Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

FrB06.6

Efficient Derivative-Free Optimization

Paul Belitz and Thomas Bewley

Abstract— The present paper considers the derivative-free
optimization of expensive non-smooth functions. One of the
most efficient algorithms for this class of problems is the
surrogate-based optimization framework by Booker et al, 1999.
Searches performed using this algorithm are restricted to points
lying on an underlying grid to keep function evaluations far
apart until convergence is approached. Once convergence on
this discrete grid is obtained, the grid is refined and the process
repeated. All previous implementations of this algorithm have
been based on a Cartesian grid. However, Cartesian grids are
not nearly as uniform at packing, covering, and quantizing
parameter space as several alternatives that are well known in
coding theory, referred to as ’n-dimensional sphere packings”
or ”lattices”. Also, the distribution of nearest-neighbor lattice
points turns out to be far superior in these alternative lattices,
further increasing the efficiency of the optimization algorithm.
The present study illustrates how such lattices may be incor-
porated into the surrogate-based optimization framework.

I. INTRODUCTION

The minimization of computationally expensive, high di-
mension functions is most efficiently performed by use of
a gradient-based optimization routine. However, when the
function in question is too noisy to optimize using gradient
information, a derivative-free optimization scheme must be
used. An effective class of strategies designed to accomplish
this, known as Generalized Pattern Search (GPS) algorithms,
coordinates the search for the minimum by performing
function evaluations on a discrete grid covering the feasible
region of parameter space, refining this grid as convergence
is approached.

The most efficient strategies in this vein leverage the use of
inexpensive intermediate surrogate functions (often, Kriging
interpolations are used) to interpolate the available function
evaluations in order to provide suggested regions of parame-
ter space in which to perform new function evaluations (see
Booker et al., 1999). When exploratory searches based on
such surrogate functions indicate that a discrete minimizer
(a.k.a. Candidate Minimum Point, or CMP) on the current
grid might have been attained, the function is evaluated
at several neighboring poll points on the grid. To ensure
convergence, these points are chosen in such a way as to
form a positive basis around the CMP [Torczon 1997, Booker
et al. 1999, Coope & Price 2001]. That is, any feasible
point in the neighborhood of the CMP can be reached via
a linear combination with non-negative coefficients of the
vectors from the CMP to these poll points.

If during this polling step a reduced function evaluation
is calculated, the surrogate interpolating function is updated
and explored further to identify a new CMP. If, however, all
neighboring poll points represent increased function values
from the CMP, the CMP is referred to as the best known local

1-4244-1498-9/07/$25.00 ©2007 IEEE.

[\ © (d)

(a) ® /]
~

><
e

/N X VAN

Fig. 1. The packing (a and b) and covering (c and d) of the 2D Cartesian
and hexagonal lattices.

minimizer on the discrete grid. The grid is then refined by a
factor of two and the process repeated, reusing all previously-
calculated function values from the coarser grid. To the best
of our knowledge, all previous implementations of such grid-
based optimization strategies have been based on Cartesian
grids.

II. LATTICE PERFORMANCE METRICS

There are two key drawbacks with such Cartesian grids
for the coordination of a derivative-free optimization scheme.
First, the Cartesian grid is relatively nonuniform compared
to the available alternatives. As illustrated in two dimensions
in Figure 2, the characteristics of a lattice may be quantified
by the following measures [Conway & Sloane 1999]:

e The packing radius of a lattice, p, is the maximal radius
of the spheres in a set of identical nonoverlapping spheres
centered at each nodal point.

e The packing density of a lattice, A, is the fraction of
the volume of the feasible domain included within a set
of identical non-overlapping spheres of radius p centered at
each nodal point on the lattice. Lattices that maximize this
metric are referred to as close-packed.

o The covering radius of a lattice, R, is the maximum
distance between any point in the feasible domain and the
nearest nodal point on the lattice.

oThe covering thickness of a lattice, @, is the number of
spheres of radius R containing an arbitrary point in the
domain, averaged over the entire domain.

eThe kissing number of a lattice, 7, is defined as the number
of nearest neighbors to any given nodal point in the lattice. In
other words, it is the number of spheres of radius p centered
at the nodal points that touch, or ‘kiss’, a sphere centered at
any given nodal point.

