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Optimization combining derivative-free global exploration with
derivative-based local refinement

Shahrouz Ryan Alimo

Abstract— This paper proposes a hybrid optimization scheme
combining an efficient (and, under the appropriate assumptions,
provably globally convergent) derivative-free optimization algo-
rithm (dubbed A-DOGS), to globally explore expensive noncon-
vex functions, with a new derivative-based local optimization
algorithm, to maximally accelerate local convergence from
promising feasible points discovered in parameter space. The
resulting hybrid optimization scheme proceeds iteratively, au-
tomatically shifting between (derivative-free) global exploration
and (derivative-based) local refinement as appropriate. The new
derivative-based local refinement method implemented uses the
Voronoi partitioning of all existing datapoints at each iteration
to establish a “modified trust-region” around the current best
point, within which derivative-based optimization is considered.
The resulting algorithm is analyzed, and its global convergence
is proven under certain assumptions on the objective function.
Finally, the algorithm is applied to nonconvex optimization
problems with multiple local minima, and its computational
cost compared with that of the original A-DOGS algorithm.

I. INTRODUCTION

Consider the optimization of a nonconvex, expensive-to-
compute function f(x) with bound constraints,

minimize f(x) with x € B= {x|a <x <b},

)

where a and b are two vectors in R” such that a < b. Solving
an optimization problem of the form (1) is difficult and, for
general functions, convergence can only be guaranteed if
the function evaluation set becomes dense over the entire
search domain, B, in the limit of an infinite number of
function evaluations [1], [2]. In this paper, for the purpose
of derivation of our algorithm, we thus focus our attention
on problems in which f(x) is smooth (twice differentiable),
and for which the optimization problem considered has a
target value fj; that is, we seek a point x € B that is a local
minimum such that f(x) < fp.

There are generally two broad classes of optimization
algorithms to solve (1): derivative-based methods, which
use gradient information to accelerate the search of a lo-
cal minimum of the objective function, and derivative-free
methods, which do not use gradient information, but may
often be developed in a manner which, under the appropriate
assumptions, assures convergence to a global solution to
(1) [31, [4], [5].

Derivative-based methods are designed to handle a large
number of design parameters, and generally require far fewer
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function evaluations for local convergence. There are two
main approaches for determining the update made at each
step of a derivative-based search: those based on trust-
regions, and those based on line searches.

Trust-region methods define, at each iteration, a region in
the vicinity of the current point, x;, within which a model that
approximates the objective function is generated and used
to calculate the next point, which is restricted to lie within
the modified trust-region. Line search methods, in contrast,
determine the step length in a chosen search direction via
a number of additional function evaluations, in order to
identify a point with a reduced function value (see [6], [7]),
often coordinated by an Armijo condition, which seeks to
ensure that the next iterate reduces the function sufficiently
relative to the directional derivative of f(x) at x; in the
search direction, or a Wolfe condition, which seeks to enforce
conditions on Vf as well as the Armijo condition in order
to guarantee that a BFGS update [6] can be safely applied.

Derivative-free methods can, under appropriate assump-
tions, guarantee convergence to a global optimum, but
are generally inefficient computationally, particularly at lo-
cal refinement, requiring many more function evaluations
than derivative-based methods. Response surface methods
(RSMs) are the most efficient globally-convergent derivative-
free optimization methods available today. RSMs iteratively
minimize a search function using an interpolant of existing
data points, known as the “surrogate”, and a model of the
“uncertainty” of this surrogate which goes to zero at the func-
tion evaluations themselves. Efficient global optimization
(EGO) [8], optimization by radial basis function interpolation
in trust-regions (ORBIT) [4], the Surrogate-Management-
Framework (SMF) [9], and Delaunay-based derivative-free
optimization via global surrogates (A-DOGS) [10], [11],
[12], are modern examples of RSMs.

The derivative-free scheme upon which the present work
is based is A-DOGS, which is a generalizable family of
computationally-efficient RSMs developed by our group for
low-dimensional optimization problems in which the objec-
tive function is both nonconvex and expensive to evaluate.
There are already a handful of schemes in this family,
including schemes designed specifically for simple bound
constraints [13], linear constraints [10], [14], and nonconvex
constraints [12], [15].

