solve the constrained nonsmooth optimization problem argmin{ f (x) : x ∈ Ω}
whereΩ ⊂R

n. The functionf (x) to be minimized is treated in this setting as a ‘black box’ forwhich derivative information

11The radial nonuniformity of this approach is quantified in §II.
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is perhaps impossible to derive and, even if it can be derived, is possibly poorly behaved due to the potentially nonsmooth
nature of the function of interest. The resulting optimization algorithm, dubbedΛ-MADS (for a graphical depiction, see
Figure 6), follows naturally from theZ-MADS algorithm described above, with the exploration of parameter coordinated by
the laminated latticesΛn rather than the Cartesian gridZn. As discussed in Conway & Sloane (1997) and Baake & Grimm
(1997), closed-form expressions of the coordination sequences ofΛ2 throughΛ8 (that is, the number of potential polling
points in each shell used by theΛ-MADS algorithm) are given by the coefficients of the series expansions atx= 0 of the
following expressions:

SΛ2(x) = (1+4x+ x2)/(1− x)2,

SΛ3(x) = (1+9x+9x2+ x3)/(1− x)3,

SΛ4(x) = (1+20x+54x2+20x3+ x4)/(1− x)4,

SΛ5(x) = (1+35x+180x2+180x3+35x4+ x5)/(1− x)5,

SΛ6(x) = (1+66x+645x2+1384x3+645x4+66x5+ x6)/(1− x)6,

SΛ7(x) = (1+119x+2037x2+8211x3+8787x4+2037x5+119x6+ x7)/(1− x)7,

SΛ8(x) = (1+232x+7228x2+55384x3+133510x4+107224x5+24508x6+232x7+ x8)/(1− x)8.

Such series expansions are easily calculated in, e.g., Mathematica or Wolfram|Alpha; the first 10 terms of each of these
series are listed in Table 1.

The resultingΛ-MADS algorithm is quite straightforward to use, though significant care must be exercised on several subtle
issues in its implementation in order to ensure the maximum rate of convergence of the resulting algorithm; after exploring
a bit further the some geometrical considerations of this formulation in §II, these implementation issues are addressed at
length in §III. In §IX, we attempt to quantify the impact of each of the individual implementation issues discussed here and
in §III in focused numerical experiments; we then verify that the final Λ-MADS algorithm converges significantly faster
than the previous OrthoMADS algorithm on some representative test problems, and provide some concluding remarks.

II. GEOMETRICAL CONSIDERATIONS

We now consider further some relevantn-dimensional geometrical issues related to this optimization framework. We
are specifically interested inn-dimensionalconvex polytopes, that is, inn-dimensional convex objects with flat sides, more
commonly calledpolygonsin n= 2 dimensions,polyhedronsin n= 3 dimensions, andpolychoronsin n= 4 dimensions (a
good reference on this general subject area is Grünbaum 2002).

The Voronoi cell of a lattice is the set of all points that are as close to the origin as they are to any other lattice point;
stated another way, the Voronoi cell contains exactly thosepoints that quantize to the origin (or, shifting the Voronoicell
appropriately, to any other lattice point) when performinglattice quantization. The dual of any convex polytope may be
formed by the process ofpolar reciprocation(Grünbaum 2002). The dual of the Voronoi cell is called theDelaunay cell.

On the Cartesian lattice and the root latticesAn, Dn, E6, E7, and E8, the Voronoi cells are established solely by the
locations of the nearest neighbors to the origin. As discussed further in Chapter 21 of Conway & Sloane 1998, definingτ as
the kissing number of the correspondingn-dimensional lattice, the Voronoi cells of these lattices may be constructed by the
union ofτ identical (but rotated)fundamental simplices, each of which has the origin andn other points as vertices (identified
precisely in Figures 21.6, 21.7, and 21.8 of Conway & Sloane 1998). The(n−1)-dimensional face of each fundamental
simplex that is opposite to the origin forms a perpendicularbisector of the line segment between the origin and each of
the nearest neighbors of the origin on the corresponding lattice; the Voronoi cell is then the convexn-dimensional region
contained by allτ of these(n−1)-dimensional faces. So defined, the Voronoi cell of theA2 ∼= Λ2 lattice is ahexagon(with
τ = 6 one-dimensional faces, a.k.a. edges), the Voronoi cell ofthe D3 ∼= A3 ∼= Λ3 lattice is arhombic dodecahedron(with
τ = 12 two-dimensional faces), and the Voronoi cell of theD4 ∼= Λ4 lattice is a24-cell (a.k.a.icositetrachoron, with τ = 24
three-dimensional faces); the Voronoi cells ofΛ5 throughΛ8 are less commonly known structures, but are constructed in
the same fashion. The Delaunay cells of these lattices (thatis, the duals of the corresponding Voronoi cells) are each simply
the convex hull of the nearest neighbors of the origin; thus,the Delaunay cell of theΛ2 lattice is also ahexagon(rotated
30◦ from the corresponding Voronoi cell), the Delaunay cell of the Λ3 lattice is acuboctahedron, and the Delaunay cell of
the Λ4 lattice is also a24-cell (again, rotated).

As discussed previously, the LTMADS and OrthoMADS formulations build out shells of potential polling points in the
shapes of hypercubes (see Figures 1a and 2a), which are precisely the shape of the Voronoi cells of the corresponding
Cartesian latticeZn. In n= 2 to 8 dimensions, a hypercube goes by the following names:square, cube, tesseract, penteract,
hexeract, hepteract, andocteract.

The Z-MADS formulation, in contrast, builds out shells of potential polling points a given number of hops from the
CMP on theZn lattice (see Figures 1b and 2b). These shells are precisely in the shapes of the convex hulls of the nearest
neighbors of the origin (that is, of the corresponding Delaunay cells, or the duals of the corresponding Voronoi cells);note
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LTMADS/OrthoMADS Z-MADS Λ-MADS
n shell shape radial nonuniformity shell shape radial nonuniformity shell shape radial nonuniformity

2 square
√

2≈ 1.414 diamond
√

2≈ 1.414 hexagon
√

4/3≈ 1.155

3 cube
√

3≈ 1.732 octahedron
√

3≈ 1.732 cuboctaheron
√

2≈ 1.414

4 tesseract
√

4= 2.000 16-cell
√

4= 2.000 24-cell
√

2≈ 1.414

5 penteract
√

5≈ 2.236 pentacross
√

5≈ 2.236 (see text)
√

5/2≈ 1.581

6 hexeract
√

6≈ 2.449 hexacross
√

6≈ 2.449 (see text)
√

8/3≈ 1.633

7 hepteract
√

7≈ 2.646 heptacross
√

7≈ 2.646 (see text)
√

3≈ 1.732

8 octeract
√

8≈ 2.828 octacross
√

8≈ 2.828 (see text)
√

2≈ 1.414

TABLE II: Radial nonuniformity of the shell of potenial pollpoints in the LTMADS/OrthoMADS,Z-MADS, andΛ-MADS formulations,
as a function of the dimensionn.

specifically that the duals of hypercubes are known ascross polytopes. In n= 2 to 8 dimensions, a cross polytope goes by
the following names:square12, octahedron, 16-cell, pentacross, hexacross, heptacross, andoctacross.

Similarly, theΛ-MADS formulation builds out sets of potential polling points a given number of hops from the CMP on
the Λn lattice (see Figures 1c and 2c). These shells are precisely in the shapes of the corresponding Delaunay cells which,
for n= 2 to 8 dimensions, are simply the convex hulls of the lattice points that are nearest neighbors of the origin in the
correspondingΛn lattice, as described above.

The resulting shell shapes in the LTMADS/OrthoMADS,Z-MADS, andΛ-MADS formulations are summarized in Table
2. The radial nonuniformity of each of these shells is definedhere as the maximal radius of the shell (at a vertex) divided
by the minimal radius of the shell (at the center of a face), and quantifies the maximum radial nonuniformity possible in the
corresponding poll sets. Remarkably, due to the polar reciprocation process mentioned previously, which relates a convex
polytope and it’s dual, the radial nonuniformity of a Voronoi cell and the the radial nonuniformity of the corresponding
Delaunay cell of a lattice are, in fact, equal. Using the notation introduced previously, they are both given by the covering
radius divided by the packing radius [that is, byR/ρ] of the lattice, and may thus also be written as then’th root of the
covering thickness divided by then’th root of the packing density [that is, by(Θ/∆)1/n] of the lattice13.

It may finally be observed that, in all dimensions, the shellsof potential poll points in the LTMADS/OrthoMADS and
Z-MADS formulations are characterized by significantly moresevere radial nonuniformity than the shell of potential poll
points in the correspondingΛ-MADS formulation, with the differences becoming especially pronounced asn is increased,
as quantified in Table 2. This observation, in addition to thesignificantly improved spatial uniformity of theΛn lattices as
compared with theZn grids used previously (apparently, by default) for the coordination of MADS algorithms, are two key
motivations for the present investigation.

