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Abstract

This paper introduces and tegtssMADS, a new variant of the Mesh Adaptive Direct Search (MAR&ss of derivative-
free optimization algorithms for constrained nonsmoothcfions that is built on maximally uniforrtattices Ap, rather than
Cartesian grid.", as the underlying mesh used to coordinate the explorafiparameter space. When a poll step fails to find
a mesh point with a better function value than that of theemtrcandidate minimum point (CMP), in addition to reoriagtthe
poll set, a mesh refinement of a factor of 2 (rather than a faxftd, as used in previous MADS implementations) is perfame
in A-MADS; slowing the refinement of the mesh in this manner asitition proceeds is found to increase the rate of
convergence, as an appropriately-coarse underlying nseghluable in generalized pattern search (GPS) algorithrttasosort
in order to keep function evaluations relatively far apantilconvergence is approached. The current leading (Sianebased)
MADS algorithm, OrthoMADS, is extended naturally to the g@et lattice-based setting by restricting the new poll {soto
be drawn from a shell of lattice points that kehops from the current CMP at thiéth level of mesh refinement. In such shells,
there is a rapidly-growing set of points to select the polhpofrom in the lattice-based setting kss increased (dubbed the
‘coordination sequence’), thus leading to poll sets witghhangularand radial uniformity. A novel mesh coarsening heuristic
is also introduced which makes maximum use of the most resféattive polling direction while keeping the underlyingesm
appropriately coarse. Numerical tests demonstrate ceinely that the convergence of the resultingMADS algorithm is
significantly faster than previous MADS implementatiortsjs making improved progress towards the minimum when only a
limited number of function evaluations can be afforded. Aghwther MADS variants, the possible polling directionsrabtely
become dense on the unit hypersphere as the lattice is refimesl preserving the guaranteed convergence charaicterist
the MADS class of algorithms as the number of function eudna ultimately becomes large.

|. BACKGROUND

Practical applications in engineering, science, finanesjness, and elsewhere often call for efficient derivafiee-
algorithms for the optimization of expensive nonsmoothctions over a constrained spaceroparameters. The field of
derivative-free optimization has a long and rich historyiakhincludes the development of downhill simplex algorigim
genetic algorithms, and simulated annealing algorithnie most computationally efficient family of derivative-drep-
timization algorithms available today, known generalized pattern searcfGPS) methods, leverage an underlying mesh
to coordinate the exploration of parameter space. The fued#al purpose of this underlying mesh is to keep function
evaluations relatively far apart until convergence is apphed. All GPS implementations developed by other grotinas,
we have seen to date, use Cartesian grids to coordinate phera&ion of parameter space.

Lattice theory (which builds heavily on the closely-reth®ibjects oh-dimensional sphere-packings and error-correcting
codes) provides a natural alternative to Cartesian gridsh® discretization of parameter space. Conway & Sloan8g)L9
provides a comprehensive mathematical reference on mapgrtemt elements of lattice theory; the succinct up-tedat
review of this subject in Bewley, Belitz, & Cessna (2011)dayut out essentially everything that is needed to apply this
otherwise somewhat abstruse subject in practical apjitat The standard measures of lattice uniformity (descriim
Conway & Sloane 1998 and summarized in Bewley, Belitz, & @as®011) are

e thepacking densityA [that is, the percentage of the domain contained within gfeeses when identical spheres with
the largest radius possible such that the spheres do ndapvare centered at each lattice point],

e thecovering thicknes® [that is, the average number of spheres that contain any pothe domain when identical
spheres with the smallest radius possible such that thg eeémt in the domain is contained within at least one sphere
are centered at each lattice point],

e an appropriately-normalized measure of thean-squared quantization error per dimensi@ and

e thekissing numbert [that it, the number of nearest neighbors of each latticathoi

By all four of these standard measures, Cartesian gridsnbedughly nonuniform as the dimensianof the parameter
space under consideration is increased; for example=r24 dimensions,

e the Cartesian gridZ?*, is characterized b = 1.150e— 10, © = 4200263 G = 0.08333 andt = 48, whereas
e the Leech lattice/\,4, is characterized byA =0.001930 ©=7.904 G=0.06577 andt = 196560

A series of highly (in most dimensions, maximally) densdidas, referred to as thiaminatedlattices and denoted,,
may be constructed in dimensions= 2 to 23 by appropriately restricting the remarkable Leedtickn mentioned above to
successively lower and lower dimensions. IRee 2 to 8, the resulting lattices are equivalent, respectjuelythe so-called
root latticesAy, D3, D4, Ds, Eg, E7, andEg, each of which have fairly simple constructions and assediguantization
algorithms, as reviewed in Bewley, Belitz, & Cessna (20kbme of the salient properties of these lattices are cordpare
with the corresponding Cartesian grids in Table 1, #ifeand A\, lattices are visualized in Figure 1, and tfé and A3

1The radius of these nonoverlapping spheres, callechétoing radius is usually denoteg.
2The radius of these overlapping spheres that cover the aomailed thecovering radius is usually denotedr.



lattice ‘ A ‘ (€] ‘ G ‘ T H Available points to select the poll set from as the grid isnesdi

L/O: 8, 16, 32, 64, 128,.. (see Figures 1a, 3, and 4)
Z: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, (see Figures 1b and 5)

Ar =Ny 0.90690 | 1.2092 | 0.08019| 6 N: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, (see Figures 1c and 6)

D, = 72 0.78540 | 1.5708 | 0.08333| 4

L/O: 26, 98, 386, 1538, 6146,. (see Figure 2a)
7: 6, 18, 38, 66, 102, 146, 198, 258, 326, 402, (see Figure 2b)

D3~ A3~z | 0.74048 | 2.0944 | 0.07874| 12 N: 12,42, 92, 162, 252, 362, 492, 642, 812, 1002,(see Figure 2c)

VA 0.52360 | 2.7207 | 0.08333| 6

L/O: 80, 544, 4160, 32896, 26240Q,
Z: 8, 32, 88, 192, 360, 608, 952, 1408, 1992, 2720,

DYE=V\Vi 0.61685| 2.4674 | 0.07660 | 24 N: 24, 144, 456, 1056, 2040, 3504, 5544, 8256, 11736, 16080,

74 0.30843 | 4.9348 | 0.08333| 8

L/O: 242, 2882, 42242, 660482, 10506242,
Z: 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290, 14002,

D5~ A5 0.46526 | 4.5977 | 0.07579| 40 A: 40, 370, 1640, 4930, 11752, 24050, 44200, 75010, 11972MQL8. ..

75 0.16449 | 9.1955 | 0.08333| 10

L/O: 728, 14896, 413792, 12746944, 403964288,
Z:12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436, 58728,

Es = Ng 0.37295| 7.0722 | 0.07435| 72 N: 72, 1062, 6696, 26316, 77688, 189810, 405720, 785304,1D4082376126, ..

78 0.08075| 17.441 | 0.08333| 12

L/O: 2186, 75938, 3959426, 239479298, 15105828866,

z’ 0.03691| 33.498 | 0.08333) 14 Z: 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598, 20976
E Ay 0.29530 | 13.810 | 0.07323| 126 1\53.5262026892898%%%%166133506 490014, 1433810, 3573054, BO25

2| ooises) easas| 0063|168 | JO 8 T Oure sand, 57008, GG, 157164, 33268848
Es = Ag 0.25367 | 4.0587 | 0.07168| 240 A: 240, 9120, 121680, 864960, 4113840, 14905440, 44480400,

114879360, 265422960, 561403680,

TABLE I: Characteristics up tm = 8 of the Cartesian gri@" as compared with thé, lattice. Listed first are the packing density
covering thicknes®, mean squared quantization error per dimen&orand kissing number, all of which indicate the lattice uniformity;
note that/An outperformsZ" in every metric, with the differences becoming especialignpunced as is increased. The last column
indicates the number of available points to select the pailifom at thek'th level of grid refiniment; ‘L/O:" denotes the LTMADS or
OrthoMADS contexts (§I-C),Z:" denotes theZ-MADS context (§1-D), and A:’denotes the\-MADS context (8I-E and 8llI).

lattices are visualized in Figure 2. A primary focus of ousaarch program is to investigate how such highly uniform
n-dimensional lattices may be used to accelerate GPS digusit

A. Successive polling (SP)

The simplest prototype GPS algorithm, referred to hersumsessive pollingSP), starts from a candidate minimum point
(CMP) on a given mesh and polls (that is, checks) the valudefunction at a set of nearest-neighbor mesh points which
positively spafi the feasible neighborhood of the CMP. If a function valuedowhan that of the CMP is located during
the poll, the new best point is defined as the new CMP, and tbeeps repeated; if the poll fails to find a point with a
better function value, then the mesh is refined by some intiagéor®, so that the function evaluations on the coarser mesh
coincide with points on the refined mesh (and may thus be deeffieiently as the iterations proceed on successivelyeadfin
meshes), and the process repeated until convergence.

Unfortunately, the prototype SP algorithm described absw®nvergent (albeit to a local minimum) only if the paraemet
space being explored is unconstrained and the functiomylmgtimized is continuously differentialStethat is, if the function
being optimized is sufficiently smooth that, after a suffitisumber of grid refinements, the function is locally flat eglo
that, if the CMP is not yet at a minimum, one of the poll pointdich, again, are distributed over a set of directions that
positively span the neighborhood of the CMP) is guarantedthve an improved function value, below that of the CMP. For

3Note that Conway & Sloane (1998, p. 12) state: “A related iappibn that has not yet received much attention is the ughesfe packings for solving
n-dimensional search or approximation problems”; this iaotly the focus of this research program.

4A set of lattice points is said tpositively sparthe feasible neighborhood of the CMP if any point in the fielesheighborhood of the CMP may be
reached by a linear combination witton-negative coefficientsf the vectors from the CMP to the poll points.

STypically, a factor of two is used, in order to keep the refieaimof the mesh as slow as possible as the iteration proceeds.

6A function is said to becontinuously differentiabléf its derivative is (a) defined everywhere, and (b) contiou
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Fig. 1: The (a, b)Z? and (c)A, lattices, indicating (a) the first three shells of potenpall points onZ?2 used in the LTMADS and
OrthoMADS formulations, and (b, c) the first five shells of gutial poll points used, respectively, in ttMADS and A-MADS
formulations. The number of points in all three sets of shédirranged, respectively, in squares, diamonds, and begaground the
CMP) are listed in Table 1.

Fig. 2: The (a, b)Z3 and (c)Agz lattices, indicating (a) the first three shells of potenpall points onZ3 used in the LTMADS and
OrthoMADS formulations, and (b, c¢) the first three shells otgmtial poll points used, respectively, in tleMADS and A-MADS
formulations. The number of points in all three sets of sh@rranged, respectively, in cubes, octahedra, and atedta around the
CMP) are listed in Table 1.

general nonsmooth functions, for functions that are onbcewise differentiable or even for continuously differentiable
functions with hard constraints on the feasible domain irapeter space, the SP algorithm is not always convergetticas
finite number of poll directions available might miss thediéée descent directions around the CMP altogether, régssadf
the level of grid refinement. Indeed, in the constrained Ghskee CMP is on the constraint boundary, then in most cases t
feasible poll points dmot positively span the feasible neighborhood of the CMP rdgasdof the level of grid refinement;
this is a key challenge that the poll steps in the MADS clasalgdrithms, discussed further below, are specifically glessil
to address.

B. SMF and LABDOGS

The surrogate management framewd&MF) of Booker et al. (1999) is a generalization of the SPhoétdescribed above
that alternates between a SP-type ‘poll’ step, and ‘seatap which cleverly leverages a Kriging-based interporatf all
existing function evaluations in order to identify promigiand relatively unexplored regions of parameter spackizBe
Bewley (2011) extend the SMF to incorporate lattices, ansbather significantimprovemefifsn a manner intended to make
maximal use of each and every function evaluation, whichaasumed to be expensive, during the optimization process.
The resultinglattice-based derivative-free optimization via globakregates (LABDOGS) algorithm shows a significant
improvement in the rate of convergence over the original Sigjorithm.