This paper proposes the hybridization of (derivative-free)
algorithms in the A-DOGS family with a local derivative-
based optimization approach in order to significantly accel-
erate the process of local refinement (for a related discussion,
see [5]). The proposed hybrid algorithm inherits the property
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of global convergence (under the appropriate assumptions)
of the particular A-DOGS algorithm upon which it is based.
In our numerical experiments, the algorithm is found to effi-
ciently handle nonconvex functions with many local minima,
and to scale better with dimension than purely derivative-free
global optimization approaches.

The paper is structured as follows: Section II briefly
reviews the essential ideas of [13], [14], which accelerates a
A-DOGS search by coordinating it with a Cartesian grid over
parameter space that is successively refined as convergence is
approached. Section III explains the new hybrid optimization
scheme, which combines A-DOGS with a derivative-based
optimization algorithm, leveraging a modified trust-region
approach, for local refinement. Section IV analyzes the new
hybrid algorithm’s convergence properties, and describes the
technical conditions needed to guarantee its convergence to a
global or local minimizer. In Section V, the hybrid algorithm
is applied to benchmark optimization problems to illustrate
its behavior. Conclusions are presented in Section VI.

II. A BRIEF REVIEW OF A-DOGS

We now review the essential elements of A-DOGS [14],
[13]. Note that this paper focuses on variants of these
algorithms that leverage target values of fy; other variants
of these algorithms are discussed in [10], [11], [14], [16],
and could also be invorporated into this framework.

At each iteration, A-DOGS estimates the location in the
feasible domain B with, effectively, the highest probability,
given the current surrogate and uncertainty models, of having
a function value less than or equal to fy (that is, which
maximizes a probability measure for finding such a function
value). The approach is akin to the expected improvement
[17] and Bayesian optimization algorithms [18].

Definition 1: Consider § = {xj,xp,...,xy} as a set of
datapoints in the feasible domain B. The continuous search
function s(x) is defined as follows:

SR i p(x) > o,
s(x) =
p(x)— fo otherwise,

where p(x) is some smooth interpolating function such that
p(xi) = f(x;),¥i € {I,...,N}, and e(x) is an uncertainty
function built on the framework of a Delaunay triangulation
of existing datapoints; key properties of e(x), as discussed
in [10], include it being piecewise quadratic with constant
Hessian, e¢(x) >0 Vx € B, and e(x;) =0 Vi€ {1,...,N}.
Definition 2: The Cartesian grid of level ¢ for the feasible
domain B = {x|a < x < b}, denoted By, is defined such that

2

1
By = {xlxl :al+N(bl _al)'zla L€ {0,1,...,26}}

A quantizer of a point x € B onto By is a point x; on
the B, grid with minimum distance to x; note that the
quantizer so defined is not necessarily unique. The maximum
discretization error is defined as

Algorithm 1 Strawman of A-DOGS, designed for minimiz-
ing f(x) € B leveraging the target value fj.

0. Initialize k =0, ¢, and the initial set of datapoints Sy,
and calculate f(x;) for all x; € Sp.

1. Calculate or update the interpolating function py(x) and
the uncertainty function ey (x) for the points in Sy.

2. Minimize the search function (2) in B to obtain £ as a
point with high probability of obtaining the target value.

3. Determine y; as the quantization of £; on By,.

4. If yp & Sk, Sk1 = Sk Uy, and calculate f(x;); otherwise,
refine the mesh by incrementing ¢.

5. Repeat steps 1-4 until a point x is found with f(x) < fj.

a5

100

80

eo| [$(X) s(x)

40

20

0 L] L] ')

Fig. 1: The essential elements of Algorithm 1, A-DOGS,

in different iterations for a 1D example. Top subfigures
indicate (black) the truth function f(x), (blue) the interpo-
lating surrogate function p(x), (green) the synthetic model
of the uncertainty e(x), (dashed) the target value fy = 0.07,
and (black circles) previous datapoints. Bottom subfigures
indicate the search function s(x), as defined in (2), and (red
circles) the minimizer of s(x), the next datapoint to evaluate.

Illustration of the above concepts can be found in Figure
2 of [13]. The grid By has a specific property that is useful in
this analysis: if any constraints on B are binding at x, these
constraints are also binding at x,.

