
Optimization combining derivative-free global exploration with
derivative-based local refinement

Shahrouz Ryan Alimo Pooriya Beyhaghi Thomas R. Bewley

Abstract— This paper proposes a hybrid optimization scheme
combining an efficient (and, under the appropriate assumptions,
provably globally convergent) derivative-free optimization algo-
rithm (dubbed Δ-DOGS), to globally explore expensive noncon-
vex functions, with a new derivative-based local optimization
algorithm, to maximally accelerate local convergence from
promising feasible points discovered in parameter space. The
resulting hybrid optimization scheme proceeds iteratively, au-
tomatically shifting between (derivative-free) global exploration
and (derivative-based) local refinement as appropriate. The new
derivative-based local refinement method implemented uses the
Voronoi partitioning of all existing datapoints at each iteration
to establish a “modified trust-region” around the current best
point, within which derivative-based optimization is considered.
The resulting algorithm is analyzed, and its global convergence
is proven under certain assumptions on the objective function.
Finally, the algorithm is applied to nonconvex optimization
problems with multiple local minima, and its computational
cost compared with that of the original Δ-DOGS algorithm.

I. INTRODUCTION

Consider the optimization of a nonconvex, expensive-to-

compute function f (x) with bound constraints,

minimize f (x) with x ∈ B = {x|a ≤ x ≤ b}, (1)

where a and b are two vectors in R
n such that a < b. Solving

an optimization problem of the form (1) is difficult and, for

general functions, convergence can only be guaranteed if

the function evaluation set becomes dense over the entire

search domain, B, in the limit of an infinite number of

function evaluations [1], [2]. In this paper, for the purpose

of derivation of our algorithm, we thus focus our attention

on problems in which f (x) is smooth (twice differentiable),

and for which the optimization problem considered has a

target value f0; that is, we seek a point x ∈ B that is a local

minimum such that f (x)≤ f0.

There are generally two broad classes of optimization

algorithms to solve (1): derivative-based methods, which

use gradient information to accelerate the search of a lo-

cal minimum of the objective function, and derivative-free
methods, which do not use gradient information, but may

often be developed in a manner which, under the appropriate

assumptions, assures convergence to a global solution to

(1) [3], [4], [5].

Derivative-based methods are designed to handle a large

number of design parameters, and generally require far fewer
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function evaluations for local convergence. There are two

main approaches for determining the update made at each

step of a derivative-based search: those based on trust-
regions, and those based on line searches.

Trust-region methods define, at each iteration, a region in

the vicinity of the current point, xk, within which a model that

approximates the objective function is generated and used

to calculate the next point, which is restricted to lie within

the modified trust-region. Line search methods, in contrast,

determine the step length in a chosen search direction via

a number of additional function evaluations, in order to

identify a point with a reduced function value (see [6], [7]),

often coordinated by an Armijo condition, which seeks to

ensure that the next iterate reduces the function sufficiently

relative to the directional derivative of f (x) at xk in the

search direction, or a Wolfe condition, which seeks to enforce

conditions on ∇ f as well as the Armijo condition in order

to guarantee that a BFGS update [6] can be safely applied.

Derivative-free methods can, under appropriate assump-

tions, guarantee convergence to a global optimum, but

are generally inefficient computationally, particularly at lo-

cal refinement, requiring many more function evaluations

than derivative-based methods. Response surface methods

(RSMs) are the most efficient globally-convergent derivative-

free optimization methods available today. RSMs iteratively

minimize a search function using an interpolant of existing

data points, known as the “surrogate”, and a model of the

“uncertainty” of this surrogate which goes to zero at the func-

tion evaluations themselves. Efficient global optimization

(EGO) [8], optimization by radial basis function interpolation

in trust-regions (ORBIT) [4], the Surrogate-Management-

Framework (SMF) [9], and Delaunay-based derivative-free

optimization via global surrogates (Δ-DOGS) [10], [11],

[12], are modern examples of RSMs.

The derivative-free scheme upon which the present work

is based is Δ-DOGS, which is a generalizable family of

computationally-efficient RSMs developed by our group for

low-dimensional optimization problems in which the objec-

tive function is both nonconvex and expensive to evaluate.

There are already a handful of schemes in this family,

including schemes designed specifically for simple bound

constraints [13], linear constraints [10], [14], and nonconvex

constraints [12], [15].

