
A Delaunay-based method for optimizing infinite time averages
of numerical discretizations of ergodic systems

Pooriya Beyhaghi∗
ASML Inc, San Diego, CA, 92127, USA

Ryan Alimo†

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109, USA

Muhan Zhao‡ and Thomas R. Bewley§
University of California San Diego, La Jolla, CA, 92093, USA

Delaunay-based optimization is a generalizable family of practical, efficient, and provably
convergent derivative-free algorithms designed for a range of black-box optimization problems
with expensive function evaluations. In many practical problems, the calculation of the true
objective function is not exact for any feasible set of the parameters. For problems of this type,
a variant of Delaunay-based optimization algorithms dubbed α-DOGS is designed to efficiently
minimize the true objective function evaluated with sampling error, while using minimal sam-
pling over the parameter space. In the present work, we extend α-DOGS to additionally address
uncertainties of the objective function that are generated by the numerical discretization of
the ODE or PDE problems of interest. For validation, this modified optimization algorithm
is applied to the (chaotic) Lorenz system. Numerical results indicate that, following the new
approach, most of the computational effort is spent close to the optimal solution as convergence
is approached.

I. Introduction
The focus of this work is to develop a computational optimization technique that can be seamlessly applied to obtain
the optimal parameters involved in stochastic physical problems for which evaluating the cost function accurately
involves a significant computational expense. In particular, we are interested in complex systems that require the time
averaging of large-scale computations of partial differential equations (PDEs) during the design process. We aim to
solve optimization problems with the objective function f (x) : Ω ⊆ Rn 7→ R in the form of:

f (x) = lim
T→∞

fT (x), fT (x) =
1
T

∫ T

t=0
y(x, t)dt,

dy(x, t)
dt

= G(x, t) (1)

where G(x, t) is a nonlinear function of x and t. Note that x represents the vector of adjustable parameters in this
dynamic system.

Moreover, we will assume that the analytical expression for y(x, t) is not available, and we can only calculate y(x, t)
through numerically time marching the nonlinear function G(x, t). In this way, the available measurement for the
objective function is obtained via finite sampling defined as follows

f (x, h,T) = 1
N

N∑
i=1

y(x, ih), N =
T
h

Note that f (x, h,T) is a noisy approximated measurement of f (x) whose accuracy can be increased by decreasing h and
increasing T ; however, the modification of time step h will change the values of f (x, h,T) and restart the simulation
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from the beginning.

One of the developed algorithm in this class, dubbed α-DOGS, is designed specifically to minimize those objective
functions that are given by the infinite-time average of a statistically-stationary ergodic process; in such problems, any
numerical or experimental approximation of this function is characterized by sampling error, which may be reduced by
additional sampling. However, α-DOGS cannot handle the discretization error, and it is only designed for problems
where the uncertainty is due to the finite number of sampling.

The key idea behind the α-DOGS algorithm is that the number of sampling over different points in the feasible domain
is varied. In this way, only a limited number of sampling is needed for those points that are far from the basin of
global minimizer, whereas more extensive sampling is required as convergence is approached in order to more precisely
quantify the objective function in regions closer to the global minimum.
The existence of the discretization error is an important issue in many practical optimization problems that are caused by
the numerical discretization of the PDEs of interest. Such challenges arise, for instance, in the minimization of the drag
of a numerical approximation of a turbulent flow [1]. One approach to deal with discretization error is to use the same
spatial grid for all measurements, which reduces the problem to one grid. However, this approach is computationally
expensive since it is not necessary to use a fine spatial grid throughout the whole optimization process.

In this paper, a new algorithm, dubbed α-DOGSX is presented to efficiently automate the trade-off between (a) additional
sampling of the ergodic process, and (b) the refinement of the spatial discretization of the ODE (similar approach could
be used for PDEs as well). Moreover, for a wide range of optimization problems in form of (1), a target value f0 exist.
In other words, we want to find the control parameters x such that f (x) < f0, rather than actually minimizing the f (x).
Therefore, in this paper, we also modify the α-DOGS to optimize the algorithm using the target value.