Given the above concepts, Algorithm 1 presents a straw-
man form of the A-DOGS algorithm, as illustrated in Figure
1; further details may be found in [13], [14].

Remark 1: At each iteration, Algorithm 1 either adds a
new feasible evaluation point, or refines the mesh.

There are two possible termination scenarios for Algo-
rithm 1: either it finds a point x with a function value f(x) <
fo, or it conducts an infinite number of iterations. In a latter
case, it is proved in [13] that there is a limit point amongst
the datapoints computed with a function value equal to fj if

8, = max||x — x| 3) the target value is achievable. This convergence result, related
- x€B ¢ to a limit sequence within the datapoints computed, clearly
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represents remarkably faster convergence than the perhaps
pessimistic implication of [1], which requires that functions
evaluations eventually become dense over the entire feasible
domain (in R") in the limit of an infinite number of function
evaluations.

Though the A-DOGS family of schemes is (relative to
other derivative-free optimization schemes) quite computa-
tionally efficient for the problem of characterizing and glob-
ally exploring (via the surrogate) a large range of nonconvex
functions, it suffers from the same “curse of dimensionality”
that plagues all derivative-free optimization schemes, and
scales poorly with the dimension of the problem, n. The
hybrid algorithm proposed below mitigates this issue.

ITII. ACCELERATING LOCAL CONVERGENCE USING A
DERIVATIVE-BASED METHOD

This section discusses the blending of our globally-
convergent derivative-free optimization algorithm, A-DOGS,
with a local derivative-based optimization approach to accel-
erate the process of local refinement, and thus to scale better
with dimension than purely derivative-free global optimiza-
tion approaches. The essential idea of the new approach is
two-fold: once the A-DOGS scheme constructs a reasonably
well-sampled surrogate, the best feasible point found thus far
is used to initialize a local derivative-based search. Once this
derivative-based search identifies a feasible local minimum
point, the value and slope of the objective function at this
point are used to update the surrogate, and the derivative-
free search is resumed, until a new point with an improved
objective function value is found, and another derivative-free
local refinement is performed, etc.

For the derivative-based component of the above-described
hybrid optimization scheme, we will implement a modified
trust-region method [6] which iteratively solves the following
subproblem:

X = argmin g (x) subject to x € Qy, ()

where € is a subset of B, S; is the set of datapoints
available at iteration k, and g (x) is a local quadratic function
constructed around zz, which is a point in S; that mini-
mizes f(x), such that gi(zx) = f(zk), Vai(zk) = V.f(zk), and
V2qi(zx) = V2 f(z) (or, some approximation thereof).

We now define the modified trust-region Q; to be used
in the derivative-based component of Algorithm 1. Classi-
cal trust-region methods take the trust-region as a sphere
around z;; however, it turns out that this approach does not
work particularly well when we combine trust-region-based
derivative-free optimization with our global optimization
algorithm A-DOGS. In this paper, we thus instead define
Qy as simply the Voronoi cell [19] of z; in Si, which is a
convex, linearly-constrained region defined as follows.

Definition 3: The constrained Voronoi cell around each
point z; € Sk is consists of all points in B that are closer to
Zx than to any other point in x; € S;:

Vizr) = {x e Bl lx—zlly < e =xjllp, Yoj€8h, (5)

where V(z;) represents the constrained Voronoi cell of z.

Algorithm 2 The new hybrid optimization algorithm to min-
imize f(x) in the feasible domain B, leveraging a gradient-
based scheme to accelerate local refinement.

0. Initialize k =0, ¢ = £y, and the initial set of datapoints
So (confined to the grid By), and calculate f(x) for all
points in Sp.

1. Denote z; as the point in S; which minimizes f(x).
Calculate Vf(z), calculate or approximate V2f(z),
generate the local quadratic function g (x), and solve the
constrained quadratic program defined in (6) to obtain
X -

2a. If (7) is satisfied [i.e., if g(xx) <N (fo— f(zx)) + f(z)],
then determine y; as the quantization of x; on By.

2b. Otherwise [i.e., if (7) is not satisfied], calculate or up-
date the interpolating function py(x) and the uncertainty
function e (x) for the points in Sk, and find the minimum
of the search function (2), denoted £, in B. Determine
vk as the quantization of X on By.

