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Derivative-free algorithms are frequently required for the optimization of nonsmooth functions defined by physical
experiments or by averaging of the statistics of numerical simulations of chaotic systems such as turbulent flows. The
core idea of all efficient algorithms for problems of this class is to keep function evaluations far apart until convergence
is approached. Generalized Pattern Search (GPS) algorithms, such as the present, accomplish this by coordinating the
search with an underlying grid which is refined and coarsenedas appropriate. Rather than using the Cartesian grid
(the typical choice), the present work introduces for this purpose the use of lattices derived fromn-dimensional sphere
packings (for a comprehensive review of such lattices and their properties see Conway & Sloane 1999). Such lattices
are significantly more uniform and have much higher kissing numbers (that is, they have many more nearest neighbors)
than their Cartesian counterparts; both of these facts makethem much better suited for coordinating GPS algorithms.
One of the most efficient subclasses of GPS algorithms, knownas the Surrogate Management Framework (SMF;
see Bookeret al, 1999), alternates between an exploratory Search over a surrogate function interpolating all existing
function evaluations (and thus summarizing the trends which they represent), and an exhaustive Poll which checks
the function on neighboring points to confirm or confute the local optimality of any given Candidate Minimum Point
(CMP) on the underlying grid. The present work combines the SMF with efficient lattices based onn-dimensional
sphere packings, and additionally incorporates one of the highly efficient global search strategies meticulously exam-
ined by Jones (2001), thereby developing an extremely efficient lattice-based derivative-free optimization algorithm.
Our code implementing this algorithm, dubbed Checkers, compares quite favorably to competing algorithms on a
range of well-known optimization test problems.

I. Background

Under the nonsmooth assumption mentioned in the abstract, derivative-based optimization strategies such as Conjugate
Gradient and BFGS perform poorly, relegating the class of available algorithms to derivative-free routines. Given an
expensive function to minimize, the convergence rate of theselected algorithm is of utmost importance.

Perhaps the simplest grid-based derivative-free optimization algorithm available, identified in this paper as Successive
Polling (SP), proceeds as follows. Start with a coarse grid and evaluate the function on a starting point on this grid,
defined as the first candidate minimum point (CMP). Then, Poll(that is, evaluate) the function values on gridpoints
which neighbor the CMP in parameter space, at a sufficient number of gridpoints topositively spana the feasible
neighborhood of the CMP [this step ensures convergence, as discussed further in Torczon 1997, Bookeret al. 1999,
and Coope & Price 2001]. When polling:

(a) If any poll point is found to have a function value lower than that of the CMP, define this new point as the new
CMP and immediately terminate the current Poll step.
(b) If all poll points are found to have function values higher than that of the CMP, refine the grid by a factor of two.

A new poll step is then initiated and the process repeated until terminated. Though the basic SP algorithm described
above is not at all efficient, it guarantees eventual convergence to a local minimum, and there exist a wide variety of
effective ways to accelerate it. The most efficient subclassof such modified SP algorithms, known as the Surrogate
Management Framework (SMF; see Bookeret al., 1999), leverages inexpensive “surrogate” functions to interpolate
the available function evaluations and provide suggested regions of parameter space in which to perform new function
evaluations between each Poll step. SMF algorithms thus alternate beween two steps:

aThat is, such that any feasible point in the neighborhood of the CMP can be reached via alinear combination with non-negative coefficientsof
the vectors from the CMP to the poll points.
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(i) Search over the surrogate to identify the most promisinggridpoint at which to sample the function, evaluate the
function at this gridpoint, update the surrogate function,and repeat. This Search is terminated when it fails to return
an improved CMP.
(ii) Poll the neighborhood of the current CMP, following rules (a) and (b) above.

Note the substantial flexibility in the design of the Search algorithm. An efficient Search greatly increases the efficiency
of the SMF algorithm, whereas an inefficient Search effectively reduces SMF to SP. As the SP and Search algorithms
are effectively independent of one another in the SMF, we analyze them separately in the discussion that follows.

At the heart of the SMF algorithm lies then-dimensional discretizing grid or ‘lattice’ that all function evaluations are
restricted to and from which each Poll set is selected. To thebest of the authors’ knowledge, all previous work using
such grid-based optimization strategies have utilized Cartesian grids. Fromn-dimensional sphere packing theory,
a wide variety of alternative lattices are available (Conway & Sloane 1999). All of these alternative lattices are
significantly more uniform than the Cartesian grid, as measured by common performance metrics such as packing
density, covering thickness, and an appropriately normalized measure of average quantization error. Thus, the use of
an alternative lattice offers potential increases in the efficiency of SP-based algorithms.

