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Abstract.  Nonsmooth CFD-based optimization
problems are difficult, due both to the nonconvexity
of the cost function and to the high cost of function
evaluations. In this work, we develop a derivative-free
optimization scheme which makes maximum use of
each function evaluation, improving on the efficiency
of the existing methods that have recently been ap-
plied to this class of problems (genetic algorithms,
SMF, orthoMADS, etc). At each optimization step,
the algorithm proposed creates a Delaunay triangu-
lation based on the existing evaluation points. In
each simplex so created, the algorithm optimizes a
cost function based on a polyharmonic spline inter-
polant. This interpolation strategy behaves appropri-
ately even when the evaluation points are clustered in
particular regions of interest in the parameter space,
in contrast with the Kriging interpolation strategy
used in existing GPS/SMF algorithms. At each opti-
mization step, an appropriately-modeled error func-
tion is combined with the interpolant, weighted with
a tuning parameter governing the trade-off between
local refinement and global exploration. An effective
rule is introduced to dynamically adapt this tuning
parameter at each step. The resulting algorithm is
demonstrated on representative test functions.

1 Introduction

In this paper, a new algorithm is presented to

minimize f(z) subject to x € B = {z|a; < z; < b;},

(1)

where z,a,b € R™ and f: R™ — R (we consider sim-
ple “box” constraints on the parameters here; more
complicated constraints will be considered in future
work). Derivative-free algorithms are well suited for
such problems even if neither the derivative of f(x)
nor its accurate numerical approximation is avail-
able. This issue is common in situations in which
the cost function is derived from either experiment
or simulation, especially if the metric of interest is a
finite-time-average approximation of an infinite-time-
average statistic of a turbulent flow.

An important class of derivative-free algorithms is
Direct Search Methods, developed in the 1960s, as
reviewed in [10]. The first type of methods in this
class is Pattern Search Methods, which are charac-
terized by a series of exploratory moves on a pat-
tern of points that lie on a rational lattice. Exhaus-
tive Polling and Generalized Pattern Search (GPS)
are typical examples. The efficiency and convergence
property of these algorithms has been studied by [21]
and [23]. Another type of direct search algorithm is
the Nelder-Mead simplex algorithm, which is widely
implemented in numerical software packages. This
method has been studied in [19]. The last type of di-
rect search algorithms is the adaptive direction search
algorithm, which includes the Rosenbrock [17] and
Powell [15] methods. Direct search algorithms are
used to find a local minima whose cost functions are
less than the initial guess; note that global conver-
gence is an issue of significant interest when the cost
function of interest is nonconvex.

Another class of optimization is Response Surface
Methods. In these algorithms, an underlying model



for optimization is designed in order to approximate
the trend of the cost function at any arbitrary fea-
sible point. Trust Region method is one of the first
optimization algorithms appearing in the literature
which uses a model for cost function for optimization;
however, this model does not used all the information
employed in previous steps.

The Response Surface Methods usually uses all
previous information in order to find the best model
(a surrogate function) for the cost function. An ex-
haustive review of global optimization methods based
on surrogate functions can be found in [9]. Although
the majority of them relies on basis function interpo-
lation, Kriging method is the most popular one, since
an estimate of the predicted value f (z) and the error
o(x) that the interpolant is derived simultaneously.

The expected improvement algorithm [18] is a
method which uses Kriging interpolation in order to
model the cost function in the whole feasible domain.
The main advantage of this interpolation is that the
value of uncertainty at each point inside the domain
is approximated. In other words, with this interpola-
tion, for each point in the domain, the cost function
value is considered as a random Gaussian variable
which its mean value and its covariance are known.
This interpretation for the cost function is used in
order to find a point which has a maximum proba-
bility of the target value for minimization. A par-
ticularly efficient algorithm for global optimization is
the Surrogate Management Framework (SMF') which
combines the expected improvement algorithm with
general pattern search [3]. This algorithm has been
extended in [1] where the general pattern search has
been employed on a non-Cartesian grid in order to
develop a Lattice-based Derivative-free Optimization
via Global Surrogates (LABDOGS) highly leveraging
dense sphere packing theory with the improving the
uniformity of the discretization process.