3a. If y & Sk, take Sgy1 = Sx Uy, and calculate f(yx).

3b. Otherwise (i.e., if y; € S), refine the mesh, ¢ < /+ 1.

4. Repeat from step 1 until convergence.

Taking Qi = V(zx), the quadratic programming problem
in (4) may now be rewritten as

X; = argmin g (x) subject to  x € V(z). (6)

We now present, in Algorithm 2, a hybrid optimization
algorithm combining Algorithm 1 and the modified-trust-
region-based derivative-free optimization method described
above. At each iteration, either the quantization of the min-
imizer (in B) of the search function (2), or the quantization
of the solution to the quadratic programming problem (6)
(in the modified trust region V(zx), given by the Voronoi
cell surrounding z), is added to S;. For obvious reasons,
the first case is called a global exploration iteration, and the
second case is called a local refinement iteration.

The indicator used in Algorithm 2 to select between global
exploration and local refinement is the following:

ax() <1 (fo— () + £ (z0). ™

If (7) is satisfied, the process of local refinement at this
iteration is deemed to be sufficiently promising that it might
ultimately lead to a local value of f(x) < fp, and thus a
(derivative-based) local refinement step is performed; other-
wise, a (derivative-free) global exploration step is performed.
A single parameter n with 0 < n <1, called the reduction
factor, is used in this indicator function.

A. Constructing the local quadratic model

We now discuss the construction of the local quadratic
function g (x). The approach used is based on Quasi-Newton
methods, which construct a locally quadratic approximation
of the objective function,

e(x) = 1(26) + V()T (v—20) 4 5 (20T Hilx =), @
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Fig. 2: The quadratic model g (x), indicated as red, is a better
approximation of the (unknown) objective function f(x)
inside the modified trust-region (the Voronoi cell surrounding
the best computed point). However, g (x) fails to capture the
“global trends” of f(x). On the other hand, the surrogate
(interpolation) function p(x), indicated as blue, much better
summarizes these trends globally, thus motivating our hybrid
approach. Note that the target value fy is indicated as green.

with the Hessian H; approximated based on recent gradient
computations; this approach can ultimately result in an algo-
rithm with superlinear convergence. In the present work, we
use the venerable BFGS method [6] for the construction of
Hj. In the implementation of our hybrid approach, the matrix
H, is reinitialized by the identity matrix at any iteration for
which the test (7) fails. For each iteration for which the
test (7) does not fail, and that a point y; is obtained such
that f(yx) < f(zx), the matrix Hy is updated via the standard
BFGS formula as follows:

YZ’Yk - dekdkTHkT
Hip1 = Hy+ < vl di dl Hydy

0 otherwise,
%= V) —VI(z)
IV. ANALYSIS

it 7 dy >0,
i 1 di (9a)

dr = yi — 2k, (9b)

In this section, we analyze the convergence properties of
Algorithm 2. Under the appropriate assumptions, we will
establish two main properties:

1. If the target value is achievable, the algorithm will either
(a) find a feasible point with objective function value
less than or equal to fj in a finite number of iterations,
or (b) if an infinite sequence of points is generated, there
will be a limit point amongst the datapoints computed
with a function value equal to fj. This property is called
target achievability.

2. The algorithm will converge to a KKT point [6] for the
objective function f(x). This property is called local
minimum convergence.

It is established in [13] that Algorithm 1 has the target
achievability property; however, Algorithm 1 does not guar-
antee local minimum convergence. We will establish both
properties for Algorithm 2, subject to the following assump-
tions on the objective function f(x) and the interpolant p* (x):

(b) Global exploration using A-DOGS

Fig. 3: The two possible scenarios when evaluating (7). In
both subfigures, the red circle denotes the x location of
the minimum of ¢ (x) within V(z), as suggested by local
refinement, whereas the blue circle denotes the x location
of the minimum of s(x) within B, as suggested by global
exploration. In (a), a local refinement step will be taken, and
in (b) a global exploration step will be taken.

Assumption 1: The interpolating function p*(x), objective
function f(x), and p¥(x) — f(x) are Lipschitz with the same
Lipschitz constant L in B.