III. I SSUES AFFECTING THE IMPLEMENTATION AND THE SPEED OF CONVERGENCE OF THEΛ-MADS ALGORITHM

The basic idea of theΛ-MADS algorithm has already been laid out. To recap: starting with an initial, relatively coarse14

lattice with nearest neighbors spaced∆0 apart, and starting from an initial feasible candidate minimum point (CMP) on this
lattice, a set ofn+1 points which are nearest neighbors to the CMP on the latticeare selected in such a way as topositively
span (that is, to linearly span with non-negative coefficients) the neighborhood of the CMP. The value of the function is
then polled (that is, checked) on these points. If a poll point is found with a lower function value than that of the CMP,
then this new lattice point is defined as the new CMP, and the process repeated; if not, then the lattice is refined by factor
of two, a new poll set (randomly reoriented) is chosen on the refined lattice (from a shell of potential poll points containing
all lattice points that arek+1 hops from the CMP, wherek is the number of lattice refinements performed thus far), and
the process repeated until convergence. There are a number of subtle issues that must be addressed in order to specify this
algorithm completely, and to endow it with the maximum possible efficiency. These issues are now addressed.

12Since in the present case the Delaunay cell is rotated 45◦ from the corresponding Voronoi cell, the cross polytope forming the Delaunay cell in the
n= 2 case is perhaps better identified as a ‘diamond’.

13Recall that both the covering thicknessΘ and the packing density∆ of the lattices of interest in this work are listed in Table 1;thus, the radial
nonuniformity values presented in Table 2 may be derived directly from theΘ and ∆ values presented in Table 1.

14An initial grid spacing of about four to eight gridpoints from one edge of the feasible domain to the other in each parameter direction has proven
to be effective in our numerical experiments performed to date. Note also that, in general, the scaling of each parameterin the optimization problem of
interest is found to have a significant effect on the rate of convergence of a GPS algorithm; the most effective scalings are those in which, on average,
the function of interest varies at approximately the same rate in each coordinate direction; this provides a general goal to strive for when setting up an
optimization problem for solution via a GPS algorithm.
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A. Moving around on, and quantizing to, the laminated latticesΛn

The theoryof n-dimensional lattices is quite sophisticated (see Conway &Sloane 1998); however, thepractical useof n-
dimensional lattices is entirely straightforward (see Bewley, Belitz, & Cessna 2011). Once the enumeration and quantization
algorithms for any given lattice are in place, as discussed below, the lattice may be used in the present application in a
straightforward manner.

Any real lattice is defined simply by allinteger linear combinations15 of the columns of an appropriate basis matrixB.
Basis matrices for the seven laminated lattices consideredin this paper,Λ2 throughΛ8, are given by

BΛ2 =





−1
1 −1

1



 , BΛ3 =





−1 1
−1 −1 1

−1



 , BΛ4 =







−1 1
−1 −1 1

−1 1
−1






, BΛ5 =











−1 1
−1 −1 1

−1 1
−1 1

−1











,

BΛ6 =





















1/2
−1 1/2
1 −1 1/2

1 −1 1/2
1 −1 −1/2

1 −1 −1/2
1 −1/2

−1/2





















, BΛ7 =





















−1 1/2
1 −1 1/2

1 −1 1/2
1 −1 1/2

1 −1 −1/2
1 −1 −1/2

1 −1/2
−1/2





















,

BΛ8 =





















2 −1 1/2
1 −1 1/2

1 −1 1/2
1 −1 1/2

1 −1 −1/2
1 −1 −1/2

1 −1/2
−1/2





















.

Note that, in the simple representations used above,Λ2, Λ6, and Λ7 are defined on hyperplanes of higher-dimensional
spaces; this presents only a relatively minor added complexity when enumerating the lattice points according to these
definitions. Several properties of the seven lattices so defined are listed in Table 1. Associated with each of these lattices is
a straightforward and computationally efficientquantizationalgorithm, described in §5 of Bewley, Belitz, & Cessna (2011),
which takes any point inRn and computes the closest point on the discrete latticeΛn.

1) Enumerating the nearest neighbors of a lattice:
In the computational implementation of theΛ-MADS algorithm, it is numerically tractable and convenient to enumerate
explicitly the nearest neighbors of the origin of the lattice. These nearest neighbors may be determined by taking all integer
linear combinations of the associated basis vectors, defined above, for integer coefficients ranging from−m to +m (initially
taking, say,m= 2), and keeping the distinct lattice points so generated that are closest to the origin; if there areτ such
points generated (whereτ is listed for each lattice in Table 1), then finish, otherwise, increasem by one and try again.

2) Bypassing the enumeration of subsequent shells of a lattice in the practicalΛ-MADS algorithm:
For small values ofn, it is also numerically tractable to compute the first few shells of neighbors outside of the nearest
neighbors, as depicted in Figures 1c & 2c. These subsequent shells may be created by shifting the nearest-neighbor shellto
each point of the outermost shell determined thus far, and keeping track of all of the distinct new lattice points so generated.
This method is computationally efficient for shells containing up to a few thousand lattice points.

However, for shells that contain more than a few thousand lattice points (that is, for the outer shells in the higher dimensions
n), the direct enumeration procedure described above becomes numerically intractable.

We thus avoid completely the direct enumerations of the shells outside of the nearest-neighbor shell in the practical
Λ-MADS algorithm. Instead, we determine the average radius of each target shell of points around the CMP16, and work
directly with the (normalized) desired polldirections, scaling these directions by the average radius of the target shell and
then quantizing to the nearest lattice point in order to generate the corresponding poll point. For target shells of small radius
(that is, at most a few hops from the CMP), this approach returns poll points on the target shell itself, as depicted in Figures
1c & 2c. For target shells of larger radius, however, this approach returns poll points with, in fact, somewhat improved
radial uniformity than is possible when strictly using onlypoints on the target shell itself. This relaxation of the strict use
of the shells defined in terms of number of hops from the originis found to work quite effectively in practice.

15That is, all linear combinations with integer coefficients.
16Knowing the nearest-neighbor distance at the present levelof grid refinement, as well as the radial nonuniformity of thetarget shell from Table 2, the

average radius of each target shell can be well approximatedquite easily.
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B. Evaluating the poll points: complete polling versus incomplete polling

If a function value lower than that of the CMP is located during the poll step ofΛ-MADS, the poll may be terminated
immediately, the new best point defined as the new CMP, and theprocess repeated (a strategy referred to asincomplete
polling); alternatively, the poll step may be driven all the way to completion, after which the best point found during the
polling is identified as the new CMP (a strategy referred to ascomplete polling). In all GPS settings that we have tested
to date, our numerical experiments indicate that, on average, incomplete polling is generally the most efficient choice;
incomplete polling is thus implemented inΛ-MADS.

C. Refining the mesh

As mentioned previously and illustrated in Figure 6, the lattice is refined only by a factor of two, rather than a factor
of four, whenever a poll step fails in the algorithm we propose; this helps to slow the refinement of the underlying mesh
as the iterations proceed, thus respecting the overall GPS objective of keeping function evaluations relatively far apart until
convergence is approached.

As in Z-MADS, as the lattice is refined inΛ-MADS, the shell of points around the CMP from which the poll points
are selected is increased essentially17 one hop at a time (see Figures 1c & 2c and Figure 6). This shell is much closer to
spherical than are the shells of points considered in the LTMADS/OrthoMADS andZ-MADS contexts, as quantified in Table
2 of §II. As a consequence, the radial uniformity of theΛ-MADS poll sets is substantially better than the radial uniformity
of the LTMADS/OrthoMADS andZ-MADS poll sets.

The available points to select the poll set from as theΛn grid is refined is thus given (again, essentially17) by the
coordination sequence of the corresponding lattice; theΛ-MADS algorithm will selectn+1 of these points to poll, unless
previous function evaluations are available which may be exploited (for further discussion, see §III-D.4). As listed in Table
1, the coordination sequence of theΛn lattice grows faster than the coordination sequence of the correspondingZn lattice,
and thus there are more points to pick from inΛ-MADS than there are inZ-MADS at any given level of mesh refinement18.

Note that ten factor-of-two grid refinements corresponds toa refined grid that has less than 1/1000 of the original grid
spacing in every coordinate direction. As the dimension of the problem under consideration is increased, this is probably
essentially as far as most practical derivative-free optimization problems would ever be taken; the behavior as the number
of grid refinements is taken to infinity is, from the perspective of difficult practical problems to be solved with limited
computational resources, mostly a mathematical curiousity.

Thus, in addition to acoarsestgrid spacing to be used by the optimization algorithm (see the first paragraph of §III and
footnote 14), it is useful in the practical implementation of Λ-MADS to also set afinestgrid spacing to be used by the
optimization algorithm. Note in Table 1 that, after about ten factor-of-two grid refinements in theΛ-MADS algorithm, there
are alot of points available to select the poll set from. Once on this finest grid, rather than refining the grid even further
after each failed poll step, it is practically useful to remain on this finest grid level until all of the potential pollingpoints
at this level have, one poll set at a time, been exhaustively checked (or the CPU time allocated to perform the optimization
has run out), after which, if all of these poll sets fail to provide a new CMP, the optimization algorithm simply terminates.
There is little practical use to refine the grid even further than this, and so doing can actually lead to a substantially reduced
overall rate of convergence and an increased sensitivity tonumerical precision issues, as the step size gets impractically
small when too many grid refinements are performed.