The structure of this paper is organized as follows: Section II briefly explains the essential elements of the α-DOGS for
problems that a target value exist. Section III presents the modified algorithm to deal with discretization error efficiently.
Section IV shows the performance of the proposed algorithm on a model problem based on the Lorenz equation. Some
conclusions are drawn in Section V.

II. α-DOGS for Problems with Target Value

A. Algorithm
In this section, the general framework of α-DOGS algorithm is presented which is designed to minimize the objective
function of the form:

f (x) = lim
N→∞

1
N

fN (x), fN (x) =
N∑
i=1

fi(x) (2)

where fi(x) is considered as a stationary and ergodic random process at each x.

Remark 1. Estimating the value of the uncertainty associated with fN (x) is the classical uncertainty quantification
(UQ) problem that is studied in [2], [3] and [4]. In this section, we will assume that this quantity is known, and it is
denoted by σN (x).
The original algorithm [5] is designed to optimize the objective function of form 2 in general, but for a wide range of
practical optimization problems, we seek a point such that f (x) ≤ f0. In this section, a modified version of algorithm in
[5] is presented which more efficiently solves those optimization problems that have a target value f0. This approach
is similar to the EI (Expected Improvement) approach, which is considered as a major relevant criterion in global
optimization.

Definition II.1. Let S be a set of points in the feasible domain L and Y = { fNx (x)|x ∈ S} as a set of approximated
measurements of f (x) at these points. Nx denotes the length of averaging sampling at point x. p(x) denotes the
regression that passed through these measurements. Suppose f0 is a target value for f (x), then the continuous search
function sc(x) is defined as follows:

sc(x) =
{

p(x)− f0
e(x) if p(x) ≥ f0 ,

p(x) − f0 otherwise
(3)
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In this framework, the regression p(x) could be a user defined robust regression process which satisfies

|p(x) − fNx (x)| ≤ βσNx (x), ∀x ∈ S (4)

here σNx (x) is the uncertainty with the function evaluation fNx (x).

e(x) is the Delaunay-based uncertainty function defined in [5]. The piecewise quadratic function e(x) is non-negative
everywhere in L and remains zero at the evaluated points in S.

Definition II.2. Consider S as a set of feasible points in L, and Y = { fNx (x)|x ∈ S} as a set of measurements of f (x)
at these points. Moreover, σNx (x) is considered as the uncertainty quantification of fNx (x). Furthermore, p(x) is
considered as a regression for these measurement. Then the discrete search function sd(x) for each x ∈ S, is defined as

sd(x) =
{min{p(x),2 fNx (x)−p(x)}− f0

σNx (x)
if p(x) ≥ f0

p(x) − f0 otherwise
(5)

In addition to the discrete and continuous search functions, the concept of the Cartesian grid is needed to present the
α-DOGS algorithm which is defined in [6], [7] and [8].

Definition II.3. The Cartesian grid of level ` for the feasible domain B = {x |a ≤ x ≤ b}, denoted as B` , is defind as:

B` =
{
x
���x = a +

1
2`
(b − a) ⊗ z, z ∈ {0, 1, ..., 2`}

}
(6)

A quantizer of point x ∈ B onto B` is the point xq , which has the minimum distance to x from the B` grid. Note that
quantizer of point x is not necessarily unique. The maximum discretization error is defined as follows:

δ` = max
x∈B
| |x − xq | | (7)

Remark 2. Scaling the function evaluations and the domain of the parameters is required in order to have an efficient
optimization algorithm. We consider that the normalized variables xi within the range 0 ≤ xi ≤ 1, and 0 ≤ f (x) ≤ 1
after scaling.

Now we present the modified Adaptive-K α-DOGS algorithm to find a point such that f (x) ≤ f0. The steps of this
algorithm are summarized in Algorithm 1. The detailed convergence proof for Adaptive-K α-DOGS is available in the
full version paper of this work.

One of the challenges in Algorithm 1 is to determine the most promising points for the available measurements at
the the finite iteration k. This point is called the candidate point which is determined as follows:

• If sc(xk) ≤ sd(wk), then the candidate point is defined as the minimizer xk of sc(x). The iteration k is called the
identifying sampling iteration.

