Active control of jet mixing

C.C.L. Yuan, M. Krsti¢ and T.R. Bewley

Abstract: A control law to improve jet flow mixing is presented. The control law employs a pair of
actuators at the jet nozzle exit that act on the shear layers near the corners by blowing and
subtracting fluid in an anti-symmetric fashion and a sensor downstream or at the nozzle exit with a
time delay that measures the pressure difference across the nozzle diameter. A 2-D jet flow is
numerically simulated along with massless/mass particles and a passive scalar. The mixing
enhancement produced by these controllers is demonstrated visually by snapshots of the vorticity,
streaklines, particle distribution and scalar field. Probability function for the particles and the scalar
field are constructed, which serve as an index of mixing quality and the effectiveness of the
controllers. This closed-loop control law successfully alters the jet flow and improves the mixing of

particles with mass and passive scalar.

1 Introduction

Jet flow has been thoroughly studied through theory [1],
experiment [2—5] and numerical simulations [6]. Three
regions were observed to develop in experiments: (i) the
near field; (ii) the transition field; and (iii) the far field.
In the near field, two shear layers develop separately with
a near-constant centreline streamflow direction velocity.
Shear layers appear in the transient field as the jet flow starts
to enter the fully developed region. Self-similar profiles are
observed in the far field where the mean velocity profiles
experience a linear growth of the jet width and a linear
decay of the square-of-centreline velocity. The mean stream
direction velocity profiles are observed to have a similar
bell-shape in all three regions with a smaller centreline
velocity and a wider width further downstream. A large
number of unstable modes have been observed in the thin
shear layers close to the nozzle whereas only the first helical
mode has been observed in the fully developed jet at some
distance from the end of the potential core [7]. Well
developed parabolic velocity profiles at the nozzle exit lead
to the initial dominance of the sinuous mode, i.e. the first
helical mode of instability [8]. The simulation results of a jet
flow without a controller performed in this study closely
coincide with the above observations.

The enhancement of jet flow mixing is frequently
desirable in many engineering applications. For instance
a well mixed air/fuel mixture can improve the overall
combustor performance by increasing the combustion
efficiency, reducing combustion instability and undesired
emissions. Stealth plays a crucial role in the survivability of
a warplane. A ground attack plane normally flies at low
altitude and thus places it in danger of being tracked by an
infrared-homing anti-air missile, e.g. the lightweight stinger
missile. The main source of infrared signature is at the jet
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nozzle exit, and this can be significantly reduced by an
efficient mixing mechanism to quickly disperse the hot
gases. A lighter and cheaper material can reduce the
manufacturing cost of the lift flap of a C-17, provided that
jet exhaust mixing is used to reduce thermal stresses [9].

Many different techniques have been studied to amplify
or to excite the unstable modes of a jet flow to increase the
mixing quality. Several configurations of static tabs at the
jet nozzle exit have been experimentally and numerically
examined [2]. Non-circular jets have also received
considerable attention and have been thoroughly studied.
The results of the experimental and numerical studies on
non-circular, rectangular, square and elliptic, nozzle jets can
be found in a survey by Gutmark and Grinstein [10]. In
addition to these passive methods, different configurations
of secondary jets have also been studied. Fuel has been
injected at a constant frequency through circumferential
holes parallel to the main air jet at the exit plane to obtain
soot reduction and more energy release in [11]. High-
amplitude low-mass flux-pulsed slot jets blowing normal to
the shear layers of the main jet near the nozzle exit plane
have been examined experimentally in [12] and numerically
in [9]. These transverse jets with constant pulsating
frequencies effectively excite the unstable modes and thus
significantly alter the development of jet flows. Lardeau
et al. [13] have simulated two auxiliary jets, one with and
one without constant pulsating frequencies being injected
into the main jet with an impinging angle of 45°, and
successfully reduced the jet potential core and spread of the
jet expansion. MEMS-based micro-flap actuators distribu-
ted along a round nozzle have also been employed
successfully for the (open-loop) control of a jet flow by
Suzuki et al. [14].

The control methods studied in these previous works are
either passive or open-loop in nature. A closed-loop control
law will be developed in this study to continuously monitor
the jet flow parameter and update the actuator on-line so that
the mixing quality can be improved. To the best of the
authors’ knowledge, this is the first attempt to control jet
flow mixing using a closed-loop control law.

