
Efficient Derivative-Free Optimization

Paul Belitz and Thomas Bewley

Abstract— The present paper considers the derivative-free
optimization of expensive non-smooth functions. One of the
most efficient algorithms for this class of problems is the
surrogate-based optimization framework by Booker et al, 1999.
Searches performed using this algorithm are restricted to points
lying on an underlying grid to keep function evaluations far
apart until convergence is approached. Once convergence on
this discrete grid is obtained, the grid is refined and the process
repeated. All previous implementations of this algorithm have
been based on a Cartesian grid. However, Cartesian grids are
not nearly as uniform at packing, covering, and quantizing
parameter space as several alternatives that are well known in
coding theory, referred to as ”n-dimensional sphere packings”
or ”lattices”. Also, the distribution of nearest-neighbor lattice
points turns out to be far superior in these alternative lattices,
further increasing the efficiency of the optimization algorithm.
The present study illustrates how such lattices may be incor-
porated into the surrogate-based optimization framework.

I. INTRODUCTION

The minimization of computationally expensive, high di-

mension functions is most efficiently performed by use of

a gradient-based optimization routine. However, when the

function in question is too noisy to optimize using gradient

information, a derivative-free optimization scheme must be

used. An effective class of strategies designed to accomplish

this, known as Generalized Pattern Search (GPS) algorithms,

coordinates the search for the minimum by performing

function evaluations on a discrete grid covering the feasible

region of parameter space, refining this grid as convergence

is approached.

The most efficient strategies in this vein leverage the use of

inexpensive intermediate surrogate functions (often, Kriging

interpolations are used) to interpolate the available function

evaluations in order to provide suggested regions of parame-

ter space in which to perform new function evaluations (see

Booker et al., 1999). When exploratory searches based on

such surrogate functions indicate that a discrete minimizer

(a.k.a. Candidate Minimum Point, or CMP) on the current

grid might have been attained, the function is evaluated

at several neighboring poll points on the grid. To ensure

convergence, these points are chosen in such a way as to

form a positive basis around the CMP [Torczon 1997, Booker

et al. 1999, Coope & Price 2001]. That is, any feasible

point in the neighborhood of the CMP can be reached via

a linear combination with non-negative coefficients of the

vectors from the CMP to these poll points.

If during this polling step a reduced function evaluation

is calculated, the surrogate interpolating function is updated

and explored further to identify a new CMP. If, however, all

neighboring poll points represent increased function values

from the CMP, the CMP is referred to as the best known local

(a) (b) (c) (d)

Fig. 1. The packing (a and b) and covering (c and d) of the 2D Cartesian
and hexagonal lattices.

minimizer on the discrete grid. The grid is then refined by a

factor of two and the process repeated, reusing all previously-

calculated function values from the coarser grid. To the best

of our knowledge, all previous implementations of such grid-

based optimization strategies have been based on Cartesian

grids.

II. LATTICE PERFORMANCE METRICS

There are two key drawbacks with such Cartesian grids

for the coordination of a derivative-free optimization scheme.

First, the Cartesian grid is relatively nonuniform compared

to the available alternatives. As illustrated in two dimensions

in Figure 2, the characteristics of a lattice may be quantified

by the following measures [Conway & Sloane 1999]:

• The packing radius of a lattice, ρ, is the maximal radius

of the spheres in a set of identical nonoverlapping spheres

centered at each nodal point.

• The packing density of a lattice, ∆, is the fraction of

the volume of the feasible domain included within a set

of identical non-overlapping spheres of radius ρ centered at

each nodal point on the lattice. Lattices that maximize this

metric are referred to as close-packed.

• The covering radius of a lattice, R, is the maximum

distance between any point in the feasible domain and the

nearest nodal point on the lattice.

•The covering thickness of a lattice, Θ, is the number of

spheres of radius R containing an arbitrary point in the

domain, averaged over the entire domain.

•The kissing number of a lattice, τ, is defined as the number

of nearest neighbors to any given nodal point in the lattice. In

other words, it is the number of spheres of radius ρ centered

at the nodal points that touch, or ‘kiss’, a sphere centered at

any given nodal point.