When used appropriately, the search step of the SMF and LAB®@Ilgorithms can in fact be used to assglebal
convergence, even when the function being optimized is moosh and/or the parameter space being considered is con-

7An example of giecewise differentiabléunction is one with a cusp (akin to the hard chine along thigobo centerline of the hull of many high-speed
boats), with the function being continuously different@lon either side of the cusp.
8Most notably, a markedly improved search function, as ssiggieby Jones (2001).



Fig. 3: The underlying Cartesian grié? ( ) and two successive factor-of-four refinements of this g@fidm left to right) in the
n=2 LTMADS algorithm. Given a CMP at the center of each subfigtine shell of points from which the poll points are selectesl a
marked §), and a representative poll set is indicatey ¢his poll set forms a minimal positive basis-== ), with n+ 1 vectors around
the CMP.

Fig. 4: The underlying Cartesian grig? (—— ) and two successive factor-of-four refinements of this gnidhe n = 2 OrthoMADS
algorithm (cf. Figure 3). The shell of points from which thellppoints are selected are markes),(and a representative poll set is
indicated ¢); this poll set forms an (orthogonal) maximal positive Bas—— ), with 2n vectors around the CMP.

strained, despite the fact that the SP-type poll step of i€ &nd LABDOGS algorithms, taken on their own, don’t even
establish local convergence for nonsmooth or constraingdtions, as discussed above. That is, the search step 8MFRe
and LABDOGS algorithms can be designed such that, as the ewuonftfunction evaluations of the algorithm gets large,
the function evaluations ultimately become dense overrpatar space, thereby ensuring global convergence (fondurt
discussion, see Torczon 1997, Booker et al. 1999, Jones, 2001Belitz & Bewley 2011).

C. Mesh Adaptive Direct Search (LTMADS & OrthoMADS)

Mesh Adaptive Direct SearctMADS) algorithms are an alternative class of GPS methodsgded to overcome the
fundamental convergence shortcoming of the polling atgoriused in the prototype SP method (and built upon in the SMF
and LABDOGS methods), as described above. They accompiisioy increasing (without bound) the number of directions
around current CMP that may be polled as the grid is refinedhasiumber of grid refinements performed increases, the
possible polling directions ultimately become dense otwer feasible neighborhood of the CMP. This is achieved in the
MADS setting, in general, by selecting the poll points frorshelP of non-nearest-neighbor mesh points around the CMP.
Existing variants of MADS include LTMADS (Abramson, Audé&t,Dennis 2005; for a graphical depiction, see Figure 3)
and OrthoMADS (Audet & Dennis 2008; for a graphical depictisee Figure 4), the latter of which essentially supercedes
the former, and is becoming increasingly popular for pcattnumerical optimization problems with expensive fuoics
(see, e.g., Marsden et al., 2011). Both LTMADS and OrthoMA&8 based on an underlying Cartesian diiYj with
LTMADS based orminimal positive bases, with+ 1 vectors around the CMP, and OrthoMADS basedaximalpositive
bases, with & vectors around the CMP. In both the LTMADS and OrthoMADS aiftpons, the underlying grid is refined by
a factor offour upon each refinement of the gttiwhereas the shell of points from which the next poll set ibécselcted

SWe use the wordshell in this work to denote the surface of the region given by tbavex hull of the specified points.
10That is, after just five grid refinements, the refined grid thas less than /1000 of the original grid spacing in every coordinate dirett
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Fig. 5: The underlying Cartesian grié? ( ) and five successive factor-of-two refinements of this gnidhie n =2 Z-MADS

algorithm (cf. Figures 3 and 4). The set of points from whikh poll points are selected are markedl @nd a representative poll set is
indicated 6); this poll set forms a maximal positive basis around the CdfiPthe original grid and a minimal positive basis around the
CMP on the others ~——).

lie on a hypercube around the CMP whose width is reduced only factor oftwo upon each refinement of the grid. That
is, the set of potential poll points around the CMP in the LTDR and OrthoMADS formulations is the set of points on
the Z" grid of L. norm X (see Figures 1a and 2a), scaled down by a factor/df, wherek = 0,1,2,... is the number of
grid refinements performed thus far; the LTMADS algorithnil w&lectn+ 1 of these points to poll (see Figure 3), whereas
the OrthoMADS algorithm will selecti2of these points to poll (see Figure 4). Thus, as the undeyl@artesian grid is
successively refined in LTMADS and OrthoMADS, the shell ofrp® from which the poll is selected contains successively
more and more points, ultimately increasing in number byctofaof ~ 2"~1 upon each refinement of t1#" grid (see Table

1). Given an appropriate scheme for selecting the poll pdimtactually use from this shell of possible poll points ar@u
the CMP, convergence (albeit, to local minima) of the MAD§aaithm may thus be established (see Abramson, Audet, &
Dennis 2005 and Audet & Dennis 2008) even when the functidgmgbeptimized is nonsmooth, and/or the parameter space
being considered is constrained.

LTMADS selects the first ‘seed’ vector of the poll set usingseydo-random algorithm, then builds a minimal positive
basis via a stochastiower triangular construction (thus motivating the algorithm name); forailst see Abramson, Audet,

& Dennis (2005). As illustrated in in Figure 3, the radial atular uniformity of the poll sets generated by the LTMADS
algorithm can both be poor; the poll set shown in in Figure 8a tine poll vector that is/n longer than the others, and
the angles between the poll vectors vary from? @) 135'.

OrthoMADS, in contrast, selects the first ‘seed’ vector & foll set using a (low discrepancy) ‘quasi-random’ Halton
sequence, builds up set of— 1 directions that arerthogonalto this seed (thus motivating the algorithm name) via a
Householder-based QR algorithm, then finds thg@ints amongst the (hypercube-shaped) shell of poteraibppints that
are closest to these directions and their opposites; faildesee Audet & Dennis (2008). As illustrated in in Figuretlde
radial and angular uniformity of the poll sets generatedhsy ®rthoMADS algorithm fon = 2 are perfect. Unfortunately,
for n > 2, the radial and angular uniformity of the OrthoMADS poltsean, again, both be poor. Consider, e.g., the case
with n= 3 and a first seed vector of the poll set oriented torwards drileeocorners of the cube; it is clearly not possible



F|g 6: The underlylng'\g attice ‘(/ ‘ /)‘ and five successive factor-of-two refinements of thisdatin then =2 A-MADS algoritm
(cf. Figures 3, 4, and 5). The set of points from which the polhts are selected are marked, (and a representative poll set is indicated
(o); this poll set forms a minimal positive basis around the C{(Vir—).

to select the remaining five poll points to provide both goadial uniformity'! and good angular uniformity in this case.
Note also that an OrthoMADS poll requires function evaluations to complete, rather than the1 function evaluations
required to complete a poll on a minimum positive basis, saglthat used by LTMADS; for larger values of this fact
alone results in about a factor of 2 increase in the numbeumndtion evaluations required for each complete poll step.

D. Slowing the mesh refinement of Cartesian-based MADS itigts Z-MADS)

Before we discuss shifting the MADS algorithm onto a morefanm lattice, we first note that the factor-of-four method
of successive refinement, as described in the previousseaiid illustrated in Figures 3 and 4, is not the only choigeafo
MADS-type algorithm on a Cartesian grid. As illustrated iiglte 5, the Cartesian grid may instead be refined only by a
factor oftwo whenever a poll step fails; this helps to slow the refineménhe underlying mesh as the iterations proceed,
thus respecting the overall GPS objective of keeping fanativaluations relatively far apart until convergence igrapched.

As the Cartesian grid is refined in this modified approachctviwve will call Z-MADS, the shell of points around the CMP
from which the poll points are selected is increased one’*labf@ time (see Figures 1b & 2b). Thus, as the underlying
Cartesian grid is successively refineddrMADS, the shell of points from which the poll is selectedimiately decreases in
width by a factor of~ 2 upon each refinement of the grid. Further, as the underl@agesian grid is successively refined,
the shell of points from which the poll is selected again aord successively more and more points; the available goint
to select the poll set from in this case is the number of pditteps from the origin orZ" for k=1,2,3,... (that is, the
coordination sequencef Z", as listed in Table 1). Noting the sentence at the end of teeigus subsection, at each poll
step, the preferred implementation of theMADS algorithm selects1+ 1 of these points to poll.

E. An overview of Lattice-based MADS-MADS)

The present paper demonstrates how uniform lattices ofgHamily may be used to significantly accelerate the convergen
of the MADS class of algorithms in order to solve the consiedi nonsmooth optimization problem argfiix) : x € Q}
whereQ c R". The functionf(x) to be minimized is treated in this setting as a ‘black box'vdrich derivative information

11The radial nonuniformity of this approach is quantified .



is perhaps impossible to derive and, even if it can be derisedossibly poorly behaved due to the potentially nonstimoot
nature of the function of interest. The resulting optimiaatalgorithm, dubbed\-MADS (for a graphical depiction, see
Figure 6), follows naturally from th&-MADS algorithm described above, with the exploration ofgraeter coordinated by
the laminated latticeA, rather than the Cartesian gré&l'. As discussed in Conway & Sloane (1997) and Baake & Grimm
(1997), closed-form expressions of the coordination sece® of/\; throughAg (that is, the number of potential polling
points in each shell used by tleMADS algorithm) are given by the coefficients of the serigpansions ak = 0 of the
following expressions:

Sh,(X) = (1+4x+ )/ (1—x)?,

Sha(¥) = (14+9Xx+94+x3)/(1—x)3,

Sh,(X) = (14 20x+ 542+ 203 +x*) /(1 — )%,

She(X) = (1+ 35x+ 180¢% + 180¢ + 35¢* + x°) /(1 — x)°,

Shg(X) = (1+ 66x+ 645+ 1384¢ 4 645¢ + 66x° +x°) /(1 —x)®,

Sh,(X) = (14 11K+ 20334+ 8211 + 8787%* + 20375 + 119° + x') /(1 — x)”,

She(X) = (1+ 232+ 7228¢ + 55384 + 133510 + 107224 + 245088 + 232 +x8) /(1 — x)8.

Such series expansions are easily calculated in, e.g.,evigttica or WolfrarfAlpha; the first 10 terms of each of these
series are listed in Table 1.
The resulting\-MADS algorithm is quite straightforward to use, thoughnsiigant care must be exercised on several subtle

issues in its implementation in order to ensure the maximat@ of convergence of the resulting algorithm; after explpr

a bit further the some geometrical considerations of thisnfdation in 8ll, these implementation issues are addresse
length in 8lII. In 81X, we attempt to quantify the impact ofamof the individual implementation issues discussed hede a
in 8lll in focused numerical experiments; we then verifyttitae final A-MADS algorithm converges significantly faster
than the previous OrthoMADS algorithm on some represemtaést problems, and provide some concluding remarks.