e The Voronoi cell of a nodal point on a lattice, V(P;),
consists of all points in the domain that are at least as close
to the nodal point P; as they are to any other nodal point P;.
o The mean squared quantization error per dimension of
a lattice, G, is the average mean square distance of any
point in the domain and the nearest nodal point, normalized

5358

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007

n_| lattice I A | © | G | =
) cubic (Z%) 0.785 1.571 0.08333 4
hexagonal (A,) 0.907" | 1.209" | 0.08019% 6"
cubic (Z°) 0.524 2.721 0.08333 6
3 FCC (D3) 0.7407 2.094 0.07875 127
BCC (D) 0.680 | 1.4647 | 0.07854" 8
. cubic (Z*) 0.308 4934 | 0.08333 8
:gegcgk:r:g’*(‘g'z;‘)“ = 0617 | 2467 | 0.07660¢ || 247
cubic (Z%) 0.0159 | 64.94 | 0.08333 16
8 checkerboard (Dg) 0.127 3247 | 0.07591 112
staggered (Dg) 0.0317 8.117 0.07474 16
cubic (Z'?) 3.26e-4 | 973.4 0.08333 24
12 checkerboard (D7) 0.0104 | 486.7 | 0.07710 264
staggered (D7,) 6.52e-4 30.42 0.07480 24

Table 1. Characteristics of some representative lattices: the
packing density A, the covering thickness ®, and the mean
squared quantization error per dimension, G, quantifying
the lattice uniformity, and the kissing number T indicating
the flexibility available in selecting the positive basis from
nearest neighbors. The dagger (7) denotes a value known to
be optimal among all lattices at that n, whereas the double
dagger (¥) denotes a value thought to be optimal.

by the appropriate power of the volume of the Voronoi
cell, and divided by n. Shifting the origin to be at the
centroid of a Voronoi cell V(P;), it is given by G =

142
Y foey X2 dx/ [fygpydx]

Note that the packing density A, the covering thickness @,
and the normalized mean-squared quantization error G are
related but distinct quantifications of the uniformity of the
lattice, whereas the kissing number 7T is an indicator of the
degree of flexibility available when selecting a positive basis
from nearest neighbors on the lattice.

As depicted in Table 1 for n =2,3,4,8, and 12, the packing
density, covering thickness, and mean squared quantization
error per dimension are all improved by moving from the
Cartesian grid to the available alternatives shown, with this
improvement becoming ever more apparent as n is increased.
In high dimensions, the Cartesian grid offers poor perfor-
mance compared to the alternatives. The kissing number of
the Cartisian grid is low compared to other lattices - this
indicates a lack of flexibility in selecting a poll set from the
nearest neighbors, preventing more efficient use of previ-
ously evaluated points. Reusing previously evaluated points
reduces the number of new function evaluations necessary to
complete each poll set, futher improving the GPS algorithm’s
overall efficiency.

The second key drawback of the Cartesian grid for the
coordination of a derivative-free optimization is the poor
configuration of the nearest-neighbor grid points for estab-
lishing a positive basis around a CMP with a minimal number
of additional function evaluations. This is a key step to
assure convergence of the GPS algorithm. Since evaluating

FrB06.6
o __-:‘__ __‘j'__ __%' ________ -~ pal yal \ Al ad
- ,,15,, ,,ir,, ,,3,, ,,,,,, ___ % bl)—Q -
; ; ; L L / - -

Fig. 2. Layout of the nodes in the 2D Cartesian (left) and hexagonal (right)
lattices.

the function is computationally expensive, minimizing the
number of points to poll while establishing a positive basis
around the CMP is of key importance to maximize the
efficiency of the optimization algorithm. Note that a complete
poll step performed on a positive basis constructed using
nearest neighbors of a CMP in n dimensions requires 2n
function evaluations on a Cartesian grid, wheareas in more
well-behaved lattices such as the Hexagonal lattice, the
positive basis requires only n+ 1 points (see Fig 2). In fact,
most alternative lattices developed as n-dimensional sphere
packings require only n+ 1 points to form a positive basis
using nearest neighbor points. Thus, independent from the
benefits in increased uniformity provided by the alternative
lattices considered here, a factor of almost two increased
efficiency can be realized simply due to the more convenient
locations of the nearest neighbor points.