2 Numerical setup and technique

The equations governing the jet flow in the present case
are non-dimensionalised incompressible Navier—Stokes
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equations and the continuity equation (in primitive
variables):
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where u; is the velocity, u = (u;,u,) is the velocity vector,
p is pressure field, x; is the spatial coordinate, and the
subscripts i and j represents the spatial direction, ‘1’ is for
the streamflow direction and ‘2’ is for the normal direction.
The Reynolds number Rep is based on the jet nozzle
diameter D and the centreline velocity at nozzle inlet Uj,.
The governing equations, (1) and (2), are used to simulate
a spatially evolving jet flow in the computational domain
consisting of a jet nozzle with dimensions of 2 x 1 and an
open field with dimensions of 50 x 40. All the units are
normalised by the nozzle diameter D. The computational
domain is shown in Fig. 1. The numerical method used in
this research was developed for a backward facing step
simulation [15] and a boundary control problem of channel
flow [16], and is modified for the current geometry.
Therefore, it will be stated here with only a minimal
explanation, however, a detailed derivation of this numeri-
cal scheme can be found in [15].

The origin of the coordinate system is at the centre of the
nozzle exit plane. In the nozzle, the grids are equispaced in
the streamflow direction, and stretched in the normal
direction with a hyperbolic tangent function. In the open
field, a 1-D stretching formula [17] is adapted for the
streamflow distribution; in the normal direction, the grid
lines in the jet core are equal to the ones in the nozzle, and
are distributed using the same 1-D stretching formula
otherwise. This stretching formula gives a smooth transition
from the finer grids used near the walls and around the shear
layers to the coarser grids used in the far field. The total grid
numbers are 201 x 175 in the open field and 11 x 15 in the
nozzle. Sampled grid lines are also illustrated in Fig. 1.
A finite-difference scheme is used for the spatial derivatives.
Whereas the interior nodes use a second-order accurate
central-difference scheme, the boundary nodes use a
second-order inward-biased scheme to keep the overall
accuracy second-order in space. The primitive variables
namely the pressure at the cell centre and the velocities at
the grid lines are stored in a staggered grid. The momentum
equations are evaluated at the corresponding velocity nodes,
and the continuity equation is enforced at the pressure node.

The illustration of a staggered grid can also be found in
Fig. 1. Note that the half-grid lines are exactly located
at the midpoint between primary grid lines, thus the
central-difference approximations of the spatial derivatives
across the half-grid lines are exactly second-order accurate.
However, the primary grid lines are not located exactly
halfway between half-grid lines because of a non-uniform
grid distribution, and the differentiations across these
primary grid lines are thus not fully second-order accurate.
Therefore, the overall accuracy in space is only quasi-
second-order accurate even when the second-order
preservation formula for velocity interpolation to adjacent
grids is used.

A fine resolution near the solid walls and around the shear
layers is necessary to resolve the large velocity gradient.
The minimum grid spacing is 0.19 in the streamflow
direction and 0.04 in the normal direction, and the ratio of
the maximum to the minimum grid spacing is 4.71 and
23.29 in the streamflow direction and normal direction,
respectively. The grid distribution in the normal direction
severely limits the time step, and therefore it is preferred to
compute the derivatives in the normal direction implicitly
whereas the derivatives in the streamflow direction are
treated explicitly. This leads to a hybrid time integration
scheme using a low storage third-order Runge-—Kutta
scheme for the explicitly treated terms and a second-order
Crank—Nicholson scheme for the implicitly treated terms,
respectively (see [15, 16, 18] for further information).
The overall accuracy in time is thus second-order.

The discretised Navier—Stokes equations take the form:
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where f, y and { are the coefficients of the third-order
Runge—Kutta scheme, A(y;) and B(y;) are the explicit and
implicit operator respectively, and v = 1/Rep is the
normalised kinematic viscosity. The superscript and sub-
script k represents the Runge—Kutta substep, where k = 0 is
at time step n and k = 3 is at time step n + 1.