Il. GEOMETRICAL CONSIDERATIONS

We now consider further some relevamtdimensional geometrical issues related to this optinomaframework. We
are specifically interested in-dimensionalconvex polytopeghat is, inn-dimensional convex objects with flat sides, more
commonly calledpolygonsin n= 2 dimensionspolyhedronsn n= 3 dimensions, angolychoronsin n =4 dimensions (a
good reference on this general subject area is Griinbaur®)200

The Voronoi cellof a lattice is the set of all points that are as close to thgiras they are to any other lattice point;
stated another way, the Voronoi cell contains exactly thmsiats that quantize to the origin (or, shifting the Voromeil
appropriately, to any other lattice point) when performiaglice quantization. The dual of any convex polytope may be
formed by the process gfolar reciprocation(Griinbaum 2002). The dual of the Voronoi cell is called Bedaunay cell

On the Cartesian lattice and the root lattiohs Dn, Eg, E7, and Eg, the Voronoi cells are established solely by the
locations of the nearest neighbors to the origin. As disadi$srther in Chapter 21 of Conway & Sloane 1998, defiriras
the kissing number of the correspondinglimensional lattice, the Voronoi cells of these latticesynbe constructed by the
union oft identical (but rotatedjundamental simplicegach of which has the origin amdother points as vertices (identified
precisely in Figures 21.6, 21.7, and 21.8 of Conway & Sloa®@8]). The(n— 1)-dimensional face of each fundamental
simplex that is opposite to the origin forms a perpendicbiaector of the line segment between the origin and each of
the nearest neighbors of the origin on the corresponditigdatthe Voronoi cell is then the convexdimensional region
contained by all of these(n— 1)-dimensional faces. So defined, the Voronoi cell of e A, lattice is ahexagon(with
T = 6 one-dimensional faces, a.k.a. edges), the Voronoi ceth@D3; = Az = A3 lattice is arhombic dodecahedrofwith
T = 12 two-dimensional faces), and the Voronoi cell of e /4 lattice is a24-cell (a.k.a.icositetrachoronwith T = 24
three-dimensional faces); the Voronoi cells/&f through/Ag are less commonly known structures, but are constructed in
the same fashion. The Delaunay cells of these lattices ightte duals of the corresponding Voronoi cells) are eactplsi
the convex hull of the nearest neighbors of the origin; thins, Delaunay cell of thé\; lattice is also ehexagon(rotated
30° from the corresponding Voronoi cell), the Delaunay cell fed A\3 lattice is acuboctahedropand the Delaunay cell of
the /\4 lattice is also &4-cell (again, rotated).

As discussed previously, the LTMADS and OrthoMADS formigdas build out shells of potential polling points in the
shapes of hypercubes (see Figures la and 2a), which aresglyetie shape of the Voronoi cells of the corresponding
Cartesian latticeZ". In n= 2 to 8 dimensions, a hypercube goes by the following nasgsare cube tesseragtpenteract
hexeract hepteract andocteract

The Z-MADS formulation, in contrast, builds out shells of pot@htpolling points a given number of hops from the
CMP on theZ" lattice (see Figures 1b and 2b). These shells are precisehei shapes of the convex hulls of the nearest
neighbors of the origin (that is, of the corresponding Dekucells, or the duals of the corresponding Voronoi celiste



LTMADS/OrthoMADS Z-MADS N-MADS

n | shell shape radial nonuniformity shell shape radial nonuniformity shell shape radial nonuniformity
2 square V2~ 1414 diamond V21414 hexagon \/4/3~1.155

3 cube V3~ 1732 octahedron V3= 1732 cuboctaheron V2~1414

4 | tesseract V4 =2.000 16-cell V4 =2.000 24-cell V21414

5 | penteract VB~ 2236 pentacross VB~ 2236 (see text) \/5/2~ 1581

6 | hexeract V6~ 2.449 hexacross V6~ 2.449 (see text) \/8/3~1.633

7 | hepteract V7~ 2646 heptacross V7~ 2646 (see text) V3~ 1732

8 octeract V8~ 2828 octacross V8~ 2828 (see text) V2~1.414

TABLE II: Radial nonuniformity of the shell of potenial pglioints in the LTMADS/OrthoMADSZ-MADS, andA-MADS formulations,
as a function of the dimensiom

specifically that the duals of hypercubes are knowrrass polytopesin n=2 to 8 dimensions, a cross polytope goes by
the following namessquaré?, octahedron 16-cell, pentacrosshexacrossheptacrossandoctacross

Similarly, the A-MADS formulation builds out sets of potential polling ptéra given number of hops from the CMP on
the A\, lattice (see Figures 1c and 2c). These shells are precisdahei shapes of the corresponding Delaunay cells which,
for n=2 to 8 dimensions, are simply the convex hulls of the lattio{s that are nearest neighbors of the origin in the
corresponding\y lattice, as described above.

The resulting shell shapes in the LTMADS/OrthoMAD&MADS, andA-MADS formulations are summarized in Table
2. The radial nonuniformity of each of these shells is defihete as the maximal radius of the shell (at a vertex) divided
by the minimal radius of the shell (at the center of a facey, qmantifies the maximum radial nonuniformity possible ia th
corresponding poll sets. Remarkably, due to the polar recgiion process mentioned previously, which relates a/@on
polytope and it's dual, the radial nonuniformity of a Voreroell and the the radial nonuniformity of the corresponding
Delaunay cell of a lattice are, in fact, equal. Using the tiotaintroduced previously, they are both given by the cingr
radius divided by the packing radius [that is, Byp] of the lattice, and may thus also be written as tfh root of the
covering thickness divided by th&th root of the packing density [that is, b®/A)Y" of the latticé?®.

It may finally be observed that, in all dimensions, the sheflpotential poll points in the LTMADS/OrthoMADS and
Z-MADS formulations are characterized by significantly meeyere radial nonuniformity than the shell of potentiall pol
points in the corresponding-MADS formulation, with the differences becoming espdgigironounced a® is increased,
as quantified in Table 2. This observation, in addition to slgmificantly improved spatial uniformity of th&, lattices as
compared with the&Z" grids used previously (apparently, by default) for the dimation of MADS algorithms, are two key
motivations for the present investigation.

Ill. | SSUES AFFECTING THE IMPLEMENTATION AND THE SPEED OF CONVERENCE OF THEA-MADS ALGORITHM

The basic idea of th&-MADS algorithm has already been laid out. To recap: stgriiith an initial, relatively coarsé
lattice with nearest neighbors spaakglapart, and starting from an initial feasible candidate minin point (CMP) on this
lattice, a set oh+ 1 points which are nearest neighbors to the CMP on the ladfieeselected in such a way asgositively
span(that is, to linearly span with non-negative coefficients nheighborhood of the CMP. The value of the function is
then polled (that is, checked) on these points. If a poll point is foundhva lower function value than that of the CMP,
then this new lattice point is defined as the new CMP, and thegss repeated; if not, then the lattice is refined by factor
of two, a new poll set (randomly reoriented) is chosen on #iimed lattice (from a shell of potential poll points contam
all lattice points that ar&+ 1 hops from the CMP, wherk is the number of lattice refinements performed thus far), and
the process repeated until convergence. There are a nurhbabfte issues that must be addressed in order to specty thi
algorithm completely, and to endow it with the maximum pbksiefficiency. These issues are now addressed.

12Since in the present case the Delaunay cell is rotatédfrén the corresponding Voronoi cell, the cross polytopariimg the Delaunay cell in the
n=2 case is perhaps better identified asl@armond.

13Recall that both the covering thicknegs and the packing densith of the lattices of interest in this work are listed in Tabletiys, the radial
nonuniformity values presented in Table 2 may be derivedctly from the® andA values presented in Table 1.

14An initial grid spacing of about four to eight gridpoints froone edge of the feasible domain to the other in each parardieéetion has proven
to be effective in our numerical experiments performed tte.dhote also that, in general, the scaling of each paranietttre optimization problem of
interest is found to have a significant effect on the rate oivemence of a GPS algorithm; the most effective scalingstf@wse in which, on average,
the function of interest varies at approximately the sante i each coordinate direction; this provides a general goatrive for when setting up an
optimization problem for solution via a GPS algorithm.



A. Moving around on, and quantizing to, the laminated l&it\,

Thetheoryof n-dimensional lattices is quite sophisticated (see Conwe§idane 1998); however, thgractical useof n-
dimensional lattices is entirely straightforward (see BgwBelitz, & Cessna 2011). Once the enumeration and cgegtign
algorithms for any given lattice are in place, as discusseldvh the lattice may be used in the present application in a
straightforward manner.

Any real lattice is defined simply by alhteger linear combinatior$ of the columns of an appropriate basis maix
Basis matrices for the seven laminated lattices considierdétis paper/\; throughAg, are given by

11
1 11 TN 111
Bn=[1 -1|, Ban=[-1 -1 1), By= o] B 11 :
1 1 A 11
-1
1/2 1 1/2
1 1/2 1 1 12
11 1/2 1 -1 1/2
1 1 1/2 B 1 1 12
Bns = 1 1 “1/2|0 Ba= 1 1 “1/2
1 -1 12 1 -1 -1/2
1 12 1 12
-1/2 -1/2
2 1 1/2
1 -1 1/2
1 -1 1/2
B 1 -1 1/2
Bhs = 1 -1 ~1/2
1 -1 12
1 12

~1/2

Note that, in the simple representations used abdge.N\g, and A7 are defined on hyperplanes of higher-dimensional
spaces; this presents only a relatively minor added coniplexhen enumerating the lattice points according to these
definitions. Several properties of the seven lattices smeeéfare listed in Table 1. Associated with each of thesecésttis

a straightforward and computationally efficieqtantizationalgorithm, described in 85 of Bewley, Belitz, & Cessna (2011
which takes any point iflR" and computes the closest point on the discrete laftice

1) Enumerating the nearest neighbors of a lattice:

In the computational implementation of tMeMADS algorithm, it is numerically tractable and conveniéo enumerate
explicitly the nearest neighbors of the origin of the latidhese nearest neighbors may be determined by takingtedien
linear combinations of the associated basis vectors, defibeve, for integer coefficients ranging fream to +m (initially
taking, say,m= 2), and keeping the distinct lattice points so generatetldha closest to the origin; if there atresuch
points generated (whereis listed for each lattice in Table 1), then finish, otherwisereasem by one and try again.

2) Bypassing the enumeration of subsequent shells of adaitti the practicalA-MADS algorithm:

For small values of, it is also numerically tractable to compute the first fewlishef neighbors outside of the nearest
neighbors, as depicted in Figures 1c & 2c. These subseqbelft snay be created by shifting the nearest-neighbor shell
each point of the outermost shell determined thus far, aegikeg track of all of the distinct new lattice points so gexted.
This method is computationally efficient for shells coniagnup to a few thousand lattice points.

However, for shells that contain more than a few thousanidégpoints (that is, for the outer shells in the higher disiens
n), the direct enumeration procedure described above becommerically intractable.

We thus avoid completely the direct enumerations of thelstmlitside of the nearest-neighbor shell in the practical
A-MADS algorithm. Instead, we determine the average radfusach target shell of points around the CMPand work
directly with the (normalized) desired padlirections scaling these directions by the average radius of the ttaigdl and
then quantizing to the nearest lattice point in order to getieethe corresponding poll point. For target shells of naalius
(that is, at most a few hops from the CMP), this approach nstpoll points on the target shell itself, as depicted in Fégu
1c & 2c. For target shells of larger radius, however, thisrapph returns poll points with, in fact, somewhat improved
radial uniformity than is possible when strictly using omgints on the target shell itself. This relaxation of thecstuse
of the shells defined in terms of number of hops from the origifound to work quite effectively in practice.

15That is, all linear combinations with integer coefficients.
18Knowing the nearest-neighbor distance at the present teévgtid refinement, as well as the radial nonuniformity of theget shell from Table 2, the
average radius of each target shell can be well approximaéd easily.



B. Evaluating the poll points: complete polling versus imgete polling

If a function value lower than that of the CMP is located dgrthe poll step ofA-MADS, the poll may be terminated
immediately, the new best point defined as the new CMP, angitheess repeated (a strategy referred tonasmplete
polling); alternatively, the poll step may be driven all the way tongdetion, after which the best point found during the
polling is identified as the new CMP (a strategy referred tc@splete polling} In all GPS settings that we have tested
to date, our numerical experiments indicate that, on aegragomplete polling is generally the most efficient chpice
incomplete polling is thus implemented A-MADS.

