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ABSTRACT
As traditional fields, such as controls, mathematics, and fluid

mechanics, individually grow towards their maturity, many new
opportunities for significant advances lie at their intersection. As
a prime example, attempts at effective integration of control the-
ory, Navier-Stokes mathematics, and fluid mechanics are still in
their infancy. What is sorely needed is a balanced perspective and
understanding in which one both considers flow physics (and the
Navier-Stokes equation governing this physics) when designing
control algorithms, and, conversely, the requirements and limi-
tations of control algorithms when designing both reduced-order
fluid models and the fluid-mechanical systems to be controlled
themselves. Such a balanced perspective is elusive, however, as
both the research establishment in general and universities in par-
ticular are accustomed only to the dissemination and teaching
of component technologies in isolated fields. This lecture will
briefly survey a few recent attempts at bridging some of the gaps
between these disciplines.

INTRODUCTION
Though the number of new directions being taken every year

in the broad area of “flow control” is growing almost exponen-
tially, there is still much uncharted territory, and many of the
areas which have been investigated at this intersection of tech-
nologies still leave fundamental unanswered questions. We will
attempt to identify a few of these unanswered questions in this
paper. Certainly any paper, such as the present, which attempts to
identify “new” frontiers for investigation in a dynamic research
area is destined to become outdated quite rapidly. This being

said, it is useful to step back for a moment and attempt to gain
a bit of perspective on recent work in order to get a glimpse of
the directions such research might be leading. To this end, this
paper will describe mostly the projects with which the author has
been directly involved and will attempt to weave the story which
threads these projects together as part of the fabric of a substan-
tial new area of interdisciplinary research.

Space does not permit the complete development of these
projects in the present paper; rather, the paper will just hint
at several of the more significant results. The reader is re-
ferred to the appropriate full journal articles for all of the rel-
evant details and careful placement of these projects in con-
text with the works of others; reprints and preprints of all ref-
erences by the author and discussed herein are available at at
http://turbulence.ucsd.edu/̃bewley.

Space limitations also do not allow this brief paper to ade-
quately review the recent directions all my friends and colleagues
are taking in this field. Rather than attempt such a review and
fail, the reader is referred to recent review papers which, taken
together, themselves span only a fraction of the current work be-
ing done in this active area of research. From the experimen-
tal perspective, the reader is referred specifically to recent re-
views of Ho & Tai (1996, 1998), McMichael (1996), Gad El Hak
(1996), and Moin & Bewley (1994). From the mathematical per-
spective, the reader is referred to the recent dedicated volumes
compiled by Banks (1992), Banks, Fabiano, & Ito (1993), Gun-
zburger (1995), Lagnese, Russell, & White (1995), and Sritharan
(1998), for a sampling of recent results.
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LINEARIZATION – Life in a small neighborhood
As a starting point for the introduction of control theory into

a fluid-mechanical setting, we may consider the linearized sys-
tem arising from the equation governing small perturbations to
a laminar flow. From a physical point of view, such perturba-
tions are very important, as they are the initial stages of the com-
plex process of transition to turbulence, and thus their mitigation
is highly desired. Such systems, once appropriately discretized,
may be written in the standard form

ẋ = Ax + B1w+B2u

y =C2x+D21w;
wherex denotes the state,w denotes the disturbance,u denotes
the control, andy denotes the available measurements. Not sur-
prisingly, there is a wide body of literature surrounding how to
control a linear system of this form. The application of one pop-
ular technique based on minimization of certain transfer function
norms, called linear optimal/robust control theory, is discussed in
detail in Bewley & Liu (1998). The application of another pop-
ular technique, called proportional-integral (PI) control, is pre-
sented in Joshi, Speyer, & Kim (1997).

MatricesA arising from the discretization of systems in fluid
mechanics are often highly “non-normal”, which means that the
eigenvectors ofA are highly nonorthogonal. This is especially
true for transition in a plane channel, for which very impor-
tant characteristics of the system, such asO(Re) transient en-
ergy growth at subcritical Reynolds numbers, simply can not be
explained by examination of eigenvalues alone. In such systems,
control techniques which account for this eigenvector nonorthog-
onality, such as those based on transfer-function norms, generally
have an advantage over control techniques which account for the
eigenvalues only, such as those based on analysis of root-locus
plots (Bewley & Liu 1998).

