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Object-oriented implementation of the EnVE
estimation/forecasting algorithm and its
application to high-performance turbulence codes

By T. Bewleyt, J. Cessnaf, C. Colburnf, F. Ham, G. Iaccarino AND Q. Wang

The estimation/forecasting of multi-scale uncertain flow systems is one of the most
visible computational grand challenge problems of our generation. Applications include

e short-term inclement weather forecasting (for hurricanes, etc.),

e contaminant plume forecasting in both urban environments (for coordinating emer-
gency response) and battlefield environments (for coordinating troop movements),

e long-term ocean current forecasting (for El Nino, climate change, etc.), and

e MHD/plasma forecasting (for sunspot cycles, over terms of years, in order to plan
space missions, and solar flares and solar wind, over terms of hours, in order to anticipate
interruptions of satellite communications).

In order to address such challenges, in addition to improved simulation tools for such
systems, there must be a concomitant emphasis on improved data assimilation algo-
rithms. Data assimilation is essential for synchronizing such simulations with the current
flow conditions in real time. It is also instrumental to quantify the uncertainty of the
predictions, and to target new observations in order to minimize such uncertainty.

The new hybrid Ensemble/Variational Estimation (EnVE) algorithm proposed in Be-
wley, Cessna & Colburn (2008) stands to revolutionize the effectiveness of computational
efforts to address such real-time estimation and forecasting problems in high-fidelity
discretizations of complex multi-scale/multi-physics problems. The EnVE algorithm ef-
ficiently propagates non-Gaussian statistics of the forecast uncertainty while inheriting
the favorable smoothing properties of a variational formulation and incorporating a con-
sistent mechanism for revisiting past measurements in light of new data. The present
paper provides a brief summary of this approach, then outlines our preliminary efforts
in the application of such methods to complex turbulent flow systems.

The focus of the present effort is to implement the EnVE algorithm in a computa-
tionally efficient, portable, object-oriented framework which can easily be applied to a
wide variety of legacy, high-performance simulation codes. Our initial application of this
computational framework is centered on two high-performance MPI-based turbulence
simulation codes: Diablo and CDP. Diablo is the pseudospectral stratified DNS/LES
code developed at UCSD for simulating flows through simple geometries, and CDP is
the unstructured collocated finite-volume LES code developed at Stanford for simulating
flows in complex geometries.

1. Introduction

Chaotic systems are characterized by long-term unpredictability. Existing methods
designed to estimate and forecast such systems, such as Extended Kalman filtering (a
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“sequential” or “incremental” matrix-based approach) and 4Dvar (a “variational” or
“batch” vector-based approach), are essentially based on the assumption that Gaussian
uncertainty in the initial state, state disturbances, and measurement noise leads to un-
certainty of the state estimate at later times that is well-described by a Gaussian model.
This assumption is not valid in chaotic systems with appreciable uncertainties, thus mo-
tivating the development of tractable new techniques which revisit past meaurements in
light of new data, as done by variational approaches, while summarizing the primary
directions of uncertainty of the forecast, as done by Kalman-like approaches. The hybrid
technique proposed in Bewley, Cessna & Colburn (2008), dubbed Ensemble Variational
Estimation (EnVE), achieves both of these goals.

The two classes of tractable data assimilation strategies today for multi-scale uncertain
systems (prior to the development of the hybrid EnVE approach) are the Ensemble
Kalman Filtering (EnKF; see Evensen 1994) and the space/time variational (4DVar; see
Le Dimet & Talagrand 1986) methods. The EnKF is particularly useful for nonlinear
multi-scale systems with substantial uncertainties. In practice, it has been shown to
provide significantly improved state estimates in systems for which the more traditional
Extended Kalman Filter breaks down. The statistics of the estimation error in the EnKF
are not propagated via a covariance matrix, but rather are implicitly represented via the
distribution of several perturbed trajectories (“ensemble members”) which themselves
are propogated with the full nonlinear system model. The collection of these ensemble
members (itself called the “ensemble”) propagates the statistics of the estimation error
accurately in many problems, even when a relatively small number of ensemble members
is used. On the other hand, 4Dvar methods propagate state and sensitivity (“adjoint”)
simulations back and forth across an optimization window of interest. An optimization
is performed based on these marches in order to minimize a cost function balancing
(a) a term accounting for the misfit of the estimate with the measurements over the
optimization window, with (b) a “background” term accounting for the “old” estimate
based on the measurements obtained prior to the optimization window.