An even more significant disadvantage of the Cartesian approach to the coordination of a derivative-free optimization
code is the relatively poor placement of the nearest-neighbor grid points. At each SP step, the poll points must be
selected to form a positive basis around the CMP. In the interest of efficiency, minimizing the number of poll points
at each step is of key importance. As explained in detail in Belitz et al. (2008), and summarized briefly below, the
Cartesian grid induces a very nonuniform Poll set in the SP algorithm, and thus the use of alternative lattices is of great
interest in the SP and SMF algorithms.

II. Successive Polling Test Results

To test the effect of the underlying lattice on the poll step alone, several simulations were run on known test functions
J(x) to gather statistical data on the performance of anAn-based SP code as compared to an otherwise identical
Cartesian-based SP code. The initial test functions consisted of positive definite quadratic bowls with random condition
number, random minimum location, and random algorithm start point. The initial grid spacings of the Cartesian-based
and An-based algorithms were selected to provide a constant initial average step length. The number of function
evaluations necessary to reach a given level of convergencewere recorded for a large number of tests to provide
statistically representative comparisons of algorithm efficiency. The SP search above was run forn = 2,3,4, and 5.
An outperformed Cartesian in 81% to 100% of the runs, with the efficiency difference increasing significantly as the
dimensionn of the problem was increased.

These results show clearly that theAn-based SP algorithm significantly outperforms the Cartesian-based SP algorithm.
The mechanism by which the Cartesian-based algorithm performs so poorly is worth examining in detail. The lack of
uniformity of the Cartesian basis decreases the likelyhoodof the steepest-descent direction being well approximated
by the basis vectors. The more uniformAn search is more likely to have a vector more closely approximating the true
gradient, thereby converging at a higher rate. Further, as the dimension of the problem increases, not only doesAn tend
to converge in as many or fewer steps than Cartesian, but the amount by whichAn improves on Cartesian increases. In
n = 5 we frequently realize an order of magnitude difference in the efficiencies of the two approaches.

These results offer solid evidence that, as predicted by their significantly improved uniformity and distribution, the
convergence rate of Generalized Pattern Search (GPS) algorithms can be improved greatly by implementing an efficient
lattice to discretize the parameter space.

III. Kriging Interpolating Surrogate Functions

The purpose of the Search in the SMF is to identify, based on the trends evident in the current set of function eval-
uations, as well as the “voids” of information existing in this set, the most promising areas where the function value
might be lower than the current CMP. For maximum performance, one would obviously like to find the most efficient
Search algorithm possible. To model the function as effectively as possible, the present algorithm leverages Kriging
interpolants.
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Often described as “modelling a function as a realization ofa stochastic process”, Simple Kriging interpolation pro-
vides a Predictor̂J(x) and a Predictor Uncertaintyσ(x). The Predictor is that function which maximizes the likelyhood
of the observed data (see Jones, 2001). The Predictor Uncertainty is modeled based on the distance to the nearby func-
tion evaluations and the correlation (or lack thereof) of their corresponding values. The Predictor matches the function
value at each sampled point, and the Predictor Uncertainty goes to zero at each sampled point. The derivation of
Simple Kriging as well as the details of the numerical implementation can be found in Belitz & Bewley (2008).

IV. Building the Surrogate Search

Having a Predictor and its corresponding Uncertainty from the Kriging model, a sophisticated Search can now be built.
One obvious strategy commonly used in such scenarios consists of simply evaluating the Predictor at its minimum,
discretized onto the underlying grid. This simple, intuitive approach has been implemented in a variety of examples
with reasonably good results. However, such a strategy offers no clear way to “explore” the function far from the
Predictor minimum, and the resulting Search tends to be local.

To increase the exploratory quality of the Search, schemes such as that implemented by Marsden (2005) can be used,
in which the Search is defined by a Poll step performed around the surrogate minimum. Another option explored by
Bookeret al, (1999) considered evaluating the function at a number of points in parameter space, some chosen for
minimum surrogate value, others for maximum surrogate uncertainty. Such a heuristic provides a measure of global
convergence behavior, as the ‘space-filling’ maximum uncertainty points allow the surrogate to explore and accurately
model the function relatively far from the surrogate minimum.