Linear control theory may also be used to introduce
estimator-based approaches to the fluid-mechanical setting. The
flow of information in such an approach is illustrated schemati-
cally in the following block diagram.

plant

estimator

controller

disturbances
w

observation
y

state estimate
x̂

control
u

The plant, forced by external disturbances, has an internal statex

which cannot be observed. Instead, a noisy observationy is made
and an estimate of the statex̂ determined. This state estimate is
then fed through the controller to determine the controlu to be
applied on the plant to regulatex to zero. Essentially, the full
equation for the plant (or a reduced-order model thereof) is used
in the estimator as an effective filter to extract useful information
about the state from the available (noisy) measurements.

The controllers analyzed in Bewley & Liu (1998) were de-
veloped at a particular wavenumber pairs. Recent theoretical
work by Bamieh (1997) indicates that taking the inverse trans-
form of an array of such controllers should result in spatial con-
volution kernels with compact support such that the weights on
sensor measurements eventually decay exponentially as a func-
tion of distance from the actuators. This property will allow the
convolution kernels to be truncated with a prescribed degree of
accuracy at a finite distance from each actuator, resulting in im-
plementable schemes in the physical domain. Whether or not this
is this case in practice is currently under active investigation.

Another important question which remains open is how best
to reduce the equation in the estimator, which must be calculated
online in any implementation, to some manageable reduced-
order model of the flow. Techniques which retain only a select
number of eigenmodes are of dubious value, as the relevance of
isolated eigenmodes in such systems is marginal. As mentioned
earlier, it is the nonorthogonality of the entire set of eigenvectors
which leads to the peculiar (and important) possibilities for en-
ergy amplification in these systems. Thus, in addition to the con-
trol techniques, model reduction techniques which are mindful
of the relevant transfer function norms (such as balanced trunca-
tion and Hankel norm approximation) are probably superior, and
should be carefully investigated for this problem.

EXTRAPOLATION – Linear control of turbulence???
Even with these follow-on questions remaining open for the

moment, we may begin to consider the application of the linear
control feedback determined by the linear analysis of Bewley &
Liu (1998) directly to the fully nonlinear problem of a turbulent
flow. The first reason to try such an approach is simply because
we can: due to the ease of determining and implementing linear
control feedback, we are veritably bound to exploit everything
we can from our ability to compute linear controls. There is at
least some evidence in the fluids literature that such an approach
may not be entirely crazy. Though the significance of this re-
sult has been debated widely in the fluid mechanics community,
Farrell & Ioannou (1993) have clearly shown that the linearized
Navier-Stokes equation in a plane channel flow, when excited
with the appropriate stochastic forcing, exhibits behaviour which
is reminiscent of streamwise vortices and streamwise streaks,
though it is widely accepted that the creation of such structures in
a turbulent flow is an inherently nonlinear process. Whatever in-
formation the linearized equation actually contains about the real
mechanisms for formation of streamwise vortices and stream-
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Figure 1. Regions of attraction of desired (blue) and undesired (red) stationary points in linearly-controlled convection system and typical trajectories in

each region (black and green respectively). The cubical domain illustrated is Ω = (�25;25)3 in all subfigures; for clarity, slightly different viewpoints are

used in each subfigure. As the weighting on the control ` is turned down (and the resulting control magnitude increases), the domain of convergence of

the undesired stabilized state remains large and this state moves farther from the origin (in a sense, the undesired state becomes aggravated).

wise streaks, the linear controllers should be able to exploit. We
proceed on the notion that it’s at least worthy of investigation.

In order to understand the possible pitfalls of applying linear
feedback to nonlinear systems, a low-order nonlinear convection
problem governed by the Lorenz equation was studied in Bew-
ley (1999). As with the problem of turbulent channel flow, but
in a very low-order system easily amenable to analysis, we de-
termined the control feedback with linear control theory by lin-
earizing the governing equation about a desired fixed point. Once
a linear controller was determined by such an approach, it was
then applied directly to the fully nonlinear system. The result is
depicted in figure 1.