Fig. 1 Computational domain, sampled grid lines, staggered grid illustration, and locations of sensors and actuators
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A no-slip condition is applied along all the solid walls.
The inflow condition at the inlet of the jet nozzle is a
constant parabola for the stream direction velocity with a
unit centreline velocity Uy = 1, and it is a still field for the
transverse velocity u, = 0. This inflow boundary condition
gives us a constant mass flux throughout the computation
process. In order to pass the vortical structure through the
computation domain smoothly, a convection boundary
condition is used along the open boundaries in the open
field:

814,‘ aui

at + UCOH an 0 (6)
where U, is a convection velocity and is chosen to be half
of Uy in the streamflow direction and a quarter of Uy in the
normal direction, and n is the direction normal to the
boundary. This convection boundary condition is computed
at full time step by a forward-in-time inward-in-space
scheme and is interpolated for each Runge—Kutta substep.
To further decrease the non-physical effect of the fictitious
boundary of the computation domain, a buffer zone of
length ten is inserted in each open boundary. A damping
term based on the computed boundary condition is added to
the right-hand side of the discretised Navier—Stokes
equation, (3). These extra damping terms in the overlap of
the buffer zones along the streamflow and normal directions
are calculated by a weighted ratio of the distance from two
boundaries.

Equation (3) is advanced in time by a fractional step
method; a non-divergence free-velocity field is solved first
and then this is projected onto a solenoidal field by a
pressure update. In order to treat the implicit and explicit
terms in a single framework, we have implemented a hybrid
Runge—Kutta/Crank—Nicolson technique. The complete
Runge—Kutta substep is now written out (in order of actual
computation sequence) as follows:
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where @ is the intermediate velocity field which is not
solenoidal, I is the identity matrix and ¢ is the pressure
update. Equation (7) is the result of an implicit
Crank—Nicolson scheme, and is solved through a tridiago-
nal system solver. To solve the pressure update, a Poisson
solver implementing LU-decomposition is used to solve the
Poisson equation, (8); the singularity of this matrix
generated by the Poisson equation is removed by
prescribing the reference value of zero at the last cell
(Ny,, Ny,) in the open field. The divergence is computed after
each full time step to ensure a solenoidal field.

In order to monitor the flow evolution, massless particles
are introduced to simulate the passive tracer. The positions
of these massless particles are governed by the equation
dx /dt = u, where x is the position vector of the particle, and
u is the velocity vector of the flow fluid at the same point.
Streaklines are constructed from the connection between
these particles released from the same insertion point.
Particles with mass are also injected into the jet to examine
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the effectiveness of the control action in a gas-particle jet
flow. The particle-particle interaction is neglected due to a
large particle spacing. The Basset—Boussinesq—Oseen
equation, the governing equation of particle evolution, can
be justifiably simplified for gas-particle flow with a very
small density ratio between the carrier phase and the
discrete phase (p;/p, < 107*) and with the assumption of
one-way coupling that only the carrier phase has influence
on the particle but not vice versa [19]. Thus, the particles are
governed by these non-dimensionalised motion equations:

v f
dx

where v is the particle velocity, f =1+ 0.15Re8'687 is a
correction factor which is a function of the particle relative
Reynolds number Re, = (d,|u —v[)/v, d, is the particle
diameter, v is the kinematic viscosity of the flow, and St is
the particle Stokes number which is the ratio of the
particle’s momentum response time to the flow field
characteristic time. By definition, a larger Stokes number
represents a larger or heavier particle, and a smaller or
lighter particle has a smaller Stokes number. Three different
Stokes numbers, 0.1, one, and ten, are simulated to examine
the response of light, medium and heavy particles to the
control action. The particles are fed into the flow at the jet
exit plane with normal coordinates y = 0 and £0.5 every
time step, and (11) and (12) are advanced in time by the
third-order Runge—Kautta scheme.

In addition to the streaklines and particles with mass, an
evolution equation of a passive scalar S is also simulated:

oS OwS 1 10
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(13)

where Sc is the Schmidt number defined as the ratio of the
fluid kinematic viscosity to the scalar’s molecular diffusiv-
ity and it is set to unity in this study. That this scalar is
‘passive’ means that the scalar’s evolution is influenced by
the flow, but that the scalar itself does not have any
influence on the flow. The evolution of such a passive scalar
provides a useful indicator for mixing in many practical
applications, such as combustion studies assuming fast
kinetics [6]. Since the scalar field has no influence on the
velocity field, the explicit Runge—Kutta scheme is also used
to advance (13) in time, as in the particle evolution
equations. The scalar field is calculated on the pressure
node, and the first-order upwind scheme is used for the
spatial derivatives of the convection terms in (13). The
scalar field has a highest possible value of one in the nozzle
throughout the whole simulation, and a lowest possible
value of zero at the open boundaries initially. The
convection boundary condition is used. The details of
how to advance particle and scalar fields in time are
contained in [18].