Assumption 2: A constant K > 0 exists for which

VHf(x) = p*(x)}+2KI >0, YxeBandk>0, (10)
Vi{p*(x)} —2KI <0, VxeBandk>0, (I1)
V2{f(x)} —2KI<0,Vx€B. (12)

Moreover, the gradient of f(x) is Lipschitz with constant K.
Assumption 3: The local quadratic function g (x) and its
derivative Vg (x) are Lipschitz with constant L inside B.

A. Establishing target achievability of Algorithm 2

By construction, each step of Algorithm 2 is either a local
refinement step or a global exploration step. For each mesh
refinement iteration of Algorithm 2, there are two possible
cases:

(a) Condition (7) is satisfied, or
(b) Condition (7) is not satisfied, but y; [the quantizer of
the minimizer of s;(x)] is located in Si. See Fig. 3.

It is noted in §5 of [13] that, if an infinite number of steps
are taken, then an infinite number of mesh refinement steps
are taken; there are thus either an infinite number of mesh
refinement steps of the first type above, or an infinite number
of mesh refinement steps of the second type above (or, both).
Also, by §5 of [13], if there are an infinite number of mesh
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refinement iterations that are of the second type above, then
Algorithm 2 converges to a point such that f(x) < fp.
We will now show target achievability when there are an
infinite number of mesh refinement steps that satisfy (7).
Theorem 1: If there are an infinite number of iterations k
in Algorithm 2 which are mesh refinement and satisfy (7),
then
lim £(z) < fo. (13)
Proof: Consider k as an iteration of Algorithm 2, which
is a local refinement step and also mesh refining. Then

f(z) —q(a) = n(f(z) — fo)-

Since q(zx) = f(z), and g(x) is Lipschitz with constant Z,
then

(14)

1.
flz) = fo < ELHZk—kaa

On the other hand, step k is mesh refinement. Thus, the
quantizer of x; is in S;. However, by construction yj; is in
the Voronoi cell of z;. Therefore, z; is a quantizer of xi, and

(15)

f@)—fo< EL%,

where &, is the maximum discretization error at iteration
k. Since there is an infinite number iterations like k, (13) is
shown. [ ]

We have thus established that Algorithm 2 will achieve
the target value. Moreover, if at one iteration we achieve
the target value, then all remaining iterations are local
refinement iterations. In the next section, we establish the
local minimum convergence of Algorithm 2.

B. Establishing local minimum convergence of Algorithm 2

We first make a few useful definitions.

Definition 4: Define x; as the solution of the quadratic
programming problem (6) at iteration k. There are two
possible types of binding constraints at x:

a. Constraints on the feasible domain B. These constraints

are called domain-sharing active constraints.

b. Constraints on the Voronoi cell of z;. These constraints

are called Voronoi-sharing active constraints.

Definition 5: Consider S = {V,Vi,Va,...,V,} as an
affinely independent' subset of the vertices of a unit n-
dimensional hypercube. Then we construct a matrix A as
a matrix whose ’th column is a; = (V; = Vo)/||V; — Vo||. By
construction, A is nonsingular. Then, the hypercube scaling
factor p is defined as the inverse of the minimum possible
value for Opiy(A) (the minimum singular value of A) over
all possible subsets of S.

Note that, for each z € range(A), defined in r-dimensional
space, such that ||z|| = 1, there is a unique vector & € R’ s.t.

Aa=z lall<p, Y lal=ip<ap.

i=1
Lemma 1: Consider k as an iteration of Algorithm 2
which is a mesh refinement; then

Ys={50,51,...,84} is affinely independent if {s; —so,...,5¢ — S0} are
linearly independent.

1. Domain-sharing and Voronoi-sharing constraints are or-
thogonal.

2. Consider a as the normal vector of a Voronoi-sharing
active constraint; then

la"Vf(x)| <2K8,, (16)

where &7, is the maximum discretization error at step
k.

3. Consider b as an outward-facing normal vector of a
Domain-sharing active constraints; then

'V f(x) > —Kdy,. (17)

4. Consider ¢ as a normal vector which is perpendicular
to all active constraints at xy; then

I'VFx)| <Ky, (18)

5. Consider d as a unit vector which is parallel to the
Domain-sharing active constraints at xy; then

ld"V )| <(1+vnp)K &, (19)

where p is the scaling factor of the unit hypercube.