Nevertheless, Kriging interpolation has its own
drawbacks. One of the problems is its numerical in-
accuracy when data are clustered in a narrow region
or when the number of parameters of the interpolant
grows. Furthermore, finding the interpolation and
minimizing the search function are non-convex opti-
mization problems which have to be solved with an-
other global optimization algorithm. Even though,

these optimization problems are less expensive com-
pared to the original problem, they carry this dis-
advantage of being nonsmooth and nonconvex; thus,
deriving their global minimum is still an issue.

In order to overcome the limits of Kriging interpo-
lation, we seek another interpolation which leads to
an easier minimization. However, we have to remark
that in this way we automatically lose the estimation
of uncertainty provided by Kriging. For interpola-
tion with radial basis functions, an appropriate un-
certainty function has been presented by [8] which is
related to the properties of these interpolations.

In this paper, we will introduced an artificial func-
tion quantifying the uncertainty based on the dis-
tance from the evaluation points. This uncertainty
function relies on the concept of Delaunay triangu-
lation which is independent from our interpolation;
hence, any smooth interpolation could be used in
this algorithm instead of the one here proposed. The
structure of the paper is the following. In Section
2, we will describe in detail all the elements that
compose the algorithm. Proofs of convergence and
properties of the algorithm will be also provided. In
Section 3, the results of the application of our global
optimization algorithm to a selected number of test
functions will be presented and discussed.

2 Description of the algorithm

Algorithm 1. In this algorithm, we will find the
global minimum of a nonconvex function f(x) inside
of a rectangular domain defined by the user. The
steps that constitute the algorithm are the following:

1. Define the domain as a box X, < z; < X, with
upper and lower bounds for each variable.

2. Define a set of initial evaluation points and add
the vertices of the box to it.

3. Calculate an interpolation function p(x) among
the set of evaluation points.

4. Perform a Delaunay triangulation among the
points.

5. For each simplex S;:



o Cualculate its circumcenter o and the ra-
dius of the circumsphere R.

e Define an uncertainty function e;(x) such
that e;(z) = R? — (v — zc)" (z — z20).

e Define a search function as ¢;(z) = p(z) —
Ke;(x)

e Minimize the search function in the sim-
plex.

0. Take the minimum of the result of the minimiza-
tion performed in each simplex and add it to the
set of evaluation points.

7. Repeat steps 3 to 6 until convergence.

In this framework, p™(x) is an interpolating func-
tion for unstructured data at step n. In the present
work, we adopted polyharmonic spline interpolation
due to its capability of handling points very close to
each other and points widely distant without causing
unwanted bumps which would originate nonexistent
local minima in the minimization process. The func-
tion €™ (x) is the uncertainty function, which artifi-
cially defines the amount of interest to be put in to
the unexplored zone between the evaluation points.
The value of this function is zero at the evaluation
points and positive elsewhere. Finally, K is a tun-
ing parameter which defines the trade-off between the
global exploration versus the local refinement. This
is the only user-defined parameter in the whole algo-
rithm. Later in the present work, a strategy will be
introduced to dynamically choose the optimum value
of K. In this way, we can define a search function
c"(x) = p™(x) — Ke™(x) that will be used in order to
find the best candidate for the next evaluation point.

This algorithm allows us prove the following

Lemma 1. Assume that f(z) and p™(z) are uni-
formly continuous functions and define z* as the
global minimum of f(x). If for all n, a point & exists
with f(z*) > ¢"(z), then for any e > 0 there exists a
0 such that

if |l —aj|| <0, j>i
=0< f(oy) — fa") <e

Proof. Since f(z) and ¢/ () are uniformly continuous
functions, then there exist d; and &5 such that

it |l —ajll <010 = |[f(2)) — flai)] <e/2
and

i [l — ]| < 62 = [l () — ()| < /2
Now define § = min(dy, d2). We have

if |z —axj) <6, j>i
= ||f(z;) — f(x;)]| <e/2 and
I (i) — & ()| < €/2.

