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Optimal and robust control theories are used to determine feedback control rules 
that effectively stabilize a linearly unstable flow in a plane channel. Wall transpi­
ration (unsteady blowing/suction) with zero net mass flux is used as the control. 
Control algorithms are considered that depend both on full flowfield information 
and on estimates of that flowfield based on wall skin-friction measurements only. 
The development of these control algorithms accounts for modeling errors and mea­
surement noise in a rigorous fashion; these disturbances are considered in both a 
structured (Gaussian) and unstructured ( "worst case") sense. The performance 
of these algorithms is analyzed in terms of the eigenmodes of the resulting con­
trolled systems, and the sensitivity of individual eigenmodes to both control and 
observation is quantified. 

1. Introduction 

The behavior of infinitesimal perturbations in simple laminar flows is an impor­
tant and well-understood problem. As the Reynolds number is increased, laminar 
flows often become unstable and transition to turbulence occurs. The effects of 
the turbulence produced in such flows are very significant and often undesirable, 
resulting in increased drag and heat transfer at the flow boundaries. Thus, a natu­
ral engineering problem is to study methods of flow control such that transition to 
turbulence can be delayed or eliminated. 

Transition often occurs at a Reynolds number well below that required for linear 
instability of the laminar flow. Orszag & Patera (1983) demonstrate that finite 
amplitude two-dimensional perturbations can highly destabilize infinitesimal three­
dimensional perturbations in the flow. Butler & Farrell (1992) show that the non­
orthogonality of the eigenmodes of subcritical flows implies that perturbations of a 
particular initial structure will experience large amplification of energy before their 
eventual decay, and suggest that such amplification can sometimes lead to flow 
perturbations large enough for nonlinear instability to be triggered. Such nonlinear 
instabilities can lead to transition well below the critical Reynolds number at which 
linear instability occurs. Results such as these have renewed interest in the control 
of the small (linear) perturbations, as the mitigation of linear perturbations also 
lessens the potency of these nonlinear "bypass" mechanisms. 

A firm theoretical basis for the control of small perturbations in viscous shear 
flows is only beginning to emerge. An important step in this direction is provided 
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by Joslin et al. (1995) and Joshi, Speyer, & Kim (1996), who analyze this problem 
in a closed-loop framework, in which the dynamics of the flow system together with 
the controller are examined. Joslin et al. (1995) apply optimal control theory to 
a problem related to the one presented here; in their approach, the control is de­
termined through an adjoint formulation requiring full flowfield information. Joshi, 
Speyer, & Kim (1996) consider essentially the same problem analyzed in this paper, 
and show that a simple constant gain feedback with an integral compensator may 
be used in a single-input/single-output (SISO) sense to stabilize the flow; a single 
output ( the appropriate Fourier component of the stream wise drag) is multiplied by 
some scalar J( and summed with a reference signal to determine the corresponding 
component of the control velocity. This proportional approach is a special case of 
a class of proportional-integral-derivative (PID) controllers, which combine terms 
which are proportional, integrals, and derivatives of a scalar output of a system. 

The present work extends these analyses to rigorously account for state distur­
bances and measurement noise. A two-step control approach is used. First, a state 
estimate is developed from a (potentially inaccurate) model of the flow equations, 
with corrections to this state estimate provided by (noisy) flow measurements fed 
back through an output injection matrix L. This state estimate is then multiplied 
by a feedback matrix J( to determine the control. Potentially, this approach can 
yield better results than a PID controller. In comparison to the PID approach, the 
present approach has many more parameters in the control law ( specifically, the 
elements of the matrices J( and L ), which are rigorously optimized for a clearly de­
fined objective. In this manner, multiple-input/multiple-output (MIMO) systems 
are handled naturally and the controller is coupled with an estimator which models 
the dynamics of the system itself. 

Many problems in fluid mechanics, especially those involving turbulence, are dom­
inated by nonlinear behavior. In such problems, the linear analysis performed in 
this paper is not valid. However, optimal control approaches, which use full state in­
formation, may still be formulated (Abergel & Temam 1990) and performed (Moin 
& Bewley 1995) with impressive results. In order to make such schemes practical, 
one must understand how to account for disturbances in a rigorous fashion and 
how to estimate accurately the necessary components of the state (for instance, the 
location and strength of the near-wall coherent structures) based on limited flow 
measurements. The current paper makes these concepts clear in a fluid-mechanical 
sense, albeit for a linear problem, and thus provides a step in this development. 

The controllers and estimators used in this work are determined by 'H2 and 'H,00 

approaches. These techniques have recently been cast in a compact form by Doyle et 
al. (1989), and are well suited to the current problem, in which the issue of interest 
is the ability of a closed-loop system to reject disturbances to a laminar flow when 
only a few noisy measurements of the flow are available. 

In §2, we derive the governing equations for the present flow stability problem and 
cast these equations in a standard notation. In §3, the control problem is analyzed 
in terms of the controllability and observability of each individual eigenmode of the 
system developed in §2. In §4, the control approach developed in Doyle et al. (1989) 
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is summarized and applied to the present system. In this control approach, two Ric­
cati equations describe a family of H2 and 1{00 controllers which take into account 
structured (Gaussian) and unstructured ( "worst case") disturbances. Results of 
these approaches are presented in §5, and §6 presents some concluding remarks. 

2. Governing equations 

This chapter derives the equations governing the perturbations to a laminar chan­
nel flow and casts them in a form to which standard control techniques may be ap­
plied. This familiar discussion is presented to precisely define the control problem 
under consideration. 

2.1 Continuous form of flow equations 

Consider a steady plane channel flow with maximum velocity U0 and channel 
half-width 8. Non-dimensionalizing all velocities by U0 and lengths by 8, the mean 
velocity profile in the stream wise direction ( x) may be written U(y) = 1 - y2 on 
the domain y E [-1, 1]. The equations governing small, incompressible, three­
dimensional perturbations ( v, w) are 

I:::,. V = { -i kx U I:::,.+ i kx U" +!:::,.(!:::,./Re)} V 

W = {-i kz U'} V + {-i kx U +!:::,./Re} w, 

(la) 

(lb) 

where kx is the streamwise wavenumber, kz is the spanwise wavenumber, I:::,. = 
8 2 /8y 2 - k; - k; is the Laplacian, Re = U08/v is the Reynolds number, v is the 
Fourier component of the wall-normal velocity, and w is the Fourier component 
of the wall-normal vorticity. Equation (la) is the (fourth order) Orr-Sommerfeld 
equation for the wall-normal velocity modes, and (lb) is the (second order) equation 
for the wall-normal vorticity modes. Note the one-way coupling between these two 
equations. Also note that, from any solution ( v, w ), the streamwise velocity u and 
spanwise velocity w may be extracted by manipulation of the continuity equation 
and the definition of wall-normal vorticity into the form 

z 
( kx ~~ - kz W) U= 

k2 + k2 
X Z 

(2a) 

-z 
( k z ~~ - k x w) . w= 

k2 + k2 
X Z 

(2b) 

Control will be applied at the wall as a boundary condition on the wall-normal 
component of velocity v. The boundary conditions on u and w are no-slip ( u = 
w = 0), which implies that w = 0 and (by continuity) 8v/8y = 0 on the wall. 