Proof: We first show Property 1. Consider H; as a
boundary of a Voronoi-sharing active constraints, then there
is a point wy € Sk, such that ||xx — z¢| = ||wx — z||- By
construction, the vector z; — wy is orthogonal to H;. Since
step k is a mesh refinement, both z; and wy are quantizers of
Xi. As a result, according to the construction of the Cartesian
grid [13], all domain-sharing active constraints like H, are
active at both wy and z;. Thus, wy and z; lie on the boundary
of H,, which establishes Property 1.

To show Property 2, we demonstrate (16) is valid, where

a is the normal vector of H;. According to the mean value
theorem, there is a point £ on the line between z; and wy
such that

V(&) (wi—z)

HWk—ZkH

S =f)
oo =zl

Since z; has the minimum objective value in Sk, then
J(wi) = f(z). Thus,

VA (wk =)

> 0. 1)
[Iwie =zl

Moreover, the function V f(x) is Lipschitz; thus,

Vi(z)" (W —z)

> —K|lze —wil| > —2K||ze — x| (22)
[lwi — zx]|

On the other hand, x; is the solution of the quadratic
programming problem (6), which is on the constraint H.
Moreover, z; and wy are infeasible and feasible, respectively,
with respect to this constraint. Further, (wy —z¢)/||wr — 2|
is normal to the boundary of Hj, and goes out of the Voronoi
cell. As a result,

Va(z)" (wie —z)
Wi — z«||

<0.

(23)
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Since Vgi(x) is Lipschtiz with constant K, and Vf(z;) =
Vi (zk), it follows that

V()" (wi—z)

< K2k — x|
Wi — 2|

(24)
Since iteration k is mesh decreasing, Property 2 is estab-
lished.

To show Property 3, consider b as an outward-facing
normal vector of a domain-sharing active constraint H».
Since x; is the solution of the quadratic programming (6),

b"Vai(x) <0. (25)

Since Vqi(zx) = Vf(zx) and Vgi(x) is Lipschitz with con-
stant K, Property 3 is established.

To show Property 4, since x; is the solution of the
quadratic programming (6), then

V() =0, (26)

Similarly, since Vqi(zx) = Vf(zx), and Vgi(x) is Lipschitz
with constant K, Property 4 is established.
Finally we consider Property 5. By construction, d can be
written as
-
d=d +dy where dy =) o, (27)
i=1
where g; are the normal vectors of the Voronoi-sharing active
constraints, and ¢ is a vector which is perpendicular to the

domain-sharing active constraints at y;. Using (16) and (18),
and the triangular inequality, we have:

"V f(z)| < 8, [2K Y |ai| + K|z ]
i=1

Furthermore, ||d|| =1, and d; and d> are orthogonal; thus,
ldi]] <1, ||da]| <1, and

,
"V f(z)| < K6, [2 ) |ou]+1].
i=1
On the other hand, a; is a vector normal of a boundary of
the Voronoi cell of z;. Therefore, there is a point, w; € Sk,
such that ||y — z¢|| = ||lyx — wil|. Moreover, since iteration &
is a mesh refinement, then {zj,w;,ws,...,w,} are distinct
quantizers of x;. As a result, they are located at the vertices
of a hypercube. In other words, the a; are the vectors obtained
by connecting one vertex of a uniform hypercube to the other
vertices; thus, Y/, |a;| < /np, which establishes Property
5. ]

We now prove the local minimum convergence of Algo-
rithm 2.

Theorem 2: Considering {ki,ks,...,} as the mesh de-
creasing steps of Algorithm 2, then all limit points of the
set T = {zx,,2k,,-.- } are KKT points for the optimization
problem (1).

