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This paper examines the application of linear optimal 
control theory to a low-order nonlinear chaotic convection 
problem. Linear control feedback is found to be fully ef- 
fective only when it is switched off while the state is far 
from the desired equilibrium point, relying on the attrac- 
tor of the system to bring the state into a neighborhood 
of the equilibrium point before control is applied. Lin- 
ear estimator feedback is found to be fully effective only 
when a) the Lyapunov exponent of the state estimation 
error is negative, indicating that the state estimate con- 
verges to the uncontrolled state, and b) the estimator is 
stable in the vicinity of the desired equilibrium point. 

The aim in studying the present problem is to under- 
stand better some possible pitfalls of applying linear feed- 
back to nonlinear systems in a low-dimensional frame- 
work. Such an exercise foreshadows problems likely to 
be encountered when applying linear feedback to infinite- 
dimensional nonlinear systems such as turbulence. It is 
important to understand these problems and the reme- 
dies available in a low-dimensional framework before 
moving to more complex systems such as turbulence. 

I. INTRODUCTION 

By major simplification of a buoyancy-driven flow 
problem1 governed by the Navier-Stokes equation, a sim- 
ple set of nonlinear ordinary differential equations (the 
Lorenz equations) which models a fluid convection prob- 
lem and exhibits chaotic behavior may be determined 
such that 

x1 = d (22 - 21) 
i 2  = - 2 2  - 21x3 

i3 = 4 x 3  + 2 1 2 2  - br, 

where 21 is proportional to the intensity of the fluid mo- 
tion, 2 2  is proportional to the lateral temperature fluctu- 
ations in the fluid, and 2 3  is proportional to the vertical 
temperature fluctuations in the fluid. (In this paper, all 
computations are carried out for parameter values typi- 
cal for a laboratory-scale implementation' in the chaotic 
regime, nominally, U = 4, b = 1, and r = 3rH = 48.) 

Interest in this convection model has been rekindled 
recently by attempts to control chaotic phenomena. In 
the present control problem, a steady-state heating rate 
ii is modulated by an unsteady control U' such that 
T = ii + U'. The control problem considered is to find 
a control U' (modulation of the cooling/heating rate at 
the top/bottom of the apparatus) based on limited ob- 
servations of the state (specifically, noisy measurements 
of 2 2 )  in order to stabilize the focus point corresponding 

(1) 

to time-invariant clockwise motion of the fluid %, which 
is stationary but linearly unstable in the uncontrolled 
(U' = 0) Lorenz system for 0 > rH. This model con- 
trol problem, introduced in the linear optimal context by 
Vincent3 and Yuen & Bau4, has been the topic of several 
recent investigations'-*. The present study characterizes 
certain problems which arise when linear feedback is used 
for estimation and control of this system. 

State disturbances are inevitable in the present system, 
and come from sources such as unmodeled heat transfer 
and secondary flows. Noise of some level in the mea- 
surement is also inevitable, and arises from inaccuracies 
of the thermocouples measuring the temperature differ- 
ence 2 2  and from the electronics processing their signals. 
These disturbances are accounted for using the scaling 
developed in Ref. 9 by assuming that the covariance of 
the state disturbance has unit maximum singular value 
(taken here as simply GI = I )  and that the rms ampli- 
tude of the noise of the (scalar) temperature measure- 
ment is cy. The externally-disturbed system equation for 
x and y are written in matrix form as 

x =  A x + N ( x ) +  B l w + B 2 u + r  (2a) 

y = c2x + D z ~ w .  (2b) 

with D21 4 (0 aI). 

11. LINEAR CONTROL FEEDBACK 

In this section, we present an effective control strategy 
for the nonlinear system (2a) when full state information 
is available for determining the control. Initially, linear 
control theory is used to compute control feedback which 
linearly stabilizes the desired state. Subsequently, the 
resulting (linear) control feedback is applied to  the full 
nonlinear problem. 