In this development, it is assumed that an array of sensors, which can measure 
streamwise and spanwise skin friction, and actuators, which provide wall-normal 
blowing and suction with zero net mass flux, are mounted on the walls of a laminar 
channel flow. It is also assumed that a sufficient number of sensors and actua­
tors are installed such that individual Fourier components of wall skin friction and 
wall transpiration may be approximated, and the analysis is carried through for a 
particular Fourier mode. 
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2.2 Discrete form of flow equations 

The continuous problem described above is discretized on a grid of N +l Chebyshev­
Gauss-Lobatto points such that 

Yz = cos( 1rl / N) for O :S l :S N. 

An (N + 1) x (N + 1) matrix 'D may be expressed (Canuto et al. 1988, eqn. 2.4.31) 
such that the derivative of w with respect to y on the discrete set of N + l points 
is given by 

w' = 'Dw and w" - 'Dw' 
- ' 

where the prime (') now indicates the (partial) derivative of the discrete quantity 
with respect to y. The homogeneous Neumann boundary condition on v is accom­
plished by modifying the first derivative matrix such that 

~ { 0 'Dzm = 
'Dzm 

l = O,N 

l:Sl:SN-l. 

Differentiation of v with respect to y is then given by 

v' -'Dv - ' v" - 'D v' 
- ' v"' - 'D v" 

- ' and v"" = 'D v"'. 

With these derivative matrices, it is straightforward to write (1) in matrix form. 
This is accomplished by first expressing the matrix form of (1) on all N + l collo­
cation points such that 

v = .Cv 

w = Cv +Sw, 

(3a) 

(3b) 

where£, C, and S are (N + 1) x (N + 1). (Note that, for k; + k; -=I- 0, the matrix 
form of the LHS of (la) is invertible, so the form (3a) is easily determined.) The 
Dirichlet boundary conditions are explicitly prescribed as separate "forcing" terms. 
To accomplish this, decompose£, C, and S according to 

* * * * * * * * * 

S= * 

* * * * * * * * * 

where A11, A21, and A22 are (N - 1) x (N - 1) and b11, b12, b21, and b22 are 
(N - 1) x 1. Noting that w0 = WN = 0 by the no-slip condition, and defining 

0 

X= B= 

WN-l 
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where xis 2(N -1) x 1, A is 2(N -1) x 2(N -1), Bis 2(N -1) x 2, and u is 2 x 1, 
we may express (3) in the standard form 

x =Ax+ Bu. (4) 

The vector x is referred to as the "state", and the vector u is referred to as the 
"control". 

2. 3 Wall measurements 

We will consider control algorithms using both full flowfield information and wall 
information only. For the latter case, we will assume that measurements made 
at the wall provide information proportional to the streamwise and spanwise skin 
friction 

aul Yml = -
ay upper wall 

aul Ym2 = -
ay lower wall 

awl Ym3 = -
ay upper wall 

awl Ym4 = - · 
ay lower wall 

Equations (2a) and (2b) allow us to express these measurements as linear combi­
nations of v and w. Defining a= i kx/(k; + k;) and b = -i kz/(k; + k;) and using 
the derivative matrices, the measurements are expressed as 

Yml = (a D2 v + b'Dw) 
upper wall 

Ym2 = (a D2 v + b 'D w) 
lower wall 

Ym3 = (bv2 V + avw) 
upper wall 

Ym4 = (bv2 V + avw) . 
lower wall 

Now decompose V2 and 'D according to 

* * 

fy2 = * * * 'D= * * * 

* * 

where c1, c2, c3, and c4 are 1 x (N - 1) and d1, d2, d3, and d4 are 1 x 1. Finally, 
defining 

(
Yml) 

C= ( 

a C1 b C3 

) (

ad1 
bd3) = Ym2 ac2 bc4 D = ad2 bd4 

Ym - b C1 ac3 - bd1 ad3 ' Ym3 
Ym4 b C2 ac4 bd2 ad4 

where Ym is 4 X 1, C is 4 X 2(N - 1), and Dis 4 X 2, allows us to express Ym in the 
standard form of a linear combination of the state x and the control u 

Ym = Cx + Du. (5) 

The vector Ym is referred to as the "measurement". 
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3. Analysis of control problem 

In §2, it was shown that the equations governing small perturbations in a laminar 
channel flow may be expressed in the standard form 

x =Ax+ Bu 

Ym = Cx + Du, 

(6a) 
(6b) 

where all variables are complex and the system matrix A is dense and non-self­
adjoint. We now discuss the eigenmodes of A and identify which of these modes 
may be modified by the control u and which may be detected by the measurements 

Ym• 

It has been shown (Orszag 1971) that, for Re ~ 5772, the uncontrolled problem 
itself is stable and, for Re > 5772, weak instability is seen ( though most of the 
eigenvalues remain stable), with the greatest instability near kx = l.0 and kz = 0.0. 
We seek a method to determine the control u which stabilizes the system in a manner 
which is robust to system uncertainties. To simplify our discussion, we will restrict 
our attention in the remainder of this work to the particular case Re = 10, 000, 
kx = 1.0, and kz = 0.0. Joshi, Speyer, & Kim (1996) explore the (Re, kx, kz) 
parameter space further. 

For kz = 0 ( two-dimensional perturbations), C = 0 in (3), entirely decoupling the 
w eigenmodes from both the v eigenmodes and from the control u = ( v0, v N f. 
In the language of control theory, the w eigenmodes are thus "uncontrollable" by 
the control u. (However, it is also seen that the w eigenmodes are stable, so these 
modes will, so to speak, "take care of themselves".) Thus, for the remainder of this 
paper, we will restrict our attention to the v eigenmodes according to system (6) 
with 

where xis (N -1) x 1, A is (N -1) x (N -1), Bis (N -1) x 2, and u is 2 x 1, and 

( 
Yml) Ym2 

Ym = 
Ym3 

Ym4 

) 
where Ym is 4 X 1, C is 4 X (N - 1), and Dis 4 X 2. (All the constituent matrices, 
vectors, and flow measurements are described in the previous section.) 