3 Control strategy

Parekh et al. [12] demonstrated tremendous increases in
mixing by exciting the flapping mode which is the dominant
mode in a low Reynolds number jet flow. This is
accomplished by exciting the jet shear layer adjacent to
the jet nozzle exit with pulsed fluidic actuators.

In [20] and [21], an active feedback control was applied
to excite the instability mechanisms in a 2-D channel flow
and a 3-D pipe flow. Mixing was considerably enhanced
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with an extremely small control effort by applying a
carefully designed closed-loop boundary control law.
Decentralised wall-normal suction and blowing was used
for actuation with the pressure difference between opposite
points on the wall for sensing. The advantage of this
feedback control law is its simplicity: a static output-
feedback law and a zero net mass flux.

A similar feedback control law is now adapted for jet flow
mixing. The controller consists in a pair of actuators acting
in the streamflow direction at the jet lips in an anti-
symmetric fashion U, () = —U,(¢), and a sensor measuring
the pressure difference across the nozzle diameter
Ap (x1,t — 1) (= py——_05 — Py—+05)- The control laws are
depicted in Fig. 1 and written out for a configuration of a
sensor downstream and a sensor at the nozzle exit with time
delays, respectively:

U, (t) = KAp(xy,1) (14)
U, (t) = KAp(0,1 — 1) (15)

where K is the feedback gain, and 7 is the time delay. The
control law is computed at each time step and kept constant
through a full time step. The saturation of the actuator
magnitude is set to the maximum centreline velocity at the
nozzle inlet Uy, and the actuator change rate is saturated at
0.2U, between time steps. The net mass flux introduced by
these controllers is kept at zero by injecting and subtracting
the same amount of mass.

The control laws (14) and (15) both use delayed pressure
measurements, the latter with a temporal delay and the
former with spatial delay. The effect of both is similar and
the amount of delay applied affects the damping of the
dominant (flapping) mode of vortex shedding as well as the
frequencies of additional unstable modes that become
excited. An optimal level of delay exists, as will be
illustrated in subsequent Sections. Whereas the spatial
delay (14) is intuitively clear (sufficiently far downstream
vortex shedding is sufficiently developed so that measure-
ments of the flow perturbation can be used to amplify it by
control) the temporal delay (15) is physically less clear but it
is physically implementable because a non-intrusive
pressure sensor can be placed at the nozzle. In summary,
the implementable temporal delay emulates the effect of the
intuitive spatial delay.

More than from any other source, the motivation for the
feedback strategies (14) and (15) comes from the work of
Aamo et al. [21] on the control of mixing in pipe flows.
In [21] it was shown using an energy-based argument that a
similar strategy achieves an optimal enhancement of flow
quantities related to mixing. The effect on mixing was
confirmed by simulations. While the control strategy in [21]
has inspired (14) and (15), the analogy is not complete.
In [21] the 3-D pipe flow is controll using actuators and
sensors distributed on the (2-D) wall of the pipe. In the jet
flow problem here, which is 2-D, point actuation and
sensing are employed (i.e. 0-D). Due to the ‘underactuated’
nature of the problem we consider that the use of a delay
(or some more complex compensator dynamics) is essential.
We demonstrate that a delay is sufficiently capable of
significantly affecting the flow, although more complex,
fully theoretically justified control strategies, might be even
more effective.

