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Abstract. In this paper we consider a problem of designing control laws for
multiple mobile agents trying to accomplish three objectives. One of the ob-
jectives is to sense a given compact domain while satisfying the other objective
which is to avoid collisions between the agents themselves as well as with the
obstacles. To keep the communication links between the agents reliable, the

agents need to stay relatively close during the sensing operation which is the
third and final objective. The design of control laws is based on carefully con-
structed objective functions and on an assumption that the agents’ dynamic
models are nonlinear yet affine in control laws. As an illustration of some per-
formance characteristics of the proposed control laws, a numerical example is
provided.

1. Introduction. When controlling and coordinating multiple agents one of the
main issues is to provide a guarantee that there will be no collisions between the
agents as well as with the obstacles. Not only that the problem of collision avoid-
ance is difficult on its own (one of the reasons being its relation to differential
games [17, 2, 29]) yet the complexity significantly increases if additional objectives
are considered, especially in the case when the agents’ dynamical characteristics
are represented by nonlinear models. Due to its relation to the Liapunov stabili-
ty approach known for its applicability to control of nonlinear systems, a concept
of avoidance control introduced by Leitmann and Skowronski [22] and later fur-
ther developed by Leitmann and his collaborators in [23, 24, 25, 7, 8], provided
much needed theoretical framework to tackle issues of controlling multiple nonlin-
ear systems with collision avoidance as one of the objectives. The avoidance control
framework was initially established as a Liapunov based approach to pursuit-evasion
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32 D. M. STIPANOVIĆ, C. VALICKA, C. J. TOMLIN AND T. R. BEWLEY

dynamic games yet its applicability goes well beyond its original formulation. So
far the method has been successfully applied to multi-vehicle systems involving d-
ifferential drive robots [26], quadrotors [44], miniature helicopters [31] as well as in
modelling human behavior [3]. A more recent and comprehensive survey on both
theoretical and application results of avoidance control is provided in [38].

General multi-objective problems are also known to be extremely difficult to
solve. This can be understood by recalling that even in the simpler static cas-
es (meaning no differential equations are involved) of mutiobjective optimization
formulations the most common approach is to avoid vector optimizations and intro-
duce appropriate scalarizations of the problems [28]. We follow this approach in our
paper by using approximations of minimum and maximum functions used first in
differential games [37, 39] and later used to construct Liapunov-like goal functions
for multi-objective problems in controls [40, 41] where each objective is represented
by a corresponding objective function. Collision avoidance objective is represented
using modified avoidance functions [36] which are active only in bounded domains
around the agents. Coverage control objective is described using an area integral
[15, 16] and the agents’ sensing domains are assumed to be compact circular region-
s. We provide additional analysis on how to differentiate area integrals dependent
on time in the case when the individual agents’ sensing areas overlap. This is an
extension of the result valid in the case when the agents’ sensing domains do not
overlap [42]. Since the coverage control problem is a singular control problem [45],
we construct an area integral which differs from the ones used in [15, 16, 42] because
we do not assume a priori that the agents are forbidden to leave the search area. At
this point let us recall that the origins of coverage control date back to a problem of
a search of an unknown (static or mobile) object studied in the differential games
literature [4, 27, 30]. Finally we formulate proximity objective functions using sim-
ple penalty function forms since the proximity objective is needed for reliability of
the communication links and not treated as a main objective which was the case
in, for example, [46]. In order to illustrate the proposed design we consider a sce-
nario with three agents represented by nonlinear and nonholonomic models which
are affine in control. The agents’ goal is to sense a given domain which is a square
(yet the design procedure does not depend on the shape of the area) while avoiding
collisions and maintaining reliable communication links.

2. Avoidance and proximity control for multiple agents. In this section we
show how to design avoidance and proximity control laws based on appropriately
constructed objective functions. We start by assuming that the agents’ dynamic
models are nonlinear yet affine in control so they can be written as

ẋi = fi(xi, ui) = gi(xi)ui + hi(xi), xi(0) = xio, ∀t ∈ [0,+∞), ∀i ∈ N (1)

where N denotes a number of agents, N = {1, . . . , N}, xi ∈ Rni is the state,
ui ∈ Rmi is the control input/law, and xio is a given initial condition for an i-th
agent. It is relevant to note that these nonlinear affine in control models include
differential drives and car-like models [34]. The ni-dimensional vector functions
fi(·, ·), i ∈ N, are assumed to be continuously differentiable with respect to both
arguments. The agents’ control inputs are assumed to belong to the set of admissible
feedback strategies with respect to the overall state x = [xT

1 , . . . , x
T
N ]T ∈ Rn, that

is, ui ∈ Ui = {φi(·) : Rn → Rmi} for all i ∈ N. An admissible set of feedback
strategies consists of those strategies which would guarantee both existence and
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uniqueness of the closed-loop state trajectories of differential equations in (1) (for
more details we refer to, for example, [6, 9]).