3.1 System analysis 

We now address whether or not all of the current system's N - l eigenmodes 
may be controlled by the m = 2 control variables, and whether or not all of these 
eigenmodes may be observed with the p = 4 measurements. To accomplish this, it 
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is standard practice to consider two matrices which characterize the controllability 
and observability of the system as a whole (Lewis 1995). These are the system 
controllability Gramian Le of (A, B) and the system observability Gramian L 0 of 
( C, A), which may be found by solution of 

A Le+ Le A*+ BB*= 0 

A* Lo + Lo A + C* C = 0. 

Note that stable numerical techniques to solve equations of this form, referred to 
as Lyapunov equations, are well developed. 

If Le is (nearly) singular, there is at least one eigenmode of the system which 
is (nearly) unaffected by any choice of control u, and the system is called "un­
controllable". If all uncontrollable eigenmodes are stable, and a controller may 
be constructed such that the dynamics of the system may be made stable by the 
application of control, the system is called "stabilizable". 

Similarly, if L 0 is (nearly) singular, there is at least one eigenmode of the system 
which is (nearly) indiscernible by the measurements Ym, and the system is called 
"unobservable". If all unobservable eigenmodes are stable, and an estimator may be 
constructed such that the dynamics of the error of the estimate may be made stable 
by appropriate forcing of the estimator equation, the system is called "detectable". 

For the present system, the smallest eigenvalue of both Le and L 0 are computed 
to be near machine zero, indicating that the present system as derived above is 
both uncontrollable and unobservable. Gramian analysis can not identify which 
of the eigenmodes are uncontrollable or unobservable, however, so it is impossible 
to predict from this analysis alone whether or not the system is stabilizable and 
detectable. For this reason, we now develop a method to determine which of the 
eigenmodes of a system may be affected by the control u and, similarly, which 
eigenmodes may be discerned by the measurements Ym. 

3.2 Individual eigenmode analysis 

We will now make use of the modal canonical form of the system (6) to quantify 
the sensitivity of each eigenmode of A to both control and observation (Kailath 
1980). In order to clarify the derivation, we shall examine each eigenmode of the 
system separately. Define the eigenvalues Ai and the right and left eigenvectors, ~i 

and 'r/i, of A such that 

right eigenvectors : 

left eigenvectors : 

A~i = Ai ~i 

rt'! A = Ai rt'!, 

where the eigenvectors are normalized such that I l~i 11 = I lrti 11 = 1 for all i. Assume 
A has distinct eigenvalues ( this may be verified for the present system described 
above). Then any x may be decomposed as a linear combination of the (independent 
but not orthogonal) right eigenvectors such that 

(7a) 
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Differentiating with respect to time, 

X = LO!i~i- (7b) 

Also, note that left and right eigenvectors corresponding to different eigenvalues are 
orthogonal, but those corresponding to the same eigenvalues are not 

(ru,~i)=0 jf-i 

(ru, ~i)-/- 0 J = z. 

3.2.1 Definition of modal control sensitivity 

By (6a) and (7), we have 

L O!i ~i = AL O!i ~i + Bu 
. . 
z z 

= L O!i Ai ~i +Bu. 
z 

Taking the inner product with 'r/j and noting (Sa) yields 

( r; j, a j ~j) = ( r; j, a j ,\ j ~j) + ( r; j, B u). 

Noting (Sb), this yields 
. (B* 'r/j)* u 
aj = Ajaj + *~· • 

r; j J 

(Sa) 

(Sb) 

If the vector B* 'r/j = 0, then Ooj = Aj Ooj for any u. In terms of equation (7a), the 
component of x parallel to ~j is not affected by the control u, and the eigenmode is 
said to be "uncontrollable". Further, the norm of the coefficient of u 

Ir;; BB* 'r/jll/2 

h = Ir;; ~jl ' (9) 

which we shall call the control sensitivity of mode j, is a quantitative measure of 
the sensitivity of the eigenmode j to the control u. Note the dependence of this 
expression on the matrix BB*, which is the same term which drives the Lyapunov 
equation for controllability Gramian Le, 

3.2.2 Definition of modal observation sensitivity 

By (6b) and (7) and assuming, for the moment, that u = 0, we have 

Ym = L O!j C ~j-

j 

If the vector C ~j = 0, then Ym will not be a function of a j. In terms of equation 
(7a), the component of x parallel to ~j does not contribute to the measurements 
Ym, and the eigenmode is said to be "unobservable". Further, the norm of C ~j 

gj = l~J C* C ~j 1112 , (10) 
which we shall call the observation sensitivity of mode j, is a quantitative measure 
of the sensitivity of the measurement Ym to eigenmode j. Note the dependence 
of this expression on the matrix C* C, which is the same term which drives the 
Lyapunov equation for observability Gramian L 0 . 
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J >. . 
J Jj gj 

1 0.00373967 - 0.23752649 i 0.266545 102.61 
3 -0.03516728 - 0.96463092 i 0.000215 72.85 
4 -0.03518658 - 0.96464251 i 0.000005 1.45 
5 -0.05089873 - 0.27720434 i 0.026606 34 7.98 
6 -0.06320150 - 0.93631654 i 0.000513 81.39 
7 -0.06325157 - 0.93635178 i 0.000021 2.90 
8 -0.09122274 - 0.90798305 i 0.000931 83.36 
9 -0.09131286 - 0.90805633 i 0.000056 4.32 

10 -0.11923285 - 0.87962729 i 0.001587 77.67 
11 -0.11937073 - 0.87975570 i 0.000124 5.37 
12 -0.12450198 - 0.34910682 i 0.171859 69.50 
13 -0.13822653 - 0.41635102 i 0.037660 252.09 
14 -0.14 723393 - 0.85124584 i 0.002833 63.31 
15 -0.14 742560 - 0.85144938 i 0.000268 5.59 
16 -0.17522868 - 0.82283504 i 0.005581 44.14 

38 -0.32519719 - 0.63610486 i 5.659801 0.78 
39 -0.34373267 - 0.67764346 i 4.685315 0.64 

53 -0.66286552 - 0.67027520 i 0.259581 11.58 

TABLE 1. Least stable eigenmodes of A ( no control) and the associated control 
and observation sensitivities. Note that all eigenvalues agree precisely with those 
reported by Orszag (1971 ). Calculation used Chebyshev collocation technique with 
N = 140 in quad precision (128 bits per real number). The second eigenmode, 
which is not shown here, is spurious (see text). Note that the only unstable mode 
(j = 1) for the present system is both sensitive to the control u and easily detected 
by the measurements Ym. 