For control feedback determined from linear control theory
with a large penalty on the control in the controller formulation
(and thus a small amount of control applied as a result), direct
application of linear feedback to the full nonlinear system stabi-
lizes both the desired state (indicated by the black trajectories of
figure 1) and an undesired state (indicated by the green trajecto-
ries of figure 1). An unstable manifold exists between these two
stabilized points, as indicated by the contorted blue/red surfaces
in figure 1. Any initial state on the blue side of this manifold will
converge to the desired state, and any initial state on the red side
of this manifold will converge to the undesired state.

As seen in figure 1, for increased feedback magnitudeK
(e.g., decreased̀), the undesired stabilized state moves farther
from the origin, and the domain of convergence of the undesired
state remains large; the closed-loop system eventually becomes
unbounded for sufficiently large feedbackK. Some form of non-
linearity in the feedback rule is required to eliminate this unde-
sired behavior. One effective technique is to apply the control

u = H(R�jx� x̄j)K(x� x̄) H(ζ) =(
0 for ζ� 0

1 for ζ > 0;
such that the control is turned on only when the statex(t) is inside
a sphere of radiusR, centered at the desired statex̄, completely
contained in the domain of convergence of the desired stationary
point in the linearly-controlled system. The chaotic dynamics of
the uncontrolled Lorenz system will bring the system into this
subdomain in finite time, after which control may be applied to
“catch” the state at the desired equilibrium point.

We thus see that even in this very simple model problem,
linear feedback can have a destabilizing influence if applied out-
side the neighborhood for which it was designed. For the full
Navier-Stokes problem, though a certain set of linear feedback
gains might stabilize the laminar state, on the “other side of the
manifold” might lie a turbulent state which is aggravated be the
same linear controls. The easy fix found for the convection prob-
lem (that is, simply turn off the control until the chaotic dynamics
bring the state into a neighborhood of the desired state) is prob-
ably not available for the (high-dimensional) problem of turbu-
lence, as fully turbulent flows remain at all times far from the
laminar state.

We are thus wary of our current attempts to apply linear con-
trol theory to the fully nonlinear problem of turbulence. It has to
at least be tried, but there are clear indications that significant
difficulties may be encountered. In order to provide guidance as
to how feedback control might eventually be applied to mitigate
turbulence, we now turn to a less practical but more reliable con-
trol framework, referred to in the controls literature as receding-
horizon model predictive control.
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(a) History of drag. (b) History of turbulent kinetic energy.

Figure 2. Performance of optimized blowing/suction controls for formulations based on JTKE(ter) as a function of the optimization horizon T+ as computed

in direct numerical simulations of turbulent channel flow at Reτ = 100. For small optimization horizons (T+ = O(1), sometimes called the “suboptimal

approximation”), approximately 20% drag reduction is obtained, a result which can be obtained with a variety of other approaches. For sufficiently large

optimization horizons (T+ & 25), the flow is returned to the region of stability of the laminar flow, and the flow relaminarizes with no further control effort

required. No other control algorithm tested in this flow to date has achieved this result with this type of flow actuation.

OPTIMIZATION – The best case scenario
Given a pristine setting of full flowfield information, no dis-

turbances, and unlimited computer resources, a finite-horizon op-
timization problem may be formulated and solved for full (non-
linear) Navier-Stokes systems to (locally) minimize a given cost
functional which defines the physical problem of interest (Bew-
ley, Moin, & Temam 1999). The general idea of this approach,
referred to as receding-horizon predictive control, is best un-
derstood by comparing and contrasting it to massively-parallel
brute-force algorithms recently developed to play the game of
chess. The goal when playing chess is to capture the other
player’s king through an alternating series of discrete moves with
the opponent: at any particular turn, a player has to select one
move out of at most fifty or so legal alternatives.

To accomplish its optimization, a computer program de-
signed to play the comparatively “simple” game of chess, such as
Deep Blue(Newborn 1997), must, in the worst case, plan ahead
by iteratively examining a tree of possible evolutions of the game
several moves into the future (Atkinson 1993). At each step, the
program selects that move which leads to the best expected out-
come, given that the opponent is doing the same, in the spirit of
a noncooperative game. The version ofDeep Bluethat defeated
Garry Kasparov in 1997 was able to calculate up to 200 billion
moves in the three minutes it was allowed to conduct each turn.
Even with this extreme number of function evaluations at its dis-
posal on this relatively simple problem, the algorithm was only
about an even match with Kasparov’s human intuition.

