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ABSTRACT

The generation of smooth, orthogonal, body fitted grids is an important first step
towards the accurate numerical solution of fluid flows using finite difference methods. To
produce a suitable grid for a numerical computation, a powerful grid generation technique
employing conformal mappings has been developed, and is summarized in this report.

Once a mapping has been established for a specific geometry, using this method to di-
rectly compute two dimensional incompressible potential flow solutions is a straightforward
- process. This technique is also investigated in the present work.

The generalized code developed in this project has been employed in two research
projects at the VKI, indicating the viability of this method for easy adaptation to problems
of interest. The first example used the transformation to solve potential flows in channels.
The second used the transformation to investigate unstable flows in porous media. The
code was also invaluable as a grid generator for a numerical computation by the author for
his VKI diploma. course project. Extension of this code to other grid generation problems is
also exemplified. The variety of these examples should illustrate how to apply the present
code to problems of future interest.
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1. INTRODUCTION

The suitability of a numerical grid for a finite difference computation is as important a
consideration as the computation scheme itself. Accuracy of the scheme is greatly increased
if the distance between successive grid points varies smoothly and if the grid lines in the
i—constant and j=constant directions are mutually orthogonal and orthogonal to the
boundaries. Much better resolution of regions of high gradients (for example, boundary
layers and shocks) is obtained if the grid is concentrated where these regions are expected.
Further, the resolution of shock locations can be greatly increased if a grid is chosen such
that the grid lines approximately fit the expected shape of the shock. The present method
satisfies all of the above criteria quite well for a wide variety of possible geometries.

The idea of the application of a conformal mapping to grid generation problems is a

two step process :

1) Produce a simple grid in an intermediate plane and express the grid coordinates as
complex numbers. In the present code, two intermediate grids are possible : a sim-
ple rectangular grid or a grid formed by a series of confocal ellipses and hyperbolae.
Both of these grids are self-orthogonal and orthogonal to the horizontal axis. Stretch-
ing functions may be used to concentrate grid lines in any region of interest in this

intermediate plane quite easily.

2) Use a specific function analytic (continuously differentiable) on the above domain
(called a conformal mapping) to map each complex number above to another complex
number. This “mapping” is chosen such that the new set of complex numbers repre-
sents a new grid covering the desired domain. The horizontal axis of the intermediate

' plane maps to the boundary of the body in the final grid, as will be shown below.

Smoothness of the intermediate grid spacing is maintained under the mapping (as
much as possible) because the mapping function has smooth derivatives everywhere. An-
alyticity also implies that two lines which intersect orthogonally will be mapped onto two
other lines which intersect orthogonally. Thus, the orthogonality of the intermediate grid

is also maintained under the mapping.

Conformal mapping techniques provide incompressible potential flow solutions di-
rectly. The mathematical basis for this is outlined in section 4.1. One of the greatest
advantages of this technique for solving the Laplace equation is that it can account for
infinite boundary conditions quite well. This concept is introduced in chapter 2.




Historical note : The code described in this report was originally developed to produce
a grid for the numerical computation of the conical Euler equations in the cross-flow plane
of a swept fin [2]. Several algebraic grids were first designed to cover the computational
domain in a smooth, orthogonal fashion. They could be made orthogonal (figure 1a) or
smoothly varying in size (figure 1b), but never both. The main problem with grids made
with such algebraic formulae was that they were only effectively curved in one direction.
An example of a much better grid, produced by the code developed in this report, is shown
in figure 1c. It was found that, in many cases, the grid constructed via this method fit the

shape of the shock quite well.
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2. SIMPLE CONFORMAL MAPPING TECHNIQUES

The theory of conformal mappings is quite well developed [1,3,4,5]. Many tables
of direct transformation functions are available in the literature [4,5]. As a warm-up to
the more general transformation developed in chapter 3, grid generation via two of these
functions will now be discussed. This will introduce the properties of stretching and infinite
boundary conditions in addition to outlining the general method used.

I Fa
It can be found in the tables [5] that the transformation :
h
w = ;[(22 —1)Y/2 4 cosh™1z] ‘ (1)

maps the upper half of the z-plane to a domain above a “step” in the w-plane as shown
below, where z=x-+iy and w=u+iv are complex numbers representing grid coordinates
and h is the height of the step.

The convention used for such plots (Fig. 2) is that the hashed region represents the

area just outside the domain under consideration.

Via rearrangement of the equation defining the hyperbolic cosine, it is easily seen that
equation 1 can be cast in a form that can be solved using the complex function routines

available in VAX/VMS :

w=2{(z = ) + loglz + (2 = 1)) (2)

The first step in creating a grid over the step in the w-plane is creating a grid in the
t-plane. Let us choose a simple uniform rectangular grid, and map each point to its new

location using the above formula.

Both grids shown in figure 3 happen to form a set of streamlines and potential lines
for incompressible potential flow. The mathematical explanation for this will be postponed

to section 4.1.
The code required to produce figure 3 is fairly simple, and is given in the appendix.

The resolution of the regions near the corners can be improved if artificial “stretching”
is employed. Both grids will still represent streamlines and potential lines, but now with
non-uniform spacing. To do this, it would be useful to be able to prescribe the grid points
on the lower boundary of the grid directly in the w-plane, and let the grid “grow” away
from these points. However, the grid still needs to be produced first ‘as a rectangular grid
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in the z-plane. Therefore, the prescribed points in the w-plane must first be mapped back
to the z-plane. To do this, the inverse mapping z=g(w) is required. However, equation 2
is not easily solved for z. This problem can be sidestepped : it is known that the image
of any of these prescribed points will lie on the x-axis of the z-plane, somewhere around
the origin. Using a numerical “root false position” scheme [6], the value of x as a function
of w may by found to a very high degree of accuracy quite quickly. Once this is done,
an intermediate rectangular grid terminating at these points is easily produced, and then
mapped to the w-plane just as before, (see figure 4).

Now consider the mapping [5] :

_ 122—h-=1 1  _;(h+1)z—2h
w = cosh i hcosh —-—-———(h_l)z (3)

i

which maps the half the upper half of the z-plane to a restricted domain above a step in
the w-plane as shown in figure 5.

The potential lines in the w-plane connecting E’-D’ and F’-A’ map back to curves in
the z-plane which connect E-D an F-A. It is known that.a point source solution (a set of
circles and rays) satisfies this requirement. The potential for a point source may thus be
chosen as the intermediate grid, with grid lines which happen to land at points B and C in
the z-plane. These grid points are then mapped via equation 3, and the solution is again
easily found. The details of this mapping are left to the reader.

