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Derivative-free algorithms are frequently required foe thptimization of nonsmooth functions defined by physical
experiments or by averaging of the statistics of numericaliations of chaotic systems such as turbulent flows. The
core idea of all efficient algorithms for problems of thissdas to keep function evaluations far apart until convecgen

is approached. Generalized Pattern Search (GPS) algasitunh as the present, accomplish this by coordinating the
search with an underlying grid which is refined and coarsexsedppropriate. Rather than using the Cartesian grid
(the typical choice), the present work introduces for thiggpse the use of lattices derived frardimensional sphere
packings (for a comprehensive review of such lattices aenl iroperties see Conway & Sloane 1999). Such lattices
are significantly more uniform and have much higher kissumgpbers (that is, they have many more nearest neighbors)
than their Cartesian counterparts; both of these facts ittegte much better suited for coordinating GPS algorithms.
One of the most efficient subclasses of GPS algorithms, kremvthe Surrogate Management Framework (SMF;
see Bookeket al, 1999), alternates between an exploratory Search overagsue function interpolating all existing
function evaluations (and thus summarizing the trends lwthey represent), and an exhaustive Poll which checks
the function on neighboring points to confirm or confute theal optimality of any given Candidate Minimum Point
(CMP) on the underlying grid. The present work combines th-Svith efficient lattices based omdimensional
sphere packings, and additionally incorporates one of igf@yhefficient global search strategies meticulously exam
ined by Jones (2001), thereby developing an extremely effidattice-based derivative-free optimization algarith
Our code implementing this algorithm, dubbed Checkers,paoes quite favorably to competing algorithms on a
range of well-known optimization test problems.

|. Background

Under the nonsmooth assumption mentioned in the abstexdtative-based optimization strategies such as Congugat
Gradient and BFGS perform poorly, relegating the class ailalvle algorithms to derivative-free routines. Given an
expensive function to minimize, the convergence rate os#tected algorithm is of utmost importance.

Perhaps the simplest grid-based derivative-free optimizalgorithm available, identified in this paper as Sustes
Polling (SP), proceeds as follows. Start with a coarse gritl@valuate the function on a starting point on this grid,
defined as the first candidate minimum point (CMP). Then, Riodt is, evaluate) the function values on gridpoints
which neighbor the CMP in parameter space, at a sufficientbenraf gridpoints topositively spaf the feasible
neighborhood of the CMP [this step ensures convergencaseasssed further in Torczon 1997, Booletral. 1999,
and Coope & Price 2001]. When polling:

(a) If any poll point is found to have a function value loweaththat of the CMP, define this new point as the new
CMP and immediately terminate the current Poll step.
(b) If all poll points are found to have function values higttean that of the CMP, refine the grid by a factor of two.

A new poll step is then initiated and the process repeatdtitarhinated. Though the basic SP algorithm described
above is not at all efficient, it guarantees eventual corarerg to a local minimum, and there exist a wide variety of
effective ways to accelerate it. The most efficient subotdsaich modified SP algorithms, known as the Surrogate
Management Framework (SMF; see Bookeal., 1999), leverages inexpensive “surrogate” functionsiterpolate
the available function evaluations and provide sugge&gidns of parameter space in which to perform new function
evaluations between each Poll step. SMF algorithms thesnalte beween two steps:

aThat is, such that any feasible point in the neighborhoodth@@MP can be reached vidiaear combination with non-negative coefficienfs
the vectors from the CMP to the poll points.

1of6

American Institute of Aeronautics and Astronautics



(i) Search over the surrogate to identify the most promigjrigpoint at which to sample the function, evaluate the
function at this gridpoint, update the surrogate functemmd repeat. This Search is terminated when it fails to return
an improved CMP.

(i) Poll the neighborhood of the current CMP, followingesl(a) and (b) above.

Note the substantial flexibility in the design of the Sealdgoathm. An efficient Search greatly increases the efficyen
of the SMF algorithm, whereas an inefficient Search effetiveduces SMF to SP. As the SP and Search algorithms
are effectively independent of one another in the SMF, wéyaeahem separately in the discussion that follows.

At the heart of the SMF algorithm lies tmedimensional discretizing grid or ‘lattice’ that all furich evaluations are
restricted to and from which each Poll set is selected. Tdo#st of the authors’ knowledge, all previous work using
such grid-based optimization strategies have utilizedeS@n grids. Frorm-dimensional sphere packing theory,

a wide variety of alternative lattices are available (CopwaSloane 1999). All of these alternative lattices are
significantly more uniform than the Cartesian grid, as meslby common performance metrics such as packing
density, covering thickness, and an appropriately nomedlmeasure of average quantization error. Thus, the use of
an alternative lattice offers potential increases in tlieiehcy of SP-based algorithms.