Since z; is one of the evaluation points at the j-th
step, the value of the uncertainty function at this
point is zero and the values of the interpolant p;(z;)
and function f(z;) are equal. Therefore, we have:

i) = p!(wi) — K & (x;) = f(zs). (2)

Since, by definition, z; is the global minimum of
¢;j(x), we have

(x5) < (&) < f(z¥)
hence

cj(a:j) > () —e/2 = f(xi) —¢/2
f(@i) > fz;) —¢/2
f(zj) —e < f(2")

Finally, since f(z*) < f(z;)

0< fla;) = fa¥) <e (3)

O

Remark 1. In the aforementioned algorithm, we
have a set of evaluation points to which we will add
a point at each step. Then, if the new point is close
enough to one of the existing evaluation points, i.e.
|z — x;]| < 8, the algorithm will stop and the last
point will become the best candidate for the global
manimum. According to Lemma 1, the cost function
evaluated at this point is within the € neighborhood of
the global minimum provided that f(x*) — ™ (x*) is
positive for all n.



This preliminary result, together with the follow-
ing Lemma, will allow us to show that if we choose
K large enough, the algorithm will converge to the
global minimum.

Lemma 2. If a function G(z) defined in R? is
strictly convex inside a simplex S, then the maximum
value of G(x) is located at one of its vertices.

The proof of this lemma is relatively easy, and will
be presented in the full version of this paper. This
result allows us to prove the following

Theorem 1. The algorithm 1 will converge to the
global minimum inside the domain, provided K sat-
isfies the following inequality

K > Anax(V2 f(2) = V2pa()) /2 (4)

for all x located in the simplex including the global
minimum ¥, where Amax TEpresents the mazrimum
etgenvalue.

Proof. Since the uncertainty function inside of each
simplex is defined as

e(z) = R?* — (x —z0)" (z — 20)

()
its Hessian is simply

Vie(r) =21
Now, let us define a function G(z) as follows:

G(z) = pn(z) — Ken(x) — f(x), (6)

hence

V2G(x) = (Vipulz) = V2f(2)+2K1 (7)

By choosing K according to (4), function G(x) is
strictly convex inside of the simplex including z*.
Moreover, the value of G(x) at the vertices of this
simplex is zero, thus, according to Lemma 2 G(z*) <
0. Then, by using Lemma 1 for arbitrarily small e, we
can conclude that the present algorithm will converge
to the global minimum. O

What follows is a detailed description of the main
parts which together constitute the above-described
algorithm.

2.1 Polyharmonic spline interpolation

The polyharmonic spline interpolation p(x) of a func-
tion f(x) in R? is defined as the sum of the weighted
summation of radial basis functions ¢(r) and a linear
combination of the N given evaluation points z;, i.e.

pla) = i“’ vt @

where () =r* and 7= |z — x|
Weights w; and v; represents N and d+ 1 unknowns,
respectively, to be determined through appropriate
conditions. First of all, we want to match the val-
ues f(x;) at the evaluation points 2; with the values
of the interpolant, i.e. p(xz;) = f(x;). This gives N
conditions. Then, we impose the orthogonality condi-
tions ), w; =0and ), wiz;; =0, j=1,2,...,d.
This gives the other d + 1 conditions. Thus we can
rewrite the whole problem as

F VT [w] [f(x:)
[V O} L}] [ 0 where
Fij = @(llzi — ;1)
V= { 1 1 ... 1 ] .
r1 X9 e N
The smoothness and computational cost of this in-
tepolation has been studied in [5] and [22] in detail.

and

9)

2.2  Uncertainty function

By using polyharmonic splines, we lose the advantage
of Kriging interpolation which internally provides an
estimation of uncertainty related to the stochastic na-
ture of such approach; hence, the need to build an ar-
tificial function representing the uncertainty among
the evaluation points. Assuming zero uncertainty at
the evaluation points, and grow positively amongst
them, such function must go to zero at the interpola-
tion points.The uncertainty function here developed
is based on the concept of circumsphere of a simplex.