This paper proposes the hybridization of (derivative-free)

algorithms in the Δ-DOGS family with a local derivative-

based optimization approach in order to significantly accel-

erate the process of local refinement (for a related discussion,

see [5]). The proposed hybrid algorithm inherits the property
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of global convergence (under the appropriate assumptions)

of the particular Δ-DOGS algorithm upon which it is based.

In our numerical experiments, the algorithm is found to effi-

ciently handle nonconvex functions with many local minima,

and to scale better with dimension than purely derivative-free

global optimization approaches.

The paper is structured as follows: Section II briefly

reviews the essential ideas of [13], [14], which accelerates a

Δ-DOGS search by coordinating it with a Cartesian grid over

parameter space that is successively refined as convergence is

approached. Section III explains the new hybrid optimization

scheme, which combines Δ-DOGS with a derivative-based

optimization algorithm, leveraging a modified trust-region

approach, for local refinement. Section IV analyzes the new

hybrid algorithm’s convergence properties, and describes the

technical conditions needed to guarantee its convergence to a

global or local minimizer. In Section V, the hybrid algorithm

is applied to benchmark optimization problems to illustrate

its behavior. Conclusions are presented in Section VI.

II. A BRIEF REVIEW OF Δ-DOGS

We now review the essential elements of Δ-DOGS [14],

[13]. Note that this paper focuses on variants of these

algorithms that leverage target values of f0; other variants

of these algorithms are discussed in [10], [11], [14], [16],

and could also be invorporated into this framework.

At each iteration, Δ-DOGS estimates the location in the

feasible domain B with, effectively, the highest probability,

given the current surrogate and uncertainty models, of having

a function value less than or equal to f0 (that is, which

maximizes a probability measure for finding such a function

value). The approach is akin to the expected improvement

[17] and Bayesian optimization algorithms [18].

Definition 1: Consider S = {x1,x2, . . . ,xN} as a set of

datapoints in the feasible domain B. The continuous search

function s(x) is defined as follows:

s(x) =

{
p(x)− f0

e(x) if p(x)≥ f0,

p(x)− f0 otherwise,
(2)

where p(x) is some smooth interpolating function such that

p(xi) = f (xi),∀i ∈ {1, . . . ,N}, and e(x) is an uncertainty

function built on the framework of a Delaunay triangulation

of existing datapoints; key properties of e(x), as discussed

in [10], include it being piecewise quadratic with constant

Hessian, e(x)≥ 0 ∀x ∈ B, and e(xi) = 0 ∀i ∈ {1, . . . ,N}.

Definition 2: The Cartesian grid of level � for the feasible

domain B = {x|a ≤ x ≤ b}, denoted B�, is defined such that

B� =

{
x|xι = aι +

1

N
(bι −aι) · zι , zι ∈ {0,1, . . . ,2�}

}

A quantizer of a point x ∈ B onto B� is a point xq on

the B� grid with minimum distance to x; note that the

quantizer so defined is not necessarily unique. The maximum

discretization error is defined as

δ� = max
x∈B

‖x− xq‖. (3)

Algorithm 1 Strawman of Δ-DOGS, designed for minimiz-

ing f (x) ∈ B leveraging the target value f0.

0. Initialize k = 0, �, and the initial set of datapoints S0,

and calculate f (xi) for all xi ∈ S0.

1. Calculate or update the interpolating function pk(x) and

the uncertainty function ek(x) for the points in Sk.

2. Minimize the search function (2) in B to obtain x̂k as a

point with high probability of obtaining the target value.

3. Determine yk as the quantization of x̂k on B�k .

4. If yk �∈ Sk, Sk+1 = Sk∪yk, and calculate f (xk); otherwise,

refine the mesh by incrementing �k.

5. Repeat steps 1-4 until a point x is found with f (x)≤ f0.

Fig. 1: The essential elements of Algorithm 1, Δ-DOGS,

in different iterations for a 1D example. Top subfigures

indicate (black) the truth function f (x), (blue) the interpo-

lating surrogate function p(x), (green) the synthetic model

of the uncertainty e(x), (dashed) the target value f0 = 0.07,

and (black circles) previous datapoints. Bottom subfigures

indicate the search function s(x), as defined in (2), and (red

circles) the minimizer of s(x), the next datapoint to evaluate.

Illustration of the above concepts can be found in Figure

2 of [13]. The grid B� has a specific property that is useful in

this analysis: if any constraints on B are binding at x, these

constraints are also binding at xq.

Given the above concepts, Algorithm 1 presents a straw-

man form of the Δ-DOGS algorithm, as illustrated in Figure

1; further details may be found in [13], [14].

