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Abstract6

A global optimization algorithm recently developed by our group, dubbed ∆-

DOGS, is applied to optimize the design of a racing catamaran’s hydrofoil. A

computationally inexpensive vortex-lattice based model of the hydrofoil, imple-

mented in AVL (the Athena Vortex Lattice code), is used to compute the flow

around the hydrofoil; the suitability of this inexpensive model for such a de-

sign optimization is considered carefully in light of available experimental data.

While keeping the lift and side force of the hydrofoil constant, the optimization

algorithm reduces the drag of the hydrofoil by over a factor of two.
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1. Introduction9

Hydrofoils play an increasingly important role in the design of high-performance10

sailboats and catamarans. The 34th America’s Cup (San Francisco, 2013) high-11

lighted the importance of efficient hydrofoil design, and the Class Rule for the12

35th America’s Cup (Bermuda, 2017), to be held on 48-foot catamarans, even13

further emphasizes their importance: as hydrofoil design is now one of the few14

features of the sailboat design left open in the competition rules. Hydrofoils15

also play an increasingly important role on many sailboats outside of high-16

profile America’s Cup races, including the Hydroptere (a large, fast trimaran),17

the International Moth class of small, fast sailing hydrofoils, and foil boards,18
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which are now quite popular for high-speed kiteboarding.19

Accurate hydrofoil performance assessment and design optimization is, in20

general, a time-consuming and computationally expensive undertaking. Chal-21

lenges are present in both the physical and the numerical modeling: complex22

physics including boundary layers, free-surface effects, and cavitation generally23

require high-fidelity numerical codes and large computational resources to assure24

accurate results. Direct Numerical Simulations (DNS), Large Eddy Simulations25

(LES), and Reynolds-Averaged Navier-Stokes (RANS) simulations, however,26

are often unaffordable in the design phase, which often requires a significant27

number of design iterations. Approximate performance estimates derived from28

computationally inexpensive models, such as vortex-lattice methods, are gen-29

erally sufficient for tuning the handful of adjustable parameters characterizing30

such designs. Numerical models of this sort are already well developed and used31

extensively for the design of rigid wings [11], and are applied here for the related32

problem of hydrofoil optimization.33

The choice of the optimization algorithm for numerical design problems of34

this level of complexity is as important as the choice of the physical model itself.35

Important trade-offs are present between computational cost and implementa-36

tion complexity, as well as between the competing objectives of global explo-37

ration and local refinement in the design space. Derivative-free methods often38

have lower implementation complexity but higher computational cost, whereas39

derivative-based methods often have have higher implementation complexity, as40

local derivative information must be computed, but lower computational cost.41

The competition between exploitation of local trends near existing datapoints,42

resulting in the determination of locally-optimal solutions, and the broader ex-43

ploration of the feasible domain, in search of globally-optimal solutions, must44

be considered carefully.45

Optimization methods designed to assure global convergence are usually46

derivative-free2. Such methods are often expensive in terms of the number47

2Note that some derivative-free methods in fact only assure local convergence, such as
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of iterations required to converge, and generally scale rather poorly with the48

number of adjustable parameters to be optimized. The Surrogate Management49

Framework (SMF) developed in [6], and the Genetic Algorithms (GA) reviewed50

in [14], are examples of methods in this class. Applications of such methods in51

propeller and turbines’ hydrofoil optimization are presented in [17] and [20].52

Optimization methods designed to scale better to problems with a larger53

number of adjustable parameters, but which often only assure local conver-54

gence, are usually derivative-based, and use adjoint- or variational-based anal-55

yses to determine the gradient of the cost function and the constraints on the56

feasible domain with respect to the adjustable parameters, as reviewed in [15].57

