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Optimal and robust control of transition

By T. R. Bewley! AND R. Agarwal’

Optimal and robust control theories are used to determine feedback control rules
that effectively stabilize a linearly unstable flow in a plane channel. Wall transpi-
ration (unsteady blowing/suction) with zero net mass flux is used as the control.
Control algorithms are considered that depend both on full flowfield information
and on estimates of that flowfield based on wall skin-friction measurements only.
The development of these control algorithms accounts for modeling errors and mea-
surement noise in a rigorous fashion; these disturbances are considered in both a
structured (Gaussian) and unstructured (“worst case”) sense. The performance
of these algorithms is analyzed in terms of the eigenmodes of the resulting con-
trolled systems, and the sensitivity of individual eigenmodes to both control and
observation is quantified.

1. Introduction

The behavior of infinitesimal perturbations in simple laminar flows is an impor-
tant and well-understood problem. As the Reynolds number is increased, laminar
flows often become unstable and transition to turbulence occurs. The effects of
the turbulence produced in such flows are very significant and often undesirable,
resulting in increased drag and heat transfer at the flow boundaries. Thus, a natu-
ral engineering problem is to study methods of flow control such that transition to
turbulence can be delayed or eliminated.

Transition often occurs at a Reynolds number well below that required for linear
instability of the laminar flow. Orszag & Patera (1983) demonstrate that finite
amplitude two-dimensional perturbations can highly destabilize infinitesimal three-
dimensional perturbations in the flow. Butler & Farrell (1992) show that the non-
orthogonality of the eigenmodes of subcritical flows implies that perturbations of a
particular initial structure will experience large amplification of energy before their
eventual decay, and suggest that such amplification can sometimes lead to flow
perturbations large enough for nonlinear instability to be triggered. Such nonlinear
instabilities can lead to transition well below the critical Reynolds number at which
linear instability occurs. Results such as these have renewed interest in the control
of the small (linear) perturbations, as the mitigation of linear perturbations also
lessens the potency of these nonlinear “bypass” mechanisms.

A firm theoretical basis for the control of small perturbations in viscous shear
flows is only beginning to emerge. An important step in this direction is provided
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by Joslin et al. (1995) and Joshi, Speyer, & Kim (1996), who analyze this problem
in a closed-loop framework, in which the dynamics of the flow system together with
the controller are examined. Joslin et al. (1995) apply optimal control theory to
a problem related to the one presented here; in their approach, the control is de-
termined through an adjoint formulation requiring full flowfield information. Joshi,
Speyer, & Kim (1996) consider essentially the same problem analyzed in this paper,
and show that a simple constant gain feedback with an integral compensator may
be used in a single-input/single-output (SISO) sense to stabilize the flow; a single
output (the appropriate Fourier component of the streamwise drag) is multiplied by
some scalar I and summed with a reference signal to determine the corresponding
component of the control velocity. This proportional approach is a special case of
a class of proportional-integral-derivative (PID) controllers, which combine terms
which are proportional, integrals, and derivatives of a scalar output of a system.

The present work extends these analyses to rigorously account for state distur-
bances and measurement noise. A two-step control approach is used. First, a state
estimate is developed from a (potentially inaccurate) model of the flow equations,
with corrections to this state estimate provided by (noisy) flow measurements fed
back through an output injection matrix L. This state estimate is then multiplied
by a feedback matrix K to determine the control. Potentially, this approach can
yield better results than a PID controller. In comparison to the PID approach, the
present approach has many more parameters in the control law (specifically, the
elements of the matrices ' and L), which are rigorously optimized for a clearly de-
fined objective. In this manner, multiple-input/multiple-output (MIMO) systems
are handled naturally and the controller is coupled with an estimator which models
the dynamics of the system itself.

Many problems in fluid mechanics, especially those involving turbulence, are dom-
inated by nonlinear behavior. In such problems, the linear analysis performed in
this paper is not valid. However, optimal control approaches, which use full state in-
formation, may still be formulated (Abergel & Temam 1990) and performed (Moin
& Bewley 1995) with impressive results. In order to make such schemes practical,
one must understand how to account for disturbances in a rigorous fashion and
how to estimate accurately the necessary components of the state (for instance, the
location and strength of the near-wall coherent structures) based on limited flow
measurements. The current paper makes these concepts clear in a fluid-mechanical
sense, albeit for a linear problem, and thus provides a step in this development.

The controllers and estimators used in this work are determined by Hy and Hs
approaches. These techniques have recently been cast in a compact form by Doyle et
al. (1989), and are well suited to the current problem, in which the issue of interest
is the ability of a closed-loop system to reject disturbances to a laminar flow when
only a few noisy measurements of the flow are available.

In §2, we derive the governing equations for the present flow stability problem and
cast these equations in a standard notation. In §3, the control problem is analyzed
in terms of the controllability and observability of each individual eigenmode of the
system developed in §2. In §4, the control approach developed in Doyle et al. (1989)
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is summarized and applied to the present system. In this control approach, two Ric-
cati equations describe a family of Hy and Ho controllers which take into account
structured (Gaussian) and unstructured (“worst case”) disturbances. Results of
these approaches are presented in §5, and §6 presents some concluding remarks.

2. Governing equations

This chapter derives the equations governing the perturbations to a laminar chan-
nel flow and casts them in a form to which standard control techniques may be ap-
plied. This familiar discussion is presented to precisely define the control problem
under consideration.

2.1 Continuous form of flow equations

Consider a steady plane channel flow with maximum velocity Uy and channel
half-width ¢. Non-dimensionalizing all velocities by Uy and lengths by 6, the mean
velocity profile in the streamwise direction (z) may be written U(y) = 1 — y* on
the domain y € [—1,1]. The equations governing small, incompressible, three-
dimensional perturbations (v,w) are

AO={=ik, UAN+ik, U" + A(A/Re)} v (la)
w ={—1k U} v+ {—ik, U+ A/Re} w, (1b)

where k, is the streamwise wavenumber, k. is the spanwise wavenumber, A =
0?/0y* — k2 — k? is the Laplacian, Re = Upd/v is the Reynolds number, v is the
Fourier component of the wall-normal velocity, and w is the Fourier component
of the wall-normal vorticity. Equation (1la) is the (fourth order) Orr-Sommerfeld
equation for the wall-normal velocity modes, and (1b) is the (second order) equation
for the wall-normal vorticity modes. Note the one-way coupling between these two
equations. Also note that, from any solution (v,w), the streamwise velocity v and
spanwise velocity w may be extracted by manipulation of the continuity equation
and the definition of wall-normal vorticity into the form

7 ov
YRR (’%a—y "W) (20)

—1 v
w:k%-l-kz (kza—y—kxw>. (2b)
Control will be applied at the wall as a boundary condition on the wall-normal
component of velocity v. The boundary conditions on u and w are no-slip (v =
w = 0), which implies that w = 0 and (by continuity) dv/dy = 0 on the wall.

