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Abstract

A global optimization algorithm recently developed by our group, dubbed A-
DOGS, is applied to optimize the design of a racing catamaran’s hydrofoil. A
computationally inexpensive vortex-lattice based model of the hydrofoil, imple-
mented in AVL (the Athena Vortex Lattice code), is used to compute the flow
around the hydrofoil; the suitability of this inexpensive model for such a de-
sign optimization is considered carefully in light of available experimental data.
While keeping the lift and side force of the hydrofoil constant, the optimization
algorithm reduces the drag of the hydrofoil by over a factor of two.

Keywords: global optimization, derivative-free optimization, hydrofoil, vortex

lattice

1. Introduction

Hydrofoils play an increasingly important role in the design of high-performance

sailboats and catamarans. The 34th America’s Cup (San Francisco, 2013) high-
lighted the importance of efficient hydrofoil design, and the Class Rule for the
35th America’s Cup (Bermuda, 2017), to be held on 48-foot catamarans, even
further emphasizes their importance: as hydrofoil design is now one of the few
features of the sailboat design left open in the competition rules. Hydrofoils
also play an increasingly important role on many sailboats outside of high-
profile America’s Cup races, including the Hydroptere (a large, fast trimaran),

the International Moth class of small, fast sailing hydrofoils, and foil boards,
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which are now quite popular for high-speed kiteboarding.

Accurate hydrofoil performance assessment and design optimization is, in
general, a time-consuming and computationally expensive undertaking. Chal-
lenges are present in both the physical and the numerical modeling: complex
physics including boundary layers, free-surface effects, and cavitation generally
require high-fidelity numerical codes and large computational resources to assure
accurate results. Direct Numerical Simulations (DNS), Large Eddy Simulations
(LES), and Reynolds-Averaged Navier-Stokes (RANS) simulations, however,
are often unaffordable in the design phase, which often requires a significant
number of design iterations. Approximate performance estimates derived from
computationally inexpensive models, such as vortex-lattice methods, are gen-
erally sufficient for tuning the handful of adjustable parameters characterizing
such designs. Numerical models of this sort are already well developed and used
extensively for the design of rigid wings [I1], and are applied here for the related
problem of hydrofoil optimization.

The choice of the optimization algorithm for numerical design problems of
this level of complexity is as important as the choice of the physical model itself.
Important trade-offs are present between computational cost and implementa-
tion complexity, as well as between the competing objectives of global explo-
ration and local refinement in the design space. Derivative-free methods often
have lower implementation complexity but higher computational cost, whereas
derivative-based methods often have have higher implementation complexity, as
local derivative information must be computed, but lower computational cost.
The competition between exploitation of local trends near existing datapoints,
resulting in the determination of locally-optimal solutions, and the broader ex-
ploration of the feasible domain, in search of globally-optimal solutions, must
be considered carefully.

Optimization methods designed to assure global convergence are usually

derivative—freeﬂ Such methods are often expensive in terms of the number

2Note that some derivative-free methods in fact only assure local convergence, such as
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of iterations required to converge, and generally scale rather poorly with the
number of adjustable parameters to be optimized. The Surrogate Management
Framework (SMF) developed in [6], and the Genetic Algorithms (GA) reviewed
in [I4], are examples of methods in this class. Applications of such methods in
propeller and turbines’ hydrofoil optimization are presented in [I7] and [20].
Optimization methods designed to scale better to problems with a larger
number of adjustable parameters, but which often only assure local conver-
gence, are usually derivative-based, and use adjoint- or variational-based anal-
yses to determine the gradient of the cost function and the constraints on the
feasible domain with respect to the adjustable parameters, as reviewed in [15].
Such methods significantly reduce the number of iterations required to converge,
though they can stall when gradients are approximated with finite differences
based on inaccurate function evaluations [I0]. Applications of such methods to

propeller blade optimization include [I3].

No broadly-available optimization methods today (derivative-based or derivative-

free) rigorously handle uncertainty in the evaluation of the objective function
itself, automatically refining the function evaluations as convergence is ap-
proached. Such uncertainty may be related, for example, to the mesh size
used in the simulation, or to the time averaging of the lift and drag in an un-
steady simulation or experiment. Derivative-free approaches are generally the
best available methods for such problems, as they tend to keep function evalua-
tions far apart until convergence is approached, thereby minimizing the negative
effects of uncertainty in the function evaluations. Our team is in the process
of developing a powerful new method, which automatically refines the function
evaluations as convergence is approached, for problems of this important class;
the reader is referred to [3] for details.