Remark 1: At each iteration, Algorithm 1 either adds a

new feasible evaluation point, or refines the mesh.

There are two possible termination scenarios for Algo-

rithm 1: either it finds a point x with a function value f (x)≤
f0, or it conducts an infinite number of iterations. In a latter

case, it is proved in [13] that there is a limit point amongst

the datapoints computed with a function value equal to f0 if

the target value is achievable. This convergence result, related

to a limit sequence within the datapoints computed, clearly
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represents remarkably faster convergence than the perhaps

pessimistic implication of [1], which requires that functions

evaluations eventually become dense over the entire feasible

domain (in R
N) in the limit of an infinite number of function

evaluations.

Though the Δ-DOGS family of schemes is (relative to

other derivative-free optimization schemes) quite computa-

tionally efficient for the problem of characterizing and glob-

ally exploring (via the surrogate) a large range of nonconvex

functions, it suffers from the same “curse of dimensionality”

that plagues all derivative-free optimization schemes, and

scales poorly with the dimension of the problem, n. The

hybrid algorithm proposed below mitigates this issue.

III. ACCELERATING LOCAL CONVERGENCE USING A

DERIVATIVE-BASED METHOD

This section discusses the blending of our globally-

convergent derivative-free optimization algorithm, Δ-DOGS,

with a local derivative-based optimization approach to accel-

erate the process of local refinement, and thus to scale better

with dimension than purely derivative-free global optimiza-

tion approaches. The essential idea of the new approach is

two-fold: once the Δ-DOGS scheme constructs a reasonably

well-sampled surrogate, the best feasible point found thus far

is used to initialize a local derivative-based search. Once this

derivative-based search identifies a feasible local minimum

point, the value and slope of the objective function at this

point are used to update the surrogate, and the derivative-

free search is resumed, until a new point with an improved

objective function value is found, and another derivative-free

local refinement is performed, etc.

For the derivative-based component of the above-described

hybrid optimization scheme, we will implement a modified

trust-region method [6] which iteratively solves the following

subproblem:

xk = argmin qk(x) subject to x ∈ Ωk, (4)

where Ωk is a subset of B, Sk is the set of datapoints

available at iteration k, and qk(x) is a local quadratic function

constructed around zk, which is a point in Sk that mini-

mizes f (x), such that qk(zk) = f (zk), ∇qk(zk) = ∇ f (zk), and

∇2qk(zk) = ∇2 f (zk) (or, some approximation thereof).

We now define the modified trust-region Ωk to be used

in the derivative-based component of Algorithm 1. Classi-

cal trust-region methods take the trust-region as a sphere

around zk; however, it turns out that this approach does not

work particularly well when we combine trust-region-based

derivative-free optimization with our global optimization

algorithm Δ-DOGS. In this paper, we thus instead define

Ωk as simply the Voronoi cell [19] of zk in Sk, which is a

convex, linearly-constrained region defined as follows.

Definition 3: The constrained Voronoi cell around each

point zk ∈ Sk is consists of all points in B that are closer to

zk than to any other point in x j ∈ Sk:

V (zk) = {x ∈ B | ‖x− zk‖2 ≤ ‖x− x j‖2, ∀x j ∈ Sk}, (5)

where V (zk) represents the constrained Voronoi cell of zk.

Algorithm 2 The new hybrid optimization algorithm to min-

imize f (x) in the feasible domain B, leveraging a gradient-

based scheme to accelerate local refinement.

0. Initialize k = 0, �= �0, and the initial set of datapoints

S0 (confined to the grid B�), and calculate f (x) for all

points in S0.

1. Denote zk as the point in Sk which minimizes f (x).
Calculate ∇ f (zk), calculate or approximate ∇2 f (zk),
generate the local quadratic function qk(x), and solve the

constrained quadratic program defined in (6) to obtain

xk.

2a. If (7) is satisfied [i.e., if q(xk)< η ( f0− f (zk))+ f (zk)],
then determine yk as the quantization of xk on B�.

2b. Otherwise [i.e., if (7) is not satisfied], calculate or up-

date the interpolating function pk(x) and the uncertainty

function ek(x) for the points in Sk, and find the minimum

of the search function (2), denoted x̂k, in B. Determine

yk as the quantization of x̂k on B�.

3a. If yk �∈ Sk, take Sk+1 = Sk ∪ yk, and calculate f (yk).
3b. Otherwise (i.e., if yk ∈ Sk), refine the mesh, �← �+1.