• The Voronoi cell of a nodal point on a lattice, V (Pi),
consists of all points in the domain that are at least as close

to the nodal point Pi as they are to any other nodal point Pj.

• The mean squared quantization error per dimension of

a lattice, G, is the average mean square distance of any

point in the domain and the nearest nodal point, normalized

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

FrB06.6

1-4244-1498-9/07/$25.00 ©2007 IEEE. 5358

n lattice ∆ Θ G τ

cubic (Z2) 0.785 1.571 0.08333 4
2

hexagonal (A2) 0.907† 1.209† 0.08019† 6†

cubic (Z3) 0.524 2.721 0.08333 6

3 FCC (D3) 0.740† 2.094 0.07875 12†

BCC (D∗
3) 0.680 1.464† 0.07854† 8

cubic (Z4) 0.308 4.934 0.08333 8
4

checkerboard (D4) ∼=
staggered (D∗

4)
0.617† 2.467 0.07660‡ 24†

cubic (Z8) 0.0159 64.94 0.08333 16

8 checkerboard (D8) 0.127 32.47 0.07591 112

staggered (D∗
8) 0.0317 8.117 0.07474 16

cubic (Z12) 3.26e-4 973.4 0.08333 24

12 checkerboard (D12) 0.0104 486.7 0.07710 264

staggered (D∗
12) 6.52e-4 30.42 0.07480 24

Table 1. Characteristics of some representative lattices: the

packing density ∆, the covering thickness Θ, and the mean

squared quantization error per dimension, G, quantifying

the lattice uniformity, and the kissing number τ indicating

the flexibility available in selecting the positive basis from

nearest neighbors. The dagger (†) denotes a value known to

be optimal among all lattices at that n, whereas the double

dagger (‡) denotes a value thought to be optimal.

by the appropriate power of the volume of the Voronoi

cell, and divided by n. Shifting the origin to be at the

centroid of a Voronoi cell V (Pi), it is given by G =
1
n

R

V (Pi)
|x|2 dx/

[
R

V (Pi)
dx

]1+ 2
n .

Note that the packing density ∆, the covering thickness Θ,

and the normalized mean-squared quantization error G are

related but distinct quantifications of the uniformity of the

lattice, whereas the kissing number τ is an indicator of the

degree of flexibility available when selecting a positive basis

from nearest neighbors on the lattice.

As depicted in Table 1 for n = 2,3,4,8, and 12, the packing

density, covering thickness, and mean squared quantization

error per dimension are all improved by moving from the

Cartesian grid to the available alternatives shown, with this

improvement becoming ever more apparent as n is increased.

In high dimensions, the Cartesian grid offers poor perfor-

mance compared to the alternatives. The kissing number of

the Cartisian grid is low compared to other lattices - this

indicates a lack of flexibility in selecting a poll set from the

nearest neighbors, preventing more efficient use of previ-

ously evaluated points. Reusing previously evaluated points

reduces the number of new function evaluations necessary to

complete each poll set, futher improving the GPS algorithm’s

overall efficiency.

The second key drawback of the Cartesian grid for the

coordination of a derivative-free optimization is the poor

configuration of the nearest-neighbor grid points for estab-

lishing a positive basis around a CMP with a minimal number

of additional function evaluations. This is a key step to

assure convergence of the GPS algorithm. Since evaluating

Fig. 2. Layout of the nodes in the 2D Cartesian (left) and hexagonal (right)
lattices.

the function is computationally expensive, minimizing the

number of points to poll while establishing a positive basis

around the CMP is of key importance to maximize the

efficiency of the optimization algorithm. Note that a complete

poll step performed on a positive basis constructed using

nearest neighbors of a CMP in n dimensions requires 2n

function evaluations on a Cartesian grid, wheareas in more

well-behaved lattices such as the Hexagonal lattice, the

positive basis requires only n+1 points (see Fig 2). In fact,

most alternative lattices developed as n-dimensional sphere

packings require only n + 1 points to form a positive basis

using nearest neighbor points. Thus, independent from the

benefits in increased uniformity provided by the alternative

lattices considered here, a factor of almost two increased

efficiency can be realized simply due to the more convenient

locations of the nearest neighbor points.