4 Simulation results

4.1 Uncontrolled jet

Simulation results for the jet flow without a controller at a
Reynolds number Rep = 100 are used to validate the code
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relative to theory and previous works, and serve as the base
case. The jet’s half-width growth rate, centreline velocity
decay rate and normalised velocity profiles of the statistical
data at r = 1000 after the simulation is initiated, are
examined. The jet’s half-width is found to grow linearly
and the squared ratio of the centreline velocity to the exit
centreline velocity also has a linear growth along the
streamflow direction of the jet beyond the potential core.
The half-width growth rate and centreline velocity decay
rate can be described by linear functions:

012(x1) = Cs(x) + x5) (16)
2
(u ’(J)ﬁl)) — G+ ) (17)

where 0/, the half-width, is the distance between the
centreline and the point where the mean streamflow
velocity is half that of the centreline velocity u., Cs and
C, are the growth and decay rates, and x; and x, are the
virtual origins. The virtual origin is a point source located
upstream of the nozzle exit where a theoretical jet is
initiated. The theoretical jet initiated from this virtual origin
will have the same momentum as the actual momentum of a
real jet discharged at the nozzle exit, and will produce a self-
similar velocity profile beyond the potential core.

The half-width growth and centreline velocity decay of
the current results are plotted in Figs. 2a and 2b,
respectively, along with plots of the least-square fit linear
function. The linear relation of the growth and decay rate
with the stream coordinate is obvious. The slopes and virtual
origins of (16)—(17) obtained from this work and previous
experimental and numerical works are also listed in Table 1
for comparison. The current results show a slower growth
rate and virtual origin that is further upstream for the half-
width, whereas the decay rate and virtual origin fall in the
nominal range for centreline velocity. One should keep in
mind that the initial condition at the jet nozzle exit has long
lasting effects on the jet flow development downstream. The
velocity profile at the jet nozzle in our study is a well
developed channel flow which gives almost no near field
and the jet flow directly enters the transient field. Therefore,
a virtual origin that is further upstream and a slower growth
rate is expected.

The normalised stream direction velocity and transverse
velocity are plotted against a normalised coordinate &
between x; = 5 to x; = 20 in Figs. 2¢ and 2d, respectively.
The normalised coordinate £ is a cross-stream similarity
variable defined as the normal coordinate x, as a function of
the half-width 0, ,(x;). In the fully developed region, the
profiles of the normalised velocity in the streamflow direc-
tion u; /u, at different streamflow locations, plotted against
&, collapse onto a single curve. The profiles of velocity in the
normal direction u, /u. also become self-similar with little
inconsistency due to the effect of the 2-D simulation. Despite
the small deviations in the half-width growth, the current
results agree with the theoretical and experimental results.
The vorticity plot and streaklines of an uncontrolled jet at
t =500, shown in Fig. 3a and Fig. 4a, confirm that the
dominant unstable mode is the flapping mode.

4.2 Controlled jet

Two closed-loop controlled cases with the same feedback
gain but different sensor configurations, one with a sensor
downstream at x; = 5 and the other with a sensor at the jet
exit with a delay of © = 15, are presented to demonstrate the
effectiveness of the control laws (14) and (15) by comparing
them with the uncontrolled case. Due to the feedback-loop,
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Fig. 2 Self-similarity profile
a Half-width

b Centreline velocity

¢ Mean stream direction velocity
d Mean normal velocity
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Table 1: Comparison of the jet’s half-width growth rate and centreline velocity decay rate

Re Cs Xs C, Xy
Present result 100 0.061 6.36 0.227 3.58
Sarkar et al. [6] 3000 0.092 2.63 0.201 1.23
Ramaprian and Chandrasekhara [5] 1600 0.112 1.00 0.093 1.60
Hussain and Clark [3] 32550 0.118 2.15 0.123 4.47
Miller and Comings [4] 17 800 0.072 1.57 0.181 4.20

the actuation eventually falls into a limit cycle with a
frequency determined either by the sensor location or by the
time delay. Also shown here is an open-loop controlled case
with sinusoidal forcing:

U\(t) = —Us(t) = Asin(ot) (18)

where o is the forcing frequency and A its amplitude. The
presented open-loop case has a forcing frequency w =
0.067 which is the same as the frequency of the limit cycle
obtained with feedback with a delay of T = 15. A detailed
comparison of other values of sensor location, time delay
and open-loop forcing frequency can be found in [18], and
quantification between these control laws will be discussed
in Section 5.