Define the perturbation ( of the state x from the de- 
sired state % such that ( 2 x - %. The stabilization of 
uniform clockwise motion is equivalent to the regulation 
of ( to zero. Following the approach of standard linear 
optimal control theory, the problem under consideration 
is expressed as the minimization of a control objective 
J(u) with respect to the control U, where 

J 4 E [  z*z] ,  with z CI( + D I ~ u ,  DIZ 2 (t) . 

As all elements of [ are similarly scaled, we take CI = I. 
The equation governing the state perturbation ( (in 

fact, for any reference point 2) is easily derived' from 
(2a) and written in matrix form as 

6 = A( + N ( ( )  + B1 w + B2 U + f, (3) 

where A is the linearized system matrix. Note that F = 0 
because X is taken here to be a stationary point of the 
uncontrolled system (1). For sufficiently small perturba- 
tions (, the nonlinear term N ( ( )  is small compared with 
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the linear terms. Thus, for a state x in a sufficiently 
small neighborhood of the desired state x, the optimum 
control may be determined by analysis of just the linear 
terms of (3). 

Linear control feedback of the form 

u = K ~ =  K ( x - ~ )  (4) 

solving the minimization problem discussed above for the 
linearization of the system (3) governing the state per- 
turbation t is given by 

1 

e2 -CrC1 -A* 
K = --B;X, with X = Ric 

and Kc(.) denotes the solution of the associated Riccati 
problem, in accordance with standard linear optimal con- 
trol theory”. 

For control feedback determined from (4) correspond- 
ing to small values of e,  direct application of linear feed- 
back stabilizes both the desired state % (indicated by 
the black trajectories of figure 1) and an undesired state 
2: (indicated by the green trajectories of figure 1). An 
unstable manifold exists between these two stabilized 
points, as indicated by the contorted blue/red surfaces 
in figure 1. Any initial state on the blue side of this 
manifold will converge to the desired state, and any ini- 
tial state on the red side of this manifold will converge 
to the undesired state. 

As seen in figure 1, for increased feedback magnitude 
K (e.g., decreased e ) ,  the undesired stabilized state jti 
moves farther from the origin, and the domain of conver- 
gence of the undesired state remains large; the closed- 
loop system eventually becomes unbounded for SUE- 
ciently large feedback K. Some form of nonlinearity in 
the feedback rule is required to eliminate this undesired 
behavior. An effective technique tested in this study is 
to apply control of the form 

such that the control is turned on only when the state 
x(t) is inside a sphere of radius R, centered at a, com- 
pletely contained in the domain of convergence of the 
desired stationary point in the linearly-controlled sys- 
tem. The chaotic dynamics of the uncontrolled system 
will bring the system into this subdomain in finite time, 
after which control may be applied to “catch” the state 
at the desired equilibrium point. Similar switched ap- 
proaches have been recommended by Vincent & Yu6, 
Wang & Abed7, and Vincent3. The key to the effec- 
tiveness of this approach is the determination a feedback 
control which makes the subdomain in which the linear 
control may be applied successfully as large as possible, 
so that the uncontrolled state x(t), moving along the at- 
tractor of the system, enters this subdomain in a short 
amount of time3. 

111. LINEAR ESTIMATOR FEEDBACK 

When full state information is not available, one may 
first develop a state estimate based on the available mea- 
surements, then feed this state estimate back through a 
full-state controller. This chapter discusses how to deter- 
mine an accurate state estimate in the present problem. 

Since the state equation (2a) and the measurement 
equation (2b) are well known in the present problem, we 
will model them closely in our estimator equations such 
that 

& =  Aji+N(B)+B2u+r-Q ( 5 4  
9 = c2a. (5b) 

As in the previous section, the estimator feedback will be 
determined by application of linear theory, though this 
feedback is applied, in the end, to the nonlinear estimator 
given by (5). 