4. Repeat from step 1 until convergence.

Taking Ωk = V (zk), the quadratic programming problem

in (4) may now be rewritten as

xk = argmin qk(x) subject to x ∈V (zk). (6)

We now present, in Algorithm 2, a hybrid optimization

algorithm combining Algorithm 1 and the modified-trust-

region-based derivative-free optimization method described

above. At each iteration, either the quantization of the min-

imizer (in B) of the search function (2), or the quantization

of the solution to the quadratic programming problem (6)

(in the modified trust region V (zk), given by the Voronoi

cell surrounding zk), is added to Sk. For obvious reasons,

the first case is called a global exploration iteration, and the

second case is called a local refinement iteration.

The indicator used in Algorithm 2 to select between global

exploration and local refinement is the following:

qk(xk)< η
(

f0 − f (zk)
)
+ f (zk). (7)

If (7) is satisfied, the process of local refinement at this

iteration is deemed to be sufficiently promising that it might

ultimately lead to a local value of f (x) ≤ f0, and thus a

(derivative-based) local refinement step is performed; other-

wise, a (derivative-free) global exploration step is performed.

A single parameter η with 0 < η ≤ 1, called the reduction
factor, is used in this indicator function.

A. Constructing the local quadratic model

We now discuss the construction of the local quadratic

function qk(x). The approach used is based on Quasi-Newton

methods, which construct a locally quadratic approximation

of the objective function,

qk(x) = f (zk)+∇ f (zk)
T (x−zk)+

1

2
(x−zk)

T Hk(x−zk), (8)

2533

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on February 08,2025 at 17:58:57 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: The quadratic model qk(x), indicated as red, is a better

approximation of the (unknown) objective function f (x)
inside the modified trust-region (the Voronoi cell surrounding

the best computed point). However, qk(x) fails to capture the

“global trends” of f (x). On the other hand, the surrogate

(interpolation) function p(x), indicated as blue, much better

summarizes these trends globally, thus motivating our hybrid

approach. Note that the target value f0 is indicated as green.

with the Hessian Hk approximated based on recent gradient

computations; this approach can ultimately result in an algo-

rithm with superlinear convergence. In the present work, we

use the venerable BFGS method [6] for the construction of

Hk. In the implementation of our hybrid approach, the matrix

Hk is reinitialized by the identity matrix at any iteration for

which the test (7) fails. For each iteration for which the

test (7) does not fail, and that a point yk is obtained such

that f (yk)≤ f (zk), the matrix Hk is updated via the standard

BFGS formula as follows:

Hk+1 = Hk +

⎧⎪⎨
⎪⎩

γT
k γk

γT
k dk

− Hk dk dT
k HT

k

dT
k Hk dk

if γT
k dk > 0,

0 otherwise,

(9a)

dk = yk − zk, γk = ∇ f (yk)−∇ f (zk). (9b)

IV. ANALYSIS

In this section, we analyze the convergence properties of

Algorithm 2. Under the appropriate assumptions, we will

establish two main properties:

1. If the target value is achievable, the algorithm will either

(a) find a feasible point with objective function value

less than or equal to f0 in a finite number of iterations,

or (b) if an infinite sequence of points is generated, there

will be a limit point amongst the datapoints computed

with a function value equal to f0. This property is called

target achievability.

2. The algorithm will converge to a KKT point [6] for the

objective function f (x). This property is called local
minimum convergence.

It is established in [13] that Algorithm 1 has the target

achievability property; however, Algorithm 1 does not guar-

antee local minimum convergence. We will establish both

properties for Algorithm 2, subject to the following assump-

tions on the objective function f (x) and the interpolant pk(x):

(a) Local refinement using derivative-based method

(b) Global exploration using Δ-DOGS

Fig. 3: The two possible scenarios when evaluating (7). In

both subfigures, the red circle denotes the x location of

the minimum of qk(x) within V (zk), as suggested by local

refinement, whereas the blue circle denotes the x location

of the minimum of s(x) within B, as suggested by global

exploration. In (a), a local refinement step will be taken, and

in (b) a global exploration step will be taken.

Assumption 1: The interpolating function pk(x), objective

function f (x), and pk(x)− f (x) are Lipschitz with the same

Lipschitz constant L̂ in B.