The application of a simulation-based estimation/forecasting scheme to atmospheric
systems in particular presents several significant modeling challenges, including;:

(1) those due to insufficient grid resolution in stratefied flows at very high Re;

(2) those due to parameter uncertainty in the physical represenation of the system, partic-
ularly in relation to temperature/density stratification and grossly simplified chemistry,
thermal radiation, and evaporation/condensation models;

(3) those due to the inflow and outflow boundary conditions at the edges (in latitude,
longitude and altitude) of the computational domain (such boundary conditions are often
taken from very coarse global circulation models of the atmosphere).

Collectively, these complexities make the problem of estimation and forecasting in atmo-
spheric flows exceedingly difficult. Ultimately, any fair comparison of data assimilation
methods for such problems must be conducted in the face of all of these uncertainties.
In the interest of developing a new data assimilation framework optimally suited to han-
dle such complex uncertain systems, our team is currently considering the estimation
and forecasting of multi-scale turbulent flow systems in a significantly more controlled
setting, while developing a software framework which will extend easily to high-fidelity
atmospheric codes developed at, e.g., NCAR, the Met Office and the DOE labs.
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2. The EnVE algorithm

The EnVE algorithm is now presented as a consistent hybrid of the EnKF and 4DVar
algorithms. Assume, without loss of generality, that an EnKF estimate X_; _; exists at
some past time ¢_,. This ensemble represents an estimate of the system state at time ¢_;
given measurements up to and including y_,. At this point, available measurements up to
to are considered. The EnVE algorithm is initialized via a traditional sequential march of
the EnKF up to the time of the most recent measurement, ¢. This provides the updated
ensemble Xg|o and all of its implicit statistics. The mean of the estimate is denoted X, ,
and is found by taking the average of all the ensemble members. In a linear system with
a very large number of ensemble members, this would give an accurate approximation of
the best estimate at time tg given measurements up to and including time ty. However,
errors due to the nonlinearity of the chaotic system and approximations due to the finite
size of the ensemble ultimately lead to a suboptimal estimate via the EnKF approach.

For forecasting applications, the most important estimate is the one at the most re-
cent measurement time o, because it is this which is used as an initial condition for any
forecasting calculation. With a linear system, any type of smoothing at this stage in the
EnKF algorithm would have no effect on the estimate at ¢3. The smoother would simply
reduce the error in the past estimates, for some time ¢ < ¢y, using the information in the
observations between ¢ and to. However, for a nonlinear system, smoothing affects the
entire estimate trajectory, even the most recent estimate at ty. This is due to the depen-
dence of the evolution of the estimate uncertainty on the trajectory of the estimate itself.
For a linear system, the covariance propagation is independent of trajectory. However,
for a nonlinear system, changes in a past estimate (via smoothing) will impact the future
trajectory of the estimate and its associated covariance. This motivates the consistent
revisiting of past measurements to help improve the resulting forecast.

To this end, the ensemble Xy is marched backward, using only the model equations.
In so doing, the estimate retains the information captured by later measurements during
the forward EnKF march (resulting in what is known in the language of estimation theory
as a “smoothed” estimate). Thus, any point on this resulting trajectory is conditioned
on all available measurements. At the conclusion of this backward march, the ensemble
mean and its implied statistics are known at some past time, say ¢ , . This retrograde
march is monitored in such a way as to define the width of the observation window
for the subsequent variational step of the EnVE algorithm. If the initial estimate at ¢y
is poor, then a significant amount of useful information may be deduced from a small
time window containing only a few observations. Including more observations in this
case is superfluous, and in fact unnecessarily increases the complexity of the optimization
surface. Conversely, if the initial estimate at ¢ is very accurate, then a significantly longer
variational window can, and should, be included in the analysis in order to account for
more measurements.