A final point worth noting is that it is possible to construct
a positive basis with only n+ 1 points, referred to as a
minimal positive basis, in the n-dimensional Cartesian case
if points other than nearest neighbor points are used, as indi-
cated in 2D in Figure 2. However, note that one of the vectors
forming the positive basis in this case is v/ longer than the
other n. In addition, this oddball vector is at a much larger
angle to all of the other vectors in the positive basis as these
vectors are to themselves. The upshot of both of these facts
is that the region to which the optimal point is effectively
localized via polling a set of points distributed in such a
fashion is greatly increased from that tight region resulting
from a poll on a perfectly distributed minimal positive basis
on nearest neighbor points. That is, the uniformity of the
poll set’s radii and angles are both disrupted, skewing the
results of the poll. Thus, a Cartesian grid by nature hinders
the process of finding a minimal, evenly-distributed positive
basis, thereby decreasing the speed of the GPS algorithm.

III. ALTERNATIVE LATTICES - Ay, A}, Dy, AND Dj;

As discussed above, nearly all lattices more complex than
Cartesian offer far superior performance as quantified by the
metrics outlined above. Four of these lattices include the A,,,
Ay, Dy, and D;. All but one are defined in n+ 1 dimen-
sions and share very similar structure. All offer excellent
performance over a wide range of function dimensions, and
significant improvements over Cartesian grids. The similarity
in their definitions makes it straightforward to utilize the
same algorithms to determine poll sets.

The familiar Cartesian grid is defined by a matrix of
orthogonal basis vectors. Any point in the lattice space R"

5359

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007

can clearly be written as an integer linear combination of
basis vectors. For consistency with the published literature
on this topic (see Conway and Sloan 1999), we assemble
these vectors as the columns of M, where the basis matrix
M is defined such that

1 0 00

M 0 1 0 0

00 .. 01
The A, lattice is defined similarly with a matrix of basis
vectors. Note that the n-dimensional lattice is defined in n+
1. Also note that each basis vector is orthogonal to the vector
V= (1 1 I)T, defining the plane on which the lattice
is defined. For simplicity the matrix basis vectors here are not
normalized; in use the vectors are normalized before scaling
to build the desired lattice.

1 -1 0 .. 0 O
My, — o 1 -1 .. 0 O
o 0o o .. 1 -1

The A} lattice is defined similarly to A,, with the final row in
the basis matrix being dependent on the dimension. Again,
for simplicity, vectors are not scaled.

—1 1 o .. O 0
1 o -1 .. O 0
MAfz_
1 0 o .. -1 0

The D, lattice is the n-dimensional analog to the 3-
dimensional Face Centered Cubic (FCC) lattice, defined by:

-1 -1 0 .. 0 0
1 -1 0 .. 0 0
Mp,=|0 1 -1 .. 0 0
0 0 0 .. 1 -1

The D; lattice gives the common Body Centered Cubic
lattice in three dimensions, well known in atomic structures
and supermarket orange stacks. The basis matrix is defined
as follows:

I 0 0 0
0 1 0 o0
MD; = . s
0 0 I 0
05 05 0.5 0.5

These provide four examples of lattices that offer far better
performance than the Cartesian grid in terms of the metrics
discussed above, where all are defined similarly and are
straightforward to implement numerically. Three of the above
lattices - A,, A;, and D,, - are n-dimensional lattices defined in
R"*1. An intuitive example is A, a triangular 2 — D lattice
that lies on a plane in R3 (see Figure 3). The problem of
having a GPS lattice defined in a higher space is that to
use the lattice to find a poll set, either the lattice must be

FrB06.6

redefined in n, or a transformation must be made to map
points in R”" into the lattice space, and back. The latter
approach is more easily implemented than the former, and
is discussed below.