Assumption 2: A constant K̂ > 0 exists for which

∇2{ f (x)− pk(x)}+2 K̂ I > 0, ∀x ∈ B and k > 0, (10)

∇2{pk(x)}−2 K̂ I < 0, ∀x ∈ B and k > 0, (11)

∇2{ f (x)}−2 K̂ I < 0, ∀x ∈ B. (12)

Moreover, the gradient of f (x) is Lipschitz with constant K.

Assumption 3: The local quadratic function qk(x) and its

derivative ∇qk(x) are Lipschitz with constant L̂ inside B.

A. Establishing target achievability of Algorithm 2

By construction, each step of Algorithm 2 is either a local

refinement step or a global exploration step. For each mesh

refinement iteration of Algorithm 2, there are two possible

cases:

(a) Condition (7) is satisfied, or

(b) Condition (7) is not satisfied, but yk [the quantizer of

the minimizer of sk(x)] is located in Sk. See Fig. 3.

It is noted in §5 of [13] that, if an infinite number of steps

are taken, then an infinite number of mesh refinement steps

are taken; there are thus either an infinite number of mesh

refinement steps of the first type above, or an infinite number

of mesh refinement steps of the second type above (or, both).

Also, by §5 of [13], if there are an infinite number of mesh
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refinement iterations that are of the second type above, then

Algorithm 2 converges to a point such that f (x)≤ f0.

We will now show target achievability when there are an

infinite number of mesh refinement steps that satisfy (7).

Theorem 1: If there are an infinite number of iterations k
in Algorithm 2 which are mesh refinement and satisfy (7),

then

lim
k→∞

f (zk)≤ f0. (13)

Proof: Consider k as an iteration of Algorithm 2, which

is a local refinement step and also mesh refining. Then

f (zk)−q(xk)≥ η( f (zk)− f0). (14)

Since q(zk) = f (zk), and q(x) is Lipschitz with constant L̂,

then

f (zk)− f0 ≤ 1

η
L̂‖zk − xk‖, (15)

On the other hand, step k is mesh refinement. Thus, the

quantizer of xk is in Sk. However, by construction yk is in

the Voronoi cell of zk. Therefore, zk is a quantizer of xk, and

f (zk)− f0 ≤ 1

η
L̂δ�k ,

where δ�k is the maximum discretization error at iteration

k. Since there is an infinite number iterations like k, (13) is

shown.

We have thus established that Algorithm 2 will achieve

the target value. Moreover, if at one iteration we achieve

the target value, then all remaining iterations are local

refinement iterations. In the next section, we establish the

local minimum convergence of Algorithm 2.

B. Establishing local minimum convergence of Algorithm 2

We first make a few useful definitions.

Definition 4: Define xk as the solution of the quadratic

programming problem (6) at iteration k. There are two

possible types of binding constraints at xk:

a. Constraints on the feasible domain B. These constraints

are called domain-sharing active constraints.

b. Constraints on the Voronoi cell of zk. These constraints

are called Voronoi-sharing active constraints.

Definition 5: Consider S = {V0,V1,V2, . . . ,Vr} as an

affinely independent1 subset of the vertices of a unit n-

dimensional hypercube. Then we construct a matrix A as

a matrix whose i’th column is ai = (Vi −V0)/‖Vi −V0‖. By

construction, A is nonsingular. Then, the hypercube scaling
factor ρ is defined as the inverse of the minimum possible

value for σmin(A) (the minimum singular value of A) over

all possible subsets of S.

Note that, for each z ∈ range(A), defined in r-dimensional

space, such that ‖z‖= 1, there is a unique vector α ∈ Rr, s.t.

Aα = z, ‖α‖ ≤ ρ,
r

∑
i=1

|αi|=
√

rρ ≤√
nρ.

Lemma 1: Consider k as an iteration of Algorithm 2

which is a mesh refinement; then

1s={s0,s1, . . . ,sd} is affinely independent if {s1 − s0, . . . ,sd − s0} are
linearly independent.

1. Domain-sharing and Voronoi-sharing constraints are or-

thogonal.

2. Consider a as the normal vector of a Voronoi-sharing

active constraint; then

|aT ∇ f (x)| ≤ 2 K̂δLk , (16)

where δLk is the maximum discretization error at step

k.

3. Consider b as an outward-facing normal vector of a

Domain-sharing active constraints; then

bT ∇ f (x)≥−K̂ δLk . (17)

4. Consider c as a normal vector which is perpendicular

to all active constraints at xk; then

|cT ∇ f (x)| ≤ K̂ δLk . (18)

5. Consider d as a unit vector which is parallel to the

Domain-sharing active constraints at xk; then

|dT ∇ f (x)| ≤ (1+
√

nρ) K̂ δLk , (19)

where ρ is the scaling factor of the unit hypercube.

