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Abstract

‘We address the problem of enhancing mixing by means
of boundary feedback control in 2D channel flow. This
is done by first designing feedback control strategies
for the stabilization of the parabolic equilibrium flow,
then applying this feedback with the sign of the in-
put reversed. The result is enhanced instability of
the parabolic equilibrium flow, which leads rapidly to
highly complex flow patterns. Simulations of the de-
formation of dye blobs positioned in the flow indi-
cate (qualitatively) that effective mixing is obtained
for small control effort as compared with the nominal
(uncontrolled) flow. A mixedness measure P; is con-
structed to quantify the mixing observed, and is shown
to be significantly enhanced by the application of the
destabilizing control feedback.

1 Introduction

In many engineering applications, the mixing of two or
more fluids is essential to obtaining good performance
in some downstream process (a prime example is the
mixing of air and fuel in combustion engines [11, 2]).
As a consequence, mixing has been the focus of much
research, but without reaching a unified theory, either
for the generation of flows that mix well due to external
forcing, or for the quantification of mixing in such flows
(see [25] for a review). Approaches range from exper-
imental design and testing to modern applications of
dynamical systems theory. The latter was initiated by
Aref [4], who studied chaotic advection in the setting
of an incompressible, inviscid fluid contained in a (2D)
circular domain, and agitated by a point vortex (the
blinking vortex flow). Ottino and coworkers studied a
number of various flows, examining mixing properties
based on dynamical systems techniques [7, 18, 20, 32].
Later Rom-Kedar et al. [30] applied Melnikov’s method
and KAM (Kolmogorov-Arnold-Moser) theory to quan-
tify transport in a flow governed by an oscillating vor-
tex pair. For a general treatment of dynamical systems
“theory, see, for instance, [12], and for background mate-
rial related to transport in dynamical systems, see [34].
An obvious shortcoming of this theory is the require-
ment that the flow must be periodic, as such meth-
ods rely on the existence of a Poincaré map for which
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some periodic orbit of the flow induces a hyperbolic
fixed point. Another shortcoming is that they can only
handle small perturbations from integrability, whereas
effective mixing usually occurs for large perturbations
[26]. A third shortcoming is that traditional dynamical
systems theory is concerned with asymptotic, or long-
time, behavior, rather than quantifying rate processes
which are of interest in mixing applications. In order to
overcome some of these shortcomings, recent advances
in dynamical systems theory have focused on finding
coherent structures and invariant manifolds in experi-
mental datasets, which are finite in time.and generally .
aperiodic. This has led to the notions of finite-time
hyperbolic trajectories with corresponding finite-time
stable and unstable manifolds {13, 14]. The results in-
clude estimates for the transport of initial conditions
across the boundaries of coherent structures. In [29]
these concepts were applied to a time-dependent ve-
locity field generated by a double-gyre ocean model,
in order to study the fluid transport between dynamic
eddies and a jet stream. An application to meandering
jets was described in [24].. Another method for iden-
tifying regions in a flow that have similar finite-time
statistical properties based on ergodic theory was de-
veloped and applied in [22, 21, 23]. The relationship
between the two methods mentioned, focusing on ge-
ometrical and statistical properties of particle motion,
respectively, was examined in [28].

As these developments have partly been motivated by
applications in geophysical flows, they are diagnostic
in nature and lend little help to the problem of gen-
erating a fluid flow that mixes well. The problem of
generating effective mixing in a fluid flow is usually ap-
proached by trial and error using various “brute force”
open-loop controls, such as mechanical stirring or jet
injection. However, in the recent papers [8, 9], control
systems theory was used to rigorously derive the mixing
protocol that maximizes entropy among all the possible
periodic sequences composed of two shear flows orthog-
onal to each other. The shear flows are realizable by
dragging a plate over the fluid.

In this paper, we propose using active feedback control
in order to enhance existing instability mechanisms in
a 2D model of plane channel flow. The fluid is consid-
ered incompressible and Newtonian (constant viscos-
ity). Our hypothesis is that effective mixing may be
obtained by enhancing the instability of the parabolic
profile of the Poiseuille flow using boundary control.
Furthermore, it is expected that by applying boundary

1930



Figure 1: Geometry of the flow problem.

control intelligently in a feedback loop, mixing will be
considerably enhanced with relatively small control ef-
fort. We design a decentralized control law based on
Lyapunov stability analysis, show that it has a signif-
icant stabilizing effect on the 2D flow, and finally, we
switch the sign of the feedback gain to obtain a desta-
bilizing control algorithm.

