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Abstract 
We address the problem of enhancing mixing by means 
of boundary feedback control in 2D channel flow. This 
is done by first designing feedback control strategies 
for the stabilization of the parabolic equilibrium flow, 
then applying this feedback with the sign of the in- 
put reversed. The result is enhanced instability of 
the parabolic equilibrium flow, which leads rapidly to 
highly complex flow patterns. Simulations of the de- 
formation of dye blobs positioned in the flow indi- 
cate (qualitatively) that effective mixing is obtained 
for small control effort as compared with the nominal 
(uncontrolled) flow. A mixedness measure PE is con- 
structed to quantify the mixing observed, and is shown 
to be significantly enhanced by the application of the 
destabilizing control feedback. 

1 Introduction 

In many engineering applications, the mixing of two or 
more fluids is essential to obtaining good performance 
in some downstream process (a prime example is the 
mixing of air and fuel in combustion engines [ll, 21). 
As a consequence, mixing has been the focus of much 
research, but without reaching a unified theory, either 
for the generation of flows that mix well due to external 
forcing, or for the quantification of mixing in such flows 
(see [25] for a review). Approaches range from exper- 
imental design and testing to modern applications of 
dynamical systems theory. The latter was initiated by 
Aref [4], who studied chaotic advection in the setting 
of an incompressible, inviscid fluid contained in a (2D) 
circular domain, and agitated by a point vortex (the 
blinking vortex flow). Ottino and coworkers studied a 
number of various flows, examining mixing properties 
based on dynamical systems techniques [7, 18, 20, 321. 
Later Rom-Kedar et al. [30] applied Melnikov’s method 
and KAM (Kolmogorov-Arnold-Moser) theory to quan- 
tify transport in a flow governed by an oscillating vor- 
tex pair. For a general treatment of dynamical systems 
theory, see, for instance, [12], and for background mate- 
rial related to transport in dynamical systems, see [34]. 
An obvious shortcoming of this theory is the require- 
ment that the flow must be periodic, as such meth- 
ods rely on the existence of a Poincark map for which 
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some periodic orbit of the flow induces a hyperbolic 
fixed point. Another shortcoming is that they can only 
handle small perturbations from integrability, whereas 
effective mixing usually occurs for large perturbations 
[26]. A third shortcoming is that traditional dynamical 
systems theory is concerned with asymptotic, or long- 
time, behavior, rather than quantifying rate processes 
which are of interest in mixing applications. In order to 
overcome some of these shortcomings, recent advances 
in dynamical systems theory have focused on finding 
coherent stru’ctures and invariant manifolds in experi- 
mental datasets, which are finite in time and generally 
aperiodic. This has led to the notions of finite-time 
hyperbolic trajectories with corresponding finite-time 
stable and unstable manifolds [13, 141. The results in- 
clude estimates for the transport of initial conditions 
across the boundaries of coherent structures. In [29] 
these concepts were applied to  a time-dependent ve- 
locity field generated by a double-gyre ocean model, 
in order to study the fluid transport between dynamic 
eddies and a jet stream. An application to meandering 
jets was described in [24]. Another method for iden- 
tifying regions in a flow that have similar finite-time 
statistical properties based on ergodic theory was de- 
veloped and applied in [22, 21, 231. The relationship 
between the two methods mentioned, focusing on ge- 
ometrical and statistical properties of particle motion, 
respectively, was examined in [28]. 
As these developments have partly been motivated by 
applications in geophysical flows, they are diagnostic 
in nature and lend little help to the problem of gen- 
erating a fluid flow that mixes well. The problem of 
generating effective mixing in a fluid flow is usually ap- 
proached by trial and error using various “brute force” 
open-loop controls, such as mechanical stirring or jet 
injection. However, in the recent papers [8, 91, control 
systems theory was used to rigorously derive the mixing 
protocol that maximizes entropy among all the possible 
periodic sequences composed of two shear flows orthog- 
onal to each other. The shear flows are realizable by 
dragging a plate over the fluid. 
In this paper, we propose using active feedback control 
in order to enhance existing instability mechanisms in 
a 2D model of plane channel flow. The fluid is consid- 
ered incompressible and Newtonian (constant viscos- 
ity). Our hypothesis is that effective mixing may be 
obtained by enhancing the instability of the parabolic 
profile of the Poiseuille flow using boundary control. 
Furthermore, it is expected that by applying boundary 
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Figure 1: Geometry of the flow problem. 