D. Generating new poll sets

1) Minimizing the number of new function evaluations required in each poll:
A significant difference between LTMADS and OrthoMADS, as described previously, is that one uses a minimal positive
basis at each poll step, whereas the other uses a maximal positive basis at each poll step. The numerical tests that we have
performed to date indicate that, all other things being equal (including the approximate angular and radial uniformityof
the respective poll sets), it is usually more efficient computationally to minimize the number of new function evaluations
required in each poll step, especially as the dimensionn of the problem is increased; thus, when no previous function
evaluations are available which may be exploited (for further discussion, see §III-D.4), the use of minimal positive bases is
generally preferred. This is not a strong preference however, and it is entirely straightforward to implement poll setswith
more thann+1 poll points in theΛ-MADS algorithm.

17As mentioned in §III-A.2, this method is modified slightly inthe practicalΛ-MADS algorithm for the outer shells.
18There are in fact many more points available in the LTMADS/OrthoMADS context after a given number of mesh refinements thanthere are in the

Λ-MADS context after the same number of mesh refinements. However, an argument may be made that there is no real “need”, froma convergence
persepective, for the number of available points in the shells of potential poll points in a MADS-type algorithm to grow so quickly; a MADS algorithm will
only evaluate a small subset of the points in any given shell anyway. The fact that the number of points in each successive shell grows without bound is
enough to establish convergence of the corresponding MADS algorithm. As far as we can tell, the fact the number of points in the LTMADS/OrthoMADS
shells grows extremely quickly (see Table 1) does not actually benefit the overall rate of convergence of the practical LTMADS or OrthoMADS algorithms.
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2) Generating a uniform poll set that positively spans the neighborhood of the CMP leveraging a Thompson algorithm:
The flexible algorithm that we use to actually generate poll sets with good angular uniformity in the present work while
performing the minimum number of new function evaluations possible in each poll step is derived directly from the method
developed in §II.B of Belitz & Bewley (2011). In brief, to generatep poll points19 on the target shell with good angular
uniformity from the CMP, we first modelp “charged particles” distributed randomly on a sphere with radius given by
the average radius of the target shell. A Thompson algorithmis then used to drive this set of particles to an equilibrium
configuration on this sphere. The final equilibrium positionof these particles is then discretized to the nearest lattice points,
as motivated by the third paragraph of §III-A.2. Finally, these discretized points are checked to ensure that they positively
span the neighborhood of the CMP, a test for which is given in §II.A of Belitz & Bewley (2011). If points so generated do
not positively span the neighborhood of the CMP, a differentrandom initial distribution of thep particles on the sphere may
be tried, and the process repeated; if the process still fails to produce a discretized set ofp points that positively span the
neighborhood of the CMP,p is incremented by one, and the process repeated until a positively spanning set of poll points
is successfully found.

3) Implementing constraints on the feasible parameter domain:
The feasible domain of parameter space over which the optimization is performed might in fact be difficult or impossible to
identify and characterize a priori. Thus, the constraints on the feasible domain of parameter space are ignored completely at
the stage of selecting which specific points from the target shell are to be polled. If a given poll point proves to be infeasible
when it is ultimately evaluated, the corresponding function value is simply set to infinity (or, to an arbitrarily large value),
and the poll step is continued. Since interpolating functions are not used by theΛ-MADS algorithm (in contrast with the
SMF and LABDOGS algorithms mentioned previously), this simple manner of handling the implementation of constraints
is entirely adequate.

4) Reusing existing function evaluations during each poll step:
It is a simple matter to incorporatem existing function evaluations available on or within the target shell in the process
described in §III-D.2: “fixed” charged particles are simplyassigned to points on the unit sphere corresponding to the
existing function evaluations (that is, scaling their distance from the CMP appropriately), and other “free” charged particles
are allowed to move to equilibrium positions on the sphere inthe manner described previously; the equilibrium positions of
these free particles are then discretized to the nearest lattice points to generate the new poll points. By so doing, the number
of new function evaluations required to complete a poll step(which, taken together with the existing function evaluations,
positively span the neighborhood of the CMP) can often be reduced significantly.

5) Reorienting the poll set in a low-discrepency fashion after one or more unsuccessful poll steps:
If a given poll step in theΛ-MADS algorithm fails to identify a new CMP, after refining the mesh and incrementing the shell
containing the possible poll points, the poll set must be reoriented. It is desirable that the orientation of this new poll set
explore new directions around the CMP, not re-examine thosedirections already explored at the previous failed poll steps.
This problem might at first seem quite straightforward, but is in fact one of the more subtle issues that must be reckoned
with in the MADS framework.

One could attempt to reorient the new poll set in a pseudo-random fashion; this is in fact what was implemented in
LTMADS. Though this approach will likely generate some new directions to explore with each new poll step, such an
approach will also waste computational effort with some newpoll points that are essentially aligned with polling directions
that have already been tried (unsuccessfully) around the current CMP.

OrthoMADS thus introduced some sort of low-discrepancy ‘quasi-random’ Halton sequence on the first ‘seed’ vector
used to generate the poll set, in an attempt to generate a fresh new set of polling directions. This first seed vector uniquely
defines the remaining orthogonal directions of the poll set whenn= 2. For largern, however, it does not; by focusing only
on the successive placements of the seed vector, whenn> 2, it is not at all clear that theentire new poll set will be well
differentiated from the previous sets of polling directions already explored around the current CMP.

In the present work, we thus propose a more geometric solution to this problem. Notably, our solution considersall of
the directions of the failed poll sets, as well asall of the directions the prospective new poll set (that is, not just the seed
vectors that generate these directions). The approach we use is a natural extension of the Thompson algorithm described
previously. We simply add additional fixed charged particles, with substantially reduced charge, at the failed poll points from
the previous (failed) poll sets when we solve the Thompson problem for the new poll points20. This naturally generates
a new poll set which is not only itself highly uniform, but is also generally well differentiated from the directions of the

19We may initially takep= n+1; note that this algorithm is easily and naturally extendedin three important ways in §III-D.4, §III-D.5, and §III-D.6.
20A generalizedThompson formulation may also be used to account for the forces applied by the fixed particles associated with the points from the

previous failed poll sets, applying a force that falls off faster than the 1/r2 rule of normal charged particles. So doing achieves a differentiation between
the old and new directions in the resulting algorithm, but tends to reduce the additional deformation of the new poll set that these additional fixed particles
might otherwise create.
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previous (failed) poll sets around the CMP, thus generalizing naturally the idea of low-discrepancysequencesof vectors to
low-discrepancysetsof vectors.

6) Optional step: including a poll point designed to accelerate convergence when the function is locally C1:
As discussed in the second paragraph of §I-A, if

• the function is locally continuously differentiable,
• the CMP is not yet at a critical point,
• there are no active constraints,
• a poll set is considered which positively spans the CMP, and
• the grid spacing is sufficiently small,

then one of the poll points is guaranteed to provide an improved function value, below that of the CMP.
If all of the above assumptions are true, except that the gridspacing is not yet quite sufficiently small enough to ensure

that an improved function value is evident in the poll set (that is, if quadratic terms in the local Taylor series expansion
of the cost function are still significant), then it is straightforward to estimate the linear terms of the local Taylor series
expansion of the function if a poll step fails, and then to identify the downhill direction in this locally linear approximation
of the function. This may be achieved simply by taking a linear fit of the function evaluations in the most recent failed poll
step21, denoted heref (x(i)) = f (i) for i = 1, . . . , p wherep≥ n+1. Fitting these function evaluations with the linear model
f (x) = x ·g+b and assembling the results for each of thep poll points, we may write













x(1)1 · · · x(1)n 1

x(2)1 · · · x(2)n 1
...

...
...

...

x(p)1 · · · x(p)n 1























g1
...

gn

b











=











f (1)

f (2)

...
f (p)











.

If p= n+1, this system of equations may be solved for the gradientg; if p> n+1, a least-squares estimate of the gradient
g is easily determined from this system of equations. Either way, the gradient so determined may be normalized and scaled
by the average radius of the target shell of the subsequent poll step, and the closest lattice point on the refined grid to the
negative of this vector (that is, in the downhill direction in the locally linear approximation of the function) found, thus
generating what we might identify as at least a new “lattice point of interest”. The subsequent poll set may thus be forcedto
include this new lattice point of interest (and, perhaps, scheduled to evaluate this new poll point first). Using the Thompson
algorithm described previously, of course, this is quite easy to accomplish: simply add one more fixed charged particle
on the sphere corresponding to this new lattice point of interest, and optimize the remaining free particles as described
previously. Note that, if the function is not expected to be locally C1 fairly often as the iteration proceeds, or if a given poll
step includes one or more poll points which prove to be infeasible, then this optional step should certainly be skipped.

E. Keeping a given poll orientation if a poll successfully finds a new CMP, facilitating discrete line minimizations

A new poll set orientation is selected (and the grid refined) only after a poll step does not successfully identify a new
CMP. If, on the other hand, a poll step succeeds in identifying a new CMP, then the old poll set orientation is used around
the new CMP (without refining the grid), and the first direction polled is in the same direction as moved previously. Since
incomplete polling is used (see §III-B), if this new poll point again reduces the function value, then the iteration proceeds
further in this direction without evaluating the poll points in the other directions, thus allowing something of a discrete
line minimization to be performed via successive (incomplete) poll steps, all proceeding in the same direction after a single
function evaluation at each poll step. This strategy, combined with the mesh coarsening heuristics discussed in §III-F, tends
to make maximum use out of any given descent direction that may be identified, which in some problems (such as those
with active constraints, or those with only piecewise differentiable functions, as discussed previously) might in fact take
several failed poll steps (that is, many many function evaluations) in order to find.