In this work, we consider the application of our new derivative-free opti-
mization algorithm dubbed A-DOGS (developed in [5]) to the design of a 3D

hydrofoil with seven adjustable parameters. The computationally inexpensive

[2, [16].
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vortex-lattice model implemented in AVL (the Athena Vortex Lattice code; see
[8]) is used to compute the lift and drag coefficients of the hydrofoil.

This paper is organized as follows. In §2] we describe the AVL model, discuss
its limitations, and presents a careful validation based on experimental results
from the literature. Next, §3|describes the parametrization of the hydrofoil used
in the present optimization, and the reasoning behind the particular choice of
parameters used. In we briefly review the new global optimization algorithm
applied to the problem, A-DOGS. The results of our optimization study are

presented in and conclusions are drawn in

2. Hydrofoil model and validation

The numerical model used to compute the function evaluations in this work,
AVL [8], determines the inviscid lift and drag coefficients of the hydrofoil based
on a vortex-lattice discretization, as illustrated in Figure[l} see [12] for a detailed
description of this classic technique. The viscous drag is approximated based
on the local lift coefficient C}, from the foil sections’ Cp (CL) curve, where Cp
is the drag coefficient [I].

AVL implements a “free-surface” boundary condition in the form of a constant-
pressure, constant-height horizontal plane. This is known to be a good approx-
imation of a true free surface in the limit of high Froude numbers [9, chapt. 6],
correctly modeling the inviscid lift and drag. However, this approximation is un-
able to capture other effects associated with the presence of a free surface, such
as wave drag, the relative importance of which grows at lower Froude numbers,
and cavitation, appearing at higher Froude numbers. It is thus informative to
compare AVL-based predictions with available experimental data in represen-
tative configurations. For this purpose, we consider water-tank measurements
of a rectangular hydrofoil with an aspect ratio of 10 and a NACA64,-412 foil
section, as reported in [I§].

Table [I] presents numerical results, computed with AVL, and experimental

measurements for the dC', /da coeflicient (« being the angle of attack in degrees),



Test foil

Figure 1: The vortex lattice model: the foil is discretized by vortices which are distributed in
the spanwise direction along the foil, and extended to infinity past the edge of the foil (dotted
lines). The intensity of these vortices are then obtained by imposing zero velocity across the
foil surface at the points marked by the small arrows.
computed as a function of the intensity of the vortices.

Table 1: Comparison between AVL and experimental results

Lift and inviscid drag can then be

AVL® Exp® Erre %Err?

depth = 0.84c¢ | dCp/da 0.071 0.071 0.000 0.0%
(Fnjp = 10.48) Ot(CL = 0) —3.28 -3.3 0.0 06%
Cp(Cp =0.4) 0.01378 0.016 —0.002 13.9%

Cp(Cr =0.6) 0.024 76 0.028 —0.003 11.6%

depth = 3.84c | dCp/da 0.0817 0.083 —0.001 1.6%
(Fny, = 4.97) a(Cp =0) —3.15 —-3.2 0.1 1.6%
Cp(Cp =0.4) 0.01167 0.014 —0.002 16.6%

Cp(CpL =0.6) 0.01981 0.022 —0.002 10.6%

Only significant digits are reported in each entry.
@ AVL result, viscous coefficients obtained from [I]
b Data from [18], values are for the highest speed tested in the deepest tank

¢ AVL — Exp
d H AVL—Exp

Exp

|
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the angle of attack for zero lift a(C, = 0), and the total drag coefficient Cp at
two different lift conditions, Cy, = 0.4 and C, = 0.6. Two different depths of
submergence are tested, h = 0.84 ¢ and h = 3.84 ¢, where c is the hydrofoil chord.
The submergence depth h is defined as the distance between the undisturbed
free surface and the quarter-chord location of the foil. The two configurations
considered correspond to depth-based Froude numbers of F'nj, = % =10.48
and 4.97, respectively.

The AVL results for dC,/da in Table 1] are obtained via a least-square fit of
a straight line through the Cp («) data computed over the range —3.5 < a < 6.0.
Drag results are obtained by running the AVL model with the desired lift as a
constraint. The viscous drag is obtained from the wind-tunnel measurements
reported in [IJ.

Experimental data is obtained from Figures 10 and 11 of [I8]; only results
for the largest water tank and the highest speed considered, equivalent to a
chord-based Froude number of F'n, = U/,/gc = 10, are used. All significant
digits that can be reliably obtained by digitalization of the figures in [I8] are
reported.