A final point worth noting is that it is possible to construct

a positive basis with only n + 1 points, referred to as a

minimal positive basis, in the n-dimensional Cartesian case

if points other than nearest neighbor points are used, as indi-

cated in 2D in Figure 2. However, note that one of the vectors

forming the positive basis in this case is
√

n longer than the

other n. In addition, this oddball vector is at a much larger

angle to all of the other vectors in the positive basis as these

vectors are to themselves. The upshot of both of these facts

is that the region to which the optimal point is effectively

localized via polling a set of points distributed in such a

fashion is greatly increased from that tight region resulting

from a poll on a perfectly distributed minimal positive basis

on nearest neighbor points. That is, the uniformity of the

poll set’s radii and angles are both disrupted, skewing the

results of the poll. Thus, a Cartesian grid by nature hinders

the process of finding a minimal, evenly-distributed positive

basis, thereby decreasing the speed of the GPS algorithm.

III. ALTERNATIVE LATTICES - An , A∗
n, Dn , AND D∗

n

As discussed above, nearly all lattices more complex than

Cartesian offer far superior performance as quantified by the

metrics outlined above. Four of these lattices include the An,

A∗
n, Dn, and D∗

n. All but one are defined in n + 1 dimen-

sions and share very similar structure. All offer excellent

performance over a wide range of function dimensions, and

significant improvements over Cartesian grids. The similarity

in their definitions makes it straightforward to utilize the

same algorithms to determine poll sets.

The familiar Cartesian grid is defined by a matrix of

orthogonal basis vectors. Any point in the lattice space R
n

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB06.6

5359

can clearly be written as an integer linear combination of

basis vectors. For consistency with the published literature

on this topic (see Conway and Sloan 1999), we assemble

these vectors as the columns of MT , where the basis matrix

M is defined such that

M =









1 0 ... 0 0

0 1 ... 0 0

.
0 0 ... 0 1









.

The An lattice is defined similarly with a matrix of basis

vectors. Note that the n-dimensional lattice is defined in n+
1. Also note that each basis vector is orthogonal to the vector

v =
(

1 1 . . . 1
)T

, defining the plane on which the lattice

is defined. For simplicity the matrix basis vectors here are not

normalized; in use the vectors are normalized before scaling

to build the desired lattice.

MAn =









1 −1 0 ... 0 0

0 1 −1 ... 0 0

.
0 0 0 ... 1 −1









The A∗
n lattice is defined similarly to An, with the final row in

the basis matrix being dependent on the dimension. Again,

for simplicity, vectors are not scaled.

MA∗
n
=













−1 1 0 ... 0 0

1 0 −1 ... 0 0

.
1 0 0 ... −1 0
−n

n+1
−n

n+1
−n
n+1

... −n
n+1

−n
n+1













The Dn lattice is the n-dimensional analog to the 3-

dimensional Face Centered Cubic (FCC) lattice, defined by:

MDn =













−1 −1 0 ... 0 0

1 −1 0 ... 0 0

0 1 −1 ... 0 0

.
0 0 0 ... 1 −1













The D∗
n lattice gives the common Body Centered Cubic

lattice in three dimensions, well known in atomic structures

and supermarket orange stacks. The basis matrix is defined

as follows:

MD∗
n
=













1 0 ... 0 0

0 1 ... 0 0

.
0 0 ... 1 0

0.5 0.5 ... 0.5 0.5













,

These provide four examples of lattices that offer far better

performance than the Cartesian grid in terms of the metrics

discussed above, where all are defined similarly and are

straightforward to implement numerically. Three of the above

lattices - An, A∗
n and Dn - are n-dimensional lattices defined in

R
n+1. An intuitive example is A2, a triangular 2−D lattice

that lies on a plane in R
3 (see Figure 3). The problem of

having a GPS lattice defined in a higher space is that to

use the lattice to find a poll set, either the lattice must be

redefined in n, or a transformation must be made to map

points in R
n into the lattice space, and back. The latter

approach is more easily implemented than the former, and

is discussed below.