In this development, it is assumed that an array of sensors, which can measure
streamwise and spanwise skin friction, and actuators, which provide wall-normal
blowing and suction with zero net mass flux, are mounted on the walls of a laminar
channel flow. It is also assumed that a sufficient number of sensors and actua-
tors are installed such that individual Fourier components of wall skin friction and
wall transpiration may be approximated, and the analysis is carried through for a
particular Fourier mode.
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2.2 Discrete form of flow equations
The continuous problem described above is discretized on a grid of N+41 Chebyshev-
Gauss-Lobatto points such that
yr = cos(wl/N) for 0 <1< N.

An (N +1) x (N +1) matrix D may be expressed (Canuto et al. 1988, eqn. 2.4.31)
such that the derivative of w with respect to y on the discrete set of N + 1 points
is given by

Ww'=Duw and W' =D,

where the prime (') now indicates the (partial) derivative of the discrete quantity
with respect to y. The homogeneous Neumann boundary condition on v is accom-
plished by modifying the first derivative matrix such that

. { 0 [=0,N
Dlm =
Dim 1<1I<N -1,
Differentiation of v with respect to y is then given by

o' = Do, o = D’Ul, " — Dv”, and " — Doy

With these derivative matrices, it is straightforward to write (1) in matrix form.
This is accomplished by first expressing the matrix form of (1) on all N 4 1 collo-
cation points such that

v=Lv (3a)
w=Cv+Sw, (3b)
where £, C, and S are (N + 1) x (N + 1). (Note that, for k2 + k% # 0, the matrix
form of the LHS of (1a) is invertible, so the form (3a) is easily determined.) The

Dirichlet boundary conditions are explicitly prescribed as separate “forcing” terms.
To accomplish this, decompose £, C, and S according to

* * * * * * * * *
L= b1y Ay bio C=| by Agy bao S = * Ago *

* * * * * * * * *

where Aqq1, Asy, and Ay are (N — 1) x (N — 1) and b11, bi2, ba1, and byy are
(N —1) x 1. Noting that wy = wny = 0 by the no-slip condition, and defining

v1
All 0 bll blZ
= "N A= B = uz(vo>,
w1 UN
A21 Azz 621 622

WN -1
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where 2 18 2(N —1)x 1, Ais2(N—=1)x2(N —1), Bis 2(N = 1) x 2, and w is 2 x 1,

we may express (3) in the standard form
& = Az + Bu. (4)

The vector = is referred to as the “state”, and the vector u is referred to as the
“control”.

2.3 Wall measurements

We will consider control algorithms using both full flowfield information and wall
information only. For the latter case, we will assume that measurements made
at the wall provide information proportional to the streamwise and spanwise skin
friction

_ Ou _ Ou

Ym1 = 8_y upper wall Ymz = 8_y lower wall
_ Ow _ Ow

Yms = % upper wall Yma = % lower wall

Equations (2a) and (2b) allow us to express these measurements as linear combi-
nations of v and w. Defining a = i k, /(k? + k%) and b = —i k. /(k% 4+ k?) and using
the derivative matrices, the measurements are expressed as

Ym1 = (aﬁzv-l—bDw) Ym2 = (aﬁzv-l—bDw)

upper wall lower wall

Yms = (bﬁzv-l—aDw) Yma = (bﬁzv-l—aDw)

upper wall lower wall .

Now decompose D? and D according to

dl (5] d3 * C3 *
D? = * * * D=1 * * 3
d2 C9 d4 * Cq *

where ¢y, ¢g, ¢3, and ¢4 are 1 x (N — 1) and dy, dq, d3, and dy are 1 x 1. Finally,
defining

Ym1 acy bes ad; bds
_ | Ym2 _ acy bey | ady bdy

Ym = Ym3 ¢= bc1 a c3 D= bdl ad3 ’
Yma4 b C2 acy b d2 a d4

where vy, is 4 x 1, C'is 4 x 2(N — 1), and D is 4 x 2, allows us to express y,, in the
standard form of a linear combination of the state 2 and the control u

Ym = Cx + Du. (5)

The vector y,, is referred to as the “measurement”.
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3. Analysis of control problem

In §2, it was shown that the equations governing small perturbations in a laminar
channel flow may be expressed in the standard form

& = Ax + Bu (6a)
Ym = Cx + Du, (6b)

where all variables are complex and the system matrix A is dense and non-self-
adjoint. We now discuss the eigenmodes of A and identify which of these modes
may be modified by the control v and which may be detected by the measurements
Ym-

It has been shown (Orszag 1971) that, for Re < 5772, the uncontrolled problem
itself is stable and, for Re > 5772, weak instability is seen (though most of the
eigenvalues remain stable), with the greatest instability near k, = 1.0 and k, = 0.0.
We seek a method to determine the control u which stabilizes the system in a manner
which is robust to system uncertainties. To simplify our discussion, we will restrict
our attention in the remainder of this work to the particular case Re = 10,000,
k. = 1.0, and k, = 0.0. Joshi, Speyer, & Kim (1996) explore the (Re, ky, k.)
parameter space further.

For k., = 0 (two-dimensional perturbations), C = 0 in (3), entirely decoupling the
w eigenmodes from both the v eigenmodes and from the control u = (vg, vn)?.
In the language of control theory, the w eigenmodes are thus “uncontrollable” by
the control u. (However, it is also seen that the w eigenmodes are stable, so these
modes will, so to speak, “take care of themselves”.) Thus, for the remainder of this
paper, we will restrict our attention to the v eigenmodes according to system (6)
with

U1

r = : AZ All B= bll 612 u=<vo>,
. UN

UN-1

where 2 is (N —=1)x 1, Ais (N =1)x (N —=1),Bis (N —1)x 2, and v is 2 x 1, and

Ym1 acq ad1 bdg
| Ym2 _ acs | ady bdy
U = s “=1 e D=10a, ady |

Yma bey bdy, ady

where y,, is 4 x 1, C'is 4 x (N — 1), and D is 4 x 2. (All the constituent matrices,
vectors, and flow measurements are described in the previous section.)
3.1 System analysis

We now address whether or not all of the current system’s N — 1 eigenmodes
may be controlled by the m = 2 control variables, and whether or not all of these
eigenmodes may be observed with the p = 4 measurements. To accomplish this, it
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is standard practice to consider two matrices which characterize the controllability
and observability of the system as a whole (Lewis 1995). These are the system
controllability Gramian L. of (A, B) and the system observability Gramian L, of
(C, A), which may be found by solution of

AL.+ L. A*"+BB"=0
AL, + L, A+C*"C =0.

