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This paper examines the application of linear optimal
control theory to a low-order nonlinear chaotic convection
problem. Linear control feedback is found to be fully ef-
fective only when it is switched off while the state is far
from the desired equilibrium point, relying on the attrac-
tor of the system to bring the state into a neighborhood
of the equilibrium point before control is applied. Lin-
ear estimator feedback is found to be fully effective only
when a) the Lyapunov exponent of the state estimation
error is negative, indicating that the state estimate con-
verges to the uncontrolled state, and b) the estimator is
stable in the vicinity of the desired equilibrium point.

The aim in studying the present problem is to under-
stand better some possible pitfalls of applying linear feed-
back to nonlinear systems in a low-dimensional frame-
work. Such an exercise foreshadows problems likely to
be encountered when applying linear feedback to infinite-
dimensional nonlinear systems such as turbulence. It is
important to understand these problems and the reme-
dies available in a low-dimensional framework before
moving to more complex systems such as turbulence.

I. INTRODUCTION

By major simplification of a buoyancy-driven flow
problem! governed by the Navier-Stokes equation, a sim-
ple set of nonlinear ordinary differential equations (the
Lorenz equations) which models a fluid convection prob-
lem and exhibits chaotic behavior may be determined
such that

j;l =0 (Iz - 1:1)
$g = =Ty — T123 (1)

i3 = —bxs + 122 — b7,
where z, is proportional to the intensity of the fluid mo-
tion, z, is proportional to the lateral temperature fluctu-
ations in the fluid, and z3 is proportional to the vertical
temperature fluctuations in the fluid. (In this paper, all
computations are carried out for parameter values typi-
cal for a laboratory-scale implementation? in the chaotic
regime, nominally, 0 =4, b =1, and r = 3r, = 48.)
Interest in this convection model has been rekindled
recently by attempts to control chaotic phenomena. In
the present control problem, a steady-state heating rate
i is modulated by an unsteady control u' such that
r = @ + u'. The control problem considered is to find
a control u' (modulation of the cooling/heating rate at
the top/bottom of the apparatus) based on limited ob-
servations of the state (specifically, noisy measurements
of z2) in order to stabilize the focus point corresponding
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to time-invariant clockwise motion of the fluid X, which
is stationary but linearly unstable in the uncontrolled

u' = 0) Lorenz system for @ > ry. This model con-
trol problem, introduced in the linear optimal context by
Vincent® and Yuen & Bau?, has been the topic of several
recent investigations? 8. The present study characterizes
certain problems which arise when linear feedback is used
for estimation and control of this system.

State disturbances are inevitable in the present system,
and come from sources such as unmodeled heat transfer
and secondary flows. Noise of some level in the mea-
surement is also inevitable, and arises from inaccuracies
of the thermocouples measuring the temperature differ-
ence z and from the electronics processing their signals.
These disturbances are accounted for using the scaling
developed in Ref. 9 by assuming that the covariance of
the state disturbance has unit maximum singular value
(taken here as simply G; = I) and that the rms ampli-
tude of the noise of the (scalar) temperature measure-
ment is a. The externally-disturbed system equation for
x and y are written in matrix form as

Xx=Ax+Nx)+ Byw+Byu+r (2a)
y = (Cox + Doy w. (2b)

with D21 = (O (II)

II. LINEAR CONTROL FEEDBACK

In this section, we present an effective control strategy
for the nonlinear system (2a) when full state information
is available for determining the control. Initially, linear
control theory is used to compute control feedback which
linearly stabilizes the desired state. Subsequently, the
resulting (linear) control feedback is applied to the full
nonlinear problem.

Define the perturbation £ of the state x from the de-
sired state % such that & £ x — . The stabilization of
uniform clockwise motion is equivalent to the regulation
of £ to zero. Following the approach of standard linear
optimal control theory, the problem under consideration
is expressed as the minimization of a control objective
J (u) with respect to the control u, where

jéE[Z*Z], with z-A.C'1£+D12u, D12é (2) .
As all elements of € are similarly scaled, we take Cy = 1.

The equation governing the state perturbation £ (in
fact, for any reference point %) is easily derived! from
(2a) and written in matrix form as

E=AE+NE)+Biw+Byu+T, (3)

where A is the linearized system matrix. Note that ¥ = 0
because X is taken here to be a stationary point of the
uncontrolled system (1). For sufficiently small perturba-
tions &, the nonlinear term N(£) is small compared with
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the linear terms. Thus, for a state x in a sufficiently
small neighborhood of the desired state X, the optimum
control may be determined by analysis of just the linear
terms of (3).

Linear control feedback of the form

u=Ké¢=K(x-X) 4)

solving the minimization problem discussed above for the
linearization of the system (3) governing the state per-
turbation £ is given by

1

K=-5

_ 1 i
B X, with X=Ric< A "253232)

—Ccro, -4

and Ric(-) denotes the solution of the associated Riccati
problem, in accordance with standard linear optimal con-
trol theory!°.