Proof: Consider z as a limit point for the set 7. Then
there is a subset of T like {z4,,24,,..- }, such that

lim z,, = z. (28)

k—yo0

By construction, there is an open ball around z, which does
not intersect any boundary of B that does not contain z. Thus,
there is a ko such that for k > ko, and z,4, could lie only on
the boundaries of B that include z. Furthermore, since z;, is
the quantization of x4, Au(yg,) € Aa(z), where A4(x) is the
matrix whose rows are the set of active constraints at x in
B. As a result, according to Lemma (1), for all K > K,

P Vf(zg)| < (1+Vnp)K &y, ,Vp € null(A,)  (29)
P'Vf(zg) > —(1+v/np)K &, ,Vp € row(A,)  (30)
Since 5qu converges to zero, z is a KKT point [6]. |

V. RESULTS

In this section, we compare the performance of (a) the
original Algorithm 1, (b) Algorithm 2 with steepest descent
applied for local refinement, (c) Algorithm 2 with the BFGS
formula applied for local refinement, and (d) the active-
set, derivative-based, method of [6]. The function considered
is the n-dimensional Styblinski Tang function, which is a
benchmark test for global optimization:

" xf' — 16)51-2 +5x;

fy=y 1

where L= {x|-5<x; <5}

—39.16616n, 31)

An initial grid level of ¢y = 3 is considered, and the algorithm
continues until the grid level of £ = 8 is terminated. Note that
the optimizations are terminated when ||x; —x;||, <0.005 for
all x; € i, which leads to a comparable order of accuracy
for methods (a), (b), and (c) (i.e. the maximum discretization
error level ¢ =8 is close to 0.005). The initial datapoints in
89, are constructed with n+ 1 points as follows:

b,-fa,-

S% = {X()7x0+ei7ViE {1727,71}}

= (32)

For each i, ¢; is the i main coordinate direction, and xy is
an initial point on the grid of level ¢y. In this section, we
consider two different points of xo for the initialization of
Algorithms 1 and 2, as shown in Figs. 4 and 6.

Fig. 4 illustrates the position of the datapoints that are used
during the optimization process for n = 2. With initial points
(x0 = 0.55,x9+0.2¢;), which are far from all local minima,
Algorithm 2 focuses on global exploration; as a result, the
number of function evaluations required for convergence is
similar to that required by Algorithm 1.

Conversely, with an initial point that lies close to a local
minimum, Algorithm 2 performs a much more efficient
local refinement than Algorithm 1, resulting in much faster
convergence. Table I reports noticeable differences that indi-
cate significant advantages for using Algorithm 2 in higher
dimensional problems.

As described in §3.B, the local refinement of Algorithm 2
can incorporate either gradient information or an approx-
imation of the Hessian using the BFGS update formula.
Table I demonstrates, as expected, that using the Hessian
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(a) Algorithm 2 w/ BFGS, n =0.5.

(b) Algorithm 1.
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ok

(c) Derivative-based method [7].

Fig. 4: Optimization in the case of exact fy = f(x*) =0, with n = 2. The black stars are support points (see [13]) that are not
actually evaluated, and are only used to regularize the Deluanay triangulation constructed. The white squares are the points
at which function evaluations are performed. The darker contours indicate lower values of the objective function whereas
the lighter contours indicate higher values. Note that case (c) prematurely converges to a local minimum after 23 iterations.

70

0 20 40 60 80 0 20 40 60 80 100

(a) Algorithm 2 w/ BFGS, n =0.8.
Fig. 5: Exact fy = f(x*) =0, with n=4.

(b) Algorithm 1.

TABLE I: Algorithm 2 with n = 0.8, and with steepest
descent and BFGS for local refinement, vs. Algorithm. 1.
Results averaged over 5 different initial values in each case.

Average # fun. eval. / Dimension n=2|n=3|n=4
Algorithm 1 A-DOGS [13] 22.5 49 98.5
Algorithm 2 with BFGS 25 38 77.8
Algorithm 2 with steepest descent 27.2 61.2 59.4

approximation generally has a superior convergence rate as
compared with using steepest descent. Additionally, it is
observed that the accuracy of the solution is significantly
improved for a fixed number of function evaluations when
the BFGS update formula is used. As expected, in the case
of Hessian approximation, the grid By, is refined faster than
when using gradient information only.

Algorithm 2 with gradient descent in some situations got
stuck at a local solution, and performed many unnecessary
function evaluations before starting to explore more globally.
Due to this issue in some specific situations Algorithm 2 with
gradient descent becomes more computationally expensive
than Algorithm 1 and Algorithm 2 with BFGS.