Consider the deviations q and i j  of the state x and 
the state estimate j i  from some (as yet undetermined) 
reference state f such that 

q k x - 2  and 6 A j i - f .  (6) 

The equations governing q and q are easily derived from 
(2a) and (5a) such that 

= A q  + N ( q )  + B1 w + B2 U + i; ( 7 4  
= A f j + N ( f j )  + B2 U + E - Q, (7b) 

where is the linearized system matrix and i; 4 A f  + 
N(f)+r. Note that f need not be a stationary point, and 
thus i; is not necessarily zero. Defining the estimation 
error x, x - B = q - f i  and the measurement error 
y e  4? y -9  and subtracting (7b) from (7a) and (5b) from 
(2b), it is seen that x, and y e  obey the equations 

x, = Ax, + N ( q )  - N ( e )  + B1 w + U (8a) 
Ye = C2xe + D z ~ w .  (8b) 

The nonlinear term in this equation may be written 

N ( q )  - N(4) = M(q)Xe - N(xe)- (9) 

For sufficiently small q and x,, the linear terms of (sa) 
dominate the nonlinear term N ( q )  - N ( 6 )  (see (9)). 
Thus, for sufficiently small estimator error x, & for 
the state x in a sufficiently small neighborhood of the 
reference state f, the estimator feedback ii minimizing 
the estimation error x, may be determined by analysis 
of just the linear terms of (8). 

Linear estimator feedback of the form 

Q = Lye = L ( y  - 9)  (10) 

solving the appropriate minimization problem for the lin- 
earization of the system (8a) governing the estimation 
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error xe is given with 

1 

-&B; -A 
1 

a2 
L = --Ye,*, with Y = Ric 

in accordance with the standard linear theorylO for the 
Kalman-Bucy filter. 

By applying the linear measurement feedback (10) to 
the undisturbed (i.e., w = 0 )  estimation error equations 
(8), noting (9), the closed-loop equation for the estima- 
tion error may be written in the form 

ke = ( A  + LC2 + M ( x ( t ) ) )  xe - N(xe) .  (11) 

Unfortunately, it does not appear possible to select time- 
invariant linear estimator feedback L such that the esti- 
mator error decreases uniformly as the uncontrolled state 
x ( t )  moves along the trajectory of the attractor, as the 
term M ( x ( t ) )  is destabilizing over a portion of the at- 
tractor. However, this does not imply that the estimator 
will necessarily diverge; effective estimators may still be 
found, as will now be shown. 

The convergence or divergence of the state estimator 
for the uncontrolled system when the estimation error 
xe is small is now made precise. Consider an infinitesi- 
mal perturbation bxe(0) of the state estimator such that 
16xe(0)1 = Ix(0) - jZ(0)l <( 1. The perturbation k ( t )  
evolves according to the linearization of (ll), which is 
given by 

a;Ce = ( A  + LC2 -I- M ( x ( t ) ) )  bx,. 

The Lyapunov exponent n, is defined as 

for almost all initial states x(0)  and initial infinitesimal 
estimator perturbations bx, (0), in a manner analogous 
to the Lyapunov exponent of the uncontrolled system”. 
The Lyapunov exponent of the state estimation error, 
IE,, thus measures the exponential rate of convergence 
(6, < 0) or divergence (n, > 0) of the state estimator 
when averaged over long time intervals (T + CO). The 
local Lyapunov exponent nE(x( t ) )  is defined as 

for almost all initial states x(0)  and initial infinitesi- 
mal estimator perturbations bx, (0) and for t sufficiently 
large, in a manner analogous to the local Lyapunov ex- 
ponent X,(x(t))  of the uncontrolled system12. The lo- 
cal Lyapunov exponent of the state estimation error, 
nc(x ( t ) ) ,  thus measures the local exponential rate of con- 
vergence or divergence of state and the state estimate 
when the estimation error is small. The Lyapunov expo- 
nent IC, is the long-time average along the system tra- 
jectory x ( t )  of the local Lyapunov exponent nE(x( t ) ) .  