control intelligently in a feedback loop, mixing will be 
considerably enhanced with relatively small control ef- 
fort. We design a decentralized control law based on 
Lyapunov stability analysis, show that it has a signif- 
icant stabilizing effect on the 2D flow, and finally, we 
switch the sign of the feedback gain to obtain a desta- 
bilizing control algorithm. 
It is recognized that channel flow instability mecha- 
nisms are inherently 3D. Efforts that study the stabi- 
lization problem only in 2D are thus inconclusive about 
physical flows, for which 3D effects are quite significant. 
When studying the problem of destabilization, how- 
ever, the situation is markedly different. In this case, 
studying the 2D problem, rather than being inconclu- 
sive about physical flows, is indeed conservative: the 
neglected 3D instability mechanisms may be expected 
to substantially increase the rate of mixing beyond that 
seen in the 2D model presented here. Thus, the study 
of 2D flow destabilization has important consequences 
for physical, 3D flows. 

2 Problem Statement 

The dimensionless Navier-Stokes equations for incom- 
pressible flow between two walls are given by 

(1) 
Wt - &AW + (W .V)W + V P  = 0 

divW = 0 

where W = W(x, y, t )  = (U(x, y,t), V(x, y, t))T is the 
velocity at location (z,y) and time t ,  P = P ( z , y , t )  
is the pressure at location (z,y) and time t ,  and R 
is the Reynolds number. (z, y) E [0, L )  x [-1,1] and 
t > 0. Equation (1) has a steady solution, or fixed 
point ( U ,  P), given as 

U(y) = 1-y2 (2) 
P = o  (3) 

with pressure P = -2x/R. The geometry of the prob- 
lem is illustrated in Figure 1, along with the parabolic 
equilibrium profile. The stability characteristics of (U, V )  vary with the Reynolds number. For R < 5772, 
(U, V )  is linearly stable (see for instance [271), that is, 
infinitesimal perturbations from the parabolic profile 
will be damped out. For R > 5772, ( 0 , V )  is unsta- 
ble. Our main objective in this paper is to enhance 
mixing in the channel flow. Towards that end, we first 
present a control law that is analytically proved to be 

stabilizing for small Reynolds numbers, and show by 
simulations that it stabilizes ( U ,  V )  for large Reynolds 
numbers. Then, we reverse the control gain to desta- 
bilize the flow and thereby enhance mixing. 
Defining the error w = (U,  U) = (U - U ,  V), and defin- 
ing p = P - P ,  we get the following set of equations for 
the error 
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ut = k (uzx + U,,) - UU, - D U X  - VUy - V U ’  - p ,  
Vt = ; (vzz + vyy) - uv, - Uvx - VVY - p ,  

(4) 

U, + vy = 0 (5) 

for (z, y) E [0, L )  x [-1,1] and t > 0, and with initial 
conditions 

We assume periodic boundary conditions in the stream- 
wise direction, that is, we equate the quantities w and 
p at x = 0 and 3: = L. The boundary conditions on the 
walls, y = f l ,  are given by the wall-normal boundary 
control 

u(z,  - l , t )  = u(x, 1,t) = 0 (6) 

which is designed for small Reynolds numbers (see [l]) 
using the Lyapunov function 

1 L  

E(w) = llw112, = // (u2 + v2) dzdy. (8) 
-1 0 

It is worth noting that this control law is of the 
Jurdjevic-Quinn [17] type (with respect to the Lya- 
punov function E(w)). This endows the control law 
with inverse optimality with respect to a meaningful 
cost functional (which is in this case complicated to 
write). 

3 Numerical Demonstration 

The main results of this section are that (1) the stabiliz- 
ing control law stabilizes the 2D unsteady flow model 
for high values of Reynolds number, (2) the destabi- 
lizing control law achieves excellent mixing in the 2D 
flow model using small amounts of control effort. The 
reader is reminded of the comments made in the intro- 
duction about the conservative nature of the present 
2D mixing results in light of the destabilizing 3D ef- 
fects present in real channel flows at high values of the 
Reynolds number. 



3.1 The computational scheme 

The simulations are performed using a hybrid Fourier 
pseudospectral-finite difference discretization and the 
fractional step technique based on a hybrid Runge- 
Kutta/Crank-Nicolson time discretization using the 
numerical method of [SI. This method is particularly 
well suited even for the cases with wall-normal actu- 
ation because of its implicit treatment of the wall- 
normal convective terms. The wall-paralel direction 
is discretized using 128 Fourier-modes, while the wall- 
normal direction is discretized using energy-conserving 
central finite differences on a stretched staggered grid 
with 100 gridpoints. The gridpoints have hyperbolic 
tangent distribution in the wall-normal direction in or- 
der to adequately resolve the high-shear regions near 
the walls. A fixed flow-rate formulation is used, rather 
than fixed average pressure gradient, since observations 
suggest that the approach to  equilibrium is faster in 
this case [16]. The difference between the two formu- 
lations is discussed briefly in [31]. The time step is in 
the range 0.05 - 0.07 for all simulations. 