The backward march defines the window width by looking at the correlation between
the initial estimate’s trajectory and the past measurement history. Poor estimates di-
verge quickly from the measurements and should be analyzed with short optimization
windows; conversely, accurate estimates march much further back in time before they be-
gin to diverge from the measurements, and should be analyzed with longer optimization
windows. To quantify this divergence, a “bias” measure, By = H Ej_:ko (y; — H )_c].m)_Hl,
is calculated during the backward march. Through experimentation, a critical bias B is
defined such that the ensemble mean is deemed significantly divergent from the obser-
vations once k is sufficiently large that By exceeds B; the corresponding value of k is
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FI1GURE 1. EnVE is initialized by marching a traditional EnKF forward through the available
observations, making the appropriate updates. This provides an updated ensemble, me at the
current time to, and the corresponding estimate given by the ensemble mean Koo At this point,
it may be beneficial to revisit past measurements in light of the most recent data.

denoted K. With the variational window [t_,., o] so defined, the initial best smoothed

estimate of the state X_,, is given as the mean of the ensemble }A(_Km. At this point,
variational methods are used to improve this estimate in a consistent manner.

To this end, the traditional 4DVar cost function is defined with a background estimate
and covariance at t_, . The background term of the cost function must now be defined
carefully, as the correct background term is essential for EnVE to be consistent. In other
words, properly defining the background terms in the variational cost function guarantees
that erroneous updates are not made by using an observation more than once, and ensures
that the result obtained reduces to that obtained by the Kalman Filter in the special case
that the system considered happens to be linear. Therefore, the background term must be
determined by returning to the original ensemble, Xgo, and marching it backward again
to the left edge of the window ¢_,, this time removing the effect of the measurements
along the way.

A suitable formula for removing the effect of a measurement can be found by rearrang-
ing the standard forward KF update equations for the mean and covariance (Bewley,
Cessna & Colburn 2008). This removal formula (combined with a suitable backward

march of the system) may be used to produce the background ensemble )Aif x|_x ot the
left edge of the variational window. From this background ensemble, the background
mean X_,_, and background covariance P¢,  ~ ~can be extracted and used to define
the variational cost function. Because the background terms of the cost function are con-
sistently defined (in that, in the linear setting, they incorporate no information from the
observations in the variational window), the corresponding n-dimensional optimization
surface is, in the linear case, identical to what would have been used had no sequential
march through those observations been completed. The global minimum of this surface
is independent of any previous updates to the estimate within the variational window
that have been computed.

With the cost function defined appropriately in this manner, a variational iteration
can now be performed, similar to 4DVar. With traditional 4DVar, the first iteration is
typically initialized using the background term, u = X_g|_g. However, with EnVE,
a much better estimate than this is already known, namely X_/o. This is one of the
strengths of EnVE: it initializes the variational iteration with an estimate that is known

to be significantly better than the background. In either case, the optimization surface is
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FIGURE 2. (left) To determine the accuracy of the current estimate (that is, its correlation
with recent measurements), the ensemble at the current time is marched backward using the
system equations until the trajectory of the ensemble mean is significantly divergent from the
observations. This gives a “smoothed” estimate at the past time, X Klo* (right) The “bias”
between the estimate trajectory and the observations is accumulated as the smoother is marched
backward. Upon reaching a critical bias B, the retrograde march is stopped. This time ¢_ X
defines the width of the subsequent variational window.
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FIGURE 3. (left) To determine the variational cost function, the background terms at ¢, must be
calculated. This is done by marching the original ensemble )ACO‘O backward through the window,
sequentially remowving the effect of each measurement update. This march results in a background

ensemble X _ x| _x at the left edge of the optimization window; from this, the background mean
and covariance can be inferred. (right) Upon completion of a variational iteration, the improved

ensemble estimate X _ o at the left edge of the optimization window is propagated forward to
the old current time ¢o. No measurement updates are done during this march, as the available
observations have already been accounted for by the variational analysis. Upon reaching to, the

new ensemble estimate }A(O‘O is marched further to the new present time ¢; using the EnKF to
account for any new measurements recently received, and the process is repeated.

identical, but with EnVE, the initial estimate for u is much closer to the global minimum
than the original background term. Consequently, if any significant improvement can be
made upon the original best estimate, it will be discovered in the first variational iteration.
Further, the original estimate is more likely to be in the region of attraction of this global
minimum, so the probability of erroneous convergence to spurious local minima can be
substantially reduced.