An improved algorithm to the brute-force approaches based
on function evaluations alone, suitable for optimizing the present
problem in a reasonable amount of time, is available because i)
we know the equation governing the evolution of the present sys-
tem, and ii) we can state the problem of interest as a functional
to be minimized. Taking these two facts together, we may de-
vise and solve an iterative procedure based on gradient informa-
tion, derived from anadjoint field, to optimize the controls for
the desired purpose on the prediction horizon of interest in an
efficient manner. Only by exploiting such gradient information
can the high-dimensional optimization problem at hand (up to
O(107) control variables per optimization horizon atReτ = 180)
be made tractable. It is desirable that the optimization problems
we formulate be as well-conditioned as possible in order to make
them amenable to efficient gradient-based numerical optimiza-
tion algorithms. To this end, several different formulations of the
present control problem have been considered. Three represen-
tative cases are

JDRAG(φ) =�d1

Z T

0

Z
Γ�2 ν

∂u1(φ)
∂n

dxdt+ `2

2

Z T

0
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Clearly, in both the chess problem and the turbulence prob-
lem, the further into the future one can optimize the problem
the better (figure 2); however, both problems get exponentially
harder to optimize as the prediction horizon is increased. Since
only intermediate-term optimization is tractable, it is not always
the best approach to represent the final objective in the cost func-
tional. In the chess problem, though the final aim is to capture the
other player’s king, it is most effective to adopt a mid-game strat-
egy of establishing good board position and achieving material
advantage. Similarly, if the turbulence control objective is reduc-
ing drag, it was found in Bewley, Moin, & Temam (1999) that it
is most effective along the way to minimize a finite-horizon cost
functional related to the turbulent kinetic energy of the flow, as
the turbulent transport of momentum is responsible for inducing
a substantial portion of the drag in a turbulent flow. In a sense,
turbulence is the “cause” and high drag is the “effect”, and it is
most effective to target the “cause” in the cost functional when
optimizations on only intermediate prediction horizons are pos-
sible.

In addition, a smart optimization algorithm allows for ex-
cursions in the short term if it leads to a long-term advantage.
For example, in chess, a good player is willing to sacrifice a
lesser piece if, by so doing, a commanding board position is at-
tained and/or a restoring exchange is forced a few moves later.
Similarly, by allowing a turbulence control scheme to increase
(temporarily) the turbulent kinetic energy of a flow, a transient
may ensue which, eventually, effectively diminishes the strength
of the near-wall coherent structures. It was found in Bewley,
Moin, & Temam (1999) that terminal control strategies, aimed at
minimizing the turbulence only at the end of each optimization
period, appear to have an advantage over regulation strategies,
which penalize excursions of the turbulent kinetic energy over
the entire prediction horizon.

ROBUSTIFICATION – Murphy’s Law
Though optimal control approaches possess an attractive

mathematical elegance and are now proven to provide excellent
results in terms of drag and TKE reduction in fully-developed
turbulent flows, they certainly suffer from their share of prob-
lems, not the least of which is sensitivity to design point, external
disturbances, and modeling errors. In order to abate such system
sensitivity, one may appeal to the concepts of robust control the-
ory (Bewley, Temam, & Ziane 1999). Such a theory, one might
say, amounts to Murphy’s law taken seriously:

If a worst-case disturbance can disrupt a controlled
closed-loop system, it will.

When designing a robust controller, therefore, one shouldplan
on a finite component of the worst-case disturbance aggravat-
ing the system, and design a controller which is suited to handle
even this extreme situation. A controller which is designed to

work even in the presence of a finite component of the worst-case
disturbance will also be robust to a wide class of other possible
disturbances which, by definition, are not as detrimental to the
control objective as the worst-case disturbance. Thus, the prob-
lem of finding a robust control is intimately coupled with the
problem of finding the worst-case disturbance, in the spirit of a
non-cooperative game.
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Figure 3. Schematic of a saddle point representing the neighborhood of

a solution to a robust control problem with one scalar disturbance variable

ψ and one scalar control variable φ. When the robust control problem is

solved, the cost function J is simultaneously maximized with respect to

ψ and minimized with respect to φ, and a saddle point such as (ψ̄; φ̄)
is reached. An essentially infinite-dimensional extension of this concept

may be formulated to achieve robustness to disturbances and insensitivity

to design point in fluid-mechanical systems. In such approaches, the cost

J is related to a distributed disturbance ψ and a distributed control φ
through the solution of the Navier-Stokes equation.