C. Refining the mesh

As mentioned previously and illustrated in Figure 6, theidatis refined only by a factor of two, rather than a factor
of four, whenever a poll step fails in the algorithm we progothis helps to slow the refinement of the underlying mesh
as the iterations proceed, thus respecting the overall GiRRtive of keeping function evaluations relatively faaapuntil
convergence is approached.

As in Z-MADS, as the lattice is refined inN-MADS, the shell of points around the CMP from which the patinds
are selected is increased essentidligne hop at a time (see Figures 1c & 2¢ and Figure 6). This shetitich closer to
spherical than are the shells of points considered in the ADB/OrthoMADS andZ-MADS contexts, as quantified in Table
2 of 8ll. As a consequence, the radial uniformity of iINeMIADS poll sets is substantially better than the radial amifity
of the LTMADS/OrthoMADS andZ-MADS poll sets.

The available points to select the poll set from as fhegrid is refined is thus given (again, essentiffjyby the
coordination sequence of the corresponding lattice;AHADS algorithm will selectn+ 1 of these points to poll, unless
previous function evaluations are available which may b@ated (for further discussion, see §llI-D.4). As listad Table
1, the coordination sequence of thg lattice grows faster than the coordination sequence of tieespondindZ” lattice,
and thus there are more points to pick fromNeMADS than there are ifZ-MADS at any given level of mesh refineméht

Note that ten factor-of-two grid refinements corresponda tefined grid that has less thaf1D00 of the original grid
spacing in every coordinate direction. As the dimensionhef problem under consideration is increased, this is pigbab
essentially as far as most practical derivative-free ogtition problems would ever be taken; the behavior as thebeam
of grid refinements is taken to infinity is, from the perspextof difficult practical problems to be solved with limited
computational resources, mostly a mathematical curipusit

Thus, in addition to aoarsestgrid spacing to be used by the optimization algorithm (seefiist paragraph of 8lll and
footnote 14), it is useful in the practical implementation/oMADS to also set dinestgrid spacing to be used by the
optimization algorithm. Note in Table 1 that, after about factor-of-two grid refinements in th-MADS algorithm, there
are alot of points available to select the poll set from. Once on thigdt grid, rather than refining the grid even further
after each failed poll step, it is practically useful to réman this finest grid level until all of the potential pollinpints
at this level have, one poll set at a time, been exhaustiedgked (or the CPU time allocated to perform the optimizatio
has run out), after which, if all of these poll sets fail to yicle a new CMP, the optimization algorithm simply termirsate
There is little practical use to refine the grid even furthent this, and so doing can actually lead to a substantiallyaed
overall rate of convergence and an increased sensitivityutberical precision issues, as the step size gets impa#gtic
small when too many grid refinements are performed.

D. Generating new poll sets

1) Minimizing the number of new function evaluations regdim each poll:

A significant difference between LTMADS and OrthoMADS, asciébed previously, is that one uses a minimal positive
basis at each poll step, whereas the other uses a maximéledmsis at each poll step. The numerical tests that we have
performed to date indicate that, all other things being e¢ualuding the approximate angular and radial uniformity

the respective poll sets), it is usually more efficient cotapianally to minimize the number of new function evaluago
required in each poll step, especially as the dimensiasf the problem is increased; thus, when no previous function
evaluations are available which may be exploited (for farttliscussion, see §l11-D.4), the use of minimal positivedsais
generally preferred. This is not a strong preference howeral it is entirely straightforward to implement poll seigh
more thann+ 1 poll points in theA-MADS algorithm.

17As mentioned in §llI-A.2, this method is modified slightly ihe practicalA-MADS algorithm for the outer shells.

18There are in fact many more points available in the LTMADSWOMADS context after a given number of mesh refinements thare are in the
A-MADS context after the same number of mesh refinements. kewan argument may be made that there is no real “need”, &oronvergence
persepective, for the number of available points in thelshedlpotential poll points in a MADS-type algorithm to grow guickly; a MADS algorithm will
only evaluate a small subset of the points in any given shsfivay. The fact that the number of points in each successie# grows without bound is
enough to establish convergence of the corresponding MAB&itam. As far as we can tell, the fact the number of pointshe LTMADS/OrthoMADS
shells grows extremely quickly (see Table 1) does not dgtii@nefit the overall rate of convergence of the practicdlADS or OrthoMADS algorithms.



2) Generating a uniform poll set that positively spans thighieorhood of the CMP leveraging a Thompson algorithm:
The flexible algorithm that we use to actually generate petl$ svith good angular uniformity in the present work while
performing the minimum number of new function evaluationsgible in each poll step is derived directly from the method
developed in §lI1.B of Belitz & Bewley (2011). In brief, to geratep poll points® on the target shell with good angular
uniformity from the CMP, we first modep “charged particles” distributed randomly on a sphere walius given by
the average radius of the target shell. A Thompson algorithithen used to drive this set of particles to an equilibrium
configuration on this sphere. The final equilibrium positarthese particles is then discretized to the nearest éapt@nts,
as motivated by the third paragraph of §llI-A.2. Finallyesie discretized points are checked to ensure that theyivebsit
span the neighborhood of the CMP, a test for which is givenliiA®f Belitz & Bewley (2011). If points so generated do
not positively span the neighborhood of the CMP, a differantlom initial distribution of the particles on the sphere may
be tried, and the process repeated; if the process stil faibroduce a discretized set pfpoints that positively span the
neighborhood of the CMRy is incremented by one, and the process repeated until avebgispanning set of poll points
is successfully found.

3) Implementing constraints on the feasible parameter doma
The feasible domain of parameter space over which the amtion is performed might in fact be difficult or impossibte t
identify and characterize a priori. Thus, the constraimshe feasible domain of parameter space are ignored coshphst
the stage of selecting which specific points from the targeti sre to be polled. If a given poll point proves to be infbkes
when it is ultimately evaluated, the corresponding funttialue is simply set to infinity (or, to an arbitrarily largalue),
and the poll step is continued. Since interpolating fumstiare not used by th&-MADS algorithm (in contrast with the
SMF and LABDOGS algorithms mentioned previously), this @ienmanner of handling the implementation of constraints
is entirely adequate.

4) Reusing existing function evaluations during each ptelps
It is a simple matter to incorporata existing function evaluations available on or within thegtt shell in the process
described in 8llI-D.2: “fixed” charged particles are simmgsigned to points on the unit sphere corresponding to the
existing function evaluations (that is, scaling their diste from the CMP appropriately), and other “free” chargeadigles
are allowed to move to equilibrium positions on the spherthénmanner described previously; the equilibrium posgioh
these free particles are then discretized to the neardselg@bints to generate the new poll points. By so doing, talmer
of new function evaluations required to complete a poll gigpich, taken together with the existing function evalaas,
positively span the neighborhood of the CMP) can often beged significantly.

5) Reorienting the poll set in a low-discrepency fashiormfine or more unsuccessful poll steps:

If a given poll step in thé\-MADS algorithm fails to identify a new CMP, after refiningeimesh and incrementing the shell
containing the possible poll points, the poll set must beieated. It is desirable that the orientation of this newl gelt
explore new directions around the CMP, not re-examine tlisetions already explored at the previous failed polpste
This problem might at first seem quite straightforward, lsuini fact one of the more subtle issues that must be reckoned
with in the MADS framework.

One could attempt to reorient the new poll set in a pseuddarnfashion; this is in fact what was implemented in
LTMADS. Though this approach will likely generate some neinections to explore with each new poll step, such an
approach will also waste computational effort with some @l points that are essentially aligned with polling diiens
that have already been tried (unsuccessfully) around themuCMP.

OrthoMADS thus introduced some sort of low-discrepancyagjtrandom’ Halton sequence on the first ‘seed’ vector
used to generate the poll set, in an attempt to generate larims set of polling directions. This first seed vector unigue
defines the remaining orthogonal directions of the poll sle¢émn = 2. For largem, however, it does not; by focusing only
on the successive placements of the seed vector, wheg, it is not at all clear that thentire new poll set will be well
differentiated from the previous sets of polling direc8aaiready explored around the current CMP.

In the present work, we thus propose a more geometric salitichis problem. Notably, our solution considex$ of
the directions of the failed poll sets, as well @t of the directions the prospective new poll set (that is, nst the seed
vectors that generate these directions). The approach wésus natural extension of the Thompson algorithm described
previously. We simply add additional fixed charged parficlgith substantially reduced charge, at the failed polhfgoirom
the previous (failed) poll sets when we solve the Thompsablpm for the new poll point8. This naturally generates
a new poll set which is not only itself highly uniform, but itsa generally well differentiated from the directions otth

1We may initially takep = n-+1; note that this algorithm is easily and naturally extenitethree important ways in §ll1-D.4, §l1l-D.5, and §l11-D.6

20A generalizedThompson formulation may also be used to account for theefospplied by the fixed particles associated with the poimis fthe
previous failed poll sets, applying a force that falls oféttr than the Ar? rule of normal charged particles. So doing achieves a eiffiiition between
the old and new directions in the resulting algorithm, butdteto reduce the additional deformation of the new poll Isat these additional fixed particles
might otherwise create.



previous (failed) poll sets around the CMP, thus generaiziaturally the idea of low-discrepansgquencesf vectors to
low-discrepancysetsof vectors.

6) Optional step: including a poll point designed to accaterconvergence when the function is localfy; C
As discussed in the second paragraph of §I-A, if

e the function is locally continuously differentiable,

e the CMP is not yet at a critical point,

e there are no active constraints,

e a poll set is considered which positively spans the CMP, and
e the grid spacing is sufficiently small,

then one of the poll points is guaranteed to provide an imguidunction value, below that of the CMP.

If all of the above assumptions are true, except that the gpating is not yet quite sufficiently small enough to ensure
that an improved function value is evident in the poll seattls, if quadratic terms in the local Taylor series expamsio
of the cost function are still significant), then it is stiatfprward to estimate the linear terms of the local Taylaiiese
expansion of the function if a poll step fails, and then toniifg the downhill direction in this locally linear appraxiation
of the function. This may be achieved simply by taking a lmisof the function evaluations in the most recent failedl pol
ste@!, denoted herd (x(V) = £() for i =1,..., p wherep > n+ 1. Fitting these function evaluations with the linear model
f(x) =x-g+b and assembling the results for each of theoll points, we may write

X:(Ll) . Xl('ll) 1 o1 f(l)
X:(Lz) . Xr(12) 1 : (2
: : : : On :
X(1p> X'(1p) 1 b f(P)

If p=n+1, this system of equations may be solved for the gradieift p > n+ 1, a least-squares estimate of the gradient
g is easily determined from this system of equations. Eithay,the gradient so determined may be normalized and scaled
by the average radius of the target shell of the subsequdinstep, and the closest lattice point on the refined grid ® th
negative of this vector (that is, in the downhill directiam the locally linear approximation of the function) fountius
generating what we might identify as at least a new “lattioapof interest”. The subsequent poll set may thus be fotoed
include this new lattice point of interest (and, perhapbgsitled to evaluate this new poll point first). Using the Tipson
algorithm described previously, of course, this is quitesyeto accomplish: simply add one more fixed charged particle
on the sphere corresponding to this new lattice point ofr@sie and optimize the remaining free particles as degtribe
previously. Note that, if the function is not expected to beally C* fairly often as the iteration proceeds, or if a given poll
step includes one or more poll points which prove to be indasthen this optional step should certainly be skipped.