3.2 Stabilization 

Being valid for small Reynolds numbers only, the theo- 
retical results in [l] are of limited practical value. How- 
ever, they do suggest controller structures worth test- 
ing on flows -having higher Reynolds numbers. Here, . 
we demonstrate the stabilizing cabability of the con- 
trol law for flows at R = 7500 and L = 4a. In addition 
to  reporting the time evolution of the energy, E(w), 
we also consider the (instantaneous) control effort as a 
measure of performance. The control effort is defined 
as 

A total of three simulations-are reported here: k, E 
[-0.125, -0.08, -0.051. As already mentioned, the 
parabolic equilibrium profile is unstable for R = 7500, 
so infinitesimal disturbances will grow, but the flow 
eventually reaches a statistically steady state, which 
we call fully established flow. For all simulations, the 
fully established flow, for which E(w) M 1.3, is cho- 
sen as the initial data. The vorticity map for the fully 
established (uncontrolled) flow, is similar to vorticity 
maps presented in [16], and clearly shows the ejection 
of vorticity from the walls into the core of the channel 
as described in [16]. 
Figure 2 summarizes the results. It is clear that stabi- 
lization is obtained in terms of the energy E(w). The 
ratio of the peak kinetic energy of the control flow, ver- 
sus the perturbation kinetic energy in the uncontrolled 
case (drained out by the control), C(W)~/E(W), is less 
than 0.25%. 
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Figure 2: Energy E(w) and control effort C(w) for wall- 
normal, stabilizing control. 

3.3 Mixing 
Mixing is commonly induced by means of open loop 
methods  such as mechanical st irring o r  j e t  injection. 
These methods may use excessive amounts of energy, 
which in certain cases is undesirable. Thus, we pro- 
pose using active feedback control in order to exploit 
the natural tendency in the flow to mix. To the au- 
thors’ knowledge, this is the first attempt to  induce 
mixing by means of feedback, as the mixing protocols 
thus far have been open loop controls. It was observed 
in [15] that some heuristic control strategies enhance 
turbulence, although this observation was not made in 
the context of mixing but in the context of drag miti- 
gation. 

The results of the previous section show that the con- 
trol law (6)-(7) has a significant stabilizing influence 
on the 2D channel flow. In this section, we explore 
the behaviour of the flow when k, is chosen such that 
this feedback destabilizes the flow rather than stabi- 
lizes it. The conjecture is that the flow will develop 
a complicated pattern in which mixing will occur. 2D 
simulations are performed at R = 6000, for which the 
parabolic equilibrium profile is unstable. The initial 
data for the simulations is the fully established flow. 
Some mixing might be expected in this flow, as it pe- 
riodically ejects vorticity into the core of the channel. 
Our objective, however, is to enhance the mixing pro- 
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cess by boundary control, which we impose by setting 
k, = 0.1 in (7). The upper graph in Figure 3 show 
the perturbation energy, E(w) ,  which increases by a 
factor of 5. It is interesting to notice that the con- 
trol leading to this increase in perturbation energy is 
small (see middle graph in Figure 3). The maximum 
value of the control flow kinetic energy is less than 0.7% 
of the perturbation kinetic energy of the uncontrolled 
flow, and only about 0.1% of the fully developed, mixed 
(controlled) flow! Next, we will quantify the mixing in 
a more rigorous way, and compare the controlled and 
uncontrolled cases. 
A number of inherently different processes constitute 
what is called mixing. Ottino [25] distinguishes be- 
tween three sub-problems of mixing: (i) mixing of a sin- 
gle fluid (or similiar fluids) governed by the stretching 
and folding of material elements; (ii) mixing governed 
by diffusion or chemical reactions; and (iii) mixing of 
different fluids governed by the breakup and coales- 
cence of material elements. Of course, all processes may 
be present simultaneously. In the first sub-problem, the 
interfaces between the fluids are passive [3], and the 
mixing may be determined by studying the movement 
of a passive tracer, or dye, in a homogeneous fluid flow. 
This is the problem we are interested in here. 
The location of the dye as a function of time completely 
describes the mixing, but in a flow that mixes well, 
the length of the interface between the dye and the 
fluid increases exponentially with time. Thus, calcu- 
lating the location of the dye for large times is not 
feasible within the restrictions of modest computer re- 
sources [lo]. We do, nevertheless, attempt this for 
small times, and supplement the results with less ac- 
curate, but computationally feasible, calculations for 
larger times. A particle-line method, loosely based on 
[33] and [19], is used to track the dye interface. In 
short, this method represents the interface as a num- 
ber of particles connected by straight lines. The po- 
sitions of the particles are governed by the equation 
d X / d t  = ( V ( X , t ) ,  V ( X , t ) ) ,  where X is a vector of 
particle positions. At the beginning of each time step, 
new particles are added such that at the end of the 
time step, a prescribed resolution, given in terms of 
the maximum length between neighboring particles, is 
maintained. The fact that we are working with a single 
fluid representing multiple miscible fluids, ensures that 
dye surfaces remain connected [26]. At t = 50, when 
the perturbation energy is about tripled in the con- 
trolled case (Figure 3), eighteen blobs are distributed 
along the centerline of the channel as shown in Figure 4. 
They cover 25% of the total domain. Figure 5 shows 
the configuration of the dye in the controlled case for 4 
time instances. The difference in complexity between 
the uncontrolled and controlled cases is clear (compare 
the lower graphs of Figures 4 and 5), however, large re- 
gions are poorly mixed even at t = 85. The lower graph 
in Figure 3 shows the total length of the surface of the 