−2

0

2

−6

−4

−2

0

2

4

6

−3

−2

−1

0

1

2

3

Fig. 3. A2 as defined on a plane in R
3

The SMF polling algorithm described above consists of

four primary steps. First, the CMP is projected onto the plane

of the lattice. Second, the closest lattice point to the CMP is

identified. Third, the nearest neighbor points surrounding the

lattice CMP are found. Fourth, the lattice CMP and neighbors

are projected back into parameter space. Finally, a maximally

efficient positive basis is constructed from these neighbors.

In the case of An, the lattice plane is easily identified by

virtue of the lattice basis matrix’s orthogonality to the vector

v =
(

1 1 . . . 1
)T

. The Cartesian plane orthogonal to v

is determined by using the QR Householder algorithm to

find the Cartesian basis vectors orthogonal to v. Once the

basis matrix Mplane of the Cartesian plane is determined,

the corresponding point xp on the lattice plane to the CMP

x ∈ R
n is given by

xp = MT
planex

and the reverse transformation is

x = MT \xp

using Matlab notation for the linear system solution. This

gives a transformation from Cartesian n-space to the Carte-

sian plane in n + 1 that the An lattice lies on. As the lattice

lies on this plane, the reverse transformation does not affect

the uniformity of the neighbor set in any way - the neighbor

and CMP points do not move in relation to one another when

the transformation is performed. Thus, the uniformity of both

angles and distances is perfectly perserved.

Once a CMP in parameter space has been mapped onto

the An plane, the nearest lattice point must be identified. The

plane that An is defined on is the set P ∈ R
n+1. The CMP is

x ∈ R
n. First, x is mapped into P, defining the CMP on the

lattice: xp = PT x. Next, xp is defined in terms of the An basis

vectors: xAn = MAn\xp. Now the CMP is defined in R
n+1 as

a linear combination of the lattice basis vectors. That is, the

CMP is redefined as a linear combination of the lattice basis

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB06.6

5360

vectors. To find the nearest lattice point, xAn is scaled to the

appropriate lattice scale, and rounded to the nearest integer.

This gives the CMP on the lattice in terms of the lattice basis

vectors.

The nearest neighbors surrounding the CMP are defined as

all points on the lattice that are a distance r from the CMP,

where r is the radius defined by the lattice scale. Thus, to

find the neighboring points to the CMP, all possible linear

combinations of the basis vectors with the coefficients of

−1, 0, and 1 are calculated. All points a distance r from

the CMP are kept, given exactly the nearest neighbors of the

CMP, defined in R
n+1.

Next, the reverse transformation back into R
n described

above is performed, giving the lattice approximation to the

CMP, and the nearest neighbors to that point. As many

lattices of interest share very similar definitions, this algo-

rithm to find the CMP and nearest neighbors is independent

of the lattice being used. Unlike other GPS codes, only

the definition of the basis matrix and the corresponding

orthogonal vector must be altered to implement a different

lattice. This flexibility allows the user to vary the lattice used

with minimal algorithm modification.

IV. THE CHALLENGE OF FINDING A POSITIVE BASIS

Once the neighbors of the CMP have been identified, a

positive basis must be identified as the poll points, insuring

convergence of the SMF algorithm.

In R
2 the neighbors of the CMP lie on the unit (nor-

malized) circle around the CMP. In R
3 the neighbors lie

on the unit sphere. In higher dimensions the neighbors lie

on the dimensionally appropriate hypersphere. The challenge

is to construct a positive basis from these neighbors while

minimizing the number of points forming the basis without

the use of a prohibitively expensive algorithm.

Take a continuous hypersphere in n dimensions. Take

n + 1 points, and let the points behave as charged particles

of unit strength - that is, each particle exerts a force on

the other particles proportional to the inverse square of the

distance. On a continuous hypersphere, n + 1 points will

reach equilibrium forming a minimal positive basis.

Fig. 4. Two different positive basis on A3, shown in green and red around
the blue CMP. Note the complete radial and angular uniformity as well as
the flexibility in the orientation of the basis.