2.1. Avoidance objective functions. The avoidance control objectives include
avoiding collisions with static obstacles as well as collisions between the agents. A
modified avoidance function to be used to avoid collisions between agents i and j
has the following form [36]:

vaij(x) =

(
min

{
0,

(xp
i − xp

j )
TPij(x

p
i − xp

j )−R2
ij

(xp
i − xp

j )
TPij(x

p
i − xp

j )− r2ij

})2

(2)

where Rij > rij are positive scalars and Pij is a positive definite matrix for any
pair (i, j). The superscript p denotes position state variables which form a subset of
the corresponding agent’s state variables. Particular values for rij , Rij and Pij are
chosen to satisfy the safety requirements which are related to particular scenarios
and dynamical characteristics of the agents. In a similar way, a modified avoidance
function to be used to design a control input for an agent i to avoid an obstacle
denoted by a positive integer l takes the following form:

vail(x) =

(
min

{
0,

(xp
i − xo

l )
TPil(x

p
i − xo

l )−R2
il

(xp
i − xo

l )
TPil(x

p
i − xo

l )− r2il

})2

, (3)

where Ril > ril > 0 are positive scalars and Pil is a positive definite matrix
corresponding to the pair (i, l). These parameters are chosen so that the set
{z : (z − xo

j)
TPij(z − xo

j ) ≤ r2ij} either exactly defines or over-bounds obstacle
l, and Ril is chosen based on the sensing capabilities of an agent i.

The gradients of the avoidance functions vaij are given by [36]

∂vaij
∂xp

i

=





0, dij ≥ Rij

4
(R2

ij−r2ij)((x
p
i −x̂j)

TPij(x
p
i −x̂j)−R2

ij)

((xp
i−x̂j)TPij(x

p
i −x̂j)−r2ij)

3
(xp

i − x̂j)
TPij , rij < dij < Rij

not defined, dij = rij
0, dij < rij

(4)

where x̂j denotes xp
j if j corresponds to an agent or xo

j if j corresponds to an

obstacle. In addition, ‖y‖Pij
=
√
yTPijy where y is a vector and Pij is a positive

definite matrix of appropriate dimension. Finally, for short notation we set dij =
‖xp

i − x̂j‖Pij
.

2.2. Proximity objective functions. During the operation we assume that the
agents exchange information via wireless communication links. In order to keep
these links reliable the agents need to stay close. This requirement is formulated in
terms of distances between the agents being smaller than particular distances which
guarantee reliable communication links. This means that any two agents i and j
are accomplishing other objectives (such as coverage) while trying to keep mutual

distance to be less or equal to a distance R̂ij which allows them to communicate
without interruptions. To formulate a proximity objective for agents i and j to be
distance wise closer than R̂ij , we use the following function (similar to the ones
used in [16]):

vpij(x
p
i , x

p
j ) = max{0, ‖xp

i − xp
j‖2 − R̂2

ij}2. (5)



34 D. M. STIPANOVIĆ, C. VALICKA, C. J. TOMLIN AND T. R. BEWLEY

Then the gradient of the proximity function with respect to the i-th agent’s position
state variables can be computed as

∂vpij
∂xp

i

= 4max{0, ‖xp
i − xp

j‖2 − R̂2
ij}(xp

i − xp
j )

T . (6)

2.3. Designing avoidance and proximity control laws. In order to accomplish
multiple objectives using a Liapunov-like analysis we adopt an approach that is
based on differentiable approximations of minimum and maximum functions [39,
40, 41]. Since this paper deals with control applications (not differential games as
in [39, 40, 41]) we only need an approximation of the maximum of the form

ρ(δ, a) = δ

√√√√
N∑

i=1

aδi , (7)

where δ ∈ R+ = (0,+∞), a = [a1, . . . , aN ]T ∈ RN
+ , and N is a positive integer. We

also recall the following functions of either δ or a [40, 41]:

ρa(δ) = ρ(δ, a) for any given a ∈ R
N
+ ,

ρδ(a) = ρ(δ, a) for any given δ ∈ R+, (8)

where ρp(a) is known as a p-norm of a denoted as ‖a‖p when p = δ ∈ [1,+∞].
In what follows, we will denote Euclidean norm without the subscript, that is,
‖ · ‖ ≡ ‖ · ‖2. Let aM = maxi∈N{ai} and define M as a variable taking the integer
value of the index of a maximum aj , that is, M = j. Maximum approximation
functions given in equation (8), when N ≥ 2, satisfy that aM < ρa(δ2) < ρa(δ1),
∀(δ1, δ2)(0 < δ1 < δ2 < +∞), and also that limδ→+∞ ρa(δ) = aM [40, 41].