In the case that the estimated solution, fy, is greater
than the global solution, f(x*), we see another significant
advantage of Algorithm 2 over Algorithm 1. Algorithm
1 persists in using global search to find fy, and stops
without convergence using local refinement; thus it does not

#
*

A b v 4o 4 v _w s

ok

[ H ] 0o "
(a) Algorithm 2 w/ BFGS, n =0.8.

Fig. 6: Target achievability with fo =20 > f(x*) = 0. In this
situation, Algorithm 2 can guarantee the convergence to a
local solution; however, Algorithm 1 does not guarantee to
find a local solution. See Figure 4 for description of plots.

(b) Algorithm 1.

guarantee to even find a local solution when fy > f(x*). On
the other hand, Algorithm 2 continues its local refinement
until it converges to a KKT point. This is illustrated in Fig.
6. Finally, the derivative-based method converges to a local
solution Fig. 6(c).

The cost of computing a Delaunay triangulation grows
exponentially as the dimension of the problem grows. Using
Algorithm 2 with a good initial guess, the new algorithm can
converge to the global solution with a reasonable number of
function evaluations even up to n = 8, as shown in Fig. 7.

The parameter 1 specifies the trade-off between global
exploration and local refinement. It is desirable to decrease n
as the dimension of the problem is increased to emphasize lo-
cal refinement, as derivative-free global exploration becomes
computationally expensive in high-dimensional problems.
In the case of a low-dimensional problem (n < 6), the
performance of the algorithm is not unduly sensitive to the
choice of 7m, and in these cases we have taken 1 = 0.8
in the simulations reported here . As the dimensionality
of the problems was increased, we generally found that
reducing the value of 1 was beneficial, in order to focus
more heavily on local refinement. The optimal value of 1 for
any given problem is likely closely related to some measure
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Fig. 7: Algorithm 2 with BFGS applied to example problems
with different initial points. (a) n =7, 1 = 0.4, 106 local
refinement steps, 11 global exploration steps, and 7 times
mesh refinement steps, with 8 initial points {xo; =0.13,xp,;+
0.le;}. (b) n=8, n =0.1, 36 local refinement steps, 11
global exploration steps, and 8 mesh refinement steps, with
9 initial points {xp; = 0.4,x0;+0.1¢;}. Note that optimiza-
tions in these higher dimensions was simply not possible
using Algorithm 1, due to the high computational cost of
computing Delaunay triangulations in these dimensions.

of the curvature of the objective function over the feasibility
domain. Unfortunately, this quantity would almost never be
known in advance, and we therefore suggest tuning it based
on a minor amount of trial and error on related problems.

VI. CONCLUSIONS

This paper introduces a modification to the Delaunay-
based derivative-free optimization algorithm scheme A-
DOGS, as proposed in [13], [14], incorporating gradient
information to accelerate local refinement. The new scheme,
Algorithm 2, has three main modifications as compared with
the original A-DOGS algorithm:

e A criterion, (7), for the anticipated reduction due to a
local refinement step is introduced to decide between
taking a derivative-based local refinement step or a
derivative-free global exploration step at each iteration.
This criterion has an adjustable parameter 1; values in
the range 0.5 <7 < 0.8 were found to be effective.

e A new derivative-based local optimization method
is used leveraging a modified trust region approach
based on the Voronoi cell of the available datapoints
constrained to the (bound) feasible domain. To guar-
antee convergence, all of the datapoints computed are
coordinated by a grid, with this grid being successively
refined as the optimization algorithm proceeds.

e To accelerate the convergence of local refinement
scheme and the hybrid method that uses it, Algorithm
2, the Hessian of objective function is approximated via
the usual BFGS formula.

Proof of global convergence of the new scheme, under the
appropriate assumptions, is established. Further, in the nu-
merical experiments we have performed thus far, Algorithm
2 is found to significantly accelerate local convergence,
to handle efficiently nonconvex functions with many local
minima, and to scale better with dimension than purely
derivative-free global optimization approaches.

In future work, this framework will be applied to various
additional benchmark problems as well as application-based
problems, e.g. [18], [20]. In many online application-based
optimization problems, the desire is to find as good a
solution as possible within a specific time horizon. Certain
modifications of 1 and fp as the time horizon runs out might
well be warranted in such situations.
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