The sphere in the idealized problem described above is dis-

cretized by the CMP’s nearest neighbors, which by definition

lie on a hypersphere. To minimize the number of function

evaluations, any previous function evaluations included in

the nearest neighbors are by construction preserved in the

basis set. The number of such previous evaluations is denoted

as l. To find a positive basis, n + 1 − l additional points

are randomly distributed on the locations of the nearest

neighbors. Each point is treated as a charged particle of unit

strength, as are the l fixed previous function evaluations. At

equilibrium on a continuous hypersphere, the greatest force

experienced by any point will be minimized. Thus, on the

discrete hypersphere, the aim is to minimize the greatest

individual force over all n + 1− l points. This would most

effectively be performed via an exhaustive search, checking

for a positive basis when the force has been minimized. If

the force is minimized without producing a positive basis,

no positive basis can be found with n+1− l points. Another

point would have to be added (n− l+2,3,4, total), and the

algorithm repeated until a positive basis is found. However,

when operating in only even moderately high dimension,

the computational cost of this failsafe technique would be

prohibitively expensive due to the high number of neighbors.

Therefore, a less expensive and less straightforward algo-

rithm is derived using the same force-based minimization

concept. This algorithm is described below.

Again, n + 1− l points are randomly distributed over the

CMP’s nearest neighbors. The l fixed points contribute to

the force on the points. The total force on each point is

calculated. The two points experiencing the greatest force are

selected, and moved to unoccupied neighbor locations. The

forces on all points are again calculated. If the greatest force

is greater than in the initial configuration, the two particles

are moved again. If the greatest force is less than in the initial

configuration, then the particle set is closer to equilibrium,

and the set is tested for a positive basis. If no positive basis

has been found, the forces on all particles are recalculated,

the (new) two points experiencing the greatest forces are

selected and another iteration is performed.

Moving only two points at once (as opposed to iterating

all n + 1− l) is critical to reducing the computational cost

of the algorithm; however, the greatest force on a point is

often minimized on the discrete set of neighbors without the

set of points forming a positive basis. That is, unlike on

a continuous hypersphere, the algorithm does not reliably

converge to a positive basis for all initial conditions, as the

neighbors are a very rough discretization of a hypersphere.

The end result of the algorithm is heavily dependent on the

random initial conditions of the point set. Tests on the An

matrix, which has several possible positive basis’ with n +
1 points demonstrate that the two-point iteration algorithm

does not always converge to a positive basis for a given initial

point distribution.

Therefore, if all combinations of moving two points have

been tested and no positive basis has been found, the

algorithm is repeated using a new random initialization. Tests

on An have showed that this repeated random initialization

scheme results in a positive basis within a few initializations,

demonstrating the feasibility of the algorithm.

Frequently no positive basis exists using only n + 1− l

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB06.6

5361

points, particularly given poorly configured previous func-

tion evaluations. Therefore, the number of new random

initializations is limited at a user-set value, beyond which

the algorithm is repeated using n + 2,3,4... points, until a

positive basis is found. While this will occasionally result

in an additional poll point or two compared to the optimal

solution, the massive increase in the computational speed of

the positive basis-seeking algorithm makes for a reasonable

tradeoff. Additionally, as the cap on initializations is user-

defined, the poll point algorithm can be tuned by the user

to best match the given function expense versus speed of

the GPS algorithm. As the cost of a function evaluation

increases, the user can increase the number of iterations

permitted to avoid extraneous poll points at the cost of the

GPS code requiring more computational power.

The algorithm descriped above is based on the assumption

that the existence of a positive basis can be detected. By

definition, a positive basis is a set of vectors that span the

space they are defined in - any point in the space can be

written as a positive linear combination of the vectors. An

equivalent statement is that if all 2n Cartesian basis vectors

can be written as a positive linear combination of the vectors,

then the vectors form a positive basis. When testing for a

positive basis, the Matlab linear program function linprog is

used. The function minimization of linprog is of no interest;

however the equality constraint Aeqx = beq is exactly what is

needed, where Aeq is the matrix of basis vectors that are being

tested, beq is the Cartesian vector being tested, and x being

the vector being solved for. The function to be minimized

is set as a null matrix, ensuring that linprog does nothing

but check whether the equality constraint has a solution. If

the equality constraint can be satisfied for all Cartesian basis

vectors, where the matrix Aeq is the poll vectors, then the

poll set forms a positive basis. Thus, linprog is called for

each Cartesian basis vector. If for every vector the constraint

can be satisfied, the poll set is a positive basis.