E. Keeping a given poll orientation if a poll successfullydira new CMP, facilitating discrete line minimizations

A new poll set orientation is selected (and the grid refinedy @fter a poll step does not successfully identify a new
CMP. If, on the other hand, a poll step succeeds in identfigmew CMP, then the old poll set orientation is used around
the new CMP (without refining the grid), and the first direntjpolled is in the same direction as moved previously. Since
incomplete polling is used (see 8llII-B), if this new poll pbiagain reduces the function value, then the iteration geds
further in this direction without evaluating the poll panin the other directions, thus allowing something of a diter
line minimization to be performed via successive (incortg)l@oll steps, all proceeding in the same direction aftengls
function evaluation at each poll step. This strategy, comiwith the mesh coarsening heuristics discussed in §li¢iels
to make maximum use out of any given descent direction that Ineaidentified, which in some problems (such as those
with active constraints, or those with only piecewise d#fetiable functions, as discussed previously) might irt fake
several failed poll steps (that is, many many function eaduns) in order to find.

F. Coarsening the mesh
Still need to write this subsection, in the style of the above

IV. | SOLATED NUMERICAL TESTING OF EACH COMPONENT ISSUE LEADING @ A-MADS

In order to isolate the effects of the options presented gti@e 3, several MADS algorithms, each incrementally défe
from the previous, were numerically tested to determine gamative convergence efficiencies. In testing the comjvarat
performance of two algorithms, a statistically relevanmier of optimizations were performed to calculate the ayera
performance of each algorithm. In each test, the cost fancdnsists of a randomly generated quadratic bowl. Themuim

21The function value at the CMP itself may be ignored in thistfigcause this function value does not affect the linear aissfiis in local Taylor series
expansion of the function.



Ln | | 2 [ 345567 ]s |

p | Shells 12,48, | 61.1 | 56.0 | 543 | 525 | 56.6 | 57.7 | 57.7
'S

| Shells 12.3.4.. | 0.828 | 0.905 | 0.872 | 0.921 | 0.874 | 0.868 | 0.896

p | Zn 453 | 50.5 | 54.4 | 543 | 562 | 64.1 | 6638
'S

T A 111 | 1.01 | 0.946 | 0.948 | 0.930 | 0.873 | 0.8173

p | Max basis 47.7 | 53.6 | 655 | 78.7 | 851 | 919 | 945
VS

r | Min basis 1.36 | 1.37 | 0.868 | 0.602 | 0.481 | 0.369 | 0.276

p | Complete 703 | 716 | 751 | 755 | 69.2 | 77.1 | 821
VS

r | Incomplete 0.829 | 0.819 | 0.691 | 0.737 | 0.784 | 0.633 | 0.572

p | OrthoMADS 449 | 514 | 56.1 | 784 | 740 | 79.8 | 848
'S

r | AMADS 0.839 | 0.865 | 0.821 | 0.638 | 0.81 | 0.607 | 0.48

TABLE llI: Convergence comparison of fundamental featunéshe A-MADS algorithm

of this cost function is selected as a random point a distafice= 1 from the origin. The initial CMP is a random point
located a distance = 10 from the origin. The lattice scaling of th&, lattice was set to oneRz, = 1; the scaling of the
N lattices were selected such that the volume of the vororlbinea&tched the volume of th&, voronoi cell at the scaling
above, that isRa, = (An,/Dz,)".

Both optimizations begin at the initial CMP and are then @vge to a tolerance of.001 of the initial CMP value. One
thousand such runs were performed for each algorithm cdsgwarin comparing two algorithms A and B, the parameters
qguantifying performance are the percent of total runs tlgarghm B converged faster than algorithm g, and the ratio of
the average number of functional evaluations algorithm duired to the number of evaluations that algorithm A reciire
r. Thus, asp approaches 100 andapproaches 0, algorithm B becomes far more efficient thaoritthgn A.

As discussed in Section 3, in-MADS there is the option to build the poll set, refining withfactor of 4, on shells
1,2,4,8,16... or refining by a factor of 2, on shells 4,3,4, ..... We thus tes’\-MADS with a minimal positive basis and
fast, factor of 4, refinement, then slow, factor of two, refiremt. As shown in lines 1 and 2 of Table Ill, we find that the
slow refinement scheme results in a more efficient algorithm.

Next, we investigate the effect of the lattice choice in a M&RIgorithm by comparing-MADS to A-MADS, both
utilizing a maximal positive basis, and the slow factor2ofefinement discussed above. As can be seen in lines 3-4 of
Table Ill, by simply replacing th&, grid with the A, lattice, the MADS algorithm makes significant gains in effity
in dimensions higher than 3. In lower dimensions, as expette performance difference is negligible; as the dinwrsi
increases the performance difference becomes more andprameunced. These results indicate how efficient lattices a
the preferred choice compared to the Cartesian grid fordinating MADS optimizations, particularly as the dimensiaf
the cost function increases.

The choice of a minimal over a maximal positive basis hastodhe authors’ knowledge, been numerically established in
the literature. While it has often been suggest that a mihbasisshouldincrease convergence rates, we test this hypothesis
in lines 5-6 of Table Ill. The maximal basis is more efficientlow dimension f =2 and 3), as the dimension increases,
the difference between the choice of basis becomes sigmtifitae minimal basis provides superior performance to the
maximal basis. For maximizing efficiency in high dimensioasminimal positive is the appropriate configuration. As per
these results)\-MADS is configured to utilize a maximal basis far< 4 and a minimal basis for higher dimensions.

The question of incomplete polling (that is, terminating #oll step upon locating a superior CMP) compared to complet
polling (that is, evaluating the cost function on each mendfghe Poll set before redefining the CMP) has also remained
neglected in the literature. As such, the efficiency congaariof A-MADS, utilizing a minimal positive basis with factor-of-2
refinement, can be seen in lines 7-8 of Table Ill. The datarlgle@monstrate how the incomplete poll set is the approgria
choice for all dimensions.

These numerical results validate the utilizationN\FIMADS of the following: building poll sets on the Delaunayllse
of the A lattice, refining one shell per refinement (refining the meglafactor of 2); implementing a minimal compared
to a maximal positive basis in dimensions greater than fand using incomplete as opposed to complete polling. These
features make\-MADS unique among MADS-type algorithms. Having testedheaomponent leading to the definition
of A-MADS, the numerical comparison to OrthoMADS is made. Theuhls can be found in lines 9-10 of Table IM-
MADS demonstrates significantly improved convergencesra@mpared to OrthoMADS, requiring only 48% to 90% as
many function evaluations to reach convergence, and cgimgefaster than OrthoMADS in the majority of trials, witheth
performance difference becoming larger as the dimensidheotost function increases.



(n] 2] 38 [ 4 | 5 [ 6 [ 7 | 8 ]
P 571[5526] 5515 | 549 | 561 | 566 | 544
r | 0.90 | 0.923 | 0.9421] 0.8631] 0.8758 | 0.8757 | 0.901

TABLE IV: Performance comparison between OrthoMADS axdIADS on the Rosenbrock test function.
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Fig. 7: The efficiency metricp (L) and r (R) comparingA-MADS to OrthoMADS on the Rosenbrock cost function for caigence
goals of 01,0.05,0.001,0.0001 in dimension& = 2 (red circles)h =4 (magentat), n= 6 (black asterisk), and = 8 (green dots). Note
how A-MADS outperforms OrthoMADS in high dimensions for all cengence levels.

4

V. FURTHER NUMERICAL TESTING OF THE COMPLETEA\-MADS ALGORITHM

The above testing on randomly generated quadratic bowlgeprealuable in evaluating the relative efficiencies of masi
component selections in establishing (ReMADS algorithm. Testing comparing to OrthoMADS indicatas increase in
convergence rate. To further investigate these resulteutesting was performed, precisely as described almvéhe
n-dimensional Rosenbrock cost function. The standard 2dsional Rosenbrock function is well known as an optimarati
benchmark; the deep ‘valley’ in which the optimum lies mafasa particularly challenging convex optimization prainle
The analog in higher dimensions is given by

n/2
J(x) = 2[50(%4 —Xai)? + (X2i-1)?]
=

defined only for even dimensions. This function is convesxthvihe global minimum at1,1,1,...,1) where the function
has a value of zero.

The same series of tests described above were performededRasenbrock test function in dimensioms- 2,4, 6, 8.
The results can be seen in Table V. This data validates theéntegy of the previous testing on a more challenging cost
function, and confirms the superior convergence rate MABtADS has over OrthoMADS. As expected, the performance
difference between the Cartesian-based algorithm andtHgased algorithm increases with dimensionnka 2, A-MADS
requires 88% as many function evaluations to convergey=n8 it requires only 50% as many evaluations. Similarly, in
n=2,r =55; however, im=8,r =97. That is, OrthoMADS outperformes-MADS in only 3% of all test optimizations in
n= 8. This result is remarkable, and confirms the high perfoceaf theA-MADS algorithm compared to its competitors.

Recall from above that the convergence metpandr are defined with respect to a preselected level of conveggdioc
test convergence rates at various levels of converggnaaedr were calculated for four differing levels of convergencd:,0
0.05, 0001, 00001, optimizing then-dimensional Rosenbrock function, comparing OrthoMADSMMADS. The results
are graphically presented in 7. The superior performandeMfADS indicated by the previous analysis is verified at vagyi
levels of convergence. In=4 and greater\-MADS proves to have superior convergence rates to OrthoAaDall levels
of convergence. Generally speaking, the greater the Idvebuavergence (that is, the more difficult the optimizatiotie
greater the performance difference betwdeMADS and OrthoMADS.

Finally, we test the effects of the coarsening scheme @dliabove. The\-MADS coarsening methodology outlined
above emphasizes the reuse of the successful poll oriemtati the coarser grid after two consecutive successful Poll
steps on the finer grid, allowing the algorithm to maintaie firoper poll orientation, while taking a larger step toward
the minimum, thereby maintaining a larger average step aimk speeding convergence. To test the effect of coarsening
in this fashion, the same testing methodology outlined abweas used, testing-MADS without coarsening ta\-MADS
with coarsening on a statistically relevant number of qatdbowls, and then the-dimensional Rosenbrock function. The
results are summarized in Table V.



n] 2 [ 3] 4 [ 5 ] 6 | 7 | 8 ]
p| 346 | 325 324 | 496 | 826 | 481 | 484
r | 0.945 | 1.06 | 1.147 | 0.730 | 0.699 | 0.808 | 0.866
P
r

52.2 | N/A 58.8 N/A 82.6 N/A 74.4
1.03 | N/A | 0.984 | N/A | 0.699 | N/A | 0.864

TABLE V: Performance comparison betweAARMADS without, and with, coarsening, on quadratic bowlséb 1-2) and the Rosenbrock
test function (lines 3-4).

Coarsening offers superior convergence in high dimensipagicularly on the challenging Rosenbrock function. How
ever, somewhat surprisingly, on these convex and uncamsttaost functions, coarsening offered no advantage iredow
dimensions, in fact incurring a performance penalty. Notitat coarsening performed particularly well on the Rosacib
function, clearly delivering superior performance thae thon-coarsening algorithm. This indicates that impleingna
coarsening strategy will be more valuable on a cost funatith challenging behaviors. Unconstrained cost functiares
comparatively easy for a MADS algorithm to handle as logatindescent direction is straightforward; more challenging
is maintaining an appropriate mesh scaling in the presehd®m constraints. In the latter scenaleMADS often has
to perform many unsuccessful Poll steps before a descesdtidin can be located. WhilA-MADS’ ability to refine the
mesh more slowly than LTMADS and OrthoMADS prevents as muatr-oefinement during this process, often the mesh
is refined more than necessary. Under these circumstardegoairsening strategy is particularly appropriate. Thes,
recommend that users implement mesh coarsening on difionktrained optimization problems.