Note that stable numerical techniques to solve equations of this form, referred to
as Lyapunov equations, are well developed.

If L. is (nearly) singular, there is at least one eigenmode of the system which
is (nearly) unaffected by any choice of control u, and the system is called “un-
controllable”. If all uncontrollable eigenmodes are stable, and a controller may
be constructed such that the dynamics of the system may be made stable by the
application of control, the system is called “stabilizable”.

Similarly, if L, is (nearly) singular, there is at least one eigenmode of the system
which is (nearly) indiscernible by the measurements y,,, and the system is called
“unobservable”. If all unobservable eigenmodes are stable, and an estimator may be
constructed such that the dynamics of the error of the estimate may be made stable
by appropriate forcing of the estimator equation, the system is called “detectable”.

For the present system, the smallest eigenvalue of both L. and L, are computed
to be near machine zero, indicating that the present system as derived above is
both uncontrollable and unobservable. Gramian analysis can not identify which
of the eigenmodes are uncontrollable or unobservable, however, so it is impossible
to predict from this analysis alone whether or not the system is stabilizable and
detectable. For this reason, we now develop a method to determine which of the
eigenmodes of a system may be affected by the control u and, similarly, which
eigenmodes may be discerned by the measurements y,, .

3.2 Individual ergenmode analysis

We will now make use of the modal canonical form of the system (6) to quantify
the sensitivity of each eigenmode of A to both control and observation (Kailath
1980). In order to clarify the derivation, we shall examine each eigenmode of the
system separately. Define the eigenvalues \; and the right and left eigenvectors, &;
and n;, of A such that

right eigenvectors : A =N &
left eigenvectors : nrA=Nin!,
where the eigenvectors are normalized such that ||&;]] = ||n:]| = 1 for all i. Assume

A has distinct eigenvalues (this may be verified for the present system described
above). Then any x may be decomposed as a linear combination of the (independent
but not orthogonal) right eigenvectors such that

r=) ik (7a)
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Differentiating with respect to time,
P=) diki (7b)
?

Also, note that left and right eigenvectors corresponding to different eigenvalues are
orthogonal, but those corresponding to the same eigenvalues are not

(> &) =0 j#1 (8a)
(> &) #0 j=i. (80)
3.2.1 Definition of modal control sensitivity
By (6a) and (7), we have

Zdifz‘:z‘lzaifi-l-l?u
ZZai/\ifi-l—Bu.

Taking the inner product with n; and noting (8a) yields
(nj, @ &) = (nj, @ Aj &) + (nj, Bu).
Noting (8b), this yields
(B*n;)" u
ny&
If the vector B*n; = 0, then &; = A; a; for any u. In terms of equation (7a), the

component of x parallel to {; is not affected by the control u, and the eigenmode is
said to be “uncontrollable”. Further, the norm of the coefficient of u

[0 BB* ;|2 0
=" e )
which we shall call the control sensitivity of mode j, is a quantitative measure of
the sensitivity of the eigenmode j to the control u. Note the dependence of this
expression on the matrix B B*, which is the same term which drives the Lyapunov
equation for controllability Gramian L..

de/\jaj+

3.2.2 Definition of modal observation sensitivity

By (6b) and (7) and assuming, for the moment, that v = 0, we have
ym = Y _a; C'§;.
J

If the vector C'¢; = 0, then y,, will not be a function of «;. In terms of equation
(7a), the component of x parallel to {; does not contribute to the measurements
Ym, and the eigenmode is said to be “unobservable”. Further, the norm of C'¢;

g; = ¢ CT O, (10)
which we shall call the observation sensitivity of mode j, is a quantitative measure
of the sensitivity of the measurement y,, to eigenmode j. Note the dependence

of this expression on the matrix C* (', which is the same term which drives the
Lyapunov equation for observability Gramian L,.
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j Aj i 9j
1 0.00373967 — 0.23752649 i 0.266545 102.61
3 —0.03516728 — 0.96463092 ; 0.000215 72.85
4 —0.03518658 — 0.96464251 ¢ 0.000005 1.45
5 —0.05080873 — 0.27720434 ¢ 0.026606 347.98
6 —0.06320150 — 0.93631654 ¢ 0.000513 81.39
7 —0.06325157 — 0.93635178 0.000021 2.90
8 —0.09122274 — 0.90798305 ¢ 0.000931 83.36
9 —0.09131286 — 0.90805633 7 0.000056 4.32
10 —0.11923285 — 0.87962729 ¢ 0.001587 T7.67
11 —0.11937073 — 0.87975570 ¢ 0.000124 5.37
12 —0.12450198 — 0.34910682 ¢ 0.171859 69.50
13 —0.13822653 — 0.41635102 0.037660 252.09
14 —0.14723393 — 0.85124584 ¢ 0.002833 63.31
15 —0.14742560 — 0.85144938 ; 0.000268 5.59
16 —0.17522868 — 0.82283504 ¢ 0.005581 44.14
38 —0.32519719 — 0.63610486 ¢ 5.659801 0.78
39 —0.34373267 — 0.67764346 ¢ 4.685315 0.64
53 —0.66286552 — 0.67027520 ¢ 0.259581 11.58

TABLE 1. Least stable eigenmodes of A Sno control) and the associated control
and observation sensitivities. Note that all eigenvalues agree precisely with those
reported by Orszag (1971). Calculation used Chebyshev collocation technique with
N = 140 in quad precision (128 bits per real number). The second eigenmode,
which is not shown here, is spurious (see text). Note that the only unstable mode
(7 = 1) for the present system is both sensitive to the control u and easily detected
by the measurements y,,.

3.8 Sensitivity of etgenmodes of A to control and observation

The least stable eigenvalues of A and their corresponding control and observation
sensitivities f; and ¢; are tabulated in Table 1. Note that the fourth eigenmode is
five orders of magnitude less sensitive than the first eigenmode to modifications in
the control. In general, those modes in the upper branch of Fig. 1a (large |S()\)|)
are much less sensitive to control than those in the lower branch (small [S())|).
Near the intersection of the two branches (R(A) ~ —0.3), the control sensitivity
is maximum, with this sensitivity decreasing slowly to the left of this intersection
(R(A) < —0.3). It can be predicted that the eigenmodes corresponding to the largest
f; may be affected most upon application of some feedback control w.