To summarize briefly the robust control approach in the time
domain, a cost functionalJ describing the control problem at
hand is defined that weighs together the (distributed) disturbance
ψ, the (distributed) controlφ, and the flow perturbationu(ψ;φ)
in the domainΩ over the time period of consideration[0;T]. The
cost functional considered in Bewley, Temam, & Ziane (1999) is
of the form

J (ψ;φ) = 1
2

Z T

0

Z
Ω
jC1uj2dxdt+ 1

2

Z
Ω
jC2u(x;T)j2dx�Z T

0

Z
∂Ω
C3ν

∂u
∂n
�~rdΓdt+ 1

2

Z T

0

Z
Ω

�`2jφj2� γ2jψj2�dxdt:
This cost functional is simultaneously maximized with respect to
the disturbanceψ and minimized with respect to the controlφ, as
illustrated in figure 3. The robust control problem is considered
to be solved when a saddle point(ψ̄; φ̄) is reached; note that such
a solution, if it exists, is not necessarily unique.
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Figure 4. Schematic of the space-time domain over which the flow field

u is defined. The possible regions of forcing in the system defining u are:

(1) the right-hand side of the p.d.e., indicated with shading, representing

flow control by interior volume forcing (e.g., externally-applied electromag-

netic forcing by wall-mounted magnets and electrodes);

(2) the boundary conditions, indicated with diagonal stripes, representing

flow control by boundary forcing (e.g., wall transpiration);

(3) the initial conditions, indicated with checkerboard, representing op-

timization of the initial state in a data assimilation framework (e.g., the

weather forecasting problem).
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Figure 5. Schematic of the space-time domain over which the adjoint

field ũ is defined. The possible regions of forcing in the system defining

ũ, corresponding exactly to the possible domains in which the cost func-

tional J can depend on u, are:

(1) the right-hand side of the p.d.e., indicated with shading, representing

regulation of an interior quantity (e.g., turbulent kinetic energy);

(2) the boundary conditions, indicated with diagonal stripes, representing

regulation of a boundary quantity (e.g., wall skin-friction);

(3) the terminal conditions, indicated with checkerboard, representing ter-

minal control of an interior quantity (e.g., turbulent kinetic energy).

GENERALIZATION – A unified framework
The dependence of the cost functionalJ on the flow pertur-

bationu= u(ψ;φ) itself is treated in a fairly general form in the
analysis of Bewley, Temam, & Ziane (1999). The three cases
discussed previously, related to the regulation of drag and turbu-
lent kinetic energy and the terminal control of turbulent kinetic
energy, all may be considered in the present framework, and the
extension to other cost functionals is straightforward. Similarly,
three different locations of forcing may be identified for the flow
problem. As illustrated in figures 4 and 5, the various regions of
forcing of the flow and adjoint problems together form a general
framework which can be applied to a wide variety of problems in
fluid mechanics including both flow control (e.g., drag reduction,
mixing enhancement, and noise control) and flow forecasting
(e.g., weather prediction and storm forecasting). Related tech-
niques, but applied to the time-averaged Navier-Stokes equation,
have also been used extensively to optimize the shapes of airfoils

(see, for example, Reutheret al.1996).

By identifying a range of problems which all fit into the
same general framework, we can better understand how to ex-
tend, for example, the ideas of robust control to the full suite of
related problems. In fact, the adjoint field at the heart of all of
these approaches may be used for both the minimization w.r.t.
the controland the maximization w.r.t. the disturbance, so the
additional computational complexity added by the robust com-
ponent of the controller formulation is simply a matter of storage
of the appropriate disturbance variables. Many disciplines have
noted that adjoint-based optimization strategies tend to “over-
optimize” the system, leaving a high degree of design-point sen-
sitivity. The noncooperative framework of robust control pro-
vides a natural means to “detune” the optimal result and can be
applied easily to a broad range of related applications.