Tests on An have demonstrated the efficacy of this basis-

finding algorithm. The algorithm reliably finds a positive

basis even when given poorly spaced previous function

evaluations, while maintaining a reasonble computational

cost. An additional benefit of this algorithm is the lack of

any dependence on the lattice being used. The only inputs

are the dimension of the problem and the locations of the

nearest neighbor points. That the lattice in question plays no

role allows for much greater flexibility in the program when

applying various lattices in the GPS algorithm.

V. BOUNDARY CONDITIONS

For simplicity we assume rectangular constraints on the

parameter space - the limits of allowed function variable

values. There are two possible ways the GPS algorithm

can violate the boundary constraints; either a poll point lies

slightly outside the allow variable bounds, or the CMP is

very close to or past the boundary, necessitating a modified

polling algorithm.

In the first scenario, the CMP is relatively far from the

boundary. What defines ’far’ is user-defined, but is generally

somewhere between 0.5r to r from the boundary, where r

is the lattice scale. When the CMP nearest neighbors are

checked for boundary compliance, and a small number of

points are found to violate the boundary condition by a

small amount, a reasonable solution is to move the offending

neighbors until each point lies on the violated boundary. This

is performed by determining the vector from the CMP to the

offending point. Next, the distance along this vector to the

violated bound is calculated. This gives the new location

of the offending point, preserving the angular uniformity

of the neighbor set, and only slightly modifying the radial

uniformity of the set. Thus, a positive basis can be found

without any greater cost (no modification of the poll point

algorithm) than if the bound were less restrictive, with only

a small perturbation to the region spanned by the poll set.

When the CMP moves close to or onto the boundary, the

above strategy is no longer effective, as the radius of the

offending neighbors becomes so small that the parameter

space covered by the positive basis does not begin to

approximate the desired area. In this case, the function has

moved onto the boundary, and in an intuitive sense, the poll

points will be restricted to the ’wall’ of the boundary, using

one additional point to allow the function to move ’off’ the

’wall’. In three dimensions, with one violated boundary, this

can be visualized with relatively effort. The function space

is a cube, and the CMP lies on one wall. The poll points

form a positive basis on the wall in two dimensions, and an

additional point is chosen that defines a vector perpendicular

to the wall. Thus, the wall is explored via the lattice, and the

CMP can still move off the wall, back into the allowed space.

Given a parameter space in n dimensions, where the CMP

is located on l boundaries, the lattice defining the majority of

the poll points is An−l. So first, the points in unconstrained

dimensions are found - the algorithm described above is

applied to the An−l lattice. This poll set will allow movement

in the ’open’ area of the space, where boundaries are not an

issue.

Next, the violated boundaries are considered. For each of

the l boundaries, the goal is to find a vector that allows the

CMP to move off one boundary at a time. That is, from

the CMP, one vector should move back into the allowed

function space, staying on l − 1 boundaries. This process

is straightfoward if which particular vector is of no interest.

However, the goal is to always remain on a lattice. That is,

from l constraints, the algorithm should be able to move

along one ’wall’ leaving l −1 constraints, and then be on a

n− l + 1 lattice.

This procedure is most easily illustrated with an example.

If the CMP lies at the point (3,3,5,5,3), where the maximum

allowed value is 5, then the third and fourth dimensions are

maximally constrained. The vectors moving off one ’wall’

at a time are v1 = (0,0,−1,0,0) and v2 = (0,0,0,−1,0).
However, these two vectors are not guaranteed to lie on a

lattice. Thus, a lattice in n− l +1 is defined - the lattice that

quantizes the boundary ’wall’. From there, the closest point

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB06.6

5362

0

1

2 0

1

2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Y

X

Z

Fig. 5. CMP at (0 0 0), where X = 0 and Y = 0 are feasibility boundaries.
Note the positive An basis in Z and the two vectors allowing the algorithm
to move off the boundaries, one at a time.

to the CMP and the corresponding nearest neighbors on the

n− l + 1 lattice are found. The vector that is most nearly

parallel to v1 is selected and included in the poll set. The

procedure is repeated for v2, see Figure 5.