Rather than propagating the ensemble mean, the variational problem can be restruc-
tured and posed so as to measure the misfit between the mean of the ensembles and the
measurements. Thus, an ensemble of adjoints is defined, where each adjoint is linearized
about the trajectory of its corresponding ensemble member. Then, the gradient is found
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as the mean of the ensemble of adjoints at the initial time. In practice, each member of
the ensemble is “shifted” in phase space the same amount, effectively shifting the ensem-
ble mean without affecting the higher-order ensemble statistics. In fact, with an adjusted
estimate of this sort, a modified, if not improved covariance ’Pme would be expected as
well. However, as variational methods do not provide a means for tracking these changes,
EnVE must simply use this shifted ensemble representation, which is a bit conserva-
tive. Note, though, that this is a significant improvement over 4Dvar, in which rigorous
methods to march P are essentially unavailable. In contrast, with EnVE, the covariance
associated with the original smoothed estimate is available, so it can be utilized. Though
this is a conservative estimate of the covariance that does not account for the correction
to the estimate due to the variational step, it correctly captures the main features of the
covariance matrix, including the principle directions of estimate uncertainty.

To cycle the algorithm, the updated ensemble at t; is marched forward to ty. Note
that the ensemble already accounts for the measurement in the window, so each ensem-
ble member is propagated forward using the system equations only, with no additional
measurement updates. This gives an improved best estimate at o, X|o. During the time
elapsed while completing this iteration, some new measurements {y; --- y, } will usually
become available due to the computational time required to complete the variational
step. The ensemble Xy can thus be marched forward again, using the EnKF to account
for these new measurements, until the new current time ¢, is reached. At this point, the
time index is reset ¢y < t,, and the algorithm is repeated. Note that a significant compu-
tational burden can be avoided by storing the updated ensemble at the previous current
time, Xo|o. This point can serve as the initial condition for finding the background terms

of the variational cost function, as opposed to starting from X 717- Depending on the
relative widths of the next variational window and the time elapsed during the current
variational step, using this saved ensemble will result in either a shorter backward EnKF
march (very beneficial due to the ill-posed nature of such a march) or possibly even a for-
ward EnKF march (a well-posed march) to the left edge of the new variational window.
This simple storage trick reduces the computational cost of the algorithm significantly
and shortens (or removes altogether) one of the ill-posed backward marches.

2.1. EnVE consistency

Ultimately, sequential methods (EnKF) and variational methods (4DVar) are used to
solve the same problem. Both methods work to minimize a cost function to optimize the
estimate at to conditioned on all available measurements. Thus, when these cost functions
are defined appropriately, it is possible to switch back and forth between sequential
and variational methods consistently, as EnVE does. For a linear system with a set of
measurements defined on [¢_, , to], the smoothed KF estimate at the back edge of the
window, X_, (found by marching a KF forward through the observations and marching
the resulting estimate backward to ¢_, ) is identical to the solution of a converged 4DVar
algorithm with an appropriately defined background term. In other words, the optimal
smoothed KF estimate x_, , is the global minimum of the 4DVar cost function in the
case of a linear system. For nonlinear systems, this relationship is still true, but the
optimal smoothed KF estimate can not necessarily be found via a sequential estimator.

This relationship is what EnVE attempts to exploit to improve the estimate. Marching
an Ensemble Kalman Smoother (EnKS) will not produce the optimal smoothed estimate
X_ o because of the nonlinearities in the system and the approximations required for the
ensemble framework. However, by removing the effect of the measurements and appro-
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FIGURE 4. A cartoon illustrating the expected error for EnVE performed on a chaotic system.
Exponential growth (linear growth in semi-log coordinates) in the expected error occurs during
forward marches. Discrete reduction in the expected error occur at both the sequential updates
and the variational update. Note that with a linear system, the variational update is necessarily
zero, returning the estimate to its original value upon completion of the variational step.

priately defining the 4DVar cost function background terms, this suboptimal smoothed
estimate can be used as an initial condition for the variational step. If the smoothed es-
timate X_,, happens to be optimal, then the variational iteration is already converged
and will produce a zero update to the estimate. Thus, EnVE uses the EnKS to initialize
the 4DVar optimization, but does not reuse the information in the observations incon-
sistently. Thus, EnVE reduces to the expected optimal results of the Kalman Smoother
(KS) for a linear system with both Gaussian measurement noise and disturbances.