F. Coarsening the mesh

Still need to write this subsection, in the style of the above.

IV. I SOLATED NUMERICAL TESTING OF EACH COMPONENT ISSUE LEADING TO Λ-MADS

In order to isolate the effects of the options presented in Section 3, several MADS algorithms, each incrementally different
from the previous, were numerically tested to determine comparative convergence efficiencies. In testing the comparative
performance of two algorithms, a statistically relevant number of optimizations were performed to calculate the average
performance of each algorithm. In each test, the cost function consists of a randomly generated quadratic bowl. The minimum

21The function value at the CMP itself may be ignored in this fit,because this function value does not affect the linear coefficients in local Taylor series
expansion of the function.
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n 2 3 4 5 6 7 8

p Shells 1,2,4,8, ..
vs
Shells 1,2,3,4, ...

61.1 56.0 54.3 52.5 56.6 57.7 57.7

r 0.828 0.905 0.872 0.921 0.874 0.868 0.896

p Zn
vs
ΛN

45.3 50.5 54.4 54.3 56.2 64.1 66.8

r 1.11 1.01 0.946 0.948 0.930 0.873 0.8173

p Max basis
vs
Min basis

47.7 53.6 65.5 78.7 85.1 91.9 94.5

r 1.36 1.37 0.868 0.602 0.481 0.369 0.276

p Complete
vs
Incomplete

70.3 71.6 75.1 75.5 69.2 77.1 82.1

r 0.829 0.819 0.691 0.737 0.784 0.633 0.572

p OrthoMADS
vs
Λ-MADS

44.9 51.4 56.1 78.4 74.0 79.8 84.8

r 0.839 0.865 0.821 0.638 0.81 0.607 0.48

TABLE III: Convergence comparison of fundamental featuresof the Λ-MADS algorithm

of this cost function is selected as a random point a distanceof r = 1 from the origin. The initial CMP is a random point
located a distancer = 10 from the origin. The lattice scaling of theZn lattice was set to one:RZn = 1; the scaling of the
Λ lattices were selected such that the volume of the voronoi cell matched the volume of theZn voronoi cell at the scaling
above, that is,RΛn = (∆Λn/∆Zn)

1/n.
Both optimizations begin at the initial CMP and are then converge to a tolerance of 0.001 of the initial CMP value. One

thousand such runs were performed for each algorithm comparison. In comparing two algorithms A and B, the parameters
quantifying performance are the percent of total runs that algorithm B converged faster than algorithm A,p, and the ratio of
the average number of functional evaluations algorithm B required to the number of evaluations that algorithm A required,
r. Thus, asp approaches 100 andr approaches 0, algorithm B becomes far more efficient than algorithm A.

As discussed in Section 3, inΛ-MADS there is the option to build the poll set, refining with afactor of 4, on shells
1,2,4,8,16... or refining by a factor of 2, on shells 1,2,3,4, ..... We thus testΛ-MADS with a minimal positive basis and
fast, factor of 4, refinement, then slow, factor of two, refinement. As shown in lines 1 and 2 of Table III, we find that the
slow refinement scheme results in a more efficient algorithm.

Next, we investigate the effect of the lattice choice in a MADS algorithm by comparingZ-MADS to Λ-MADS, both
utilizing a maximal positive basis, and the slow factor-of-2 refinement discussed above. As can be seen in lines 3-4 of
Table III, by simply replacing theZn grid with the Λn lattice, the MADS algorithm makes significant gains in efficiency
in dimensions higher than 3. In lower dimensions, as expected, the performance difference is negligible; as the dimensions
increases the performance difference becomes more and morepronounced. These results indicate how efficient lattices are
the preferred choice compared to the Cartesian grid for coordinating MADS optimizations, particularly as the dimension of
the cost function increases.

The choice of a minimal over a maximal positive basis has not,to the authors’ knowledge, been numerically established in
the literature. While it has often been suggest that a minimal basisshouldincrease convergence rates, we test this hypothesis
in lines 5-6 of Table III. The maximal basis is more efficient in low dimension (n= 2 and 3), as the dimension increases,
the difference between the choice of basis becomes significant; the minimal basis provides superior performance to the
maximal basis. For maximizing efficiency in high dimensions, a minimal positive is the appropriate configuration. As per
these results,Λ-MADS is configured to utilize a maximal basis forn< 4 and a minimal basis for higher dimensions.

The question of incomplete polling (that is, terminating the Poll step upon locating a superior CMP) compared to complete
polling (that is, evaluating the cost function on each member of the Poll set before redefining the CMP) has also remained
neglected in the literature. As such, the efficiency comparison ofΛ-MADS, utilizing a minimal positive basis with factor-of-2
refinement, can be seen in lines 7-8 of Table III. The data clearly demonstrate how the incomplete poll set is the appropriate
choice for all dimensions.

These numerical results validate the utilization inΛ-MADS of the following: building poll sets on the Delaunay cells
of the Λ lattice, refining one shell per refinement (refining the mesh by a factor of 2); implementing a minimal compared
to a maximal positive basis in dimensions greater than four;and using incomplete as opposed to complete polling. These
features makeΛ-MADS unique among MADS-type algorithms. Having tested each component leading to the definition
of Λ-MADS, the numerical comparison to OrthoMADS is made. The results can be found in lines 9-10 of Table III.Λ-
MADS demonstrates significantly improved convergence rates compared to OrthoMADS, requiring only 48% to 90% as
many function evaluations to reach convergence, and converging faster than OrthoMADS in the majority of trials, with the
performance difference becoming larger as the dimension ofthe cost function increases.
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n 2 3 4 5 6 7 8

p 57.1 55.26 55.15 54.9 56.1 56.6 54.4
r 0.90 0.923 0.9421 0.8631 0.8758 0.8757 0.901

TABLE IV: Performance comparison between OrthoMADS andΛ-MADS on the Rosenbrock test function.
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Fig. 7: The efficiency metricsp (L) and r (R) comparingΛ-MADS to OrthoMADS on the Rosenbrock cost function for convergence
goals of 0.1,0.05,0.001,0.0001 in dimensionsn= 2 (red circles),n= 4 (magenta+), n= 6 (black asterisk), andn= 8 (green dots). Note
how Λ-MADS outperforms OrthoMADS in high dimensions for all convergence levels.

V. FURTHER NUMERICAL TESTING OF THE COMPLETEΛ-MADS ALGORITHM

The above testing on randomly generated quadratic bowls proves valuable in evaluating the relative efficiencies of various
component selections in establishing theΛ-MADS algorithm. Testing comparing to OrthoMADS indicatesan increase in
convergence rate. To further investigate these results, further testing was performed, precisely as described above,on the
n-dimensional Rosenbrock cost function. The standard 2-dimensional Rosenbrock function is well known as an optimization
benchmark; the deep ‘valley’ in which the optimum lies makesfor a particularly challenging convex optimization problem.
The analog in higher dimensions is given by

J(x) =
n/2

∑
i=1

[5(x2
2i−1− x2i)

2+(x2i−1)
2]

defined only for even dimensions. This function is convex, with the global minimum at(1,1,1, ...,1) where the function
has a value of zero.

The same series of tests described above were performed on the Rosenbrock test function in dimensionsn = 2,4,6,8.
The results can be seen in Table V. This data validates the legitimacy of the previous testing on a more challenging cost
function, and confirms the superior convergence rate thatΛ-MADS has over OrthoMADS. As expected, the performance
difference between the Cartesian-based algorithm and theΛn based algorithm increases with dimension. Inn= 2, Λ-MADS
requires 88% as many function evaluations to converge; inn= 8 it requires only 50% as many evaluations. Similarly, in
n= 2, r = 55; however, inn= 8, r = 97. That is, OrthoMADS outperformedΛ-MADS in only 3% of all test optimizations in
n= 8. This result is remarkable, and confirms the high performance of theΛ-MADS algorithm compared to its competitors.

Recall from above that the convergence metricsp andr are defined with respect to a preselected level of convergence. To
test convergence rates at various levels of convergence,p andr were calculated for four differing levels of convergence: 0.1,
0.05, 0.001, 0.0001, optimizing then-dimensional Rosenbrock function, comparing OrthoMADS toΛ-MADS. The results
are graphically presented in 7. The superior performance ofΛ-MADS indicated by the previous analysis is verified at varying
levels of convergence. Inn= 4 and greater,Λ-MADS proves to have superior convergence rates to OrthoMADS at all levels
of convergence. Generally speaking, the greater the level of convergence (that is, the more difficult the optimization), the
greater the performance difference betweenΛ-MADS and OrthoMADS.