The advantages of using approximation functions in (8) are that they can be
used as an appropriate scalarization for multiobjective problems [28] as well as
incorporated using a Liapunov-like analysis to establish sufficient conditions for
achieving multiple objectives. Furthermore it is assumed that each objective is
represented by a scalar nonnegative function vij(·) : [t0,+∞) × Rn → [0,+∞),
where the subscript j denotes the j-th objective, the subscript i denotes the i-th
agent, and t0 denotes initial time. Objective functions are functions of time and
agents’ state variables, in general. Let us assume that the i-th agent’s goal is to
accomplish Ni objectives which are formulated as vij ≤ ǫij for some nonnegative
numbers ǫij which are chosen appropriately. For example if a proximity function
in (6) satisfies vij ≤ 0 then the distance between agents i and j is less or equal

to R̂ij . Then, a sufficient condition for agent i to accomplish all objectives can be
formulated as follows [40, 41]:

ρδ(vi1, . . . , viNi
) ≤ min{ǫi1, . . . , ǫiNi

}. (9)

In the case in which all ǫij are positive, condition (9) can be relaxed to [40, 41]

ρδ(γi1vi1, . . . , γiNi
viNi

) ≤ 1, where γij = 1/ǫij , j ∈ {1, . . . , Ni}. (10)

Notice that inequality (10) implies vij ≤ 1/γij = ǫij which means that all of the
agent i’s objectives are satisfied.

Now let us assume that the overall goal (which is to accomplish all of its objec-
tives) for the i-th agent is mathematically formulated as vi(t, x) ≤ ǫ where

vi(·) = ρδ(γi1vi1(·), . . . , γiNi
viNi

(·)). (11)
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These objectives are formulated in terms of avoidance functions in (2) and (3) as
well as proximity objective functions in (5). One way to satisfy all objectives is to
decrease values of function vi(·) along the trajectories of (1) in time until it satisfies
the goal condition at some time t = T when vi(T, x(T )) ≤ ǫ because ρδ(·) is always
greater or equal to the maximum value of the objective functions. This approach is
very appropriate in the case of multiple agent dynamic systems where the dynamics
of the agents are affine in control such as in equation (1). In that case control inputs
can be designed using the agents’ dynamics and the gradients of their goal functions
as

ûi(x) = −k̂ig
T
i (xi)

∂vi(x)

∂xi

T

(12)

where k̂i denotes a positive scalar gain.
It was shown in [37, 39] that when the agents’ models are nonlinear and the goal

is to accomplish multiple objectives then the goal function may not be monotoni-
cally decreasing (or nonincreasing) in time (as in the standard Liapunov functions
approach) and one way to deal with the issue is to use differential inequalities to
establish a sufficient condition for accomplishing the goal. To illustrate this let us
assume that v(t0, x(t0)) > R and that a goal is to achieve v(T, x(T )) < R, R > 0, as
well as determine an instant of time T > t0. Then let us bound the time derivative
of the goal function using a function G(·, ·, ·) : [0,+∞)× Rn × R → R, that is,

∂v(t, x)

∂t
+

∂v(t, x)

∂x
f(t, x, û(t, x)) ≤ G(t, x, v(t, x)) (13)

for any (t, x) ∈ [t0,+∞)×Rn. The choice of G(·, ·, ·) is very much problem depen-
dent yet it is often chosen to be equal to the time derivative of the goal function.
Furthermore if the maximal solution z̄(t) [19, 10] of the comparison differential
equation:

ż(t) = G(t, x(t), z(t)), z(t0) = z0 (14)

with initial condition z0 ≥ v(t0, x0), satisfies z̄(T ) < R for some T , then v(T, x(T )) ≤
z̄(T ) < R and thus the goal is achieved at t = T .

3. Coverage control. In this section we concentrate on the design of agents’ cov-
erage control laws when their dynamics are affine in control. The coverage control
problem is formulated in terms of an area integral which depends on time as a
parameter and the value of this integral shows how well the area is covered. The
coverage itself is done with a group of agents with limited and nonuniform sensing
capabilities. If one uses a Liapunov approach to establish a sufficient condition that
the area is properly covered then one of the issues which arises is the differentia-
tion of an area integral depending on time as a parameter (also known as Leibniz’s
integral rule). This was not treated as an issue in [15, 16] and an initial result
involving one sensor or multiple sensors with non-overlapping sensing regions was
provided in [42]. In this paper we provide a formula for the differentiation of an
area integral which is computed over the domain in the case when agents’ sensing
regions do overlap. We also provide a design of the coverage control laws for agents
with nonlinear models affine in control based on a modified area integral (comparing
to the one used in [15, 16, 42]). This modified area integral enables the agents to
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search an area without imposing an additional constraint which is not allowing the
agents to leave the area.

3.1. Differentiation of double integrals depending on a parameter. In this
subsection we recall some known results and provide some new derivations related
to the differentiation of area integrals related to our coverage control formulation.

