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a b s t r a c t

A probabilistic framework is proposed for the optimization of efficient switched control strategies for
physical systems dominated by stochastic excitation. In this framework, the equation for the state trajec-
tory is replaced with an equivalent equation for its probability distribution function in the constrained
optimization setting. This allows for a large class of control rules to be considered, including hysteresis
and a mix of continuous and discrete random variables. The problem of steering atmospheric balloons
within a stratified flowfield is a motivating application; the same approach can be extended to a variety
of mixed-variable stochastic systems and to new classes of control rules.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control theory is concerned with minimizing the en-
ergy required to maintain a feasible phase-space trajectory within
a fixed time-average measure from a target trajectory (Lewis &
Syrmos, 1995). This may be achieved by solving the constrained
optimization problem (Nocedal & Wright, 2006)

min
u

|u|Q (1a)

with
{
|x − x̄|R = constant
ẋ = f (x, u) + ξ,

(1b)

where u(x) is a given feedback control rule, x = x(t) and x̄ = x̄(t)
are the actual and target trajectories in phase space, and the addi-
tive noise term ξ models the unknown or uncertain components
of the dynamical system. The norms |·|Q and |·|R must be chosen
to reflect the actual control energy and the specific measure of
interest of the system state, but are often limited to L2 or L∞ norms
to make the optimization problem tractable. The present work is
motivated by the general inability of the formulation (1) to treat
problems with mixed continuous and discrete random variables,
hysteretic behavior, and/or norms others than L2 or L∞.

✩ The material in this paper was partially presented at the 7th International
Symposium on Stratified Flows, Aug 29–Sept 1, 2016, San Diego, USA. This paper
was recommended for publication in revised form by Associate Editor Michael V.
Basin under the direction of Editor André L. Tits.

* Correspondence to: Department of Earth, Atmospheric and Planetary Sciences,
Massachusetts Institute of Technology, Cambridge, MA, USA.

E-mail addresses: mgl@mit.edu (G. Meneghello), luchini@unisa.it (P. Luchini),
bewley@ucsd.edu (T. Bewley).

As amotivating application, consider a balloon in a stably strati-
fied turbulent flowfieldwhose time-averaged velocity is a function
of height only, as depicted by thin arrows in Fig. 1a. This is a good
approximation for the radial flowwithin a hurricane, as depicted in
Fig. 1b. The balloon’s density can be changed to control its vertical
velocity (and, hence, its altitude), and the balloon’s motion can be
well approximated as the motion of a massless particle carried by
the flowfield

Ẋ = αZ + ξ, (2a)

Ż = u(X, Z), (2b)

where X and Z are random variables denoting the horizontal and
vertical positions, α is the vertical gradient of the time-averaged
horizontal velocity (i.e.,αz is the time-averaged horizontal velocity
at height z), and the turbulent fluctuations of the horizontal ve-
locities are characterized by a white Gaussian noise ξ with zero
mean and spectral density c2. Neglecting the vertical velocity fluc-
tuations, the balloon moves in the horizontal direction according
to a Brownian motion with a probability distribution function
(PDF) pX,Z (x, z) with horizontal mean µX (t) = αzt and variance
σ 2
X (t) = c2t . In the uncontrolled case, the variance of the balloon’s

horizontal position grows linearly with time. The vertical velocity
u can then be used, leveraging the background flow stratification
α, to return the balloon to its original position.

We are thus interested in designing a control strategy u(x, z)
to limit the variance of the horizontal position of the balloon to
a target value σ̄ 2

X , while minimizing the control cost |u(x, z)|Q .
More specifically, we consider a three-level control (TLC) feedback
rule, depicted by thick lines in Fig. 1a, consisting of step-changes
of altitude ±h in the vertical position applied when the balloon

https://doi.org/10.1016/j.automatica.2017.11.001
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Fig. 1. Left: flowfield model (thin arrows) and the three-level control (TLC) rule (thick lines). Right: radial velocity profiles, composite from dropsonde measurements
between 1996 and 2012 within 200 km of the hurricane center (Wang, Young, Hock, Lauritsen, Behringer, Black, et al. 2015), binned into 50m altitude intervals and sorted
according to hurricane category (1 to 5). The jaggedness of the profiles above 2 km altitude is due to the reduced number of available measurements with respect to the
lower region. Dashed lines estimate the mean velocity gradient α.

reaches a distance of ∓d from the target trajectory x = 0. In
such a setting, the vertical coordinate Z̄ ∈ {−h, 0, h} is essentially
discrete, as the controlledmovements of the balloon in the vertical
direction are assumed to happen relatively quickly. The control u is
then described by a sequence of δ functions, and exhibits hysteresis
in the horizontal coordinate. We additionally chose the L1 norm
|u|1, measuring the step size h, to measure the control cost |u|Q .
The L1 norm is a better representation of the energy required by
the balloon to change altitude than the classical L2 norm. More
importantly, the L1 norm of a control described by δ functions is
finite, while its L2 norm is unbounded and could never be optimal.