According to the definition of simplex in [4, p. 32],
suppose we have d + 1 points Vp, Vi,..., Vg € R?
such that Vo —Vq, Vo —Va, ..., Vo — Vg are linearly in-
dependent, then the simplex defined by these points



represents the convex hull of such points. Consider
a simplex that pass through Vy, Vi, Vs, ..., V. As-
sume x¢ as its circumcenter and R the radius of the
associated circumsphere; then we can define the re-
lated uncertainty function e(x) in each point in the
simplex as

e(z) = R? — (z — zc) " (z — z0) (10)

This function is zero at the vertices and positive in-
side the simplex. In this way, the uncertainty func-
tion is defined piecewise in each simplex, but the par-
ticular construction assures that the function is at
least Cp, i.e.

Lemma 3. The uncertainty function defined in (10)
18 continuous.

Proof. Consider x as a point on the boundary shared
between two different simplices S; and S;. Assume
ze, and ze, are the circumcenters and ej(x) and
ez(x) are the values of the error functions of S; and
So, respectively, evaluated at x. Since the triangula-
tion fully covers the domain with simplices, the inter-
face between S; and Sy is another simplex of lower
dimension S3. The projection of x¢, and x¢, on the
simplex S5 is by construction its circumcenter xc,.
Therefore, z¢, xc, and xc,zc, are perpendicular to
the simplex S3. Now consider xg, as one of the ver-
tices of simplex S3. Some trivial considerations on
triangles x¢, xxc, and xc, s, 20, lead to

2 2
e1(x) = [lzc, ws, ||” — [|lzc, 2|
lzcyzs,]” = lzc,zo, | + zc, s, | (11)
2 2 2
||xclx|| = ”xcl'sz” + chst

By combining the equations in (11), we get

2 2

e1(r) = lzosms; |7 — llwe, 2| (12)
With a similar reasoning, we can obtain
2 2

ea(r) = lzosws; ||” — [leesz| (13)

Hence, the value of the uncertainty function at x is
equal at the interface of two neighboring simplices.
O

Remark 2. Since the uncertainty function is con-
tinuous, and the domain is compact; therefore, it is
uniformly continuous.

2.3 Delaunay triangulation

Since the uncertainty function has been defined piece-
wise in each simplex obtained by connecting the eval-
uation points and the vertices of the domain, an algo-
rithm for the triangulation of such points is required.

By definition, if S is a set of points in R?, the
triangulation of S is a set of simplices whose vertices
are elements of S. A triangulation is defined as valid
if the following conditions hold:

e Every point of S is a vertex of a simplex in the
triangulation

e The union of these simplices fully covers the con-
vex hull of S

e The intersection of two different simplices is a
k-simplex such that K = —1,0,...,d — 1. For
example, in a three-dimensional problem the in-
tersection of two tetrahedra must be an empty
set, a vertex, an edge or a triangle.

Delaunay triangulation is a valid triangulation such
that the intersection of the open circumsphere around
each simplex with S is empty. This specific triangu-
lation, with respect to all the possible triangulations,
has the following properties:

e The maximum circumradius among the sim-
plices is minimum;

e The sum of the squares of the edge lengths
weighted by the sum of the volumes of the el-
ements sharing these edges is minimal

The main advantage of using Delauney triangula-
tion is to improve the numerical accuracy of the al-
gorithm. Remind the definition of the uncertainty
function in (10), if the ratio between the circumra-
dius and the maximum distance between two edges
of a simplex is a large number, the problem of find-
ing the circumcenter is an ill-posed problem. As a
consequence, numerical errors can arise and under-
mine the evaluation of the uncertainty function. In
order to avoid this, it is necessary to minimize the
maximum circumradius of the simplices in the tri-
angulation, and this goal is achieved by Delaunay
triangulation.



Finding a Delaunay triangulation has been a chal-
lenging problem for a long time in computational ge-
ometry and a great number of algorithms have been
proposed. For the interested reader an exhaustive re-
view can be found in [6] and [7]. In the present work,
a Delaunay triangulation must be performed over a
set of initial evaluation points to which a new point
is added at each iteration. Hence, the incremental
method (see [7], chapter 2) is particularly appropriate
for our goal. There are a number of other algorithms
which perform better as for computational cost and
memory storage, yet in this framework, because of
the specific structure of the problem, the incremental
method represents the best choice.