3.3 Sensitivity of eigenmodes of A to control and observation 

The least stable eigenvalues of A and their corresponding control and observation 
sensitivities Jj and gj are tabulated in Table 1. Note that the fourth eigenmode is 
five orders of magnitude less sensitive than the first eigenmode to modifications in 
the control. In general, those modes in the upper branch of Fig. la (large l'Js(>-)1) 
are much less sensitive to control than those in the lower branch (small l'Js(>-)1). 
Near the intersection of the two branches (~(>.) ~ -0.3), the control sensitivity 
is maximum, with this sensitivity decreasing slowly to the left of this intersection 
(~(>.) < -0.3). It can be predicted that the eigenmodes corresponding to the largest 
Jj may be affected most upon application of some feedback control u. 

Note that the flow measurements are two orders of magnitude less sensitive to 
the fourth eigenmode as they are to the first eigenmode. It can be predicted that 
the state estimates of the eigenmodes corresponding to the largest g j will be most 
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FIGURE la. Least stable eigenvalues: j8'(Aj)I versus ~(Aj), 
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FIGURE 1 b. Eigenvectors corresponding to (left to right): j = l ( unstable, lower 
branch), j = 3 (stable, upper branch), j = 4 (stable, upper branch), and j = 5 
(stable, lower branch), plotted as a function of y from the lower wall (bottom) to 
the upper wall (top). Real component of eigenvector is shown solid and imaginary 
component dashed. Corresponding eigenvalues are reported in Table 1. 

accurate when estimating the state based on noisy measurements. 
An important observation from Fig. 1 b is that eigenvalues in the upper branch of 

Fig. la have corresponding eigenvectors with variations primarily in the center of 
the channel, and are thus less controllable via wall transpiration and less observable 
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via wall measurements than eigenvalues in the lower branch. This observation is 
quantified by reduced values of Jj and gj for these modes in Table 1. 

The second eigenvalue computed, at ,\2 = -0.0235 + 1.520 i is spurious. Spurious 
eigenmodes may be easily identified two ways: i) the eigenvalue moves significantly 
when N is modified slightly, though the eigenvalues reported in Table 1 remain 
converged, and ii) when plotted, spurious modes are dominated by large oscillations 
from grid point to grid point across the entire domain, though converged eigenmodes 
are well resolved. Spurious eigenmodes are expected using this approach and may 
be disregarded. 

4. Summary of 1{2 and 1{00 control theories 

In §2, the equations governing the stability of a laminar channel flow were derived 
and cast in the form 

x =Ax+ Bu 

Ym = Cx + Du, 

(lla) 

(llb) 

where the constituent matrices A, B, C, and D were summarized and discussed in 
§3. We now seek a simple method to determine a control u based on the measure­
ments Ym to force the state x towards zero in a manner which rigorously accounts 
for state disturbances, to be added on the RHS of (lla), and measurement noise, 
to be added on the RHS of ( 11 b). 

The flow of information in this problem is illustrated schematically in the following 
block diagram. 

measurements 
Ym 

disturbances 

plant 

estimator K'l------1 control 
u 

state estimate 
X controller 

The plant, which is forced by external disturbances, has an internal state x which 
cannot be observed. Instead, a few noisy measurements Ym are made, and with 
these measurements an estimate of the state x is determined. This state estimate 
is then fed back to through the controller to determine the control u to apply back 
on the plant in order to regulate x to zero. 

To be more precise, we will consider feedback of the measurements Ym such that 
a state estimate x is first determined by the system model 

x =Ax+Bu-u (12a) 
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Ym = Cx + Du, 

U = £(ym - Ym), 

then this state estimate is used to produce the control 

u = K(x). 

(12b) 
(12c) 

(13) 

Equation (11), with added disturbance terms on the RHS, is referred to as the 
"plant", (12) is referred to as the "estimator", and (13) is referred to as the "con­
troller". The problem at hand is to compute linear time-invariant (LTI) functions£ 
and K such that i) the "output injection" term u forces the state estimate x in the 
estimator (12) towards the state x in the plant (11), and ii) the control u computed 
by the controller (13) forces the state x towards zero in the plant (11). 

We will now demonstrate how to apply H2 and H00 control theories to determine 
£ and K. (Note that we will redefine several variables used in §2 to derive the 
Orr-Sommerfeld equation. Considered in the context of this chapter, this should 
present no confusion.) With this presentation, one set of control equations, involving 
the solution of two Riccati equations, describes a family of H2 and H00 control 
algorithms. The reader is referred to Doyle et al. (1989), Dailey et al. (1990), and 
Zhou, Doyle, & Glover (1996) for derivation and further discussion of the control 
theories summarized here. 

4 .1 H2 control theory 

4,1.1 Optimal control (LQR) 

The first step in considering the system ( 11) is to consider the problem with no 
disturbances and measurements which identically determine full information about 
the state, so that x = x (i.e. no estimation of the state is necessary). These assump­
tions are quite an idealization and can rarely be accomplished in practice, but this 
exercise is an important step to determine the best possible system performance. 
It is for this reason that the controller in this limit is referred to as optimal. Un­
der these assumptions about the system, the objective of the optimal controller, 
of the form in (13), is to regulate (i.e. return to zero) some measure of the flow 
perturbation x from an arbitrary initial condition as quickly as possible without 
using excessive amounts of control forcing. Mathematically, a cost function for this 
problem may thus be expressed as 

(14) 

The term involving I Ix 11 2 is a measure of the state disturbance x integrated over the 
time period over which the initial perturbation decays, which is taken as t E [O, oo ). 
The term involving u*u is an expression of the magnitude of the control. These 
two terms are weighted together with a scalar ,€2 , which represents the price of the 
control. This quantity is small if the control is "cheap" ( which generally results in 
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larger control magnitudes), and large if applying the control is "expensive". As the 
state equation is linear, the cost quadratic, and the control objective regulation, 
this controller is also referred to as a linear quadratic regulator (LQR). 

The mathematical statement of the present control problem, then, is the mini­
mization of JLQR· This results in regulation of x without excessive use of control 
effort. Note that minimization of JLQR is equivalent to minimization of the integral 
of z* z, where 

and where Q is a diagonal matrix with diagonal entries Q jj = 1r / N, as required by 
the appropriate definition of the inner product ( Canu to et al. 1988). In order to 
arrive at a form which is easily generalized in later sections, define 

For notational convenience, the state equation (lla) will be considered as "forced" 
with a right hand side forcing term r which shall be set to zero, as this regulation 
problem simply drives the state towards zero without external command input. The 
state equation (lla), the performance measure z, and the state estimate x then may 
be written 

x =Ax+ r + B2 u 

X = X. 