Let us first assume that f(t, z̃1, z̃2) and ∂f(t,z̃1,z̃2)
∂t

are continuous functions in the
domain {(t, z̃1, z̃2) : (t, z̃1, z̃2) ∈ [t1, t2] × D(t)}. Constants t1 and t2 are given.
Now we will recall some results for the case when D(t) is a compact region in R2

bounded by a smooth Jordan curve C(t) which were reported in [42]. We start by
considering the time derivative of the following area integral:

J(t) =

∫∫

D(t)

f(t, z̃1, z̃2)dz̃1dz̃2 (15)

which can be computed as [11, 21]

dJ(t)

dt
=

d

dt



∫∫

D(t)

f(t, z̃1, z̃2)dz̃1dz̃2


 =

∫∫

D(t)

∂f(t, z̃1, z̃2)

∂t
dz̃1dz̃2 + I(t) (16)

where

I(t) =

∮

C(t)

f(t, z̃1, z̃2)

(
∂z̃1
∂t

dz̃2 −
∂z̃2
∂t

dz̃1

)
(17)

and the integration is done in the counterclockwise (that is, positive) direction. It
fits our scenario to assume that for each t the region D(t) is a circle, that is,

D(t) = {(z̃1, z̃2) : (z̃1 − z1(t))
2 + (z̃2 − z2(t))

2 ≤ R2(t)},
C(t) = {(z̃1, z̃2) : (z̃1 − z1(t))

2 + (z̃2 − z2(t))
2 = R2(t)} (18)

where the radius R(t) may be time dependent. Since the sensing regions are often
assumed to be circular one can assume that the function f(·, ·, ·) : R3 → R has the
following form:

f(t, z̃1, z̃2) = g(t, (z̃1 − z1(t))
2 + (z̃2 − z2(t))

2) (19)

for some nonnegative and continuously differentiable function g(·, ·) : R×R+ → R+,
R+ = [0,+∞). These assumptions would correspond to the case of an agent having
a circular sensing region where the quality of sensing depends on how far the point
(z̃1, z̃2) ∈ R2 is away from (z1(t), z2(t)) which is the position of the agent at time t.
Then equation (17) can be rewritten as

I(t) =

∮

C(t)

g(t, (z̃1 − z1(t))
2 + (z̃2 − z2(t))

2)

(
∂z̃1
∂t

dz̃2 −
∂z̃2
∂t

dz̃1

)
. (20)

To simplify the expression in equation (20) let us introduce a change of variables
as [42]

z̃1 = z1(t) +R(t) cosϕ,

z̃2 = z2(t) +R(t) sinϕ (21)

which implies
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g(t, (z̃1 − z1(t))
2 + (z̃2 − z2(t))

2) = g(t, R2(t)) on C(t) (22)

and [21]

∂z̃1
∂t

= ż1(t) + Ṙ(t) cosϕ, dz̃1 = −R(t) sinϕdϕ,

∂z̃2
∂t

= ż2(t) + Ṙ(t) sinϕ, dz̃2 = R(t) cosϕdϕ. (23)

Then in [42] it was shown that I(t) = 2πṘ(t)R(t)g(t, R2(t)) which results in

dJ(t)

dt
=

∫∫

D(t)

∂f(t, z̃1, z̃2)

∂t
dz̃1dz̃2 + 2πṘ(t)R(t)g(t, R2(t)). (24)

This result is interesting in the sense that it shows that the integral I(t) is zero
either if the function f(t, ·) (that is, g(t, ·)) is equal to zero on C(t) or the radius
R(t) does not depend on time. Also if the radius R(t) is decreasing with time
then I(t) is negative which is desirable if a designer uses a Liapunov approach in
coverage control where the goal would be to guarantee that dJ/dt is negative if the
full coverage is not achieved (like in [15, 16]). Unfortunately this result applies only
to the case when the agents’ sensing regions do not overlap. In the case when the
agents’ sensing regions do overlap, the boundary of an area integral is not smooth
anymore which makes the computation of the derivative of the area integral (16)
more difficult. In order to show how the differentiation should be done in the
case of overlapping sensing regions let us start with a scenario with two agents
with overlapping sensing domains as depicted in Figure 1. The agents i and j two
dimensional position state vectors (usually Cartesian coordinates) at time instant
t are denoted as xp

i (t) and xp
j (t), respectively. Their sensing radii are denoted as

Ri(t) and Rj(t). Now the area of integration D(t) is still a compact region in R2

yet it is bounded by C(t) which is now only piecewise smooth. In this case C(t) can
be represented as the union of two smooth arcs connected at points A(t) and B(t)
as depicted in Figure 1. Now let us again consider the problem of differentiating
the area integral in equation (15), that is,

dJ(t)

dt
=

d

dt



∫∫

D(t)

f(t, z̃1, z̃2)dz̃1dz̃2


 . (25)

Furthermore let us assume that we have at least three times continuously differen-
tiable function F (t, z̃1, z̃2) and recall that the Green’s theorem is valid for domains
with piecewise smooth boundaries [21, 47] so we can write

∫∫

D(t)

∂F

∂z̃2
dz̃1dz̃2 = −

∮

C(t)

Fdz̃1 (26)

for any given t. The same result applies to ∂F/∂t, that is

∫∫

D(t)

∂2F

∂t∂z̃2
dz̃1dz̃2 = −

∮

C(t)

∂F

∂t
dz̃1 (27)
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B(t)

A(t)

( )p
j
x t( )p

i
x t

( )
i
R t ( )

j
R t

Figure 1. Two agents with overlapping sensor domains.