Both of the mappings illustrate the outstanding quality of conformal methods to
simulate infinite boundary conditions. Note that the streamlines and potential lines on
the boundaries corresponding to z > 0 are correctly curved. The grid need not extend in
the horizontal and vertical directions a distance large enough compared to the size of the
step that “uniform” conditions can be approximated. Further, accuracy of the solution
is independent of grid spacing. In fact, the entire grid could be removed and only those
points in the region of interest (for instance, on the boundary), could be treated. These
qualities set conformal methods in a clags apart from standard Laplace solvers.




3. THE SCHWARZ-CHRISTOFFEL TRANSFORMATION
3.1. Formulation of the equation

The differential form of the Schwarz-Christoffel Transformation is given by :

dz ; =

-_— = = M — : Q"'fﬂ'

= /O=M]l¢-a) (4)
This formula represents a conformal mapping of the upper half of the ¢-plane onto a region
in the z-plane bounded by a straight line with a finite number of corners. The points a; on
the real axis in the (-plane map to corners with an outside turning angle a; on the edge
of the domain in the z-plane. This is illustrated in figure 6.

The a; are the outside angles of the corners, defined positive for clockwise rotation
when the curve is followed in the direction of the enumeration of the corners, where the
enumeration of the a; in the (-planc is taken from left to right. Thus, the a; in figure 6 are
all negative. If the sum of the a; is equal to -2, the half plane is mapped to the interior
of a closed polygon; if the sum is equal to 2, the half plane is mapped to the exterior of
a closed polygon. It is also possible to map to more general shapes if the sum of the a; is
between -7 and 7. For example, the code developed for this project was originally written
to map onto the geometry shown in figure lc, for which the sum of the o; is -7/2.

A difficulty arises in applying the transformation z=f({) because the integral of equa-
tion 4 cannot, in general, be evaluated directly. A second order accurate integration
formula can be found by extending the trapezoid rule to each of the terms separately, as
done by Davis [1], leading to the following form :

- = -—ﬂ—-— - (¢ — a,-)(“-'/ﬂ')ﬂ Cm+1
Zm41 Zm = (AC)R—I g {( (Of:'/‘ﬂ') +1 ) ] (5)

!

$m

It was found that this integration formula works quite well for most applications. In the
vicinity of very sharp corners for which a; is less than —/2, one must use some caution
that the step size used is sufficiently small for the algorithm to be accurate.

A difficulty arises in applying equation 5 because the constants a; (the location of
the images of the corners on the {-axis) and M (a complex constant which rotates and
scales the mapping) are not known a priori. As it turns out, only two of the a; may
be set arbitrarily. Note that one of these may be chosen to be a;=o0, in which case the
influence of this corner in the transformation vanishes. The rest of the a; and M have to
be computed iteratively so that the transformation maps the x-axis in the (-plane to the

5
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desired shape at the desired location with the desired rotation and scaling in the z-plane.
An algorithm to find the remaining constants has been outlined by Davies [1]. Given the
desired corner locations e, this algorithm was implemented to find the a; and M 1n

the following manner :

A. Assign values for all the agyessi, with one of the corners at agyess;ii=-1, one of the
corners at agyess i2=1, and the other a . in the same order on the {-axis as the corners
g 12 ’ guess,i

are enumerated on the body in the z-plane, as in figure 6.

B. Given these assumed values of the agyess,i and the true location in the z-plane of the

corners i1 and i2, compute the (complex) value of M by equation 3.

C. Starting at i=il with this value of M and the assumed values aguess,i, compute the
locations in the z-plane of the corners corresponding to the iil, i2 by equation 5.’Call

these values Zguess,i+ Note that Zguess,il = Ztrue,il and Zguess,i2 = Ztrue,i2-
D. Starting at i=il with apew,1=-1 and K=1, compute values of the ajew, for i#il by :

Unew,i — Qnew,i—1 K Ztrue,i — Ztrue,i—1 (6)

Qguess,i — Qguess,i—1 Zguess,i — Zguess,i—1

E. Compute the value of K which gives apew i2=1.

F. Recompute the azew,; with the corrected value of K in equation 6, rename these values

aguess,i; and go back to step B.

Iterate until the zgyess; are sufficiently close to the Ziryei. In the present code, con-
vergence is achieved to 4 or 5 place accuracy for the location of each of the corners in the
z-plane, and thus this accuracy everywhere in the domain, usually within 15 iterations.
Accuracy of the initial guesses of the a; to their final values is not critical; any reasonable

spacing converges quickly.

-

3.2. Applying the Schwartzf-Cilristoﬂ'el transformation as a grid generator

The conformal mapping outlined in the previous section may now be applied as a
grid generator in a method identical to that described in the chapter 2. However, this
new conformal mapping may be applied to very general shapes with arbitrary numbers
of corners. Curves can be handled simply by approximation with a finite number of
corners. (Curves can also be handled directly by the Schwartz-Christoffel transformation,
as pointed out by Davis. This possibility is not discussed here, but would be a very
interesting extension of this project). The extended range of applications is what makes
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this mapping so attractive.

To illustrate the flexibility of this grid generation technique, a code called SCGRID
was developed and generalized. A series of grids produced by this code are presented in
figure 7 to illustrate its capabilities.

The present transformation maps the horizontal axis onto a prescribed curve. Thus,
if one wishes to impose the shape of one of the edges of the grid, a rectangular grid (with
one edge terminating on this axis) is chosen as the intermediate grid. Figure 7c was
produced using this method. If one wishes t6 'in":pose the shape of three of the edges of the
grid, a ellipse/hyperbola grid (with three edges terminating on this axis) is chosen as the
intermediate grid. Figures Ta, 7b, and 8b were produced using this method.

3.3. Stretchiﬁg functions

Stretching functions are used by SCGRID to concentrate the grid in certain regions.
For instance, for a viscous computation, high grid density is desired near the wall to
resolve the boundary layer; for an inviscid computation, a lower grid density near the wall

is allowed.

In order to provide grid density in the desired areas using the technique of chapter
2, an inverse mapping might be useful. However, the inverse mapping of equatibn 4 is
unattainable, as were the inverse mappings of equations 1 and 3. Since it is known that
the boundary in the z-plane must map back to the £-axis, a root false position scheme (or
any other root solver in one variable) may again be used for the inverse mapping of the
boundary points. However, SCGRID avoids doing this at all. With a little ingenuity, it is
always possible to apply stretching in the intermediate plane directly to give the desired
results in the final grid. It is actually preferable to do this; the resulting grid spacing is
generally found to be smoother using this technique.