Fig. 3. Aj as defined on a plane in R3

The SMF polling algorithm described above consists of
four primary steps. First, the CMP is projected onto the plane
of the lattice. Second, the closest lattice point to the CMP is
identified. Third, the nearest neighbor points surrounding the
lattice CMP are found. Fourth, the lattice CMP and neighbors
are projected back into parameter space. Finally, a maximally
efficient positive basis is constructed from these neighbors.

In the case of A,, the lattice plane is easily identified by
virtue of the lattice basis matrix’s orthogonality to the vector
V= (1 1 I)T. The Cartesian plane orthogonal to v
is determined by using the QR Householder algorithm to
find the Cartesian basis vectors orthogonal to v. Once the
basis matrix Mpj,. of the Cartesian plane is determined,
the corresponding point x, on the lattice plane to the CMP
x € R" is given by

_yT
Xp = Mplanex
and the reverse transformation is

x=M"\xp

using Matlab notation for the linear system solution. This
gives a transformation from Cartesian n-space to the Carte-
sian plane in n+ 1 that the A, lattice lies on. As the lattice
lies on this plane, the reverse transformation does not affect
the uniformity of the neighbor set in any way - the neighbor
and CMP points do not move in relation to one another when
the transformation is performed. Thus, the uniformity of both
angles and distances is perfectly perserved.

Once a CMP in parameter space has been mapped onto
the A, plane, the nearest lattice point must be identified. The
plane that A, is defined on is the set P € R"*!. The CMP is
x € R". First, x is mapped into P, defining the CMP on the
lattice: xp = PTx. Next, Xp is defined in terms of the A, basis
vectors: Xz, = My, \Xp. Now the CMP is defined in R"™! as
a linear combination of the lattice basis vectors. That is, the
CMP is redefined as a linear combination of the lattice basis

5360

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007

vectors. To find the nearest lattice point, x4, is scaled to the
appropriate lattice scale, and rounded to the nearest integer.
This gives the CMP on the lattice in terms of the lattice basis
vectors.

The nearest neighbors surrounding the CMP are defined as
all points on the lattice that are a distance r from the CMP,
where r is the radius defined by the lattice scale. Thus, to
find the neighboring points to the CMP, all possible linear
combinations of the basis vectors with the coefficients of
—1, 0, and 1 are calculated. All points a distance r from
the CMP are kept, given exactly the nearest neighbors of the
CMP, defined in R"*'.

Next, the reverse transformation back into R” described
above is performed, giving the lattice approximation to the
CMP, and the nearest neighbors to that point. As many
lattices of interest share very similar definitions, this algo-
rithm to find the CMP and nearest neighbors is independent
of the lattice being used. Unlike other GPS codes, only
the definition of the basis matrix and the corresponding
orthogonal vector must be altered to implement a different
lattice. This flexibility allows the user to vary the lattice used
with minimal algorithm modification.

IV. THE CHALLENGE OF FINDING A POSITIVE BASIS

Once the neighbors of the CMP have been identified, a
positive basis must be identified as the poll points, insuring
convergence of the SMF algorithm.

In R? the neighbors of the CMP lie on the unit (nor-
malized) circle around the CMP. In R3 the neighbors lie
on the unit sphere. In higher dimensions the neighbors lie
on the dimensionally appropriate hypersphere. The challenge
is to construct a positive basis from these neighbors while
minimizing the number of points forming the basis without
the use of a prohibitively expensive algorithm.

Take a continuous hypersphere in n dimensions. Take
n—+ 1 points, and let the points behave as charged particles
of unit strength - that is, each particle exerts a force on
the other particles proportional to the inverse square of the
distance. On a continuous hypersphere, n+ 1 points will
reach equilibrium forming a minimal positive basis.

Fig. 4. Two different positive basis on A3, shown in green and red around
the blue CMP. Note the complete radial and angular uniformity as well as
the flexibility in the orientation of the basis.