It is recognized that channel flow instability mecha-
nisms are inherently 3D. Efforts that study the stabi-
lization problem only in 2D are thus inconclusive about
physical flows, for which 3D effects are quite significant.
When studying the problem of destabilization, how-
ever, the situation is markedly different. In this case,
studying the 2D problem, rather than being inconclu-
sive about physical flows, is indeed conservative: the
neglected 3D instability mechanisms may be expected
to substantially increase the rate of mixing beyond that
seen in the 2D model presented here. Thus, the study
of 2D flow destabilization has important consequences
for physical, 3D flows.

2 Problem Statement

The dimensionless Navier-Stokes equations for incom-
pressible flow between two walls are given by

Wt—-}fAW+(W-V)W+VP=0 (1)
divW =0

where W = W(z,y,t) = (U(z,y,1t), V(z,y,t))T is the
velocity at location (z,y) and time t, P = P(x,y,1)
is the pressure at location (z,y) and time ¢, and R
is the Reynolds number. (z,y) € [0,L) x [-1,1] and
t > 0. Equation (1) has a steady solution, or fixed
point (I, V), given as

U(y) 1-9 )
7 =0 3)

with pressure P = —2z/R. The geometry of the prob-
lem is illustrated in Figure 1, along with the parabolic
equilibrium profile. The stability characteristics of
([Z, I:/') vary with the Reynolds number. For R < 5772,
(U, V) is linearly stable (see for instance [27]), that is,
infinitesimal perturbations from the parabolic profile
will be damped out. For R > 5772, (U, V) is unsta-
ble. Our main objective in this paper is to enhance
mixing in the channel flow. Towards that end, we first
present a control law that is analytically proved to be

stabilizing for small Reynolds numbers, and show by
simulations that it stabilizes (U, V) for large Reynolds
numbers. Then, we reverse the control gain to desta-
bilize the flow and thereby enhance mixing.

Defining the error w = (u,v) = (U — U, V), and defin-

ing p= P— P, we get the following set of equations for
the error

1 T i
U = E(ulu + uyy) — wuy — Uty — vy — oU' —ps
vy = g (Voz + vyy) — wvy — Uvy — voy — py

(4)

Ug + vy =0 (5)

for (z,y) € [0,L) x [-1,1] and t > 0, and with initial
conditions

’LL(l',y,O) = uo(‘t:y)
o(z,4,0) = wvo(z,y).

We assume periodic boundary conditions in the stream-
wise direction, that is, we equate the quantities w and
pat z = 0and z = L. The boundary conditions on the
walls, y = %1, are given by the wall-normal boundary
control

u(z,~1,8) = u(z,1,8) =0 (6) -

v(z,—-1,t) = v(z, 1,1)
=k, (p(z,l,t)-p(x,—l,t)) (7)

which is designed for small Reynolds numbers (see [1])
using the Lyapunov function

1 L
E(w) =lwll7, = / ] (u? +v?) dzdy. (8)

It is worth noting that this control law is of the
Jurdjevic-Quinn [17] type (with respect to the Lya-
punov function E(w)). This endows the control law
with inverse optimality with respect to a meaningful
cost functional (which is in this case complicated to
write).

3 Numerical Demonstration

The main results of this section are that (1) the stabiliz-
ing control law stabilizes the 2D unsteady flow model
for high values of Reynolds number, (2) the destabi-
lizing control law achieves excellent mixing in the 2D
flow model using small amounts of control effort. The
reader is reminded of the comments made in the intro-
duction about the conservative nature of the present
2D mixing results in light of the destabilizing 3D ef-
fects present in real channel flows at high values of the
Reynolds number.
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3.1 The computational scheme

The simulations are performed using a hybrid Fourier
pseudospectral-finite difference discretization and the
fractional step technique based on a hybrid Runge-
Kutta/Crank-Nicolson time discretization using the
numerical method of {6]. This method is particularly
well suited even for the cases with wall-normal actu-
ation because of its implicit treatment of the wall-
normal convective terms. The wall-paralel direction
is discretized using 128 Fourier-modes, while the wall-
normal direction is discretized using energy-conserving
central finite differences on a stretched staggered grid
with 100 gridpoints. The gridpoints have hyperbolic
tangent distribution in the wall-normal direction in or-
der to adequately resolve the high-shear regions near
the walls. A fixed flow-rate formulation is used, rather
than fixed average pressure gradient, since observations
suggest that the approach to equilibrium is faster in
this case [16]. The difference between the two formu-
lations is discussed briefly in [31]. The time step is in
the range 0.05 — 0.07 for all simulations.