• If sc(xk) ≥ sd(wk), then the candidate point is defined as the minimizer wk of sd(x). The iteration k is called the
addtional sampling iteration.

Remark 3. An important factor in Algorithm 1 is the construction of the regression pk(x). Generally, any well-behaved
regression that is robust [5] can be used. However, in the simulation of this paper, we have used the efficient polyharmonic
spline regression process (see [9, 10]).

Remark 4. Minimizing the search function skc (x) is an important sub-problem in Algorithm 1, as explained in [6].

In addition to the regression process, there are a few parameters, which play a key role in Algorithm 1, and are
summarized as follows:

a. β, which controls the amount of violation of the regression from the measurement at the available datapoints.
b. `0, which quantifies the mesh level at the first level. In the simulations of this paper, we have used `0 = 3.
c. The initial averaging length N0, and incrementing length N1, which are problem-dependent parameters and control

the minimum averaging length that should be considered between each two iterations of Algorithm 1.
One of the challenges we face in Algorithm 1 is determining the most promising point for the available measurements

at the finite iteration k. This point is called the candidate and is determined as follows:
1. For k = 0, it is the point in the initial set whose measured value is minimized.
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Algorithm 1 Adaptive-K α-DOGS algorithm to find a point such that f (x) ≤ f0, where f (x) is in form of (2)
1: Input: Set k = 0 and initialize the algorithm ` = `0 as the initial grid level. Initialize the algorithm with a set of

points S0 on the initial grid of level `0. Afterwards, calculate an initial estimate with averaging length of N0 at the
initial points. Initialize the amount of additional sampling N .

2: repeat
3: Calculate (or, update) the regression pk(x) that satisfies (4) over Sk , Delaunay triangulation ∆, and sc(x), sd(x).
4: If a point x ∈ Sk exists such that pk (x)− f0

σNx (x)
≤ 1, then increment the averaging length at x, Nx by N , increment k

and repeat from 1.
5: Find xk and wk as the minimizer of sc(x) and sd(x) respectively.
6: if sc(xk) ≤ sd(wk) then
7: Determine qk as a quantizer of xk on the grid of level `k .
8: if qk < Sk then
9: Add qk to Sk calculate an initial estimate of length N0 at qk ;
10: else
11: Refine the grid by setting `k+1 = `k + 1 and increment k.
12: end if
13: else
14: sc(xk) ≥ sd(wk) and increase the averaging length at wk by N .
15: end if
16: until `k achieves `max or target value achieved.

2. If step k is decreasing the mesh, then ηk = qk .
3. If step k is improving iteration and wk has the maximum averaging length over all points in S, then ηk = wk .
4. If neither case 2 nor case 3 happens, ηk = ηk−1 for k > 0.

In the next section, we will analyze the convergence properties of Algorithm 1, and show that the value of the truth
function at the candidate point will ultimately achieve the target value, if the target value f0 is achievable.

B. Convergence analysis of Algorithm 1
The analysis presented in this section is similar to the one given in section 4 of [9]. Note that Algorithm 1 is a modified
version of the Algorithm 1 described in [5] for the range of problems where a target value is known; therefore, the
analysis is similar.

In order to analyze the convergence properties of Algorithm 1, the following assumptions are made:
1. The truth function f (x) and the regressions pk(x) are twice differentiable functions, and

−2 K̂ I ≤ ∇2 f (x) ≤ 2 K̂ I, ∀x ∈ L, (8)

−2 K̂ I ≤ ∇2pk(x) ≤ 2 K̂ I, ∀x ∈ L. (9)

2. The truth function f (x) and the interpolating function pk(x) are Lipschitz with constant L̂.
3. There is a constant γ such that for all measurements fN (x) at point x with uncertainty σN , then

| fN (x) − f (x)| ≤ γσN (x). (10)

This is a restrictive assumption for Algorithm 1. In practice, Algorithm 1 works well even if (10) is not verified,
but in order to simplify the analysis, we make this additional assumption∗.