After constructing a triangulation for the domain,
we have to find the minimum of the search function
in each simplex. This is the most expensive part of
the algorithm, and its computational cost is propor-
tional to the number of simplices M obtained by the
Delaunay triangulation. Thus, the number of sim-
plices plays a key role in our optimization computa-
tion cost. The expression for the number of triangles
for the two-dimensional problem as given in [16] is:

M =Np+2N;—2 (14)

where Np is the number of vertices on the boundary
and Ny is the number of interior vertices. Hence, in
a two-dimensional problem, the number of triangles
is O(N) where N is the number of vertices. Unfortu-
nately, a similar formula does not exist for more that
two dimensions. In other words, different triangula-
tions for higher dimensional problems have a different
number of simplices. However, an upper bound for
the number of simplices given by the Delaunay trian-
gulation has been derived in [12], i.e.

d
2

M <O([N=1) (15)

where d is, as usual, the dimension of the problem.
Once the triangulation has been completed, it is pos-
sible to perform the optimization in each simplex, as
described in the following subsection.

2.4 Optimization of the search func-
tion

As previously stated, at iteration n, for each simplex
1, it is required to minimize the following search func-
tion

¢ (a) = p"(a) — K e(a).

K2

(16)

Since e(x) is defined piecewise, it is required to solve
an optimization problem in each simplex which is
a nonconvex optimization problem with linear con-
straints. The result of all the minimizations is the
global minimum of the search function ¢"(x). Hav-
ing information about Hessian and gradient plays a
key role in local minimization of the search function.
Fortunately, for the search function we have an ana-
lytical expression for both its gradient and Hessian.
The search function is a linear combination of the un-
certainty function and polyharmonic spline interpo-
lation. The uncertainty function is a quadratic func-
tion whose gradient and Hessian can be derived as
following;:

Viei(r)) = =2 (z — zc,)

V2(ei(z)) = =21

(17)
(18)

For the polyharmonic spline as defined in 8, the gra-
dient and Hessian formula is

N
=3 willz — all(z — ) + 7,
=1

N
1
Vp(z) =V <Z willz — i ||* + o LE
i=1

(19)

where ¥ = [v2, V3, ..., va11]T
N .
2 2 , 3 T
Vep(z) =V (gl willz — x;||” +v L]) =

N
B w. (x —x;)(x — )T R
=93 (SR e - i)
(20)

In order to minimize the search function in each
simplex, a good initial guess of the solution is re-
quired. For this reason, we decided to take the result



of the optimization problem obtained after replac-
ing the polyharmonic spline interpolant with a linear
piecewise interpolation passing through the vertices
of the simplex as a initial guess for global minimum
of search function. In this way, we rewrite the co-
ordinates of a point inside the simplex as a linear
combination of the vertices of the simplex, i.e.

=X, w

where X; is a d x (d + 1) matrix whose columns are
the coordinates of the d + 1 vertices of the simplex
S; and w is the (d + 1)-vector of weights w;. In this
way we can represent any point inside the simplex
provided the following conditions are satisfied:

d+1

ij =1
j=1

w; >0 j=1,2,...,d+1

(21)

In this fashion, at each iteration n, in each simplex
S; we are required to minimize a new function ¢/ (w)

defined as

Cin(w) =Yw-K [Rf — (Xjw — a?c)T(Xi w — a:c)]
(22)
which can be rewritten in quadratic form as

d'(z) = Kwl XIX;w+ (Vi — 2K25 X;) w+

+ K (zlzc — R?). (23)

In a similar fashion, we can rewrite the constraints in
(21) as

[1 e 1] w=1

24
—JTw <0 (24)

Minimization of (23) can be performed using convex
quadratic programming, provided the constraints in
(24) are implemented. The optimization gives the
vector of weights wp, which defines the initial point
for the minimization of the search function. Since
we have a good initial guess for the search function
minimization in each simplex, the minimum of the
search function in each simplex can be obtained by a
local optimization method; furthermore, the gradient
and Hessian of the search function has been derived

analytically; thus, Newton’s based method is a good
algorithm for this local minimization.