In each case that a stretching function is needed by SCGRID, an index is first created
such that index=0 corresponds to the first point and index=1 corresponds to the last.
A polynomial is then used to space the grid points from one extreme to the other (exactly
how this is done will be shown below). This polynomial is used to concentrate grid points

in varying degrees near each extreme.

One way to concentrate grid points at an extreme is to make the stretching function flat
there by setting one or more derivatives of the polynomial equal to zero at the extreme and
then solving the resulting system of equations for the coefficients of the desired polynomial.
The polynomial is of an order equal to the number of conditions imposed minus 1. Table
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1 is a list of such polynomial stretching functions that may be useful.

Note that it is not really necessary to set a derivative equal to zero to change the
stretching. More subtle degrees of stretching may be obtained by constructing different
polynomials. It was found for the application described in chapter 1 that a stretching
function of f(x)=-x3+2x? (half way between f(x)=x* and f(x)=-2 x® 4 3x?) provided
just a little grid concentration near the boundary i=II (the free stream), and was quite

useful for capturing the shock near this boundary in a very narrow region.

As an example, consider the stretching function required to generate a series of II el-
lipses, whose y-intercepts vary from y=0 to y=LL. For each ellipse, an index is normalized
according to :

index(i) = ;—__—11 , (D)

Note that index(1)=0 and index(II)=1. The y-intercepts of the ellipses are now

distributed according to :
y(index(i)) = LL * f(index(i)) (8)

where f(index) is an appropriate polynomial stretching function chosen from table 1. Fora
viscous computation, the stretching function f(index)=index? provides a good grid density

near the wall (index=0) necessary for resolving the boundary layer.

Similarly, stretching functions may be used to space the x-intercepts of a series of JJ
hyperbolae between x=-1 and x=1. Stretching functions may also be used to concentrate

rectangular grids near a line x=constant or y=constant.

Many other stretching functions may be employed. It is found that a hyperbolic tan-
gent function is a stretching function well suited for computing a boundary layer because
(when properly chosen) the density of the grid can be made to be approximately pro-
portional to the gradients of the velocity present in the boundary layer plus a constant
corresponding to the grid density in the (uniform) freestream. For those flows which are
predominantly boundary layer problems, the hyperbolic tangent may also be used by SC-
GRID as another type of stretching away from the wall. However, the flexibility given by
polynomial stretching functions (listed above, or others of the user’s creation, with grid
concentration elsewhere) have proven to be quite beneficial for the creation of appropriate
grids over the difficult geometries that this program was designed to accommodate.



3.4. Creation of ellipse/hyperbola grids

The expressions for a series of ellipses and hyperbolae with common focal points e; =-1

and e;=1 are :

Ellipse :
Hyperbola :

(_1%25'2_) +:§ = 1 where b=y-intercept of ellipse (9a)
- =1 where a=x-intercept of hyperbola (9b)

This system of equations may be solved fgr ;; and y. Thus, for a given ellipse (b) and
a given hyperbola (a), the location of the intersection point is easily found. Note that, by
multiplying through by b? and (1-a?) respectively, the above equations hold for b=0 and
for a=1, i.e., they hold up to and including the points which lie on the x-axis.

It has therefore been shown that, after stretching functions are applied to compute a
series of a; and b;, an ellipse/hyperbola grid may be generated from these intercept points

directly.
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4. GENERATING POTENTIAL FLOW SOLUTIONS
4.1. The mathematical formulation

The steady, incompressible, inviscid, irrotational flow equations may be cast as simply
the Laplace equation for the velocity potential :
&y Py

This equation is linear. Therefore, the equation can be mapped via a conformal

mapping to give the Laplace equation in a new system of coordinates :

2 2
ik PR (100)

Thus, if a solution to Laplace’s equation ¢ is mapped conformally from the (-plane to
the z-plane, the same values of ¢ on the new domain will also satisfy Laplace’s equation

in the new coordinate system.

The steady compressible potential equation, however, is highly nonlinear :

o
0zdy 0 (11)

oy
Oz?2

o2
(u? —a?) + —a-;‘f—:—(vz —a?) + 2uv

Solutions of this equation do not map conformally to solutions in new coordinate

systems due to the non-linearity of the equation.

Viscous solutions and rotational solutions also cannot be mapped. Since there is no
velocity potential for such flows, the components of the velocity themselves would have to
be mapped. However, the momentum equation is clearly non-linear with respect to the

components of velocity : _
7 s

6 6 61’,‘&- (12)

'éTtPU-;‘ = _Epuiui +pXi — -

Thus, the application of conformal mappings as a direct solver for fluid flows is lim-
ited to incompressible, irrotational (potential) flows. Note that the addition of unsteady
behaviour does not alter the incompressible potential equation - unsteadiness is simply
applied as a time dependent boundary condition. Thus, unsteady flows may also be con-

sidered by this technique.
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One simple solution to the Laplace equation is uniform flow. As shown previously, the
Schwartz-Christoffel transformation maps the upper half plane to a region bounded by a

surface with a finite number of corners. One such mapping is onto a strip.

Under the transformation shown in Fig. 9, a series of confocal ellipses and hyperbolae
in the (-plane (with foci at £1) maps to a series of horizontal and vertical lines in the

z-plane.

Now, a series of horizontal and vertical lines ifn the z-plane can be considered a trivial

£
solution of Laplace’s equation. Thus, by the discussion given in the previous' section, a
series of ellipses and hyperbolae in the (-plane are also a solution of Laplace’s equation

(for some particular set of boundary conditions).

These two solutions of Laplace’s equation (rectangular grids and ellipse/hyperbola
grids) are used as intermediate grids by the present code. Thus, all grids produced via this
code are possible potential flow solutions, given that they happen to satisfy the correct
boundary conditions for the final grid. Since the grids are always normal to the boundaries,

this is found to be the case quite often.

In the present technique for solving potential flows, a straight-forward method is
employed. First, each grid point where the solution is to be found is considered in the
“uniform flow” plane. This is done via the conformal mapping used to produce the grid
itself (the intermediate grid points are actually already known) and, if the intermediate
plane was the “ellipse-hyperbola” type, the half-plane onto the strip mapping shown in
Fig. 9. This point is then incremented some small amount A¢ in this uniform flow plane,
in a direction taken to be the direction of the flow in this plane (up, down, left, or right).
This new point is then mapped back to the “solution” plane and compared to the original

point.