VI. A NUMERICAL EXAMPLE: LOCATING THE DEEPHOLE OF ALATTICE

An example of a research optimization problem that can beeglolvith A-MADS but not by a simpler SP pattern search
was encountered by the authors while performing numerinalyais of efficient lattices (see Bewley, Belitz, & Cessna
(2011)). The challenge is to calculate the location of a deele belonging to the origin node of a particular lattice. By
definition, a deep hole is the furthest point from a givenidathode that remains as close or closer to said node than any
other node of the lattice. Thus, if one enumerates a greabauwf lattice points surrounding the origin, any given poin
can be analyzed to determine whether or not said point lieésiwthe voronoi cell (that is, if the point is closer to the
origin than any other lattice point in the cloud). The ohijexis to locate the point furthest from the origin that rensain
the voronoi cell of the origin node. The cost function for thglattice can be seen in Figure 2.

In the interest of remaining computationally feasible, toastraints must be hard. This is performed by calculatirey t
distance from each node in the cloud to the CMP. If the digtdinam the CMP to the origin is less than the distance
from the CMP to any another node, the CMP lies inside the wairorll and the cost function value is the distance to
the origin. Otherwise, the CMP lies outside the voronoi,cafld as such is not valid for evaluation, so the cost function
value is infinity. This presents a challenging problem wheaditional derivative-based algorithms cannot be applées the
constraint surfaces are unknown, and SP and other simpleag@8thm fail to converge.

Under the only numerically feasible problem definition, as be seen in Figure 8, the Successive Polling algorithireseas
convergence upon encountering a constraint surface. Gmcalgorithm nears the constraint boundary, the only elémen
of the poll set with a component in the descent directionatad the constraint and the algorithm stalls. Th&IADS
algorithm, however, stochastically locates an orientatibowing it to follow the constraint directions and movésrey the
constraints to the deep hole. This method was used to lobatddep holes of a great number of lattices, allowing for the
calculation of many previously unknown metrics, reportedBewley, Belitz, & Cessna, (2011).

Figure 8 above clearly demonstrates one shortcoming of acnarsening MADS scheme on a cost function subject to
hard constraints: while the algorithm locates a suitabkedet direction, the mesh becomes very fine, limiting thp stee
taken. To rectify this, the coarsening scheme describedeatsoimplemented iM\-MADS, and the deep hole test function
is reconsidered. As can be seen in Figure 8, without coargettie step size along the black constraint boundary is very
small, requiring a great number of function evaluations aaverge. With coarsening, good descent directions areedgus
and the deep hole is located while maintaining a coarsergizil on average.

VIl. CONCLUSION

In this document we investigate the performance of currezgiMAdaptive Direct Search (MADS) methods, and introduce a
new MADS algorithm A-MADS. Via careful numerical testing, we conclusively damtrate that in the interest of algorithm
efficiency, it is highly desirable to coordiate a MADS seamrh (1) an efficient lattice, (2) to locate the Poll sets on the
Delauney cell of the lattice, (3) to refine the mesh by a facb® rather than a factor of 4, (4) to utilize a minimal
rather than a maximal positive basis in the appropriate dgieas, and (5) to implement incomplete polling of the Poll
sets. In dimensiona = 2,3,4 a maximal positive basis provides superior convergence tinimal basis. In additiorn/\-
MADS incorporates a mesh coarsening scheme that allowstiefepoll orientations to be maintained on the coarser mesh



= B =
0.8} ' o8l . ’ '
05l o5l
0.4t 0.4l
0.2} 0.2t
] ]
02} 02t
04} -0.4f
06+ DG
08} . / o8} . ) S
b , 1 1N . A
-1 -05 0 0.5 1 -1 -05 0 05 1

Fig. 8: Locating the deep holes of the lattice utilizing Successive Polling (left) ametMADS (right). The hard constraints are indicated
in black; the cost funtion contours are plotted as well. Tinability of the SP algorithm to handle constraints prevesdavergence;

A-MADS maintains convergence and locates the deep hole.
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Fig. 9: Locating the deep holes of tlAg lattice utilizing A-MADS with no coarsening, plotting the CMP as green dots ény coarsening
implemented (R), plotting the CMP as a black cross. The #@lgarwith coarsening enabled clearly maintains a largeramye step size,
speeding convergence in the presence of active constraints

preventing poor coarsening behaviors evident in otherridlgos. Unlike most GPS algorithm#-MADS can handle hard

constraints, as effectively demonstrated on the examgkeareh application of locating the deep holes of a lattice.

Testing of A-MADS against the competing OrthoMADS algorithm on quaidrbbwls and then-dimensional Rosenbrock
function indicates that\-MADS generally converges more rapidly than OrthoMADS, hwvthe performance difference
becoming greater in higher dimensions. Combining the gawi/ergence efficiency demonstrated in these tests and the
algorithm structure that inherits all the convergence bigha of previous MADS algorithm3a)\-MADS is the most efficient
MADS algorithm yet developed, and is the clear choice fofi@ift modern convex optimization problems.

* OLD STUFF IS INCLUDED BELOW THIS LINE. PULL ABOVE THIS LINE AND MASSAGE AS NECESSARY. *



In the second case, a minimal positive basis consisting -6fl points is desired. To locate the optimal minimal positive
basis onS, defined as the most spatially regular basis, a force-baptthiaation of N points on the hypersphere is
performed, holdingl fixed, as described in Belitz & Bewley (2011). Specificallgck of theN + 1 points are treated as
charged particles on a hypersphere, such that each exestseadn the others proportional to the inverse of the Eualide
distance separating them. Keeping the locationl diiked, the force on each of the remaining particles is catedlaThen,
the location of theN points on the hypersphere is iteratively updated to minénitze greatest force experienced by any
of the points. The points reach equilibrium forming a petifesymmetric minimal positive basis by definition. Theneth
Poll Set is calculated, as above, by finding the point§irthat best approximate these ideal directions. As aboven upo
refinement of the Shells, the possible directions of the pellbecomes dense, and the ideal directions generatedevia th
force-based optimization become included in the Shell.

A. Choosing a Polling Direction

In both variats ofA-MADS described above, an initial polling directi@his necessary to build a poll set on the shell
S. In LTMADS, the first poll vector is located by taking a noryatlistributed random direction in the hypersphere, then
restricting to the allowable fine mesh points. OrthoMADS sadddeterministic component to the direction by introducing
a poll vector based on a Halton Sequence. The Halton Sequéiece a pseudo-random, repeatable number sequence that
gives points that become dense in the unit hypercube. Byipihyiitg by 2 and shifting by the vector of ones, the Halton
Sequence easily gives vectors that become dense in the space

XCRyst ||X]lo=1

The advantage of using a Halton Sequence based pollingtidings that the sequence is repeatable, and large vargtion
from iteration to iteration are avoided. The repeatabibtymportant when the polling direction is to be reused asiptesly
described, being updated only when necessary. However|tarHgirection is suboptimally posed in an efficiency comtex
particularly when a MADS algorithm is implemented on a Gati

To maximize efficiency, the entire poll must be as uniform assible, both with respect to angular and spatial symmetric
of a single poll set, as well as minimizing angular and spatiagularity from poll set to poll set, on a given grid. This
necessity leads directly to the interest in the applicatbrdattices to the MADS algorithm. The Halton based polling
direction is less uniform than it could be in an angular umfily sense, as it biases the initial poll direction towarcbaner
of the cube in which the Halton direction is defined. In FigBrbelow, the angle between a given initial poll direction and
the x-axis was calculated 5000 times, with the results summarized via a histogramNAs2 in this case, it it clear that the
four corners of the unit cube are overproportionally repnésd. A random vector dense on the hypersphere, howeeer, se
in Figure 3 as well, is clearly uniform, and does not bias tb# get. The bias toward certain polling directions will itm
the performance of the MADS algorithm, as a good descenttitire will be located less regularly. When the direction is
dense in the hypersphere, the projection of the directida tire feasible Cartesian Shell in OrthoMADS will be unifdym
dense, but once the Shell begins to approximate a hypeespher direction should be chosen in a fashion to be dense in
a hypersphere rather than hypercube.

The Halton sequence chosen in OrthoMADS becomes dense iperdube, meaning that the polling directions on the
faces of the allowable hypercube are equally dense. Howexen the allowable region moves from a hypercube to a
hypersphere, the Halton direction used in OrthoMADS wilidbthe poll set.

To demonstrate the effect, 9000 optimization runs weregperéd inN = 10, using the minimal basis-MADS algorithm
described below. Randomly permuted quadratic cost funstigere shifted to a random minimum location. Two versions
of A-MADS were considered: one utilizing a Halton sequence geog the other a random direction in the hypersphere.
Direction re-using and incomplete polling as discussedwelere implemented for these tests. Both algorithms were
started on the same grid at the same point, and the averageenaifunction evaluations necessary for the same level of
convergence was computed. The algorithm utilizing a hygerse measureably outperformed its competitor, requirmg
average, 765 function evaluations, compared to 778 for thieoR-based algorithm. The performance hinderance irdibge
the bias of the direction dense in the hypercube is clearlgsmeble. For greatest efficiency, the polling directioouth
clearly be chosen via a method that produces direction®umiy dense on the surface of the hypersphere. This can be
as simple as simply choosing a random point on the hypersphglizing only the Halton directions that lie within the
hypersphere, or any other method that produces a unifortribdison. The A-MADS algorithm presented herein simply
utilizes a uniformly-distributed random direction.

B. The Completé&\-MADS Algorithm

By utilizing a very efficient polling direction as describabove (a sequence dense inside the unit hypersphere), mabi
with a basis located on an efficient lattice via the algorgtaascribed in Section 5, a new MADS algorithm is fully defined
Any lattice can be chosen for this purpose, though latticiés greater packing density, kissing number, and coordinat
sequences should provide shells more closely approximatisphere, and thus should provide a more uniform, and thus
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Fig. 10: Histograms showing the angle between the firstqpltirection and the x-axis, for a Halton-based sequenceufd)a random
vector on the hypersphere (R).

more efficient, MADS algorithm. For low dimensions, thg, D,,, andEg lattices are good choices, and are thus chosen
for numerical testing. In high dimensions the laminatetidas discussed in Bewley, Belitz, & Cessna (2011), wouldHhee
logical choice, as these offer the greatest coordinatigueseces of all lattices. For brevity we point the reader ditBe
Bewley, & Cessna (2011), for the basis matrices and quaitiralgorithms for a great number of suitable lattices.

The nearest neighbors of the lattice, that is, the sBglbf all points one hop from the origin, can be numerically
enumerated by multiplying the basis matrix by an exhaustaguence of integer combinations contained in a vectoil, unt
all the nearest neighbors & have been determined, precisely as discussed in Belitz &d3e(2011).

With S; defined, and the ability to quantize a random initial CMP otite lattice via the algorithms summarized in
Bewley, Belitz & Cessna, (2011), a MADS algorithm can be iempénted as discussed above.

C. Extension To High Dimensions

Consider the augmentation of the algorithm above, in thatstibset of lattice points that can be used to form a poll set
are redefined. Given a coarse mesh gizeand a fine mesh siz&; as discussed above, by definition the distance between
neighboring points on the fine meshAs and the distance between neighbors on the coarse gfigl iEhe aim of MADS
is to locate a set of poll points that lie on the fine grid, whds#ance from the CMP is bounded by the coarse grid size.
This can accomplished by enumerating shells of the lattk@t@ove, but can also be performed by locating a perfectly
distributed minimal basis defined by a si&g and the poll orientation. Then, rather than restrictingh® appropriate Shell
points, the poll set is identified simply by restricting thénimal basis to the fine lattice.

This is a slight modification from the previous algorithm irat the allowable fine mesh points are not bounded by a hop
count, rather a Euclidean distance definedMyyand the deep hole radius of the fine grigl. From there, a basis is located
as described above, and for each poll direction a poll psifddated to bound the distance from the CMPRyy Ryn. Thus,
each poll point is a maximum distance from the CMP while béingnded above by the coarse mesh size. When the coarse
mesh and the fine mesh sizes is small, the set of points thisitlign makes available for the poll set reduced to exactly
the shells defined above. After many refinements, fine mesitglying on a shell further from the CMP will be included.
As this algorithm requires only restriction to the fine kegti there is no overhead induced by the need to enumerats shel
in their entirety, and thus scales to high dimensions efittye Additionally, it improves even further upon the unifoity
of the lattice shells.