4. Defining σN (x) as an uncertainty associated with the measurement fN (x), we have

0 < σN (x) ≤ E(N), (11)
lim
N→∞

E(N) = 0. (12)

Note that E(N) is considered to be a positive and monotonically decreasing function.
5. The target value f0 is achievable.
∗In [5], a less restrictive assumption for the measurement process is imposed.
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(a) identifying sampling iteration.
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(b) improving iteration.
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(c) identifying sampling iteration.
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(d) improving iteration.

Fig. 1 Representation of essential elements of Algorithm 1 in improving iteration and identifying sampling
iteration. Subfigures a), b) indicate (dashed curve) the truth function f (x), (black lower line) the target value f0,
(black curve) the regressionmodel pk(x), and (error bars) σk(x). Subfigures c), d) indicate the continuous search
function skc (x) and discrete search function sk

d
(x), and their minimizers in c) identifying sampling iteration and

d) improving iteration.

Before analyzing the convergence of Algorithm 1, we present some preliminary lemmas.

Lemma II.1. At each iteration k of Algorithm 1, we have:

min{skc (xk), skd(wk)} ≤ max{3K̂, 2γ} (13)

Proof. In Lemma 4 of [5], it is shown that using Assumption 1, we have:

min
{z∈Sk }

{2 f (z) − pk(z)} + pk(x) − 2 f (x) − 3 K̂ek(x) ≤ 0, (14)

for all x ∈ L. Note that ek(x) is the uncertainty function based on the Delaunay triangulation.
On the other hand, according to Assumption 4, for each point z ∈ Sk with a measurement fN k

z
(z) and an uncertainty

σNz (z),
| fN k

z
(z) − f (z)| ≤ γσNz (z). (15)

Thus, we have:
2 fN k

z
(z) − pk(z) ≤ 2 f (z) − pk(z) + 2 γσN k

z
(z) (16)

where fN k
z
(z) is the measured value of z at iteration k with uncertainty σ(z). Thus, using (14) and (16), we have:

min
{z∈Sk }

{2 fN k
z
(z) − pk(z) − 2γσNz (z)}

+ pk(x) − 2 f (x) − 3 K̂ek(x) ≤ 0.

Now let us consider x∗, the global minimizer of f (x) in L. Since f0 is achievable (Assumption 4), then f (x∗) ≤ f0;
therefore,

min
{z∈Sk }

{2 fN k
z
(z) − pk(z) − 2γσ(z) − f0}

+ pk(x∗) − f0 − 3 K̂ek(x∗) ≤ 0,
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min{ min
{z∈Sk }

{2 fN k
z
(z) − pk(z) − 2γσNz (z) − f0},

pk(x∗) − f0 − 3 K̂ek(x∗)} ≤ 0.

According to the construction of the discrete search function (5), to the fact that wk is its minimizer, and to the fact that
σNz (z) > 0,

min{σ(z)(skd(wk) − 2γ), pk(x∗) − f (x∗) − 3 K̂ek(x∗)} ≤ 0. (17)

However, if sk
d
(wk) − 2γ ≤ 0, then equation (13) is satisfied; thus, we will assume that pk(x∗) − f (x∗) − 3 K̂ek(x∗) ≤ 0.

Now, if ek(x∗) > 0, then according to the construction of the discrete search function (5),

skc (x∗) − 2K̂ ≤ 0. (18)

Furthermore, xk is the minimizer of skc (x); thus, (13) is satisfied. The only case that is left is when ek(x∗) = 0 and
pk(x∗) − f0 ≤ 0. Note that since ek(x∗) = 0 by construction of the uncertainty function [6], with x∗ ∈ Sk , and since
pk(x∗) − f0 ≤ 0, then sk

d
(wk) ≤ sk

d
(x∗) ≤ 0. �

Lemma II.2. If iteration k of Algorithm 1 is a mesh refinery step, then

f (yqk ) − f0 ≤ (1 + β + γ)T, (19)

T = max{E δ2
k, F δk},

E = 4 K̂ + 2 γ, F = L̂

where yqk and σk are the measurement and its uncertainty at point qk . Note that since this step is refines the mesh, qk is
in Sk . Moreover, δk is the quantization error at iteration k.