The sphere in the idealized problem described above is dis-
cretized by the CMP’s nearest neighbors, which by definition
lie on a hypersphere. To minimize the number of function

FrB06.6

evaluations, any previous function evaluations included in
the nearest neighbors are by construction preserved in the
basis set. The number of such previous evaluations is denoted
as [. To find a positive basis, n+ 1 —[additional points
are randomly distributed on the locations of the nearest
neighbors. Each point is treated as a charged particle of unit
strength, as are the / fixed previous function evaluations. At
equilibrium on a continuous hypersphere, the greatest force
experienced by any point will be minimized. Thus, on the
discrete hypersphere, the aim is to minimize the greatest
individual force over all n+ 1 —1 points. This would most
effectively be performed via an exhaustive search, checking
for a positive basis when the force has been minimized. If
the force is minimized without producing a positive basis,
no positive basis can be found with n+ 1 —/ points. Another
point would have to be added (n—1[1+2,3,4,.... total), and the
algorithm repeated until a positive basis is found. However,
when operating in only even moderately high dimension,
the computational cost of this failsafe technique would be
prohibitively expensive due to the high number of neighbors.
Therefore, a less expensive and less straightforward algo-
rithm is derived using the same force-based minimization
concept. This algorithm is described below.

Again, n+ 1 —[points are randomly distributed over the
CMP’s nearest neighbors. The [fixed points contribute to
the force on the points. The total force on each point is
calculated. The two points experiencing the greatest force are
selected, and moved to unoccupied neighbor locations. The
forces on all points are again calculated. If the greatest force
is greater than in the initial configuration, the two particles
are moved again. If the greatest force is less than in the initial
configuration, then the particle set is closer to equilibrium,
and the set is tested for a positive basis. If no positive basis
has been found, the forces on all particles are recalculated,
the (new) two points experiencing the greatest forces are
selected and another iteration is performed.

Moving only two points at once (as opposed to iterating
all n+1—1) is critical to reducing the computational cost
of the algorithm; however, the greatest force on a point is
often minimized on the discrete set of neighbors without the
set of points forming a positive basis. That is, unlike on
a continuous hypersphere, the algorithm does not reliably
converge to a positive basis for all initial conditions, as the
neighbors are a very rough discretization of a hypersphere.
The end result of the algorithm is heavily dependent on the
random initial conditions of the point set. Tests on the A,
matrix, which has several possible positive basis’ with n+
1 points demonstrate that the two-point iteration algorithm
does not always converge to a positive basis for a given initial
point distribution.

Therefore, if all combinations of moving two points have
been tested and no positive basis has been found, the
algorithm is repeated using a new random initialization. Tests
on A, have showed that this repeated random initialization
scheme results in a positive basis within a few initializations,
demonstrating the feasibility of the algorithm.

Frequently no positive basis exists using only n+41—1

5361

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007

points, particularly given poorly configured previous func-
tion evaluations. Therefore, the number of new random
initializations is limited at a user-set value, beyond which
the algorithm is repeated using n+2,3,4... points, until a
positive basis is found. While this will occasionally result
in an additional poll point or two compared to the optimal
solution, the massive increase in the computational speed of
the positive basis-seeking algorithm makes for a reasonable
tradeoff. Additionally, as the cap on initializations is user-
defined, the poll point algorithm can be tuned by the user
to best match the given function expense versus speed of
the GPS algorithm. As the cost of a function evaluation
increases, the user can increase the number of iterations
permitted to avoid extraneous poll points at the cost of the
GPS code requiring more computational power.

The algorithm descriped above is based on the assumption
that the existence of a positive basis can be detected. By
definition, a positive basis is a set of vectors that span the
space they are defined in - any point in the space can be
written as a positive linear combination of the vectors. An
equivalent statement is that if all 2n Cartesian basis vectors
can be written as a positive linear combination of the vectors,
then the vectors form a positive basis. When testing for a
positive basis, the Matlab linear program function linprog is
used. The function minimization of 1inprog is of no interest;
however the equality constraint A.,X = b, is exactly what is
needed, where A, is the matrix of basis vectors that are being
tested, b, is the Cartesian vector being tested, and x being
the vector being solved for. The function to be minimized
is set as a null matrix, ensuring that 1inprog does nothing
but check whether the equality constraint has a solution. If
the equality constraint can be satisfied for all Cartesian basis
vectors, where the matrix A, is the poll vectors, then the
poll set forms a positive basis. Thus, linprog is called for
each Cartesian basis vector. If for every vector the constraint
can be satisfied, the poll set is a positive basis.