where we use simplified notation for F = F (t, z̃1, z̃2). At this point we use the

formula for the differentiation of a line integral over a smooth arc L̂(t) = ̂A(t)B(t),
with its end points A(t) and B(t), as [21]

d

dt



∫

L̂(t)

Fdz̃1


 =

∫

L̂(t)

∂F

∂t
dz̃1 −

∫

L̂(t)

∂F

∂z̃2

(
∂z̃1
∂t

dz̃2 −
∂z̃2
∂t

dz̃1

)
+ F

dz̃1
dt

∣∣∣∣
B(t)

A(t)

. (28)

By differentiating both sides of equation (26) we obtain

d

dt



∫∫

D(t)

∂F

∂z̃2
dz̃1dz̃2


 = − d

dt



∮

C(t)

Fdz̃1


 (29)

and by splitting the integration over C(t) to integration over two smooth arc-

s ̂A(t)B(t) and ̂B(t)A(t) (integration is done in the counterclockwise or positive
math direction) we obtain the following

d

dt



∫∫

D(t)

∂F

∂z̃2
dz̃1dz̃2


 = − d

dt




∫

̂A(t)B(t)

Fdz̃1


− d

dt




∫

̂B(t)A(t)

Fdz̃1


 . (30)

Now from equations (28) and (30) it follows that

d

dt



∫∫

D(t)

∂F

∂z̃2
dz̃1dz̃2


 = −

∮

C(t)

∂F

∂t
dz̃1 +

∮

C(t)

∂F

∂z̃2

(
∂z̃1
∂t

dz̃2 −
∂z̃2
∂t

dz̃1

)

+ F
dz̃+1
dt

∣∣∣∣
B(t)

A(t)

+ F
dz̃−1
dt

∣∣∣∣
A(t)

B(t)

(31)

where dz̃+1 /dt denotes a derivative with respect to a parametrization of a smooth

arc ̂A(t)B(t) and dz̃−1 /dt denotes a derivative with respect to a parametrization of
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a smooth arc ̂B(t)A(t). Using equation (27) we can rewrite (31) as

d

dt



∫∫

D(t)

∂F

∂z̃2
dz̃1dz̃2


 =

∫∫

D(t)

∂2F

∂t∂z̃2
dz̃1dz̃2 +

∮

C(t)

∂F

∂z̃2

(
∂z̃1
∂t

dz̃2 −
∂z̃2
∂t

dz̃1

)

+ F
dz̃+1
dt

∣∣∣∣
B(t)

A(t)

+ F
dz̃−1
dt

∣∣∣∣
A(t)

B(t)

. (32)

Following the proof of formula (28) provided in [21] we set ∂F (t, z̃1, z̃2)/∂z̃2 =
f(t, z̃1, z̃2) (which is admissible due to the assumption that F (·) is three times
continuously differentiable) and finally obtain:

d

dt



∫∫

D(t)

f(t, z̃1, z̃2)dz̃1dz̃2


 =

∫∫

D(t)

∂f

∂t
dz̃1dz̃2

+

∮

C(t)

f(t, z̃1, z̃2)

(
∂z̃1
∂t

dz̃2 −
∂z̃2
∂t

dz̃1

)

+ F
dz̃+1
dt

∣∣∣∣
B(t)

A(t)

+ F
dz̃−1
dt

∣∣∣∣
A(t)

B(t)

. (33)

Equation (33) can be rewritten as

d

dt



∫∫

D(t)

f(t, z̃1, z̃2)dz̃1dz̃2


 =

∫∫

D(t)

∂f

∂t
dz̃1dz̃2

+

∮

C(t)

f(t, z̃1, z̃2)

(
∂z̃1
∂t

dz̃2 −
∂z̃2
∂t

dz̃1

)

+ F

(
dz̃+1
dt

− dz̃−1
dt

)∣∣∣∣
B(t)

+ F

(
dz̃−1
dt

− dz̃+1
dt

)∣∣∣∣
A(t)

. (34)

If the boundary C(t) is piecewise smooth then dz̃+1 /dt and dz̃−1 /dt derivatives will
not match at the points of discontinuity A(t) and B(t). Also, it can be easily
deduced from our derivation that if there is an overlap of an arbitrary number of
agents’s sensing areas with M critical points Ai(t), i ∈ {1, . . . ,M}, equation (34)
will generalize to

d

dt



∫∫

D(t)

f(t, z̃1, z̃2)dz̃1dz̃2


 =

∫∫

D(t)

∂f

∂t
dz̃1dz̃2

+

∮

C(t)

f(t, z̃1, z̃2)

(
∂z̃1
∂t

dz̃2 −
∂z̃2
∂t

dz̃1

)

+

N∑

i=1

(−1)bi(t)F

(
dz̃i+1
dt

− dz̃i−1
dt

)∣∣∣∣
Ai(t)

(35)
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where binary numbers bi(t) ∈ {0, 1} depend on the location of critical points, and
dz̃i+1 /dt and dz̃i−1 /dt are the derivatives with respect to the parameterizations of
the two smooth curves meeting at the point Ai(t).