Note that the flow measurements are two orders of magnitude less sensitive to
the fourth eigenmode as they are to the first eigenmode. It can be predicted that
the state estimates of the eigenmodes corresponding to the largest ¢; will be most
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FIGURE 1b. Eigenvectors corresponding to (left to right): j = 1 (unstable, lower
branch), j = 3 (stable, upper branch), j = 4 (stable, upper branch), and j = 5
(stable, lower branch), plotted as a function of y from the lower wall (bottom) to
the upper wall (top). Real component of eigenvector is shown solid and imaginary
component dashed. Corresponding eigenvalues are reported in Table 1.

accurate when estimating the state based on noisy measurements.

An important observation from Fig. 1b is that eigenvalues in the upper branch of
Fig. 1a have corresponding eigenvectors with variations primarily in the center of
the channel, and are thus less controllable via wall transpiration and less observable
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via wall measurements than eigenvalues in the lower branch. This observation is
quantified by reduced values of f; and g; for these modes in Table 1.

The second eigenvalue computed, at Ao = —0.0235+ 1.520¢ is spurious. Spurious
eigenmodes may be easily identified two ways: 1) the eigenvalue moves significantly
when N is modified slightly, though the eigenvalues reported in Table 1 remain
converged, and ii) when plotted, spurious modes are dominated by large oscillations
from grid point to grid point across the entire domain, though converged eigenmodes
are well resolved. Spurious eigenmodes are expected using this approach and may

be disregarded.

4. Summary of H, and H., control theories

In §2, the equations governing the stability of a laminar channel flow were derived
and cast in the form

& = Ax + Bu (11la)

Ym = Cx + Du, (11d)
where the constituent matrices A, B, C', and D were summarized and discussed in
§3. We now seek a simple method to determine a control u based on the measure-
ments y,, to force the state x towards zero in a manner which rigorously accounts
for state disturbances, to be added on the RHS of (11a), and measurement noise,
to be added on the RHS of (11b).

The flow of information in this problem is illustrated schematically in the following

block diagram.

disturbances

measurements YF plant <
Ym

estimator [<F—— control

state estimate

X

controller

The plant, which is forced by external disturbances, has an internal state x which
cannot be observed. Instead, a few noisy measurements y,, are made, and with
these measurements an estimate of the state & is determined. This state estimate
is then fed back to through the controller to determine the control u to apply back
on the plant in order to regulate x to zero.

To be more precise, we will consider feedback of the measurements y,, such that
a state estimate 2 is first determined by the system model

i =Aé+Bu—1 (12a)
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jm = C& + Du, (12b)
i = L(Ym — Ym), (12¢)

then this state estimate is used to produce the control
u = K(z). (13)

Equation (11), with added disturbance terms on the RHS, is referred to as the
“plant”, (12) is referred to as the “estimator”, and (13) is referred to as the “con-
troller”. The problem at hand is to compute linear time-invariant (LTI) functions £
and K such that 1) the “output injection” term @ forces the state estimate @ in the
estimator (12) towards the state z in the plant (11), and ii) the control v computed
by the controller (13) forces the state @ towards zero in the plant (11).

We will now demonstrate how to apply Hy and Hoo control theories to determine
L and K. (Note that we will redefine several variables used in §2 to derive the
Orr-Sommerfeld equation. Considered in the context of this chapter, this should
present no confusion.) With this presentation, one set of control equations, involving
the solution of two Riccati equations, describes a family of Hy and Ho, control
algorithms. The reader is referred to Doyle et al. (1989), Dailey et al. (1990), and
Zhou, Doyle, & Glover (1996) for derivation and further discussion of the control
theories summarized here.

4.1 Hy control theory

4.1.1 Optimal control (LQR)

The first step in considering the system (11) is to consider the problem with no
disturbances and measurements which identically determine full information about
the state, so that & = x (i.e. no estimation of the state is necessary). These assump-
tions are quite an idealization and can rarely be accomplished in practice, but this
exercise is an important step to determine the best possible system performance.
It is for this reason that the controller in this limit is referred to as optimal. Un-
der these assumptions about the system, the objective of the optimal controller,
of the form in (13), is to regulate (i.e. return to zero) some measure of the flow
perturbation x from an arbitrary initial condition as quickly as possible without
using excessive amounts of control forcing. Mathematically, a cost function for this
problem may thus be expressed as

jLQR = / (||x||2 -I—KZ u*u) dt. (14)
0

The term involving ||z||? is a measure of the state disturbance x integrated over the

time period over which the initial perturbation decays, which is taken as t € [0, c0).
The term involving u*u is an expression of the magnitude of the control. These
two terms are weighted together with a scalar (?, which represents the price of the
control. This quantity is small if the control is “cheap” (which generally results in
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larger control magnitudes), and large if applying the control is “expensive”. As the
state equation is linear, the cost quadratic, and the control objective regulation,
this controller is also referred to as a linear quadratic regulator (LQR).

The mathematical statement of the present control problem, then, is the mini-
mization of Jrgr. This results in regulation of @ without excessive use of control
effort. Note that minimization of Jrgr is equivalent to minimization of the integral

of z*z, where )
1/2

= (Q W).
u

and where () is a diagonal matrix with diagonal entries @);; = 7/N, as required by
the appropriate definition of the inner product (Canuto et «l. 1988). In order to
arrive at a form which is easily generalized in later sections, define

1/2

For notational convenience, the state equation (11la) will be considered as “forced”
with a right hand side forcing term r which shall be set to zero, as this regulation
problem simply drives the state towards zero without external command input. The
state equation (11a), the performance measure z, and the state estimate & then may
be written

t=Ax+r+Byu (15a)
Z = C’lx + D12u (15[))
r= . (15¢)

The optimal controller Krgr is sought to relate the (precise) state estimate & to
the control u, which is applied to control the evolution of the state x such that the
cost Jror(z) is minimized. The important matrices of the system described by
(15) may be summarized in the shorthand form

X r U

i A | I B,

PrLor = = 4 0 Dy,
z I 0 0

The flow of information is represented by the block diagram

z r=20
S — B .
Pror

T \ U
|; Kror

where Pror is the flow system given by (15) and Kpgr is the optimal controller,
which is still to be determined. The system output z may be used to monitor the
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performance of the system. Note that the command input is r = 0 and there are
no disturbance inputs; the task of the control u is simply to regulate the state x
from nonzero initial conditions back to zero. The state © = & is fed back through
the controller Krgr to control the system.