Finally, we test the effects of the coarsening scheme outlined above. TheΛ-MADS coarsening methodology outlined
above emphasizes the reuse of the successful poll orientation on the coarser grid after two consecutive successful Poll
steps on the finer grid, allowing the algorithm to maintain the proper poll orientation, while taking a larger step toward
the minimum, thereby maintaining a larger average step sizeand speeding convergence. To test the effect of coarsening
in this fashion, the same testing methodology outlined above was used, testingΛ-MADS without coarsening toΛ-MADS
with coarsening on a statistically relevant number of quadratic bowls, and then then-dimensional Rosenbrock function. The
results are summarized in Table V.
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n 2 3 4 5 6 7 8

p 34.6 32.5 32.4 49.6 82.6 48.1 48.4
r 0.945 1.06 1.147 0.730 0.699 0.808 0.866
p 52.2 N/A 58.8 N/A 82.6 N/A 74.4
r 1.03 N/A 0.984 N/A 0.699 N/A 0.864

TABLE V: Performance comparison betweenΛ-MADS without, and with, coarsening, on quadratic bowls (lines 1-2) and the Rosenbrock
test function (lines 3-4).

Coarsening offers superior convergence in high dimensions, particularly on the challenging Rosenbrock function. How-
ever, somewhat surprisingly, on these convex and unconstrained cost functions, coarsening offered no advantage in lower
dimensions, in fact incurring a performance penalty. Notice that coarsening performed particularly well on the Rosenbrock
function, clearly delivering superior performance than the non-coarsening algorithm. This indicates that implementing a
coarsening strategy will be more valuable on a cost functionwith challenging behaviors. Unconstrained cost functionsare
comparatively easy for a MADS algorithm to handle as locating a descent direction is straightforward; more challenging
is maintaining an appropriate mesh scaling in the presence of hard constraints. In the latter scenarioΛ-MADS often has
to perform many unsuccessful Poll steps before a descent direction can be located. WhileΛ-MADS’ ability to refine the
mesh more slowly than LTMADS and OrthoMADS prevents as much over-refinement during this process, often the mesh
is refined more than necessary. Under these circumstances, the coarsening strategy is particularly appropriate. Thus,we
recommend that users implement mesh coarsening on difficultconstrained optimization problems.

VI. A N UMERICAL EXAMPLE : LOCATING THE DEEPHOLE OF A LATTICE

An example of a research optimization problem that can be solved with Λ-MADS but not by a simpler SP pattern search
was encountered by the authors while performing numerical analysis of efficient lattices (see Bewley, Belitz, & Cessna
(2011)). The challenge is to calculate the location of a deephole belonging to the origin node of a particular lattice. By
definition, a deep hole is the furthest point from a given lattice node that remains as close or closer to said node than any
other node of the lattice. Thus, if one enumerates a great number of lattice points surrounding the origin, any given point
can be analyzed to determine whether or not said point lies within the voronoi cell (that is, if the point is closer to the
origin than any other lattice point in the cloud). The objective is to locate the point furthest from the origin that remains in
the voronoi cell of the origin node. The cost function for theA2 lattice can be seen in Figure 2.

In the interest of remaining computationally feasible, theconstraints must be hard. This is performed by calculating the
distance from each node in the cloud to the CMP. If the distance from the CMP to the origin is less than the distance
from the CMP to any another node, the CMP lies inside the voronoi cell and the cost function value is the distance to
the origin. Otherwise, the CMP lies outside the voronoi cell, and as such is not valid for evaluation, so the cost function
value is infinity. This presents a challenging problem wheretraditional derivative-based algorithms cannot be applied, as the
constraint surfaces are unknown, and SP and other simple GPSalgorithm fail to converge.

Under the only numerically feasible problem definition, as can be seen in Figure 8, the Successive Polling algorithm ceases
convergence upon encountering a constraint surface. Once the algorithm nears the constraint boundary, the only element
of the poll set with a component in the descent direction violates the constraint and the algorithm stalls. TheΛ-MADS
algorithm, however, stochastically locates an orientation allowing it to follow the constraint directions and moves along the
constraints to the deep hole. This method was used to locate the deep holes of a great number of lattices, allowing for the
calculation of many previously unknown metrics, reported in Bewley, Belitz, & Cessna, (2011).

Figure 8 above clearly demonstrates one shortcoming of a non-coarsening MADS scheme on a cost function subject to
hard constraints: while the algorithm locates a suitable descent direction, the mesh becomes very fine, limiting the step size
taken. To rectify this, the coarsening scheme described above is implemented inΛ-MADS, and the deep hole test function
is reconsidered. As can be seen in Figure 8, without coarsening, the step size along the black constraint boundary is very
small, requiring a great number of function evaluations to converge. With coarsening, good descent directions are reused,
and the deep hole is located while maintaining a coarser gridsize on average.

VII. C ONCLUSION

In this document we investigate the performance of current Mesh Adaptive Direct Search (MADS) methods, and introduce a
new MADS algorithm,Λ-MADS. Via careful numerical testing, we conclusively demonstrate that in the interest of algorithm
efficiency, it is highly desirable to coordiate a MADS searchon (1) an efficient lattice, (2) to locate the Poll sets on the
Delauney cell of the lattice, (3) to refine the mesh by a factorof 2 rather than a factor of 4, (4) to utilize a minimal
rather than a maximal positive basis in the appropriate dimensions, and (5) to implement incomplete polling of the Poll
sets. In dimensionsn= 2,3,4 a maximal positive basis provides superior convergence toa minimal basis. In addition,Λ-
MADS incorporates a mesh coarsening scheme that allows effective poll orientations to be maintained on the coarser mesh,
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Fig. 8: Locating the deep holes of theA2 lattice utilizing Successive Polling (left) andΛ-MADS (right). The hard constraints are indicated
in black; the cost funtion contours are plotted as well. The inability of the SP algorithm to handle constraints preventsconvergence;
Λ-MADS maintains convergence and locates the deep hole.
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Fig. 9: Locating the deep holes of theA2 lattice utilizingΛ-MADS with no coarsening, plotting the CMP as green dots (L),and coarsening
implemented (R), plotting the CMP as a black cross. The algorithm with coarsening enabled clearly maintains a larger average step size,
speeding convergence in the presence of active constraints.

preventing poor coarsening behaviors evident in other algorithms. Unlike most GPS algorithms,Λ-MADS can handle hard
constraints, as effectively demonstrated on the example research application of locating the deep holes of a lattice.

Testing ofΛ-MADS against the competing OrthoMADS algorithm on quadratic bowls and then-dimensional Rosenbrock
function indicates thatΛ-MADS generally converges more rapidly than OrthoMADS, with the performance difference
becoming greater in higher dimensions. Combining the good convergence efficiency demonstrated in these tests and the
algorithm structure that inherits all the convergence behaviors of previous MADS algorithms,Λ-MADS is the most efficient
MADS algorithm yet developed, and is the clear choice for difficult modern convex optimization problems.

* OLD STUFF IS INCLUDED BELOW THIS LINE. PULL ABOVE THIS LINE AND MASSAGE AS NECESSARY. *
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In the second case, a minimal positive basis consisting ofN+1 points is desired. To locate the optimal minimal positive
basis onSk, defined as the most spatially regular basis, a force-based optimization of N points on the hypersphere is
performed, holdinĝd fixed, as described in Belitz & Bewley (2011). Specifically, each of theN+1 points are treated as
charged particles on a hypersphere, such that each exerts a force on the others proportional to the inverse of the Euclidean
distance separating them. Keeping the location ofd̂ fixed, the force on each of the remaining particles is calculated. Then,
the location of theN points on the hypersphere is iteratively updated to minimize the greatest force experienced by any
of the points. The points reach equilibrium forming a perfectly symmetric minimal positive basis by definition. Then, the
Poll Set is calculated, as above, by finding the points inSk that best approximate these ideal directions. As above, upon
refinement of the Shells, the possible directions of the pollset becomes dense, and the ideal directions generated via the
force-based optimization become included in the Shell.

A. Choosing a Polling Direction

In both variats ofΛ-MADS described above, an initial polling directiond is necessary to build a poll set on the shell
Sk. In LTMADS, the first poll vector is located by taking a normally distributed random direction in the hypersphere, then
restricting to the allowable fine mesh points. OrthoMADS adds a deterministic component to the direction by introducing
a poll vector based on a Halton Sequence. The Halton Sequenceoffers a pseudo-random, repeatable number sequence that
gives points that become dense in the unit hypercube. By multiplying by 2 and shifting by the vector of ones, the Halton
Sequence easily gives vectors that become dense in the space

x ⊂ Rn s.t. ||x||∞ = 1

The advantage of using a Halton Sequence based polling direction is that the sequence is repeatable, and large variations
from iteration to iteration are avoided. The repeatabilityis important when the polling direction is to be reused as previously
described, being updated only when necessary. However, a Halton direction is suboptimally posed in an efficiency context,
particularly when a MADS algorithm is implemented on a lattice.

To maximize efficiency, the entire poll must be as uniform as possible, both with respect to angular and spatial symmetric
of a single poll set, as well as minimizing angular and spatial irregularity from poll set to poll set, on a given grid. This
necessity leads directly to the interest in the applicationof lattices to the MADS algorithm. The Halton based polling
direction is less uniform than it could be in an angular uniformity sense, as it biases the initial poll direction toward acorner
of the cube in which the Halton direction is defined. In Figure3 below, the angle between a given initial poll direction and
the x-axis was calculated 50,000 times, with the results summarized via a histogram. AsN= 2 in this case, it it clear that the
four corners of the unit cube are overproportionally represented. A random vector dense on the hypersphere, however, seen
in Figure 3 as well, is clearly uniform, and does not bias the poll set. The bias toward certain polling directions will limit
the performance of the MADS algorithm, as a good descent direction will be located less regularly. When the direction is
dense in the hypersphere, the projection of the direction onto the feasible Cartesian Shell in OrthoMADS will be uniformly
dense, but once the Shell begins to approximate a hypersphere, the direction should be chosen in a fashion to be dense in
a hypersphere rather than hypercube.