Such methods significantly reduce the number of iterations required to converge,58

though they can stall when gradients are approximated with finite differences59

based on inaccurate function evaluations [10]. Applications of such methods to60

propeller blade optimization include [13].61

No broadly-available optimization methods today (derivative-based or derivative-62

free) rigorously handle uncertainty in the evaluation of the objective function63

itself, automatically refining the function evaluations as convergence is ap-64

proached. Such uncertainty may be related, for example, to the mesh size65

used in the simulation, or to the time averaging of the lift and drag in an un-66

steady simulation or experiment. Derivative-free approaches are generally the67

best available methods for such problems, as they tend to keep function evalua-68

tions far apart until convergence is approached, thereby minimizing the negative69

effects of uncertainty in the function evaluations. Our team is in the process70

of developing a powerful new method, which automatically refines the function71

evaluations as convergence is approached, for problems of this important class;72

the reader is referred to [3] for details.73

In this work, we consider the application of our new derivative-free opti-74

mization algorithm dubbed ∆-DOGS (developed in [5]) to the design of a 3D75

hydrofoil with seven adjustable parameters. The computationally inexpensive76

[2, 16].
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vortex-lattice model implemented in AVL (the Athena Vortex Lattice code; see77

[8]) is used to compute the lift and drag coefficients of the hydrofoil.78

This paper is organized as follows. In §2, we describe the AVL model, discuss79

its limitations, and presents a careful validation based on experimental results80

from the literature. Next, §3 describes the parametrization of the hydrofoil used81

in the present optimization, and the reasoning behind the particular choice of82

parameters used. In §4, we briefly review the new global optimization algorithm83

applied to the problem, ∆-DOGS. The results of our optimization study are84

presented in §5, and conclusions are drawn in §6.85

2. Hydrofoil model and validation86

The numerical model used to compute the function evaluations in this work,87

AVL [8], determines the inviscid lift and drag coefficients of the hydrofoil based88

on a vortex-lattice discretization, as illustrated in Figure 1; see [12] for a detailed89

description of this classic technique. The viscous drag is approximated based90

on the local lift coefficient CL from the foil sections’ CD (CL) curve, where CD91

is the drag coefficient [1].92

AVL implements a “free-surface” boundary condition in the form of a constant-93

pressure, constant-height horizontal plane. This is known to be a good approx-94

imation of a true free surface in the limit of high Froude numbers [9, chapt. 6],95

correctly modeling the inviscid lift and drag. However, this approximation is un-96

able to capture other effects associated with the presence of a free surface, such97

as wave drag, the relative importance of which grows at lower Froude numbers,98

and cavitation, appearing at higher Froude numbers. It is thus informative to99

compare AVL-based predictions with available experimental data in represen-100

tative configurations. For this purpose, we consider water-tank measurements101

of a rectangular hydrofoil with an aspect ratio of 10 and a NACA641-412 foil102

section, as reported in [18].103

Table 1 presents numerical results, computed with AVL, and experimental104

measurements for the dCL/dα coefficient (α being the angle of attack in degrees),105
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Figure 1: The vortex lattice model: the foil is discretized by vortices which are distributed in
the spanwise direction along the foil, and extended to infinity past the edge of the foil (dotted
lines). The intensity of these vortices are then obtained by imposing zero velocity across the
foil surface at the points marked by the small arrows. Lift and inviscid drag can then be
computed as a function of the intensity of the vortices.

Table 1: Comparison between AVL and experimental results

AVLa Expb Errc %Errd

depth = 0.84c dCL/dα 0.071 0.071 0.000 0.0%

(Fnh = 10.48) α(CL = 0) −3.28 −3.3 0.0 0.6%

CD(CL = 0.4) 0.013 78 0.016 −0.002 13.9%

CD(CL = 0.6) 0.024 76 0.028 −0.003 11.6%

depth = 3.84c dCL/dα 0.0817 0.083 −0.001 1.6%

(Fnh = 4.97) α(CL = 0) −3.15 −3.2 0.1 1.6%

CD(CL = 0.4) 0.011 67 0.014 −0.002 16.6%

CD(CL = 0.6) 0.019 81 0.022 −0.002 10.6%

Only significant digits are reported in each entry.
a AVL result, viscous coefficients obtained from [1]
b Data from [18], values are for the highest speed tested in the deepest tank
c AVL − Exp
d
∥∥∥AVL−Exp