The change in potential between these two points in the “solution” plane is exactly the
same as the change in potential between their image points in the “uniform flow” plane,
A¢, by the discussion in the previous section. Thus, the velocity in the “solution” plane is
in the direction of the new point with a magnitude of u=A@¢/As, where As is the distance
between the two points in the solution plane. The velocities on the entire field are then
scaled by whatever constant desired, density is taken to be constant, and the pressure is
computed via Bernoulli’s equation on the solution plane compared to a reference point

somewhere in the domain.

Although the Schwartz-Christoffel transformation is indeed analytic everywhere in
the domain, it is NOT analytic on the corner points of the boundary. Indeed, equation

13
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4 shows that the derivative makes a jump at these points. At corners which turn “into”
the flow (inside corners), this non-analyticity does not present a problem for computing
potential flow solutions - the velocity goes to zero near such corners as expected. At corners
which turn “away” from the flow (outside corners), the computed velocity tends toward
infinity near these corners as the distance As gets very small. This means that the pressure
(computed via Bernoulli’s equation) must go negative somewhere in the vicinity of such
points - clearly a non-physical result. This behaviour is indeed to be expected; potential
flow solutions do blow up at such outside corners. As a point of fact, incompressible
viscous flow solutions also blow up in the vicinity of sharp outside corners. Only when
compressibility effects are considered can such regions be handled correctly arbitrarily close
to the corner. Thus, the divergence of the solution near outside corners is a non-physical

result of the equation itself and not a drawback of the solution method employed.
I

A simple potential flow solution illustrating this property is the flow through a sharp
90° corner. This solution is shown in figure 10.

4.2. Application to unstable liquid displacement flows in porous media

Flows through porous media are governed by the following equations (7] :

modified equation of continuity e%‘f =—(V - pv,) (13a)
Darcy’s law : _ vo = —5(Vp— £9) (13b)
equation of state : p = pop™ef? (13¢)

in which € is the porosity (ratio of pore volume to total volume), k is the permeability,
and v, is the superficial velocity (volume rate of flow through a unit cross-sectional area
of the solid plus fluid) averaged over a small region of space - small with respect to the
macroscopic dimension of the flow but large with respect to the pore size. In the case of
incompressible fluids, neglecting the effect of gravity, these equations may be reduced to :

-

77 Ap=0 (14a)

gy =—Vip (14b)
I

The conformal mapping method previously developed has been shown to be an efficient
solver of Laplace’s equation for the velocity potential. In this type of porous media flow,
the velocity potential field is simply the pressure field. Thus, this problem may be treated

by the present technique.
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A specific porous media flow of particular interest is the unstable forced injection of
a low viscosity fluid into a high viscosity fluid (u1/p2 ~1000). This is a problem of a high
degree of interest, for it models a method of obtaining oil from an underground deposit

via the injection of seawater.

Such flows may be modeled with the equations listed above, with some constant
pressure difference between the surface of the injection “bubble” and infinity (in the high
viscosity fluid). It is soon realized that any small perturbation on the surface of the bubble
tends to amplify, thus resulting in an instabjlity. Deposits of the high viscosity fluid are
left trapped in the valleys as the peaks of the low viscosity fluid grow. Thesé results in a
lower yield of oil in the above example, a highly undesirable effect which can be minimized
by a closer matching of the viscosities of the two fluids (for example, by the addition of
polymers to the seawater). An example of the growth of one Fourier mode of perturbation
on a circular bubble is shown below. The inner curve represents t=t; and the outer curve

represents t=tg.

The solution method employed to produce Fig. 11 clearly reveals the strength of
the current method. The Schwartz-Christoffel transformation was solved at each time
step, then used to compute the velocity of each boundary point. Each boundary point
was then stepped according to its individual velocity, and the method repeated. The
beauty of the method is that the infinite domain outside the boundary was treated exactly
during the computation without ever being actually computed - the Schwartz-Chritoffel
transformation needed only to be considered on the boundary points themselves.

A photograph of an unstable liquid displacement flow between two closely spaced
plates is given Fig. 12, illustrating the same effect. Note that in this flow a certain length
scale of perturbation (governed by the distance between the two plates) is amplified most
- thus when the boundary becomes longer, higher modes of instability begin to take effect,
and the snowflake pattern develops. These effects of preferential length scales of instability
due to the surface tension of the fluid are neglected in the current analysis.

4.3. Application to channel flows and channel design

The problem of potential flow in a channel is less suited to the current method of
analysis than the problems described previously. This is so because equation 4 cannot
formulated as equation 3 was with a domain extending to upstream and downstream
infinity. Thus, uniform inlet or outlet conditions must be approximated to compute the

flow in a channel given in Fig. 13.
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Another application better suited-to the present code is channel design. Given one
curve of the channel and uniform flow at the inlet and outlet, it is possible to compute the
other curve of the channel so it will exactly coincide with a streamline which will turn the

flow the required amount. This is illustrated in Fig. 14.

A channel designed to minimize effects of separation was analysed by the above two

techniques. The results are shown in Figs. 15a,b.

Note that these two channels do not coincide. This illustrates the point that the given
channel may not be the most optimum design from the standpoint that it doesn’t quite
turn the flow exactly at the outlet of the corner, but the variations extend into the inlet
and outlet a short distance. Note that this property could not have been discovered using
a standard Laplace solver. The narrower corner designed by the present method turns the
flow completely at the outlet and may indeed be a better design for certain applications.

14



5. CONCLUSIONS

A generalized grid generator/incompressible potential flow solver has been presented.
It has illustrated a capability of handling boundary conditions that makes it better suited
for the solution of many potential flows than standard Laplace solvers. Many examples of
the possible applications of this code have been included. The mathematical formulation
of the transformation and its treatment of linear equations are also discussed.
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increasing concentration near index = 1

Conn

increasing concentration near index=0 -—>

| £(0)=0
£(0)=0 =
conditions - | £(0)=0 Ei=0 £ (0)=0 £
¢ | FO=0 | e@=0
_ £, .

f(H=1 f(x)=x £ (x) = x2 f(x)=x3 £ (x) = x4
f()=1 £(x) =-x2 f)=-2x3 | f)=-3x¢ | fX)=-45
F(1)=0 +2x +3x2 +4x3 +5x4
f(1)=1 f(x)=x3 f(x)=3x4 fx)=6x5 f(x) =106
F1)=0 -3 x2 -8x3 -15x4 -24 x5
77(1)=0 +3x + 6 x2 +10x3 +15x4
fho1 | fo0m-xt | £@=-4x5 | £=-10x6 | £()=-207
£(1)=0 +4x3 +15x4 +36x5 + 70 x6
7 (1)=0 -6 X2 -20x3 -45x4 -84 x5
£” (1) =0 +4x +10x2 +20x3 +35x4

Table 1 — Polynomial stretching functions for varying grid concentrations
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a. — Circular grid
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b. - C-grid
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c. — Potential flow grid

Fig. 7 - Sample airfoil grids produced by SCGRID
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Appendix 1 - Example codes

The code written to produce Fig. 4 is first presented. This is followed by a sample
control file for the generalized version of SCGRID, and finally the subroutine in SCGRID
that computes the integral of the Schwartz-Christoffel Transformation.