This boundary handling algorithm allows the CMP to

move along boundaries for long periods without incurring

a cost in efficiency, as the CMP is always on a lattice

of the appropriate dimension. With the exception of the

vectors allowing the CMP to move back into the function

space, the majority of the poll points are defined on the

same lattice. This algorithm also provides the ability to

handle an arbitarily large number of constrained boundaries.

Thus, even a very poorly posed problem that runs into

multiple boundaries will not prematurely terminate the GPS

algorithm. The minimum within the allowed parameter space

will be found efficiently regardless of the boundaries.

VI. CONCLUSION

The Generalized Pattern Search algorithms for performing

derivative-free high-dimensional function minimization are

well known and effective. However, all codes have thus

far used a Cartesian grid to discretize the function space

and determine the location of function evaluations. Cartesian

grids are known to offer poor performance at quantizing,

covering, and packing. Further, in the GPS algorithm, the

poll sets produced by Cartesian grids offer far less unifor-

mity both radially and angularly compared to n-dimensional

sphere packings, or lattices. These alternative lattices offer

vast improvements in space quantization, particularly as the

dimension of the function increases.

Many lattices exhibit performance characteristics that are

desirable in the GPS algorithm. The An lattice was selected as

a starting point in this work, as it is representative of a class

of lattices defined in similar manner, and offers extensive

improvements over Cartesian grids. The n-dimensional lattice

is defined in R
n+1, necessitating the use of a transformation

to map points in the function’s parameter space R
n onto

the plane where the lattice is defined. Once the neighboring

points on the lattice are found, the reverse mapping is

necessary to find the appropriate points that the function can

evaluate.

The algorithm developed in this work maps an initial

point onto the plane of the lattice. The nearest lattice point

(the CMP) is found. The neighbors on the lattice are then

calculated, and the CMP and neighbors are mapped back

into parameter space. There, a positive basis can be found on

the neighbors, defining the locations of function evaluations,

completing the GPS algorithm.

A unique force-based positive basis search algorithm

has been developed that avoids massive computational cost

penalties that less sophisticated strategies incurr, without

making the algorithm lattice-dependent. The flexibility of

the code developed allows for very simple modification to

use different lattices in the GPS algorithm. This allows both

for the testing of lattice performance in the GPS algorithm

application, as well as selecting the lattice to be used

based on the character of the function to be minimized. A

working code implementing such lattice-based optimization,

Checkers, is very nearly complete, and our initial compari-

son of Checkers to standard Cartesian-based algorithms will

be reported shortly.

VII. ACKNOWLEDGMENTS

The authors would like to thank Alison Marsden and

Sebastien Michelin for their fruitful collaboration in lattice-

based optimization schemes.

REFERENCES

[1] Booker, A., Dennis, J., Jr., Frank, P., Serafini, D., Torczon, V., Trosset,
M., (1999) A rigorous framework for optimization of expensive
functions by surrogates, Structural and Multidisciplinary Optimization,
17: 113.

[2] Bewley, T.R., (2007) Numerical Renaissance: Simulation, Optimiza-
tion, and Control

[3] Marsden, A.L., Wang, M., Dennis, J.E. Jr., and Moin, P., (2004)
Optimal aeroacoustic shape design using the surrogate management
framework, Optimization and Engineering, 5(2): 235-262. Special
Issue on Surrogate Optimization.

[4] Conway, J.H., Sloane, N.J.A, (1999) Sphere Packings, Lattices, and
Groups, Third Edition

[5] Charles, A., Dennis, J. JR., Mesh adaptive direct search algorithms
for constrained optimization. Submitted to SIAM J. Optim.

[6] Coope, I.D., Price, C.J., (2001) On the convergence of grid-based
methods for unconstrained optimization, SIAM J. Optim.,11:859869

[7] Torczon, V, (1997) On the convergence of pattern search algorithms,
SIAM J. Optim., 7: 1-25.

[8] Jones, D, (2001) A Taxonomy of Global Optimization Methods Based
on Response Surfaces, Journal of Global Optimization., 21: 345-383.

[9] Conn, A.R., Scheinberg, K., Toint, Ph.L., (1998) A Derivative Free
Optimization Algorithm in Practice, American Institute of Aeronautics
and Astronautics Conference, Sep 98

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB06.6

5363