The polling direction is calculated via a random number dénghe hypersphere, a pseudo-orthogonal or minimal pesiti
basis can be located and restricted to the Shell.

VIII. | SOLATED NUMERICAL TESTING OF EACH COMPONENT ISSUE
A. The effect of the lattice

To quantify the behavior of implementing a maximal posithasis inA-MADS and comparing to OrthoMADS with a
random polling direction utilized gives a quantificationsifply replacing the underlying lattice in a MADS optimiizat.
To this end, a statistically relevant number of optimizasiavith each algorithm were run, optimizing randomly seddct
qguadratic functions, with a randomly selected initial CMi®daandomly selected function minimum. Each cost function
F(x) is defined as follows:

F(X) = (x—DAX—

Wherex is a randomly distributed vector, amdis a random positive definite matrix. BotkMADS and OrthoMADS
were allowed to converge to.I% of the initial cost function value. The lattices were sdato start with constant initial
vornoi cell volume of theA, lattice and the cartesian grid. Table 2 below summarizeetfeet of redefining OrthoMADS
on a lattice. The two parameters quantifying performaneetlae percent of total runs thAtMADS converged faster than



(n] 2] 38 [ 4 | 5 [ 6 [ 7 | 8 ]
P 571[5526] 5515 | 549 | 561 | 566 | 544
r | 0.90 | 0.923 | 0.9421] 0.8631] 0.8758 | 0.8757 | 0.901

Table 2. Performance comparison betweenRheébased\-MADS algorithm and theZ"-based OrthoMADS algorithm applied to randomly shifted dratic
bowls. Notice how in the relatively moderate dimensiomef 8, A-MADS requires approximately 30% as many function evahratito converge compared
to OrthoMADS.

(n[ 2 [ 3 ] 4 [ 5 | 6 | 7 [ 8 |
46.15 | 53.14 | 58.93 | 7249 | 76.92 | 79.92 | 86.02
r | 1.145| 1.399 | 0.9642 | 0.7240] 0.5653 | 0.4777| 0.3806

Table 3. Performance comparison betweenBhebased maximal-MADS algorithm and theD,-based minimaA\-MADS algorithm applied to randomly
shifted quadratic bowls. Fon > 3, it is seen that the minimal basis algorithm convergesefaitan the maximal basis algorithm. This validates the
suggestion often made in the literature that a minimal peshasis is the most efficient choice for unconstrainednoigtion.

(n[ 2 [ 3 [ 4 [ 5 | 6 | 7 [ 8 |
556 | 570 | 59.8 | 50.0 | 6432 | 69.0 | 7543
r | 0.835| 0.869 | 0.8687 | 0.0054 | 0.8644 | 0.8466 | 0.7824

Table 4. Performance comparison between the slow refinemanital A-MADS algorithm and the standard refineme@MADS algorithm applied to
randomly shifted quadratic bowls. In all dimensions, thewvar refinement scheme results in superior convergencevioeha

Orthomadsp, and the ratio of the average number of functional evalaat’'eMADS required to the number of evaluations
that OrthoMADS required.

As can clearly be seen in Table 2, the effect of modifying toefitient underlying lattice while maintaining the same
basis type (orthogonal and maximal) sees a measurable vieqpent compared to Cartesian; however, the effect is small
and proved sensitive to initial conditions.

B. Minimal versus Maximal Positive Basis

In the formulation ofA-MADS above, to variants are presented: one utlizing a makipositive basis that becomes
asymptotically orthogonal, and a minimal positive basiat tbptimizes for angular and radial uniformity on the Shell.
Historically, various authors have suggested that a mihbaais should provide a higher convergence rate, as fewatspo
are evaluated per poll step. As both options are availabldhén\-MADS, a series of tests were performed to capture
a statistically relevant measure of convergence perfocmamhe same quantification of convergence was performed as
described above, and incomplete polling was implementéd. ré€sults are summarized in Table Il below.

As the results in Table 3 illustrate that, when given the mptbetween a well-distributed minimal basis and a well-
distributed maximal basis, the minimal basis performs ifigantly better, as evidenced by requiring only 38% as many
function evaluations as the maximal algorithm.

C. Grid refinement options

All variants on Successive Polling algorithms refine thearhydng grid by a factor of 2 upon an unsuccessful Poll step.
The factor of 2 has historically been chosen as there is ndlemfactor to refine by that will allow all previous function
evaluations to be located on valid lattice nodes indepeahdefthe eventual lattice scale. Moving to a MADS framework
allows for contemplation of the refinement factor.

Previous MADS implementations refine the coarse and finesdndfactors of 2 and 4, respectively, which, like the SP
algorithms mentioned above, allows all previous functioal@ations to lie on the grid at all levels of refinement. Upon
inspection we see tha#-MADS refines the fine lattice scale by a factor of 4, and by mefjirthe coarse grid by a factor of
2, the shells upon which the positive basis lie increase‘amferek is the number of refinements performed. Clearly, this
is not the only factor by which one can refine while keepindaliction evaluations on the fine lattice. If the fine refineimen
factor is chosen to be 2. At thiéth refinement, the coarse grid scaleki&;. Thus, the size of the poll set refines more
slowly than if the normal factor of 2 were used.

The effect of this slower refinement scheme is an increasemvargence rate. The algorithm (1) refines less quickly
while searching for an appropriate poll set orientatioeyrdiy allowing larger steps toward the function minimumeoac
suitable orientation has been located, and (2) generaflyemts the algorithm from overrefining when matching thelloc
terrain characteristics of the cost function. To demonstrthe same numerical analysis described above was pexfiorm
comparing twoA-MADS algorithms. Both utilize a minimal basis, incomplgdelling, however, one refines the mesh by
4 (as LTMADS and OrthoMADS do); the other refines by a facto2ads decribed above. Table 4 below summarizes the
results.

The numerical test demonstrate that the smaller refinenaetdrfleads to an increase in convergence rate, requirilyg on
78% as many function evaluations to convergence 8.



(n[ 2] 38 [ 4 | 5 [ 6 [ 7 | 8 ]
p | 645 4882 602 | 76.00 | 83.10 | 89.63 | 93.17
r | 121 | 1.46 | 0.9235] 0.6002 | 0.4291 0.3555] 0.3034

Table 5. Performance comparison betweenRheéhased\-MADS algorithm and theZ"-based OrthoMADS algorithm applied to randomly shifted dratic
bowls. Notice how in the relatively moderate dimensiomef 8, A-MADS requires approximately 30% as many function evahratito converge compared
to OrthoMADS.

[n[ 2 [ 38 | 4 | 5 [ 6 [ 7 | 8 ]
7858 | 68.06 | 72.8 | 76.00 | 83.10 | 89.63 | 93.17
r | 0.8026 | 1.165 | 0.8596 | 0.6002 | 0.4291 | 0.3555 | 0.3034

Table 6. Performance comparison between the slow refinerén&DS algorithm and theZ"-based OrthoMADS algorithm applied to randomly shifted
quadratic bowls. Notice how in the relatively moderate disien ofn= 8, A-MADS requires approximately 30% as many function evahretito converge
compared to OrthoMADS.

IX. NUMERICAL TESTS

As established in Belitz & Bewley (2011), GPS algorithmspthy superior convergence rates under maximally uniform
poll sets. Efficient lattices provide a superior set of peiatailable (as indicated by the Coordination Sequencekesket
lattices) to be selected as Poll points compared to the ubiggiCartesian grid. Thus, running GPS algorithms on non-
Cartesian lattices tends to significantly improve convecgerates on typical cost functions, with the performanceeiase
becoming greater as the dimension of the problem incredseshypothesize that the same behavior should be evident
in a MADS algorithm, where an efficient lattice provides a mamniform poll set from iteration to iteration. To test this
hypothesis, following the convergence analysis of latbesed GPS algorithms in Belitz & Bewley (2011), thg-based
MADS algorithm A-MADS utilizing a minimal positive basis was tested agai@thoMADS on a statistically relevant
number of randomly shifted quadratic cost functions.

For these tests\-MADS utilizes a minimal positive basis; both algorithmseuscomplete polling (that is, the Poll
step is terminated as soon as an improved CMP is located)plrposes of comparison, neither algorithm uses a Halton
Sequence generated polling direction, instead using rangldling directions dense in a hypersphere, and coarsemasy
not implemented. The two optimization codes tested areecloodes; the only difference between them is the poll set
generated.

Again, the MADS optimizations were started at the same rangselected CMP, and then the number of function
evaluations necessary to converge to a given level of cgewee was recorded. Two metrics of performance are corsider
the average normalized number of function evaluationssseeg to converge, and the frequency th&t-MADS converged
with fewer evaluations than OrthoMADSS The results are tabulated in Table 5.

There is significant subtlety in selecting an accurate aledaat comparison of efficiency between two related optatidmn
algorithms. Great pains were taken to make the results teph@bove as meaningful as possible. The point of possible
contention rests in the initial scaling of the lattice ordgdiuring the numerical analysis above. If the initial gridlgtg has
a very coarse Cartesian grid and a very fine lattice scalettandistance from the original CMP to the function minimum
is much greater than either grid scale, the Cartesian coll@pyiear to be more efficient. If the scalings are reverseéth, w
the lattice being coarse and the grid being fine, then th&datill appear to be radically more efficient than the grid.
Neither of these results is legitimate.

To make all comparisons meaningful, all lattices are scalagh that the voronoi cell volume of the lattices are corisgain
the beginning of the optimizations. Secondly, the grid seghs selected to be within one order of magnitude as thendista
between the random CMP and random function minimum. Ourc8ete of these parameters is to accurately represent a
reasonable decision of lattice scaling if the optimizaticere being performed on a very poorly understood functiohelvV
utilizing these algorithms in a research application, ipisferable to choose an initial lattice scale on the lengtiesof
the feasible space, thereby keeping function evaluatianggart until convergence is approached.

As is clear from Table 4, th®, lattice-based\-MADS massively outperforms OrthoMADS. Clearly, on weétaved
functions, an efficient lattice combined with a minimal pgve basis allows greater efficiency compared to the Caesi
grid. As in a GPS search, the performance difference can pkierd as a combination of uniformity of the poll set and
poll set size. Analogously to the SP algorithm being les<iefiit at finding a descent direction (Belitz & Bewley, 2011)
on a minimal positive Cartesian basis, OrthoMADS producaBng vectors that range from normalized length 1 to length
\f(N). When the cost function is challenging OrthoMADS will hawerefine the grid size until the largest Poll sets are
sufficiently refined to realize a descent step, thus limiting performance of the smallest Poll sets. The more uniftuen t
Poll set is from Poll to Poll, the more efficiently the algbrit can step toward the function minimum.

To demonstrate the effect of moving from a maximal positiagid to a minimal positive basis, negating any effects from
lattice scalings or poll set uniformity, an identical compan was made betweeh-MADS with a maximal orthogonal
basis and\-MADS with a minimal positive basis. Again, the test functizvas a quadratic bowl with a random function



(n] 2 [ 38 | 4 | 5 | 6 |
p| 523 | 604 | 581 | 7249 | 7171
r | 0.06527| 0.1325 | 0.1426 | 0.04715| 0.04362

Table 6. Performance comparison betweenRheébased minimaN-MADS algorithm and the OrthoMADS algorithm applied to thelllknown Rosenbrock
function, shifted such that the function minimum lies at adam location. AgainA\-MADS convincingly outperforms OrthoMADS in moderate tayhi
dimensions.