SCGRID itself is quite a long code, because it is generalized to many types of input.
The basic structure of the code is the same 4s fhe code given below. It accepts the
input from a file, creates an intermediate grid with the proper stretching, applies the
transformation, then, if required, reflects the grid and computes the potential flow solution.
There are two tricky additions, though. The first is the subroutine which computes the
integral of the Schwartz-Christoffel Transformation, which is given on pages A.11 and A.12.
The other is the computation of the values of the a;; the algorithm for this is outlined on

page 6.

SCGRID is run entirely by instructions from a file. Sample input files which fully
illustrate how to use this code are available. The output can be accepted by two different
VKI plotting programs : < gridplot.f > and < plot.f >. A sample input file is included
below. Note that these files have been fully commented to shown exactly what modifica-
tions are allowed. It is hoped that the wide variety of example files (all the files necessary
to produce the output in this report, and more) will illustrate how to use all of the options
currently included in SCGRID. Further, the program SCGRID itself is unprotected and
well documented. Users are encouraged to further adapt it to suit their own special needs.
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The following program computes the conformal mapping shown in figure 2.

eNeNeNoNoNo N

Cc
C
C

Ahkkd Ak hhhhhhhkhrhrhhdbdhrhdhrhhhhrhkhAhhhhhhhhhh kbbb hkhhhhdhd
* %k % %

** THIS 2-D GRID GENERATOR WAS WRITTEN BY THOMAS R. BEWLEY IN * %

** SPRING, 1990 AT THE von KARMAN INSTITUTE FOR FLUID DYNAMICS **
* % *%

KAk Ak hhhhhhhhkhhkhbhhAhk A b hhhkh kb hhhrhhhdhhdhdhhrhhhhhkhhhrdrhdhbhhhhhh ks

PARAMETER IMAX=100, JMAX=100, MAXiT=30,

& PI=3.14159265358979, CONDMAX=30
REAL*4 US (IMAX, JMAX) , VS (IMAX, JMAX) , GRTYPS
REAL*8 X (IMAX, JMAX),Y (IMAX, JMAX),U(IMAX, JMAX) ,V (IMAX, JMAX),
& ICOEF (CONDMAX) , VORIGIN, PORIGIN, RHORIGIN,
& RHO (IMAX, JMAX) , RHOU (IMAX, JMAX) , RHOV (IMAX, JMAX) , .
& RHOE (IMAX, JMAX) , EPSILON _
INTEGER 1,J,K, ICOND, IDUMMY (40) , VDIRECTION, POTENTIAL

CHARACTER*80 INFILE,UVFILE,XYFILE,XYFILEl,POTFILE,
& TITLEUV(4) , TEXT

THIS SECTION GETS THE NAME OF THE DATA FILE

WRITE (6,100)

100  FORMAT(///,

gx |******************************************************l//

9X, ' : CMGRIDZ1'//,

9X, 'This program generates a grid for flow over a step via '/,
9X, 'a conformal mapping of a uniform flow onto the desired '/,
9X, 'domain. The program takes data from a <*.cml> file.'//,
9X, 'The program can also create a potential flow solution.'/,
9X, 'Written by Thomas Bewley at the von Karman Institute.'//,
gx,'*******************************************************')

WRITE (6,115)

O~ bWk

115 FORMAT(///,' Enter complete name of input file: ', $)

c
C
C

READ (5, ' (A30) ') INFILE
OPEN (UNIT=35,FILE=INFILE, STATUS='OLD")

VA
THIS SECTION GETS THE DATA FROM THE FILE

CALL READLINE (35, TEXT)

READ (TEXT, *) H

CALL READLINE (35, TEXT)

READ (TEXT, *) JJ

CALL READLINE (35, TEXT)

READ (TEXT, *) U(1,1),V(1,1)

READ (35, *) (u(1,J),V(1,J),J=2,3J)

CALL READLINE (35, TEXT)
READ (TEXT, *) ICOND

A2



CALL READLINE (35, TEXT)

READ (TEXT, *) ICOEF (1)

READ (35, *) (ICOEF (L) ,L=2, ICOND)
CALL READLINE (35, TEXT)

READ (TEXT, *) II

CALL READLINE (35, TEXT)

READ (TEXT, *) LL

CALL READLINE (35, TEXT)

READ (TEXT, ' (A80) ') XYFILE

CALL READLINE (35, TEXT)

READ (TEXT, ' (A80) ') XYFILEl ¢

CALL READLINE (35, TEXT)

READ (TEXT, *) POTENTIAL

IF (POTENTIAL.EQ.1) THEN
CALL READLINE (35, TEXT)
READ (TEXT, ' (A80) ') POTFILE
CALL READLINE (35, TEXT)
READ (TEXT, *) VDIRECTION
CALL READLINE (35, TEXT)
READ (TEXT, *) VORIGIN
CALL READLINE (35, TEXT)
READ (TEXT, *) PORIGIN
CALL READLINE (35, TEXT)
READ (TEXT, *) RHORIGIN

ENDIF
CLOSE (35)
o
C COMPUTE THE POSITIONS Y(1,J) HERE
C
DO 170 I=1,II
A=(I-1.)/(II-1.)
Y(I,1)=0.
DO 160 L=1, ICOND
B=1.
! DO 150 K=2,L
B=B*A
.150 CONTINUE
Y(I,1)=Y(I,1)+LL*ICOEF (L)*B
160 CONTINUE
170 CONTINUE
C :
C COMPUTE THE POSITIONS X(1,J) HERE
c

DO 180 J=1,JJ
CALL RTFLSP(X(l,J),U{l,J),V{l,J),H,*B,S,.0001)
180 CONTINUE '
C
C THIS SECTION COMPUTES A RECTANGULAR GRID
C i
DO 190 J=1,JJ
DO 185 I=1,1I
X(I,J)=X(1,J)
Y(I,J)=Y(I,1)

185 CONTINUE
190 CONTINUE
c

A3
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C THE UV GRID POINTS ARE NOW COMPUTED.