The Halton sequence chosen in OrthoMADS becomes dense in a hypercube, meaning that the polling directions on the
faces of the allowable hypercube are equally dense. However, when the allowable region moves from a hypercube to a
hypersphere, the Halton direction used in OrthoMADS will bias the poll set.

To demonstrate the effect, 9000 optimization runs were performed inN= 10, using the minimal basisΛ-MADS algorithm
described below. Randomly permuted quadratic cost functions were shifted to a random minimum location. Two versions
of Λ-MADS were considered: one utilizing a Halton sequence generator, the other a random direction in the hypersphere.
Direction re-using and incomplete polling as discussed below were implemented for these tests. Both algorithms were
started on the same grid at the same point, and the average number of function evaluations necessary for the same level of
convergence was computed. The algorithm utilizing a hypersphere measureably outperformed its competitor, requiring, on
average, 765 function evaluations, compared to 778 for the Halton-based algorithm. The performance hinderance induced by
the bias of the direction dense in the hypercube is clearly measurable. For greatest efficiency, the polling direction should
clearly be chosen via a method that produces directions uniformly dense on the surface of the hypersphere. This can be
as simple as simply choosing a random point on the hypersphere, utilizing only the Halton directions that lie within the
hypersphere, or any other method that produces a uniform distribution. TheΛ-MADS algorithm presented herein simply
utilizes a uniformly-distributed random direction.

B. The CompleteΛ-MADS Algorithm

By utilizing a very efficient polling direction as describedabove (a sequence dense inside the unit hypersphere), combined
with a basis located on an efficient lattice via the algorithms described in Section 5, a new MADS algorithm is fully defined.
Any lattice can be chosen for this purpose, though lattices with greater packing density, kissing number, and coordination
sequences should provide shells more closely approximating a sphere, and thus should provide a more uniform, and thus
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Fig. 10: Histograms showing the angle between the first polling direction and the x-axis, for a Halton-based sequence (L)and a random
vector on the hypersphere (R).

more efficient, MADS algorithm. For low dimensions, theAn, Dn, and E8 lattices are good choices, and are thus chosen
for numerical testing. In high dimensions the laminated lattices discussed in Bewley, Belitz, & Cessna (2011), would bethe
logical choice, as these offer the greatest coordination sequences of all lattices. For brevity we point the reader at Belitz,
Bewley, & Cessna (2011), for the basis matrices and quantization algorithms for a great number of suitable lattices.

The nearest neighbors of the lattice, that is, the shellS1 of all points one hop from the origin, can be numerically
enumerated by multiplying the basis matrix by an exhaustivesequence of integer combinations contained in a vector, until
all the nearest neighbors inS1 have been determined, precisely as discussed in Belitz & Bewley (2011).

With S1 defined, and the ability to quantize a random initial CMP ontothe lattice via the algorithms summarized in
Bewley, Belitz & Cessna, (2011), a MADS algorithm can be implemented as discussed above.

C. Extension To High Dimensions

Consider the augmentation of the algorithm above, in that the subset of lattice points that can be used to form a poll set
are redefined. Given a coarse mesh size∆c and a fine mesh size∆ f as discussed above, by definition the distance between
neighboring points on the fine mesh is∆ f and the distance between neighbors on the coarse grid is∆c. The aim of MADS
is to locate a set of poll points that lie on the fine grid, whosedistance from the CMP is bounded by the coarse grid size.
This can accomplished by enumerating shells of the lattice as above, but can also be performed by locating a perfectly
distributed minimal basis defined by a size∆c and the poll orientation. Then, rather than restricting to the appropriate Shell
points, the poll set is identified simply by restricting the minimal basis to the fine lattice.

This is a slight modification from the previous algorithm in that the allowable fine mesh points are not bounded by a hop
count, rather a Euclidean distance defined by∆c and the deep hole radius of the fine gridrdh. From there, a basis is located
as described above, and for each poll direction a poll point is located to bound the distance from the CMP byR+Rdh. Thus,
each poll point is a maximum distance from the CMP while beingbounded above by the coarse mesh size. When the coarse
mesh and the fine mesh sizes is small, the set of points this algorithm makes available for the poll set reduced to exactly
the shells defined above. After many refinements, fine mesh points lying on a shell further from the CMP will be included.
As this algorithm requires only restriction to the fine lattice, there is no overhead induced by the need to enumerate shells
in their entirety, and thus scales to high dimensions efficiently. Additionally, it improves even further upon the uniformity
of the lattice shells.

The polling direction is calculated via a random number dense in the hypersphere, a pseudo-orthogonal or minimal positive
basis can be located and restricted to the Shell.

VIII. I SOLATED NUMERICAL TESTING OF EACH COMPONENT ISSUE

A. The effect of the lattice

To quantify the behavior of implementing a maximal positivebasis inΛ-MADS and comparing to OrthoMADS with a
random polling direction utilized gives a quantification ofsimply replacing the underlying lattice in a MADS optimization.
To this end, a statistically relevant number of optimizations with each algorithm were run, optimizing randomly selected
quadratic functions, with a randomly selected initial CMP and randomly selected function minimum. Each cost function
F(x) is defined as follows:

F(x) = (x− x̄)A(x− x̄)T

Where x̄ is a randomly distributed vector, andA is a random positive definite matrix. BothΛ-MADS and OrthoMADS
were allowed to converge to 0.1% of the initial cost function value. The lattices were scaled to start with constant initial
vornoi cell volume of theAn lattice and the cartesian grid. Table 2 below summarizes theeffect of redefining OrthoMADS
on a lattice. The two parameters quantifying performance are the percent of total runs thatΛ-MADS converged faster than
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n 2 3 4 5 6 7 8

p 57.1 55.26 55.15 54.9 56.1 56.6 54.4
r 0.90 0.923 0.9421 0.8631 0.8758 0.8757 0.901

Table 2. Performance comparison between theDn-basedΛ-MADS algorithm and theZn-based OrthoMADS algorithm applied to randomly shifted quadratic
bowls. Notice how in the relatively moderate dimension ofn= 8, Λ-MADS requires approximately 30% as many function evaluations to converge compared
to OrthoMADS.

n 2 3 4 5 6 7 8

p 46.15 53.14 58.93 72.49 76.92 79.92 86.02
r 1.145 1.399 0.9642 0.7240 0.5653 0.4777 0.3806

Table 3. Performance comparison between theDn-based maximalΛ-MADS algorithm and theDn-based minimalΛ-MADS algorithm applied to randomly
shifted quadratic bowls. Forn > 3, it is seen that the minimal basis algorithm converges faster than the maximal basis algorithm. This validates the
suggestion often made in the literature that a minimal positive basis is the most efficient choice for unconstrained optimization.

n 2 3 4 5 6 7 8

p 55.6 57.0 59.8 59.0 64.32 69.0 75.43
r 0.835 0.869 0.8687 0.9054 0.8644 0.8466 0.7824

Table 4. Performance comparison between the slow refinementminimal Λ-MADS algorithm and the standard refinementΛ-MADS algorithm applied to
randomly shifted quadratic bowls. In all dimensions, the slower refinement scheme results in superior convergence behavior.

Orthomads,p, and the ratio of the average number of functional evaluationsΛ-MADS required to the number of evaluations
that OrthoMADS required.

As can clearly be seen in Table 2, the effect of modifying to anefficient underlying lattice while maintaining the same
basis type (orthogonal and maximal) sees a measurable improvement compared to Cartesian; however, the effect is small
and proved sensitive to initial conditions.

B. Minimal versus Maximal Positive Basis

In the formulation ofΛ-MADS above, to variants are presented: one utlizing a maximal positive basis that becomes
asymptotically orthogonal, and a minimal positive basis that optimizes for angular and radial uniformity on the Shell.
Historically, various authors have suggested that a minimal basis should provide a higher convergence rate, as fewer points
are evaluated per poll step. As both options are available inthe Λ-MADS, a series of tests were performed to capture
a statistically relevant measure of convergence performance. The same quantification of convergence was performed as
described above, and incomplete polling was implemented. The results are summarized in Table III below.

As the results in Table 3 illustrate that, when given the option between a well-distributed minimal basis and a well-
distributed maximal basis, the minimal basis performs significantly better, as evidenced by requiring only 38% as many
function evaluations as the maximal algorithm.

C. Grid refinement options

All variants on Successive Polling algorithms refine the underlying grid by a factor of 2 upon an unsuccessful Poll step.
The factor of 2 has historically been chosen as there is no smaller factor to refine by that will allow all previous function
evaluations to be located on valid lattice nodes independently of the eventual lattice scale. Moving to a MADS framework
allows for contemplation of the refinement factor.