(15a) 
(15b) 
(15c) 

The optimal controller /C LQR is sought to relate the (precise) state estimate x to 
the control u, which is applied to control the evolution of the state x such that the 
cost JLQR(z) is minimized. The important matrices of the system described by 
(15) may be summarized in the shorthand form 

X 

PLQR = z 
X 

[ 

X 

A 
r 

I 

0 

0 

u 

l 
The flow of information is represented by the block diagram 

z 

X u 

J(LQR 

where PLQR is the flow system given by (15) and J(LQR is the optimal controller, 
which is still to be determined. The system output z may be used to monitor the 
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performance of the system. Note that the command input is r = 0 and there are 
no disturbance inputs; the task of the control u is simply to regulate the state x 
from nonzero initial conditions back to zero. The state x = x is fed back through 
the controller J(LQR to control the system. 

Given this general setup, a Hamiltonian is defined such that 

(16a) 

As shown in Doyle et al. (1989), the Hermetian positive-definite solution X2 to the 
algebraic Riccati equation defined by this Hamiltonian 

(16b) 

denoted X2 = Ric(H2 ), then yields the optimal LTI state feedback matrix 

(16c) 

The optimal LTI controller J(LQR is then given simply by 

(17) 

This controller minimizes ft z* z dt in a system with no disturbances and arbitrary 
initial conditions. Note that standard numerical techniques to solve equations of 
the form (16b) are well developed (Laub 1991). 

4,1.2 Kalman-Bucy filter (KBF) 

When there are disturbances to the system, and thus the state is not precisely 
known, the state ( or some portion thereof) must first be estimated, then the control 
determined based on this state estimate. The Kalman-Bucy filter, of the form (12), 
accomplishes the required state estimation by assuming that the state disturbances 
and the measurement noise are uncorrelated white Gaussian processes. To accom­
plish this, we introduce two zero-mean white Gaussian processes w1 and w2 with 
covariance matrices E[w{w1] = I, E[w;w2 ] = I, where E[·] denotes the expectation 
value. With these new disturbance signals, and with G1 defined as the square root 
of the covariance of the disturbances to the state equation and G2 defined as the 
square root of the covariance of measurement noise, the system (11) takes the form 

x = Ax + G1 w1 + Bu 

Ym = Cx + G2w2 + Du. 

(18a) 

(18b) 

The objective of the Kalman-Bucy filter is to estimate the state x as accurately as 
possible based solely on the measurements Ym• Put another way, the Kalman-Bucy 
filter attempts to regulate the norm of the state estimation error x E to zero, where 

XE= X - X 
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and where the state estimate x shall be determined by a filter of the form (12). 
Mathematically, a cost function for this problem may thus be expressed as 

JKBF = E[ llzEll2], 

where ZE = XE for notational convenience. (As Gaussian disturbances w1 and w2 

continually drive this system, an integral on t E [O, oo ), as used to define JLQR, is 
not convergent for this problem, and the expectation value is the relevant measure.) 

The mathematical statement of the present control problem, then, is the mini­
mization of JKBF· This results in a "best possible" estimate of the state x. In 
order to arrive at a form which is easily generalized in later sections, assume G2 is 
nonsingular and define 

and the vector of disturbances 

Also, define new "observation" vectors y and i) by a simple change of variables such 
that 

A _ a-1( A D ) Y = 2 Ym - u · 

Note that this change of variables does not represent any real limitation, for when­
ever any flow measurement Ym is made in a physical implementation, the control 
u at that moment is also known, so the observation y is easily determined from 
the flow measurement Ym• With this change of variables, (18b) and (12b) may be 
expressed as 

Y = C2 X + D21 W 

i) = C2x. 

(19a) 

(19b) 

As we are developing the equations for an estimator, it is appropriate now to exam­
ine the equations for the state estimation error x E and the ouput estimation error 
YE = y - i). Subtracting (12a) from (18a) and (19b) from (19a) yields the system 

ZE = XE 

YE = C2XE + D21 w. 

(20a) 

(20b) 

(20c) 

The Kalman-Bucy filter LKBF is sought to relate the output estimation error YE 

to the output injection term u, which is used to control the evolution of the state 
estimation error x E such that the cost JI< BF ( z E) is minimized in the presence of 
Gaussian disturbances w. The important matrices of the system described by (20) 
may be summarized in the shorthand form 
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XE w u 

XE 

[ 
A B1 I l PKBF = ZE I 0 0 

YE C2 D21 0 

The flow of information is represented by the block diagram 

w 

YE u 

LKBF 

where PKBF is the flow system given by (18) and LKBF is the Kalman-Bucy filter, 
which is still to be determined. The system output ZE may be used to monitor the 
performance of the system. This system accounts for Gaussian disturbances w and 
noisy observations YE of the system, which are fed back through the filter LKBF to 
produce the state estimate. Note the striking similarity of the structure of PKBF 

to the structure of the conjugate transpose of PLQR· For this reason, these two 
problems are referred to as "duals", and their solutions are closely related. 

Given this general setup, another Hamiltonian is defined such that 

(21a) 

As shown in Doyle et al. (1989), the Hermetian positive-definite solution Y2 to the 
algebraic Riccati equation defined by this Hamiltonian 

(21b) 

denoted Y2 = Ric(h), then yields the LTI estimator feedback matrix 

(21c) 

The LTI Kalman-Bucy filter LKBF is then simply given by 

and thus the complete state estimator is given by 

(22) 

This estimator minimizes E[ I Ix - x 11 2 ] in a system with Gaussian disturbances in 
the state equation and Gaussian noise in the measurements. 
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4,1.3 H2 control (LQG = LQR + KBF) 

A controller/estimator of the form (12)-(13) for the complete system described 
by (18) with Gaussian disturbances may now be constructed. The objective of the 
control is to minimize 

where 11 • 11 denotes the standard Euclidian norm, also known as a "2-norm". Note 
that minimization of .:T2 is equivalent to minimization of the expectation value of 
z* z, where 

and Q is a diagonal matrix with diagonal entries Q jj = 1r / N as required by the 
appropriate definition of the inner product. As the control objective is the min­
imization of the expectation value of the square of a 2-norm, this type of con­
troller/ estimator is referred to as 1{2 . As the state equation is linear, the cost 
quadratic, and the disturbances Gaussian, this type of controller/ estimator is also 
referred to as linear quadratic Gaussian (LQG ). 

Combining the notation developed in the previous two sections 

D12 = (~) 
D21 = ( 0 I), 

with the vector of disturbances w and the observation vectors y and f; defined such 
that 

Y = G"21 (Ym -Du) 

f) = G"21 (f;m - Du), 

the system (18) and the control objective for the minimization of .:T2 take the form 

x = Ax + B1 w+B2 u 

z = C1x+ D12u. 

y = C2x + D21w. 

(23a) 

(23b) 

(23c) 

An 1{2 controller/estimator is sought to relate the observations y to the control u, 
which is applied to control the evolution of the state x such that the cost .:T2 ( z) is 
minimized in the presence of Gaussian disturbances w. 