Proof: We first show Property 1. Consider H1 as a

boundary of a Voronoi-sharing active constraints, then there

is a point wk ∈ SK , such that ‖xk − zk‖ = ‖wk − zk‖. By

construction, the vector zk −wk is orthogonal to H1. Since

step k is a mesh refinement, both zk and wk are quantizers of

xk. As a result, according to the construction of the Cartesian

grid [13], all domain-sharing active constraints like H2 are

active at both wk and zk. Thus, wk and zk lie on the boundary

of H2, which establishes Property 1.

To show Property 2, we demonstrate (16) is valid, where

a is the normal vector of H1. According to the mean value

theorem, there is a point ξ on the line between zk and wk
such that

∇ f (ξ )T (wk − zk)

‖wk − zk‖ =
f (wk)− f (zk)

‖wk − zk‖ . (20)

Since zk has the minimum objective value in SK , then

f (wk)≥ f (zk). Thus,

∇ f (ξ )T (wk − zk)

‖wk − zk‖ ≥ 0. (21)

Moreover, the function ∇ f (x) is Lipschitz; thus,

∇ f (zk)
T (wk − zk)

‖wk − zk‖ ≥ −K̂‖zk −wk‖ ≥ −2K̂‖zk − xk‖. (22)

On the other hand, xk is the solution of the quadratic

programming problem (6), which is on the constraint H.

Moreover, zk and wk are infeasible and feasible, respectively,

with respect to this constraint. Further, (wk − zk)/‖wk − zk‖
is normal to the boundary of H1, and goes out of the Voronoi

cell. As a result,

∇qk(zk)
T (wk − zk)

‖wk − zk‖ ≤ 0. (23)
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Since ∇qk(x) is Lipschtiz with constant K̂, and ∇ f (zk) =
∇qk(zk), it follows that

∇ f (zk)
T (wk − zk)

‖wk − zk‖ ≤ K̂‖zk − xk‖. (24)

Since iteration k is mesh decreasing, Property 2 is estab-

lished.

To show Property 3, consider b as an outward-facing

normal vector of a domain-sharing active constraint H2.

Since xk is the solution of the quadratic programming (6),

bT ∇qk(xk)≤ 0. (25)

Since ∇qk(zk) = ∇ f (zk) and ∇qk(x) is Lipschitz with con-

stant K, Property 3 is established.

To show Property 4, since xk is the solution of the

quadratic programming (6), then

cT ∇qk(xk) = 0, (26)

Similarly, since ∇qk(zk) = ∇ f (zk), and ∇qk(x) is Lipschitz

with constant K̂, Property 4 is established.

Finally we consider Property 5. By construction, d can be

written as

d = d1 +d2 where d1 =
r

∑
i=1

αiai, (27)

where ai are the normal vectors of the Voronoi-sharing active

constraints, and d2 is a vector which is perpendicular to the

domain-sharing active constraints at yk. Using (16) and (18),

and the triangular inequality, we have:

|dT ∇ f (zk)| ≤ δLk [2 K̂
r

∑
i=1

|αi|+ K̂‖d2‖].

Furthermore, ‖d‖ = 1, and d1 and d2 are orthogonal; thus,

‖d1‖ ≤ 1, ‖d2‖ ≤ 1, and

|dT ∇ f (zk)| ≤ K̂δLk [2
r

∑
i=1

|αi|+1].

On the other hand, ai is a vector normal of a boundary of

the Voronoi cell of zk. Therefore, there is a point, wi ∈ SK ,

such that ‖yk − zk‖ = ‖yk −wi‖. Moreover, since iteration k
is a mesh refinement, then {zk,w1,w2, . . . ,wr} are distinct

quantizers of xk. As a result, they are located at the vertices

of a hypercube. In other words, the ai are the vectors obtained

by connecting one vertex of a uniform hypercube to the other

vertices; thus, ∑r
i=1 |αi| ≤ √

nρ , which establishes Property

5.

We now prove the local minimum convergence of Algo-

rithm 2.

Theorem 2: Considering {k1,k2, . . . ,} as the mesh de-

creasing steps of Algorithm 2, then all limit points of the

set T = {zk1
,zk2

, . . .} are KKT points for the optimization

problem (1).