Given this general setup, a Hamiltonian is defined such that

_( A -B,B

As shown in Doyle et al. (1989), the Hermetian positive-definite solution X5 to the
algebraic Riccati equation defined by this Hamiltonian

A" Xo+ X0 A— Xy (B2 B)) Xo + (Cy Cy) =0, (160)
denoted X3 = Ric(Hy), then yields the optimal LTI state feedback matrix
Ky, = —-Bj X,. (16¢)
The optimal LTT controller K'zgr is then given simply by
u= I, 2. (17)

This controller minimizes fooo z*z dt in a system with no disturbances and arbitrary
initial conditions. Note that standard numerical techniques to solve equations of

the form (16b) are well developed (Laub 1991).
4.1.2 Kalman-Bucy filter (KBF)

When there are disturbances to the system, and thus the state is not precisely
known, the state (or some portion thereof) must first be estimated, then the control
determined based on this state estimate. The Kalman-Bucy filter, of the form (12),
accomplishes the required state estimation by assuming that the state disturbances
and the measurement noise are uncorrelated white Gaussian processes. To accom-
plish this, we introduce two zero-mean white Gaussian processes w; and wq with
covariance matrices Efwjw;] = I, E[w3w;y] = I, where E[-] denotes the expectation
value. With these new disturbance signals, and with G defined as the square root
of the covariance of the disturbances to the state equation and G5 defined as the
square root of the covariance of measurement noise, the system (11) takes the form

& = Ar + Gywy + Bu (18a)
Ym = Cv + Gowy + Du. (18b)

The objective of the Kalman-Bucy filter is to estimate the state x as accurately as
possible based solely on the measurements y,,. Put another way, the Kalman-Bucy
filter attempts to regulate the norm of the state estimation error xp to zero, where

~

rp=xr— 1
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and where the state estimate @ shall be determined by a filter of the form (12).
Mathematically, a cost function for this problem may thus be expressed as

Jrer = E[||zs|?],

where zp = xp for notational convenience. (As Gaussian disturbances w; and ws
continually drive this system, an integral on ¢t € [0, 00), as used to define Jrgr, is
not convergent for this problem, and the expectation value is the relevant measure. )

The mathematical statement of the present control problem, then, is the mini-
mization of Jxpp. This results in a “best possible” estimate of the state . In
order to arrive at a form which is easily generalized in later sections, assume G is
nonsingular and define

BlE(Gl 0) CzEGz_lc DzlE(O I)

wz<$>.

Also, define new “observation” vectors y and ¢ by a simple change of variables such
that

and the vector of disturbances

y =G5 (Yym — Du) J =Gy (Ym — Du).

Note that this change of variables does not represent any real limitation, for when-
ever any flow measurement y,, is made in a physical implementation, the control
u at that moment is also known, so the observation y is easily determined from
the flow measurement y,,,. With this change of variables, (18b) and (12b) may be
expressed as

y=Csx+ Doy w (19a)
y=0C51. (190)

As we are developing the equations for an estimator, it is appropriate now to exam-
ine the equations for the state estimation error xp and the ouput estimation error
yr =y — . Subtracting (12a) from (18a) and (19b) from (19a) yields the system

itp=Arp +Biw+u (20a)
Zp =g (200)
yrp = Coxp + Daw. (20¢)

The Kalman-Bucy filter Lxpp is sought to relate the output estimation error yp
to the output injection term d, which is used to control the evolution of the state
estimation error xp such that the cost Jxpp(zg) is minimized in the presence of
Gaussian disturbances w. The important matrices of the system described by (20)
may be summarized in the shorthand form
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TR w U

ip A | B I

Prxpr = #E I 0 0
YE Cy Dy, 0

The flow of information is represented by the block diagram

ZE w
B I — P
PrBF

YE ‘ \ u
LKBF

where Pxpr is the flow system given by (18) and Lx pr is the Kalman-Bucy filter,
which is still to be determined. The system output zp may be used to monitor the
performance of the system. This system accounts for Gaussian disturbances w and
noisy observations yp of the system, which are fed back through the filter Lxpp to
produce the state estimate. Note the striking similarity of the structure of Pxpp
to the structure of the conjugate transpose of Prggr. For this reason, these two
problems are referred to as “duals”, and their solutions are closely related.
Given this general setup, another Hamiltonian is defined such that

A Gy

As shown in Doyle et al. (1989), the Hermetian positive-definite solution Y3 to the
algebraic Riccati equation defined by this Hamiltonian

AYo + Y2 A" = Y5 (C) Cy) Y, + (B BY) =0, (21b)
denoted Y3 = Ric(Jy), then yields the LTI estimator feedback matrix
L, =-Y,Cj. (21¢)
The LTI Kalman-Bucy filter £ pp is then simply given by
= Lyyp,
and thus the complete state estimator is given by
#=A%+Byu—Ly(y—Cy i) (22)

This estimator minimizes E[ ||z — #||?] in a system with Gaussian disturbances in
the state equation and Gaussian noise in the measurements.
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4.1.8 Hy control (LQG =LQR + KBF)

A controller/estimator of the form (12)—(13) for the complete system described
by (18) with Gaussian disturbances may now be constructed. The objective of the
control is to minimize

Jo = El|2|[* + ¢ utu],

where || - || denotes the standard Euclidian norm, also known as a “2-norm”. Note
that minimization of J5 is equivalent to minimization of the expectation value of

z*z, where )
1/2
(@Y,
u

and @) is a diagonal matrix with diagonal entries ()j; = 7/N as required by the
appropriate definition of the inner product. As the control objective is the min-
imization of the expectation value of the square of a 2-norm, this type of con-
troller /estimator is referred to as Hy. As the state equation is linear, the cost
quadratic, and the disturbances Gaussian, this type of controller/estimator is also
referred to as linear quadratic Gaussian (LQG).

Combining the notation developed in the previous two sections

1/26 0
BlE(Gl 0) ClE<Q0/> D125<I>
BZEB CzEGz_lc DzlE(O I),

with the vector of disturbances w and the observation vectors y and y defined such

that .
w:<w1> yEGZ_ (ym—Du)
AN § =G5 (§m — Du),

the system (18) and the control objective for the minimization of 7, take the form

t=Ax +Biw+Byu (23a)
Z = C’lx-l— Dlzu. (23[))
y = Cox + Dajw. (23¢)

An H, controller /estimator is sought to relate the observations y to the control u,
which is applied to control the evolution of the state x such that the cost Ja(z) is
minimized in the presence of Gaussian disturbances w.