The remarkable result from control theory (Lewis 1995) is that the 1{2 con­
troller /estimator of the form (12)-(13) which minimizes .:T2 for this system is 
formed by simple combination of the optimal controller and the Kalman-Bucy filter 
such that 

u = K 2 x 
.i: =Ax+ B2 U - L2 (y - C2 x) 

(24a) 

(24b) 
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where K2 is given by (16) 

(24c) 

and L 2 is given by (21) 

(24d) 

Note the separation structure of this solution. The computation of K2 does not 
depend upon the influence of the disturbances, which are accounted for in B 1 and 
C2 . The computation of L 2 does not depend upon the weightings in the cost 
function, which are accounted for in C1 , or the manner in which the control u 
affects the state, which is accounted for in B 2 . In other words, the problem of 
control and the problem of state estimation are entirely decoupled. 

4. 2 Hoo control 

The H00 controller/ estimator described in this section is very similar to the H2 

controller/ estimator described previously. Consideration is now given to distur­
bances, which we shall distinguish with a new variable X, of the "worst" possible 
structure ( as made precise below), rather than the Gaussian structure assumed in 
the H 2 case. Considered in the frequency domain, the controller/ estimators de­
veloped in this section provide a system behavior in which the maximum singular 
value of the closed-loop transfer function, also known as the "oo-norm", is less than 
some constant, which shall be referred to as 1 . As this approach may be inter­
preted as bounding the oo-norm of the transfer function from the disturbances to 
the performance measure, it is referred to as H00 control. For further details of the 
frequency-domain explanation of H00 , the reader is referred to Doyle et al. (1989) 
and Zhou, Doyle, & Glover (1996). 

The governing equations to be considered in this section are identical to (23): 

x = Ax + B1 x+B2 u 

z = C1x+ D12u. 

y = C2x + D21X. 

(25a) 

(25b) 

(25c) 

An H00 controller/estimator is sought to relate the observations y to the control u, 
which is applied to control the evolution of the state x such that the cost :J00 (z) 
is minimized in the presence of some "worst case" disturbance X. As before, the 
G1 and G2 matrices used to define this system describe any covariance structure of 
the disturbances known or expected a priori (for instance, if one measurement is 
known to be noisier than another). These matrices are taken as identity matrices 
if no such structure is known in advance. 

Effectively, the cost function considered for H00 control is 

(26) 
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A u is sought, through a controller/estimator of the form (12)-(13), to minimize 
J 00 , while simultaneously an external disturbance X is sought to maximize J 00 . (In 
this manner, Xis the "worst possible" disturbance, as it is exactly that disturbance 
which increases the relevant cost function the most.) Thus, the H00 problem is 
a "min-max" problem. The term involving -'"? limits the magnitude of the un­
structured disturbance in the maximization of J 00 with respect to X in a manner 
analogous to the term involving ,€2 , which limits the magnitude of the control in the 
minimization of Joo with respect to u. 

The result (Doyle et al. 1989) is that an H 00 controller/estimator of the form 
(12)-(13) which minimizes Joo in the presence of some component of the worst 
case unstructured disturbance X for this system is given by 

u = K 00 x 
.i: = Ax + B2 u - L00 (y - C2 x) 

where K 00 is given by 

and L00 is given by 

(27a) 
(27b) 

(27c) 

(27d) 

Note first that, in the 1 ----+ oo limit, the H2 controller/estimator is recovered, so 
the set of two Ricca ti equations in (27) describes both the H2 ( optimal control + 
Kalman-Bucy filter) and the H00 problems. 

It may also be shown that, as the upper-right blocks of the Hamiltonians may not 
be negative definite, a solution to these Riccati problems exists only for sufficiently 
large 1 ; the smallest 1 = 10 for which a solution to these equations exists may be 
found by trial and error (Doyle et al. 1989). An H00 controller/estimator for 1 > ,o 
is referred to as suboptimal. 

4, 3 Comparison of H2 and H 00 control equations 

Most of the robustness problems associated with H2 stem from the state estima­
tion. Optimal (LQR) controllers themselves, provided with full state information, 
generally have excellent performance and robustness properties (Dailey et al. 1990). 
Recall from §4.1.3 that the problems of control and state estimation in the H2 for­
mulation are decoupled. 

An important observation of §4.2 is that the problems of control and state esti­
mation in the H 00 formulation are coupled. Specifically, the computation of K 00 
depends on the expected covariance of the state disturbances, which are accounted 
for in B1, and the computation of L00 depends on the weightings in the cost func­
tion, which are accounted for in C1. This is one of the essential features of H00 
control. 
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By taking into account the expected covariance of the state disturbances, re­
flected in B1 , when determining the state feedback matrix J( 00 , the components of 
x corresponding to the components of x that are expected to have the smallest forc­
ing by external disturbances are weighted least in the feedback control relationship 
u = Koo x. 

Similarly, by taking into account the weightings in the cost function, reflected 
in C1, when determining the estimator feedback matrix L 00 , the components of x 
corresponding to the components of x that are least important in the computation of 
J 00 are forced with the smallest corrections by the output injection term L 00 (y- f)) 
in the equation for the estimator. 

By applying strong control only on those components of x significantly excited by 
external disturbances, and by applying strong estimator corrections only to those 
components of x important in the computation of the cost function, H00 feedback 
gains for components of the system not relevant to the control problem are reduced 
from those in the H 2 case. With such feedback gains reduced, the stability properties 
of H00 controller/ estimators in the presence of state disturbances and measurement 
noise may be expected to be better than their H 2 counterparts, at the cost of a 
(hopefully, small) degradation of performance in terms of the 2-norm of the output 
z for the undisturbed system. 

4.4 Numerical method 

Standard numerical techniques are now applied to all aspects of this problem. 
In order to simplify both the theory to be presented and the numerical algorithm 
to be coded, no further manipulation of the equations is used beyond the matrix 
representations (25) and (27). It was observed that the minimal realization approach 
(Kailath 1980) is well suited to reduce the computation time necessary to determine 
effective control algorithms by the present approach; however, such an approach was 
not found to be necessary in the present case. 

The algebraic Ricca ti equations are solved using the method of Laub (1991 ), which 
involves a Schur factorization. This is found to be a stable numerical algorithm for 
all cases tested. The implementation of Laub's method is written in Fortran-90 and 
follows closely the algorithm used by the Matlab function are. m ( Grace et al. 1992). 
A Lyapunov solver, modeled after the Matlab function lyap .m, is used to compute 
the system Gramians. 