3.2 Stabilization

Being valid for small Reynolds numbers only, the theo-
retical results in [1] are of limited practical value. How-
ever, they do suggest controller structures worth test-

ing on flows-having higher Reynolds numbers. Here,.

we demonstrate the stabilizing cabability of the con-
trol law for flows at R = 7500 and L = 4x. In addition
to reporting the time evolution of the energy, E(w),
we also consider the (instantaneous) control effort as a
measure of performance. The control effort is defined
as

L

C(w) = / (w(e, ~1LOF +Iw(z, 1,9P) dz. (9)

4}

A total of three simulations-are reported here: k, €
[-0.125,-0.08,—0.05]. As already mentioned, the
parabolic equilibrium profile is unstable for R = 7500,
so infinitesimal disturbances will grow, but the flow
eventually reaches a statistically steady state, which
we call fully established flow. For all simulations, the
fully established flow, for which E(w) =~ 1.3, is cho-
sen as the initial data. The vorticity map for the fully
established (uncontrolled) flow, is similar to vorticity
maps presented in [16], and clearly shows the ejection
of vorticity from the walls into the core of the channel
as described in [16].

Figure 2 summarizes the results. It is clear that stabi-
lization is obtained in terms of the energy E(w). The
ratio of the peak kinetic energy of the control flow, ver-
sus the perturbation kinetic energy in the uncontrolled
case (drained out by the control), C(w)%/E(w), is less
than 0.25%.

Uncontrolled,

E(w)

0 100 200 300 400 500

_ Figure 2: Energy E(w) and control effort C(w) for wall-

normal, stabilizing control.

3.3 Mixing

Mixing is commonly induced by means of open loop
methods such as mechanical stirring or jet injection.
These methods may use excessive amounts of energy,
which in certain cases is undesirable. Thus, we pro-
pose using active feedback control in order to exploit
the natural tendency in the flow to mix. To the au-
thors’ knowledge, this is the first attempt to induce
mixing by means of feedback, as the mixing protocols
thus far have been open loop controls. It was observed
in [15] that some heuristic control strategies enhance
turbulence, although this observation was not made in
the context of mixing but in the context of drag miti-
gation.

The results of the previous section show that the con-
trol law (6)—(7) has a significant stabilizing influence
on the 2D channel flow. In this section, we explore
the behaviour of the flow when &, is chosen such that
this feedback destabilizes the flow rather than stabi-
lizes it. The conjecture is that the flow will develop
a complicated pattern in which mixing will occur. 2D
simulations are performed at R = 6000, for which the
parabolic equilibrium profile is unstable. The initial
data for the simulations is the fully established flow.
Some mixing might be expected in this flow, as it pe-
riodically ejects vorticity into the core of the channel.
Our objective, however, is to enhance the mixing pro-
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cess by boundary control, which we impose by setting
ky = 0.1 in (7). The upper graph in Figure 3 show
the perturbation energy, E(w), which increases by a
factor of 5. It is interesting to notice that the con-
trol leading to this increase in perturbation energy is
small (see middle graph in Figure 3). The maximum
value of the control flow kinetic energy is less than 0.7%
of the perturbation kinetic energy of the uncontrolled
flow, and only about 0.1% of the fully developed, mixed
(controlled) flow! Next, we will quantify the mixing in
a more rigorous way, and compare the controlled and
uncontrolled cases.

A number of inherently different processes constitute
what is called mixing. Ottino [25] distinguishes be-
tween three sub-problems of mixing: (i) mixing of a sin-
gle fluid (or similiar fluids) governed by the stretching
and folding of material elements; (ii) mixing governed
by diffusion or chemical reactions; and (iii) mixing of
different fluids governed by the breakup and coales-
cence of material elements. Of course, all processes may
be present simultaneously. In the first sub-problem, the
interfaces between the fluids are passive [3], and the
mixing may be determined by studying the movement
of a passive tracer, or dye, in a homogeneous fluid flow.
This is the problem we are interested in here.