C
DO 200 J=1,JJ0
DO 205 I=1,1II i _
CALL CM(U(I,J),V(I,J),H,X(I,J9),¥(I,J))
205 CONTINUE ;
200 CONTINUE
c
C THIS SECTION COMPUTES THE POTENTIAL FLOW SOLUTION
c _
IF (POTENTIAL.EQ.1l) THEN ) :
WRITE (6, *) 'Now computing the potential flow solution ...°'
EPSILON=.001 ;
DELTAX=0.
DELTAY=0.
WRITE (6, %) ' VDIRECTION, EPSILON',VDIRECTION,EPSILON
IF (VDIRECTION.EQ.1l) DELTAY=EPSILON
IF (VDIRECTION.EQ.2) DELTAY=-EPSILON
IF (VDIRECTION.EQ.3) DELTAX=-EPSILON
IF (VDIRECTION.EQ.4) DELTAX=EPSILON
B2=VORIGIN*VORIGIN/2.+PORIGIN/RHORIGIN !
WRITE (6, *) ' B2,DELTAX,DELTAY: ',B2,DELTAX,DELTAY
I=2 :
669 J=JJ/2 - _
CALL INTEGRAL(X(I,J),Y(I,J),X(I,J)+DELTAX,Y(I,J)+DELTAY,
& MR,MI,COR,AC,OMEGA,Al,Bl,2)
WRITE (6,*)' EPSILON ',EPSILON
A2=VORIGIN*SQRT (A1*A1+B1*B1l) /EPSILON
WRITE (6,*)"' A2: ',A2 ' ; ;
DO 680 I=1,II f
DO 685 J=1,JJ ; : ;
IF (VDIRECTION.EQ.2.AND.I.EQ.1) GOTO 685
IF (VDIRECTION.EQ.4.AND.INTGRID.EQ.l.AND.J.EQ.l) GOTO 685
IF (VDIRECTION.EQ.3.AND.INTGRID.EQ.I.AND.J;EQ.JJ) GOTO 685
CALL INTEGRAL(X(I,J),Y(I,J),X(I,J)+DELTAX,Y(I,J)+DELTAY,
& MR, MI,COR, AC,OMEGA,Al,B1,2)
A=A2*EPSILON/SQRT (A1*Al+B1*Bl)
B=ATANZ2 (B1,Al)
RHO (I, J)=RHORIGIN
RHOU (I, J) =REORIGIN*A*COS (B)
RHOV (I, J) =RHORIGIN*A*SIN (B)
C RHOE (I, J) =RHORIGIN* (2.5*B2-.75*A*A)
RHOE (I,J)=10000
685 CONTINUE
680 CONTINUE
END IF & &
G
C THIS SECTION SAVES THE GRID :
o .
OPEN(UNIT=1,FILE=UVFILE1,STATUS='NEW') £
WRITE (1,%*) II,JJ '
WRITE (1, *) ((U(I,J),I=1,II),J=1,JJ),((V(I,J),I=1,II),J=1,JJ) @
CLOSE (UNIT=1) '
c

C THIS SECTION SAVES THE POTENTIAL FLOW SOLUTION FOR DXPLOT.F

IF (POTENTIAL.EQ.1) THEN
OPEN(UNIT=1,FILE=POTFILE,FORM='FORMATTED',STATUS='NEW')
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801 FORMAT (1X,A)
WRITE(1,802) I1I1,JJ,1,1I1,0,0.

802 FORMAT (1X,5I5,F10.5)

WRITE (1,803) ((SNGL(U(I,J)),SNGL(V(I,J)),I=1,II),J=1,JJ)
803 FORMAT (7 (1X,E15.7) )

WRITE (1,803) ((SNGL(RHO(I,J)), SNGL(RHOU(I,J)),

& SNGL (RHOV (I, J) ) , SNGL (RHOE (I, J) ), I=1,II),J=1,JJ)

WRITE(1,804) 0.,0.,0.,1.4,1.,1.,1.,1,
804 FORMAT (1X, 8F15.7)

REWIND (1)

CLOSE (1)

END IF

END ¢ s .

. |

C THIS SUBROUTINE USES A ROOT FALSE POSITION SCHEME TO COMPUTE THE
C INVERSE TRANSFORMATION.

SUBROUTINE RTFLSP (RTFLS,U,V,H,X1,6X2,XACC)

CALL CM(F1,F2,H,X1,0.)
FL=U-V-F1+F2
CALL CM(F1,F2,H,X2,0.)
FH=U-V-F1+F2
IF (FL*FH.GT.0.) PAUSE 'Root must be bracketed for RTFLSP.'
IF(FL.LT.0.) THEN .
¥NL=X1
XH=X2
ELSE
XL=X2
XH=X1
SWAP=FL
FL=FH
FH=SWAP
ENDIF
DX=XH-XL
DO 11 J=1,MAXIT
RTFLS= XL+DX*FL[(FL~FH)
! CALL CM(F1,F2,H,X1,0.)
F=U-V-F1+F2
IF(F.LT.0.) THEN
DEL=XL-RTFLS
XL=RTFLS
FL=F
ELSE
DEL=XH-RTFLS
XH=RTFLS
FH=F
ENDIF
DX=XH-XL
IF (ABS (DEL) .LT.XACC.OR.F.EQ.0.) RETURN

11 CONTINUE
PAUSE 'RTFLSP exceed maximum iterations'

END
C i
C THIS SUBROUTINE EVALUATES THE INVERSE COSH OF Z
C :

SUBROUTINE INVCOSH (W, Z)
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COMPLEX*16 Z,W,TMP, TMP1

TMP=2*Z-1

CALL MTH$CDSQRT (TMP1, TMP
TMP=TMP 1+Z -
CALL MTH$CDLOG (W, TMP)
END

THIS SUBROUTINE EVALUATES THE CONFORMAL MAPPING FUNCTION AT A
POINT Z (SUBJECT TO THE PARAMETER H) AND RETURNS THE VALUE IN W

[eNeNeNe!