An even more significant disadvantage of the Cartesian agpprto the coordination of a derivative-free optimization
code is the relatively poor placement of the nearest-n@ghlkid points. At each SP step, the poll points must be
selected to form a positive basis around the CMP. In theestesf efficiency, minimizing the number of poll points
at each step is of key importance. As explained in detall ilitBet al. (2008), and summarized briefly below, the
Cartesian grid induces a very nonuniform Poll set in the §Bréhm, and thus the use of alternative lattices is of great
interest in the SP and SMF algorithms.

[I.  Successive Polling Test Results

To test the effect of the underlying lattice on the poll stema, several simulations were run on known test functions
J(x) to gather statistical data on the performance offarbased SP code as compared to an otherwise identical
Cartesian-based SP code. The initial test functions ctekig positive definite quadratic bowls with random corudtiti
number, random minimum location, and random algorithm gi@int. The initial grid spacings of the Cartesian-based
and Ay-based algorithms were selected to provide a constandlirgtierage step length. The number of function
evaluations necessary to reach a given level of convergeece recorded for a large number of tests to provide
statistically representative comparisons of algorithficieihcy. The SP search above was runrice 2,3,4, and 5.

A outperformed Cartesian in 81% to 100% of the runs, with tfieiehcy difference increasing significantly as the
dimensiom of the problem was increased.

These results show clearly that thg-based SP algorithm significantly outperforms the Carteb@sed SP algorithm.
The mechanism by which the Cartesian-based algorithm pesfeo poorly is worth examining in detail. The lack of
uniformity of the Cartesian basis decreases the likelyhafdte steepest-descent direction being well approximated
by the basis vectors. The more unifoAn search is more likely to have a vector more closely approtiimgahe true
gradient, thereby converging at a higher rate. Furtheheadimension of the problem increases, not only dggend

to converge in as many or fewer steps than Cartesian, butibarat by whichA,, improves on Cartesian increases. In
n=5 we frequently realize an order of magnitude differencéaefficiencies of the two approaches.

These results offer solid evidence that, as predicted hy significantly improved uniformity and distribution, the
convergence rate of Generalized Pattern Search (GPSjthlgsican be improved greatly by implementing an efficient
lattice to discretize the parameter space.

lll.  Kriging Interpolating Surrogate Functions

The purpose of the Search in the SMF is to identify, based errénds evident in the current set of function eval-
uations, as well as the “voids” of information existing ingtlset, the most promising areas where the function value
might be lower than the current CMP. For maximum performaane would obviously like to find the most efficient
Search algorithm possible. To model the function as effeltias possible, the present algorithm leverages Kriging
interpolants.
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Often described as “modelling a function as a realizatioa sfochastic process”, Simple Kriging interpolation pro-
vides a Predictai(x) and a Predictor Uncertaing/(x). The Predictor is that function which maximizes the likeigh

of the observed data (see Jones, 2001). The Predictor @imtgiis modeled based on the distance to the nearby func-
tion evaluations and the correlation (or lack thereof) efiticorresponding values. The Predictor matches the fomcti
value at each sampled point, and the Predictor Uncertaioég ¢o zero at each sampled point. The derivation of

Simple Kriging as well as the details of the numerical impéenation can be found in Belitz & Bewley (2008).

V. Building the Surrogate Search

Having a Predictor and its corresponding Uncertainty froenKriging model, a sophisticated Search can now be built.
One obvious strategy commonly used in such scenarios ¢emdisimply evaluating the Predictor at its minimum,
discretized onto the underlying grid. This simple, inkkdtapproach has been implemented in a variety of examples
with reasonably good results. However, such a strategysffe clear way to “explore” the function far from the
Predictor minimum, and the resulting Search tends to bd.loca

To increase the exploratory quality of the Search, schengsas that implemented by Marsden (2005) can be used,
in which the Search is defined by a Poll step performed ardueduarrogate minimum. Another option explored by
Bookeret al, (1999) considered evaluating the function at a number oftpan parameter space, some chosen for
minimum surrogate value, others for maximum surrogate daicgy. Such a heuristic provides a measure of global
convergence behavior, as the ‘space-filling’ maximum utagety points allow the surrogate to explore and accurately
model the function relatively far from the surrogate minimu

The efficacy of such Predictor-based Search strategiesecamdiuated with a one-dimensional example (see Figure
1). In this case we take a simple function of a scalar argumevith multiple minima: J(x) = sin(x) + x2 on the
interval [—5,5]. Two initial points are used as the starting points for thar8e. The function is sampled at the point
returned by the search; the surrogate is updated, and thehdeaepeated.
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Figure 1. Search based od(x) above. The algorithm does not necessarily converge even tdacal minimum, and stalls after just six function evaluations.