It is seen that the agreement between the numerical (AVL) and the avail-
able experimental data for the hydrofoil lift is exceptionally good, with an error
everywhere less than 2% for both depths tested. The agreement for the hydro-
foil drag, however, appears to be diminished, with the AVL model consistently
underestimating the experimental drag by ACp ~ 0.002, or by 10 — 15%. Dis-
crepancies in the drag coefficient data should be considered with care, however;
the difference between numerical and experimental results, at 0.002, is well
within the range of variation due to the free-stream turbulence intensity (see
Figure Its independence of depth suggests that such a discrepancy is not
related to the lack of wave drag modeling in AVL, as wave drag is expected to

depend strongly on depth. Rather, we suggest three alternative explanations:

e differences in the experimental Reynolds number between [I§] (Re = 1.5 x

10%) and [1] (Re = 3.0 x 10°),
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e differences in the free stream turbulence levels in the water-tank measure-
ments of [I§] and the wind tunnel measurements of [I], causing a different

boundary layer transition location, and/or

e the possibly neglected effects associated to the strut-hydrofoil interaction
in the experimental data — that is, the total drag of the strut-hydrofoil
combination was first measured, then the drag of the strut alone was

subtracted off.

Regardless of the reason for the discrepancies in the drag coeflicient, it is seen
in Table [1] that the AVL model correctly captures the lift properties of the foil
at both tested depths, and correctly captures the changes in drag associated
with changes in the lift coefficient and depth. For the purpose of this work,
we thus consider the AVL model to be well suited. Further comparisons with
experimental results, as well as numerical simulations with more accurate codes,

should be pursued in future work.

3. Parametrization of the hydrofoil

Due to their computational cost, global optimization algorithms are gener-
ally quite limited in the number of tunable parameters that can be effectively
optimized. The parametrization of the geometry is thus a very important step
of the optimization process when using such algorithms.

The hydrofoil parametrization used in the present work is visualized in Figure
The reference system used has z as the vertical (positive up) coordinate,
y as the horizontal crossflow coordinate, and = as the horizontal streamwise
coordinate. A curvilinear coordinate s is also defined along the quarter-chord
of the foil, with its origin at the free surface.

A key parameter defining the hydrofoil is the planform surface area S. A
minimum surface area, representing a lower bound for the parameter S during
the optimization process, is prescribed in order to assure a physically realizable

airfoil. The optimization process then balances the contribution of the viscous
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Figure 2: Parametrization of the shape of the hydrofoil, which is defined by seven parameters
describing two rational Bezier curves. (left) Front view of the y — z plane. The shape of
the quarter-chord line in this plane is defined by z1, dy, and dz, together with the weight
wi. Dotted lines show the effect of changing the weight wi on the shape of the foil. (right)
Planform view. The spanwise distribution of the chord length in this plane is defined by the
planform area S, together with the tip chord length c;, and the weight we.

drag, proportional to the surface area .S, and the inviscid drag, proportional to
the square of the lift coefficient (equivalently, to the inverse of the surface area).

The other parameters illustrated in Figure [2] define the hydrofoil shape in
the y — z plane and the chord distribution along the curvilinear coordinate s.
Both the shape of the hydrofoil’s quarter-chord line as well as the shape of the

hydrofoil’s trailing edge are represented using Bezier curves defined by

n

Zi:() bz,n-lel
oy )

im0 binwi

where & = (y, z), P; = (y;, 2;) are the control points marked in red in Figure

xz(t) =

bim = (’Z)t 1-1"", (1)

and w; are the weights of the control points.
The relative importance of the parameters on the foil efficiency is presented

in Figure [3

4. Optimization Algorithm

In this section, we introduce the A-DOGS algorithm used to optimize the
hydrofoil design. As described in [4, [5], A-DOGS is an efficient, globally-
convergent, derivative-free optimization algorithm designed to solve general op-

timization problems of the form
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Figure 3: Variation of the hydrofoil efficiency as a function of the parameters, normalized to
lie between 0 and 1. To produce these plots, each parameter is varied, one at a time, between
0 and 1, while the other parameters are held fixed at their optimum values, for the case with
dy < 1.50 (see Table . Left: S, 21, dy, and dz each contribute strongly to the variation in
efficiency. Right: w1, ctp, and we each contribute only weakly to the variation in efficiency
(note the rescaled vertical axis).

minimize f(z) subject to Az <b (2)