3.2. Coverage error function and control laws. In this subsection we concen-
trate on a particular design of control laws for nonlinear systems affine in control.
Sensing capabilities of an agent i are modeled by the following function [15, 16]:

Si(p) =
Mi

R4
i

max{0, R2
i − p}2 ⇒ S′

i(p) = −2
Mi

R4
i

max{0, R2
i − p} (36)

and given that the number of agents is N , a cumulative sensing function is given
by

Q(t, x̃) =

t∫

0

(
N∑

i=1

Si(‖xp
i (τ) − x̃‖2)

)
dτ (37)

where x̃ = [x̃1, x̃2]
T ∈ R2 and xp

i (·) is a two dimensional function of time that

represents the planar position of the agent i. Let us define h(w) = (max{0, w})3, so
that h′(w) = 3 (max{0, w})2 and h′′(w) = 6max{0, w}. We consider the following
coverage error function [15]

e(t) =

∫∫

D

h(C∗ −Q(t, x̃))φ(x̃)dx̃1dx̃2 (38)

where D is a given compact domain to be covered, C∗ is a positive constant which
value is a design parameter and φ(x̃) is a nonnegative scalar function which can be
used to incorporate any preferences or prior information in covering the domain. A
value of the parameter C∗ is chosen depending on how well we would like to search
the area [15, 16]. Larger values of C∗ force agents to spend more time sensing each
point in the domain and the value itself is what mathematically captures what we
denote as the satisfactory coverage. It is also interesting to point out that Q(·)
and e(·) depend on xp

i (τ), τ ∈ [0, t], i ∈ N, yet they are defined as functions of
time by assuming that the agents trajectories are known. Also notice that as initial
conditions we need only initial values of the state vectors and not vector functions.
These facts simplify our notation and allow us to treat e(·) as a function of time.
Since our approach is based on the Liapunov analysis we are faced with the issues
of computing the time derivative of the error function given in equation (38). Two
major issues with this approach can be pointed out by using equation (35). The first
issue is the computation of the integral over a boundary C(t) as well as the jumps in
equation (35). This issue is bypassed due to the fact that if there is no overlapping
between agents’ sensing regions these terms are equal to zero and in the case when
an overlapping exists our numerical simulations show that its influence is minor
and thus can be neglected. The other issue is that the control laws do not appear
in the first derivative of the error function which means that we are dealing with
the case of singular control [45]. The solutions to problems of computing singular
controls are known to be particular and thus highly depend on the formulations of
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the particular problems. In [15, 16, 42] a function of time ê(t) defined as

ê(t) =

∫∫

D

d

dt
(h(C∗ −Q(t, x̃))φ(x̃)) dx̃1dx̃2

= −
∫∫

D

h′(C∗ −Q(t, x̃))

(
N∑

i=1

Si(‖xp
i (t)− x̃‖2)

)
φ(x̃)dx̃1dx̃2 (39)

which represents one term of the time derivative of e(t), was considered. Again, the
time derivative of e(t) includes also a one dimensional integral over the boundary
of a domain of integration as well as computing values of jumps as in equation (35).
Because this is the case of singular control, it was shown how ê(t) can be used
instead of e(t) in [15, 16, 42]. This was done under the assumption that the agents
do not leave the search domain which may allow ê(t) to converge to zero without
implying that e(t) converges to zero. In order to prevent this from happening and
without adding an additional constraint, we define a new function of time ẽ(t) as
follows:

ẽ(t) = −
∫∫

D

h′(C∗ −Q(t, x̃))

(
S∗ −

N∑

i=1

Si(‖xp
i (t)− x̃‖2)

)
φ(x̃)dx̃1dx̃2 (40)

where S∗ is a positive constant that satisfies S∗ >
∑N

i=1 Mi so that S
∗−∑N

i=1 Si(pi)
> 0 for any {p1, p2, . . . , pN}. The motivation to use ẽ(t) instead of ê(t) is that the
convergence of ẽ(t) to zero implies that e(t) converges to zero yet ê(t) can converge

to zero by forcing
∑N

i=1 Si(pi) to go to zero by, for example, agents just leaving the
search area which will not result in e(t) converging to zero. Now we proceed by
defining

˜̃e(t) = −
∫∫

D

d

dt
(h′(C∗ −Q(t, x̃))(S∗ − S(t, x̃))φ(x̃)) dx̃1dx̃2

=

∫∫

D

h′′(C∗ −Q(t, x̃))S(t, x̃)(S∗ − S(t, x̃))φ(x̃)dx̃1dx̃2

+2

N∑

i=1

∫∫

D

h′(C∗ −Q(t, x̃))S′
i(pi(t, x̃))(x

p
i (t)− x̃)T ẋp

i (t)dx̃1dx̃2 (41)

where pi(t, x̃) = ‖xp
i (t)− x̃‖2 and S(t, x̃) =

∑N

i=1 Si(pi(t, x̃)). Equation (41) can be
rewritten as

˜̃e(t) = a0(t) +

N∑

i=1

(ai1(t)ẋ
p
i1(t) + ai2(t)ẋ

p
i2(t)) = a0(t) +

N∑

i=1

aTi (t)ẋ
p
i (t) (42)
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where ẋp
i (t) = [ẋp

i1(t), ẋ
p
i2(t)]