The efficacy of such Predictor-based Search strategies can be evaluated with a one-dimensional example (see Figure
1). In this case we take a simple function of a scalar argumentx with multiple minima: J(x) = sin(x)+ x2 on the
interval[−5,5]. Two initial points are used as the starting points for the Search. The function is sampled at the point
returned by the search; the surrogate is updated, and the search is repeated.
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Figure 1. Search based onJ(x) above. The algorithm does not necessarily converge even to alocal minimum, and stalls after just six function evaluations.

In Figure 1, sampling at the surrogate minimum is explored. This Search stalls quite quickly - in the case shown, after
only five function evaluations. Even more notably, the algorithm does not even converge to a local minimum! While in
an SMF scenario the grid can prevent such early stalling by keeping function evaluations far apart, this simple example
illustrates that this search strategy in its purest form is clearly lacking. Due to this easily demonstrable inadequacy,
we conclude that more effective Search strategies are worthexploring. In particular, a search algorithm that drives the
Search to explorenear, notat, the Predictor minimum seems likely to greatly improve the convergence of the Search
algorithm.

A more promising idea includes the Predictor Uncertainty inthe search algorithm. By minimizinĝJ(x)− lσ(x),
wherel is an adjustable scalar, the Search will return points wherethe Predictor is low and the Uncertainty is high
(Cox & John, 1997). Thus, the Search is necessarily driven away from previously evaluated points, thereby avoiding
the fundamental problem with the simpler Search described above. This strategy provides natural flexibility in the
exploratory nature of the Search, and appears to be a very effective algorithm. The scalarl governs the locality of the
Search - the greaterl , the more “exploratory” a search pattern is generated (thatis, the more the search simply fills the
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voids in the existing set of data). Asl → ∞, the Search becomes dense in parameter space as the number ofevaluations
is increased, which therefore satisfies the requirement forguaranteed convergence of such an algorithm to the global
minimum as estabilished by Torn & Zilinskas (1992).
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Figure 2. Search Point based on̂J(x)− lσ(x). The algorithm rapidly explores the function and quickly locates the global minimum.

As demonstrated in Figure 2, this search (with an appropriate value ofl ) provides very good performance, capturing the
behavior of the test function very well after a relatively small number of function evaluations. Ever more sophisticated
search strategies have been explored (see Jones, 2001); however, the performance advantages of such algorithms over
the simpler strategy demonstrated here do not appear to be particularly compelling.

Numerically, implementing this Search leads to some challenges. AsĴ(x)− lσ(x) has multiple minima, developing
an efficient algorithm to perform the minimization ofĴ(x)− lσ(x) for a givenl is necessary. Noting that the search
functionĴ(x)− lσ(x) is itself quite smooth, a derivative-based approach to minimizing Ĵ(x)− lσ(x) was devised. As
the Uncertainty is zero at each sampled point, the minima ofĴ(x)− lσ(x) will generally lie between the sampled
points. Thus, a derivative-based search starting very nearbut not quite at each sampled point is used. This search
moves in a variety of directions from each sampled point and reliably converges intoall local minima ofĴ(x)− lσ(x).

V. An An-Based Surrogate Management Framework

To recap: the SMF algorithm consists of performing Searchesuntil the Search fails, upon which a Poll step is per-
formed. If the Poll is successful, the algorithm returns to the Search; else, the grid size is refined by a factor of two,
and a new Search is performed. In the current study, we test the effect of changing the underlying grid coordinating
this algorithm from Cartesian toAn. In §II we showed that the use of a highly uniform lattice greatly improves the
efficiency of the Poll step which forms an important component of the full SMF algorithm. We now show that such
lattices also greatly improve the efficiency of the full SMF algorithm.

As described above, the Search step of the SMF algorithm is performed by minimizing the function̂J(x)− lσ(x), where
Ĵ(x) is the predicted value of the function,l is a chosen scalar, andσ(x) is the Kriging Uncertainty. In the interest of
robust performance, the chosen method of minimizingĴ(x)− lσ(x) for multiple l offers excellent performance, good
customization properties for nonlocal optimization, and low complexity.