For control feedback determined from (4) correspond-
ing to small values of ¢, direct application of linear feed-
back stabilizes both the desired state X (indicated by
the black trajectories of figure 1) and an undesired state
x! (indicated by the green trajectories of figure 1). An
unstable manifold exists between these two stabilized
points, as indicated by the contorted blue/red surfaces
in figure 1. Any initial state on the blue side of this
manifold will converge to the desired state, and any ini-
tial state on the red side of this manifold will converge
to the undesired state.

As seen in figure 1, for increased feedback magnitude
K (e.g., decreased ¢), the undesired stabilized state X,
moves farther from the origin, and the domain of conver-
gence of the undesired state remains large; the closed-
loop system eventually becomes unbounded for suffi-
ciently large feedback K. Some form of nonlinearity in
the feedback rule is required to eliminate this undesired
behavior. An effective technique tested in this study is
to apply control of the form

0 for(<0

u=H(R - |x—x|) K¢, 1 for(>0

H(C)={

such that the control is turned on only when the state
x(t) is inside a sphere of radius R, centered at X, com-
pletely contained in the domain of convergence of the
desired stationary point in the linearly-controlled sys-
tem. The chaotic dynamics of the uncontrolled system
will bring the system into this subdomain in finite time,
after which control may be applied to “catch” the state
at the desired equilibrium point. Similar switched ap-
proaches have been recommended by Vincent & Yu®,
Wang & Abed”, and Vincent3. The key to the effec-
tiveness of this approach is the determination a feedback
control which makes the subdomain in which the linear
control may be applied successfully as large as possible,
so that the uncontrolled state x(t), moving along the at-
tractor of the system, enters this subdomain in a short
amount of time®.

III. LINEAR ESTIMATOR FEEDBACK

When full state information is not available, one may
first develop a state estimate based on the available mea-
surements, then feed this state estimate back through a
full-state controller. This chapter discusses how to deter-
mine an accurate state estimate in the present problem.

Since the state equation (2a) and the measurement
equation (2b) are well known in the present problem, we
will model them closely in our estimator equations such
that

%= AR+ N@R)+Byu+r—1 (5a)

¥ = Cox. (5b)

As in the previous section, the estimator feedback will be
determined by application of linear theory, though this
feedback is applied, in the end, to the nonlinear estimator
given by (5).

Consider the deviations 1 and 7 of the state x and
the state estimate % from some (as yet undetermined)
reference state X such that

and A&£%-% (6)

The equations governing 7 and 7} are easily derived from
(2a) and (5a) such that

N=An+N®n)+B,w+Byu+F (72)
7= AR+ N(@) +Byu+f—1, (7b)

where A is the linearized system matrix and ¥ £ A% +
N(%)+r. Note that X need not be a stationary point, and
thus T is not necessarily zero. Defining the estimation
€rTor X, = x — % = 1 — 7 and the measurement error
Ye 2 y — ¥ and subtracting (7b) from (7a) and (5b) from
(2b), it is seen that x. and y. obey the equations

X = Axe + N(n) =N(@) +Biw+a  (8a)

ye = Cox, + Dy w. (8b)

The nonlinear term in this equation may be written
N(n) — N(f1) = M(n)xe — N(xe). 9)

For sufficiently small 77 and x., the linear terms of (8a)
dominate the nonlinear term N(n) — N(7) (see (9)).
Thus, for sufficiently small estimator error x. and for
the state x in a sufficiently small neighborhood of the
reference state X, the estimator feedback @i minimizing
the estimation error x, may be determined by analysis
of just the linear terms of (8).
Linear estimator feedback of the form

=Ly, =Ly -y) (10)

solving the appropriate minimization problem for the lin-
earization of the system (8a) governing the estimation
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error x. is given with
1 A* Lgoe
L=-=YCj, with Y =Ric Tz 22
o —B; B} -A

in accordance with the standard linear theory!® for the
Kalman-Bucy filter.

By applying the linear measurement feedback (10) to
the undisturbed (i.e., w = 0) estimation error equations
(8), noting (9), the closed-loop equation for the estima-
tion error may be written in the form

%, = (A+LCy + M(x()) e — N(x.).  (11)

Unfortunately, it does not appear possible to select time-
invariant linear estimator feedback L such that the esti-
mator error decreases uniformly as the uncontrolled state
x(t) moves along the trajectory of the attractor, as the
term M (x(t)) is destabilizing over a portion of the at-
tractor. However, this does not imply that the estimator
will necessarily diverge; effective estimators may still be
found, as will now be shown.