IMPLEMENTATION – Intelligent compromise
In addition to “robustifying” the result, there are several

other practical issues which can only be mentioned briefly here.

The direct numerical simulations (DNS) reported in figure 2
were conducted at very low Reynolds number. In order to begin
to examine higher Reynolds number turbulent flows, it is imper-
ative that we learn how to apply the optimization framework to
large eddy simulations (LES). There are very subtle questions of
how to handle the sub-grid-scale (SGS) model in the computa-
tion of the adjoint field. The reader is referred to the pioneering
work of Chang & Collis (1999) for a discussion of these issues.

Model predictive control, of course, might never actually
even be applied in a real turbulent flow. In such a flow, the state
evolves extremely quickly—Mother Nature does not stop to al-
low us the three minutes per update that was allowed toDeep
Blue in the match with Kasparov. However, there are a variety
of implementations in which the framework of model predictive
control is still quite useful, including the supercomputer-based
optimization of sets of feedback coefficients (to be selected and
implemented in a real-world implementations) and the optimiza-
tion of open-loop time-periodic forcing schedules to establish a
desired (optimized) approximately time-periodic response in a
given turbulent flow. Such practical applications will be studied
in future work once all of the salient details have been sorted out
on idealized model problems.

Finally, it is important to mention that it is paramount that
reduced-order models of turbulence be developed which are ef-
fective in the closed-loop setting. Preliminary work in this di-
rection using the proper orthogonal decomposition (POD) is re-
viewed by Lumley & Blossey (1998). Note that reduced-order
models which are effective in the closed-loop setting need not
capture the majority of the energetics of the unsteady flow; fu-
ture control-oriented models may benefit by deviating from the
standard mindset of attempting to capture such energetics.
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DISCUSSION – A common language for dialog
It is imperative that an accessible language be developed

which provides a common ground upon which people from the
fields of fluid mechanics, mathematics, and controls can meet,
communicate, and develop new theories and techniques for flow
control. Pierre-Simon de Laplace once said

Such is the advantage of a well constructed language
that its simplified notation often becomes the source of
profound theories.

Similarly, it was recognized by Gottfried Wilhelm Leibniz that

It is worth noting that the notation facilitates discovery.
This, in a most wonderful way, reduces the mind’s labor.

Profound new theories are still possible in this young field. To a
large extent, however, we have not yet homed in on a common
language in which such profound theories can be framed. Such a
language needs to be actively pursued; time spent on identifying,
implementing, and explaining a clear “compromise” language
which is approachable by those from the related “traditional” dis-
ciplines is time well spent. An example problem which might be
addressed by such a collaborative dialog is shown in figure 6.
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Figure 6. An enticing picture: fundamental restructuring of the near-wall

unsteadiness to insulate the wall from the viscous effects of the bulk flow.

It has been argued (Nosenchuck 1994, Koumoutsakos 1999) that it might

be possible to maintain a series of so-called “fluid rollers” to effectively re-

duce the drag of a flow, much as a series of solid cylinders can serve as an

effective conveyer belt. One problem with this picture is that between each

clockwise-spinning roller must exist a roller spinning counter-clockwise, as

the fluid is a continuum. It is still the topic of some debate whether or not

such a configuration could be maintained by a control which acts solely on

the unsteady component of the flow in such a way as to sustain the mean

skin-friction below laminar levels. (Such a control might be applied by

either interior electromagnetic controls applied by wall-mounted magnets

and electrodes or by boundary controls such as blowing/suction.) Defini-

tive answers to questions like this, posed initially in the fluid mechanics

community, might be possible by rigorous analysis of the Navier-Stokes

equation governing this flow.

There are, of course, some significant obstacles to the im-
plementation of a common language. For example, fluid me-
chanicians have historically usedu to denote flow velocities and
x to denote spatial coordinates, whereas the controls community
overwhelmingly adoptsx as the state vector andu as the control.

Writing papers in a manner which is conscious to these differ-
ent backgrounds (for example, explaining the notation adopted
and the necessary controls terms to the fluids folks and the fluids
concepts to the controls folks) is certainly extra work. However,
such an exercise is necessary to make interdisciplinary work ac-
cessible to the large audience of people in related fields.