The remarkable result from control theory (Lewis 1995) is that the Hy con-
troller /estimator of the form (12)—(13) which minimizes [J, for this system is
formed by simple combination of the optimal controller and the Kalman-Bucy filter
such that

u=I,& (24a)
F=Ai+Byu—Ly(y—Cy2) (24b)
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where K3 is given by (16)

o * D A —B, B}
I&z = _BZ X2 X2 = Ric (_Cik Cl _4* ) (246)
and Ly is given by (21)
« : A* —-C5C
Ly =Y, Cj Y; = Ric (—31 B 2 2) . (24d)

Note the separation structure of this solution. The computation of Ky does not
depend upon the influence of the disturbances, which are accounted for in By and
(3. The computation of Ly does not depend upon the weightings in the cost
function, which are accounted for in 4, or the manner in which the control u
affects the state, which is accounted for in B,. In other words, the problem of
control and the problem of state estimation are entirely decoupled.

4.2 Hoo control

The Hoo controller/estimator described in this section is very similar to the Hy
controller /estimator described previously. Consideration is now given to distur-
bances, which we shall distinguish with a new variable X, of the “worst” possible
structure (as made precise below), rather than the Gaussian structure assumed in
the Hy case. Considered in the frequency domain, the controller/estimators de-
veloped in this section provide a system behavior in which the maximum singular
value of the closed-loop transfer function, also known as the “oo-norm”, is less than
some constant, which shall be referred to as . As this approach may be inter-
preted as bounding the co-norm of the transfer function from the disturbances to
the performance measure, it is referred to as Hoo control. For further details of the
frequency-domain explanation of He, the reader is referred to Doyle et al. (1989)
and Zhou, Doyle, & Glover (1996).

The governing equations to be considered in this section are identical to (23):

t=Ax + By X+Byu (25a)
Z = C’lx-l— Dlzu. (25[))
Yy = Czw + D21X. (256)

An H, controller/estimator is sought to relate the observations y to the control u,
which is applied to control the evolution of the state @ such that the cost Joo(2)
is minimized in the presence of some “worst case” disturbance X. As before, the
(GG and G2 matrices used to define this system describe any covariance structure of
the disturbances known or expected a priori (for instance, if one measurement is
known to be noisier than another). These matrices are taken as identity matrices
if no such structure is known in advance.
Effectively, the cost function considered for Ho, control is

Too = E[2* Q& + (* u*u — 4> X*X]. (26)
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A wu is sought, through a controller/estimator of the form (12)—(13), to minimize
Joo, while simultaneously an external disturbance X is sought to mazimize Joo. (In
this manner, X is the “worst possible” disturbance, as it is exactly that disturbance
which increases the relevant cost function the most.) Thus, the Ho problem is
a “min-max” problem. The term involving —~? limits the magnitude of the un-
structured disturbance in the maximization of 7., with respect to X in a manner
analogous to the term involving ¢, which limits the magnitude of the control in the
minimization of J. with respect to w.

The result (Doyle et al. 1989) is that an He controller/estimator of the form
(12)—(13) which minimizes Js in the presence of some component of the worst
case unstructured disturbance X for this system is given by

u= K (27a)
#=A#+Byu—Lo (y—Cy ) (27D)
where K, is given by
T 5L A v~?By Bf — By B}
Ko =-B; X, X = Ric (_Cik c T (27¢)

and L 1s given by

. * b A* ’7_2 Cik Cy — C; Cs
Lo =-YCj Yo =Ric <_Bl B 4 . (27d)

Note first that, in the v — oo limit, the Hy controller/estimator is recovered, so
the set of two Riccati equations in (27) describes both the Hy (optimal control +
Kalman-Bucy filter) and the Ho, problems.

It may also be shown that, as the upper-right blocks of the Hamiltonians may not
be negative definite, a solution to these Riccati problems exists only for sufficiently
large 7; the smallest v = ~y for which a solution to these equations exists may be
found by trial and error (Doyle et al. 1989). An H controller/estimator for v > g
is referred to as suboptimal.

4.8 Comparison of Ha and He control equations

Most of the robustness problems associated with Hy stem from the state estima-
tion. Optimal (LQR) controllers themselves, provided with full state information,
generally have excellent performance and robustness properties (Dailey et al. 1990).
Recall from §4.1.3 that the problems of control and state estimation in the Hy for-
mulation are decoupled.

An important observation of §4.2 is that the problems of control and state esti-
mation in the Ho, formulation are coupled. Specifically, the computation of K.,
depends on the expected covariance of the state disturbances, which are accounted
for in By, and the computation of L., depends on the weightings in the cost func-
tion, which are accounted for in C';. This is one of the essential features of H.,
control.
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By taking into account the expected covariance of the state disturbances, re-
flected in By, when determining the state feedback matrix K., the components of
Z corresponding to the components of x that are expected to have the smallest forc-
ing by external disturbances are weighted least in the feedback control relationship
u= Ky 1.

Similarly, by taking into account the weightings in the cost function, reflected
in C4, when determining the estimator feedback matrix L., the components of &
corresponding to the components of x that are least important in the computation of
Joo are forced with the smallest corrections by the output injection term Lo (y — )
in the equation for the estimator.

By applying strong control only on those components of & significantly excited by
external disturbances, and by applying strong estimator corrections only to those
components of & important in the computation of the cost function, H feedback
gains for components of the system not relevant to the control problem are reduced
from those in the H;y case. With such feedback gains reduced, the stability properties
of He controller/estimators in the presence of state disturbances and measurement
noise may be expected to be better than their H, counterparts, at the cost of a
(hopefully, small) degradation of performance in terms of the 2-norm of the output
z for the undisturbed system.

4.4 Numerical method

Standard numerical techniques are now applied to all aspects of this problem.
In order to simplify both the theory to be presented and the numerical algorithm
to be coded, no further manipulation of the equations is used beyond the matrix
representations (25) and (27). It was observed that the minimal realization approach
(Kailath 1980) is well suited to reduce the computation time necessary to determine
effective control algorithms by the present approach; however, such an approach was
not found to be necessary in the present case.

The algebraic Riccati equations are solved using the method of Laub (1991), which
involves a Schur factorization. This is found to be a stable numerical algorithm for
all cases tested. The implementation of Laub’s method is written in Fortran-90 and
follows closely the algorithm used by the Matlab function are.m (Grace et al. 1992).
A Lyapunov solver, modeled after the Matlab function lyap.m, is used to compute
the system Gramians.