The key features of our lattice-based SMF algorithm are now completely described. Our code implementing this al-
gorithm, dubbed “Checkers”, aims to be a maximally efficientderivative-free optimzation routine for locating local
minima, while providing a customizable degree of “exploratory” emphasis, via the selection ofl , for global optimiza-
tion. Checkers has been tested in this work forn = 2 to n = 6 dimensions. The test functions chosen here consist of
then-dimensional Rosenbrock function (a local minimization problem), and the Branin test function (a global opti-
mization problem). The objective of these tests were to quantify the convergence rate of anAn SMF minimization as
compared to its Cartesian equivalent, as well as to attempt to compare the performance of Checkers to various other
popular derivative-free optimization schemes.
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VI. Results

The Rosenbrock test function is uniquely difficult for the SMF to minimize, as seen in Figure 3. The “valley” in
which the true minimum lies is narrow, curved, and characterized by a vanishing second derivative on its floor, making
it extremely difficult for any search algorithm to approximate the gradient sufficiently accurately to move towards
the minimum. Thus, Rosenbrock is an excellent test for the efficiency of an algorithm such as the SMF. Note that
Rosenbrock is a convex function with only one minimum, and isdefined as

J(x) =
n−1

∑
i=0

[(1−xi)
2 +(−1)n5(xi+1−x2

i )
2]

This function was further modified to shift the global minimum to a random point to avoid biasing the test. Two
SMF schemes were run on this function: both utilizing theĴ(x)− lσ(x) search. The sole difference between these
two versions of SMF is the underlying lattices (An versus Cartesian) coordinating the optimization. As in theSP tests
described earlier, the average poll vector length was normalized between the Cartesian andAn versions of the SMF.

To evaluate the efficiency of these algorithms, the Cartesian version of the algorithm was run for 200 to 300 function
evaluations. Then, theAn code was run until the minimum function value returned was comparable to that returned by
the Cartesian code. The number of function evaluations required to converge to the level found by both thus gives a
metric by which to compare the efficiency of the two algorithms.
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Figure 3. Optimization of the Rosenbrock (left) and Branin (right) test functions. Note how the Search accelerates the convergence to the minimum (green
circle) on the Rosenbrock function, returning points (green) that converge at an increased rate compared to the SP Poll (red crosses). Also note the Search
algorithm’s nonlocal optimization properties on the Branin function - the Search locates the region of the global minimum; the Poll ensures convergence once
said region is located.

The two versions of SMF were run on the modified Rosenbrock function described above inn = 2,3,4,5, and 6
dimensions. In these testsAn outperformed Cartesian from 73% to 90% of the runs, indicating a very substantial
improvement realized by changing nothing other than the lattice underlying the optimization algorithm.
These results show a clear conclusion: efficient lattices provide a significant advantage over Cartesian grids in SP-
based numerical optimization algorithms. In the SMF code Checkers, the difference in efficiencies even with a so-
phisticated Search algorithm employed regularly result ina up to a factor of 2 increase in algorithm efficiency; that is,
convergence to a given level routinely requires half as manyfunction evaluations just by coordinating the algorithm
with the more uniform latticeAn.

Thus far, only results on local minimization have been discused. As Checkers’ Search has the capacity to provide
non-local optimization, preliminary testing was performed on a sample function with multiple minima. The Branin
test function was selected for this preliminary testing. The Branin test function is defined as
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J(x) = (1−2x2+0.05sin(4πx2)−x1)
2 +(x2−0.5sin(2πx1))

2

On the interval−2 < x1 < 2,−2< x2 < 2, the Branin Test Function has five local minima. As can be seen in Figure 3,
with the Search parameterl = 50, Checkers does an excellent job of exploring all the function minima, eventually
converging to the true minimum. Atl is increased, the Search becomes more ‘space-filling’, driving the maximum
uncertainty of the Kriging surrogate towards zero. As the number of function evaluations is increased, the points
evaluated by this search algorithm become dense in parameter space. The Poll drives the convergence of the algorithm
to the global minimum once the viscinity of the global minimum has been identified by the Search.

While these preliminary results indicate the non-local aspect of the Search behavior, additional testing is warranted.
Further algorithm refinement to provide the best combination of local and nonlocal Search behavior remains to be
performed; however, these initail results clearly demonstrate the outstanding capabilities of the Checkers SMF code.

VII. Conclusion

The results from the SP algorithm on quadratic bowl tests show a clear and substantial advantage when utilizing
a lattice-based Poll step in Successive Polling-based algorithms. Simply put, switching from a Cartesian grid to a
lattice-based SP significantly improves the algorithm’s convergence rate. Testing on other functions substantiates
these results. There is no doubt remaining that lattice-based SP searches are the preferred choice over Cartesian-based
algorithms. Independent of the convergence efficiency of Checkers on local optimization problems, the rigorous Search
implemented in Checkers has demonstrated efficient global convergence of the algorithm in non-convex optimization
problems. With appropriate tuning, the algorithm proves todo an excellent job locating a global minimum on standard
test problems. Further work remains to be done in this area, but all testing indicates Checkers to be a efficient, robust
code for a wide variety of optimization applications.
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