Previous MADS implementations refine the coarse and fine grids by factors of 2 and 4, respectively, which, like the SP
algorithms mentioned above, allows all previous function evaluations to lie on the grid at all levels of refinement. Upon
inspection we see thatΛ-MADS refines the fine lattice scale by a factor of 4, and by refining the coarse grid by a factor of
2, the shells upon which the positive basis lie increase as 2k, wherek is the number of refinements performed. Clearly, this
is not the only factor by which one can refine while keeping allfunction evaluations on the fine lattice. If the fine refinement
factor is chosen to be 2. At thek’th refinement, the coarse grid scale isk∆ f . Thus, the size of the poll set refines more
slowly than if the normal factor of 2 were used.

The effect of this slower refinement scheme is an increase in convergence rate. The algorithm (1) refines less quickly
while searching for an appropriate poll set orientation, thereby allowing larger steps toward the function minimum once a
suitable orientation has been located, and (2) generally prevents the algorithm from overrefining when matching the local
terrain characteristics of the cost function. To demonstrate, the same numerical analysis described above was performed
comparing twoΛ-MADS algorithms. Both utilize a minimal basis, incompletepolling, however, one refines the mesh by
4 (as LTMADS and OrthoMADS do); the other refines by a factor of2 as decribed above. Table 4 below summarizes the
results.

The numerical test demonstrate that the smaller refinement factor leads to an increase in convergence rate, requiring only
78% as many function evaluations to convergence inn= 8.
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n 2 3 4 5 6 7 8

p 64.5 48.82 60.2 76.00 83.10 89.63 93.17
r 1.21 1.46 0.9235 0.6002 0.4291 0.3555 0.3034

Table 5. Performance comparison between theDn-basedΛ-MADS algorithm and theZn-based OrthoMADS algorithm applied to randomly shifted quadratic
bowls. Notice how in the relatively moderate dimension ofn= 8, Λ-MADS requires approximately 30% as many function evaluations to converge compared
to OrthoMADS.

n 2 3 4 5 6 7 8

p 78.58 68.96 72.8 76.00 83.10 89.63 93.17
r 0.8026 1.165 0.8596 0.6002 0.4291 0.3555 0.3034

Table 6. Performance comparison between the slow refinementΛ-MADS algorithm and theZn-based OrthoMADS algorithm applied to randomly shifted
quadratic bowls. Notice how in the relatively moderate dimension ofn= 8, Λ-MADS requires approximately 30% as many function evaluations to converge
compared to OrthoMADS.

IX. N UMERICAL TESTS

As established in Belitz & Bewley (2011), GPS algorithms display superior convergence rates under maximally uniform
poll sets. Efficient lattices provide a superior set of points available (as indicated by the Coordination Sequences of these
lattices) to be selected as Poll points compared to the ubiquitous Cartesian grid. Thus, running GPS algorithms on non-
Cartesian lattices tends to significantly improve convergence rates on typical cost functions, with the performance increase
becoming greater as the dimension of the problem increases.We hypothesize that the same behavior should be evident
in a MADS algorithm, where an efficient lattice provides a more uniform poll set from iteration to iteration. To test this
hypothesis, following the convergence analysis of lattice-based GPS algorithms in Belitz & Bewley (2011), theDn-based
MADS algorithm Λ-MADS utilizing a minimal positive basis was tested againstOrthoMADS on a statistically relevant
number of randomly shifted quadratic cost functions.

For these tests,Λ-MADS utilizes a minimal positive basis; both algorithms use incomplete polling (that is, the Poll
step is terminated as soon as an improved CMP is located). Forpurposes of comparison, neither algorithm uses a Halton
Sequence generated polling direction, instead using random polling directions dense in a hypersphere, and coarseningwas
not implemented. The two optimization codes tested are clone codes; the only difference between them is the poll set
generated.

Again, the MADS optimizations were started at the same randomly selected CMP, and then the number of function
evaluations necessary to converge to a given level of convergence was recorded. Two metrics of performance are considered:
the average normalized number of function evaluations necessary to convergen, and the frequency thatΛ-MADS converged
with fewer evaluations than OrthoMADSr. The results are tabulated in Table 5.

There is significant subtlety in selecting an accurate and relevant comparison of efficiency between two related optimization
algorithms. Great pains were taken to make the results reported above as meaningful as possible. The point of possible
contention rests in the initial scaling of the lattice or grid during the numerical analysis above. If the initial grid scaling has
a very coarse Cartesian grid and a very fine lattice scale, andthe distance from the original CMP to the function minimum
is much greater than either grid scale, the Cartesian code will appear to be more efficient. If the scalings are reversed, with
the lattice being coarse and the grid being fine, then the lattice will appear to be radically more efficient than the grid.
Neither of these results is legitimate.

To make all comparisons meaningful, all lattices are scaledsuch that the voronoi cell volume of the lattices are constant at
the beginning of the optimizations. Secondly, the grid scale was selected to be within one order of magnitude as the distance
between the random CMP and random function minimum. Our selection of these parameters is to accurately represent a
reasonable decision of lattice scaling if the optimizationwere being performed on a very poorly understood function. When
utilizing these algorithms in a research application, it ispreferable to choose an initial lattice scale on the length scale of
the feasible space, thereby keeping function evaluations far apart until convergence is approached.

As is clear from Table 4, theDn lattice-basedΛ-MADS massively outperforms OrthoMADS. Clearly, on well-behaved
functions, an efficient lattice combined with a minimal positive basis allows greater efficiency compared to the Cartesian
grid. As in a GPS search, the performance difference can be explained as a combination of uniformity of the poll set and
poll set size. Analogously to the SP algorithm being less efficient at finding a descent direction (Belitz & Bewley, 2011)
on a minimal positive Cartesian basis, OrthoMADS produces polling vectors that range from normalized length 1 to length
√

(N). When the cost function is challenging OrthoMADS will have to refine the grid size until the largest Poll sets are
sufficiently refined to realize a descent step, thus limitingthe performance of the smallest Poll sets. The more uniform the
Poll set is from Poll to Poll, the more efficiently the algorithm can step toward the function minimum.

To demonstrate the effect of moving from a maximal positive basis to a minimal positive basis, negating any effects from
lattice scalings or poll set uniformity, an identical comparison was made betweenΛ-MADS with a maximal orthogonal
basis andΛ-MADS with a minimal positive basis. Again, the test function was a quadratic bowl with a random function
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n 2 3 4 5 6

p 52.3 60.4 58.1 72.49 71.71
r 0.06527 0.1325 0.1426 0.04715 0.04362

Table 6. Performance comparison between theDn-based minimalΛ-MADS algorithm and the OrthoMADS algorithm applied to the well-known Rosenbrock
function, shifted such that the function minimum lies at a random location. Again,Λ-MADS convincingly outperforms OrthoMADS in moderate to high
dimensions.
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Fig. 11: Λ-MADS convergence behavior with hard constraints. The function minimum lies at(−0.4934,0.4934). At every iteration the
complete Poll Set is plotted in red; the CMP of each iterationin green. Note poll direction reusing (left), giving GPS-like convergence.
Once the CMP is near the function minimum the polls are generally unsuccessful, and it is clear how the polling directionsbecome dense,
as seen in the zoomed-in figure on the right.

minimum, a random initial CMP, but this time theDn lattice was used for both algorithms and both lattices were identically
scaled. The results can be found in Table 5. The test codes areclones of one another, with the sole difference between them
being the number of poll points used to build a positive basis. The lattices were scaled identically, starting at the sameCMP,
and converging to the same values. Incomplete polling was implemented, and function evaluations were reused (that is, if
a member of the poll set had been previously evaluated, the cost function was not called a second time). The performance
difference by simply using a well-selected (that is, uniform) positive basis is significant.

These computational results indicates thatΛ-MADS has an advantage over OrthoMADS in its ability to utilize a well
structured minimal basis, while not sacrificing any convergence characteristics, further discussed below.

Optimizing a quadratic cost function does not capture all relevant behavior. Further testing, identical to the above, but on
the n-dimensional Rosenbrock function was performed, again comparingΛ-MADS with a minimal basis to OrthoMADS.
These results can be seen in Table 6. As predicted,Λ-MADS has superior convergence rates to OrthoMADS.

X. CONSTRAINT HANDLING

The primary advantage that MADS algorithms have over simpler GPS algorithms is MADS’ ability to converge in
the presence of hard constraints. When constraints are handled as a differentiable penalty function, a GPS algorithm will
eventually successfully converge. However, if constraints are hard, a GPS search will generally stall, as the poll cannot
achieve a descent direction. Various methods attempting toresolve this limitation have been explored. For example, a more
sophisticated penalty method known as the Progressive Barrier approach can be effective. In the presence of very simple
upper and lower bounds on the parameter space, a maximal orthogonal basis can be used at the constraints (see Booker,
et al (1999). However, there are many engineering problems where the boundary surfaces are nonlinear, complex, or even
unknown. A good MADS algorithm, correctly implemented witha carefully selected poll orientation selection algorithm, will
successfully converge under constraint conditions which foil simple GPS algorithms. Given the ability of MADS algorithms
to generate a dense set of poll points as the grids are refined,the Poll set will eventually contain a descent direction. Be
reusing the successful poll direction, MADS can stochastically locate a descent direction and then proceeds to reuse that
direction until a new CMP is not located, and new polling directions are explored. Note that the reusing of the polling
direction is essential to allow convergence under hard constraints. If a new poll set direction is selected at every pollstep
MADS algorithms will not perform significantly differentlyfrom Successive Polling.