Fig. 11: A-MADS convergence behavior with hard constraints. The ioncminimum lies at(—0.49340.4934). At every iteration the
complete Poll Set is plotted in red; the CMP of each iteratiogreen. Note poll direction reusing (left), giving GP&ediconvergence.
Once the CMP is near the function minimum the polls are gdiyarasuccessful, and it is clear how the polling directidtrecome dense,
as seen in the zoomed-in figure on the right.

minimum, a random initial CMP, but this time tti&, lattice was used for both algorithms and both lattices weeatically
scaled. The results can be found in Table 5. The test codedares of one another, with the sole difference between them
being the number of poll points used to build a positive badie lattices were scaled identically, starting at the s@k®,
and converging to the same values. Incomplete polling wademented, and function evaluations were reused (that is, i
a member of the poll set had been previously evaluated, thefanction was not called a second time). The performance
difference by simply using a well-selected (that is, unifdmpositive basis is significant.

These computational results indicates thaMADS has an advantage over OrthoMADS in its ability to aglia well
structured minimal basis, while not sacrificing any coneaace characteristics, further discussed below.

Optimizing a quadratic cost function does not capture ddéivant behavior. Further testing, identical to the abow,dm
the n-dimensional Rosenbrock function was performed, againpaosing A-MADS with a minimal basis to OrthoMADS.
These results can be seen in Table 6. As predidteBADS has superior convergence rates to OrthoMADS.

X. CONSTRAINT HANDLING

The primary advantage that MADS algorithms have over sim@®S algorithms is MADS’ ability to converge in
the presence of hard constraints. When constraints areldthad a differentiable penalty function, a GPS algorithrii wi
eventually successfully converge. However, if constsiate hard, a GPS search will generally stall, as the poll aann
achieve a descent direction. Various methods attemptimggolve this limitation have been explored. For example paem
sophisticated penalty method known as the ProgressivaeBapproach can be effective. In the presence of very simple
upper and lower bounds on the parameter space, a maximalgorial basis can be used at the constraints (see Booker,
et al (1999). However, there are many engineering problehrerevthe boundary surfaces are nonlinear, complex, or even
unknown. A good MADS algorithm, correctly implemented watltarefully selected poll orientation selection algoritwil
successfully converge under constraint conditions whighsfmple GPS algorithms. Given the ability of MADS algdwits
to generate a dense set of poll points as the grids are refined?oll set will eventually contain a descent direction. Be
reusing the successful poll direction, MADS can stochalBfidocate a descent direction and then proceeds to rewse th
direction until a new CMP is not located, and new polling diiens are explored. Note that the reusing of the polling
direction is essential to allow convergence under hardtcainss. If a new poll set direction is selected at every stdp
MADS algorithms will not perform significantly differentlfrom Successive Polling.

The effect of the poll direction reusing can be seen in Figur@he cost function ig (x) = x* subject tox; + Xz > 0
andx; +x2 < 1. Originally, the coarse mesh is too coarse to locate a swpe€MP. Upon refinement, a descent direction is
located, and that direction is reused. Once the algorithpnagzhes convergence, that direction fails to locate a nsi?,C
and new poll directions are generated.

A-MADS is a direct analogue to OrthoMADS, and thus shareshalldonstraint-handling behaviors of OrthoMADS. As
the meshes refine, the angular uniformity of the positivasbasickly nears 1, and the directions explored become dense
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Fig. 12: Locating the deep holes of theg lattice utilizing A-MADS with no coarsening, plotting the CMP as green dots @ind coarsening
implemented (R), plotting the CMP as a black cross. The #@lgarwith coarsening enabled clearly maintains a largeraye step size,
speeding convergence.

Both OrthoMADS and/\-MADS update the poll direction following an unsuccessfollBtep, reusing the poll direction
when the previous step was successful. THu$JADS inherits OrthoMADS’ behavior in constrained optiration, while
significantly improving upon OrthoMADS’ convergence rat@s unconstrained cost functions.

In practice, there are many augmentations of a GPS or MAD&ri#tgn that speed convergence. Some of these augmen-
tations include using a surrogate function fitted to presipwevaluated points to determine in what order to evalulag¢e t
cost function on the poll set (such as implemented in the LABES algorithm and discussed in Belitz & Bewley (2011)),
maximizing the likelihood of terminating the poll step upfamding a superior point. Another idea, the 'optimist’'s gy’
consists of reusing the successful poll vector of each sstakePoll step, shifted to the new CMP, to give the locatibma o
new function evaluation, based on the optimistic stratégy if the direction provided a descent once, it is likely topde
another. However, all these strategies are independeutithigs, such as LABDOGS, and are thus not considered here. |
practice, careful consideration of Search algorithms o ywah any MADS polling must be taken, as potential rewards a
undeniable.

Xl. MESHCOARSENING

When A-MADS is implemented as described above, the algorithm emences in the presence of hard constraints.
When a constraint is active, the algorithm iteratively kesaa descent direction (nearly) parallel to the constraifdwing
movement along the constraint. Of course, in the proces®aitihg a feasible poll orientation, the mesh size is often
refined greatly, and the resulting convergence is slow. balgvior is easy to understand upon inspection of Figurehe. T
motivation in coarsening the mesh size in addition to refiri;the desire to stochastically locate a good poll oriéoat
and then take the largest feasible steps utilizing thantaten, minimizing the number of function evaluations uiqd
for convergence. OrthoMADS implements coarsening at esapgessful poll step, decrementing the Halton Sequence and
increasing the fine mesh size and the coarse mesh size byaa &dcfour and two, respectively. The limitation of this
approach is that the successful poll orientation is noteéusgpon coarsening. Thus, the coarsened poll step is biased t
failure, as its poll orientation has already been deterthioebe suboptimal for that region.

Instead, the goal is to locate an effective poll orientationthe fine grid, then reuse that orientation on a coarse grid
when possible. First, it is necessary to give a definition rofagceptable poll direction: a poll direction that givesor
greater consecutive successful poll steps, wimere 1. Upon the location of an acceptable poll direction, (tlsatafterm
consecutive successful poll steps), the fine grid and hoptcare decremented by a factor of 2 and 1, respectively. The
poll direction on the coarsened mesh is the acceptabletidireidentified previously. If the poll step on the coarsensesh
is not successful, the mesh and hop count are refined as ndrove¢ver, a new poll direction is not selected. If the poll
step on the coarsened mesh is successful, the algorithrmgestunder the poll direction selection and refinemenédait
previously discussed.
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Fig. 13: Locating the deep holes of theg lattice utilizing Successive Polling (left) amdMADS (right). The hard constraints are indicated
in black; the cost funtion contours are plotted as well. Tieility of the SP algorithm to handle constraints preverusvergencei\-
MADS maintains convergence and locates the deep hole.

XII. A NUMERICAL EXAMPLE: LOCATING THE DEEPHOLE OF ALATTICE

An example of a relevant optimization problem where a pats®arch fails due to constraint behavior was realized by
the authors while performing numerical analysis of efficimttices (see Bewley, Belitz, & Cessna (2011)). The cinajée
is to calculate the location of a deep hole belonging to thgironode of a given lattice. By definition, a deep hole is the
furthest point from a given lattice node that remains aseclmscloser to said node than any other node of the lattices,Thu
if one enumerates a great number of lattice points surrognttie origin, any given point can be analyzed to determine
whether or not the point lies within the voronoi cell (thatifsthe point is closer to the origin than any other latticarppo
in the cloud). Then, the objective is to locate the pointHast from the origin that remains in the voronoi cell.

Pictorially, this is quite clear in Figure 8, where the cashdtion contours are plotted for th lattice. In the interest
of remaining computationally feasible, the constraints oaly be implemented as hard constraints. This is perforbyed
calculating the distance from each node in the cloud to the?Qkthe distance from the CMP to the origin is less than the
distance from the CMP to any another node, the CMP lies irtsidesoronoi cell and the cost function value is the distance
to the origin. Otherwise, the CMP lies outside the vorondi, @nd as such is not valid for evaluation. This presents an
interesting research problem where traditional derigabased algorithms cannot be applied and SP and other s@&Rfe
algorithm fail to converge.

The voronoi cell boundaries are treated as hard constrdilmder this problem definition, as can be seen in Figure 8,
the Successive Polling algorithm fails to converge to a deslp. Once the algorithm nears the constraint boundary, the
only element of the poll set with a component in the descemictlon violates the constraint and the algorithm stallse T
NA-MADS algorithm, however, stochastically locates an di¢ion allowing it to follow the constraint directions andwes
along the constraints to the deep hole. This method was osleddte the deep holes of a great number of lattices, allpwin
for the calculation of many previously unknown metrics,adpd in Bewley, Belitz, & Cessna, (2011).

XIIl. EXTENSION

MADS and other GPS algorithms are frequently extended unumie generalized optimization frameworks. The Poll
step of a MADS or GPS algorithm can be combined with a globedigvergent surrogate-based Search algorithm, as was
originally proposed and implemented in the LABDOGS alduritintroduced by Belitz & Bewley, 2011. Any GPS iteration
can be implemented in a given SMF-type framework. Thus, ie&mn of sophisticated numerical optimization of physical
systems, it is important to optimize the performance of eaminponent of modern optimization algorithms.

Within an LABDOGS-type framework, the philosophy of minizitig the size of the Poll set to increase efficiency of
the overall optimization algorithm is well documented. Siiginally utilized a minimal positive basis SP Poll stepela
iterations substituted LTMADS, then OrthoMADS, though lire tiatter the possibility of the detrimental effect on effiaty
of a maximal positive Poll set was introduced (see Yang & Mars 2011). In the literature, a bias towards a minimal pa@sit
basis has been evident for some time. As LTMADS indicatedjrfina good minimal positive basis on the Cartesian lattice



is challenging and often sub-optimal. TAReMADS algorithm is compatible with the lattices used in LABIGS, allowing
a hybridization of an efficient MADS step with the globallyre@rgent Search algorithms implemented in LABDOGS.

XIV. CONCLUSIONS

The work detailed herein introduces efficient lattices tamize parameter space and coordinate a new Mesh Adaptive
Direct Search method calledMADS. A-MADS utilizes any of a number of highly efficient lattices @as underlying grid.
The algorithm is an analogue to the OrthoMADS algorithm, araintains all the convergence characteristics of OrthoNMAD
while improving upon the convergence rate by a factor of apjpnately three.

The advantages of-MADS over LTMADS are twofold: the poll set oA-MADS is (asymptotically) perfectly uniform,
whereas LTMADS by construction locates poll sets that vasyhbangularly and radially. Also\-MADS reuses poll
orientations, allowing the algorithm to converge in thesgrece of hard constraints.

The advantages ohi-MADS over OrthoMADs are threefold: the poll set 6MADS is uniform from poll set to poll
set, whereas OrthoMADS has radial nonuniformity due to tleetésian grid. OrthoMADS uses a Halton Sequence to
generate the polling directions; numerical tests indi¢hgt a poll direction that becomes dense in the hypersplahenr
than hypercube offers a performance increase of approgimna0%; thus A-MADS uses a poll direction that is dense in
the hypersphere. Finally\-MADS is able to locate highly uniform minimal positive basivhere OrthoMADS can only
locate uniform maximal basis. The performance penalty rirecliby utilizing a maximal rather than a minimal basis is
approximately a factor of three in= 8, and the performance difference becomes greater as thensliom of the problem
increases.

In statistically relevant numerical analysi&;MADS outperforms OrthoMADS by up to a factor of three in nuenb
of function evaluations necessary to reach convergenceuawlrgtic cost functions. On the-dimensional Rosenbrock
test function the performance difference is even greaterthEr numerical tests implicate the maximal positive $ai
OrthoMADS as the primary performance limitation of the altjon.

The numerical results presented herein are cl@akADS is a highly competitive MADS optimization algorithnoif
modern, expensive numerical optimization.
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