An illustration of the expected estimation error as EnVE progresses for a typical chaotic
system is shown in Fig. 4. Due to the chaotic nature of the system, any forward march
of an estimate will lead to expected exponential growth of the estimation error (shown
linearly in semi-log coordinates). Each EnKF measurement update creates a discrete
drop in the expected estimation error. When a variational iteration is performed, the
estimate is marched backward. This causes an exponential decrease in the expected
error as trajectories of the chaotic system will converge (along the attractor) during the
backward march. Then, a variational update is made, further reducing the expected error,
and the resulting estimate is propagated forward again to the next available measurement.
Recall that with a linear system, the update due to the variational step will have zero
length, thus returning the estimate back to its original state to continue the sequential
march. This helps illustrate the consistent nature of EnVE.

3. Advantages

By combining the statistical capabilities of the EnKF along with the batch process-
ing/smoothing capabilities of a variational method, EnVE builds a better estimate of
the system, possibly in real time, at a justifiable computational cost. Using the EnKF
to initialize a 4DVar-like iteration allows for fewer iterations because full convergence is
not required and the initial estimate is far more accurate than the background estimate
alone. The intrinsic ability of the EnKF to represent the statistical properties of the esti-
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FIGURE 5. A cartoon illustrating the change in complexity of the optimization surfaces for a
short variational window (left) and a long variational window (right). Also shown is the known
truth model global minimum, which is more closely related to the global minimum of the highly
irregular optimization surface of the longer window.
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FIGURE 6. The accumulated forecast error from two forecasts. The left-most variational window
is for a simple 4DVar without a receding-horizon framework. The right-most window is for
EnVE with a receding-horizon framework. Note the difference in the accumulated errors of each
forecast is due in large part to the time the forecast is ahead of the latest optimization window
used. As this time is significantly reduced in the receding-horizon framework, forecasts made a
certain amount of time into the future are greatly improved.

mate allows EnVE to repeatedly and consistently revisit past measurements and update
the central trajectory of the ensemble (about which the system can be linearized when
considering its covariance evolution) based on new measurements.

A key feature of the EnVE framework is that it combines a multiscale-in-time algorithm
with a receding horizon optimization framework. The advantages of these properties are
highlighted in the following section. Combined, they provide a dynamic optimization
surface that tends to have desirable convergence properties for highly nonlinear systems.

3.1. Multi-scale in time

Because the variational window in EnVE is defined from the right (current time) by
marching the current estimate backward until divergence, the width of this window can
be selected during the iteration. In contrast, with traditional 4DVar, this window width
must be specified in advance. The variable variational window widths of EnVE can be
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used as a tool to precondition the optimization problem appropriately by coordinating
this width with the accuracy of the initial estimate, as discussed previously.

Due to the noise in the measurements, a short window containing only a few obser-
vations is prone to inaccuracy. That is, the global minimum of the cost function defined
over only a few observations is likely to deviate significantly from the “truth.” However,
because only a few measurements are included in this short window (with corresponding
short marches of the chaotic system) this optimization surface tends to be more regular,
with a larger region of attraction for the global minimum. The size of the region of at-
traction is important with gradient-based algorithms, as they are prone to converge to
local minima.

As the estimate improves, longer windows with more observations included can be
utilized. This will tend to make the optimization surface more irregular and shrink the
region of attraction for the global minimum, and thus this extension of the variational
window needs to be done gradually enough that the improved estimate remains in this
reduced region of attraction. Because more measurements are included in this window,
the effect of sensor noise is diminished from the shorter window, making this global
minimum more accurate with respect to the “truth.”

3.2. Receding horizon

A receding-horizon approach is defined by nudging the variational window forward in
time to incorporate the most recent measurements obtained during each iteration of
the variational optimization. Simplistic approaches to variational data assimilation leave
the optimization window fixed until convergence. In contrast, EnVE redefines the opti-
mization problem slightly at each iteration, updating it to include the newly obtained
measurements. As this modification causes the optimization surface to shift constantly,
the algorithm never completely converges. However, the receding-horizon optimization
framework updates the current estimate at each iteration with maximal efficiency, as
it is constantly using the most up-to-date information available. Further, the resulting
dynamic evolution of the optimization surface in fact helps to “nudge” the estimate out
of the local minima into which it might otherwise settle.