Despite the apparent simplicity of the TLC control rule, it cannot
be optimized as formulated in (1). Rather than constraining the
problem by the state-space representation of the system (2), as is
done in (1), we thus instead use an equivalent condition on the PDF
pX,Z (x, z), and restate the optimization problem (1) as

min
u

E [ |u|1 ] (3a)

with

⎧⎪⎨⎪⎩
E

[(
X − X̄

)2]
= σ̄ 2

X

∂tpX + f (X, u) · ∇pX +
c2

2
∇

2pX = 0,
(3b)

where we have replaced the state equation in (1b) with an equiv-
alent Fokker–Plank equation for the PDF pX (x) (Risken, 1984), and
the norms are interpreted as expected values. The solution of the
optimization problem as stated in (3) is the principal contribution
of this work.

Previous attempts, e.g. (Annunziato & Borzì, 2010, 2013; Fleig &
Guglielmi, 2016a, b), start from the same optimization problem (3),
but constrain the shape of the entire probability distribution pX in
place of its variance E

[
(X − X̄)2

]
. It is important to remark that the

optimization problem (3) is the starting point for the LQR solution
too (or any optimal control problem): rather than constraining the
entire PDF, we are here solving the equivalent of the LQR problem
for a non quadratic objective function and a non-linear control rule.

The remainder of this paper is concerned with the solution of
the optimization problem (3) for the TLC rule of Fig. 1a, and with
comparison to the classical linear control rule u = k1x+k2z, whose
optimal solution is given by the Linear Quadratic Regulator (LQR)
(Lewis & Syrmos, 1995). To facilitate comparison, we first derive
the functional form of the solution by dimensional analysis.

A preliminary version of this work appeared in Meneghello,
Luchini, and Bewley (2016).

2. Dimensional analysis

The control problem is governed by three parameters: the ve-
locity gradient α, the spectral density c2 of the noise ξ , and the
target horizontal variance σ̄ 2

X . Take the length, time, and velocity
scales as L =

√
c2/α, T = α−1, and U = L/T =

√
c2α. A single

dimensionless parameter can be defined as

R = σ̄ 2
X α/c2, (4)

and the dimensionless control cost can be written as w/U =

E [ |u|1 ] /U = F(R) where F(R) is an unknown dimensionless
function. Similar expressions can be written for d/L and h/L.

The system (2) is additionally invariant with respect to a rescal-
ing of the vertical coordinate by the time scale α−1. A rescaled
vertical coordinate Z̃ = αZ and control variable ũ = αu can
then by defined, and the parameters governing the problem are
reduced to the variance σ̄ 2

X and the spectral density c2 only. A
single dimensionless group w̃σ̄X/c2 = γw can be obtained, where
w̃ = αw is the rescaled control cost and γw is a dimensionless
constant to be determined. By making w̃ explicit and recasting the
dimensionless group in original coordinates the control cost can be
written as
w

U
= γw

1
U

c4

ασ̄ 3
X

= γw R−
3
2 . (5)

The same approach can be used to obtain expressions for d and
h:
d
L

= γd
σ̄X

L
= γdR

1
2 ,

h
L

= γh
1
L

c2

ασ̄X
= γhR−

1
2 . (6)

The solution is then obtained by optimizing the dimensionless
constants γ(·) for each control parameter. Similarly, for the linear
feedback control rule u = k1x + k2z, we can write Tk1 = γk1R

−2

and Tk2 = γk2R
−1. Note that the solution (5) is independent of the

specific choice of the control rule u(x, z); a comparison between
different rules can be obtained by comparing the respective values
of γw .

3. Three-level control (TLC) rule

We now proceed in seeking the optimal values for the parame-
ters d and h [equivalently, γd and γh in (6)] in the TLC rule indicated
by thick lines in Fig. 1a, corresponding to step changes in altitude
h at x = 0, ±d. In this limit, the governing equations (2) can be
restated as

Ẋ = −αZ̄ + ξ, (7)
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Fig. 2. Implementation of the three-level control rule.