The vorticity fields of controlled cases at t = 500 are
shown in Figs. 3b—3d. These controllers obviously alter the
jet flow from the uncontrolled case by generating vortices of
different sizes and spreading pattern. Whereas the controller
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with a sensor with a single delay generates vortices more
regularly with a narrower spreading pattern, the controller
with a sensor downstream gives a wider spreading pattern.
The streaklines of the uncontrolled and controlled cases at
t =500 shown in Figs. 4a and 4b suggest that smaller
vortices draw more massless particles into the vortex core
due to more rapid rotation and this benefits the fluid particle
mixing.

Similarities between the two different sensor schemes
can be observed. The controller with a sensor at the
nozzle exit without any delay has very little effect on jet
development downstream; the controller-induced instabil-
ity is too weak and will quickly decay if the feedback
gain is low, however, the controller will generate a rapid
bang-bang action once the feedback gain is tuned too
high. For the controller with a sensor downstream, a
minimum distance from the nozzle exit to the sensor is
required so that the vortices can be produced, and this
minimum distance is a function of the Reynolds number
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Fig. 3 Vorticity fields at t = 500
a Uncontrolled jet

b X = 5

ct=15

d Open-loop forcing

Fig. 4 Streaklines at t = 500
a Uncontrolled jet

b X = 5

ct=15

d Open-loop forcing

of the flow. A minimum feedback gain is also essential
to sustain the instability introduced by the actuator and to
break it up into vortices. For the control law with a
sensor at the jet exit with a delay, in order to be able to
generate vortices and to maintain this generation,
the delay and feedback gain must meet minimum
demand values, too. Even although these similarities
are observed, no direct relation between the sensor
location and the time delay length for these two sensor
configurations is available. For the downstream
sensor configuration the generated vortices go through
different spatial developments and various convection
velocities before reaching the sensor. This feedback-loop
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involves the uncertainty in the spatial development. On
the other hand, the sensor at the exit is less influenced by
the downstream spatial development of the flow.

By carefully tuning the feedback gain and delay, a control
law with a delayed sensor can produce a very similar flow
field to the one generated by the controller with a
downstream sensor. The underlining mechanism for this
exchange between the two types of sensors is that the
timescale provided by the delay can replace the lengthscale
provided by the sensor location. Measuring the pressure
difference at the jet nozzle exit is more practical than taking
a measurement downstream, and we shall concentrate on the
controllers with delayed sensors.
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Fig. 5 Particle distribution of controlled jet (sensor with delay T = 15)

a Streaklines

b St=0.1
c St=1
d St=10

4.3 Particles with mass

The distribution of particles with mass is an essential tool to
study the gas-particle jet flow. The closed-loop controlled
case using the sensor at the exit with a delay T = 15 is used
to show the results of particle mixing. The distribution of
particles with different Stokes numbers at = 500 is shown
in Fig. 5 along with the streaklines. Whereas the light
particles are attracted into the vortical structure and
transported by the vortices, the heavy particles are not so
transported. This result is consistent with the observations of
[19] and [22].

The light particles with Sz = 0.1 closely follow the fluid
motion acting like a tracer. The distribution of particles

almost duplicates the streaklines except that fewer particles
are attracted into the eddy cores. Since the particle mass is
considered in the evolution, the additional drag force slows
down the particle motion and the particle does not follow
the fluid motion instantaneously.

Particles with a unity Stokes number tend to centrifuge
out of the vortex cores and concentrate on the peripheries
of the vortical structures. The response time of the
medium particles with St =1 is too slow to follow
the large velocity gradient temporally and spatially inside
the vortices. Thus, they are radiated out from the high-
vorticity region eddy core and accumulate between
vortices. This is also called a demixing phenomenon by
Crowe et al. [19].

'*V;"_,

P W/

Fig. 6 Scalar field at t = 500
a Uncontrolled jet

b x;=5

ct=15

d Open-loop forcing
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For a large Stokes number, the inertia of heavy
particles is too great to let the carrier fluid significantly
influence the particle motion. The particles travel a long
distance before the vortices start to have any influence on
them. A small fraction of the medium particles in the far
field are centrifuged by the radial force of the strong
vortices, but most of the particles are directly convected
downstream but are not dispersed by the vortices. Once a
heavy particle is pushed by the surrounding fluid, it will
not respond fast enough to any subsequent opposing
velocity vectors due to its long momentum response
time. This slow reaction of the heavy particles to the
fluid motion leaves the traces of vortex passage shown in
Fig. 5d in which particles are pushed outwards from the
eddies and slowly convected downstream by subsequent
fluid motion.