Proof. First, we will show that
yqk − f0 ≤ (1 + β)T, and σqk ≤ T . (20)

Since step k is mesh-decreasing, according to the construction of Algorithm 1, R = skc (xk) ≤ sk
d
(wk). Then using

Lemma II.1, R ≤ max {3K̂, 2γ}. If R ≤ 0, then pk(xk) ≤ f0. Since pk(xk) is Lipschitz, then

pk(qk) − f0 ≤ L̂δk,

σk ≤ pk(qk) − f0,

σk ≤ L̂δk,

yqk − f0 ≤ L̂(1 + β)δk .

Thus, equation (20) is satisfied. We will now consider the case where R > 0. In this case, since R is the minimizer
of skc (x) =

pk (x)− f0
ek (x) , then by construction xk is also the minimizer of G(x) = pk(x) − Rek(x). Using Assumption 1,

equality ∇2ek(x) = 2 I (see [6]) and Lemma 3 in paper [5],

G(qk) − G(xk) ≤ (K̂ + R)δ2
k ≤ (4 K̂ + 2 γ)δ2

k . (21)

Moreover, G(xk) = f0 and since qk ∈ Sk , then ek(qk) = 0.

pk(qk) − f0 ≤ (4 K̂ + 2 γ)δ2
k, (22)

σk
Nqk
≤ pk(qk) − f0, (23)

fN k
qk
(qk) − f0 ≤ (4 K̂ + 2 γ)(1 + β)δ2

k . (24)

Now using equation (20) and Assumption 3, (19) is satisfied. �

Lemma II.3. If iteration k of Algorithm 1 is an improving iteration, and thus increases the uncertainty of the maximum
averaging length, then

f (wk) − f0 ≤ (β +max{3K̂, 2γ})E(Nkwk), (25)

where Nk
wk

is the averaging length at wk .
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Proof. Since iteration k is improving, sk
d
(wk) ≤ max{3K̂, 2 γ , 1}, using Lemma II.1, then

min{pk(wk), 2 f̂ (wk) − pk(wk)} − f0 ≤ max{3K̂, 2γ}σk
wk
(yk). (26)

Since the regression is robust,
fN k

wk
(wk) − f0 ≤ (β +max{3K̂, 2γ})σk

Nk
(wk). (27)

Now, according to Assumption 3, we have

f (wk) − f0 ≤ (γ + β +max{3K̂ .2γ})σk
Nk
(wk), (28)

Thus, using assumption 5, equation (25) is shown. �

Theorem II.4. Let us consider ηk , the candidate point at iteration k. Then

lim sup
k→∞

f (ηk) − f0 ≤ 0. (29)

Proof. According to the construction of the candidate point, its value is changed each time that we have either a mesh
refinery step or an improving iteration, which maximizes the averaging length. Therefore, using Lemmas II.2 and II.3,
equation (29) is satisfied if there is an infinite number of modifications in the value of ηk .

This theorem is shown by contradiction. Assuming that we have a finite number of mesh refinery steps, Algorithm
1 will obtain only a finite number of datapoints; thus, there must be an infinite number of improving iterations at a
finite number of points. As a result, there is an infinite number of iterations that increase the averaging length at one
of the available datapoints which has the maximum averaging length; this is a contradiction with our contradictory
assumption; hence the proof of our theorem. �

III. Modified Optimization Algorithm Dealing With Discretization Error: α-DOGSX
In this section, we modify Algorithm 1 to solve more general problems in the form of (1). The main difference between
the objective function of form (1) and (2) is that the convergence to f (x) in (1) can be achieved only when the time step
h reduces to zero.

Recall that during each addtional sampling iteration of Algorithm 1, the averaging length at point wk is simply
incremented by N1. However, in α-DOGSX, there are two possible options for improving the accuracy of the available
measurement at point wk :

• Increasing the value of the averaging length, T .
• Decreasing the mesh size, h.

To develop an efficient policy between increasing T and decreasing h, the following factor are important:
• The value of the uncertainty associated the measurement f (wk, hk,Tk) for f (wk), denoted by σ(wk, hk,Tk).
• The required amount of improvement at point wk .
• The computational cost of the improvement for objective function measurement.