Two LAPACK routines (Anderson et al. 1995), zgeev.f and zgees.f, are used
to compute eigenvalues/eigenvectors and Schur factorizations. These routines are
compiled in quad precision (128 bits per real number) to ensure sufficient numerical
precision in the eigenvalue computation. All computations are carried out with
N = 140 to ensure good resolution of all significant eigenmodes. The eigenvalues of
A match all those tabulated by Orszag (1971) to all eight decimal places, as shown
in Table 1, indicating that this numerical method is sufficiently accurate.

5. Performance of controlled systems (no disturbances)

We now examine the behavior of the “closed-loop” systems obtained by applica-
tion of the above controllers and estimators to the “nominal” (i.e. no disturbances)
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channel flow stability problem. In other words, we examine the behavior of the flow
and the controller/estimators operating together as a single dynamical system. By
looking at “root locus” plots which map the movement of the eigenvalues of these
systems in the complex plane with respect to the relevant parameters, this behavior
is well quantified. We shall also examine the control and observation sensitivities
defined in §3.2 for two special cases in order to better understand the fundamental
limitations of controllers and estimators applied to the present system.

5.1 Hy control
5.1.1 Optimal control (LQR)

In order to investigate the controllability of the closed-loop eigenmodes when all
modes are observable, consider the system described in §4.1.1. With r = 0 and
examining only the equations for & and #, the plant is given (in the shorthand
notation used in §4) by

X [
'PLQR:; j_l I B;)Z

with the control now given by
u=Ky&+u',
where an additional control term u' has been added to study the sensitivity of the

closed-loop system to further modification of the control. Putting the plant and the
controller together, the closed-loop system may be represented by

x U
T A+ By K, | By
PLQR(closed loop) = & 7 | 0

The eigenmodes of Ay, = A + By Ky describe the dynamics of the closed-loop
system for the unmodified control rule (v’ = 0). Figure 2 shows the movement
of these eigenvalues with respect to the free parameter of the control problem, ¢,
used to determine K. The eigenvalues for { — oo are very near those of the
uncontrolled system A in Fig. 1, with the previously unstable mode moved just to
the left of the imaginary axis. The eigenvalues generally move to the left as ¢ is
decreased. Comparing Fig. 2b with Fig. 1b, it is seen that the control modifies most
those eigenmodes with significant variations near the wall.

The sensitivity of the eigenmodes of the closed loop LQR system to modification
of the control rule may be quantified by performing the analysis of §3.2.1, replacing
the eigenmodes of A by the eigenmodes of Ag,. The result of this analysis for small
¢ is shown in Table 2. This table shows that, in the ¢ — 0 limit, the system matrix
is modified to the point that the eigenmodes are no longer sensitive to further
modification of the control. In other words, all the controllable dynamics of the
system have been modified by Ky and are accounted for in the closed loop system
in this limit. This is one demonstration that the optimal controller extracts the
best possible performance from a given (full-information) system.
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FIGURE 2a. Root locus of least stable eigenvalues of Ag, as a function of the free
parameter of the Hsy controller, (. The eigenvalues for { — oo are marked with an

(x).

FIGURE 2b. Eigenvectors of Ag,, with ¢ = 107, corresponding to (left to right):
j=1,5=3,5=4,and 7 = 5. Real component of eigenvector is shown solid and
imaginary component dashed. Corresponding eigenvalues are reported in Table 2.

5.1.2 Kalman-Bucy filter (KBF)

The estimator itself has its own set of dynamics. These dynamics are captured
by the equations for the state estimator error, as described in §4.1.2. We now make
use of this system in order to investigate the observability of closed-loop eigenmodes
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j Aj T

3 —0.03513233 — 0.96462128¢ 0.000000029
4 —0.03518652 — 0.96464261¢ 0.000000001
5) —0.06255259 — 0.29262711: 0.000001101
6 —0.06310358 — 0.93629329¢ 0.000000070
7 —0.06325089 — 0.93635257¢ 0.000000003
1 —0.06644730 — 0.29721403: 0.000001116
8 —0.09102975 — 0.90793951¢ 0.000000129
9 —0.09130964 — 0.90805917¢ 0.000000008
10 —0.11890731 — 0.87955083¢ 0.000000226
11 —0.11936036 — 0.87976246: 0.000000020
12 —0.14335180 — 0.43962023: 0.000002303
14 —0.14673294 — 0.85111508¢ 0.000000414
15 —0.14739907 — 0.85146161¢ 0.000000045
13 —0.14803996 — 0.44586838: 0.000003081
16 —0.17450455 — 0.82261690¢ 0.000000842

TABLE 2. Least stable eigenmodes of the closed-loop system Af, and their sensitiv-

ity to control for the optimal controller in the cheap control limit (¢ = 10™*). The
numbering of the eigenvalues shown is the same as the numbering of the eigenvalues
of Table 1 to which they are connected by the root locus of Fig. 2. Note that the
control in this limit drives all eigenmodes to positions at which they are insensitive
to further modifications of the control, as illustrated by the large reductions in f;.

Note also that those eigenmodes with the largest values of f; in Table 1 (specifically,
those in the lower branch) have moved the most.

when all modes are controllable. With w = 0 and examining only the equations for
tp and yp, this plant is given by

TR U
g A | I
'PKBF - i Cz | 0 ]

with the output injection now given by
= Loyp + 1,

where an additional output injection term @' has been added to study the sen-
sitivity of the closed-loop system to further modification of the output injection
rule. Putting the plant and the estimator together, the closed-loop system may be
represented by

A

TE U
PKBF(closed loop) — i s | 0

The eigenmodes of Ay, = A4 Ly Cy describe the dynamics of the closed-loop system
for the unmodified output injection rule (¢’ = 0). Figure 3 shows the movement of



428 T. R. Bewley & R. Agarwal

0.9f B .

0.8 rrrrr R e

N
O-—XB«XMM?