dye. The length appears to grow linearly with time in 
the uncontrolled case, whereas for the controlled case, 
it grows much faster, reaching values an order of mag- 
nitude larger than in the uncontrolled c&e. In order to 
approximate the dye distribution for large time, a fixed 
number of particles are uniformly distributed through- 
out the domain, distinguishing between particles placed 
on the inside (black particles) and on the outside (white 
particles) of regions occupied by dye. Figure 6 shows 
the distribution of black particles at  t = 85 (for com- 
parison with Figure 5), 100, 125 and 150. The particle 
distribution becomes increasingly uniform. 

0 

0 1  

0 0 9 -  

0 0 8 -  

0 0 7 -  

006- 

0 0 2 -  

001 

0 

- 

100 200 300 400 500 
Time 

Time 

Figure 3: Energy E ( w ) ,  control effort C(w), and dye 
surface length, as functions of time. 

In order to quantify the mixing further, we ask the 
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Figure 4: Initial distribution of dye blobs (at t = 50), 
and dye distribution at t = 85 for uncontrolled 
flow. 

Figure 5: Dye distribution for controlled flow at t = 55, 
65, 75 and 85 (from top towards bottom). 

following question: given a box of size E ,  what is the 
probability, P, of the fluid inside being well mixed? 
An appropriate choice of E ,  and what is considered 
well mixed, are application specific parameters, and are 
usually given by requirements of some downstream pro- 
cess. In our case, the blobs initially cover 25% of the 
domain, so we will define well mixed to mean that the 
dye covers between 20% and 30% of the area of the 
box. The size E of the boxes will be given in terms of 
pixels along one side of the box, so that the box covers 
c2 pixels out of a total of 2415 x 419 pixels for the en- 
tire domain. On this canvas, the box may be placed in 
(419 - ( E  - 1)) x 2415 different locations. The fraction 
of area covered by dye inside box i of size E ,  is for small 
times calculated according to 

where np is the number of pixels covered by dye, and 
for large times according to 

where nb and nw denote the number of black and white 
particles, respectively, contained in the box. P , which 
depends on E ,  is calculated as follows 

- n  

(12) 
1 P, = - eval(0.2 < c: < 0.3) 

i= l  

where n is the total number of boxes. The expression 
in the summation evaluates to 1 when 0.2 < ct < 0.3 
and 0 otherwise. For small times n = (419 - ( E  - 1)) x 

Figure 6: Particle distribution for controlled flow at 
t = 85, 100, 125 and 150 (from top towards 
bottom). 

2415, whereas for large times n may be smaller as we 
choose to ignore boxes containing less than 25 particles. 
Figures 7 and 8 show PE as a function of time for E E 
[15,30,45,60]. 
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Figure 7: Probability of well mixedness for the uncon- 
trolled case (0) and controlled case (*). 

4 Conclusions 

We have addressed the problem of imposing mixing 
by means of boundary feedback control in 2D chan- 
nel flow. This is done by first designing a control law 
for the stabilization of the parabolic equilibrium pro- 
file in 2D, and then reversing the sign of the feedback 
gain in order to obtain destabilization. The result is a 
highly complex flow pattern and improved mixing, as 
confirmed by studies of the behaviour of dye blobs po- 
sitioned in the flow. The mixing is obtained by a small 
control effort, compared to the reference velocity of the 
flow. This is the main advantage of applying control 
intelligently in a feedback loop. 
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