Tests on A, have demonstrated the efficacy of this basis-
finding algorithm. The algorithm reliably finds a positive
basis even when given poorly spaced previous function
evaluations, while maintaining a reasonble computational
cost. An additional benefit of this algorithm is the lack of
any dependence on the lattice being used. The only inputs
are the dimension of the problem and the locations of the
nearest neighbor points. That the lattice in question plays no
role allows for much greater flexibility in the program when
applying various lattices in the GPS algorithm.

V. BOUNDARY CONDITIONS

For simplicity we assume rectangular constraints on the
parameter space - the limits of allowed function variable
values. There are two possible ways the GPS algorithm
can violate the boundary constraints; either a poll point lies
slightly outside the allow variable bounds, or the CMP is
very close to or past the boundary, necessitating a modified
polling algorithm.

FrB06.6

In the first scenario, the CMP is relatively far from the
boundary. What defines *far’ is user-defined, but is generally
somewhere between 0.5r to r from the boundary, where r
is the lattice scale. When the CMP nearest neighbors are
checked for boundary compliance, and a small number of
points are found to violate the boundary condition by a
small amount, a reasonable solution is to move the offending
neighbors until each point lies on the violated boundary. This
is performed by determining the vector from the CMP to the
offending point. Next, the distance along this vector to the
violated bound is calculated. This gives the new location
of the offending point, preserving the angular uniformity
of the neighbor set, and only slightly modifying the radial
uniformity of the set. Thus, a positive basis can be found
without any greater cost (no modification of the poll point
algorithm) than if the bound were less restrictive, with only
a small perturbation to the region spanned by the poll set.

When the CMP moves close to or onto the boundary, the
above strategy is no longer effective, as the radius of the
offending neighbors becomes so small that the parameter
space covered by the positive basis does not begin to
approximate the desired area. In this case, the function has
moved onto the boundary, and in an intuitive sense, the poll
points will be restricted to the wall’ of the boundary, using
one additional point to allow the function to move ’off” the
wall’. In three dimensions, with one violated boundary, this
can be visualized with relatively effort. The function space
is a cube, and the CMP lies on one wall. The poll points
form a positive basis on the wall in two dimensions, and an
additional point is chosen that defines a vector perpendicular
to the wall. Thus, the wall is explored via the lattice, and the
CMP can still move off the wall, back into the allowed space.

Given a parameter space in n dimensions, where the CMP
is located on / boundaries, the lattice defining the majority of
the poll points is A,_;. So first, the points in unconstrained
dimensions are found - the algorithm described above is
applied to the A,_; lattice. This poll set will allow movement
in the open’ area of the space, where boundaries are not an
issue.

Next, the violated boundaries are considered. For each of
the / boundaries, the goal is to find a vector that allows the
CMP to move off one boundary at a time. That is, from
the CMP, one vector should move back into the allowed
function space, staying on [/ — 1 boundaries. This process
is straightfoward if which particular vector is of no interest.
However, the goal is to always remain on a lattice. That is,
from [constraints, the algorithm should be able to move
along one 'wall’ leaving [/ — 1 constraints, and then be on a
n—1+1 lattice.

This procedure is most easily illustrated with an example.
If the CMP lies at the point (3,3,5,5,3), where the maximum
allowed value is 5, then the third and fourth dimensions are
maximally constrained. The vectors moving off one *wall’
at a time are v; = (0,0,—1,0,0) and v, = (0,0,0,—1,0).
However, these two vectors are not guaranteed to lie on a
lattice. Thus, a lattice in n — [+ 1 is defined - the lattice that
quantizes the boundary ’wall’. From there, the closest point

5362

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007

Fig. 5. CMP at (0 0 0), where X =0 and Y =0 are feasibility boundaries.
Note the positive A, basis in Z and the two vectors allowing the algorithm
to move off the boundaries, one at a time.

to the CMP and the corresponding nearest neighbors on the
n—1+1 lattice are found. The vector that is most nearly
parallel to vj is selected and included in the poll set. The
procedure is repeated for v,, see Figure 5.