T , ai(t) = [ai1(t), ai2(t)]
T , and

a0(t) =

∫∫

D

h′′(C∗ −Q(t, x̃))S(t, x̃)(S∗ − S(t, x̃))φ(x̃)dx̃1dx̃2,

ai1(t) = 2

∫∫

D

h′(C∗ −Q(t, x̃))S′
i(pi(t, x̃))(x

p
i1(t)− x̃1)dx̃1dx̃2,

ai2(t) = 2

∫∫

D

h′(C∗ −Q(t, x̃))S′
i(pi(t, x̃))(x

p
i2(t)− x̃2)dx̃1dx̃2. (43)

Now, if we assume that the agents’ partial dynamics corresponding to the position
variables are given by ẋp

i = gpi (xi)u
c
i then uc

i is only a portion of the agent’s control
vector which corresponds to the position state variables. This portion of the control
vector may be designed as

uc
i (t) = kci g

p
i (xi)

Tai(t), i ∈ N (44)

where kci is a positive coverage gain for an agent i. It is interesting to note that
the difference between this control law and the ones used in [15, 16, 42] is the sign
which is due to the assumption that the agents are not assumed to leave the search
domain. The proposed control laws result in

˜̃e(t) = a0(t) +

N∑

i=1

kci
∥∥gpi (xi)

Tai(t)
∥∥2 . (45)

Notice that ẽ(t) in equation (40) is nonpositive by construction which implies that
˜̃e(t) needs to be nonnegative. If the agents’ dynamics include extra terms hi(·),
i ∈ N, as formulated in equation (1), the control laws would stay the same yet it
would result in additional terms appearing in equation (45). This would require

further investigation of the nonnegativity of ˜̃e(t) depending on particular functions
hi(·), i ∈ N.

3.3. A numerical example. To illustrate the methodology for computing control
laws for agents described by nonlinear yet affine in control models, we assume
that the models are unicycles, that is, differential drives. Therefore we assume
that each agent i, where the total number of agents is still denoted by N , that is,
i ∈ N = {1, . . . , N}, is modeled using the following unicycle model:

ẋp
i1 = ui1 cos(xi3)

ẋp
i2 = ui1 sin(xi3)

ẋi3 = ui2

(46)

where xp
i = [xp

i1, x
p
i2]

T denotes position state variables, xi3 is an orientation angle,
and xi = [(xp

i )
T , xi3]

T is the state vector. Speed control input is denoted as ui1 and
angular velocity control as ui2 so that the overall control input for the i-th agent
is given by ui = [ui1, ui2]

T . Thus the unicycle dynamic model fits the models in
equation (1) with:

gi(xi) =




cos(xi3) 0
sin(xi3) 0

0 1


 . (47)
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At this point it is important to note that the three objectives are described by
functions given in equations (2), (3), (5), and (40) which are functions of position
variables. As a consequence objective Liapunov-like functions depend only on the
position state variables, that is, a Liapunov-like function for the i-th agent can be
represented as

vi ≡ vi(x
p
i , x̄

p
i ), x̄p

i = {xp
j : j 6= i, j ∈ Ni} (48)

whereNi is a set of agents interacting with agent i. This set is defined by arguments
of vi(·). Then, the control laws of the agents, given by equations (12) and (44), aim
to decrease (in the case of collision avoidance and proximity objectives) or increase
(coverage objective) functions that can be represented in the following form:

wi(t, x, ui) = (bi1(t, x) cos(xi3) + bi2(t, x) sin(xi3))ui1 (49)

where bij(t, x) = ∂vi/∂xij , j ∈ {1, 2}, for the collision avoidance and proximity
control laws (vi(·) is given in equation (11)) and bij(t, x) = aij(t), j ∈ {1, 2}, for the
coverage control laws (coefficients aij(t) are given in equation (43)). This implies
that we can choose control laws ui1 as

ui1(t, x) = cik
s
i (bi1(t, x) cos(xi3) + bi2(t, x) sin(xi3)) , i ∈ N (50)

where ci = −1 for collision avoidance and proximity objectives and ci = 1 for the
coverage objective. Positive gain ksi is related to speed and is a design parameter.
By substituting equation (50) into equation (49) we obtain

wi(t, x, ui(t, x)) = cik
s
i (bi1 cos(xi3) + bi2 sin(xi3))

2

= cik
s
i (b

2
i1 + b2i2) sin

2

(
xi3 + arctan

(
bi1
bi2

))
(51)

where for short notation we denote bij(t, x) as bij , j ∈ {1, 2}. From equation (51)
it can be concluded that the control ui1 is maximally efficient (in either case) when
the heading angle equals to

xo
i3 = ϕo

i = π/2− arctan

(
bi1
bi2

)
. (52)