It is demonstrated in simulations (figure 3) that, for 
a sufficiently small that n, < 0, the estimator feedback 
stabilizes the estimation error xe to zero even for initial 
conditions of the estimation error xe(0) which are not 
small. As opposed to the control problem, no undesired 
stabilized states other than xe = 0 were detected in the 
closed-loop nonlinear system for the estimation error. 

It was found (compare figures 2b and 2c) that choosing 
a (time-invariant) reference state j i .  at the origin, which is 
the approximate “center of mass” of the orbits of the un- 
controlled system, gave the best estimator performance 
for the range of initial conditions tested. 

It was also found (compare figures 2b and 2d) that the 
nonlinear term N ( x )  in the estimator (5a) is essential for 
good estimator performance. Without it, the equation 
for a small perturbation 6xe( t )  of the estimator (when 
we take j i .  = 0 )  takes the form 

Sxe = ( A  + LC2) bxe + N ( x ( t ) )  
where the contribution of the nonlinear term N ( x ( t ) )  is 
not small as the state x(t) moves on the attractor. 

IV. FURTHER DISCUSSION 

For further discussion of the present results and re- 
lated questions in the turbulence problem, the reader is 
referred to the complete version of this paper scheduled 
to appear in the May 1999 issue of Physics of Fluids. 
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(a) Estimator designed with a = 1.0, ic = 0. The value of 
the Lyapunov exponent n,, which is the average value of 
the local Lyapunov exponent n, plotted, is noo = 0.45 > 0. 
This indicates that the state estimator is unstable (n, > 0) 
more than it is stable (n, < 0), and thus the state estimate 
will not converge to the uncontrolled state. 

(b) Estimator designed with a = 0.1, ic = 0. The value of 
the Lyapunov exponent is n, = -3.95 < 0. This indicates 
that the state estimator is stable more than it is unstable, 
and thus the state estimate will converge to the uncontrolled 
state when xe is small. Note that estimator convergence is 
attained even though the estimator error does not decrease 
uniformly over the entire path of the attractor. 

5t  , 

t t 

(c) Estimator designed with a = 0.1, ic = 2. Lyapunov 
exponent noo = -2.33 < 0. It is found that linear estima- 
tor feedback designed with ic = 0 has better convergence 
properties (cf. figure 2b). 

(d) Estimator designed with a = 0.1, ic = 0, and the nonlin- 
ear term dropped from the estimator equation ( 5 ) .  Lyapunov 
exponent no;, = 0.01. The nonlinear term in the estimator 
is essential for good performance (cf. figure 2b). 

FIG. 2. Local Lyapunov exponent n,(t) describing the local growth or attenuation of small perturbations of the estimation 
error x.(t) in the closed-loop system for the state estimator as the state x ( t )  moves along the attractor. 
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(a) a = 1.0, n, = 0.45. (b) a = 0.25, ~ g i ,  = -1.04. (c) a = 0.1, n, = -3.95. 

FIG. 3. Trajectory of the estimation error xe( t )  for estimators determined with 2 = 0 and three different values of a when 
applied to  the uncontrolled, undisturbed convection system. The initial conditions on the state, x(0) = (5 1 O ) * ,  and the 
state estimate, k(0) = (-5 10 O ) * ,  are separated significantly in these simulations. Even so, for estimators with IC, < 0, the 
estimator feedback Q rapidly brings the state estimate f in close proximity to  the state x based on measurements of 2 2  only. 
Such behavior is seen with all initial conditions tested. The approach of the estimated state to  the actual state is more rapid for 
estimators with more negative values of IC,. After the state and the estimate are brought into proximity, nonlinear estimators 
with I C ~  < 0 accurately track the chaotic trajectory of the state with little further estimator feedback required. 
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