Proof: Consider z as a limit point for the set T . Then

there is a subset of T like {zq1
,zq2

, . . .}, such that

lim
k→∞

zqk = z. (28)

By construction, there is an open ball around z, which does

not intersect any boundary of B that does not contain z. Thus,

there is a k0 such that for k > k0, and zqk could lie only on

the boundaries of B that include z. Furthermore, since zqk is

the quantization of xqk , Aa(yqk)⊆ Aa(z), where Aa(x) is the

matrix whose rows are the set of active constraints at x in

B. As a result, according to Lemma (1), for all K > K̂,

|pT ∇ f (zqk)| ≤ (1+
√

nρ)K δLqk
,∀p ∈ null(Aa) (29)

pT ∇ f (zqk)≥−(1+
√

nρ)K δLqk
,∀p ∈ row(Aa) (30)

Since δLqk
converges to zero, z is a KKT point [6].

V. RESULTS

In this section, we compare the performance of (a) the

original Algorithm 1, (b) Algorithm 2 with steepest descent

applied for local refinement, (c) Algorithm 2 with the BFGS

formula applied for local refinement, and (d) the active-

set, derivative-based, method of [6]. The function considered

is the n-dimensional Styblinski Tang function, which is a

benchmark test for global optimization:

f (x) =
n

∑
i=1

x4
i −16x2

i +5xi

2
−39.16616n, (31)

where L = {x|−5 ≤ xi ≤ 5}.
An initial grid level of �0 = 3 is considered, and the algorithm

continues until the grid level of �= 8 is terminated. Note that

the optimizations are terminated when ‖xk−x j‖2 ≤ 0.005 for

all x j ∈ Sk, which leads to a comparable order of accuracy

for methods (a), (b), and (c) (i.e. the maximum discretization

error level �= 8 is close to 0.005). The initial datapoints in

S0
E are constructed with n+1 points as follows:

S0
E =

{
x0,x0 +

bi −ai

2�0
ei,∀i ∈ {1,2, . . . ,n}

}
. (32)

For each i, ei is the ith main coordinate direction, and x0 is

an initial point on the grid of level �0. In this section, we

consider two different points of x0 for the initialization of

Algorithms 1 and 2, as shown in Figs. 4 and 6.

Fig. 4 illustrates the position of the datapoints that are used

during the optimization process for n = 2. With initial points

(x0 = 0.55,x0 +0.2ei), which are far from all local minima,

Algorithm 2 focuses on global exploration; as a result, the

number of function evaluations required for convergence is

similar to that required by Algorithm 1.

Conversely, with an initial point that lies close to a local

minimum, Algorithm 2 performs a much more efficient

local refinement than Algorithm 1, resulting in much faster

convergence. Table I reports noticeable differences that indi-

cate significant advantages for using Algorithm 2 in higher

dimensional problems.

As described in §3.B, the local refinement of Algorithm 2

can incorporate either gradient information or an approx-

imation of the Hessian using the BFGS update formula.

Table I demonstrates, as expected, that using the Hessian
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(a) Algorithm 2 w/ BFGS, η = 0.5.
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(b) Algorithm 1.
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(c) Derivative-based method [7].

Fig. 4: Optimization in the case of exact f0 = f (x∗) = 0, with n = 2. The black stars are support points (see [13]) that are not

actually evaluated, and are only used to regularize the Deluanay triangulation constructed. The white squares are the points

at which function evaluations are performed. The darker contours indicate lower values of the objective function whereas

the lighter contours indicate higher values. Note that case (c) prematurely converges to a local minimum after 23 iterations.
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(a) Algorithm 2 w/ BFGS, η = 0.8.
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(b) Algorithm 1.

Fig. 5: Exact f0 = f (x∗) = 0, with n = 4.

TABLE I: Algorithm 2 with η = 0.8, and with steepest

descent and BFGS for local refinement, vs. Algorithm. 1.

Results averaged over 5 different initial values in each case.

Average # fun. eval. / Dimension n = 2 n = 3 n = 4
Algorithm 1 Δ-DOGS [13] 22.5 49 98.5
Algorithm 2 with BFGS 25 38 77.8
Algorithm 2 with steepest descent 27.2 61.2 59.4

approximation generally has a superior convergence rate as

compared with using steepest descent. Additionally, it is

observed that the accuracy of the solution is significantly

improved for a fixed number of function evaluations when

the BFGS update formula is used. As expected, in the case

of Hessian approximation, the grid B�0
is refined faster than

when using gradient information only.

Algorithm 2 with gradient descent in some situations got

stuck at a local solution, and performed many unnecessary

function evaluations before starting to explore more globally.