The convergence or divergence of the state estimator
for the uncontrolled system when the estimation error
X, is small is now made precise. Consider an infinitesi-
mal perturbation 8x.(0) of the state estimator such that
[0x.(0)] = |x(0) — %(0)| « 1. The perturbation x.(t)
evolves according to the linearization of (11), which is
given by

6xe = (A + LCy + M(x(t))) 0x..
The Lyapunov exponent ko, is defined as

o = tim Liog 12D

—~oo T’

& 6% (0)]]

for almost all initial states x(0) and initial infinitesimal
estimator perturbations §x.(0), in a manner analogous
to the Lyapunov exponent of the uncontrolled system!!.
The Lyapunov exponent of the state estimation error,
Koo, thus measures the exponential rate of convergence
(koo < 0) or divergence (ko > 0) of the state estimator
when averaged over long time intervals (T' = o00). The
local Lyapunov exponent x.(x(t)) is defined as

lI6x.(t + T)||
ll6xe (@)l

for almost all initial states x(0) and initial infinitesi-
mal estimator perturbations dx.(0) and for ¢ sufficiently
large, in a manner analogous to the local Lyapunov ex-
ponent A (x(t)) of the uncontrolled system'?. The lo-
cal Lyapunov exponent of the state estimation error,
ke(x(t)), thus measures the local exponential rate of con-
vergence or divergence of state and the state estimate
when the estimation error is small. The Lyapunov expo-
nent ko is the long-time average along the system tra-
jectory x(t) of the local Lyapunov exponent x¢(x(t)).

.1
ke(x(t)) = %13}) Tlog

It is demonstrated in simulations (figure 3) that, for
a sufficiently small that k. < 0, the estimator feedback
stabilizes the estimation error x. to zero even for initial
conditions of the estimation error x.(0) which are not
small. As opposed to the control problem, no undesired
stabilized states other than x. = 0 were detected in the
closed-loop nonlinear system for the estimation error.

It was found (compare figures 2b and 2c) that choosing
a (time-invariant) reference state X at the origin, which is
the approximate “center of mass” of the orbits of the un-
controlled system, gave the best estimator performance
for the range of initial conditions tested.

It was also found (compare figures 2b and 2d) that the
nonlinear term N (X) in the estimator (5a) is essential for
good estimator performance. Without it, the equation
for a small perturbation dx.(¢) of the estimator (when
we take X = 0) takes the form

8%e = (A + LC) 6% + N (x(2)),

where the contribution of the nonlinear term N (x(t)) is
not small as the state x(¢) moves on the attractor.

IV. FURTHER DISCUSSION

For further discussion of the present results and re-
lated questions in the turbulence problem, the reader is
referred to the complete version of this paper scheduled
to appear in the May 1999 issue of Physics of Fluids.
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(a) Estimator designed with a = 1.0, X = 0. The value of
the Lyapunov exponent Koo, which is the average value of
the local Lyapunov exponent k. plotted, is Keo = 0.45 > 0.
This indicates that the state estimator is unstable (k. > 0)
more than it is stable (k¢ < 0), and thus the state estimate
will not converge to the uncontrolled state.

Ke

(c) Estimator designed with @ = 0.1, X = %X. Lyapunov
exponent Koo = —2.33 < 0. It is found that linear estima-
tor feedback designed with X = O has better convergence
properties (cf. figure 2b).

FIG. 2. Local Lyapunov exponent k.(t) describing the local growth or attenuation of small perturbations of the estimation

"EHHHSAI ] ‘l |

0 1 2o
-2.5
t
-5
-7.5
-10

(b) Estimator designed with @ = 0.1, X = 0. The value of
the Lyapunov exponent is koo = —3.95 < 0. This indicates
that the state estimator is stable more than it is unstable,
and thus the state estimate will converge to the uncontrolled
state when x. is small. Note that estimator convergence is
attained even though the estimator error does not decrease
uniformly over the entire path of the attractor.
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(d) Estimator designed with a = 0.1, X = 0, and the nonlin-
ear term dropped from the estimator equation (5). Lyapunov
exponent Keo = 0.01. The nonlinear term in the estimator
is essential for good performance (cf. figure 2b).

error x.(t) in the closed-loop system for the state estimator as the state x(t) moves along the attractor.

x2e 0

Xle

(a) @ = 1.0, koo = 0.45. (c) @a=0.1, Koo = —3.95.

(b) & = 0.25, Koo = —1.04.

FIG. 3. Trajectory of the estimation error x(t) for estimators determined with X = 0 and three different values of @ when
applied to the uncontrolled, undisturbed convection system. The initial conditions on the state, x(0) = (5 1 0)*, and the
state estimate, %(0) = (—5 10 0)*, are separated significantly in these simulations. Even so, for estimators with ke, < 0, the

. estimator feedback 1 rapidly brings the state estimate X in close proximity to the state x based on measurements of z2 only.
Such behavior is seen with all initial conditions tested. The approach of the estimated state to the actual state is more rapid for
estimators with more negative values of Koo. After the state and the estimate are brought into proximity, nonlinear estimators
with ke < 0 accurately track the chaotic trajectory of the state with little further estimator feedback required.
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