Newton’s method is a line search algorithm whose
descent direction has been derived based on both Hes-
sian and gradient of the cost function, yet because of
the nonconvexity of the problem; the Hessian modifi-
cation is required. The Hessian modification that has
been used in our algorithm is the modified Cholesky
factorization, and the line search algorithm is back-
tracking line search algorithm ( Algorithm 3.1 [14]).
The convergence of this algorithm to a local minimum
has been proved in [14].

2.5 Optimization With Adaptive K

Since K is the only tuning parameter and the out-
come of the algorithm turns out to be strongly af-
fected by it, we introduced an optimal way to dy-
namically adjust K at each iteration according to the
outcome of the optimization performed at the previ-
ous iteration.

The strategy directly relies on Lemma 1. Accord-
ing to this lemma, the global convergence can be as-
sured if there exists an x which satisfied f(z*) >
p(z) — K e(z), where a* is the point that globally
minimizes the cost function. Now assume that yg
is a lower bound for the cost function f(x). In this
way, if we choose K such that there exists x such that
yo > p(x) — K e(x), then the global convergence can
be assured. Thus, we are looking for smallest value of
K which has this property. This value can be derived
as following:

p@) —yo
e(z)

and the z which minimize above the expression will
minimize the correspondent search function p(z) —
K e(x) too. In this way, It is possible to have a nega-
tive value of K; however, in that situation, we forced
K to be zero, and the search function in that step
would be ¢(z) = p(z) in the whole domain in order
to find the next candidate point for the global mini-
mum.

Like the previous ?e;arch function minimization, in

plxT

order to minimize e(—;)”o for each simplex, a good

K = min (25)



initial guess is required. In each simplex, this point
must have a large value of e(x). We will consider a
point in the simplex which has a minimum distance
from its circumcenter. This point is the circum cen-
ter of the simplex; however, simplex does not include
its circumcenter necessary. In this way, we will con-
sider the projection of this point on the simplex as
an initial point.

With a good initial guess for minimum of %
in each simplex, we can find its global minimum by
using an iterative derivative-based method. For this
part, we use the Newton’s method with Cholescy

modification too, since the Hessian and derivative of
p(x)—y0
e(x)

gradient of function p(x) and e(x).

If the value of yq is not available, we can choose
some initial value for it, and adapt it during the op-
timization process. Note that the value of K that we
use by this method is the smallest value as possible, if
this value became so large during the process; then,
the approximate value of yg is conservative for the
problem.

The algorithm for optimization with Adoptive K
can be formalized in the following expressions:

the function can be derived from Hessian and

Algorithm 2. In this algorithm, we will express an
algorithm which can find the global minimum of a cost
Junction f(x) with adaptive K, and yo assumed as a
lower bound for the cost function f(z).

1. Define the domain as a box X1, < x; < Xo, with
upper and lower bounds for each variable.

2. Define a set of initial evaluation points and add
the vertices of the box to it.

3. Calculate an interpolation function p(x) among
the set of evaluation points.

4. Perform a Delaunay triangulation among the
points.

5. For each simplex S;:

e Cualculate its circumcenter x¢ and the ra-
dius of the circumsphere R.

e Define an uncertainty function e;(x) such
that e;(x) = R? — (z — z¢)T (z — z¢).

o Put x1 = x¢ if xc is inside of the sim-
plex; else put x1 as a projection of rc on
the simplex.

e Use Newton’s method in order to minimize
(p(x) — y0)/e(x) with the initial point xq
in the circumcenter of the simplex. If dur-
ing the Newton’s algorithm we reach a point
T such that p(x,,) < yo; then we will
minimize p(x) in all simplices instead of
p(x)—yo

e(z)
6. Take the minimum of the result of the minimiza-
tion performed in each simplex and add it to the
set of evaluation points;

7. Repeat steps 3 to 6 until convergence.

3 Results

In order to evaluate the performance of our optimiza-
tion algorithms, we applied them to the minimization
of the two optimization test functions. The functions
we tested are:

e Rosenbrock function:

fla,y) = (1—2?)+100(y —2*)*  (26)
e Rastrigin function:
fla,y) =20+ 2% +y°+
—10cos(2rx) — 10cos2my  (27)