In Figure 1, sampling at the surrogate minimum is explordds Bearch stalls quite quickly - in the case shown, after
only five function evaluations. Even more notably, the altpon does not even converge to a local minimum! While in
an SMF scenario the grid can prevent such early stalling bpikegy function evaluations far apart, this simple example
illustrates that this search strategy in its purest forméanty lacking. Due to this easily demonstrable inadequacy
we conclude that more effective Search strategies are waptloring. In particular, a search algorithm that drivess th
Search to exploraear, notat, the Predictor minimum seems likely to greatly improve tbevergence of the Search
algorithm.

A more promising idea includes the Predictor Uncertaintghie search algorithm. By minimizing(x) —1a(x),
wherel is an adjustable scalar, the Search will return points whiegdPredictor is low and the Uncertainty is high
(Cox & John, 1997). Thus, the Search is necessarily driveaydmm previously evaluated points, thereby avoiding
the fundamental problem with the simpler Search descrilbedea This strategy provides natural flexibility in the
exploratory nature of the Search, and appears to be a vegtigh algorithm. The scalargoverns the locality of the
Search - the greatérthe more “exploratory” a search pattern is generated {gh#te more the search simply fills the
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voids in the existing set of data). As— o, the Search becomes dense in parameter space as the numrduafions
is increased, which therefore satisfies the requiremergudaranteed convergence of such an algorithm to the global
minimum as estabilished by Torn & Zilinskas (1992).
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Figure 2. Search Point based od(x) — |o(x). The algorithm rapidly explores the function and quickly locates the global minimum.

As demonstrated in Figure 2, this search (with an apprapviaue of) provides very good performance, capturing the
behavior of the test function very well after a relativelyahmumber of function evaluations. Ever more sophistidate
search strategies have been explored (see Jones, 200&ydrothe performance advantages of such algorithms over
the simpler strategy demonstrated here do not appear tortieuparly compelling.

Numerically, implementing this Search leads to some chghs. AsJ(x) —o(x) has multiple minima, developing
an efficient algorithm to perform the minimization xﬁ(fx) —la(x) for a givenl is necessary. Noting that the search
functionJ(x) —lo(x) is itself quite smooth, a derivative-based approach tomizing J(x) — Ia(x) was devised. As
the Uncertainty is zero at each sampled point, the minima(of — Ia(x) will generally lie between the sampled
points. Thus, a derivative-based search starting very Igtanot quite at each sampled point is used. This search

moves in a variety of directions from each sampled point afidlsly converges intall local minima ofJ(x) — lo(x).

V. An A,-Based Surrogate Management Framework

To recap: the SMF algorithm consists of performing Searcimi the Search fails, upon which a Poll step is per-
formed. If the Poll is successful, the algorithm returnshie Eearch; else, the grid size is refined by a factor of two,
and a new Search is performed. In the current study, we testffact of changing the underlying grid coordinating
this algorithm from Cartesian t&,. In 8Il we showed that the use of a highly uniform lattice ¢giyeanproves the
efficiency of the Poll step which forms an important compdrarihe full SMF algorithm. We now show that such
lattices also greatly improve the efficiency of the full SMBaithm.

As described above, the Search step of the SMF algorithnfisipeed by minimizing the functiod(x) —la(x), where
J(x) is the predicted value of the functidnis a chosen scalar, amqx) is the Kriging Uncertainty. In the interest of
robust performance, the chosen method of minimidihg — 1a(x) for multiple| offers excellent performance, good

customization properties for nonlocal optimization, ama tomplexity.