Two LAPACK routines (Anderson et al. 1995), zgeev.f and zgees.f, are used 
to compute eigenvalues/eigenvectors and Schur factorizations. These routines are 
compiled in quad precision (128 bits per real number) to ensure sufficient numerical 
precision in the eigenvalue computation. All computations are carried out with 
N = 140 to ensure good resolution of all significant eigenmodes. The eigenvalues of 
A match all those tabulated by Orszag (1971) to all eight decimal places, as shown 
in Table 1, indicating that this numerical method is sufficiently accurate. 

5. Performance of controlled systems (no disturbances) 

We now examine the behavior of the "closed-loop" systems obtained by applica­
tion of the above controllers and estimators to the "nominal" (i.e. no disturbances) 



Optimal and robust control of transition 425 

channel flow stability problem. In other words, we examine the behavior of the flow 
and the controller/ estimators operating together as a single dynamical system. By 
looking at "root locus" plots which map the movement of the eigenvalues of these 
systems in the complex plane with respect to the relevant parameters, this behavior 
is well quantified. We shall also examine the control and observation sensitivities 
defined in §3.2 for two special cases in order to better understand the fundamental 
limitations of controllers and estimators applied to the present system. 

5.1 1{2 control 

5.1.1 Optimal control (LQR) 
In order to investigate the controllability of the closed-loop eigenmodes when all 

modes are observable, consider the system described in §4.1.1. With r = 0 and 
examining only the equations for x and x, the plant is given (in the shorthand 
notation used in §4) by 

X U 

with the control now given by 

u = K2 x + u', 

where an additional control term u' has been added to study the sensitivity of the 
closed-loop system to further modification of the control. Putting the plant and the 
controller together, the closed-loop system may be represented by 

X 

PLQR (closed loop) = X 

X U 1 

The eigenmodes of AK2 = A + B2 1(2 describe the dynamics of the closed-loop 
system for the unmodified control rule ( u' = 0). Figure 2 shows the movement 
of these eigenvalues with respect to the free parameter of the control problem, £, 
used to determine K 2 . The eigenvalues for ,€ ----+ oo are very near those of the 
uncontrolled system A in Fig. 1, with the previously unstable mode moved just to 
the left of the imaginary axis. The eigenvalues generally move to the left as ,€ is 
decreased. Comparing Fig. 2b with Fig. 1 b, it is seen that the control modifies most 
those eigenmodes with significant variations near the wall. 

The sensitivity of the eigenmodes of the closed loop LQR system to modification 
of the control rule may be quantified by performing the analysis of §3.2.1, replacing 
the eigenmodes of A by the eigenmodes of AK2 • The result of this analysis for small 
,€ is shown in Table 2. This table shows that, in the ,€ ----+ 0 limit, the system matrix 
is modified to the point that the eigenmodes are no longer sensitive to further 
modification of the control. In other words, all the controllable dynamics of the 
system have been modified by K2 and are accounted for in the closed loop system 
in this limit. This is one demonstration that the optimal controller extracts the 
best possible performance from a given (full-information) system. 
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FIGURE 2a. Root locus of least stable eigenvalues of AK2 as a function of the free 
parameter of the 1{2 controller, £. The eigenvalues for,€ ---+ oo are marked with an 
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FIGURE 2b. Eigenvectors of AK2 , with ,€ = 10-4 , corresponding to (left to right): 
j = l, j = 3, j = 4, and j = 5. Real component of eigenvector is shown solid and 
imaginary component dashed. Corresponding eigenvalues are reported in Table 2. 

5.1.2 Kalman-Bucy filter (KBF) 

The estimator itself has its own set of dynamics. These dynamics are captured 
by the equations for the state estimator error, as described in §4.1.2. We now make 
use of this system in order to investigate the observability of closed-loop eigenmodes 
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J >. . 
J Jj 

3 -0.03513233 - 0.96462128i 0.000000029 
4 -0.03518652 - 0.96464261i 0.000000001 
5 -0.06255259 - 0.29262711i 0.000001101 
6 -0.06310358 - 0.93629329i 0.000000070 
7 -0.06325089 - 0.93635257i 0.000000003 
1 -0.06644 730 - 0.29721403i 0.000001116 
8 -0.09102975 - 0.90793951i 0.000000129 
9 -0.09130964 - 0.90805917i 0.000000008 

10 -0.11890731 - 0.87955083i 0.000000226 
11 -0.11936036 - 0.87976246i 0.000000020 
12 -0.14335180 - 0.43962023i 0.000002303 
14 -0.14673294 - 0.85111508i 0.000000414 
15 -0.14 739907 - 0.85146161i 0.000000045 
13 -0.14803996 - 0.44586838i 0.000003081 
16 -0.17450455 - 0.82261690i 0.000000842 

TABLE 2. Least stable eigenmodes of the closed-loop system AK2 and their sensitiv­
ity to control for the optimal controller in the cheap control limit (.e = 10-4). The 
numbering of the eigenvalues shown is the same as the numbering of the eigenvalues 
of Table 1 to which they are connected by the root locus of Fig. 2. Note that the 
control in this limit drives all eigenmodes to positions at which they are insensitive 
to further modifications of the control, as illustrated by the large reductions in Jj. 
Note also that those eigenmodes with the largest values of Jj in Table 1 (specifically, 
those in the lower branch) have moved the most. 

when all modes are controllable. With w = 0 and examining only the equations for 
XE and YE, this plant is given by 

PKBF = ---t-• --xE [ A I 10 ] 
YE C2 

with the output injection now given by 

A L A/ 

u = 2 YE+ u' 

where an additional output injection term u' has been added to study the sen­
sitivity of the closed-loop system to further modification of the output injection 
rule. Putting the plant and the estimator together, the closed-loop system may be 
represented by 

XE 
PKBF (closed loop) = YE 

The eigenmodes of AL 2 = A+L2 C2 describe the dynamics of the closed-loop system 
for the unmodified output injection rule ( u' = 0). Figure 3 shows the movement of 



428 T. R. Bewley 8 R. Agarwal 

181 
181 

0.9 181 
181 

!ill 
lill 

0.8 If/ 

al 
0.7 

181 : e-.x 
0.6 : 

... -0.5 0---.....x 

0.4 ~-

~ 

0.3 

181/ 
✓ 

0.2 

0.1 

0 
-0.5 -0.4 -0.3 -0.2 -0.1 0 

FIGURE 3. Root locus of least stable eigenvalues of AL 2 as a function of the free 
parameters of the 1{2 estimator, g1 and g2 ( note that we take g1 = g2 for the purpose 
of drawing the root locus). The eigenvalues for g1 = g2 ---+ 0, marked with (x), are 
very near those of the uncontrolled system A in Fig. 1, with the previously unstable 
mode moved just to the left of the imaginary axis. The eigenvalues generally move 
to the left as g1 and g2 are increased. 

these eigenvalues with respect to the free parameters of the estimator problem. This 
is done by assuming that the matrices describing the covariance of the disturbances 
have the simple form G 1 = g1 I and G 2 = g2 I, where g1 and g2 are real scalars. 