Exp

∥∥∥
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the angle of attack for zero lift α(CL = 0), and the total drag coefficient CD at106

two different lift conditions, CL = 0.4 and CL = 0.6. Two different depths of107

submergence are tested, h = 0.84 c and h = 3.84 c, where c is the hydrofoil chord.108

The submergence depth h is defined as the distance between the undisturbed109

free surface and the quarter-chord location of the foil. The two configurations110

considered correspond to depth-based Froude numbers of Fnh = U√
g h

= 10.48111

and 4.97, respectively.112

The AVL results for dCL/dα in Table 1 are obtained via a least-square fit of113

a straight line through the CL(α) data computed over the range −3.5 < α < 6.0.114

Drag results are obtained by running the AVL model with the desired lift as a115

constraint. The viscous drag is obtained from the wind-tunnel measurements116

reported in [1].117

Experimental data is obtained from Figures 10 and 11 of [18]; only results118

for the largest water tank and the highest speed considered, equivalent to a119

chord-based Froude number of Fnc = U/
√
g c ≈ 10, are used. All significant120

digits that can be reliably obtained by digitalization of the figures in [18] are121

reported.122

It is seen that the agreement between the numerical (AVL) and the avail-123

able experimental data for the hydrofoil lift is exceptionally good, with an error124

everywhere less than 2% for both depths tested. The agreement for the hydro-125

foil drag, however, appears to be diminished, with the AVL model consistently126

underestimating the experimental drag by ∆CD ≈ 0.002, or by 10− 15%. Dis-127

crepancies in the drag coefficient data should be considered with care, however;128

the difference between numerical and experimental results, at 0.002, is well129

within the range of variation due to the free-stream turbulence intensity (see130

Figure 5. Its independence of depth suggests that such a discrepancy is not131

related to the lack of wave drag modeling in AVL, as wave drag is expected to132

depend strongly on depth. Rather, we suggest three alternative explanations:133

• differences in the experimental Reynolds number between [18] (Re = 1.5×134

106) and [1] (Re = 3.0× 106),135
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• differences in the free stream turbulence levels in the water-tank measure-136

ments of [18] and the wind tunnel measurements of [1], causing a different137

boundary layer transition location, and/or138

• the possibly neglected effects associated to the strut-hydrofoil interaction139

in the experimental data — that is, the total drag of the strut-hydrofoil140

combination was first measured, then the drag of the strut alone was141

subtracted off.142

Regardless of the reason for the discrepancies in the drag coefficient, it is seen143

in Table 1 that the AVL model correctly captures the lift properties of the foil144

at both tested depths, and correctly captures the changes in drag associated145

with changes in the lift coefficient and depth. For the purpose of this work,146

we thus consider the AVL model to be well suited. Further comparisons with147

experimental results, as well as numerical simulations with more accurate codes,148

should be pursued in future work.149

3. Parametrization of the hydrofoil150

Due to their computational cost, global optimization algorithms are gener-151

ally quite limited in the number of tunable parameters that can be effectively152

optimized. The parametrization of the geometry is thus a very important step153

of the optimization process when using such algorithms.154

The hydrofoil parametrization used in the present work is visualized in Figure155

2. The reference system used has z as the vertical (positive up) coordinate,156

y as the horizontal crossflow coordinate, and x as the horizontal streamwise157

coordinate. A curvilinear coordinate s is also defined along the quarter-chord158

of the foil, with its origin at the free surface.159

A key parameter defining the hydrofoil is the planform surface area S. A160

minimum surface area, representing a lower bound for the parameter S during161

the optimization process, is prescribed in order to assure a physically realizable162

airfoil. The optimization process then balances the contribution of the viscous163
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Figure 2: Parametrization of the shape of the hydrofoil, which is defined by seven parameters
describing two rational Bezier curves. (left) Front view of the y − z plane. The shape of
the quarter-chord line in this plane is defined by z1, dy, and dz, together with the weight
w1. Dotted lines show the effect of changing the weight w1 on the shape of the foil. (right)
Planform view. The spanwise distribution of the chord length in this plane is defined by the
planform area S, together with the tip chord length ctip and the weight wc.