Fig. 3. Steady state probability distribution functions for c2 = h = α = 1. Filled:
p0(x) and p±h(x). Solid:marginal probability pX (x) = p0(x)+p+h(x)+p−h(x). Dashed:
normal distribution with the same variance.

where X ∈ R is the same as in the original problem, but Z̄ ∈

{−h, 0, h} is now a discrete rather than a continuous random
variable, and the corresponding equation is replaced by the au-
tomata in Fig. 2. This is a valid approximation when the control
velocity u is larger than the horizontal velocity scale

√
c2α; if that

is not the case, Eq. (2) must be used in place of (7). Note that the
dynamics of (7) is quite simple, is dominated by the effect of the
stochastic excitation ξ and allows for an analytical solution of the
optimization problem.

Let pX,Z̄ (x, z̄) be the PDF of the balloon position, and pz̄(x) =

pX |Z̄ (x|z̄) pZ̄ (z̄), so that pX (x) =
∑

z̄pz̄(x) is the marginal probabil-
ity. The governing equations for the PDFs can be written as

∂tpz̄(x) + ∂xαz̄ pz̄(x) − ∂xx
c2

2
pz̄(x) = 0

for z̄ ∈ {−h, 0, h},
(8a)

∂xpX (x)|x− = ∂x pX (x)|x+ for x ∈ {−d, 0, d}, (8b)

where (8a) is three Fokker–Plank equations for each discrete alti-
tude z̄, obtained by considering the transition probabilities implied
by (7). Equation (8b) represents the transition probabilities in the
z direction, and imposes the conservation of the probability fluxes
marked by arrows in Fig. 2. Eqs. (8) now take the role of the
optimization problem constraint (3b).

The statistically steady-state solution of (8a) can actually be
computed analytically, as shown in Fig. 3, and is given by

p0 (x) =

{
c1x + c2 0 < x < d,
0 d < x < ∞,

(9a)

ph (x) =

⎧⎪⎨⎪⎩
q1

λ

2
e−

2x
λ + q2 0 < x < d,

r1
λ

2
e−

2x
λ + r2 d < x < ∞,

(9b)

where λ =
c2
gh is twice the e-folding scale of the PDF (the symmetry

of the problem at x = 0 can be used to compute the solution for
x < 0, Z̄ = h). The integration constants c1, c2, q1, q2, r1, r2 can
be obtained imposing (8b) together with the boundary conditions
p0(x = d) = 0, ph(x = 0) = 0, limx→∞pX (x) = 0, and the

normalization condition
∫

∞

−∞
pX (x)dx = 1, resulting in

c1 = −
1

d(d + λ)
, q1 = −

1
d(d + λ)

, r1 =
e

2d
λ − 1

d(d + λ)
,

c2 =
1

d + λ
, q2 =

λ

2d(d + λ)
, r2 = 0. (10)

Upon substitution of the coefficients (10) into the expressions for
p0 and ph in (9), the variance can be written

σ 2
X =

∫
∞

−∞

x2pX (x)dx =
d3 + 2λd2 + 3λ2d + 3λ3

6(d + λ)
. (11)

The control cost can be computed as the total transition proba-
bility between the states Z̄ = 0 and Z̄ = h, multiplied by the cost
of the single control activation h:

w = 2αhc2 ∂xp0|x=d =
2ghc2

d(d + λ)
. (12)

The control parameters h and d, and the corresponding control
cost w, can then be computed by minimization of the objective
functional (3a). The corresponding dimensionless constants in (5)
and (6) are

γw = 0.5432, γd = 1.6288, γh = 1.1166, (13a)

f = 0.4864 c2/σ 2
x = 0.4864 T−1 R−1, (13b)

where f is the frequency at which the control has to be activated,
and can be computed by considering the times tout = d2/c2 and
tin = d/(gZ) to reach the location x = d from x = 0 and back,
respectively.

It is also of interest to compute the minimum variance attain-
able for given values of d and h, and from there obtain the limiting
values of d and h for a specified σ̄X . Taking the limit of (11) we can
write

lim
h→∞

σ 2
X =

d2

6
⇒ d <

√
6 σ̄X , (14a)

lim
d→0

σ 2
X =

c4

2α2h2 ⇒ h >
1

√
2

c2

σ̄Xα
. (14b)

In both limits the control cost tends to infinity, in the first case
because h → ∞, and in the second because the frequency of
the steps increases without bound. Reasonable (finite) values of
h and d, away from these limiting values, are thus important in
application. Results are summarized in Fig. 4.

4. Application to the control of balloons within a hurricane

Finally, we compute optimal values of the control parameters
for atmospheric balloons within an idealized hurricane flowfield,
and compare them with results using the linear control rule u =

k1x + k2z. A velocity gradient of α = 10−3 s−1 (see Fig. 1b) and a
spectral density of c2 = 1500m2 s−1 (Zhang &Montgomery, 2012)
are assumed.