For each simulation, we used Latin hypercube sam-
pling as first introduced in [11] in order to define a
set of IV; initial points. According to this statistical
approach, we divided the rectangular domain with
a grid having N, intervals for each dimension. In
this way the domain is divided into d”¥* subintervals.
Then we place one evaluation point in each subinter-
val so that all the other subintervals that have one
dimension in common are left empty. In this way we
are able to place exactly N; points, no matter the
dimension of the problem. For our purpose, we de-
fined a number of initial evaluation points N; equal



to 27 for each test, unless otherwise specified, in or-
der to account for the higher exploration required by
the increased domain.

The fist test function is Rosenbrock function which
has the global minimum in (1, 1) over the domain

€ [-22], but the function is nearly flat along the
curve y = x? where the global minimum lies, thus
leading all the derivative-based methods to converge
extremely slowly. We have implemented our algo-
rithms for this test function. When we use algorithm
la high value of the tuning parameter K = 100 for
the optimization (Figure 1) allows a wide exploration
all over the domain, with the candidate minimum
points concentrating inside the valley of the function.
A small value of tuning parameter K = 3 (Figure 2),
instead, limits the research to the very bottom of
the valley, approaching from the very beginning the
global minimum of the function; however, the con-
vergence to the global minimum cannot be achieved.
An adaptive K (Figure 3) offers a sufficient degree
of exploration at the beginning, then, once the valley
has been located, the exploration is confined to the
curve i = 22 where all the minima lie.

Rastrigin function is a non-convex test function ex-
ample which has global minimum at [0, 0] in the do-
main z; € [—2, 2] presents a higher number of local
minima and a unique global minimum at the origin.
The results for this test function is presented in Fig-
ures (4), (5),(6). It can be observed that the global
minimum has been derived when we use a large value
of K for optimization, yet a lot of function evaluation
has been used. Unfortunately the small value for K
has been stocked in a local minimum of the test func-
tion. However, the result for adaptive K algorithm is
acceptable since the global minimum has been found
with reasonable amount of cost function evaluation.

4 Conclusions

In this paper, we have developed a derivative-free op-
timization algorithm with surrogate functions which
leverages the concept of Delaunay triangulation. We
have achieved this goal by using polyharmonic spline
interpolation with some initial feasible points for the
cost function, then an appropriate uncertainty func-

Figure 3: Rosenbrock function for dynamic K
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tion has been designed for the data points in each step
based on Delaunay triangulation; afterwards a search
function has been defined for each feasible point. The
candidate point for the global minimum of the cost
function in each iteration is defined as a point which
globally minimizes the search function.

We have introduced a tuning parameter K in the
definition of the search function which under some as-
sumption for this parameter, the global convergence
has been assured; then we have developed another al-
gorithm which could find the optimum value for the
tuning parameter K which can globally minimize the
cost function with the minimum number of function
evaluations.

The main advantage of our method compared to
expected improvement algorithm [18] is related to the
smoothness of the polyharmonic spline interpolation
for unstructured data. Moreover, the search function
which has been developed in this paper has analytic
expression for its derivative and Hessian; thus, its
minimum could be found with Newton method, pro-
vided a good initial guess of the solution is given.

Another advantage of our algorithm is that it is
insensitive to minimization of the search function. In
other words, the global convergence can be achieved
for the cost function, even if we locally minimize the
search function in each step. This is an important
property which shows the robustness of the algo-
rithm.

Although this methods works well for the test func-
tions that has been presented in this paper, it is not
practical yet for high dimensional problems due to
the exponential growth of the number of simplices
with the dimension. This is an important limitation
for our optimization algorithm; however, this issue
can be solved by changing the feasible domain to a
simplex instead of a hypercube.

In future work, it is our intent to modify our al-
gorithm in order to deal with constrained optimiza-
tion problems, and also combine this method with
a Direct Search algorithm in order to find a more
efficient method, since the speed of convergence for
Direct Search methods is higher; however, the global
minimum may be not achieved. The Hybrid methods
can be used in order to find the global minimum with
high rate of convergence.
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