Due to this issue in some specific situations Algorithm 2 with

gradient descent becomes more computationally expensive

than Algorithm 1 and Algorithm 2 with BFGS.

In the case that the estimated solution, f0, is greater

than the global solution, f (x∗), we see another significant

advantage of Algorithm 2 over Algorithm 1. Algorithm

1 persists in using global search to find f0, and stops

without convergence using local refinement; thus it does not
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(a) Algorithm 2 w/ BFGS, η = 0.8.
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(b) Algorithm 1.

Fig. 6: Target achievability with f0 = 20 > f (x∗) = 0. In this

situation, Algorithm 2 can guarantee the convergence to a

local solution; however, Algorithm 1 does not guarantee to

find a local solution. See Figure 4 for description of plots.

guarantee to even find a local solution when f0 > f (x∗). On

the other hand, Algorithm 2 continues its local refinement

until it converges to a KKT point. This is illustrated in Fig.

6. Finally, the derivative-based method converges to a local

solution Fig. 6(c).
The cost of computing a Delaunay triangulation grows

exponentially as the dimension of the problem grows. Using

Algorithm 2 with a good initial guess, the new algorithm can

converge to the global solution with a reasonable number of

function evaluations even up to n = 8, as shown in Fig. 7.

The parameter η specifies the trade-off between global

exploration and local refinement. It is desirable to decrease η
as the dimension of the problem is increased to emphasize lo-

cal refinement, as derivative-free global exploration becomes

computationally expensive in high-dimensional problems.

In the case of a low-dimensional problem (n < 6), the

performance of the algorithm is not unduly sensitive to the

choice of η , and in these cases we have taken η = 0.8
in the simulations reported here . As the dimensionality

of the problems was increased, we generally found that

reducing the value of η was beneficial, in order to focus

more heavily on local refinement. The optimal value of η for

any given problem is likely closely related to some measure
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(a) n = 7.
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(b) n = 8.

Fig. 7: Algorithm 2 with BFGS applied to example problems

with different initial points. (a) n = 7, η = 0.4, 106 local

refinement steps, 11 global exploration steps, and 7 times

mesh refinement steps, with 8 initial points {x0,i = 0.13,x0,i+
0.1ei}. (b) n = 8, η = 0.1, 36 local refinement steps, 11

global exploration steps, and 8 mesh refinement steps, with

9 initial points {x0,i = 0.4,x0,i +0.1ei}. Note that optimiza-

tions in these higher dimensions was simply not possible

using Algorithm 1, due to the high computational cost of

computing Delaunay triangulations in these dimensions.

of the curvature of the objective function over the feasibility

domain. Unfortunately, this quantity would almost never be

known in advance, and we therefore suggest tuning it based

on a minor amount of trial and error on related problems.

VI. CONCLUSIONS

This paper introduces a modification to the Delaunay-

based derivative-free optimization algorithm scheme Δ-

DOGS, as proposed in [13], [14], incorporating gradient

information to accelerate local refinement. The new scheme,

Algorithm 2, has three main modifications as compared with

the original Δ-DOGS algorithm:

• A criterion, (7), for the anticipated reduction due to a

local refinement step is introduced to decide between

taking a derivative-based local refinement step or a

derivative-free global exploration step at each iteration.

This criterion has an adjustable parameter η ; values in

the range 0.5 ≤ η ≤ 0.8 were found to be effective.

• A new derivative-based local optimization method

is used leveraging a modified trust region approach

based on the Voronoi cell of the available datapoints

constrained to the (bound) feasible domain. To guar-

antee convergence, all of the datapoints computed are

coordinated by a grid, with this grid being successively

refined as the optimization algorithm proceeds.

• To accelerate the convergence of local refinement

scheme and the hybrid method that uses it, Algorithm

2, the Hessian of objective function is approximated via

the usual BFGS formula.

Proof of global convergence of the new scheme, under the

appropriate assumptions, is established. Further, in the nu-

merical experiments we have performed thus far, Algorithm

2 is found to significantly accelerate local convergence,

to handle efficiently nonconvex functions with many local

minima, and to scale better with dimension than purely

derivative-free global optimization approaches.

In future work, this framework will be applied to various

additional benchmark problems as well as application-based

problems, e.g. [18], [20]. In many online application-based

optimization problems, the desire is to find as good a

solution as possible within a specific time horizon. Certain

modifications of η and f0 as the time horizon runs out might

well be warranted in such situations.
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