Remark 5. The required amount of improvement plays a key role in our measurement improvement process. Fig. 2(a)
illustrates the role of the value of required uncertainty. It is observed that to achieve a small amount of improvement, it
is typically more efficient to increase the averaging length, T . However, for greater improvement, the measurement
should be improved by modifying both h and T .

Now we will develop a procedure to estimate the required amount of reduction at point wk . There are two possible cases
for an improving step of the iteration k of Algorithm 1:

1. Iteration k is improving since sd(wk) ≤ sc(xk). In this case, we expect to improve the uncertainty until
sd(wk) = sc(xk). Therefore, the required improvement at wk is denoted by σR

k
(wk),

σR
k (wk) =

min{p(wk), 2 fN (wk) − p(wk)}
sc(xk)

(30)
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(b) k = 8

Fig. 2 (a) Illustration of the effect of the required uncertainty on the process of improvement. Black curve show
the trend of the uncertainty function at the current h as a function of computational time, and the blue curve
shows the behaviour of this function for a reduced h. It is observed that for small value of σR, it is more efficient
to increase averaging length, but for further improvement, it is more efficient to reduce h; (b) Illustration of the
generated points by α-DOGSX on Lorenz system.

2. Iteration k is improving since a point x ∈ S exists such that p(x) − f0 ≤ σNx (x). In this case, the required
improvement at point x is obtained by

σR
k (wk) = max{p(x∗) − f0, 0} (31)

Note that expressions in (30) and (31) estimates σR
k
(wk) assuming pk(x) is constant during the measurement improve-

ment process. This assumption may not be true, especially if the reduction of the uncertainty is high. Thus, we will
limit the reduction of the uncertainty by the half of the current uncertainty.

Now based on the available required improvement, the optimal procedure for the measurement improvement can be
developed through matching the uncertainty at the improving point z. The notation σ(z, h,T) denotes the quantity of
uncertainty at the point z with time length T and discretization step h. For a wide range of practical problems, [3], the
expression of σ(z, h,T) can be formulated as follows

σ(z, h,T) =
√
(C0(z)hp)2 + (σ0(z)√

T
)2 (32)

here p is the order of accuracy of the time marching scheme used in practice. The first term in (32) works as the
discretization error and the second term serves as the sampling error computed from time averaging. Using equation
(32) as a model for the value of the uncertainty, the constant C0(z) and σ0(z) are determined empirically, based on the
available measurement [3].

The main modification in Algorithm 1 is the determination of time length T and time step h for the point z in each
improving iteration. Notice that there are two sources of improving point z in Algorithm 1. The first one is from line 4
and the other one is from line 14.
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Algorithm 2 α-DOGSX algorithm to determine the time length T and time step h

1: If z = wk , calculate σR
k
from (30); otherwise, z is found from line 4 of Algorithm 1, compute σR

k
using (31).

2: If σR
k
≤ σ(z)

2 , replace σR
k
with σ(z)

2
3: For each hl = hk2l , l ∈ {0, 1, ..., L}, calculate Tl such that

σ(z, hk2l,Tl) = σR
k (33)

where σ(z, hk2l,Tl) is the uncertainty associated with the measurement at point z with averaging length Tl and
mesh size of hl .

4: For each l ∈ {0, 1, ..., L}, calculate the cost associated with each required measurement as follows:

Costl =
Tl

hk2l
, ∀l ≥ 1 (34)

Note that in the above expression, we estimate the cost of the measurement process by the number of time marching
that are required.

5: Calculate lopt as the minimizer of Costl , take hk+1 = hk2l and Tk+1 = Tl .