drag, proportional to the surface area S, and the inviscid drag, proportional to164

the square of the lift coefficient (equivalently, to the inverse of the surface area).165

The other parameters illustrated in Figure 2 define the hydrofoil shape in166

the y − z plane and the chord distribution along the curvilinear coordinate s.167

Both the shape of the hydrofoil’s quarter-chord line as well as the shape of the168

hydrofoil’s trailing edge are represented using Bezier curves defined by169

x(t) =

∑n
i=0 bi,nPiwi∑n
i=0 bi,nwi

, bi,n =

(
n

i

)
ti (1− t)n−i , (1)

where x = (y, z), Pi = (yi, zi) are the control points marked in red in Figure 2,170

and wi are the weights of the control points.171

The relative importance of the parameters on the foil efficiency is presented172

in Figure 3.173

4. Optimization Algorithm174

In this section, we introduce the ∆-DOGS algorithm used to optimize the175

hydrofoil design. As described in [4, 5], ∆-DOGS is an efficient, globally-176

convergent, derivative-free optimization algorithm designed to solve general op-177

timization problems of the form178
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Figure 3: Variation of the hydrofoil efficiency as a function of the parameters, normalized to
lie between 0 and 1. To produce these plots, each parameter is varied, one at a time, between
0 and 1, while the other parameters are held fixed at their optimum values, for the case with
dy ≤ 1.50 (see Table 3). Left: S, z1, dy, and dz each contribute strongly to the variation in
efficiency. Right: w1, ctip, and wc each contribute only weakly to the variation in efficiency
(note the rescaled vertical axis).

minimize f(x) subject to Ax ≤ b (2)

The algorithm is initialized with n+1 affinely independent points in the feasible179

domain Ax ≤ b, where x is the vector of adjustable parameters and n is the180

order of x. These feasible n + 1 points are selected such that they generate a181

simplex with the maximum possible volume within the feasible domain (see [4]).182

After this initialization, each successive iteration k of the algorithm performs183

a single function evaluation, and updates a “surrogate” model of the objective184

function f(x). This model consists of an interpolation p(x) of the function185

values currently available, as well as an associated model of the uncertainty of186

this surrogate, e(x). In the present work, we assume that an estimate f0 of the187

value of the global minimum f(x∗) is available, where x∗ is the location of the188

optimum in parameter space, which we desire to find. Based on the surrogate189

model, a feasible point xk is identified at each iteration k which, within this190

model, has the highest probability of attaining the value of f0. Particular care191

is taken in the vicinity of the boundary: if the point xk is sufficiently close to the192

boundary of the convex hull of the existing data points, it is projected out to the193

boundary of the feasible domain; this feasible boundary projection procedure194
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is described in detail in §3 of [4]. In the present work, as in [4, 5], we have195

used polyharmonic spline interpolation [19] for the interpolation strategy, and196

the uncertainty function e(x) is defined as a piecewise quadratic function built197

on the framework of a Delaunay triangulation ∆k of the existing datapoints in198

parameter space.199

The essential steps of the ∆-DOGS algorithm used in this work are outlined200

in Algorithm 1 and illustrated in 4; complete description of this algorithm, as201

well as proof of its convergence, may be found in [4].202

The performance of ∆-DOGS depends on two main parameters:203

• f0, an estimate of the bound for the optimal value f(x∗). If f0 ≤ f(x∗),204

convergence to the global minimum is guaranteed; however, if f0 is sig-205

nificantly smaller than f(x∗), the speed of convergence is substantially206

reduced. If f0 > f(x∗) the algorithm terminates at a feasible point z such207

that f(z) < f0, and convergence to the global minimum is not guaranteed.208

• δ0, the minimum allowed distance in parameter space between the current209

search point xk and the previously evaluated points x ∈ Sk; δ0 is used to210

set a termination condition for the algorithm.211

To set up the present optimization problem, bounds for all seven of the tun-212

able parameters must be selected to specify the feasible domain of the search, δ0213