Gy
06 S : 1
s

@—x
0.5 : NN . .
04l {@

0.3f 4

0.2F = / @@/X/> |

0.1 i

I
(=]
o

|
o
S

|
o
w

I
o
N

|
o
o
o

FIGURE 3. Root locus of least stable eigenvalues of Ay, as a function of the free
parameters of the Hy estimator, g1 and g2 (note that we take gy = ¢ for the purpose
of drawing the root locus). The eigenvalues for ¢; = g — 0, marked with (x), are
very near those of the uncontrolled system A in Fig. 1, with the previously unstable
mode moved just to the left of the imaginary axis. The eigenvalues generally move
to the left as g1 and ¢ are increased.

these eigenvalues with respect to the free parameters of the estimator problem. This
is done by assuming that the matrices describing the covariance of the disturbances
have the simple form Gy = ¢; [ and G2 = ¢2 I, where ¢; and g2 are real scalars.
The sensitivity of measurements yp to the eigenmodes of the closed loop KBF
system may be quantified by performing the analysis of §3.2.2, replacing the eigen-
modes of A by the eigenmodes of Ay,. The result of this analysis for large g1 = ¢2
is shown in Table 3. This table shows that, in the ¢y = g2 — oo limit, the system
matrix is modified to the point that the measurements are no longer sensitive to the
eigenmodes of the closed-loop system. In other words, all the measurable dynamics
of the system have been extracted by Lo and are accounted for in the closed loop
system in this limit. This is one demonstration that the Kalman-Bucy filter extracts
the best possible state estimate from a given (fully-controllable) state estimator.

5.1.8 Hy control (LG =LQR + KBF)

It was mentioned in §4.1.3 that the controller/estimator which minimized the
relevant cost functional (J2) in the presence of Gaussian disturbances could be
found by considering the controller and estimator problems separately. In this
section, it is shown that the closed-loop performance of a system of the form (23)
(without disturbances)

t=Ax+Bsu
y=C'2:Jc
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j Aj g;

3 —0.03505745 — 0.96474093: 0.000000568
4 —0.03518656 — 0.96464253; 0.000000004
6 —0.06287931 — 0.93668086: 0.000000644
7 —0.06325136 — 0.93635193: 0.000000008
5 —0.08362450 — 0.250668564 0.000002858
8 —0.09059621 — 0.90874817: 0.000000673
9 —0.09131196 — 0.90805689; 0.000000011
1 —0.09565183 — 0.17658643: 0.000000094
10 —0.11823779 — 0.88095122; 0.000000646
11 —0.11936807 — 0.87975709; 0.000000014
12 —0.14209547 — 0.25910275: 0.000000130
14 —0.14584717 — 0.85329567: 0.000000549
15 —0.14741926 — 0.85145223; 0.000000014
16 —0.17347707 — 0.82577419; 0.000000399
13 —0.17418920 — 0.40314656: 0.000002002

TABLE 3. Least stable eigenmodes of the closed-loop system Ay, and their sen-
sitivity to observation for the Kalman-Bucy filter in the large disturbance limit
(91 = g2 = 10%). The numbering of the eigenvalues shown is the same as the num-
bering of the eigenvalues of Table 1 to which they are connected by the root locus
of Fig. 1. Note that the estimator in this limit modifies all eigenmodes until the
measurements are no longer sensitive to them, as illustrated by the large reductions
in g;. Note also that those eigenmodes with the largest values of ¢g; in Table 1

(specifically, those in the lower branch) have moved the most.

combined with an estimator/controller of the form (24)

u=1I,3
#=Ab+Byu—Ly(y—Cy )

may also be evaluated by considering the controller and estimator problems sepa-
rately. To accomplish this, simply combine the above equations into the closed-loop
composite system

.’? . A Bs Ky X
z ) —Lo Cz A+ By Ko + Ly Cz T/

Gaussian elimination, first on the rows and then on the columns, reveals that the
eigenvalues of this system are the same as the eigenvalues of the system

A+ By Ky By K,
0 A+L,Cy )

In other words, the eigenvalues of the closed-loop composite system for the Ho
problem are simply the union of the eigenvalues of the controlled system Ap, =
A+ By K5 and the eigenvalues of the estimated system Ay, = A+ Ly Cy discussed
in the previous two sections and illustrated in Fig. 4.
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FIGURE 4. Least stable eigenvalues of the composite closed-loop system with the
H, controller /estimator, taking ¢ = ¢g; = ¢go = 1. Note that the eigenvalues are
simply the eigenvalues of the closed loop controller (4) together with those of the
closed loop estimator (*).

5.2 Hoo control

As with the Hy controller /estimator, the performance of the closed loop composite
system with the Hs, controller/estimator

i\ [ 4 By K v
z ) — L Cz A+ By K + L Cz T/

may be evaluated by considering the performance of the controlled system Ay =
A+ By Ko and the performance of the estimated system A = A+ Lo Cy sep-
arately. The root locus of the eigenvalues of Ax__ are plotted with respect to the
parameter v of the H., problem in Fig. 5, clearly illustrating the tendency of Heso
controllers to modify only the least stable components of the system, as opposed to
the Hy controller of Fig. 2, which modifies all controllable modes of the system.

6. Conclusions

Optimal and robust control theories have been successfully applied to the Orr-
Sommerfeld equation. Given control on the wall-normal component of boundary
velocity only, the flow system is shown to be stabilizable but not controllable. Given
measurements of wall skin-friction only, the flow system is shown to be detectable
but not observable. It is shown that Hs controllers/estimators modify all of the
controllable /observable modes of the system. In contrast, the Ho, controllers mod-
ify the corresponding Hs controllers only in the most unstable component, as Hso
targets a bound only on the maximum value of the transfer function.
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FIGURE 5. Root locus of least stable eigenvalues of the Ho, controller versus ~,
taking ¢ = 100, g1 = g2 = 0.001. The result with v — oo, marked with the (x), gives
the corresponding Hso controller. Note that the Ho, controller modifies only the least
stable eigenmode of this Hs result, without expending any extra control effort to
control those eigenmodes not associated with the maximally unstable component of
the system. Note also that v = 7y, marked with the (o), is reached by reducing ~
until the least stable eigenvalue corresponds to one of the uncontrollable eigenmodes
in the upper branch, which cannot be moved further left; in the present case, this
corresponds to a numerical value of v, = 0.26.

In the ¢ — 0 limit of the Hy controller, corresponding to cheap control and thus
large values of u, all eigenmodes of the closed-loop controlled system are shown to
be modified to points at which they are no longer sensitive to further modifications
of the control. Similarly, in the g; = g2 — oo limit of the H;y estimator, accounting
for large disturbances on both the state and the measurements, all eigenmodes of
the closed-loop system for the estimator error are shown to be modified to points
at which they are not discernible by flow measurements.

These results indicate that Hy controllers and estimators are optimal for their
desired purposes, but may contain large feedback gains. On the other hand, Hso
controllers only target the least stable components of the system, and thus have
smaller feedback gains while still achieving the same worst case performance for the
nominal plant. Such reduced feedback gains generally result in improved robustness
to inaccuracies in the system model.
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