SUBROUTINE CM(WR,WI,H,ZR,Z2I)

REAL*8 ZR,2I,H,WR,WI
COMPLEX*16 2,W,TMP,TMP1l,DCMPLX
REAL*8 MTHSDREAL, MTHSDIMAG

Z=DCMPLX (ZR, ZI)

TMP=2*Z~-1

CALL MTHS$CDSQRT (TMP1, TMP)

CALL INVCOSH(TMP,Z) ' ,
W=TMP+TMP1

W=W*H/PI

- WR=MTHS$DREAL (W)

WI=MTHSDIMAG (W)

END

THIS SUBROUTINE READS IN LINES FROM THE DATA FILE, IGNORING THOSE
LINES WHICH BEGIN WITH 'CC’

QOO0

SUBROUTINE READLINE (NTUNI, TEXT)
CHARACTER*80 TEXT

2000 READ (NTUNI,'(A80)') TEXT
IF (TEXT(I;Z).EQ.'CC') GOTO 2000

RETURN
END

A6 :
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The following is a control file for the program SCGRID.

CcC
cC
cC
cc
cC
cC
cC
cC
CcC

cc

cc
cC
cC
cC
cc

cc
cc
cC
CcC
cc

The conventional wedgE, theta=40, alpha=10

This is an <*.scg> data file for the program <scgrid>.
This file may be used as a format to run <scgrid> for arbitrary
bodies with a finite number of straight segments.

Enter a point on the ray coming,in, from infinity to the body.
X i : : >
""50 ; 0-

Enter the number of corners corresponding to: a(i) < -1.

0 . ;
Enter the x and y coordinates of these corners enumerated TOWARDS

the body.

Enter the number of corners on the body, corresponding to:
1. <= a(i) <= 1.

2
Enter the x and y coordinates of these corners enumerated in a
CLOCKWISE sense on the body around the origin. (The first is
assigned a=-1 and the last is assigned a=1)

X X

-.8390996 0.

CcC
cc

cc
cc
cC

ol ol

ce

cc

cC
ccC
cC
cC
cC

cc
cc
cC
cc

cC
cC

0. .1763270

Enter the number of corners corresponding to: a(i) > 1.

0
Enter the x and y coordinates of these corners enumerated ANAY

from the body.

X Y

‘Enter a point on the ray going out to infinity from this body
X y '
0. 5.

Enter the type of the intermediate grid:
1 - Confocal ellipses and hyperbola
2 - Horizontal and Vertical lines
INTGRID
1

Enter the number of steps for the integral of the transformation

.between each point.

STEPS

50
Enter the maximum number of iterations to find the a(i) and M

ITERMAX
15 =

AT



CcC

cC
cC
CcC
cC
cc
cC
cC
CC
cC
CcC
cc
CcC
CcC
CcC
cC

Ccc
cc
CcC

CcC
cC
cC

CC
ccC
cc
ce
cC
CC
ccC
cC
CC
ce

cC
CE
cc
CcC
CC
cc
ce
cC
CC
CcC
cC
cC
CcC

Note: "polynomial stretching™ used below is applied in the
intermediate plane. This has to be adjusted to give the desired
stretching in the transformed plane. All polynomials entered
must equal 0. for index=0. and 1. for index=1. '

ENTER THE STRETCHING FUNCTIONS FOR THE DESIRED GRID DENSITIES

Enter the number of coefficients for the polynomial streching
function for the grid lines intersecting the x-axis in the

intermediate plane between -1 and 1.

Concentration of this stretching function near index=0. gives
grid density near x<=1 and concentration near index=1. gives
density near x>=-1. Enter 0 for x-intercepts given by the
inverse transform of the corners (entered above) corresponding to
-1 < a(i) < 1. Take JCOND = - (# of conditions) if this
stretching fn is to be used between each a(i) in this region for
a total of JJ pts.
JCOND

4
Enter these coefficients, starting with the constant term.
{Comment out this section if JCOND=0} ‘
JCOEF

0.

0.
S

-2. :

Enter the resolution in this region
{Comment out this section if JCOND=0}

JJ

100

Enter the number of coefficients for the polynomial streching
function for the grid lines intersecting the x-axis in the

‘intermediate plane to the left of -1.

Concentration near index=0. gives density near x<=-1.
Enter 0 for x-intercepts given by the inverse transform of the
corners corresponding to a(i) < 1 or if INTGRID=1.

Take JCONDL = - (# of conditions) if this stretching fn is to be
used between each a(i) in this region for a total of JJL pts.
JCONDL ;
0 i

Enter these coefficients; starting with the constant term.
{Comment out this section if JCONDL=0}
JCOEFL

Enter the resolution in thjs region
{Comment out this section if JCONDL=0}
- JJL

Enter the extent of the intermediate grid in this direction, or
the (positive) distance of the last point to the corner a=-1.
{Comment out this section if JCONDL<1}

LLL
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cC
cC
cC
cC
cC
cC
cC
cc
cC

CcC
cC
ccC
cC
cC
cC
cC
cc
cC
cC
cC
cC
cC
CC
cC
CcC
CcC
cC
cc
cC
cC
CC
cC
cc
cC

cC
CC
cC
cc
cc

cC
cC
CcC

cc
cC
CC
CC

o — i S S S v S S T o S — -

Enter the number of coefficients for the polynomial streching
function for the grid lines intersecting the x-axis in the
intermediate plane to the right of +1.
Concentration near index=1. gives density near x>=l.
Enter 0 for x-intercepts given by the inverse transform of the
corners corresponding to a(i) > 1 or if INTGRID=1.
Take JCONDR = - (# of conditions) if this stretching fn is to be
used between each a(i) in this region for a total of JJR pts.

JCONDR

0

Enter these coefficients, starting with the constant term.
{Comment out this section if JCONDR=0}

JCOEFR S %

Enter the resolution in this region
{Comment out this section if JCONDR=0}

JJR

Enter the extent of the intermediate grid in this direction, or
the distance of the last point to the corner a=l.
{Comment out this section if JCONDR<1}

LLR

———— ————————————— ——— . o S

Enter the number of coefficients for the polynomial stretching
function for the grid lines intersecting the y-axis in the
intermediate plane. Concentration near index=0. gives density
near y>=0. Enter 1 for a hyperbolic tangent stretching function.
If INTGRID=1, you may also: A) enter 0 for the y-intercepts given
by the ellipses which intersect the x-axis at the points which
are the inverse transform of the corners corresponding to
a(i) > 1., or B) enter -1 for the y-intercepts given by the
ellipses which intersect the x-axis at the points which are the
inverse transform of the corners corresponding to a(i) < 1.

ICOND

3
Enter these coefficients, starting with the constant term

If ICOND=1, enter the number of boundary layer thicknesses (as a
real number) total in the vertical direction.
{Comment out this section if ICOND<1}
ICOEF

0.
1.5

~.5
Enter the resolution in this region
{Comment out this section if ICOND<1}

T 1

100
Enter the extent of the intermediate grid in the vertical
direction
{Comment out this section if ICOND<1}

LL

1.7
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cC - - -
CC Is the grid to be reflected across the vertical axis?