must be selected to define the stopping criterion, and, perhaps most importantly,214

an estimate of a bound for the objective function value, f0 = max (L/D) =215

max (CL/CD), must be identified.216

The objective function bound, f0, can be obtained using classical aerody-217

namic theory. The drag coefficient for an aspect ratio AR and elliptic spanwise218

load is:219

CD =
C2
L

π AR
+ CDν (CL) , (4)

where CDν (CL) is the drag coefficient for the two dimensional foil section and220

can be obtained from experimental data [1] or computationally inexpensive nu-221
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Algorithm 1 ∆-DOGS: minimize f(x) : Rn → R subject to Ax ≤ b.
1: Set k = 0. Determine the set S0 of n+ 1 points in the feasible domain that

form the vertices of a simplex with the maximum possible volume (see §2
of [4]). Calculate f(x) at all points x ∈ S0.

2: Calculate (or, for k > 0, update) an appropriate interpolating function pk(x)
through all points in Sk.

3: Calculate (or, for k > 0, update) a Delaunay triangulation ∆k over all of
the points in Sk.

4: Find xk as a global minimizer of sk(x) to obtain xk, where

sk(x) =


pk(x)− f0
ek(x)

, if pk(x) ≥ f0,

pk(x)− f0, otherwise,

(3)

where ek(x) is the uncertainty function for the datasset Sk.
5: If xk is sufficiently close to the boundary of the convex hull of the available

datapoints, project xk out to the boundary of feasibility (see §3 of [4]).
6: Set δ = minx∈S‖xk − x‖. If δ > δ0 (see [4]), set Sk+1 = Sk ∪ {xk}, evaluate
f(xk), and repeat from 2; otherwise, stop.
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0.5

1

1.5

f0

f(x)

p(x)

e(x)

f0

f(x)

p(x)

e(x)

0 0.2 0.4 0.6 0.8 1
0

50

100

s(x)

x
0 0.2 0.4 0.6 0.8 1

s(x)

δ

x

Figure 4: Illustration of the ∆-DOGS optimization algorithm for a one-dimensional example.
Left column: status of optimization after three function evaluations have been performed.
Right column: status after the optimization algorithm has terminated. Top row: (black) ob-
jective fucntion f(x), (blue) interpolation p(x), (red) uncertainty e(x), and (dashed) estimate
of the global minumum f0. The function values available to the optimization algorithm are
marked as black circles. Bottom row: the search function s(x) = (p(x) − f0)/e(x).
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merical models [7]. Figure 5 shows drag coefficients for the NACA641-412 foil222

section (left), and efficiency curves for an aspect ratio 10 foil with elliptic load223

based on (4) (right). No free-surface effects are taken into account. Curves224

are shown for two different values of the boundary layer transition parameter,225

nc = 4 and nc = 9, as well as for a fully turbulent boundary layer. Both the226

maximum achievable efficiency and the corresponding optimal lift coefficient CL227

depend strongly on the transition location of the boundary layer. In the rest of228

this work, the same NACA641-412 will be used for the case with nc = 4. At229

AR = 10, the corresponding estimated bound for the efficiency is f0 = 38.230
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Figure 5: NACA641-412 wing section polar curves (left) and efficiencies for AR=10 (right)
for two values of the boundary layer transition parameter, (blue) nc = 9, (red) nc = 9, as
well as (brown) an almost completely turbulent boundary layer. Viscous drag coefficients are
computed with XFoil [7]. Experimental drag coefficients from [1] are marked with +.