The closed-loop controller has shown a promising result
on the mixing enhancement of particles with mass, yet the
performance degrades as the particles become heavier.

4.4 Passive scalar

The scalar field for an uncontrolled and a controlled jet
obtained using different control laws is shown in Fig. 6. The
controlled jet evidently has a better mixed scalar field than
the uncontrolled jet. The scalar dispersion is found to be
mostly carried out by the rotation, convection and spreading
of generated vortices. A smaller vortex with a strong
vorticity seems to constrain the diffusion of the passive
scalar. On the other hand, wider vortex spreading helps to
convect and transport the scalar field. Once the vortex rings
are convected downstream and expanded, the diffusion
effect becomes more apparent as the intensity of the
vorticity subsides.

The diffusivity of the studied scalar is comparable to that
of the carrier fluid if the Schmidt number is set to unity.
Thus, the evolution of the scalar is mainly dominated by the
convection terms. This can be observed by comparing the
scalar field plots with the vorticity plots such that the con-
centration of the scalar is consistent with the vortical
structure.

5 Discussion

Without the length separation provided by the sensor
downstream or time separation by the sensor at the nozzle
exit with a delay, the controller produces insufficient
influence on the jet. Another important factor is the
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amplitude of the actuator. The interval between an actuator
switching directions is determined by the sensor, but the
feedback gain decides whether the perturbation induced by
the actuation will grow strong enough to break up into a
vortex or will just subside. The time histories of a control
signal for the single delay case 7 = 15 with two different
feedback gains, K = 15 and 10, upto # = 500, are plotted in
Fig. 7a. With a feedback gain higher than the minimum
requirement ~13, the actuation grows exponentially until it
reaches saturation and it then enters a limit cycle; with a
feedback gain lower than the minimum requirement, the
control decays and provides insufficient perturbation to the
flow. The control change rate is plotted in Fig. 7b, and it is
limited to a maximum value of 0.2U.

A measure of mixing is necessary to quantify the
effectiveness of the presented control law. Several
diagnostic tools for finite-time mixing are available. The
notions of finite-time stable and unstable manifolds, were
introduced and applied in [23—25] where as [26] and [28]
examined the mixing property using statistical properties.
(Please see these references for more details.) In this study, a
probability function similar to the one used in [20, 21] is
constructed for both the particle distribution and scalar field.

The physical domain is divided into N boxes, and the
probability P of a box holding the number of particles n,, or
scalar value ng in a certain range at time ¢ is calculated by:

N,
1 ;
Py(1) = ﬁp;eval(ZS < (1) <75) (19)
1 & ‘ . N
Py(t) = KZeval(O.ZS <) <05)xd A=) d
i=1 i=1
(20)

where the subscripts p and s denote particle and scalar,
respectively, the superscript 7 indicates the ith box, eval is a
function that returns value of one if nj, or ng falls between
the lower and the upper limit, A is the total area in the
physical domain, and ' is the area of the local cell. The box
size for the particle probability is uniform and has a unity
area; the box size for a scalar field is not uniform and is
consistent with the computation cell. If the number of
particles (or the scalar value) in a cell is above the upper
limit, the mixture is too dense; below the lower limit it is too
thin, and in-between it is considered well mixed. One should
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Fig. 7 Control signal and control change rate of controlled jet (t = 15)

a Control signal
b Control change rate
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note that this probability function is a function of time and
would be altered if the lower or upper bounds are changed.
The choice of these limits which defines the mixing quality
is application dependent but this topic will not be further
discussed.

In [18], closed-loop controllers based on (14) and (15)
with various values for x; and t were compared. For the case
with the downstream sensor, (14), the values x; = 0, 2.5, 5,
7.5 and 10 were tested, and x; = 5 was found to give the
best performance based on the metric defined in (19) for
massless particles. Similarly, for the case of a sensor at the
nozzle exit with a delay (15), the values t = 0, 5, 10, 15, 20
and 25 were examined, and T = 15 was found to give the
best result. A comparison between these two specific closed-
loop controllers and open-loop forcing with same frequency
of the limit cycle of t = 15 is made through (19) and (20).
The probability functions of the scalar field and particles
with a mass for both uncontrolled and controlled cases
are plotted in Fig. 8. Since the evolution of light particles
(St =0.1) is very similar to the massless particles, a
comparison of probability functions for their streaklines will
not be presented.