Besides mathematical notation, there are certain reserved
words which mean something very specific in various fields.
Though this is not necessarily easy, we should learn these words
and respect their meanings, even if such words don’t carry a
strong meaning in the particular field in which we were educated.
For instance, the word “optimal” in the controls literature is re-
lated to a specific procedure. Though this procedure can take
a variety of forms and be solved with either adjoint-based ap-
proaches or Riccati based approaches, it is not synonymous with
the word “optimized”. Optimization can take a variety of model-
based or adaptive approaches that may or may not be related to
optimal control. Similarly, the word “robust” in the controls lit-
erature has a very specific meaning, well-established supporting
theory (in fact, it may be posed as an extension of optimal control
to a non-cooperative framework), and concomitant implications
in terms of disturbance rejection. The word “robust” is not syn-
onymous with “effective” or “durable” and can not be used as
such in flow control research without false implications. In ad-
dition, the word “model” in the fluids literature usually has the
connotation of a reduced-order model, though this implication
is not made in the controls literature. Thus, to avoid confusion,
the word “model” should be avoided in flow-control research un-
less specifically referring to a “reduced-order model”. Also, the
word “flux” in fluid mechanics has the connotation of convective
transport of a quantity with the fluid through a given area, or

The rate of flow of any fluid across a given area; the
amount which crosses an area in a given time; it is thus
a vector referred to unit area. Also used with reference
to other forms of matter and energy that can be regarded
as flowing...

(Oxford English Dictionary, 2nd ed.). Usage of this word for the
gradient of a quantity at a solid surface should thus be avoided.

In summary, we can not borrow words from disciplines out-
side of our own without learning and respecting what these re-
served words mean. Imagine someone in the controls world pick-
ing up a commercial flow code and running a time-averaged sim-
ulation of the flow over the shape he was optimizing with ak� ε
model for the turbulence. If he told the flow control commu-
nity he was doing a “direct numerical simulation” of this flow,
he would literally be correct using the words as they are defined
in his own field, where they have no special connotation. How-
ever, he would be (perhaps unknowingly) misleading the entire
fluids community with his poor choice of words. So also are de-
scriptions misleading when words from the controls community
are misused by those coming from a fluids background. It is our
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duty to use caution to avoid such miscommunications before they
happen by using terminology consistent with that used by both
the fluids community and the controls community when doing
flow control research.

Similarly, we should avoid the temptation to invent new
names for techniques which are already well established in other
disciplines. For example, some of the work I have been involved
with uses a technique which has been discussed extensively in the
controls literature under the name of predictive control. Were we
to invent a new name for such a procedure, being the first to actu-
ally apply it in a fluid-mechanical setting, we would perhaps gain
more recognition. However, not only would we be misleading
our peers with the impression that we were inventing something
new, we would not be giving others who came before us proper
credit for implementing such a procedure in other disciplines. It
is an excellent idea to introduce tools from one discipline into
another discipline; such a procedure forms the very foundation
for much interdisciplinary work. However, it is not acceptable to
claim this tool as something new to those who know no better for
the purpose of undue recognition. Instead, it is much more con-
structive to determine and explain precisely where the technique
one has picked up fits in to the existing body of literature.

THE FUTURE – A Renaissance
In order to promote interdisciplinary work, describing one-

self as working at the intersection of disciplinesX andY (or,
where they are still disjoint, the bridge between such disciplines)
needs to become more commonplace. People often resort to the
philosophy “I doX... oh, and I also sometimes dabble a bit with
Y”, as the philosophy “I doX*Y”, where* denotes something of
the nature of an integral convolution, has not been in favour since
the Renaissance. Perhaps the sole reason for this is thatX andY
(and Z, W, ...) have gotten progressively more and more dif-
ficult. By specialization (though often to the point of isolation),
we are able to “master” our more and more narrowly-defined dis-
ciplines. In the experience of the author, not only is it often the
case thatX andY are not immiscible, but the solution sought may
often not be formulated with the ingredients ofX or Y alone. In
order to advance, new research must be conducted at the inter-
section ofX andY; we must prepare ourselves and our students
to attack new problems with a Renaissance approach.
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