A typical contrast between the error of two forecasts (one generated with a fixed-
horizon 4DVar algorithm and the other with a receding-horizon EnVE algorithm) is
shown in Fig. 6. Unlike the receding-horizon EnVE algorithm, due to the computation
required for convergence of the fixed-horizon 4DVar algorithm, the corresponding vari-
ational window has slipped into the past. Because of the chaotic nature of the systems
of interest, any forecast will begin to diverge exponentially. Consequently, much of the
relevant range of the fixed-horizon 4DVar forecast is wasted predicting events that have
already taken place.

3.3. Parallel state/adjoint marches

As previously mentioned, another advantage of posing the variational optimization prob-
lem in a retrograde setting deals with the numerical implementation of EnVE. The adjoint
equation is marched backward in time (from ¢y to ¢_, ), forced using the trajectory x (t).
Typically, this trajectory is found by marching the initial condition x _, = u forward
through the window (from ¢_,. to tg). Especially for the multi-scale systems of interest,
this poses a large storage constraint on the problem, because the adjoint is forced by the
whole trajectory, but in reverse order. In other words, the trajectory of < (¢) needs to be
computed and saved over the entire interval before the adjoint march can begin. Attempts
to circumvent this problem for large atmospheric-scale systems include the checkpointing
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FIGURE 7. A depiction of the object-oriented strucutre of the EnVE implementation. The compu-
tational data assimilation algorithm (and code) is largely independent of the particular system
model used. Consequently, much of the code specific to the individual model is isolated at a
level below that of the main EnVE code. A compact, well-defined and largely portable “stan-
dard interface” is provided, enabling EnVE to drive a variety of system models and facilitating
mixed-language programming.

algorithm, in which the trajectory is stored only on coarse time grid points, and then, as
necessary, is either recomputed or linearly interpolated onto the fine (in time) grid used
for time-stepping the adjoint calculation. Checkpointing requires a substantial amount
of storage and significantly increases the computation required to compute the adjoint.

Note that, with EnVE, this required estimate trajectory is determined backward in
time rather than forward in time. Thus, the corresponding adjoint may be computed
simultaneously, eliminating this storage problem altogether.

3.4. Object oriented framwork

Because the theoretical development of EnVE is largely model-independent, an object-
oriented hierarchical implementation of the EnVE algorithm has been developed. This
C++ code is a wrapper that can be used to apply the EnVE algorithm to almost any de-
sired model, with the development of an appropriate and fairly straightforward interface.
By separating the data assimilation from the model simulation, the EnVE implementa-
tion code is able to adapt easily to complex legacy codes, such as Stanford’s CDP code
in the present work. Such a framework puts the minimum restrictions on the specific
structure of the existing individual models.

In addition, the object-oriented framework extends naturally to handle the algorithmic
overhead associated with the incoming observations. In real-life applications, observations
will be streaming into the assimilation system from multiple sensors, each with their
own types of measurements, time stamps, reliability and time delays (between when the
measurement is taken and when this measurement is recieved by the data assimilation
algorithm). The object-oriented EnVE implementation provides a means for handling
this variability in a clean and efficient manner. For testing purposes, when no physical
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FIGURE 8. The computational setup of the 2-D problem. Flow moves from left to right in an
open channel over a bluff body. For the data assimilation, 13 probes (on top of the ‘building’
and the two parallel veritcal rakes downstream) were placed in the flow measuring the velocity
components and the scalar concentration. The isolated probe (located downsteam between the
two rakes) is used only for retrospective analysis (see Fig. 11) and was not assimilated into the
estimate.

data is available, the model interface can also be used to artificially generate this stream
of observations.

One of the key difficulties when interfacing with an independently developed code base
is dealing with mixed-language programming. Writing the outer EnVE shell in C++
enables more low level control with respect to memory management and mixed-language
function calls, further increasing the overall versatility of the code.

4. Preliminary EnKF simulation and results

As a demonstration of the capabilities of our object-oriented implementation of EnVE,
we consider the estimation of a 2-D flowfield with a passive scalar release in the wake of
a bluff body. The ensemble members were simulated on a grid with both a factor of 64
fewer grid points and significantly larger time steps than the truth model. This under-
resolution parallels one of the key challenges to be expected in operational atmospheric
problems. Though only 25 grossly under-resolved ensemble members were used in the
EnKF formulation, the ensemble accurately captured both the large-scale features of
the truth model and its principle directions of uncertainty. The result thus suggests
that, when assimilating experimental data, it is indeed possible to capture accurately the
dominant dynamics of a complex system by replacing high-fidelity numerical simulations
with an appropriately forced ensemble of under-resolved calculations.