The controlled cases show a significant improvement in
scalar mixing over the non-controlled case by doubling
(downstream sensor and open-loop forcing) and tripling
(sensor at nozzle exit with a delay) the probability function
value in the quasi-steady-state conditions. The bumps
observed in the probability function curves are caused by
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the vortex structures leaving the domain, and this confirms
that the convection and expansion of a vortex is a significant
contributor to the scalar mixing. The delayed sensor case
shows the best performance among these three controlled
cases. The holding interval of the actuation for the delayed
sensor case (see Fig. 7) helps to produce stronger vortices
and to let the vortex penetrate into the downstream. This
strong intensity and penetration helps to keep the scalar in
the nominal range. The sensor downstream case or open-
loop forcing, on the other hand, generates a wider spreading
pattern or weaker vortices such that the diffusion effect
becomes dominant but dilutes the scalar beyond the lower
limit.

The controlled jet flows also show a better mixing quality
for particles with mass, but the effectiveness of the
controller decreases as the Stokes number of the particle
increases. For light particles St = 0.1, the closed-loop
controllers produce a higher probability function value
than the open-loop forcing, and the value is three times as
great as the one of the uncontrolled case in the quasi-steady-
state conditions. For medium particles St = 1, the closed-
loop controlled cases still show a better performance than
the open-loop forcing case and the value of the probability
function is around double that of the uncontrolled case at the
end. For heavy particles St = 10, all controlled cases show
no improvement on mixing from the base case. This is in
contrast to the particle distribution shown in Fig. 5d in
which the particles are very different from the uncontrolled
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Fig. 8 Probability function of scalar field and particles with different Stokes numbers

a Scalar field

b St =0.1
c St=1
d St=10
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case. One should note that a lower limit will increase the
value of the probability function. Apparently, a controller
that acts solely on the carrier phase has a very limited effect
on the path of heavy particles. A separate controller that acts
directly on the particles is necessary to enhance the mixing
for heavier particles.

6 Conclusions

The formation of vortices and their interactions govern the
entrainment and mixing in jet flows. The perturbation
initiated at the nozzle exit is an essential phenomenon and is
responsible for vortex break up downstream, and this is in
turn is the key to mixing enhancement. The closed-loop
controllers developed here successfully produce a vortex
generation pattern that enhances the overall mixing.
Whereas the configuration of a downstream sensor provides
an idea for a control law, the length scale obtained from the
sensor location can be used as the delay in the more feasible
configuration of a sensor at the nozzle exit.

Whereas all the controlled cases presented here show
promising results on mixing as evidenced by the snapshots
taken at the vorticity field and streaklines, the closed-loop
controller with a sensor at the nozzle exit with a delay gives
the best mixing result measured in terms of a probability
function in the scalar field and particles with a mass. The
performance of a controller should not be decided by a
single criterion and one should take into account many
aspects, e.g. vorticity field, streaklines, distribution of
particles or scalar, and/or probability functions of particles
or scalar. The performance criterion is application depen-
dent, and fine tuning of the control parameters, delay length
and feedback gain, is necessary to have an effective vortex
generation pattern that leads to a desired mixing quality.
Extremum seeking [28] is one option available for such non-
model-based optimisation/tuning.

In Section 5 we compared the performance of our
feedback strategy with both the uncontrolled flows and with
those resulting from open-loop forcing at the frequency of
vortex shedding. Since, in steady-state conditions, the
feedback controller results in a periodic actuation signal,
one can argue that its effect is not significantly different
from the effect of periodic open-loop forcing. This argument
could be supported with the results of the mixing
experiments where the open-loop forcing is not significantly
less successful than the feedback strategies. However, one
should not forget that the open-loop strategy requires an
exact knowledge of the frequency of limit cycling achieved
by the feedback controller, whereas the feedback controller
enters such oscillation ‘on its own’. Whereas a well tuned
open-loop controller forces certain modes of the flow, the
feedback controller destabilises them, it becomes a part of
the dynamics of those modes.
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