We additionally impose a target standard deviation of σ̄X =

3 km, resulting in R = 6 [see (4)]. Control parameters and control
cost can be obtained using (6) together with the values in (13). For
the TLC rule,

d = 4886.4m, h = 558.3m, (15a)

w = 4.54 × 10−2 m/s, f = 8.11 × 10−5 s−1, (15b)

where f corresponds to a period of about 3.5 h.
The optimal solution for the linear control rule (Meneghello et

al., 2016) can be readily obtained by solving (1), resulting in

k1 = 3.125 × 10−5 s−1, k2 = 2.5 × 10−4 s−1, (16a)

w = 4.32 × 10−2 m/s. (16b)
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Fig. 4. Comparison of control rules: (a) control cost w = E [|u|1] as a function of the dimensionless parameter R for the two different control rules; the two control costs are
almost indistinguishable, differing by less than 5%. (b,c) Control parameters and (d,e) corresponding probability density for the hurricane case (R = 6) for the linear and TLC
control rules. Gray patterns in (c) define the limit of each curve for which a given value of R is attainable, given by (14).

Simulations for both control rules are shown in Figs. 4d and 4e.
From an application perspective, the three-level control (TLC)

rule of Fig. 2 has many advantages: despite the theoretically
slightly larger control cost [see Fig. 4a, as well as (15b) and (16b)],
holding rather than continuously adjusting a position is often an
easier solution to implement, possibly requiring less energy and
providing greater system durability in real applications (e.g., im-
plementing a brake mechanism on a motor shaft). Additionally,
given the very turbulent environment of a hurricane, the low
average control velocities (centimeters per second) implied by
(16b) aremore difficult to actually obtain than the occasional high-
velocity upward and downwardmotions required by (15b) [where
w is only a measure of the control cost, rather than the actual
average velocity]. For an observational platform like a sensor bal-
loon, the TLC control rule has the additional advantage of allowing
measurements to be performed while the balloon motion is not
being disturbed by continuous control actions, as indicated by
comparing Figs. 4d and 4e for an equivalent uncertainty σ̄X on the
balloon position.

5. Conclusions

This paper introduces a probabilistic framework for the opti-
mization of physical systems dominated by stochastic excitation in
the presence of mixed continuous and discrete random variables,
non-linearities, and hysteresis. Its application has been demon-
strated by addressing the problem of controlling atmospheric
balloons within a model of a stratified turbulent flowfield, and

practical considerations have been provided in Section 4; the same
framework can be extended to a class of problems that appear
to have been previously intractable from an optimization point of
view.

References

Annunziato, M., & Borzì, A. (2010). Optimal control of probability density functions
of stochastic processes. Mathematical Modelling and Analysis, 15(4), 393–407.

Annunziato, M., & Borzì, A. (2013). A fokker–planck control framework for multi-
dimensional stochastic processes. Journal of Computational and Applied Mathe-
matics, 237(1), 487–507.

Fleig, A., & Guglielmi, R. (2016a). Bilinear optimal control of the Fokker–Planck
equation. IFAC-PapersOnLine, 49(8), 254–259.

Fleig, A., & Guglielmi, R. (2016b). Optimal control of the Fokker–Planck equation
with space-dependent controls. Journal of Optimization Theory and Applications,
1–20.

Lewis, F. L., & Syrmos, V. L. (1995). Optimal control. John Wiley & Sons.
Meneghello, G., Luchini, P., & Bewley, T. (2016). On the control of buoyancy-driven

devices in stratified, uncertain flowfields. In VIIIth International Symposium on
Stratified Flows, vol. 1.

Nocedal, J., &Wright, S. (2006). Numerical optimization. Springer Science & Business
Media.

Risken, H. (1984). Fokker-Planck equation. In The Fokker-PLanck equation
(pp. 63–95). Springer.

Wang, J., Young, K., Hock, T., Lauritsen, D., Behringer, D., Black, M., et al. (2015).
A long-term, high-quality, high-vertical-resolution GPS dropsonde dataset for
hurricane and other studies. Bulletin of the American Meteorological Society,
96(6), 961–973.

Zhang, J. A., & Montgomery, M. T. (2012). Observational estimates of the horizontal
eddy diffusivity andmixing length in the low-level region of intense hurricanes.
Journal of the Atmospheric Sciences, 69(4), 1306–1316.

http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb1
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb2
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb3
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb4
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb5
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb5
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb5
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb5
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb5
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb5
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb5
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb5
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb5
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb7
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb8
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb9
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10
http://refhub.elsevier.com/S0005-1098(17)30533-2/sb10

	A probabilistic framework for the control of systems with discrete states and stochastic excitation
	Introduction
	Dimensional analysis
	Three-level control (TLC) rule
	Application to the control of balloons within a hurricane
	Conclusions
	References