5. Optimization results231

The optimization of the L/D ratio for the surface lifting foil described by232

the parametrization in Figure 2 is performed for a design vertical and horizontal233

lift S Cz = 0.120 and S Cy = 0.066, with bounds on the parameters as given in234

Table 2. The vortex lattice method implemented in AVL is used to compute235

lift and inviscid drag, with the free surface modeled as a horizontal constant236

pressure surface. The viscous drag coefficient is obtained by interpolation of237
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Table 2: Bounds on the hydrofoil parametrization.

0.2 ≤ S ≤ 0.5

0.5 ≤ z1 ≤ 1.5 0.5 ≤ dy ≤ 1.5 −0.3 ≤ dz ≤ 0.3 4.3 ≤ w1 ≤ 11

0.05 ≤ ctip ≤ 0.5 1.5 ≤ wc ≤ 11

experimental wind-tunnel data [1]. Validation of the model is provided in §2.238

The convergence history for the optimization process is shown in Figure 6.239

An L/D of 32 is obtained after only 23 function evaluations; approximately 160240

function evaluations are needed to reach the maximum L/D of 36.81. Given241

that this is a seven-dimensional optimization problem, with four of the param-242

eters turning out to strongly affect the objective function (see Figure 3), the243

performance of our derivative-free optimization algorithm, ∆-DOGS, on this244

practical optimization problem is deemed quite satisfactory. A gradient based245

optimization requires, on average and depending on the initial guess, a similar246

number of function evaluation if the gradient is computed by finite difference.247

Figure 7 indicates the optimal geometry identified by the optimization al-248

gorithm, as well as the ensemble of other geometries tested. The optimized249

parameters are reported in Table 3. It is noted that, at the optimized condi-250

tion, only dy is at one of its bounds; the other six optimized parameters are251

on the interior of the feasible domain. The optimized results for two different252

upper bounds on dy are indictated in the two columns of Table 3.253

6. Conclusions254

A global optimization algorithm recently introduced by our group, ∆-DOGS,255

has been applied to optimize the design of a flying-catamaran hydrofoil, with256

the goal of maximizing the lift/drag ratio at a specified working condition.257

The vortex-lattice model implemented in AVL has been used to compute the258

hydrofoil’s lift and drag characteristics. The AVL model has been validated for259

this problem with experimental data available in the literature.260
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Table 3: Optimal parameters for two different
bounds for dy

parameter dy ≤ 1.50 dy ≤ 2.00

S 0.305 0.305

z1 0.89 1.30

dy 1.50 2.00

dz -0.29 -0.27

w1 7.25 4.33

ctip 0.21 0.43

wc 2.58 3.60

L
D 36.81 47.60

α 3.78699 3.29558

β 0.02691 -0.07407

While a first-guess, L-shaped, constant chord design with z1 = dy = 1.5261

and a surface area S = 0.3050 has an L/D ≈ 15, the optimized hydrofoil has262

an L/D ≈ 35, which represents a 2.3× improvement. This work thus shows263

how computationally inexpensive numerical models can be successfully coupled264

with efficient global optimization algorithms on nontrivial practical problems,265

providing valuable design guidance for the early stages of the design process.266

We conclude by noting that the model implemented in AVL is valid only267

for chord-based Froude numbers Fnc ≈ O(10). Below that, unmodeled wave268

generation becomes significant [9, section 6.8], while above that phenomena like269

cavitation or ventilation kick in. As a point of comparison, the hydrofoil of270

an AC72 boat, having a 0.7m chord and sailing at 40 knots (20m/s), has an271

Fnc = 20√
9.81·0.7 = 7.63. The efficient use of more computationally intensive,272

high-fidelity numerical codes for optimization, able to correctly capture a larger273

range of Froude numbers, will be investigated in future work.274
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Figure 6: Convergence history. Top: best efficiency CL/CD (solid) at constant lift during the
optimization; the actual value at each iteration is showed by a dotted line. Bottom: optimal
parameter’s values during the optimization.
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Figure 7: Optimized geometry (thick), and all tested geometries (thin).
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Figure 8: Optimized geometries with two different aspect ratios.
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