The sensitivity of measurements YE to the eigenmodes of the closed loop KBF 
system may be quantified by performing the analysis of §3.2.2, replacing the eigen­
modes of A by the eigenmodes of AL 2 • The result of this analysis for large g1 = g2 

is shown in Table 3. This table shows that, in the g1 = g2 ---+ oo limit, the system 
matrix is modified to the point that the measurements are no longer sensitive to the 
eigenmodes of the closed-loop system. In other words, all the measurable dynamics 
of the system have been extracted by L 2 and are accounted for in the closed loop 
system in this limit. This is one demonstration that the Kalman-Bucy filter extracts 
the best possible state estimate from a given (fully-controllable) state estimator. 

5.1.3 H2 control (LQG = LQR + KBF) 

It was mentioned in §4.1.3 that the controller/ estimator which minimized the 
relevant cost functional (.:h) in the presence of Gaussian disturbances could be 
found by considering the controller and estimator problems separately. In this 
section, it is shown that the closed-loop performance of a system of the form (23) 
( without disturbances) 

x =Ax+ B2 u 

y = C2x 
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J >. . 
J gj 

3 -0.03505745 - 0.964 74093i 0.000000568 
4 -0.03518656 - 0.96464253i 0.000000004 
6 -0.06287931 - 0.93668086i 0.000000644 
7 -0.06325136 - 0.93635193i 0.000000008 
5 -0.08362450 - 0.25066856i 0.000002858 
8 -0.09059621 - 0.90874817i 0.000000673 
9 -0.09131196 - 0.90805689i 0.000000011 
1 -0.09565183 - 0.l 7658643i 0.000000094 

10 -0.11823779 - 0.88095122i 0.000000646 
11 -0.11936807 - 0.87975709i 0.000000014 
12 -0.1420954 7 - 0.25910275i 0.000000130 
14 -0.14584717 - 0.85329567i 0.000000549 
15 -0.14741926 - 0.85145223i 0.000000014 
16 -0.17347707 - 0.82577419i 0.000000399 
13 -0.17418920 - 0.40314656i 0.000002002 

TABLE 3. Least stable eigenmodes of the closed-loop system AL 2 and their sen­
sitivity to observation for the Kalman-Bucy filter in the large disturbance limit 
(g1 = g2 = 102 ). The numbering of the eigenvalues shown is the same as the num­
bering of the eigenvalues of Table 1 to which they are connected by the root locus 
of Fig. 1. Note that the estimator in this limit modifies all eigenmodes until the 
measurements are no longer sensitive to them, as illustrated by the large reductions 
in gj, Note also that those eigenmodes with the largest values of gj in Table 1 
(specifically, those in the lower branch) have moved the most. 

combined with an estimator/ controller of the form (24) 

u = K 2 x 
£=Ax+ B2 U - L2 (y - C2 x) 

may also be evaluated by considering the controller and estimator problems sepa­
rately. To accomplish this, simply combine the above equations into the closed-loop 
composite system 

Gaussian elimination, first on the rows and then on the columns, reveals that the 
eigenvalues of this system are the same as the eigenvalues of the system 

In other words, the eigenvalues of the closed-loop composite system for the 1{2 

problem are simply the union of the eigenvalues of the controlled system AK2 = 
A+ B 2 1(2 and the eigenvalues of the estimated system AL 2 = A+ L 2 C 2 discussed 
in the previous two sections and illustrated in Fig. 4. 
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FIGURE 4. Least stable eigenvalues of the composite closed-loop system with the 
H 2 controller/estimator, taking .€ = g1 = g2 = 1. Note that the eigenvalues are 
simply the eigenvalues of the closed loop controller ( +) together with those of the 
closed loop estimator (*). 

5. 2 H 00 control 

As with the H 2 controller/ estimator, the performance of the closed loop composite 
system with the H00 controller/ estimator 

may be evaluated by considering the performance of the controlled system AJ<00 
A+ B2 1(00 and the performance of the estimated system AL00 = A+ L 00 C2 sep­
arately. The root locus of the eigenvalues of AK00 are plotted with respect to the 
parameter I of the H 00 problem in Fig. 5, clearly illustrating the tendency of H 00 

controllers to modify only the least stable components of the system, as opposed to 
the H 2 controller of Fig. 2, which modifies all controllable modes of the system. 

6. Conclusions 

Optimal and robust control theories have been successfully applied to the Orr­
Sommerfeld equation. Given control on the wall-normal component of boundary 
velocity only, the flow system is shown to be stabilizable but not controllable. Given 
measurements of wall skin-friction only, the flow system is shown to be detectable 
but not observable. It is shown that H 2 controllers/estimators modify all of the 
controllable/observable modes of the system. In contrast, the H00 controllers mod­
ify the corresponding H2 controllers only in the most unstable component, as H00 

targets a bound only on the maximum value of the transfer function. 



Optimal and robust control of transition 431 

0.9 

0.8 

0.7 
18! 18! 18! 18! 18! 18! 18! 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

-0.4 -0.3 -0.2 -0.1 0 

FIGURE 5. Root locus of least stable eigenvalues of the H00 controller versus 1 , 
taking,€= 100, g1 = g2 = 0.001. The result with 1 ---+ oo, marked with the (x), gives 
the corresponding H2 controller. Note that the H00 controller modifies only the least 
stable eigenmode of this H 2 result, without expending any extra control effort to 
control those eigenmodes not associated with the maximally unstable component of 
the system. Note also that 1 = 10 , marked with the (o), is reached by reducing 1 
until the least stable eigenvalue corresponds to one of the uncontrollable eigenmodes 
in the upper branch, which cannot be moved further left; in the present case, this 
corresponds to a numerical value of 10 = 0.26. 

In the,€---+ 0 limit of the H 2 controller, corresponding to cheap control and thus 
large values of u, all eigenmodes of the closed-loop controlled system are shown to 
be modified to points at which they are no longer sensitive to further modifications 
of the control. Similarly, in the g1 = g2 ---+ oo limit of the H 2 estimator, accounting 
for large disturbances on both the state and the measurements, all eigenmodes of 
the closed-loop system for the estimator error are shown to be modified to points 
at which they are not discernible by flow measurements. 

These results indicate that H 2 controllers and estimators are optimal for their 
desired purposes, but may contain large feedback gains. On the other hand, H00 

controllers only target the least stable components of the system, and thus have 
smaller feedback gains while still achieving the same worst case performance for the 
nominal plant. Such reduced feedback gains generally result in improved robustness 
to inaccuracies in the system model. 
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