IV. Implementation of α-DOGSX on Synthetic Lorenz problem
In this section, the developed Algorithm 2 is improved from [7] and applied on a synthetic model problem based on

Lorenz system. The Lorenz system is a strange attractor that arises in a system of equations describing the 2-dimensional
flow of a fluid of uniform depth, with an imposed vertical temperature difference. The chaotic behavior of a simplified
3-dimensional system of this problem, known as the Lorenz equations [11], is given below:

d
dt

X = s(Y − X) (35)

d
dt

Y = −X Z + r X − Y (36)

d
dt

Z = XY − bZ (37)

In the Lorenz system, the values of r , b, and s are positive. The Lorenz system becomes chaotic if [11]

r > s
s + b + 3
s − b − 1

. (38)

Moreover, r is related to the finite time averaging quantity of Z in (35), denoted as Z̄ . Using this relationship, the upper
bound for r can be estimated by:

Z̄ i ≤ (r − 1)i, i = 1, 2, 3. (39)
Imposing (39) and (38), we choose 24 ≤ r ≤ 30, b = 8/3 and s = 10. It has been reported in [3] that the discretization
error of Z̄ , εh , can be modeled as C0 hp for the Lorenz system where p = 3 and C0 = 0.8 approximately.

Consider an estimation problem, in which values of various moments of the chaotic attractor at the nominal values of
the parameters are taken as the target. The goal is to search over the parameter space of in an attempt to determine the
optimal parameter values r∗ = 28 through minimizing the objective function

J(r) =
K∑
i=1
( fi − ftarget )2 (40)

where fi is considered to be different moments of Z direction. The desired value for ftarget is 23.57 using RK4 scheme.
Fig. 2(b) shows the points that are generated during the optimization algorithm. The initialization is performed with
an initial time averaging ofT0 = 50, and the solver grid size of h0 = 2.5×10−3 for α-DOGS and h0 = 0.05 for α-DOGSX.

Table 1 and Fig. 3 show the points generated during the optimization algorithm. The initialization is performed with an
initial time averaging of T0 = 50, and the solver grid size is h0 = 2.5 × 10−3 for α-DOGS and h0 = 0.05 for α-DOGSX.
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Fig. 3 Illustration of the points generated by α-DOGSX on Lorenz problem.

Table 1 The points generated by applying the optimization algorithm to the Lorenz system.

r 27.5 28.5 29.5 25.5 26.5 28.
J 0.9 0.42 3.0 1.65 1.17 10−3

T 50 360 280 210 300 570
h 0.05 2 × 10−4 1 × 10−3 3 × 10−3 8 × 10−3 5 × 10−4

Cost 103 106 105 104 105 107

V. Conclusion
In this paper, we developed a new algorithm, dubbed α-DOGSX, for solving optimization problems, whose functions
are the infinite time-averaged statistics of a continuous stationary process without discretization error. The method we
presented is based on the Delaunay-based optimization algorithm which is developed in [5].

We used the finite-time averaging value, which is an estimate for the truth objective value at each given resolution
of the mesh grid. The novelty of our algorithm is that the different averaging lengths and mesh grid resolutions are
used at different sets of design parameters. The flexibility in the calculation of function evaluations that are less
accurate far from the solution allows us to get an efficient algorithm for solving problems whose function values are given.

Our algorithm has a tuning parameter α, which plays a key role in the optimization process. It is observed that as α
decreases, we use more data points for the convergence, but the total amount of averaging decreases. Note, that this
flexibility is useful since for some applications (e.g., turbulence simulations), it is more efficient to use fewer datapoints,
as the examination of each data point is costly (because of the complexity in setting up a measurement process at each
point). Note also that in the limit where the initialization cost is too expensive, it is better to use the same averaging
length for all data points.

Another important issue which has to be considered is the role of the desired accuracy in our algorithm. It is observed
that as the desired accuracy increases, the efficiency of the optimization process increases as well. In other words, in
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the limit where the desired accuracy goes to 0, the computational cost of the optimization process converges to the
computational cost of the most expensive measurement.

Furthermore, since the stated problem (1) is stochastic, the performance of the presented algorithms are also stochastic.
In other words, based on the measured values that are derived as the algorithm proceeds, the convergence speed changes;
however, the main advantage of this algorithm is that the convergence is guaranteed under some conditions.

Although this new method works well for the test functions we presented in this paper, it cannot be practically used for
high-dimensional problems yet, due to the exponential growth of the number of simplices with the dimension. This is
an important limitation of our optimization algorithm.

In our future work, we intend to implement our algorithm for some practical optimization problems in turbulence
simulations.
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