The location of the dye as a function of time completely
describes the mixing, but in a flow that mixes well,
the length of the interface between the dye and the
fluid increases exponentially with time. Thus, calcu-
lating the location of the dye for large times is not
- feasible within the restrictions of modest computer re-
sources [10]. We do, nevertheless, attempt this for
small times, and supplement the results with less ac-
curate, but computationally feasible, calculations for
larger times. A particle-line method, loosely based on
[33] and [19], is used to track the dye interface. In
short, this method represents the interface as a num-
ber of particles connected by straight lines. The po-
sitions of the particles are governed by the equation
dX/dt = (U(X,t),V(X,t)), where X is a vector of
particle positions. At the beginning of each time step,
new particles are added such that at the end of the
time step, a prescribed resolution, given in terms of
the maximum length between neighboring particles, is
maintained. The fact that we are working with a single
fluid representing multiple miscible fluids, ensures that
dye surfaces remain connected {26]. At ¢ = 50, when
the perturbation energy is about tripled in the con-
trolled case (Figure 3), eighteen blobs are distributed
along the centerline of the channel as shown in Figure 4.
They cover 25% of the total domain. Figure 5 shows
the configuration of the dye in the controlled case for 4
time instances. The difference in complexity between
the uncontrolled and controlled cases is clear (compare
the lower graphs of Figures 4 and 5), however, large re-
gions are poorly mixed even at ¢t = 85. The lower graph
in Figure 3 shows the total length of the surface of the

dye. The length appears to grow linearly with time in
the uncontrolled case, whereas for the controlled case,
it grows much faster, reaching values an order of mag-
nitude larger than in the uncontrolled case. In order to
approximate the dye distribution for large time, a fixed
number of particles are uniformly distributed through-
out the domain, distinguishing between particles placed
on the inside (black particles) and on the outside (white
particles) of regions occupied by dye. Figure 6 shows
the distribution of black particles at ¢ = 85 (for com-
parison with Figure 5), 100, 125 and 150. The particle
distribution becomes increasingly uniform.

Fe
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Controlled
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) 100 200 300 a0 500
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Time
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Figure 3: Energy E(w), control effort C(w), and dye
surface length, as functions of time.

In order to quantify the mixing further, we ask the
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Figure 4: Initial distribution of dye blobs (at t = 50),
and dye distribution at ¢ = 85 for uncontrolled
flow.

Figure 5: Dye distribution for controlled flow at t = 55,‘

65, 75 and 85 (from top towards bottom).

following question: given a box of size €, what is the
probability, P, of the fluid inside being well mized?
An appropriate choice of €, and what is considered
well mixed, are application specific parameters, and are
usually given by requirements of some downstream pro-
cess. In our case, the blobs initially cover 256% of the
domain, so we will define well mized to mean that the
dye covers between 20% and 30% of the area of the
box. The size € of the boxes will be given in terms of
pixels along one side of the box, so that the box covers
€2 pixels out of a total of 2415 x 419 pixels for the en-
tire domain. On this canvas, the box may be placed in
(419 — (& — 1)) x 2415 different locations. The fraction
of area covered by dye inside box i of size ¢, is for small
times calculated according to

=k (10)

where n, is the number of pixels covered by dye, and
for large times according to

i np

= — 11

= et (1)
where n; and n,, denote the number of black and white
particles, respectively, contained in the box. P , which
depends on ¢, is calculated as follows

1o ;
H:;Z?w@2<q<&$ (12)
where n is the total number of boxes. The expression

in the summation evaluates to 1 when 0.2 < ¢f < 0.3
and 0 otherwise. For small times n = (419 — (¢ — 1)) x

Figure 6: Particle distribution for controlled flow at
t = 85, 100, 125 and 150 (from top towards
bottom).

2415, whereas for large times n may be smaller as we
choose to ignore boxes containing less than 25 particles.
Figures 7 and 8 show P. as a function of time for € &€

[15, 30, 45, 60].
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Time Time

Figure 7: Probability of well mixedness for the uncon-
trolled case (o) and controlled case (*).

4 Conclusions

We have addressed the problem of imposing mixing
by means of boundary feedback control in 2D chan-
nel flow. This is done by first designing a control law
for the stabilization of the parabolic equilibrium pro-
file in 2D, and then reversing the sign of the feedback
gain in order to obtain destabilization. The result is a
highly complex flow pattern and improved mixing, as
confirmed by studies of the behaviour of dye blobs po-
sitioned in the flow. The mixing is obtained by a small
control effort, compared to the reference velocity of the
flow. This is the main advantage of applying control
intelligently in a feedback loop.
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