CC (0=no, l=yes, 2=twice) (If 1 or 2, the grid points should end on
CC the vertical axis at this point)

cC VERTREF :

0
CC 1Is the grid to be reflected across the horizontal axis?
cC (0=no, l=yes) (If so, the grid points should end on the

CC horizontal axis at this point.)
cC HORREF

0
CC Enter the names of the -final grid file and the intermediate file,

CC first for the program <gridplot>, then for the program <PLOT>.
./grid/w.40.10.decgri
SCOut/eh w.40.10.dec.gri
scout/uv.w.40.10.dat
scout/eh.w.40.10.dat
cC
CC 1Is the incompressible potential flow solution to be found?
CC (O=no, 1l=yes)
cC POTENTIAL '
0
CC If so, then:
CC Enter the name of the output file for the program <gridplot>.
cC POTFILE
cC ) _
CC Enter the direction of the velocity vector at the origin in the
CC intermediate plane. :

GE. - (1=Up, 2=Down, 3=Left, 4=Right)
CC  VDIRECTION
ccC

CC Enter the magnitude of the velocity at the point correspondlng to
CC the origin in the intermediate plane.

CC  VORIGIN

cC :

CC Enter the pressure of the point corresponding to the origin in

CC the intermediate plane.

cC PORIGIN

ce

CC Enter the density.

cC RHORIGIN

ce
CC —mmmmm e End of File - - -
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The following subroutine computes the integral of the Schwartz-Christoffel
Transformation.

oo

** THIS SUBROUTINE WRITTEN BY THOMAS R. BEWLEY, FEB. 1990 **

THIS SUBROUTINE COMPUTES THE INTEGRAL OF THE SCHWARTZ CHRISTOFFEL
TRANSFORMATION ACCORDING TO THE GENERAL FORMULA GIVEN BY DAVIS IN
AIAA 79-1463 (EQN 17). FOR CONVENENCE, IT USES THE SAME VARIABLES
AS USED BY DAVIS. IN SHORT, THIS ?RQCEDURE TAKES TWO VALUES OF
2ETA [ ZETAl(R & I) AND ZETA2 (R & I) 1, SPLITS IT UP EVENLY INTO A
GIVEN NUMBER OF STEPS, AND SUMS THE INCREMENT GIVEN BY EQN 17 WITH
THE GIVEN VALUE OF M AND THE GIVEN NUMBER OF CORNERS AT A(I) WITH
ANGLES ALPHA(I). THE RESULTING VALUE OF DELTA-Z IS RETURNED IN

RESULT(R & I)

SUBROUTINE IﬁTEGRAL(ZETAlR,ZETAlI,ZETAZR,ZETAZI,MR,MI,CORNERS,
& A,ALPHA,RESULTR,RESULTI,STEPS)

IMPLICIT LOGICAL (A-Z)

PARAMETER CORMAX1=400, PI=3.14159265358979

INTEGER STEPS,CORNERS _

REAL ZETAIR,ZETAII,ZETAZR,ZETAZI,MR,MI,A(CORMAXl},
& ALPHA (CORMAX1) , RESULTR, RESULTI

INTEGER M, 1

REAL TEMPMR(CORMAXI),TEMPMI(CORMAXI),TEMPMPR(CORMAXl),
& TEMPMPI(CORMAXI),DUMMYR,DUMMYI,R,THETA,DUMMY,
& PRODUCTR,PRODUCTI,DELTAR,DELTAI

RESULTR=0.

RESULTI=0.

DELTAR=(ZETA2R—ZETA1R)/(STEPS—l.)
DELTAI=(ZETA2I~ZETAII)/(STEPS—I.)

IF ((DELTAR*DELTAR+DELTAI*DELTAI).EQ.O.) GOTO 1030

DO 1005 I=1,CORNERS
DUMMYR=ZETA1R-A(I)
DUMMYI=ZETAlI
R=SQRT(DUMMYR*DUMMYR+DUMMYI*DUMMYI)
IF (R.NE.O.) THEN
THETA=ATAN2 (DUMMYI, DUMMYR)
R=EXP(LOG(R)*(ALPHA(I)/PI+1.))
END IF )
THETA=THETA*(ALPHA(I)/PI+1.)
TEMPMR (I)=R*COS (THETA)
TEMPMI (I)=R*SIN(THETA)

1005 CONTINUE

DO 1010 M=1,STEPS-1
PRODUCTR=1.
PRODUCTI=0.
DO 1011 I=1,CORNERS
DUMMYR=ZETA1R+DELTAR*M—A(I)
DUMMYI=ZETA1I+DELTAI*M

A1l
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1011

1012

1010

1014

1020
1030

R=SQRT (DUMMYR *DUMMYR+DUMMY I *DUMMYT)
IF (R.NE.Q.) THEN
THETA=ATAN2 (DUMMYI, DUMMYR)

R=EXP (LOG (R) * (ALPHA (I) /PI+1.))

END IF .
THETA=THETA* (ALPHA (I) /PI+1.)
TEMPMPR (1) =R*COS (THETA)

TEMPMPI (I)=R*SIN (THETA)
CONTINUE
DO 1012 I=1,CORNERS
DUMMYR=TEMPMPR (I) -TEMPMR (I)
DUMMY I=TEMPMP I (I)-TEMPMI (I)
DUMMY - =PRODUCTR*DUMMYR-PRODUCTI*DUMMYI
PRODUCT I=PRODUCT I *DUMMYR+PRODUCTR*DUMMY I
PRODUCTR=DUMMY
TEMPMR (I)=TEMPMPR (I)
TEMPMI (I)=TEMPMPI (I)
CONTINUE
RESULTR=RESULTR+PRODUCTR
RESULTI=RESULTI+PRODUCTI
CONTINUE

DO 1014 I=1,CORNERS-1
DUMMY=DELTAR*DELTAR+DELTAI*DELTAT
DUMMYR= (RESULTR*DELTAR+RESULTI*DELTAI) /DUMMY
RESULTI= (RESULTI*DELTAR-RESULTR*DELTAI) /DUMMY
RESULTR=DUMMYR
CONTINUE

DUMMY =RESULTR*MR-RESULTI*MI

RESULTI=RESULTI*MR+RESULTR*MI

RESULTR=DUMMY

DO 1020 I=1,CORNERS
RESULTR=RESULTR/ (ALPHA(I) /PI+l.)
RESULTI=RESULTI/ (ALPHA(I)/PI+l.)
CONTINUE

RETURN

END

A12