Now, the angular velocity control of an i-th agent which would steer the agent
towards the desired heading angle can be designed as a PD controller of the form
[26]

ui2 = −kωi (xi3 − ϕo
i ) +

dϕo
i

dt
(53)

where kωi denotes a positive gain which is another design parameter.
Now let us consider a scenario with three nonhomogeneous unicycles and two

obstacles. To simplify the presentation we denote agents with indices {1, 2, 3} and
obstacles with indices {4, 5}. One of the objectives for the three agents is to search
a 32× 32 square domain placed in the positive quadrant with its lower left vertex
positioned at the origin. The initial positions for the agents 1, 2, and 3 are at
(12, 7), (14, 15) and (24, 7), respectively. All the units are assumed to be normalized
and thus need not be specified. Two obstacles denoted by indices 4 and 5 are of
ellipsoidal shapes centered at (7, 12) and (16, 25), respectively. Positive definite
matrices for avoidance functions (given in equations (2) and (3)) which are not
equal to the 2 × 2 identity matrix are P14=P15=P24=P25=P34=P35=diag{0.5, 1}.
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Avoidance and detection regions are spherical regions specified by r1j = 1, R1j = 3,
r2j = 1, R2j = 3, r3j = 1, R3j = 3. It is assumed that the ellipsoids defined by Pij

and Rij , i ∈ {1, 2, 3}, j ∈ {4, 5}, define the two obstacles 4 and 5, respectively. The
proximity and avoidance control gains which appear in equation (12) and refer to

the speed control input are k̂1 = 1, k̂2 = 1, and k̂3 = 1. Similar to the numerical
example scenario considered in [42], we assume that only agents 2 and 3 are in
charge of avoiding collisions between the agents yet all three agents need to avoid
the obstacles. Unlike the scenario considered in [42] we assume that all agents are
trying to satisfy the proximity constraints. The proximity regions are the same and
defined by R̂ij = 10 for all i and j. The scaling coefficients (in equation (11)) for
the collision avoidance objective functions are chosen as γ1j = .015, γ2j = .0015,
and γ3j = .0015 for all j. The scaling coefficients (again we refer to equation (11))
for the proximity objective functions are chosen as γ1j = .0001, γ2j = 3.5 · 10−5,
and γ3j = 10−5 for all j. Also, δ = 2 in equation (7).

Agents are also assumed to be nonhomogeneous in terms of their sensing capac-
ities and their coverage regions’ radii are R1 = 32

√
2, R2 = 2, R3 = 2, and their

maximal peak sensing capacities are M1 = 1/75, M2 = 6, and M3 = 6, respectively.
Again, similar to the scenario proposed in [42] we choose a coverage/sensing region
for agent 1 to be capable to sense the whole domain from any position in the do-
main and in this way avoid using additional global coverage control as proposed
and needed in [15, 16]. Agents’ speed coverage control gains in equation (44) are
kc1 = 2.5 · 10−4, kc2 = 5 · 10−6, kc3 = 2.5 · 10−5, and the coverage constant is C∗ = 40
while the prior knowledge function φ(·) is set to be identically equal to one. It is
assumed that any two agents i and j exchange coverage information only if their
relative distance is smaller than R̂ij = 10. This is incorporated into our analysis
by modifying the summation over all agents with a summation over a set of agents
that can exchange the information in equations (37)-(40). The overall speed control
law for each agent was obtained as the sum of the coverage speed control law and
combined avoidance and proximity speed control law. The heading angle control
law for each agent was designed by using only a proportional part of the PD control
law given in equation (53) with gains set as kωi = 1, i ∈ {1, 2, 3}, where the desired
angle is equal to the sum of the coverage desired angle and combined avoidance and
proximity desired angle, each being computed using equation (52) with appropriate
corresponding coefficients bij(·).

The top view of agents’ trajectories as well as the two obstacles is provided
in Figure 2. Agents’ initial positions are depicted as green dots and agents’ final
positions as red dots. Trajectories for agents 1, 2 and 3 are depicted in magenta,
black and blue, respectively. The coverage error function (38) versus time is given
in Figure 3. A color coded depiction of the quality of coverage with agents’ final
positions is provided in Figure 4 where the satisfactory coverage is chosen as C∗ =
40 and color coded in light green. Finally pairwise distances between the agents
themselves as well as agents and obstacles together with avoidance, detection and
proximity levels are given in Figure 5. The coverage error function converged to
zero in T = 7919[s].

Conclusions. In this paper we proposed an approach to avoidance, coverage and
proximity control based on the concept of avoidance control and careful construc-
tions of individual objectives’ functions. Agents’ dynamic models are assumed to be
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Figure 2. Agents’ trajectories and obstacles.
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Figure 3. The coverage error function versus time.

nonlinear yet affine in controls. We also indicate and provide some solutions to cov-
erage control related problems which stem from the differentiation of area integrals
depending on time as a parameter. As an illustration, a numerical example with
three nonhomogeneous nonholonomic agents and two static obstacles was provided.
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Figure 4. Color coded quality of coverage with agents’ final positions.
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Figure 5. Pairwise distances between agents, and agents and obstacles.
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