Figures 9 and 10 show clearly that EnVE is capable of estimating the large-scale
dynamics of interest in a 2-D vortex shedding problem past a simple bluff body. Note in
Fig. 9 that the variation of concentrations over large length scales are generally estimated
accurately, with more significant errors occuring over small length scales. Significantly,
the variance of the ensemble accurately depicts where the mean of the ensemble actually
differs from the truth model, thus providing a useful indicator of the accuracy of the
estimate provided by the EnKF analysis. Note also that the structure of the uncertainty
appears to be strongly correlated with the structures in the flow.

As another means for evaluating the estimator, an additional sensor was used to per-
form a retrospective pointwise comparison of the truth and the estimate. Fig. 11 compares
the estimated current and forecast velocities at a point (indicated in Fig. 8) with the true
velocities observed in the truth model. It is clear that the estimator provides a forecast
that remains well-correlated with the flow itself over a time scale which is significant with
respect to the dynamics of the large-scale features of the flow.
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FIGURE 9. A typical snapshot of the EnKF assimilation showing the passive scalar concentration.
In both the truth (top left) and estimate (top right), the passive scalar is being released at a
known rate and location; in this case, just downstream from the bluff body. Though the grid on
which the estimate is calculated (bottom left) is extremely course, we are able to capture many
of the moderate to large-scale features in the passive scalar concentration. Additionally, note
that the variance in the ensembles (bottom right) is small in the potential flow region upstream
and near the center of the first shed vortex downstream.
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FIGURE 10. As in Fig. 9, showing now the horizontal component of the velocity. In the truth
model (top left), the high-fidelity simulation clearly shows the separation of the flow at the
leading edge of the bluff body and the location of the most recently shed vortex. Note again
that we are able to estimate the approximate location of this vortex in the ensemble mean (top
right). As in Fig. 9, the ensemble variance (bottom right) is low near the upstream boundary
condition and higher in the turbulent wake, where the flow structure is less certain.

5. Summary and conclusions

This paper summarizes a new hybrid Ensemble Variational Estimation (EnVE) algo-
rithm for data assimilation in complex systems, our implementation of this algorithm
in a portable and extensible object-oriented framework, and our preliminary efforts to
apply this framework to high-performance turbulence codes.

The EnVE method leverages the nonlinear statistical propagation properties of the
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FIGURE 11. For the purposes of retrospective analysis, a probe was placed in the flow but not
used in the assimilation process (see Fig. 8 for the precise location). The thin line shows the
time history of the horizontal velocity of the truth model, where the oscillations due to turbulent
vortex shedding become apparent. For the present plot, the thick line represents a time history
of the EnKF estimate up to the present time (¢ = 2), after which the thick line represents the
current operational forecast of the assimilation. Note that this forecast is statistically correlated
with the known future truth for the next three shedding cycles.

sequential EnKF/EnKS to initialize and define properly an appropriate variational it-
eration, similar to 4DVar. This variational iteration is posed in such a way as to allow
for a multiscale-in-time, receding-horizon optimization framework. The smoothed esti-
mate from the EnKF is used as an accurate initial condition for the variational iteration,
thus improving its overall performance. The multiscale-in-time framework is achieved
via a retrograde march of the current estimate over the available observations, and ap-
propriately preconditions the variational step. This also allows for a concurrent, parallel
march of the appropriate adjoint ensemble. Thus, no additional storage is required for
the gradient computation, as is otherwise typical with a 4DVar implementation.

The full EnVE algorithm has been develped into a compact, portable, object-oriented
framework which can be applied to a wide variety of possible underlying simulation
codes. By divorcing the EnVE algorithm from the underlying model, this framework is
easily adapted to complex independently developed simulation codes. We have applied
this framework to Stanford’s CDP code; preliminary computational results are given in
the present paper. Though the adjoint of the CDP solver is not yet fully operational,
we have successfully incorporated the CDP code base into the present data assimilation
framework, running (for now) in EnKF mode only. Computational results obtained thus
far are quite promising, yet still show room for significant improvement, which we expect
the full EnVE framework to provide.
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