The effect of the poll direction reusing can be seen in Figure7. The cost function isF(x) = x2 subject tox1+ x2 > 0
andx1+x2 < 1. Originally, the coarse mesh is too coarse to locate a superior CMP. Upon refinement, a descent direction is
located, and that direction is reused. Once the algorithm approaches convergence, that direction fails to locate a new CMP,
and new poll directions are generated.

Λ-MADS is a direct analogue to OrthoMADS, and thus shares all the constraint-handling behaviors of OrthoMADS. As
the meshes refine, the angular uniformity of the positive basis quickly nears 1, and the directions explored become dense.
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Fig. 12: Locating the deep holes of theA2 lattice utilizingΛ-MADS with no coarsening, plotting the CMP as green dots (L),and coarsening
implemented (R), plotting the CMP as a black cross. The algorithm with coarsening enabled clearly maintains a larger average step size,
speeding convergence.

Both OrthoMADS andΛ-MADS update the poll direction following an unsuccessful Poll step, reusing the poll direction
when the previous step was successful. Thus,Λ-MADS inherits OrthoMADS’ behavior in constrained optimization, while
significantly improving upon OrthoMADS’ convergence rateson unconstrained cost functions.

In practice, there are many augmentations of a GPS or MADS algorithm that speed convergence. Some of these augmen-
tations include using a surrogate function fitted to previously evaluated points to determine in what order to evaluate the
cost function on the poll set (such as implemented in the LABDOGS algorithm and discussed in Belitz & Bewley (2011)),
maximizing the likelihood of terminating the poll step uponfinding a superior point. Another idea, the ’optimist’s strategy’,
consists of reusing the successful poll vector of each successful Poll step, shifted to the new CMP, to give the location of a
new function evaluation, based on the optimistic strategy that if the direction provided a descent once, it is likely to provide
another. However, all these strategies are independent algorithms, such as LABDOGS, and are thus not considered here. In
practice, careful consideration of Search algorithms to pair with any MADS polling must be taken, as potential rewards are
undeniable.

XI. M ESH COARSENING

When Λ-MADS is implemented as described above, the algorithm convergences in the presence of hard constraints.
When a constraint is active, the algorithm iteratively locates a descent direction (nearly) parallel to the constraint, allowing
movement along the constraint. Of course, in the process of locating a feasible poll orientation, the mesh size is often
refined greatly, and the resulting convergence is slow. Thisbehavior is easy to understand upon inspection of Figure X. The
motivation in coarsening the mesh size in addition to refining is the desire to stochastically locate a good poll orientation,
and then take the largest feasible steps utilizing that orientation, minimizing the number of function evaluations required
for convergence. OrthoMADS implements coarsening at everysuccessful poll step, decrementing the Halton Sequence and
increasing the fine mesh size and the coarse mesh size by a factor of four and two, respectively. The limitation of this
approach is that the successful poll orientation is not reused upon coarsening. Thus, the coarsened poll step is biased to
failure, as its poll orientation has already been determined to be suboptimal for that region.

Instead, the goal is to locate an effective poll orientationon the fine grid, then reuse that orientation on a coarse grid
when possible. First, it is necessary to give a definition of an acceptable poll direction: a poll direction that givesm or
greater consecutive successful poll steps, wherem> 1. Upon the location of an acceptable poll direction, (that is, afterm
consecutive successful poll steps), the fine grid and hop count are decremented by a factor of 2 and 1, respectively. The
poll direction on the coarsened mesh is the acceptable direction identified previously. If the poll step on the coarsenedmesh
is not successful, the mesh and hop count are refined as normal; however, a new poll direction is not selected. If the poll
step on the coarsened mesh is successful, the algorithm continues under the poll direction selection and refinement criteria
previously discussed.
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Fig. 13: Locating the deep holes of theA2 lattice utilizing Successive Polling (left) andΛ-MADS (right). The hard constraints are indicated
in black; the cost funtion contours are plotted as well. The inability of the SP algorithm to handle constraints preventsconvergence;Λ-
MADS maintains convergence and locates the deep hole.

XII. A N UMERICAL EXAMPLE : LOCATING THE DEEPHOLE OF A LATTICE

An example of a relevant optimization problem where a pattern search fails due to constraint behavior was realized by
the authors while performing numerical analysis of efficient lattices (see Bewley, Belitz, & Cessna (2011)). The challenge
is to calculate the location of a deep hole belonging to the origin node of a given lattice. By definition, a deep hole is the
furthest point from a given lattice node that remains as close or closer to said node than any other node of the lattice. Thus,
if one enumerates a great number of lattice points surrounding the origin, any given point can be analyzed to determine
whether or not the point lies within the voronoi cell (that is, if the point is closer to the origin than any other lattice point
in the cloud). Then, the objective is to locate the point furthest from the origin that remains in the voronoi cell.

Pictorially, this is quite clear in Figure 8, where the cost function contours are plotted for theA2 lattice. In the interest
of remaining computationally feasible, the constraints can only be implemented as hard constraints. This is performedby
calculating the distance from each node in the cloud to the CMP. If the distance from the CMP to the origin is less than the
distance from the CMP to any another node, the CMP lies insidethe voronoi cell and the cost function value is the distance
to the origin. Otherwise, the CMP lies outside the voronoi cell, and as such is not valid for evaluation. This presents an
interesting research problem where traditional derivative-based algorithms cannot be applied and SP and other simpleGPS
algorithm fail to converge.

The voronoi cell boundaries are treated as hard constraints. Under this problem definition, as can be seen in Figure 8,
the Successive Polling algorithm fails to converge to a deephole. Once the algorithm nears the constraint boundary, the
only element of the poll set with a component in the descent direction violates the constraint and the algorithm stalls. The
Λ-MADS algorithm, however, stochastically locates an orientation allowing it to follow the constraint directions and moves
along the constraints to the deep hole. This method was used to locate the deep holes of a great number of lattices, allowing
for the calculation of many previously unknown metrics, reported in Bewley, Belitz, & Cessna, (2011).

XIII. E XTENSION

MADS and other GPS algorithms are frequently extended undermore generalized optimization frameworks. The Poll
step of a MADS or GPS algorithm can be combined with a globally-convergent surrogate-based Search algorithm, as was
originally proposed and implemented in the LABDOGS algorithm introduced by Belitz & Bewley, 2011. Any GPS iteration
can be implemented in a given SMF-type framework. Thus, it anera of sophisticated numerical optimization of physical
systems, it is important to optimize the performance of eachcomponent of modern optimization algorithms.

Within an LABDOGS-type framework, the philosophy of minimizing the size of the Poll set to increase efficiency of
the overall optimization algorithm is well documented. SMForginally utilized a minimal positive basis SP Poll step; later
iterations substituted LTMADS, then OrthoMADS, though in the latter the possibility of the detrimental effect on efficiency
of a maximal positive Poll set was introduced (see Yang & Marsden, 2011). In the literature, a bias towards a minimal positive
basis has been evident for some time. As LTMADS indicates, finding a good minimal positive basis on the Cartesian lattice
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is challenging and often sub-optimal. TheΛ-MADS algorithm is compatible with the lattices used in LABDOGS, allowing
a hybridization of an efficient MADS step with the globally convergent Search algorithms implemented in LABDOGS.

XIV. C ONCLUSIONS

The work detailed herein introduces efficient lattices to quantize parameter space and coordinate a new Mesh Adaptive
Direct Search method calledΛ-MADS. Λ-MADS utilizes any of a number of highly efficient lattices asan underlying grid.
The algorithm is an analogue to the OrthoMADS algorithm, andmaintains all the convergence characteristics of OrthoMADS
while improving upon the convergence rate by a factor of approximately three.

The advantages ofΛ-MADS over LTMADS are twofold: the poll set ofΛ-MADS is (asymptotically) perfectly uniform,
whereas LTMADS by construction locates poll sets that vary both angularly and radially. Also,Λ-MADS reuses poll
orientations, allowing the algorithm to converge in the presence of hard constraints.

The advantages ofΛ-MADS over OrthoMADs are threefold: the poll set ofΛ-MADS is uniform from poll set to poll
set, whereas OrthoMADS has radial nonuniformity due to the Cartesian grid. OrthoMADS uses a Halton Sequence to
generate the polling directions; numerical tests indicatethat a poll direction that becomes dense in the hypersphere rather
than hypercube offers a performance increase of approximately 10%; thus,Λ-MADS uses a poll direction that is dense in
the hypersphere. Finally,Λ-MADS is able to locate highly uniform minimal positive basis where OrthoMADS can only
locate uniform maximal basis. The performance penalty incurred by utilizing a maximal rather than a minimal basis is
approximately a factor of three inn= 8, and the performance difference becomes greater as the dimension of the problem
increases.

In statistically relevant numerical analysis,Λ-MADS outperforms OrthoMADS by up to a factor of three in number
of function evaluations necessary to reach convergence on quadratic cost functions. On then-dimensional Rosenbrock
test function the performance difference is even greater. Further numerical tests implicate the maximal positive basis of
OrthoMADS as the primary performance limitation of the algorithm.

The numerical results presented herein are clear:Λ-MADS is a highly competitive MADS optimization algorithm for
modern, expensive numerical optimization.
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