The key features of our lattice-based SMF algorithm are nomvpletely described. Our code implementing this al-
gorithm, dubbed “Checkers”, aims to be a maximally efficidativative-free optimzation routine for locating local
minima, while providing a customizable degree of “explorgt emphasis, via the selection Qffor global optimiza-
tion. Checkers has been tested in this workrfet 2 to n = 6 dimensions. The test functions chosen here consist of
the n-dimensional Rosenbrock function (a local minimizatiooldem), and the Branin test function (a global opti-
mization problem). The objective of these tests were to tiiyathe convergence rate of & SMF minimization as
compared to its Cartesian equivalent, as well as to atteongbinpare the performance of Checkers to various other
popular derivative-free optimization schemes.
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VI. Results

The Rosenbrock test function is uniquely difficult for the BNd minimize, as seen in Figure 3. The “valley” in
which the true minimum lies is narrow, curved, and charéoterby a vanishing second derivative on its floor, making
it extremely difficult for any search algorithm to approxitmahe gradient sufficiently accurately to move towards
the minimum. Thus, Rosenbrock is an excellent test for tfiei@ficy of an algorithm such as the SMF. Note that
Rosenbrock is a convex function with only one minimum, andkined as

n-1
30 = 3 [(L=x)+(~1)"8(62 <))
i=
This function was further modified to shift the global minimuo a random point to avoid biasing the test. Two
SMF schemes were run on this function: both utilizing #te) — |0(x) search. The sole difference between these
two versions of SMF is the underlying lattice&,(versus Cartesian) coordinating the optimization. As in3Retests
described earlier, the average poll vector length was nlizathbetween the Cartesian aAglversions of the SMF.

To evaluate the efficiency of these algorithms, the Cameggasion of the algorithm was run for 200 to 300 function
evaluations. Then, th&, code was run until the minimum function value returned wasgarable to that returned by
the Cartesian code. The number of function evaluationsiredjto converge to the level found by both thus gives a
metric by which to compare the efficiency of the two algorithm

-2 )
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Figure 3. Optimization of the Rosenbrock (left) and Branin (ight) test functions. Note how the Search accelerates theoovergence to the minimum (green
circle) on the Rosenbrock function, returning points (gree) that converge at an increased rate compared to the SP Poltgd crosses). Also note the Search
algorithm’s nonlocal optimization properties on the Branin function - the Search locates the region of the global minimam; the Poll ensures convergence once
said region is located.

The two versions of SMF were run on the modified Rosenbrocktfan described above in=2,3,4,5, and 6
dimensions. In these tesfg, outperformed Cartesian from 73% to 90% of the runs, indicat very substantial
improvement realized by changing nothing other than this&tnderlying the optimization algorithm.

These results show a clear conclusion: efficient latticeside a significant advantage over Cartesian grids in SP-
based numerical optimization algorithms. In the SMF codedBbrs, the difference in efficiencies even with a so-
phisticated Search algorithm employed regularly resudt up to a factor of 2 increase in algorithm efficiency; that is,
convergence to a given level routinely requires half as nfangtion evaluations just by coordinating the algorithm
with the more uniform latticé\,.

Thus far, only results on local minimization have been discu As Checkers’ Search has the capacity to provide
non-local optimization, preliminary testing was perfodran a sample function with multiple minima. The Branin
test function was selected for this preliminary testinge Branin test function is defined as
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J(X) = (1— 2%+ 0.05sir(410x2) — X1)2 4 (%2 — 0.5 8IN(211%7 ) )?

Ontheinterval-2 < x1 < 2,—2 < X2 < 2, the Branin Test Function has five local minima. As can ba ge€igure 3,
with the Search parametee= 50, Checkers does an excellent job of exploring all the fioncminima, eventually
converging to the true minimum. Atis increased, the Search becomes more ‘space-filling’irdyithe maximum
uncertainty of the Kriging surrogate towards zero. As thenbar of function evaluations is increased, the points
evaluated by this search algorithm become dense in paraspetee. The Poll drives the convergence of the algorithm
to the global minimum once the viscinity of the global minimias been identified by the Search.

While these preliminary results indicate the non-locakaspf the Search behavior, additional testing is warranted
Further algorithm refinement to provide the best combimatiblocal and nonlocal Search behavior remains to be
performed; however, these initail results clearly demmastthe outstanding capabilities of the Checkers SMF code.

VIl. Conclusion

The results from the SP algorithm on quadratic bow! testsvsaalear and substantial advantage when utilizing
a lattice-based Poll step in Successive Polling-baseditigts. Simply put, switching from a Cartesian grid to a
lattice-based SP significantly improves the algorithm’sv@ygence rate. Testing on other functions substantiates
these results. There is no doubt remaining that latticed & searches are the preferred choice over Cartesiath-base
algorithms. Independent of the convergence efficiency edkRars on local optimization problems, the rigorous Search
implemented in Checkers has demonstrated efficient glayalergence of the algorithm in non-convex optimization
problems. With appropriate tuning, the algorithm provedd@n excellent job locating a global minimum on standard
test problems. Further work remains to be done in this angtaglbtesting indicates Checkers to be a efficient, robust
code for a wide variety of optimization applications.
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