The algorithm is initialized with n+ 1 affinely independent points in the feasible
domain Az < b, where x is the vector of adjustable parameters and n is the
order of x. These feasible n + 1 points are selected such that they generate a
simplex with the maximum possible volume within the feasible domain (see [4]).
After this initialization, each successive iteration k of the algorithm performs
a single function evaluation, and updates a “surrogate” model of the objective
function f(x). This model consists of an interpolation p(x) of the function
values currently available, as well as an associated model of the uncertainty of
this surrogate, e(z). In the present work, we assume that an estimate fo of the
value of the global minimum f(z*) is available, where x* is the location of the
optimum in parameter space, which we desire to find. Based on the surrogate
model, a feasible point x is identified at each iteration k which, within this
model, has the highest probability of attaining the value of fy. Particular care
is taken in the vicinity of the boundary: if the point x, is sufficiently close to the
boundary of the convex hull of the existing data points, it is projected out to the

boundary of the feasible domain; this feasible boundary projection procedure

L/D
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is described in detail in §3 of [4]. In the present work, as in [4 [5], we have
used polyharmonic spline interpolation [I9] for the interpolation strategy, and
the uncertainty function e(z) is defined as a piecewise quadratic function built
on the framework of a Delaunay triangulation A of the existing datapoints in
parameter space.

The essential steps of the A-DOGS algorithm used in this work are outlined
in Algorithm [1] and illustrated in [4} complete description of this algorithm, as
well as proof of its convergence, may be found in [4].

The performance of A-DOGS depends on two main parameters:

e fo, an estimate of the bound for the optimal value f(z*). If fo < f(x*),
convergence to the global minimum is guaranteed; however, if fy is sig-
nificantly smaller than f(z*), the speed of convergence is substantially
reduced. If fy > f(a*) the algorithm terminates at a feasible point z such

that f(2) < fo, and convergence to the global minimum is not guaranteed.

e §p, the minimum allowed distance in parameter space between the current
search point zj and the previously evaluated points z € S*; §y is used to

set a termination condition for the algorithm.

To set up the present optimization problem, bounds for all seven of the tun-
able parameters must be selected to specify the feasible domain of the search, dg
must be selected to define the stopping criterion, and, perhaps most importantly,
an estimate of a bound for the objective function value, fo = max(L/D) =
max (Cr,/Cp), must be identified.

The objective function bound, fy, can be obtained using classical aerody-
namic theory. The drag coefficient for an aspect ratio AR and elliptic spanwise
load is:

Ct

C’D = T AR + ODD (CL)v (4)

where Cp, (C}) is the drag coefficient for the two dimensional foil section and

can be obtained from experimental data [I] or computationally inexpensive nu-

10



Algorithm 1 A-DOGS: minimize f(z) : R™ — R subject to Az < b.

1:

Set k = 0. Determine the set S° of n + 1 points in the feasible domain that
form the vertices of a simplex with the maximum possible volume (see §2
of []). Calculate f(x) at all points x € S°.

Calculate (or, for k > 0, update) an appropriate interpolating function p*(x)
through all points in S*.

Calculate (or, for k > 0, update) a Delaunay triangulation A* over all of
the points in S¥.

Find z}, as a global minimizer of s*(x) to obtain x, where

k(g)
oy = [ T h

pF(x) — fo, otherwise,

(3)

where e¥(x) is the uncertainty function for the datasset S*.

If x1, is sufficiently close to the boundary of the convex hull of the available
datapoints, project x out to the boundary of feasibility (see §3 of [4]).

Set § = minges||zr — z||. If § > do (see []), set S¥+1 = SF U {z}}, evaluate
f(x), and repeat from 2; otherwise, stop.

0.5 -

100

50

02 04 06 08
T T

Figure 4: Illustration of the A-DOGS optimization algorithm for a one-dimensional example.
Left column: status of optimization after three function evaluations have been performed.
Right column: status after the optimization algorithm has terminated. Top row: (black) ob-
jective fucntion f(x), (blue) interpolation p(z), (red) uncertainty e(z), and (dashed) estimate
of the global minumum fy. The function values available to the optimization algorithm are
marked as black circles. Bottom row: the search function s(z) = (p(z) — fo)/e(z).

11
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merical models [7]. Figure [5| shows drag coefficients for the NACA64,-412 foil
section (left), and efficiency curves for an aspect ratio 10 foil with elliptic load
based on (right). No free-surface effects are taken into account. Curves
are shown for two different values of the boundary layer transition parameter,
n. = 4 and n, = 9, as well as for a fully turbulent boundary layer. Both the
maximum achievable efficiency and the corresponding optimal lift coefficient C',
depend strongly on the transition location of the boundary layer. In the rest of
this work, the same NACAG64:-412 will be used for the case with n. = 4. At
AR = 10, the corresponding estimated bound for the efficiency is fo = 38.