This boundary handling algorithm allows the CMP to
move along boundaries for long periods without incurring
a cost in efficiency, as the CMP is always on a lattice
of the appropriate dimension. With the exception of the
vectors allowing the CMP to move back into the function
space, the majority of the poll points are defined on the
same lattice. This algorithm also provides the ability to
handle an arbitarily large number of constrained boundaries.
Thus, even a very poorly posed problem that runs into
multiple boundaries will not prematurely terminate the GPS
algorithm. The minimum within the allowed parameter space
will be found efficiently regardless of the boundaries.

VI. CONCLUSION

The Generalized Pattern Search algorithms for performing
derivative-free high-dimensional function minimization are
well known and effective. However, all codes have thus
far used a Cartesian grid to discretize the function space
and determine the location of function evaluations. Cartesian
grids are known to offer poor performance at quantizing,
covering, and packing. Further, in the GPS algorithm, the
poll sets produced by Cartesian grids offer far less unifor-
mity both radially and angularly compared to n-dimensional
sphere packings, or lattices. These alternative lattices offer
vast improvements in space quantization, particularly as the
dimension of the function increases.

Many lattices exhibit performance characteristics that are
desirable in the GPS algorithm. The A,, lattice was selected as
a starting point in this work, as it is representative of a class
of lattices defined in similar manner, and offers extensive
improvements over Cartesian grids. The n-dimensional lattice
is defined in R"*!, necessitating the use of a transformation
to map points in the function’s parameter space R" onto
the plane where the lattice is defined. Once the neighboring
points on the lattice are found, the reverse mapping is

FrB06.6

necessary to find the appropriate points that the function can
evaluate.

The algorithm developed in this work maps an initial
point onto the plane of the lattice. The nearest lattice point
(the CMP) is found. The neighbors on the lattice are then
calculated, and the CMP and neighbors are mapped back
into parameter space. There, a positive basis can be found on
the neighbors, defining the locations of function evaluations,
completing the GPS algorithm.

A unique force-based positive basis search algorithm
has been developed that avoids massive computational cost
penalties that less sophisticated strategies incurr, without
making the algorithm lattice-dependent. The flexibility of
the code developed allows for very simple modification to
use different lattices in the GPS algorithm. This allows both
for the testing of lattice performance in the GPS algorithm
application, as well as selecting the lattice to be used
based on the character of the function to be minimized. A
working code implementing such lattice-based optimization,
Checkers, is very nearly complete, and our initial compari-
son of Checkers to standard Cartesian-based algorithms will
be reported shortly.

VII. ACKNOWLEDGMENTS

The authors would like to thank Alison Marsden and
Sebastien Michelin for their fruitful collaboration in lattice-
based optimization schemes.

REFERENCES

[1] Booker, A., Dennis, J., Jr., Frank, P., Serafini, D., Torczon, V., Trosset,
M., (1999) A rigorous framework for optimization of expensive
functions by surrogates, Structural and Multidisciplinary Optimization,
17: 113.

[2] Bewley, T.R., (2007) Numerical Renaissance: Simulation, Optimiza-
tion, and Control

[3] Marsden, A.L., Wang, M., Dennis, J.E. Jr., and Moin, P., (2004)
Optimal aeroacoustic shape design using the surrogate management
framework, Optimization and Engineering, 5(2): 235-262. Special
Issue on Surrogate Optimization.

[4] Conway, J.H., Sloane, N.J.A, (1999) Sphere Packings, Lattices, and
Groups, Third Edition

[5] Charles, A., Dennis, J. JR., Mesh adaptive direct search algorithms
for constrained optimization. Submitted to SIAM J. Optim.

[6] Coope, I.D., Price, C.J., (2001) On the convergence of grid-based
methods for unconstrained optimization, SIAM J. Optim.,11:859869

[7]1 Torczon, V, (1997) On the convergence of pattern search algorithms,
SIAM J. Optim., T: 1-25.

[8] Jones, D, (2001) A Taxonomy of Global Optimization Methods Based
on Response Surfaces, Journal of Global Optimization., 21: 345-383.

[9] Conn, A.R., Scheinberg, K., Toint, Ph.L., (1998) A Derivative Free
Optimization Algorithm in Practice, American Institute of Aeronautics
and Astronautics Conference, Sep 98

5363