1072
T T T T T \/ T
40
1 -
+ 130
Q
A IS
O o5l 120 3
(@)
110
Un B -0
| | | | | | | | | | |
04 02 0 02 04 06 08 0 02 04 06 08

CrL Cr

Figure 5: NACAG641-412 wing section polar curves (left) and efficiencies for AR=10 (right)
for two values of the boundary layer transition parameter, (blue) n. = 9, (red) n. = 9, as
well as (brown) an almost completely turbulent boundary layer. Viscous drag coefficients are
computed with XFoil [7]. Experimental drag coefficients from [I] are marked with +.

5. Optimization results

The optimization of the L/D ratio for the surface lifting foil described by
the parametrization in Figure [2|is performed for a design vertical and horizontal
lift SC, =0.120 and S C,, = 0.066, with bounds on the parameters as given in
Table 2] The vortex lattice method implemented in AVL is used to compute
lift and inviscid drag, with the free surface modeled as a horizontal constant

pressure surface. The viscous drag coefficient is obtained by interpolation of
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Table 2: Bounds on the hydrofoil parametrization.

02<5<05
056<2z <15 05<dy<15 -03<d2<03 43<w; <11

0.05<cyp <05 15<w, <11

experimental wind-tunnel data [I]. Validation of the model is provided in
The convergence history for the optimization process is shown in Figure [6]
An L/D of 32 is obtained after only 23 function evaluations; approximately 160
function evaluations are needed to reach the maximum L/D of 36.81. Given
that this is a seven-dimensional optimization problem, with four of the param-
eters turning out to strongly affect the objective function (see Figure , the
performance of our derivative-free optimization algorithm, A-DOGS, on this
practical optimization problem is deemed quite satisfactory. A gradient based
optimization requires, on average and depending on the initial guess, a similar
number of function evaluation if the gradient is computed by finite difference.
Figure [7] indicates the optimal geometry identified by the optimization al-
gorithm, as well as the ensemble of other geometries tested. The optimized
parameters are reported in Table It is noted that, at the optimized condi-
tion, only dy is at one of its bounds; the other six optimized parameters are
on the interior of the feasible domain. The optimized results for two different

upper bounds on dy are indictated in the two columns of Table [3]

6. Conclusions

A global optimization algorithm recently introduced by our group, A-DOGS,
has been applied to optimize the design of a flying-catamaran hydrofoil, with
the goal of maximizing the lift/drag ratio at a specified working condition.
The vortex-lattice model implemented in AVL has been used to compute the
hydrofoil’s lift and drag characteristics. The AVL model has been validated for

this problem with experimental data available in the literature.
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Table 3: Optimal parameters for two different
bounds for dy

parameter | dy < 1.50 | dy < 2.00
S 0.305 0.305
21 0.89 1.30
dy 1.50 2.00
dz -0.29 -0.27
wy 7.25 4.33

Ctip 0.21 0.43
We 2.58 3.60
£ 36.81 47.60
a 3.78699 3.29558
B 0.02691 -0.07407

While a first-guess, L-shaped, constant chord design with z; = dy = 1.5
and a surface area S = 0.3050 has an L/D = 15, the optimized hydrofoil has
an L/D ~ 35, which represents a 2.3x improvement. This work thus shows
how computationally inexpensive numerical models can be successfully coupled
with efficient global optimization algorithms on nontrivial practical problems,
providing valuable design guidance for the early stages of the design process.

We conclude by noting that the model implemented in AVL is valid only
for chord-based Froude numbers F'n. ~ O(10). Below that, unmodeled wave
generation becomes significant [9] section 6.8], while above that phenomena like
cavitation or ventilation kick in. As a point of comparison, the hydrofoil of

an ACT2 boat, having a 0.7m chord and sailing at 40 knots (20m/s), has an

_ 20 _ . . . .
Fn, = Josi0T = 7.63. The efficient use of more computationally intensive,
high-fidelity numerical codes for optimization, able to correctly capture a larger

range of Froude numbers, will be investigated in future work.
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Figure 6: Convergence history. Top: best efficiency Cp,/Cp (solid) at constant lift during the
optimization; the actual value at each iteration is showed by a dotted line. Bottom: optimal
parameter’s values during the optimization.
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Figure 7: Optimized geometry (thick),

and all tested geometries (thin).
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Figure 8: Optimized geometries with two different aspect ratios.
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